Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy.
Cooke, Gerard M
2014-01-01
The first trimester of human fetal life, a period of extremely rapid development of physiological systems, represents the most rapid growth phase in human life. Interference in the establishment of organ systems may result in abnormal development that may be manifest immediately or programmed for later abnormal function. Exposure to environmental chemicals may be affecting development at these early stages, and yet there is limited knowledge of the quantities and identities of the chemicals to which the fetus is exposed during early pregnancy. Clearly, opportunities for assessing fetal chemical exposure directly are extremely limited. Hence, this review describes indirect means of assessing fetal exposure in early pregnancy to chemicals that are considered disrupters of development. Consideration is given to such matrices as maternal hair, fingernails, urine, saliva, sweat, breast milk, amniotic fluid and blood, and fetal matrices such as cord blood, cord tissue, meconium, placenta, and fetal liver. More than 150 articles that presented data from chemical analysis of human maternal and fetal tissues and fluids were reviewed. Priority was given to articles where chemical analysis was conducted in more than one matrix. Where correlations between maternal and fetal matrices were determined, these articles were included and are highlighted, as these may provide the basis for future investigations of early fetal exposure. The determination of fetal chemical exposure, at the time of rapid human growth and development, will greatly assist regulatory agencies in risk assessments and establishment of advisories for risk management concerning environmental chemicals.
Abbott, Barbara D.; Wood, Carmen R.; Watkins, Andrew M.; Das, Kaberi P.; Lau, Christopher S.
2010-01-01
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examines expression of PPARα, β, and γ mRNA and protein in human fetal tissues. With increasing fetal age, mRNA expression of PPARα and β increased in liver, but PPARβ decreased in heart and intestine, and PPARγ decreased in adrenal. Adult and fetal mean expression of PPARα, β, and γ mRNA did not differ in intestine, but expression was lower in fetal stomach and heart. PPARα and β mRNA in kidney and spleen, and PPARγ mRNA in lung and adrenal were lower in fetal versus adult. PPARγ in liver and PPARβ mRNA in thymus were higher in fetal versus adult. PPARα protein increased with fetal age in intestine and decreased in lung, kidney, and adrenal. PPARβ protein in adrenal and PPARγ in kidney decreased with fetal age. This study provides new information on expression of PPAR subtypes during human development and will be important in evaluating the potential for the developing human to respond to PPAR environmental or pharmaceutical agonists. PMID:20706641
The extracellular calcium-sensing receptor regulates human fetal lung development via CFTR
Brennan, Sarah C.; Wilkinson, William J.; Tseng, Hsiu-Er; Finney, Brenda; Monk, Bethan; Dibble, Holly; Quilliam, Samantha; Warburton, David; Galietta, Luis J.; Kemp, Paul J.; Riccardi, Daniela
2016-01-01
Optimal fetal lung growth requires anion-driven fluid secretion into the lumen of the developing organ. The fetus is hypercalcemic compared to the mother and here we show that in the developing human lung this hypercalcaemia acts on the extracellular calcium-sensing receptor, CaSR, to promote fluid-driven lung expansion through activation of the cystic fibrosis transmembrane conductance regulator, CFTR. Several chloride channels including TMEM16, bestrophin, CFTR, CLCN2 and CLCA1, are also expressed in the developing human fetal lung at gestational stages when CaSR expression is maximal. Measurements of Cl−-driven fluid secretion in organ explant cultures show that pharmacological CaSR activation by calcimimetics stimulates lung fluid secretion through CFTR, an effect which in humans, but not mice, was also mimicked by fetal hypercalcemic conditions, demonstrating that the physiological relevance of such a mechanism appears to be species-specific. Calcimimetics promote CFTR opening by activating adenylate cyclase and we show that Ca2+-stimulated type I adenylate cyclase is expressed in the developing human lung. Together, these observations suggest that physiological fetal hypercalcemia, acting on the CaSR, promotes human fetal lung development via cAMP-dependent opening of CFTR. Disturbances in this process would be expected to permanently impact lung structure and might predispose to certain postnatal respiratory diseases. PMID:26911344
Gaining Insight of Fetal Brain Development with Diffusion MRI and Histology
Huang, Hao; Vasung, Lana
2013-01-01
Human brain is extraordinarily complex and yet its origin is a simple tubular structure. Its development during the fetal period is characterized by a series of accurately organized events which underlie the mechanisms of dramatic structural changes during fetal development. Revealing detailed anatomy at different stages of human fetal brain development provides insight on understanding not only this highly ordered process, but also the neurobiological foundations of cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar and language impairment. Diffusion tensor imaging (DTI) and histology are complementary tools which are capable of delineating the fetal brain structures at both macroscopic and microscopic level. In this review, the structural development of the fetal brains has been characterized with DTI and histology. Major components of the fetal brain, including cortical plate, fetal white matter and cerebral wall layer between the ventricle and subplate, have been delineated with DTI and histology. Anisotropic metrics derived from DTI were used to quantify the microstructural changes during the dynamic process of human fetal cortical development and prenatal development of other animal models. Fetal white matter pathways have been traced with DTI-based tractography to reveal growth patterns of individual white matter tracts and corticocortical connectivity. These detailed anatomical accounts of the structural changes during fetal period may provide the clues of detecting developmental and cognitive brain disorders at their early stages. The anatomical information from DTI and histology may also provide reference standards for diagnostic radiology of premature newborns. PMID:23796901
Rice, H E; Skarsgard, E D; Emani, V R; Zanjani, E D; Harrison, M R; Flake, A W
1994-12-01
The transplantation of human fetal tissue has the potential to cure a variety of life-threatening diseases. The strategy for procurement, quality control, and functional assessment of human fetal liver HSC may prove useful for the transplantation of other fetal tissues. In addition to technical limitations, there are ethical and legal issues which need to be resolved before widespread use of fetal tissue. Further development of regulatory standards for the acquisition and distribution of fetal tissues will foster the application of this novel technology.
Cross-hemispheric functional connectivity in the human fetal brain.
Thomason, Moriah E; Dassanayake, Maya T; Shen, Stephen; Katkuri, Yashwanth; Alexis, Mitchell; Anderson, Amy L; Yeo, Lami; Mody, Swati; Hernandez-Andrade, Edgar; Hassan, Sonia S; Studholme, Colin; Jeong, Jeong-Won; Romero, Roberto
2013-02-20
Compelling evidence indicates that psychiatric and developmental disorders are generally caused by disruptions in the functional connectivity (FC) of brain networks. Events occurring during development, and in particular during fetal life, have been implicated in the genesis of such disorders. However, the developmental timetable for the emergence of neural FC during human fetal life is unknown. We present the results of resting-state functional magnetic resonance imaging performed in 25 healthy human fetuses in the second and third trimesters of pregnancy (24 to 38 weeks of gestation). We report the presence of bilateral fetal brain FC and regional and age-related variation in FC. Significant bilateral connectivity was evident in half of the 42 areas tested, and the strength of FC between homologous cortical brain regions increased with advancing gestational age. We also observed medial to lateral gradients in fetal functional brain connectivity. These findings improve understanding of human fetal central nervous system development and provide a basis for examining the role of insults during fetal life in the subsequent development of disorders in neural FC.
Human Fetal Behavior: 100 Years of Study.
ERIC Educational Resources Information Center
Kisilevsky, B. S.; Low, J. A.
1998-01-01
Reviews literature on human fetal behavior. Includes descriptions of coupling of body movements and fetal heart rate and behavior maturation from conception to term. Discusses use of stimulus-induced behavior to examine sensory and cognitive development, and spontaneous and stimulus-induced behavior to assess fetal well-being. Notes research focus…
Gaining insight of fetal brain development with diffusion MRI and histology.
Huang, Hao; Vasung, Lana
2014-02-01
Human brain is extraordinarily complex and yet its origin is a simple tubular structure. Its development during the fetal period is characterized by a series of accurately organized events which underlie the mechanisms of dramatic structural changes during fetal development. Revealing detailed anatomy at different stages of human fetal brain development provides insight on understanding not only this highly ordered process, but also the neurobiological foundations of cognitive brain disorders such as mental retardation, autism, schizophrenia, bipolar and language impairment. Diffusion tensor imaging (DTI) and histology are complementary tools which are capable of delineating the fetal brain structures at both macroscopic and microscopic levels. In this review, the structural development of the fetal brains has been characterized with DTI and histology. Major components of the fetal brain, including cortical plate, fetal white matter and cerebral wall layer between the ventricle and subplate, have been delineated with DTI and histology. Anisotropic metrics derived from DTI were used to quantify the microstructural changes during the dynamic process of human fetal cortical development and prenatal development of other animal models. Fetal white matter pathways have been traced with DTI-based tractography to reveal growth patterns of individual white matter tracts and corticocortical connectivity. These detailed anatomical accounts of the structural changes during fetal period may provide the clues of detecting developmental and cognitive brain disorders at their early stages. The anatomical information from DTI and histology may also provide reference standards for diagnostic radiology of premature newborns. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.
MYSTERIES OF THE HUMAN FETUS REVEALED.
Sandman, Curt A
2015-09-01
The impressive program of research from the DiPietro laboratory succeeds in its aim to document the ontogeny of human fetal neurobehavioral development. From studies of great depth and breadth, and wielding creative methods of assessment, DiPietro et al. open a window into the largely inaccessible developing human fetal brain. This commentary, with reference to the seminal cardiovascular studies of the Laceys, supports the measures of the fetal heart to index fetal well-being and to provide evidence of stimulus processing. A separate case is made that the DiPietro program provides unique and invaluable information for assessing the influential Developmental Origins of Health and Disease or Fetal Programming Models. The goal of these models, to predict or understand the influences of early experience or response patterns on later postnatal life, is identical to the ultimate goal of the DiPietro program. Because human fetal behavior is uncontaminated by socialization or parenting or peers, it may be the best reflection of fetal exposures. The remarkable neurobehavioral profiles generated by the DiPietro program can make a critical contribution to the Fetal Programming Model in terms of sensitive and critical periods of nervous system vulnerability and to specify gestational periods of neurobehavioral risk. © 2015 The Society for Research in Child Development, Inc.
Ishimoto, Hitoshi
2011-01-01
Continuous efforts have been devoted to unraveling the biophysiology and development of the human fetal adrenal cortex, which is structurally and functionally unique from other species. It plays a pivotal role, mainly through steroidogenesis, in the regulation of intrauterine homeostasis and in fetal development and maturation. The steroidogenic activity is characterized by early transient cortisol biosynthesis, followed by its suppressed synthesis until late gestation, and extensive production of dehydroepiandrosterone and its sulfate, precursors of placental estrogen, during most of gestation. The gland rapidly grows through processes including cell proliferation and angiogenesis at the gland periphery, cellular migration, hypertrophy, and apoptosis. Recent studies employing modern technologies such as gene expression profiling and laser capture microdissection have revealed that development and/or function of the fetal adrenal cortex may be regulated by a panoply of molecules, including transcription factors, extracellular matrix components, locally produced growth factors, and placenta-derived CRH, in addition to the primary regulator, fetal pituitary ACTH. The role of the fetal adrenal cortex in human pregnancy and parturition appears highly complex, probably due to redundant and compensatory mechanisms regulating these events. Mounting evidence indicates that actions of hormones operating in the human feto-placental unit are likely mediated by mechanisms including target tissue responsiveness, local metabolism, and bioavailability, rather than changes only in circulating levels. Comprehensive study of such molecular mechanisms and the newly identified factors implicated in adrenal development should help crystallize our understanding of the development and physiology of the human fetal adrenal cortex. PMID:21051591
MYSTERIES OF THE HUMAN FETUS REVEALED
SANDMAN, CURT A
2015-01-01
The impressive program of research from the DiPietro laboratory succeeds in its aim to document the ontogeny of human fetal neurobehavioral development. From studies of great depth and breadth, and wielding creative methods of assessment, DiPietro et al open a window into the largely inaccessible developing human fetal brain. This commentary, with reference to the seminal cardiovascular studies of the Lacey's, supports the measures of the fetal heart to index fetal well-being and to provide evidence of stimulus processing. A separate case is made that the DiPietro program provides unique and invaluable information for assessing the influential Developmental Origins of Health and Disease or Fetal Programming Models. The goal of these models, to predict or understand the influences of early experience or response patterns on later postnatal life, is identical to the ultimate goal of the DiPietro program. Because human fetal behavior is uncontaminated by socialization or parenting or peers, it may be the best reflection of fetal exposures. The remarkable neurobehavioral profiles generated by the DiPietro program can make a critical contribution to the Fetal Programming Model in terms of sensitive and critical periods of nervous system vulnerability and to specify gestational periods of neurobehavioral risk.. PMID:26303720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muczynski, V.; CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses; INSERM, Unité 967, F-92265, Fontenay aux Roses
The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation andmore » cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.« less
Cryopreservation, Culture, and Transplantation of Human Fetal Mesencephalic Tissue into Monkeys
NASA Astrophysics Data System (ADS)
Redmond, D. E.; Naftolin, F.; Collier, T. J.; Leranth, C.; Robbins, R. J.; Sladek, C. D.; Roth, R. H.; Sladek, J. R.
1988-11-01
Studies in animals suggest that fetal neural grafts might restore lost neurological function in Parkinson's disease. In monkeys, such grafts survive for many months and reverse signs of parkinsonism, without attendant graft rejection. The successful and reliable application of a similar transplantation procedure to human patients, however, will require neural tissue obtained from human fetal cadavers, with demonstrated cellular identity, viability, and biological safety. In this report, human fetal neural tissue was successfully grafted into the brains of monkeys. Neural tissue was collected from human fetal cadavers after 9 to 12 weeks of gestation and cryopreserved in liquid nitrogen. Viability after up to 2 months of storage was demonstrated by cell culture and by transplantation into monkeys. Cryopreservation and storage of human fetal neural tissue would allow formation of a tissue bank. The stored cells could then be specifically tested to assure their cellular identity, viability, and bacteriological and virological safety before clinical use. The capacity to collect and maintain viable human fetal neural tissue would also facilitate research efforts to understand the development and function of the human brain and provide opportunities to study neurological diseases.
Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
Camp, J. Gray; Badsha, Farhath; Florio, Marta; Kanton, Sabina; Gerber, Tobias; Wilsch-Bräuninger, Michaela; Lewitus, Eric; Sykes, Alex; Hevers, Wulf; Lancaster, Madeline; Knoblich, Juergen A.; Lachmann, Robert; Pääbo, Svante; Huttner, Wieland B.; Treutlein, Barbara
2015-01-01
Cerebral organoids—3D cultures of human cerebral tissue derived from pluripotent stem cells—have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures. PMID:26644564
Shen, Joel; Overland, Maya; Sinclair, Adriane; Cao, Mei; Yue, Xuan; Cunha, Gerald; Baskin, Laurence
We recently described a two-step process of urethral plate canalization and urethral fold fusion to form the human penile urethra. Canalization ("opening zipper") opens the solid urethral plate into a groove, and fusion ("closing zipper") closes the urethral groove to form the penile urethra. We hypothesize that failure of canalization and/or fusion during human urethral formation can lead to hypospadias. Herein, we use scanning electron microscopy (SEM) and analysis of transverse serial sections to better characterize development of the human fetal penile urethra as contrasted to the development of the human fetal clitoris. Eighteen 7-13 week human fetal external genitalia specimens were analyzed by SEM, and fifteen additional human fetal specimens were sectioned for histologic analysis. SEM images demonstrate canalization of the urethral/vestibular plate in the developing male and female external genitalia, respectively, followed by proximal to distal fusion of the urethral folds in males only. The fusion process during penile development occurs sequentially in multiple layers and through the interlacing of epidermal "cords". Complex epithelial organization is also noted at the site of active canalization. The demarcation between the epidermis of the shaft and the glans becomes distinct during development, and the epithelial tag at the distal tip of the penile and clitoral glans regresses as development progresses. In summary, SEM analysis of human fetal specimens supports the two-zipper hypothesis of formation of the penile urethra. The opening zipper progresses from proximal to distal along the shaft of the penis and clitoris into the glans in identical fashion in both sexes. The closing zipper mechanism is active only in males and is not a single process but rather a series of layered fusion events, uniquely different from the simple fusion of two epithelial surfaces as occurs in formation of the palate and neural tube. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Larsen, Karen B
2017-01-01
Human fetal brain development is a complex process which is vulnerable to disruption at many stages. Although histogenesis is well-documented, only a few studies have quantified cell numbers across normal human fetal brain growth. Due to the present lack of normative data it is difficult to gauge abnormal development. Furthermore, many studies of brain cell numbers have employed biased counting methods, whereas innovations in stereology during the past 20-30 years enable reliable and efficient estimates of cell numbers. However, estimates of cell volumes and densities in fetal brain samples are unreliable due to unpredictable shrinking artifacts, and the fragility of the fetal brain requires particular care in handling and processing. The optical fractionator design offers a direct and robust estimate of total cell numbers in the fetal brain with a minimum of handling of the tissue. Bearing this in mind, we have used the optical fractionator to quantify the growth of total cell numbers as a function of fetal age. We discovered a two-phased development in total cell numbers in the human fetal forebrain consisting of an initial steep rise in total cell numbers between 13 and 20 weeks of gestation, followed by a slower linear phase extending from mid-gestation to 40 weeks of gestation. Furthermore, we have demonstrated a reduced total cell number in the forebrain in fetuses with Down syndome at midgestation and in intrauterine growth-restricted fetuses during the third trimester.
Stereological study of developing glomerular forms during human fetal kidney development.
Dakovic Bjelakovic, Marija; Vlajkovic, Slobodan; Petrovic, Aleksandar; Bjelakovic, Marko; Antic, Milorad
2018-05-01
Human fetal kidney development is a complex and stepwise process. The number, shape, size and distribution of glomeruli provide important information on kidney organization. The aim of this study was to quantify glomerular developing forms during human fetal kidney development using stereological methods. Kidney tissue specimens of 40 human fetuses with gestational ages ranging from 9 to 40 weeks were analyzed. Specimens were divided into eight groups based on gestational age, each corresponding to 1 lunar month. Stereological methods were used at the light microscopy level to estimate volume, surface and numerical density of the glomerular developing forms. During gestation, nephrogenesis continually advanced, and the number of nephrons increased. Volume, surface and numerical densities of vesicular forms and S-shaped bodies decreased gradually in parallel with gradual increases in estimated stereological parameters for vascularized glomeruli. Volume density and surface density of vascularized glomeruli increased gradually during fetal kidney development, and numerical density increased until the seventh lunar month. A relative decrease in vascularized glomeruli per unit volume of cortex occurred during the last 3 lunar months. Nephrogenesis began to taper off by 32 weeks and was completed by 36 weeks of gestation. The last sample in which we observed vesicles was from a fetus aged 32 weeks, and the last sample with S-shaped bodies was from a fetus aged 36 weeks. The present study is one of few quantitative studies conducted on human kidney development. Knowledge of normal human kidney morphogenesis during development could be important for future medical practice. Events occurring during fetal life may have significant consequences later in life.
Fetal myosin immunoreactivity in human dystrophic muscle.
Schiaffino, S; Gorza, L; Dones, I; Cornelio, F; Sartore, S
1986-01-01
We report immunofluorescence observations on normal and dystrophic human muscle using an antibody (anti-bF) raised against bovine fetal myosin and specific for fetal myosin heavy chains. In rat skeletal muscle, anti-bF was previously found to react selectively with myosin isoforms expressed during fetal and early postnatal development and in regenerating muscles. Anti-bF stained most fibers in human fetal and neonatal muscle, whereas only nuclear chain fibers of muscle spindles were labeled in normal adult muscle. In muscle biopsies from patients with Duchenne's muscular dystrophy, numerous extrafusal fibers were stained: some were small regenerating fibers, others were larger fibers presumably resulting from previous regenerative events. Fetal myosin immunoreactivity in Duchenne's dystrophy appears to reflect the reexpression of fetal-specific myosin isoforms and provides a new valuable tool for identifying regenerating fibers and following their destiny in dystrophic muscle.
Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A
2010-08-01
Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.
Jaleco, A C; Blom, B; Res, P; Weijer, K; Lanier, L L; Phillips, J H; Spits, H
1997-07-15
The presence of T and NK cells in the human fetal liver and the fact that fetal liver hemopoietic progenitor cells develop into T and NK cells suggest a role for the fetal liver compartment in T and NK cell development. In this work, we show that the capacity of fetal liver progenitors to develop into T cells, in a human/mouse fetal thymic organ culture system, is restricted to an immature subset of CD34+ CD38- cells. No T cell-committed precursors are contained within the more differentiated CD34+ CD38+ population. This conclusion is supported by the observations that no TCR-delta gene rearrangements and no pre-TCR-alpha expression can be detected in this population. However, NK cells were derived from CD34+ CD38- and CD34+ CD38+ fetal liver cells cultured in the presence of IL-15, IL-7, and Flt-3 ligand. Eighty to ninety percent of cells arising from the CD34+ CD38+ population expressed the NK cell-associated markers CD56, CD16, CD94, and NKR-P1A. Several subpopulations of NK cell precursors were identified by differential expression of these receptors. Based on the detection of populations with a similar antigenic profile in freshly isolated fetal liver cells, we propose a model of NK cell differentiation. Collectively, our findings suggest that CD34+ cells differentiate into NK cells, but not into mature T cells, in the human fetal liver.
Sunday, M E; Hua, J; Torday, J S; Reyes, B; Shipp, M A
1992-12-01
The cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP) functions in multiple organ systems to downregulate responses to peptide hormones. Recently, CD10/NEP was found to hydrolyze bombesin-like peptides (BLP), which are mitogens for normal bronchial epithelial cells and small cell lung carcinomas. Growth of BLP-responsive small cell lung carcinomas was potentiated by CD10/NEP inhibition, implicating CD10/NEP in regulation of BLP-mediated tumor growth. BLP are also likely to participate in normal lung development because high BLP levels are found in fetal lung, and bombesin induces proliferation and maturation of human fetal lung in organ cultures and murine fetal lung in utero. To explore potential roles for CD10/NEP in regulating peptide-mediated human fetal lung development, we have characterized temporal and cellular patterns of CD10/NEP expression and effects of CD10/NEP inhibition in organ cultures. Peak CD10/NEP transcript levels are identified at 11-13 wk gestation by Northern blots and localized to epithelial cells and mesenchyme of developing airways by in situ hybridization. CD10/NEP immunostaining is most intense in undifferentiated airway epithelium. In human fetal lung organ cultures, inhibition of CD10/NEP with either phosphoramidon or SCH32615 increases thymidine incorporation by 166-182% (P < 0.025). The specific BLP receptor antagonist, [Leu13-psi(CH2NH)Leu14]bombesin abolishes these effects on fetal lung growth, suggesting that CD10/NEP modulates BLP-mediated proliferation. CD10/NEP expression in the growing front of airway epithelium and the effects of CD10/NEP inhibitors in lung explants implicate the enzyme in the regulation of peptide-mediated fetal lung growth.
STUDIES IN FETAL BEHAVIOR: REVISITED, RENEWED, AND REIMAGINED.
DiPietro, Janet A; Costigan, Kathleen A; Voegtline, Kristin M
2015-09-01
Among the earliest volumes of this monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodrmal activity and fetal heartrate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include:within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physio-logical processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship.We pose a number of open questions for future research. Although the human fetus remains just out of reach, new technologies portend an era of accelerated discovery of the earliest period of development
Studies in Fetal Behavior: Revisited, Renewed, and Reimagined
DiPietro, Janet A.; Costigan, Kathleen A.; Voegtline, Kristin M.
2016-01-01
Among the earliest volumes of this Monograph series was a report by Lester Sontag and colleagues, of the esteemed Fels Institute, on the heart rate of the human fetus as an expression of the developing nervous system. Here, some 75 years later, we commemorate this work and provide historical and contemporary context on knowledge regarding fetal development, as well as results from our own research. These are based on synchronized monitoring of maternal and fetal parameters assessed between 24 and 36 weeks gestation on 740 maternal-fetal pairs compiled from eight separate longitudinal studies, which commenced in the early 1990s. Data include maternal heart rate, respiratory sinus arrhythmia, and electrodermal activity and fetal heart rate, motor activity, and their integration. Hierarchical linear modeling of developmental trajectories reveals that the fetus develops in predictable ways consistent with advancing parasympathetic regulation. Findings also include: within-fetus stability (i.e., preservation of rank ordering over time) for heart rate, motor, and coupling measures; a transitional period of decelerating development near 30 weeks gestation; sex differences in fetal heart rate measures but not in most fetal motor activity measures; modest correspondence in fetal neurodevelopment among siblings as compared to unrelated fetuses; and deviations from normative fetal development in fetuses affected by intrauterine growth restriction and other conditions. Maternal parameters also change during this period of gestation and there is evidence that fetal sex and individual variation in fetal neurobehavior influence maternal physiological processes and the local intrauterine context. Results are discussed within the framework of neuromaturation, the emergence of individual differences, and the bidirectional nature of the maternal-fetal relationship. We pose a number of open questions for future research. Although the human fetus remains just out of reach, new technologies portend an era of accelerated discovery of the earliest period of development. PMID:26303396
Schultz, Francisca; Hasan, Alveera; Alvarez-Laviada, Anita; Miragoli, Michele; Bhogal, Navneet; Wells, Sarah; Poulet, Claire; Chambers, Jenny; Williamson, Catherine; Gorelik, Julia
2016-01-01
Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts in human fetal hearts. Hypoxia further increased the number of human fetal and rat neonatal myofibroblasts. However, chronically administered UDCA reduced the number of myofibroblasts and prevented hypoxia-induced depolarisation. In conclusion, our results show that the protective effect of UDCA involves both the reduction of fibroblast differentiation into myofibroblasts, and hyperpolarisation of myofibroblasts, most likely through the stimulation of potassium channels, i.e. KATP channels. This could be important in validating UDCA as an antifibrotic and antiarrhythmic drug for treatment of failing hearts and fetal arrhythmia. Copyright © 2016. Published by Elsevier Ltd.
Judaš, Miloš; Šimić, Goran; Petanjek, Zdravko; Jovanov-Milošević, Nataša; Pletikos, Mihovil; Vasung, Lana; Vukšić, Mario; Kostović, Ivica
2011-05-01
The Zagreb Collection of developing and adult human brains was founded in 1974 by Ivica Kostović and consists of 1,278 developing and adult human brains, including 610 fetal, 317 children, and 359 adult brains. It is one of the largest collections of developing human brains. The collection serves as a key resource for many focused research projects and has led to several seminal contributions on mammalian cortical development, such as the discovery of the transient fetal subplate zone and of early bilaminar synaptogenesis in the embryonic and fetal human cerebral cortex, and the first description of growing afferent pathways in the human fetal telencephalon. The Zagreb Collection also serves as a core resource for ever-growing networks of international collaboration and represents the starting point for many young investigators who now pursue independent research careers at leading international institutions. The Zagreb Collection, however, remains underexploited owing to a lack of adequate funding in Croatia. Funding could establish an online catalog of the collection and modern virtual microscopy scanning methods to make the collection internationally more accessible. © 2011 New York Academy of Sciences.
Buss, Claudia; Davis, Elysia Poggi; Class, Quetzal A; Gierczak, Matt; Pattillo, Carol; Glynn, Laura M; Sandman, Curt A
2009-10-01
Despite the evidence for early fetal experience exerting programming influences on later neurological development and health risk, very few prospective studies of human fetal behavior have been reported. In a prospective longitudinal study, fetal nervous system maturation was serially assessed by monitoring fetal heart rate (FHR) responses to vibroacoustic stimulation (VAS) in 191 maternal/fetal dyads. Responses were not detected at 26 weeks gestational age (GA). Sex-specific, age-characteristic changes in the FHR response to VAS were observed by 31 weeks' GA. Males showed larger responses and continued to exhibit maturational changes until 37 weeks' GA, females however, presented with a mature FHR startle response by 31 weeks' GA. The results indicate that there are different rates of maturation in the male and female fetuses that may have implications for sex-specific programming influences.
Hruby, Radovan; Maas, Lili M; Fedor-Freybergh, P G
2013-01-01
The article introduces an integrative psychoneurodevelopmental model of complex human brain and mind development based on the latest findings in prenatal and perinatal medicine in terms of integrative neuroscience. The human brain development is extraordinarily complex set of events and could be influenced by a lot of factors. It is supported by new insights into the early neuro-ontogenic processes with the help of structural 3D magnetic resonance imaging or diffusion tensor imaging of fetal human brain. Various factors and targets for neural development including birth weight variability, fetal and early-life programming, fetal neurobehavioral states and fetal behavioral responses to various stimuli and others are discussed. Molecular biology reveals increasing sets of genes families as well as transcription and neurotropic factors together with critical epigenetic mechanisms to be deeply employed in the crucial neurodevelopmental events. Another field of critical importance is psychoimmuno-neuroendocrinology. Various effects of glucocorticoids as well as other hormones, prenatal stress and fetal HPA axis modulation are thought to be of special importance for brain development. The early postnatal period is characterized by the next intense shaping of complex competences, induced mainly by the very unique mother - newborn´s interactions and bonding. All these mechanisms serve to shape individual human mind with complex abilities and neurobehavioral strategies. Continuous research elucidating these special competences of human fetus and newborn/child supports integrative neuroscientific approach to involve various scientific disciplines for the next progress in human brain and mind research, and opens new scientific challenges and philosophic attitudes. New findings and approaches in this field could establish new methods in science, in primary prevention and treatment strategies, and markedly contribute to the development of modern integrative and personalized medicine.
Studholme, Colin
2011-08-15
The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.
Retinoic Acid Signalling and the Control of Meiotic Entry in the Human Fetal Gonad
Kinnell, Hazel L.; Anderson, Richard A.; Saunders, Philippa T. K.
2011-01-01
The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8–9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary, mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the human fetal testis. PMID:21674038
Human Fetal Testis Xenografts Are Resistant to Phthalate-Induced Endocrine Disruption
Heger, Nicholas E; Hall, Susan J; Sandrof, Moses A; McDonnell, Elizabeth V; Hensley, Janan B; McDowell, Erin N; Martin, Kayla A; Gaido, Kevin W; Johnson, Kamin J
2012-01-01
Background: In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates. Objectives: In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response. Methods: Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points. Results: Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression. Conclusions: Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis. PMID:22511013
Stelnicki, E J; Kömüves, L G; Holmes, D; Clavin, W; Harrison, M R; Adzick, N S; Largman, C
1997-10-01
In order to identify homeobox genes which may regulate skin development and possibly mediate scarless fetal wound healing we have screened amplified human fetal skin cDNAs by polymerase chain reaction (PCR) using degenerate oligonucleotide primers designed against highly conserved regions within the homeobox. We identified three non-HOX homeobox genes, MSX-1, MSX-2, and MOX-1, which were differentially expressed in fetal and adult human skin. MSX-1 and MSX-2 were detected in the epidermis, hair follicles, and fibroblasts of the developing fetal skin by in situ hybridization. In contrast, MSX-1 and MSX-2 expression in adult skin was confined to epithelially derived structures. Immunohistochemical analysis of these two genes suggested that their respective homeoproteins may be differentially regulated. While Msx-1 was detected in the cell nucleus of both fetal and adult skin; Msx-2 was detected as a diffuse cytoplasmic signal in fetal epidermis and portions of the hair follicle and dermis, but was localized to the nucleus in adult epidermis. MOX-1 was expressed in a pattern similar to MSX early in gestation but then was restricted exclusively to follicular cells in the innermost layer of the outer root sheath by 21 weeks of development. Furthermore, MOX-1 expression was completely absent in adult cutaneous tissue. These data imply that each of these homeobox genes plays a specific role in skin development.
Qiu, Caihong; Olivier, Emmanuel N; Velho, Michelle; Bouhassira, Eric E
2008-02-15
We have previously shown that coculture of human embryonic stem cells (hESCs) for 14 days with immortalized fetal hepatocytes yields CD34(+) cells that can be expanded in serum-free liquid culture into large numbers of megaloblastic nucleated erythroblasts resembling yolk sac-derived cells. We show here that these primitive erythroblasts undergo a switch in hemoglobin (Hb) composition during late terminal erythroid maturation with the basophilic erythroblasts expressing predominantly Hb Gower I (zeta(2)epsilon(2)) and the orthochromatic erythroblasts hemoglobin Gower II (alpha(2)epsilon(2)). This suggests that the switch from Hb Gower I to Hb Gower II, the first hemoglobin switch in humans is a maturation switch not a lineage switch. We also show that extending the coculture of the hESCs with immortalized fetal hepatocytes to 35 days yields CD34(+) cells that differentiate into more developmentally mature, fetal liver-like erythroblasts, that are smaller, express mostly fetal hemoglobin, and can enucleate. We conclude that hESC-derived erythropoiesis closely mimics early human development because the first 2 human hemoglobin switches are recapitulated, and because yolk sac-like and fetal liver-like cells are sequentially produced. Development of a method that yields erythroid cells with an adult phenotype remains necessary, because the most mature cells that can be produced with current systems express less than 2% adult beta-globin mRNA.
Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T.; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A.; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W.; Malik, Hassan; Kitteringham, Neil R.; Goldring, Chris E.; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A.
2015-01-01
Background & Aims Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Methods Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. Results HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. Conclusions HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. PMID:25457200
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study examine...
Lowe, David E; Robbins, Jennifer R; Bakardjiev, Anna I
2018-06-01
Intrauterine infections lead to serious complications for mother and fetus, including preterm birth, maternal and fetal death, and neurological sequelae in the surviving offspring. Improving maternal and child heath is a global priority. Yet, the development of strategies to prevent and treat pregnancy-related diseases has lagged behind progress made in other medical fields. One of the challenges is finding tractable model systems that replicate the human maternal-fetal interface. Animal models offer the ability to study pathogenesis and host defenses in vivo However, the anatomy of the maternal-fetal interface is highly divergent across species. While many tools are available to study host responses in the pregnant mouse model, other animals have placentas that are more similar to that of humans. Here we describe new developments in animal and human tissue models to investigate the pathogenesis of listeriosis at the maternal-fetal interface. We highlight gaps in existing knowledge and make recommendations on how they can be filled. Copyright © 2018 American Society for Microbiology.
Tracking fetal development through molecular analysis of maternal biofluids☆
Edlow, Andrea G.; Bianchi, Diana W.
2015-01-01
Current monitoring of fetal development includes fetal ultrasonography, chorionic villus sampling or amniocentesis for chromosome analysis, and maternal serum biochemical screening for analytes associated with aneuploidy and open neural tube defects. Over the last 15 years, significant advances in noninvasive prenatal diagnosis (NIPD) via cell-free fetal (cff) nucleic acids in maternal plasma have resulted in the ability to determine fetal sex, RhD genotype, and aneuploidy. Cff nucleic acids in the maternal circulation originate primarily from the placenta. This contrasts with cff nucleic acids in amniotic fluid, which derive from the fetus, and are present in significantly higher concentrations than in maternal blood. The fetal origin of cff nucleic acids in the amniotic fluid permits the acquisition of real-time information about fetal development and gene expression. This review seeks to provide a comprehensive summary of the molecular analysis of cff nucleic acids in maternal biofluids to elucidate mechanisms of fetal development, physiology, and pathology. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. PMID:22542507
Signore, Caroline; Freeman, Roger K; Spong, Catherine Y
2009-03-01
In August 2007, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institutes of Health Office of Rare Diseases, the American College of Obstetricians and Gynecologists, and the American Academy of Pediatrics cosponsored a 2-day workshop to reassess the body of evidence supporting antepartum assessment of fetal well-being, identify key gaps in the evidence, and formulate recommendations for further research. Participants included experts in obstetrics and fetal physiology and representatives from relevant stakeholder groups and organizations. This article is a summary of the discussions at the workshop, including synopses of oral presentations on the epidemiology of stillbirth and fetal neurological injury, fetal physiology, techniques for antenatal monitoring, and maternal and fetal indications for monitoring. Finally, a synthesis of recommendations for further research compiled from three breakout workgroups is presented.
Peroxisome proliferator-activated receptors (PPARs) regulate lipid and glucose homeostasis, are targets of pharmaceuticals, and are also activated by environmental contaminants. Almost nothing is known about expression of PPARs during human fetal development. This study uses qPCR...
Huang, Yunlong; Li, Yuju; Zhang, Hainan; Zhao, Runze; Jing, Ran; Xu, Yinghua; He, Miao; Peer, Justin; Kim, Yeong C; Luo, Jiangtao; Tong, Zenghan; Zheng, Jialin
2018-01-01
Zika virus (ZIKV) is a neurotrophic flavivirus that is capable of infecting humans, leading to brain abnormalities during fetal development. The ZIKV infectivity in neural target cells remains poorly understood. Here, we found that ZIKV specifically infected glial fibrillary acidic protein- and S100B-positive primary human astrocytes derived from fetal brains. In contrast, neuron-specific Class III β-tubulin (TuJ1)-positive neurons in the astrocyte cultures and SOX2-positive neural progenitor cells derived from the fetal brains were less susceptible to ZIKV infection compared with astrocytes. The infected astrocytes released competent viral particles and manifested programmed cell death with a progressive cytopathic effect. Interestingly, ZIKV infection in human fetal astrocytes induced a significant increase of extracellular vesicles (EVs). Treatment with GW4869, a specific inhibitor of neutral sphingomyelinase-2, decreased EV levels, suppressed ZIKV propagation, and reduced the release of infectious virions in astrocytes. Therefore, ZIKV infects primary human fetal astrocytes and the infection can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Further investigation into sphingomyelin metabolism and EVs may provide insights to the therapeutic treatment of ZIKV infection.
Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease.
Coffey, Lark L; Keesler, Rebekah I; Pesavento, Patricia A; Woolard, Kevin; Singapuri, Anil; Watanabe, Jennifer; Cruzen, Christina; Christe, Kari L; Usachenko, Jodie; Yee, JoAnn; Heng, Victoria A; Bliss-Moreau, Eliza; Reader, J Rachel; von Morgenland, Wilhelm; Gibbons, Anne M; Jackson, Kenneth; Ardeshir, Amir; Heimsath, Holly; Permar, Sallie; Senthamaraikannan, Paranthaman; Presicce, Pietro; Kallapur, Suhas G; Linnen, Jeffrey M; Gao, Kui; Orr, Robert; MacGill, Tracy; McClure, Michelle; McFarland, Richard; Morrison, John H; Van Rompay, Koen K A
2018-06-20
Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions.
Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W; Malik, Hassan; Kitteringham, Neil R; Goldring, Chris E; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A
2015-03-01
Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Santos, Marta; Bastos, Pedro; Gonzaga, Silvia; Roriz, José-Mário; Baptista, Maria J; Nogueira-Silva, Cristina; Melo-Rocha, Gustavo; Henriques-Coelho, Tiago; Roncon-Albuquerque, Roberto; Leite-Moreira, Adelino F; De Krijger, Ronald R; Tibboel, Dick; Rottier, Robbert; Correia-Pinto, Jorge
2006-04-01
Ghrelin is a strong physiologic growth hormone secretagogue that exhibits endocrine and non-endocrine actions. In this study, ghrelin expression in humans and rats was evaluated throughout development of normal and hypoplastic lungs associated with congenital diaphragmatic hernia (CDH). Additionally, the effect of antenatal treatment with ghrelin in the nitrofen-induced CDH rat model was tested. In normal lungs, ghrelin was expressed in the primitive epithelium at early stages of development and decreased in levels of expression with gestational age. In hypoplastic lungs ghrelin was overexpressed in both human and rat CDH fetuses when compared with controls. Exogenous administration of ghrelin to nitrofen-treated dams led to an attenuation of pulmonary hypoplasia of CDH pups. Furthermore, the growth hormone, secretagogue receptor (GHSR1a), could not be amplified from human or rat fetal lungs by RT-PCR. In conclusion, of all the lungs studied so far, the fetal lung is one of the first to express ghrelin during development and might be considered a new source of circulating fetal ghrelin. Overexpression of ghrelin in hypoplastic lungs and the effect of exogenous administration of ghrelin to nitrofen-treated dams strongly suggest a role for ghrelin in mechanisms involved in attenuation of fetal lung hypoplasia, most likely through a GHSR1a-independent pathway.
Rachidi, Mohammed; Lopes, Carmela; Charron, Giselle; Delezoide, Anne-Lise; Paly, Evelyne; Bloch, Bernard; Delabar, Jean-Maurice
2005-08-01
Human SIM2 is the ortholog of Drosophila single-minded (sim), a master regulator of neurogenesis and transcriptional factor controlling midline cell fate determination. We previously localized SIM2 in a chromosome 21 critical region for Down syndrome (DS). Here, we studied SIM2 gene using a new approach to provide insights in understanding of its potential role in human development. For the first time, we showed SIM2 spatial and temporal expression pattern during human central nervous system (CNS) development, from embryonic to fetal stages. Additional investigations were performed using a new optic microscopy technology to compare signal intensity and cell density [M. Rachidi, C. Lopes, S. Gassanova, P.M. Sinet, M. Vekemans, T. Attie, A.L. Delezoide, J.M. Delabar, Regional and cellular specificity of the expression of TPRD, the tetratricopeptide Down syndrome gene, during human embryonic development, Mech. Dev. 93 (2000) 189--193]. In embryonic stages, SIM2 was identified predominantly in restricted regions of CNS, in ventral part of D1/D2 diencephalic neuroepithelium, along the neural tube and in a few cell subsets of dorsal root ganglia. In fetal stages, SIM2 showed differential expression in pyramidal and granular cell layers of hippocampal formation, in cortical cells and in cerebellar external granular and Purkinje cell layers. SIM2 expression in embryonic and fetal brain could suggest a potential role in human CNS development, in agreement with Drosophila and mouse Sim mutant phenotypes and with the conservation of the Sim function in CNS development from Drosophila to Human. SIM2 expression in human fetal brain regions, which correspond to key structures for cognitive processes, correlates well with the behavioral phenotypes of Drosophila Sim mutants and transgenic mice overexpressing Sim2. In addition, SIM2-expressing brain regions correspond to the altered structures in DS patients. All together, these findings suggest a potential role of SIM2 in CNS development and indicate that SIM2 overexpression could participate to the pathogenesis of mental retardation in Down syndrome patients.
Xenotransplantation as a model for human testicular development.
Hutka, Marsida; Smith, Lee B; Mitchell, Rod T
The developing male reproductive system may be sensitive to disruption by a wide range of exogenous 'endocrine disruptors'. In-utero exposure to environmental chemicals and pharmaceuticals have been hypothesized to have an impact in the increasing incidence of male reproductive disorders. The vulnerability to adverse effects as a consequence of such exposures is elevated during a specific 'window of susceptibility' in fetal life referred to as the masculinisation programing window (MPW). Exposures that occur during prepuberty, such as chemotherapy treatment for cancer during childhood, may also affect future fertility. Much of our current knowledge about fetal and early postnatal human testicular development derives from studies conducted in animal models predictive for humans. Therefore, over recent years, testicular transplantation has been employed as a 'direct' approach to understand the development of human fetal and prepubertal testis in health and disease. In this review we describe the potential use of human testis xenotransplantation to study testicular development and its application for (i) assessing the effects of environmental exposures in humans, and (ii) establishing fertility preservation options for prepubertal boys with cancer. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.
Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Terry, Claire; Millar, Neil S; Zablotny, Carol L; Gibb, Alasdair; Marshall, Valerie; Collins, Toby; Carney, Edward W; Billington, Richard
2012-06-01
Sulfoxaflor (X11422208), a novel agricultural molecule, induced fetal effects (forelimb flexure, hindlimb rotation, and bent clavicle) and neonatal death in rats at high doses (≥ 400 ppm in diet); however, no such effects occurred in rabbit dietary studies despite achieving similar maternal and fetal plasma exposure levels. Mode-of-action (MoA) studies were conducted to test the hypothesis that the effects in rats had a single MoA induced by sulfoxaflor agonism on the fetal rat muscle nicotinic acetylcholine receptor (nAChR). The studies included cross-fostering and critical windows of exposure studies in rats, fetal ((α1)(2)β1γδ) and adult ((α1)(2)β1δε) rat and human muscle nAChR in vitro agonism experiments, and neonatal rat phrenic nerve-hemidiaphragm contracture studies. The weight of evidence from these studies supported a novel MoA where sulfoxaflor is an agonist to the fetal, but not adult, rat muscle nAChR and that prolonged agonism on this receptor in fetal/neonatal rats causes sustained striated muscle contracture resulting in concomitant reduction in muscle responsiveness to physiological nerve stimulation. Fetal effects were inducible with as little as 1 day of exposure at the end of gestation, but were rapidly reversible after birth, consistent with a pharmacological MoA. With respect to human relevance, sulfoxaflor was shown to have no agonism on human fetal or adult muscle nAChRs. Taken together, the data support the hypothesis that the developmental effects of sulfoxaflor in rats are mediated via sustained agonism on the fetal muscle nAChR during late fetal development and are considered not relevant to humans.
Populations of subplate and interstitial neurons in fetal and adult human telencephalon.
Judaš, Miloš; Sedmak, Goran; Pletikos, Mihovil; Jovanov-Milošević, Nataša
2010-10-01
In the adult human telencephalon, subcortical (gyral) white matter contains a special population of interstitial neurons considered to be surviving descendants of fetal subplate neurons [Kostovic & Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol9, 219]. We designate this population of cells as superficial (gyral) interstitial neurons and describe their morphology and distribution in the postnatal and adult human cerebrum. Human fetal subplate neurons cannot be regarded as interstitial, because the subplate zone is an essential part of the fetal cortex, the major site of synaptogenesis and the 'waiting' compartment for growing cortical afferents, and contains both projection neurons and interneurons with distinct input-output connectivity. However, although the subplate zone is a transient fetal structure, many subplate neurons survive postnatally as superficial (gyral) interstitial neurons. The fetal white matter is represented by the intermediate zone and well-defined deep periventricular tracts of growing axons, such as the corpus callosum, anterior commissure, internal and external capsule, and the fountainhead of the corona radiata. These tracts gradually occupy the territory of transient fetal subventricular and ventricular zones.The human fetal white matter also contains distinct populations of deep fetal interstitial neurons, which, by virtue of their location, morphology, molecular phenotypes and advanced level of dendritic maturation, remain distinct from subplate neurons and neurons in adjacent structures (e.g. basal ganglia, basal forebrain). We describe the morphological, histochemical (nicotinamide-adenine dinucleotide phosphate-diaphorase) and immunocytochemical (neuron-specific nuclear protein, microtubule-associated protein-2, calbindin, calretinin, neuropeptide Y) features of both deep fetal interstitial neurons and deep (periventricular) interstitial neurons in the postnatal and adult deep cerebral white matter (i.e. corpus callosum, anterior commissure, internal and external capsule and the corona radiata/centrum semiovale). Although these deep interstitial neurons are poorly developed or absent in the brains of rodents, they represent a prominent feature of the significantly enlarged white matter of human and non-human primate brains. © 2010 The Authors. Journal of Anatomy © 2010 Anatomical Society of Great Britain and Ireland.
Guerrero-Cazares, Hugo; Lavell, Emily; Chen, Linda; Schiapparelli, Paula; Lara-Velazquez, Montserrat; Capilla-Gonzalez, Vivian; Clements, Anna Christina; Drummond, Gabrielle; Noiman, Liron; Thaler, Katrina; Burke, Anne; Quiñones-Hinojosa, Alfredo
2017-07-01
Human neural progenitor cell (NPC) migration within the subventricular zone (SVZ) of the lateral ganglionic eminence is an active process throughout early brain development. The migration of human NPCs from the SVZ to the olfactory bulb during fetal stages resembles what occurs in adult rodents. As the human brain develops during infancy, this migratory stream is drastically reduced in cell number and becomes barely evident in adults. The mechanisms regulating human NPC migration are unknown. The Slit-Robo signaling pathway has been defined as a chemorepulsive cue involved in axon guidance and neuroblast migration in rodents. Slit and Robo proteins expressed in the rodent brain help guide neuroblast migration from the SVZ through the rostral migratory stream to the olfactory bulb. Here, we present the first study on the role that Slit and Robo proteins play in human-derived fetal neural progenitor cell migration (hfNPC). We describe that Robo1 and Robo2 isoforms are expressed in the human fetal SVZ. Furthermore, we demonstrate that Slit2 is able to induce a chemorepellent effect on the migration of hfNPCs derived from the human fetal SVZ. In addition, when Robo1 expression is inhibited, hfNPCs are unable to migrate to the olfactory bulb of mice when injected in the anterior SVZ. Our findings indicate that the migration of human NPCs from the SVZ is partially regulated by the Slit-Robo axis. This pathway could be regulated to direct the migration of NPCs in human endogenous neural cell therapy. Stem Cells 2017;35:1860-1865. © 2017 AlphaMed Press.
Niu, Jing; Venkatasubramanian, Raja; Vinks, Alexander A.; Sadhasivam, Senthilkumar
2016-01-01
Background Measuring fetal drug concentrations is extremely difficult in humans. We conducted a study in pregnant sheep to simultaneously describe maternal and fetal concentrations of propofol, a common intravenous anesthetic agent used in humans. Compared to inhalational anesthesia, propofol supplemented anesthesia lowered the dose of desflurane required to provide adequate uterine relaxation during open fetal surgery. This resulted in better intraoperative fetal cardiac outcome. This study describes maternal and fetal propofol pharmacokinetics (PK) using a chronically instrumented maternal-fetal sheep model. Methods Fetal and maternal blood samples were simultaneously collected from eight mid-gestational pregnant ewes during general anesthesia with propofol, remifentanil and desflurane. Nonlinear mixed-effects modeling was performed by using NONMEM software. Total body weight, gestational age and hemodynamic parameters were tested in the covariate analysis. The final model was validated by bootstrapping and visual predictive check. Results A total of 160 propofol samples were collected. A 2-compartment maternal PK model with a third fetal compartment appropriately described the data. Mean population parameter estimates for maternal propofol clearance and central volume of distribution were 4.17 L/min and 37.7 L, respectively, in a typical ewe with a median heart rate of 135 beats/min. Increase in maternal heart rate significantly correlated with increase in propofol clearance. The estimated population maternal-fetal inter-compartment clearance was 0.0138 L/min and the volume of distribution of propofol in the fetus was 0.144 L. Fetal propofol clearance was found to be almost negligible compared to maternal clearance and could not be robustly estimated. Conclusions For the first time, a maternal-fetal PK model of propofol in pregnant ewes was successfully developed. This study narrows the gap in our knowledge in maternal-fetal PK model in human. Our study confirms that maternal heart rate has an important influence on the pharmacokinetics of propofol during pregnancy. Much lower propofol concentration in the fetus compared to maternal concentrations explain limited placental transfer in in-vivo paired model, and less direct fetal cardiac depression we observed earlier with propofol supplemented inhalational anesthesia compared to higher dose inhalational anesthesia in humans and sheep. PMID:26752560
Fetal demise and failed antibody therapy during Zika virus infection of pregnant macaques.
Magnani, Diogo M; Rogers, Thomas F; Maness, Nicholas J; Grubaugh, Nathan D; Beutler, Nathan; Bailey, Varian K; Gonzalez-Nieto, Lucas; Gutman, Martin J; Pedreño-Lopez, Núria; Kwal, Jaclyn M; Ricciardi, Michael J; Myers, Tereance A; Julander, Justin G; Bohm, Rudolf P; Gilbert, Margaret H; Schiro, Faith; Aye, Pyone P; Blair, Robert V; Martins, Mauricio A; Falkenstein, Kathrine P; Kaur, Amitinder; Curry, Christine L; Kallas, Esper G; Desrosiers, Ronald C; Goldschmidt-Clermont, Pascal J; Whitehead, Stephen S; Andersen, Kristian G; Bonaldo, Myrna C; Lackner, Andrew A; Panganiban, Antonito T; Burton, Dennis R; Watkins, David I
2018-04-24
Zika virus (ZIKV) infection of pregnant women is associated with pathologic complications of fetal development. Here, we infect pregnant rhesus macaques (Macaca mulatta) with a minimally passaged ZIKV isolate from Rio de Janeiro, where a high rate of fetal development complications was observed. The infection of pregnant macaques with this virus results in maternal viremia, virus crossing into the amniotic fluid (AF), and in utero fetal deaths. We also treated three additional ZIKV-infected pregnant macaques with a cocktail of ZIKV-neutralizing human monoclonal antibodies (nmAbs) at peak viremia. While the nmAbs can be effective in clearing the virus from the maternal sera of treated monkeys, it is not sufficient to clear ZIKV from AF. Our report suggests that ZIKV from Brazil causes fetal demise in non-human primates (NHPs) without additional mutations or confounding co-factors. Treatment with a neutralizing anti-ZIKV nmAb cocktail is insufficient to fully stop vertical transmission.
Eladak, Soria; Grisin, Tiphany; Moison, Delphine; Guerquin, Marie-Justine; N'Tumba-Byn, Thierry; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Rouiller-Fabre, Virginie; Habert, René
2015-01-01
Bisphenol A (BPA) is a widely studied typical endocrine-disrupting chemical, and one of the major new issues is the safe replacement of this commonly used compound. Bisphenol S (BPS) and bisphenol F (BPF) are already or are planned to be used as BPA alternatives. With the use of a culture system that we developed (fetal testis assay [FeTA]), we previously showed that 10 nmol/L BPA reduces basal testosterone secretion of human fetal testis explants and that the susceptibility to BPA is at least 100-fold lower in rat and mouse fetal testes. Here, we show that addition of LH in the FeTA system considerably enhances BPA minimum effective concentration in mouse and human but not in rat fetal testes. Then, using the FeTA system without LH (the experimental conditions in which mouse and human fetal testes are most sensitive to BPA), we found that, as for BPA, 10 nmol/L BPS or BPF is sufficient to decrease basal testosterone secretion by human fetal testes with often nonmonotonic dose-response curves. In fetal mouse testes, the dose-response curves were mostly monotonic and the minimum effective concentrations were 1,000 nmol/L for BPA and BPF and 100 nmol/L for BPS. Finally, 10,000 nmol/L BPA, BPS, or BPF reduced Insl3 expression in cultured mouse fetal testes. This is the first report describing BPS and BPF adverse effects on a physiologic function in humans and rodents. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
McPherson, Nicole O.; Bakos, Hassan W.; Owens, Julie A.; Setchell, Brian P.; Lane, Michelle
2013-01-01
Paternal obesity is now clearly associated with or causal of impaired embryo and fetal development and reduced pregnancy rates in humans and rodents. This appears to be a result of reduced blastocyst potential. Whether these adverse embryo and fetal outcomes can be ameliorated by interventions to reduce paternal obesity has not been established. Here, male mice fed a high fat diet (HFD) to induce obesity were used, to determine if early embryo and fetal development is improved by interventions of diet (CD) and/or exercise to reduce adiposity and improve metabolism. Exercise and to a lesser extent CD in obese males improved embryo development rates, with increased cell to cell contacts in the compacting embryo measured by E-cadherin in exercise interventions and subsequently, increased blastocyst trophectoderm (TE), inner cell mass (ICM) and epiblast cell numbers. Implantation rates and fetal development from resulting blastocysts were also improved by exercise in obese males. Additionally, all interventions to obese males increased fetal weight, with CD alone and exercise alone, also increasing fetal crown-rump length. Measures of embryo and fetal development correlated with paternal measures of glycaemia, insulin action and serum lipids regardless of paternal adiposity or intervention, suggesting a link between paternal metabolic health and subsequent embryo and fetal development. This is the first study to show that improvements to metabolic health of obese males through diet and exercise can improve embryo and fetal development, suggesting such interventions are likely to improve offspring health. PMID:23977045
The Pregnant Sheep as a Model for Human Pregnancy
Barry, James S.; Anthony, Russell V.
2008-01-01
Successful outcome of human pregnancy not only impacts the quality of infant life and well-being, but considerable evidence now suggests that what happens during fetal development may well impact health and well-being into adulthood. Consequently, a thorough understanding of the developmental events that occur between conception and delivery is needed. For obvious ethical reasons, many of the questions remaining about the progression of human pregnancy can not be answered directly, necessitating the use of appropriate animal models. A variety of animal models exist for the study of both normal and compromised pregnancies, including laboratory rodents, non-human primates and domestic ruminants. While all of these animal models have merit, most suffer from the inability to repetitively sample from both the maternal and fetal side of the placenta, limiting their usefulness in the study of placental or fetal physiology under non-stressed in vivo conditions. No animal model truly recapitulates human pregnancy, yet the pregnant sheep has been used extensively to investigate maternal-fetal interactions. This is due in part to the ability to surgically place and maintain catheters in both the maternal and fetal vasculature, allowing repeated sampling from non-anesthetized pregnancies. Considerable insight has been gained on placental oxygen and nutrient transfer and utilization from use of pregnant sheep. These findings were often confirmed in human pregnancies once appropriate technologies became available. The purpose of this review is to provide an overview of human and sheep pregnancy, with emphasis placed on placental development and function as an organ of nutrient transfer. PMID:17976713
Regulation of fibrillins and modulators of TGFβ in fetal bovine and human ovaries.
Bastian, Nicole A; Bayne, Rosemary A; Hummitzsch, Katja; Hatzirodos, Nicholas; Bonner, Wendy M; Hartanti, Monica D; Irving-Rodgers, Helen F; Anderson, Richard A; Rodgers, Raymond J
2016-08-01
Fibrillins 1-3 are stromal extracellular matrix proteins that play important roles in regulating TGFβ activity, which stimulates fibroblasts to proliferate and synthesize collagen. In the developing ovary, the action of stroma is initially necessary for the formation of ovigerous cords and subsequently for the formation of follicles and the surface epithelium of the ovary. FBN3 is highly expressed only in early ovarian development and then it declines. In contrast, FBN1 and 2 are upregulated in later ovarian development. We examined the expression of FBN1-3 in bovine and human fetal ovaries. We used cell dispersion and monolayer culture, cell passaging and tissue culture. Cells were treated with growth factors, hormones or inhibitors to assess the regulation of expression of FBN1-3 When bovine fetal ovarian tissue was cultured, FBN3 expression declined significantly. Treatment with TGFβ-1 increased FBN1 and FBN2 expression in bovine fibroblasts, but did not affect FBN3 expression. Additionally, in cultures of human fetal ovarian fibroblasts (9-17weeks gestational age), the expression of FBN1 and FBN2 increased with passage, whereas FBN3 dramatically decreased. Treatment with activin A and a TGFβ family signaling inhibitor, SB431542, differentially regulated the expression of a range of modulators of TGFβ signaling and of other growth factors in cultured human fetal ovarian fibroblasts suggesting that TGFβ signaling is differentially involved in the regulation of ovarian fibroblasts. Additionally, since the changes in FBN1-3 expression that occur in vitro are those that occur with increasing gestational age in vivo, we suggest that the fetal ovarian fibroblasts mature in vitro. © 2016 Society for Reproduction and Fertility.
ERIC Educational Resources Information Center
Salisbury, Amy L.; Fallone, Melissa Duncan; Lester, Barry
2005-01-01
This review provides an overview and definition of the concept of neurobehavior in human development. Two neurobehavioral assessments used by the authors in current fetal and infant research are discussed: the NICU Network Neurobehavioral Assessment Scale and the Fetal Neurobehavior Coding System. This review will present how the two assessments…
Piperidine, pyridine alkaloid inhibition of fetal movement in a day 40 pregnant goat model
USDA-ARS?s Scientific Manuscript database
The inhibition of fetal movement is one mechanism behind the development of multiple congenital contracture-type defects and cleft palate in developing fetuses of humans and animals. In this study, we tested the alkaloids anabasine, lobeline, and myosmine for agonist actions, and sensitivity to alp...
Vasung, Lana; Lepage, Claude; Radoš, Milan; Pletikos, Mihovil; Goldman, Jennifer S.; Richiardi, Jonas; Raguž, Marina; Fischi-Gómez, Elda; Karama, Sherif; Huppi, Petra S.; Evans, Alan C.; Kostovic, Ivica
2016-01-01
The cerebral wall of the human fetal brain is composed of transient cellular compartments, which show characteristic spatiotemporal relationships with intensity of major neurogenic events (cell proliferation, migration, axonal growth, dendritic differentiation, synaptogenesis, cell death, and myelination). The aim of the present study was to obtain new quantitative data describing volume, surface area, and thickness of transient compartments in the human fetal cerebrum. Forty-four postmortem fetal brains aged 13–40 postconceptional weeks (PCW) were included in this study. High-resolution T1 weighted MR images were acquired on 19 fetal brain hemispheres. MR images were processed using in-house software (MNI-ACE toolbox). Delineation of fetal compartments was performed semi-automatically by co-registration of MRI with histological sections of the same brains, or with the age-matched brains from Zagreb Neuroembryological Collection. Growth trajectories of transient fetal compartments were reconstructed. The composition of telencephalic wall was quantitatively assessed. Between 13 and 25 PCW, when the intensity of neuronal proliferation decreases drastically, the relative volume of proliferative (ventricular and subventricular) compartments showed pronounced decline. In contrast, synapse- and extracellular matrix-rich subplate compartment continued to grow during the first two trimesters, occupying up to 45% of telencephalon and reaching its maximum volume and thickness around 30 PCW. This developmental maximum coincides with a period of intensive growth of long cortico-cortical fibers, which enter and wait in subplate before approaching the cortical plate. Although we did not find significant age related changes in mean thickness of the cortical plate, the volume, gyrification index, and surface area of the cortical plate continued to exponentially grow during the last phases of prenatal development. This cortical expansion coincides developmentally with the transformation of embryonic cortical columns, dendritic differentiation, and ingrowth of axons. These results provide a quantitative description of transient human fetal brain compartments observable with MRI. Moreover, they will improve understanding of structural-functional relationships during brain development, will enable correlation between in vitro/in vivo imaging and fine structural histological studies, and will serve as a reference for study of perinatal brain injuries. PMID:26941612
Schalkwijk, Stein; Buaben, Aaron O; Freriksen, Jolien J M; Colbers, Angela P; Burger, David M; Greupink, Rick; Russel, Frans G M
2017-07-25
Fetal antiretroviral exposure is usually derived from the cord-to-maternal concentration ratio. This static parameter does not provide information on the pharmacokinetics in utero, limiting the assessment of a fetal exposure-effect relationship. The aim of this study was to incorporate placental transfer into a pregnancy physiologically based pharmacokinetic model to simulate and evaluate fetal darunavir exposure at term. An existing and validated pregnancy physiologically based pharmacokinetic model of maternal darunavir/ritonavir exposure was extended with a feto-placental unit. To parameterize the model, we determined maternal-to-fetal and fetal-to-maternal darunavir/ritonavir placental clearance with an ex-vivo human cotyledon perfusion model. Simulated maternal and fetal pharmacokinetic profiles were compared with observed clinical data to qualify the model for simulation. Next, population fetal pharmacokinetic profiles were simulated for different maternal darunavir/ritonavir dosing regimens. An average (±standard deviation) maternal-to-fetal cotyledon clearance of 0.91 ± 0.11 mL/min and fetal-to-maternal clearance of 1.6 ± 0.3 mL/min was determined (n = 6 perfusions). Scaled placental transfer was integrated into the pregnancy physiologically based pharmacokinetic model. For darunavir 600/100 mg twice a day, the predicted fetal maximum plasma concentration, trough concentration, time to maximum plasma concentration, and half-life were 1.1, 0.57 mg/L, 3, and 21 h, respectively. This indicates that the fetal population trough concentration is higher or around the half-maximal effective darunavir concentration for a resistant virus (0.55 mg/L). The results indicate that the population fetal exposure after oral maternal darunavir dosing is therapeutic and this may provide benefits to the prevention of mother-to-child transmission of human immunodeficiency virus. Moreover, this integrated approach provides a tool to prevent fetal toxicity or enhance the development of more selectively targeted fetal drug treatments.
Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats.
Chang, N K; Gu, J; Gu, S; Osorio, R W; Concepcion, W; Gu, E
2015-06-01
Here we introduce a novel method of transplanting human fetal kidneys into adult rats. To overcome the technical challenges of fetal-to-adult organ transplantation, we devised an arterial flow regulator (AFR), consisting of a volume adjustable saline-filled cuff, which enables low-pressure human fetal kidneys to be transplanted into high-pressure adult rat hosts. By incrementally withdrawing saline from the AFR over time, blood flow entering the human fetal kidney was gradually increased until full blood flow was restored 30 days after transplantation. Human fetal kidneys were shown to dramatically increase in size and function. Moreover, rats which had all native renal mass removed 30 days after successful transplantation of the human fetal kidney were shown to have a mean survival time of 122 days compared to 3 days for control rats that underwent bilateral nephrectomy without a prior human fetal kidney transplant. These in vivo human fetal kidney models may serve as powerful platforms for drug testing and discovery. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-20
... Institute of Child Health and Human Development Special Emphasis Panel, Maternal Fetal Medicine Units... National Institute of Child Health & Human Development; Notice of Closed Meeting Pursuant to section 10(d... 64735
Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome
Hatzirodos, Nicholas; Bayne, Rosemary A.; Irving-Rodgers, Helen F.; Hummitzsch, Katja; Sabatier, Laetitia; Lee, Sam; Bonner, Wendy; Gibson, Mark A.; Rainey, William E.; Carr, Bruce R.; Mason, Helen D.; Reinhardt, Dieter P.; Anderson, Richard A.; Rodgers, Raymond J.
2011-01-01
Although not often discussed, the ovaries of women with polycystic ovary syndrome (PCOS) show all the hallmarks of increased TGF-β activity, with increased amounts of fibrous tissue and collagen in the ovarian capsule or tunica albuginea and ovarian stroma. Recent studies suggest that PCOS could have fetal origins. Genetic studies of PCOS have also found linkage with a microsatellite located in intron 55 of the extracellular matrix protein fibrillin 3. Fibrillins regulate TGF-β bioactivity in tissues by binding latent TGF-β binding proteins. We therefore examined expression of fibrillins 1–3, latent TGF-β binding proteins 1–4, and TGF-β 1–3 in bovine and human fetal ovaries at different stages of gestation and in adult ovaries. We also immunolocalized fibrillins 1 and 3. The results indicate that TGF-β pathways operate during ovarian fetal development, but most important, we show fibrillin 3 is present in the stromal compartments of fetal ovaries and is highly expressed at a critical stage early in developing human and bovine fetal ovaries when stroma is expanding and follicles are forming. These changes in expression of fibrillin 3 in the fetal ovary could lead to a predisposition to develop PCOS in later life.—Hatzirodos, N., Bayne, R. A., Irving-Rodgers, H. F., Hummitzsch, K., Sabatier, L., Lee, S., Bonner, W., Gibson, M. A., Rainey, W. E., Carr, B. R., Mason, H. D., Reinhardt, D. P., Anderson, R. A., Rodgers, R. J. Linkage of regulators of TGF-β activity in the fetal ovary to polycystic ovary syndrome. PMID:21411746
Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F
2015-08-01
A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.
Bivol, Svetlana; Owen, Suzzanne J; Rose'Meyer, Roselyn B
2016-02-05
Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.
Placental hormones, nutrition, and fetal development.
Mulay, S; Browne, C A; Varma, D R; Solomon, S
1980-02-01
Fetal growth retardation due to maternal malnutrition is widespread especially in the Third World. Little is known about the mechanisms that regulate the growth of the fetus and placenta during protein malnutrition. It is known that the placental size and levels of circulating placental hormones such as human chorionic gonadotrophins (hCG), human placental lactogen (hPL), and estrogens are affected by the nutritional status of the mother. There is suggestive evidence that during malnutrition, hPL may increase lipolysis and exert a glucose sparing effect in the mother, thereby promoting glucose availability to the fetus. We have studied the influence of dietary protein deficiency on the binding of dexamethasone to the specific cytosol receptors in adult and fetal tissues. A low protein diet in adult male rats is associated with a decrease in dexamethasone binding to liver cytosol receptors. On the other hand, protein deprivation in pregnant female rats leads to an increase in dexamethasone binding to liver cytosol receptors of both the mother and fetus. However, the influences of maternal protein deprivation on dexamethasone receptors in the fetal liver and lungs are not similar. At 21 days gestation the binding of dexamethasone to fetal lung receptors of protein-deficient mothers is lower than that in the controls. These differences at a critical time in the fetal lung development indicate that a fall in receptors for dexamethasone may lead to impaired phospholipid synthesis in fetuses of protein-deficient mothers and point to the importance of nutritional factors in the biochemistry of fetal development.
Piroth, Tobias; Pauly, Marie-Christin; Schneider, Christian; Wittmer, Annette; Möllers, Sven; Döbrössy, Máté; Winkler, Christian; Nikkhah, Guido
2014-01-01
Restorative cell therapy concepts in neurodegenerative diseases are aimed at replacing lost neurons. Despite advances in research on pluripotent stem cells, fetal tissue from routine elective abortions is still regarded as the only safe cell source. Progenitor cells isolated from distinct first-trimester fetal CNS regions have already been used in clinical trials and will be used again in a new multicenter trial funded by the European Union (TRANSEURO). Bacterial contamination of human fetal tissue poses a potential risk of causing infections in the brain of the recipient. Thus, effective methods of microbial decontamination and validation of these methods are required prior to approval of a neurorestorative cell therapy trial. We have developed a protocol consisting of subsequent washing steps at different stages of tissue processing. Efficacy of microbial decontamination was assessed on rat embryonic tissue incubated with high concentrations of defined microbe solutions including representative bacterial and fungal species. Experimental microbial contamination was reduced by several log ranks. Subsequently, we have analyzed the spectrum of microbial contamination and the effect of subsequent washing steps on aborted human fetal tissue; 47.7% of the samples taken during human fetal tissue processing were positive for a microbial contamination, but after washing, no sample exhibited bacterial growth. Our data suggest that human fetal tissue for neural repair can carry microbes of various species, highlighting the need for decontamination procedures. The decontamination protocol described in this report has been shown to be effective as no microbes could be detected at the end of the procedure.
Ganguli, Kriston; Collado, Maria Carmen; Rautava, Jaana; Lu, Lei; Satokari, Reetta; von Ossowski, Ingemar; Reunanen, Justus; de Vos, Willem M.; Palva, Airi; Isolauri, Erika; Salminen, Seppo; Walker, W. Allan; Rautava, Samuli
2015-01-01
Background Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models. Methods TNF-α mRNA expression was measured by qPCR in a human fetal intestinal organ culture model exposed to live L. rhamnosus GG and proinflammatory stimuli. Binding of recombinant SpaC pilus protein to intestinal epithelial cells was assessed in human fetal intestinal organ culture and the human fetal intestinal epithelial cell line H4 by immunohistochemistry and immunofluorescence, respectively. TLR-related gene expression in fetal ileal organ culture after exposure to recombinant SpaC was assessed by qPCR. Results Live L. rhamnosus GG significantly attenuates pathogen-induced TNF-α mRNA expression in the human fetal gut. Recombinant SpaC protein was found to adhere to the fetal gut and to modulate varying levels of TLR-related gene expression. Conclusion The human fetal gut is responsive to luminal microbes. L. rhamnosus GG significantly attenuates fetal intestinal inflammatory responses to pathogenic bacteria. The L. rhamnosus GG pilus adhesin SpaC binds to immature human intestinal epithelial cells and directly modulates intestinal epithelial cell innate immune gene expression. PMID:25580735
Reddy, Uma M; Abuhamad, Alfred Z; Levine, Deborah; Saade, George R
2014-05-01
Given that practice variation exists in the frequency and performance of ultrasound and magnetic resonance imaging in pregnancy, the Eunice Kennedy Shriver National Institute of Child Health and Human Development hosted a workshop to address indications for ultrasound and magnetic resonance imaging in pregnancy, to discuss when and how often these studies should be performed, to consider recommendations for optimizing yield and cost-effectiveness and to identify research opportunities. This article is the executive summary of the workshop. Published by Mosby, Inc.
Reddy, Uma M; Abuhamad, Alfred Z; Levine, Deborah; Saade, George R
2014-05-01
Given that practice variation exists in the frequency and performance of ultrasound and magnetic resonance imaging (MRI) in pregnancy, the Eunice Kennedy Shriver National Institute of Child Health and Human Development hosted a workshop to address indications for ultrasound and MRI in pregnancy, to discuss when and how often these studies should be performed, to consider recommendations for optimizing yield and cost effectiveness, and to identify research opportunities. This article is the executive summary of the workshop.
Reddy, Uma M; Abuhamad, Alfred Z; Levine, Deborah; Saade, George R
2014-05-01
Given that practice variation exists in the frequency and performance of ultrasound and magnetic resonance imaging (MRI) in pregnancy, the Eunice Kennedy Shriver National Institute of Child Health and Human Development hosted a workshop to address indications for ultrasound and MRI in pregnancy, to discuss when and how often these studies should be performed, to consider recommendations for optimizing yield and cost effectiveness, and to identify research opportunities. This article is the executive summary of the workshop.
Insights into female germ cell biology: from in vivo development to in vitro derivations.
Jung, Dajung; Kee, Kehkooi
2015-01-01
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
Goldman, Orit; Han, Songyan; Sourrisseau, Marion; Dziedzic, Noelle; Hamou, Wissam; Corneo, Barbara; D’Souza, Sunita; Sato, Thomas; Kotton, Darrell N.; Bissig, Karl-Dimiter; Kalir, Tamara; Jacobs, Adam; Evans, Todd; Evans, Matthew J.; Gouon-Evans, Valerie
2013-01-01
SUMMARY Understanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like (hepatic) cells from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR, but when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells, and to support non-cell-autonomously the functional maturation of co-cultured KDR- hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts and subsequently adult hepatocytes and cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors, and a functional receptor instructing early liver development. PMID:23746980
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-03
... Institute of Child Health and Human Development, Special Emphasis Panel, Maternal Fetal Medicine Units... National Institute of Child Health & Human Development; Notice of Closed Meeting Pursuant to section 10(d... Review, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, 6100...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... National Institute of Child Health & Human Development; Notice of Closed Meeting Pursuant to section 10(d... Institute of Child Health and Human Development Initial Review Group, Obstetrics and Maternal-Fetal Biology... of Scientific Review, Eunice Kennedy Shriver National Institute of Child Health and Human Development...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.
Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adultmore » lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced following infection of both fetal and adult cells and many of the genes upregulated in both cell types were those involved in establishment of an antiviral state; this is the first demonstration of an interferon response at this early stage of human embryonic development. In both fetal and adult cells, interferon controlled but did not eliminate virus spread and apoptosis was not induced in infected fetal cells in the absence of interferon. In addition to the interferon response, chemokines were induced in both infected fetal and adult cells. Thus, it is possible that fetal damage following congenital RUB infection, which involves cell proliferation and differentiation, could be due to induction of the innate immune response as well as frank virus infection.« less
Proinflammatory cytokines: a link between chorioamnionitis and fetal brain injury.
Patrick, Lindsay A; Smith, Graeme N
2002-09-01
To review the etiology of impaired fetal neurodevelopment - in particular, the relationship between chorioamnionitis, cytokines, and cerebral palsy. A MEDLINE search was performed for all clinical and basic science studies published in the English literature from 1966 to 2002. Key words or phrases used were chorioamnionitis, cerebral palsy, fetal brain damage, fetal CNS injury, infection in pregnancy, proinflammatory cytokines in pregnancy, proinflammatory cytokines in infection, and preterm labour or birth. All relevant human and animal studies were included. Fetal brain injury remains a major cause of lifelong morbidity, incurring significant societal and health care costs. It has been postulated that chorioamnionitis stimulates maternal/fetal proinflammatory cytokine release, which is damaging to the developing fetal nervous system. Elevated cytokine concentrations may interfere with glial cell development and proliferation in the late second trimester of pregnancy, when the central nervous system is most vulnerable. Increasing numbers of epidemiological and basic science studies found through MEDLINE searches support this hypothesis. Treatment options aimed at etiologic factors may lead to improved neurodevelopmental outcomes. Clearly, some relationship exists between chorioamnionitis, cytokines, and the development of cerebral palsy, but the severity and duration of exposure required to produce fetal damage remains unknown. Future research addressing these issues may aid in clinical decision-making. As well, the elucidation of mechanisms of cytokine action may aid in early treatment options to prevent or limit development of fetal brain injury.
Hansel, Marc C; Gramignoli, Roberto; Blake, William; Davila, Julio; Skvorak, Kristen; Dorko, Kenneth; Tahan, Veysel; Lee, Brian R; Tafaleng, Edgar; Guzman-Lepe, Jorge; Soto-Gutierrez, Alejandro; Fox, Ira J; Strom, Stephen C
2014-01-01
Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions. Of these, 37 hiPSC lines were generated from fetal hepatocytes, 2 hiPSC lines from normal hepatocytes, and 1 hiPSC line from hepatocytes of a patient with Crigler-Najjar syndrome, type 1. All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunocytochemistry, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with six factors, while fetal hepatocytes could be reprogrammed with three (OCT4, SOX2, NANOG) or four factors (OCT4, SOX2, NANOG, LIN28 or OCT4, SOX2, KLF4, C-MYC). The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity. These studies confirm that hiPSCs can be generated from adult and fetal hepatocytes including those with genetic diseases. Fetal hepatocytes reprogram much more efficiently than adult hepatocytes, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation.
Bayne, Rosemary A; Donnachie, Douglas J; Kinnell, Hazel L; Childs, Andrew J; Anderson, Richard A
2016-09-01
Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. Not applicable. This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth
Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao
2017-01-01
Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20–40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20–35 PMW than during 35–40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural network configuration at 20 PMW and small-world network organization could exist as early as 20 PMW. These findings offer a preliminary record of the fetal brain structural connectome maturation from the middle fetal stage to birth and reveal the critical role of non-WM neural fibers in structural network configuration in the middle fetal stage. PMID:29081731
Habert, René; Muczynski, Vincent; Grisin, Tiphany; Moison, Delphine; Messiaen, Sébastien; Frydman, René; Benachi, Alexandra; Delbes, Géraldine; Lambrot, Romain; Lehraiki, Abdelali; N'Tumba-Byn, Thierry; Guerquin, Marie-Justine; Levacher, Christine; Rouiller-Fabre, Virginie; Livera, Gabriel
2014-01-01
Fetal testis is a major target of endocrine disruptors (EDs). During the last 20 years, we have developed an organotypic culture system that maintains the function of the different fetal testis cell types and have used this approach as a toxicological test to evaluate the effects of various compounds on gametogenesis and steroidogenesis in rat, mouse and human testes. We named this test rat, mouse and human fetal testis assay. With this approach, we compared the effects of six potential EDs ((mono-(2-ethylhexyl) phthalate (MEHP), cadmium, depleted uranium, diethylstilboestrol (DES), bisphenol A (BPA) and metformin) and one signalling molecule (retinoic acid (RA)) on the function of rat, mouse and human fetal testis at a comparable developmental stage. We found that the response is similar in humans and rodents for only one third of our analyses. For instance, RA and MEHP have similar negative effects on gametogenesis in the three species. For another third of our analyses, the threshold efficient concentrations that disturb gametogenesis and/or steroidogenesis differ as a function of the species. For instance, BPA and metformin have similar negative effects on steroidogenesis in human and rodents, but at different threshold doses. For the last third of our analyses, the qualitative response is species specific. For instance, MEHP and DES affect steroidogenesis in rodents, but not in human fetal testis. These species differences raise concerns about the extrapolation of data obtained in rodents to human health risk assessment and highlight the need of rigorous comparisons of the effects in human and rodent models, when assessing ED risk. PMID:24497529
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-03
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development; Notice of Closed Meeting Pursuant to section 10(d... Institute of Child Health and Human Development Initial Review Group; Obstetrics and Maternal-Fetal Biology...
An ecologically relevant guinea pig model of fetal behavior.
Bellinger, S A; Lucas, D; Kleven, G A
2015-04-15
The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multicolored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To ensure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism. Copyright © 2015 Elsevier B.V. All rights reserved.
An ecologically relevant guinea pig model of fetal behavior
Bellinger, S. A.; Lucas, D.; Kleven, G. A.
2015-01-01
The laboratory guinea pig, Cavia porcellus, shares with humans many similarities during pregnancy and prenatal development, including precocial offspring and social dependence. These similarities suggest the guinea pig as a promising model of fetal behavioral development as well. Using innovative methods of behavioral acclimation, fetal offspring of female IAF hairless guinea pigs time mated to NIH multi-colored Hartley males were observed longitudinally without restraint using noninvasive ultrasound at weekly intervals across the 10 week gestation. To insure that the ultrasound procedure did not cause significant stress, salivary cortisol was collected both before and after each observation. Measures of fetal spontaneous movement and behavioral state were quantified from video recordings from week 3 through the last week before birth. Results from prenatal quantification of Interlimb Movement Synchrony and state organization reveal guinea pig fetal development to be strikingly similar to that previously reported for other rodents and preterm human infants. Salivary cortisol readings taken before and after sonography did not differ at any observation time point. These results suggest this model holds translational promise for studying the prenatal mechanisms of neurobehavioral development, including those that may result from adverse events. Because the guinea pig is a highly social mammal with a wide range of socially oriented vocalizations, this model may also have utility for studying the prenatal origins and trajectories of developmental disabilities with social-emotional components, such as autism. PMID:25655512
Role of epidermal growth factor and transforming growth factor α in the developing stomach
Kelly, E; Newell, S; Brownlee, K; Farmery, S; Cullinane, C; Reid, W; Jackson, P; Gray, S; Primrose, J; Lagopoulos, M
1997-01-01
AIMS—To determine whether epidermal growth factor (EGF) or the related transforming growth factor α (TGFα) may have a role in the developing human stomach; to substantiate the presence of EGF in human liquor in the non-stressed infant and whether EGF in amniotic fluid is maternally or fetally derived. METHODS—The temporal expression and localisation of EGF, TGFα, and their receptors during fetal and neonatal life were examined in 20 fetal and five infant stomachs. Simultaneously, samples of amniotic fluid and fetal urine from 10 newborn infants were collected and assayed for EGF by radioimmunoassay. RESULTS—EGF immunoreactivity was not noted in any of the specimens examined. In contrast, TGFα immunoreactivity was shown in mucous cells from 18 weeks of gestation onwards. EGF receptor immunoreactivity was seen on superficial mucous cells in gastric mucosa from 18 weeks of gestation onwards. The median concentration of EGF was 30 and 8.5 pg/ml in amniotic fluid and fetal urine, respectively, suggesting that EGF is not produced by the fetus. CONCLUSIONS—This study adds weight to the hypothesis that swallowed EGF, probably produced by the amniotic membranes, and locally produced TGFα, may have a role in the growth and maturation of the human stomach. Keywords: epidermal growth factor; transforming growth factor α; EGF receptors; stomach PMID:9175944
Mitter, Christian; Jakab, András; Brugger, Peter C.; Ricken, Gerda; Gruber, Gerlinde M.; Bettelheim, Dieter; Scharrer, Anke; Langs, Georg; Hainfellner, Johannes A.; Prayer, Daniela; Kasprian, Gregor
2015-01-01
Diffusion tensor imaging (DTI) and tractography offer the unique possibility to visualize the developing white matter macroanatomy of the human fetal brain in vivo and in utero and are currently under investigation for their potential use in the diagnosis of developmental pathologies of the human central nervous system. However, in order to establish in utero DTI as a clinical imaging tool, an independent comparison between macroscopic imaging and microscopic histology data in the same subject is needed. The present study aimed to cross-validate normal as well as abnormal in utero tractography results of commissural and internal capsule fibers in human fetal brains using postmortem histological structure tensor (ST) analysis. In utero tractography findings from two structurally unremarkable and five abnormal fetal brains were compared to the results of postmortem ST analysis applied to digitalized whole hemisphere sections of the same subjects. An approach to perform ST-based deterministic tractography in histological sections was implemented to overcome limitations in correlating in utero tractography to postmortem histology data. ST analysis and histology-based tractography of fetal brain sections enabled the direct assessment of the anisotropic organization and main fiber orientation of fetal telencephalic layers on a micro- and macroscopic scale, and validated in utero tractography results of corpus callosum and internal capsule fiber tracts. Cross-validation of abnormal in utero tractography results could be achieved in four subjects with agenesis of the corpus callosum (ACC) and in two cases with malformations of internal capsule fibers. In addition, potential limitations of current DTI-based in utero tractography could be demonstrated in several brain regions. Combining the three-dimensional nature of DTI-based in utero tractography with the microscopic resolution provided by histological ST analysis may ultimately facilitate a more complete morphologic characterization of axon guidance disorders at prenatal stages of human brain development. PMID:26732460
Exogenous peripheral blood mononuclear cells affect the healing process of deep-degree burns
Yu, Guanying; Li, Yaonan; Ye, Lan; Wang, Xinglei; Zhang, Jixun; Dong, Zhengxue; Jiang, Duyin
2017-01-01
The regenerative repair of deep-degree (second degree) burned skin remains a notable challenge in the treatment of burn injury, despite improvements being made with regards to treatment modality and the emergence of novel therapies. Fetal skin constitutes an attractive target for investigating scarless healing of burned skin. To investigate the inflammatory response during scarless healing of burned fetal skin, the present study developed a nude mouse model, which was implanted with normal human fetal skin and burned fetal skin. Subsequently, human peripheral blood mononuclear cells (PBMCs) were used to treat the nude mouse model carrying the burned fetal skin. The expression levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinases (TIMP)-1 were investigated during this process. In the present study, fetal skin was subcutaneously implanted into the nude mice to establish the murine model. Hematoxylin and eosin staining was used to detect alterations in the skin during the development of fetal skin and during the healing process of deep-degree burned fetal skin. The expression levels of MMP-9 and TIMP-1 were determined using immunochemical staining, and their staining intensity was evaluated by mean optical density. The results demonstrated that fetal skin subcutaneously implanted into the dorsal skin flap of nude mice developed similarly to the normal growth process in the womb. In addition, the scarless healing process was clearly observed in the mice carrying the burned fetal skin. A total of 2 weeks was required to complete scarless healing. Following treatment with PBMCs, the burned fetal skin generated inflammatory factors and enhanced the inflammatory response, which consequently resulted in a reduction in the speed of healing and in the formation of scars. Therefore, exogenous PBMCs may alter the lowered immune response environment, which is required for scarless healing, resulting in scar formation. In conclusion, the present study indicated that the involvement of inflammatory cells is important during the healing process of deep-degree burned skin, and MMP-9 and TIMP-1 may serve important roles in the process of scar formation. PMID:28990101
Elebring, Erik; Kuna, Vijay K; Kvarnström, Niclas; Sumitran-Holgersson, Suchitra
2017-01-01
Despite progress in the field of decellularization and recellularization, the outcome for pancreas has not been adequate. This might be due to the challenging dual nature of pancreas with both endocrine and exocrine tissues. We aimed to develop a novel and efficient cold-perfusion method for decellularization of porcine pancreas and recellularize acellular scaffolds with human fetal pancreatic stem cells. Decellularization of whole porcine pancreas at 4°C with sodium deoxycholate, Triton X-100 and DNase efficiently removed cellular material, while preserving the extracellular matrix structure. Furthermore, recellularization of acellular pieces with human fetal pancreatic stem cells for 14 days showed attached and proliferating cells. Both endocrine (C-peptide and PDX1) and exocrine (glucagon and α-amylase) markers were expressed in recellularized tissues. Thus, cold-perfusion can successfully decellularize porcine pancreas, which when recellularized with human fetal pancreatic stem cells shows relevant endocrine and exocrine phenotypes. Decellularized pancreas is a promising biomaterial and might translate to clinical relevance for treatment of diabetes. PMID:29118967
Bayne, Rosemary A.; Donnachie, Douglas J.; Kinnell, Hazel L.; Childs, Andrew J.; Anderson, Richard A.
2016-01-01
STUDY QUESTION Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. LIMITATIONS, REASONS FOR CAUTION While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. WIDER IMPLICATIONS OF THE FINDINGS This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTERESTS This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare. PMID:27385727
Li, S; Sloboda, D M; Moss, T J M; Nitsos, I; Polglase, G R; Doherty, D A; Newnham, J P; Challis, J R G; Braun, T
2013-04-01
Antenatal corticosteroids are used to augment fetal lung maturity in human pregnancy. Dexamethasone (DEX) is also used to treat congenital adrenal hyperplasia of the fetus in early pregnancy. We previously reported effects of synthetic corticosteroids given to sheep in early or late gestation on pregnancy length and fetal cortisol levels and glucocorticoids alter plasma insulin-like growth factor (IGF) and insulin-like growth factor binding protein (IGFBP) concentrations in late pregnancy and reduce fetal weight. The effects of administering DEX in early pregnancy on fetal organ weights and betamethasone (BET) given in late gestation on weights of fetal brain regions or organ development have not been reported. We hypothesized that BET or DEX administration at either stage of pregnancy would have deleterious effects on fetal development and associated hormones. In early pregnancy, DEX was administered as four injections at 12-hourly intervals over 48 h commencing at 40-42 days of gestation (dG). There was no consistent effect on fetal weight, or individual fetal organ weights, except in females at 7 months postnatal age. When BET was administered at 104, 111 and 118 dG, the previously reported reduction in total fetal weight was associated with significant reductions in weights of fetal brain, cerebellum, heart, kidney and liver. Fetal plasma insulin, leptin and triiodothyronine were also reduced at different times in fetal and postnatal life. We conclude that at the amounts given, the sheep fetus is sensitive to maternal administration of synthetic glucocorticoid in late gestation, with effects on growth and metabolic hormones that may persist into postnatal life.
Koustas, Erica; Sutton, Patrice; Johnson, Paula I.; Atchley, Dylan S.; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.
2014-01-01
Background: The Navigation Guide is a novel systematic review method to synthesize scientific evidence and reach strength of evidence conclusions for environmental health decision making. Objective: Our aim was to integrate scientific findings from human and nonhuman studies to determine the overall strength of evidence for the question “Does developmental exposure to perfluorooctanoic acid (PFOA) affect fetal growth in humans?” Methods: We developed and applied prespecified criteria to systematically and transparently a) rate the quality of the scientific evidence as “high,” “moderate,” or “low”; b) rate the strength of the human and nonhuman evidence separately as “sufficient,” “limited,” “moderate,” or “evidence of lack of toxicity”; and c) integrate the strength of the human and nonhuman evidence ratings into a strength of the evidence conclusion. Results: We identified 18 epidemiology studies and 21 animal toxicology studies relevant to our study question. We rated both the human and nonhuman mammalian evidence as “moderate” quality and “sufficient” strength. Integration of these evidence ratings produced a final strength of evidence rating in which review authors concluded that PFOA is “known to be toxic” to human reproduction and development based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. Conclusion: We concluded that developmental exposure to PFOA adversely affects human health based on sufficient evidence of decreased fetal growth in both human and nonhuman mammalian species. The results of this case study demonstrate the application of a systematic and transparent methodology, via the Navigation Guide, for reaching strength of evidence conclusions in environmental health. Citation: Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1040–1051; http://dx.doi.org/10.1289/ehp.1307923 PMID:24968389
McGee, Meghan; Bainbridge, Shannon; Fontaine-Bisson, Bénédicte
2018-06-01
The fetal origins of health and disease framework has identified extremes in fetal growth and birth weight as factors associated with the lifelong generation of chronic diseases such as obesity, diabetes, cardiovascular disease, and hypertension. Maternal nutrition plays a critical role in fetal and placental development, in part by providing the methyl groups required to establish the fetus's genome structure and function, notably through DNA methylation. The goal of this narrative review is to describe the role of maternal dietary methyl donor (methionine, folate, and choline) and cofactor (zinc and vitamins B2, B6, and B12) intake in one-carbon metabolism and DNA methylation in the fetus and placenta, as well as their impacts on fetal growth and lifelong health outcomes, with specific examples in animals and humans. Based on the available evidence, it is concluded that intake of different amounts of dietary methyl donors and cofactors during pregnancy may alter fetal growth and development, thus establishing a major link between early environmental exposure and disease development in the offspring later in life.
Barjaktarovic, Mirjana; Korevaar, Tim I M; Jaddoe, Vincent W V; de Rijke, Yolanda B; Visser, Theo J; Peeters, Robin P; Steegers, Eric A P
2017-02-01
Human chorionic gonadotropin (hCG) is a pregnancy-specific hormone that regulates placental development. hCG concentrations vary widely throughout gestation and differ based on fetal sex. Abnormal hCG concentrations are associated with adverse pregnancy outcomes including fetal growth restriction. We studied the association of hCG concentrations with fetal growth and birth weight. In addition, we investigated effect modification by gestational age of hCG measurement and fetal sex. Total serum hCG (median 14.4 weeks, 95 % range 10.1-26.2), estimated fetal weight (measured by ultrasound during 18-25th weeks and >25th weeks) and birth weight were measured in 7987 mother-child pairs from the Generation R cohort and used to establish fetal growth. Small for gestational age (SGA) was defined as a standardized birth weight lower than the 10th percentile of the study population. There was a non-linear association of hCG with birth weight (P = 0.009). However, only low hCG concentrations measured during the late first trimester (11th and 12th week) were associated with birth weight and SGA. Low hCG concentrations measured in the late first trimester were also associated with decreased fetal growth (P = 0.0002). This was the case for both male and female fetuses. In contrast, high hCG concentrations during the late first trimester were associated with increased fetal growth amongst female, but not male fetuses. Low hCG in the late first trimester is associated with lower birth weight due to a decrease in fetal growth. Fetal sex differences exist in the association of hCG concentrations with fetal growth.
Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P
2012-06-15
The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development.
Cox, Laura A; Glenn, Jeremy P; Spradling, Kimberly D; Nijland, Mark J; Garcia, Roy; Nathanielsz, Peter W; Ford, Stephen P
2012-01-01
The pregnant sheep has provided seminal insights into reproduction related to animal and human development (ovarian function, fertility, implantation, fetal growth, parturition and lactation). Fetal sheep physiology has been extensively studied since 1950, contributing significantly to the basis for our understanding of many aspects of fetal development and behaviour that remain in use in clinical practice today. Understanding mechanisms requires the combination of systems approaches uniquely available in fetal sheep with the power of genomic studies. Absence of the full range of sheep genomic resources has limited the full realization of the power of this model, impeding progress in emerging areas of pregnancy biology such as developmental programming. We have examined the expressed fetal sheep heart transcriptome using high-throughput sequencing technologies. In so doing we identified 36,737 novel transcripts and describe genes, gene variants and pathways relevant to fundamental developmental mechanisms. Genes with the highest expression levels and with novel exons in the fetal heart transcriptome are known to play central roles in muscle development. We show that high-throughput sequencing methods can generate extensive transcriptome information in the absence of an assembled and annotated genome for that species. The gene sequence data obtained provide a unique genomic resource for sheep specific genetic technology development and, combined with the polymorphism data, augment annotation and assembly of the sheep genome. In addition, identification and pathway analysis of novel fetal sheep heart transcriptome splice variants is a first step towards revealing mechanisms of genetic variation and gene environment interactions during fetal heart development. PMID:22508961
Placental transport and in vitro effects of Bisphenol A.
Mørck, Thit J; Sorda, Giuseppina; Bechi, Nicoletta; Rasmussen, Brian S; Nielsen, Jesper B; Ietta, Francesca; Rytting, Erik; Mathiesen, Line; Paulesu, Luana; Knudsen, Lisbeth E
2010-08-01
Bisphenol A (BPA), an estrogen-like chemical, leaches from consumer products potentially causing human exposure. To examine the effects of BPA exposure during pregnancy, we performed studies using the BeWo trophoblast cell line, placental explant cultures, placental perfusions and skin diffusion models, all of human origin. Results showed BPA cytotoxicity in BeWo cells with an apparent EC50 at 100-125 microM. BPA exposure significantly increased beta-hCG secretion and caspase-3 expression in placental explants at an environmentally relevant concentration of 1 nM. In the transport studies, a rapid transfer of BPA was observed across the term placentae and the BeWo cell monolayer. Further, transdermal transport of BPA was observed. These results indicate that fetal BPA exposure through placental exchange occurs with potential adverse implications for placental and fetal development. This battery of test systems within the realm of human implantation and fetal development represents important elements in risk assessment of reproductive toxicity. Copyright 2010 Elsevier Inc. All rights reserved.
Transforming growth factor-β (TGF-β) signaling in healthy human fetal skin: a descriptive study.
Walraven, M; Beelen, R H J; Ulrich, M M W
2015-05-01
TGF-β plays an important role in growth and development but is also involved in scarring and fibrosis. Differences for this growth factor are known between scarless fetal wound healing and adult wound healing. Nonetheless, most of the data in this area are from animal studies or in vitro studies and, thus, information about the human situation is incomplete and scarce. The aim of this study was to compare the canonical TGF-β signaling in unwounded human fetal and adult skin. Q-PCR, immunohistochemistry, Western Blot and Luminex assays were used to determine gene expression, protein levels and protein localization of components of this pathway in healthy skin. All components of the canonical TGF-β pathway were present in unwounded fetal skin. Compared to adult skin, fetal skin had differential concentrations of the TGF-β isoforms, had high levels of phosphorylated receptor-Smads, especially in the epidermis, and had low expression of several fibrosis-associated target genes. Further, the results indicated that the processes of receptor endocytosis might also differ between fetal and adult skin. This descriptive study showed that there are differences in gene expression, protein concentrations and protein localization for most components of the canonical TGF-β pathway between fetal and adult skin. The findings of this study can be a starting point for further research into the role of TGF-β signaling in scarless healing. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Buczinski, Sébastien M.C.; Fecteau, Gilles; Lefebvre, Réjean C.; Smith, Lawrence C.
2007-01-01
Cloning technology is associated with multiple losses throughout pregnancy and in the neonatal period. Any maternal or fetal disease can compromise pregnancy. A paucity of data are available on bovine fetal well-being in late pregnancy; development of well-being assessment methods might augment early diagnosis of abnormal pregnancy or fetal distress, allowing early intervention. This review presents the current knowledge on fetal well-being based on bovine, ovine, equine, and human studies, as well as interesting research parameters that have been studied in other species and not yet investigated in cattle. Transabdominal ultrasonography allows for diagnosis of large placentomes and hydrallantois that frequently accompany clone pregnancies. Fetal inactivity or large hyperechoic particles imaged within the fetal annexes are associated with fetal distress or death, and should be reassessed to confirm compromised pregnancy. Measurements of different fetal parameters (thoracic aorta, metacarpal or metatarsal thickness) could be reliable tools for early detection of the large offspring syndrome commonly found in cloned calves. PMID:17334032
Natural Killer Cells Promote Fetal Development through the Secretion of Growth-Promoting Factors.
Fu, Binqing; Zhou, Yonggang; Ni, Xiang; Tong, Xianhong; Xu, Xiuxiu; Dong, Zhongjun; Sun, Rui; Tian, Zhigang; Wei, Haiming
2017-12-19
Natural killer (NK) cells are present in large populations at the maternal-fetal interface during early pregnancy. However, the role of NK cells in fetal growth is unclear. Here, we have identified a CD49a + Eomes + subset of NK cells that secreted growth-promoting factors (GPFs), including pleiotrophin and osteoglycin, in both humans and mice. The crosstalk between HLA-G and ILT2 served as a stimulus for GPF-secreting function of this NK cell subset. Decreases in this GPF-secreting NK cell subset impaired fetal development, resulting in fetal growth restriction. The transcription factor Nfil3, but not T-bet, affected the function and the number of this decidual NK cell subset. Adoptive transfer of induced CD49a + Eomes + NK cells reversed impaired fetal growth and rebuilt an appropriate local microenvironment. These findings reveal properties of NK cells in promoting fetal growth. In addition, this research proposes approaches for therapeutic administration of NK cells in order to reverse restricted nourishments within the uterine microenvironment during early pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.
Study of the development of fetal baboon brain using magnetic resonance imaging at 3 Tesla
Liu, Feng; Garland, Marianne; Duan, Yunsuo; Stark, Raymond I.; Xu, Dongrong; Dong, Zhengchao; Bansal, Ravi; Peterson, Bradley S.; Kangarlu, Alayar
2008-01-01
Direct observational data on the development of the brains of human and nonhuman primates is on remarkably scant, and most of our understanding of primate brain development is extrapolated from findings in rodent models. Magnetic resonance imaging (MRI) is a promising tool for the noninvasive, longitudinal study of the developing primate brain. We devised a protocol to scan pregnant baboons serially at 3 T for up to 3 h per session. Seven baboons were scanned 1–6 times, beginning as early as 56 days post-conceptional age, and as late as 185 days (term ~185 days). Successful scanning of the fetal baboon required careful animal preparation and anesthesia, in addition to optimization of the scanning protocol. We successfully acquired maps of relaxation times (T1 and T2) and high-resolution anatomical images of the brains of fetal baboons at multiple time points during the course of gestation. These images demonstrated the convergence of gray and white matter contrast near term, and furthermore demonstrated that the loss of contrast at that age is a consequence of the continuous change in relaxation times during fetal brain development. These data furthermore demonstrate that maps of relaxation times have clear advantages over the relaxation time weighted images for the tracking of the changes in brain structure during fetal development. This protocol for in utero MRI of fetal baboon brains will help to advance the use of nonhuman primate models to study fetal brain development longitudinally. PMID:18155925
Jørgensen, A; Nielsen, J E; Perlman, S; Lundvall, L; Mitchell, R T; Juul, A; Rajpert-De Meyts, E
2015-10-01
What are the effects of experimentally manipulating meiosis signalling by addition of retinoic acid (RA) in cultured human fetal gonads? RA-treatment accelerated meiotic entry in cultured fetal ovary samples, while addition of RA resulted in a dysgenetic gonadal phenotype in fetal testis cultures. One of the first manifestations of sex differentiation is the initiation of meiosis in fetal ovaries. In contrast, meiotic entry is actively prevented in the fetal testis at this developmental time-point. It has previously been shown that RA-treatment mediates initiation of meiosis in human fetal ovary ex vivo. This was a controlled ex vivo study of human fetal gonads treated with RA in 'hanging-drop' tissue cultures. The applied experimental set-up preserves germ cell-somatic niche interactions and the investigated outcomes included tissue integrity and morphology, cell proliferation and survival and the expression of markers of meiosis and sex differentiation. Tissue from 24 first trimester human fetuses was included in this study, all from elective terminations at gestational week (GW) 7-12. Gonads were cultured for 2 weeks with and without addition of 1 µM RA. Samples were subsequently formalin-fixed and investigated by immunohistochemistry and cell counting. Proteins investigated and quantified included; octamer-binding transcription factor 4 (OCT4), transcription factor AP-2 gamma (AP2γ) (embryonic germ cell markers), SRY (sex determining region Y)-box 9 (SOX9), anti-Müllerian hormone (AMH) (immature Sertoli cell markers), COUP transcription factor 2 (COUP-TFII) (marker of interstitial cells), forkhead box L2 (FOXL2) (granulosa cell marker), H2A histone family, member X (γH2AX) (meiosis marker), doublesex and mab-3 related transcription factor 1 (DMRT1) (meiosis regulator), cleaved poly ADP ribose polymerase (PARP), cleaved Caspase 3 (apoptosis markers) and Ki-67 antigen (Ki-67) (proliferation marker). Also, proliferation was determined using a 5'-bromo-2'-deoxyuridine (BrdU) incorporation assay. A novel ex vivo 'hanging-drop' culture model for human fetal gonads was successfully established. Continued proliferation of cells without signs of increased apoptosis was observed after 2 weeks of culture. In cultured fetal ovaries treated with RA, an increased number of meiotic germ cells (P < 0.05) and DMRT1-positive oogonia initiating meiosis (P < 0.05) was observed, which is in agreement with a previous study. In fetal testes, RA-treatment resulted in a decreased number of gonocytes (P < 0.05), a reduced percentage of proliferating gonocytes (P < 0.05), altered expression pattern of the somatic cell markers AMH and COUP-TFII, as well as disrupted seminiferous cord structure and testis morphology. The number of samples included in this study was relatively small due to the limited availability of human fetal tissue. The hanging-drop culture, similarly to other organ culture approaches, allows studies of germ cell-somatic niche interactions and determination of effects after manipulating specific signalling pathways. Our novel finding of disrupted fetal testis development after treatment with RA indicates that abnormal meiosis regulation can potentially cause gonadal dysgenesis. Further studies will elucidate the exact mechanisms and timing of observed effects. This work was supported in part by an ESPE Research Fellowship, sponsored by Novo Nordisk A/S to A.Jø. Additional funding for this project was obtained from The Research Council of the Capital Region of Denmark (E.R.-D.M.), The Research Fund at Rigshospitalet (A.Ju. and J.E.N.), Familien Erichssens Fund (A.Jø.), Dagmar Marshalls Fund (A.Jø.) and Aase & Ejnar Danielsens Fund (A.Jø.). The authors have no conflicts of interest. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Premature Brain Aging in Baboons Resulting from Moderate Fetal Undernutrition.
Franke, Katja; Clarke, Geoffrey D; Dahnke, Robert; Gaser, Christian; Kuo, Anderson H; Li, Cun; Schwab, Matthias; Nathanielsz, Peter W
2017-01-01
Contrary to the known benefits from a moderate dietary reduction during adulthood on life span and health, maternal nutrient reduction during pregnancy is supposed to affect the developing brain, probably resulting in impaired brain structure and function throughout life. Decreased fetal nutrition delivery is widespread in both developing and developed countries, caused by poverty and natural disasters, but also due to maternal dieting, teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency, or multiples. Compromised development of fetal cerebral structures was already shown in our baboon model of moderate maternal nutrient reduction. The present study was designed to follow-up and evaluate the effects of moderate maternal nutrient reduction on individual brain aging in the baboon during young adulthood (4-7 years; human equivalent 14-24 years), applying a novel, non-invasive neuroimaging aging biomarker. The study reveals premature brain aging of +2.7 years ( p < 0.01) in the female baboon exposed to fetal undernutrition. The effects of moderate maternal nutrient reduction on individual brain aging occurred in the absence of fetal growth restriction or marked maternal weight reduction at birth, which stresses the significance of early nutritional conditions in life-long developmental programming. This non-invasive MRI biomarker allows further longitudinal in vivo tracking of individual brain aging trajectories to assess the life-long effects of developmental and environmental influences in programming paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental animal models and humans.
Premature Brain Aging in Baboons Resulting from Moderate Fetal Undernutrition
Franke, Katja; Clarke, Geoffrey D.; Dahnke, Robert; Gaser, Christian; Kuo, Anderson H.; Li, Cun; Schwab, Matthias; Nathanielsz, Peter W.
2017-01-01
Contrary to the known benefits from a moderate dietary reduction during adulthood on life span and health, maternal nutrient reduction during pregnancy is supposed to affect the developing brain, probably resulting in impaired brain structure and function throughout life. Decreased fetal nutrition delivery is widespread in both developing and developed countries, caused by poverty and natural disasters, but also due to maternal dieting, teenage pregnancy, pregnancy in women over 35 years of age, placental insufficiency, or multiples. Compromised development of fetal cerebral structures was already shown in our baboon model of moderate maternal nutrient reduction. The present study was designed to follow-up and evaluate the effects of moderate maternal nutrient reduction on individual brain aging in the baboon during young adulthood (4–7 years; human equivalent 14–24 years), applying a novel, non-invasive neuroimaging aging biomarker. The study reveals premature brain aging of +2.7 years (p < 0.01) in the female baboon exposed to fetal undernutrition. The effects of moderate maternal nutrient reduction on individual brain aging occurred in the absence of fetal growth restriction or marked maternal weight reduction at birth, which stresses the significance of early nutritional conditions in life-long developmental programming. This non-invasive MRI biomarker allows further longitudinal in vivo tracking of individual brain aging trajectories to assess the life-long effects of developmental and environmental influences in programming paradigms, aiding preventive and curative treatments on cerebral atrophy in experimental animal models and humans. PMID:28443017
Morphologic analysis of artifacts in human fetal eyes confounding histopathologic investigations.
Herwig, Martina C; Müller, Annette M; Holz, Frank G; Loeffler, Karin U
2011-04-25
Human fetal eyes are an excellent source for studies of the normal ocular development and for examining early ocular changes associated with various syndromes in the context of a pediatric pathologic or prenatal sonographic diagnosis. However, artifacts caused by different factors often render an exact interpretation difficult. In this study, the frequency and extent of artifacts in human fetal eyes were investigated with the aim of distinguishing more precisely these artifacts from real findings, allowing also for a more diligent forensic interpretation. The cohort included 341 fetal eyes, ranging in age from 8 to 38 weeks of gestation, that were investigated macroscopically and by light microscopy. In most specimens, artifacts such as pigment spillage and autolytic changes of the retina were noted. Nearly all specimens showed changes of the lens with remarkable similarities to cataractous lenses in adult eyes. Structural ocular changes associated with systemic syndromes were also observed and in most instances could be distinguished from artifacts. Morphologic changes in fetal eyes should be classified in artifacts caused by way of abortion, mechanical effects from the removal of the eyes, delayed fixation with autolysis, and the fixative itself and should be distinguished from genuine structural abnormalities associated with ocular or systemic disease. This classification can be fairly difficult and requires experience. In addition, lens artifacts are often misleading, and the diagnosis of a fetal cataract should not be made based on histopathologic examination alone.
Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities
Wilber, Andrew; Nienhuis, Arthur W.
2011-01-01
In humans, embryonic, fetal, and adult hemoglobins are sequentially expressed in developing erythroblasts during ontogeny. For the past 40 years, this process has been the subject of intensive study because of its value to enlighten the biology of developmental gene regulation and because fetal hemoglobin can significantly ameliorate the clinical manifestations of both sickle cell disease and β-thalassemia. Understanding the normal process of loss of fetal globin expression and activation of adult globin expression could potentially lead to new therapeutic approaches for these hemoglobin disorders. Herein, we briefly review the history of the study of hemoglobin switching and then focus on recent discoveries in the field that now make new therapeutic approaches seem feasible in the future. Erythroid-specific knockdown of fetal gene repressors or enforced expression of fetal gene activators may provide clinically applicable approaches for genetic treatment of hemoglobin disorders that would benefit from increased fetal hemoglobin levels. PMID:21321359
McKinnell, Chris; Mitchell, Rod T.; Walker, Marion; Morris, Keith; Kelnar, Chris J.H.; Wallace, W. Hamish; Sharpe, Richard M.
2009-01-01
BACKGROUND Fetal exposure of male rats to some phthalates induces reproductive abnormalities, raising concerns for similar effects in humans. In order to address this in a more appropriate animal model, the aim of the present studies was to investigate the effect of fetal/neonatal exposure to monobutyl phthalate (MBP) in a non-human primate, the marmoset. In particular, to determine if exposure resulted in effects at birth, or in adulthood, similar to those in male rats, and whether there was evidence for induction of carcinoma-in-situ (CIS) or testicular germ cell tumours (TGCT). METHODS Pregnant female marmosets were dosed from ∼7–15 weeks gestation with 500 mg/kg/day MBP and male offspring studied at birth (1–5 days; n = 6) or in adulthood (n = 5). In another study, newborn males (n = 5 co-twins) were dosed with 500 mg/kg/day MBP for 14 days, commencing at ∼4 days of age. RESULTS Fetal exposure of marmosets to MBP did not affect gross testicular morphology, reproductive tract development or testosterone levels at birth, nor were germ cell number and proliferation, Sertoli cell number or germ:Sertoli cell ratio affected. In two of six MBP-exposed animals, unusual clusters of undifferentiated germ cells were found, but their significance is unclear. Neonatal MBP treatment did not affect germ cell numbers or differentiation. Fetal exposure to MBP did not affect testis size/morphology, germ cell numbers or fertility in adulthood. There was no evidence for CIS or TGCT. CONCLUSIONS Fetal exposure of marmosets to MBP does not measurably affect testis development/function or cause testicular dysgenesis, and no effects emerge by adulthood. Some effects on germ cell development were found, but these were inconsistent and of uncertain significance. PMID:19491204
Recent advances in the prenatal interrogation of the human fetal genome.
Hui, Lisa; Bianchi, Diana W
2013-02-01
The amount of genetic and genomic information obtainable from the human fetus during pregnancy is accelerating at an unprecedented rate. Two themes have dominated recent technological advances in prenatal diagnosis: interrogation of the fetal genome in increasingly high resolution and the development of non-invasive methods of fetal testing using cell-free DNA in maternal plasma. These two areas of advancement have now converged with several recent reports of non-invasive assessment of the entire fetal genome from maternal blood. However, technological progress is outpacing the ability of the healthcare providers and patients to incorporate these new tests into existing clinical care, and further complicates many of the economic and ethical dilemmas in prenatal diagnosis. This review summarizes recent work in this field and discusses the integration of these new technologies into the clinic and society. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yu, Dawei; Zhang, Shoufeng; Du, Weihua; Zhang, Jinxia; Fan, Zongxing; Hao, Haisheng; Liu, Yan; Zhao, Xueming; Qin, Tong; Zhu, Huabin
2014-01-01
Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α) (without secretory signal sequence) gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT). Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9%) became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR) and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS), which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.
Gyamfi Bannerman, Cynthia; Grobman, William A; Antoniewicz, Leah; Hutchinson, Maria; Blackwell, Sean
2011-09-01
In 2008, a National Institute of Child Health and Human Development/Society for Maternal-Fetal Medicine-sponsored workshop on electronic fetal monitoring recommended a new fetal heart tracing interpretation system. Comparison of this 3-tier system with other systems is lacking. Our purpose was to determine the relationships between fetal heart rate categories for the 3 existing systems. Three Maternal-Fetal Medicine specialists reviewed 120 fetal heart rates. All tracings were from term, singleton pregnancies with known umbilical artery pH. The fetal heart rates were classified by a 2-tier, 3-tier, and 5-tier system. Each Maternal-Fetal Medicine examiner reviewed 120 fetal heart rate segments. When compared with the 2-tier system, 0%, 54%, and 100% tracings in categories 1, 2, and 3 were "nonreassuring." There was strong concordance between category 1 and "green" as well as category 3 and "red" tracings. The 3-tier and 5-tier systems were similar in fetal heart rate interpretations for tracings that were either very normal or very abnormal. Whether one system is superior to the others in predicting fetal acidemia remains unknown. Copyright © 2011 Mosby, Inc. All rights reserved.
Guerquin, Marie-Justine; Matilionyte, Gabriele; Kilcoyne, Karen; N’Tumba-Byn, Thierry; Messiaen, Sébastien; Deceuninck, Yoann; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Antignac, Jean-Philippe; Mitchell, Rod; Rouiller-Fabre, Virginie
2018-01-01
Background Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. Methods Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. Results With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. Conclusions Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental exposures. PMID:29385186
Central vagal sensory and motor connections: human embryonic and fetal development.
Cheng, Gang; Zhou, Xiangtian; Qu, Jia; Ashwell, Ken W S; Paxinos, G
2004-07-30
The embryonic and fetal development of the nuclear components and pathways of vagal sensorimotor circuits in the human has been studied using Nissl staining and carbocyanine dye tracing techniques. Eight fetal brains ranging from 8 to 28 weeks of development had DiI (1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate) inserted into either the thoracic vagus nerve at the level of the sternal angle (two specimens of 8 and 9 weeks of gestation) or into vagal rootlets at the surface of the medulla (at all other ages), while a further five were used for study of cytoarchitectural development. The first central labeling resulting from peripheral application of DiI to the thoracic vagus nerve was seen at 8 weeks. By 9 weeks, labeled bipolar cells at the ventricular surface around the sulcus limitans (sl) were seen after DiI application to the thoracic vagus nerve. Subnuclear organization as revealed by both Nissl staining and carbocyanine dye tracing was found to be advanced at a relatively early fetal age, with afferent segregation in the medial Sol apparent at 13 weeks and subnuclear organization of efferent magnocellular divisions of dorsal motor nucleus of vagus nerve noticeable at the same stage. The results of the present study also confirm that vagal afferents are distributed to the dorsomedial subnuclei of the human nucleus of the solitary tract, with particular concentrations of afferent axons in the gelatinosus subnucleus. These vagal afferents appeared to have a restricted zone of termination from quite early in development (13 weeks) suggesting that there is no initial exuberance in the termination field of vagal afferents in the developing human nucleus of the solitary tract. On the other hand, the first suggestion of afferents invading 10N from the medial Sol was not seen until 20 weeks and was not well developed until 24 weeks, suggesting that direct monosynaptic connections between the sensory and effector components of the vagal sensorimotor complex do not develop until this age.
Xita, Nectaria; Tsatsoulis, Agathocles
2006-05-01
Polycystic ovary syndrome (PCOS) is a common endocrine disorder of premenopausal women, characterized by hyperandrogenism, polycystic ovaries, and chronic anovulation along with insulin resistance and abdominal obesity as frequent metabolic traits. Although PCOS manifests clinically during adolescence, emerging data suggest that the natural history of PCOS may originate in intrauterine life. Evidence from experimental, clinical, and genetic research supporting the hypothesis for the fetal origins of PCOS has been analyzed. Female primates, exposed in utero to androgen excess, exhibit the phenotypic features of PCOS during adult life. Clinical observations also support a potential fetal origin of PCOS. Women with fetal androgen excess disorders, including congenital 21-hydroxylase deficiency and congenital adrenal virilizing tumors, develop features characteristic of PCOS during adulthood despite the normalization of androgen excess after birth. The potential mechanisms of fetal androgen excess leading to a PCOS phenotype in humans are not clearly understood. However, maternal and/or fetal hyperandrogenism can provide a plausible mechanism for fetal programing of PCOS, and this, in part, may be genetically determined. Thus, genetic association studies have indicated that common polymorphic variants of genes determining androgen activity or genes that influence the availability of androgens to target tissues are associated with PCOS and increased androgen levels. These genomic variants may provide the genetic link to prenatal androgenization in human PCOS. Prenatal androgenization of the female fetus induced by genetic and environmental factors, or the interaction of both, may program differentiating target tissues toward the development of PCOS phenotype in adult life.
Sea Lions Develop Human-like Vernix Caseosa Delivering Branched Fats and Squalene to the GI Tract.
Wang, Dong Hao; Ran-Ressler, Rinat; St Leger, Judy; Nilson, Erika; Palmer, Lauren; Collins, Richard; Brenna, J Thomas
2018-05-10
Vernix caseosa, the white waxy coating found on newborn human skin, is thought to be a uniquely human substance. Its signature characteristic is exceptional richness in saturated branched chain fatty acids (BCFA) and squalene. Vernix particles sloughed from the skin suspended in amniotic fluid are swallowed by the human fetus, depositing BCFA/squalene throughout the gastrointestinal (GI) tract, thereby establishing a unique microbial niche that influences development of nascent microbiota. Here we show that late-term California sea lion (Zalophus californianus) fetuses have true vernix caseosa, delivering BCFA and squalene to the fetal GI tract thereby recapitulating the human fetal gut microbial niche. These are the first data demonstrating the production of true vernix caseosa in a species other than Homo sapiens. Its presence in a marine mammal supports the hypothesis of an aquatic habituation period in the evolution of modern humans.
Piperidine, pyridine alkaloid inhibition of fetal movement in a day 40 pregnant goat model.
Green, Benedict T; Lee, Stephen T; Welch, Kevin D; Pfister, James A; Panter, Kip E
2013-08-01
Inhibition of fetal movement is one mechanism behind the development of multiple congenital contracture-type defects in developing fetuses of humans and animals. We tested the alkaloids anabasine, lobeline, and myosmine for agonist actions, and sensitivity to alpha conotoxins EI and GI blockade at fetal muscle-type nicotinic acetylcholine receptors (nAChR) expressed by TE-671 cells. We also determined if the alkaloids decreased fetal movement in an IV dosed, day 40 pregnant goat model. In TE-671 cells, all three alkaloids elicited concentration-dependent changes in membrane potential sensing dye fluorescence. 1.0 μM alpha conotoxin GI shifted the concentration-effect curves of anabasine and myosmine to the right, and decreased maximal responses. Neither of the conotoxins blocked the actions of lobeline in TE-671 cells. In the day 40 pregnant goats, 0.8 mg/kg anabasine abolished fetal movement at 30 and 60 min after dosing and fetal movement was reduced by lobeline and myosmine. The blockade of anabasine and myosmine actions in TE-671 cells by alpha conotoxin GI indicates that they are agonists at fetal muscle-type nAChR. All three alkaloids did significantly decrease fetal movement in the day 40 pregnant goat model suggesting a potential for these alkaloids to cause multiple congenital contracture-type defects in developing fetuses. Published by Elsevier Ltd.
hPSC-derived lung and intestinal organoids as models of human fetal tissue
Aurora, Megan; Spence, Jason R.
2016-01-01
In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882
Safe fetal platelet genotyping: new developments.
Le Toriellec, Emilie; Chenet, Christophe; Kaplan, Cecile
2013-08-01
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is due to maternal alloimmunization against fetal platelet (PLT) antigens. Antenatal management strategies have been developed to avoid complications such as intracranial hemorrhage. The aim of this study was to set up two reliable, noninvasive fetal genotyping assays to determine the fetal risk in pregnancies in which the father is heterozygous for the offending antigen. This study focused on human PLT antigen (HPA)-1, the most frequently implicated antigen in FNAIT in Caucasians. Two assays based on cell-free fetal DNA extracted from maternal blood samples and on real-time polymerase chain reaction (QPCR) were developed: an allele-specific QPCR specifically targeting the polymorphic sequence in HPA-1 and the study of the variation in the high-resolution melting curve of amplicons containing the polymorphic region. All results from the 49 samples obtained from 29 pregnant women were consistent with expectations. Six women were compatible with their fetuses (three HPA-1aa women and three HPA-1bb women), 41 HPA-1bb women were incompatible with their fetuses, as were two HPA-1aa women. Two fetal PLT genotyping assays on maternal blood samples proved to be reliable as of 15 weeks of gestation, thereby avoiding invasive techniques such as amniocentesis. © 2012 American Association of Blood Banks.
Maternal amino acid supplementation for intrauterine growth restriction
Brown, Laura D; Green, Alice S; Limesand, Sean W; Rozance, Paul J
2011-01-01
Maternal dietary protein supplementation to improve fetal growth has been considered as an option to prevent or treat intrauterine growth restriction. However, in contrast to balanced dietary supplementation, adverse perinatal outcomes in pregnant women who received high amounts of dietary protein supplementation have been observed. The responsible mechanisms for these adverse outcomes are unknown. This review will discuss relevant human and animal data to provide the background necessary for the development of explanatory hypotheses and ultimately for the development therapeutic interventions during pregnancy to improve fetal growth. Relevant aspects of fetal amino acid metabolism during normal pregnancy and those pregnancies affected by IUGR will be discussed. In addition, data from animal experiments which have attempted to determine mechanisms to explain the adverse responses identified in the human trials will be presented. Finally, we will suggest new avenues for investigation into how amino acid supplementation might be used safely to treat and/or prevent IUGR. PMID:21196387
In utero exposure to chloroquine alters sexual development in the male fetal rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clewell, Rebecca A.; Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709; Pluta, Linda
Chloroquine (CQ), a drug that has been used extensively for the prevention and treatment of malaria, is currently considered safe for use during pregnancy. However, CQ has been shown to disrupt steroid homeostasis in adult rats and similar compounds, such as quinacrine, inhibit steroid production in the Leydig cell in vitro. To explore the effect of in utero CQ exposure on fetal male sexual development, pregnant Sprague-Dawley rats were given a daily dose of either water or chloroquine diphosphate from GD 16-18 by oral gavage. Chloroquine was administered as 200 mg/kg CQ base on GD 16, followed by two maintenancemore » doses of 100 mg/kg CQ base on GD 16 and 18. Three days of CQ treatment resulted in reduced maternal and fetal weight on GD 19 and increased necrosis and steatosis in the maternal liver. Fetal livers also displayed mild lipid accumulation. Maternal serum progesterone was increased after CQ administration. Fetal testes testosterone, however, was significantly decreased. Examination of the fetal testes revealed significant alterations in vascularization and seminiferous tubule development after short-term CQ treatment. Anogenital distance was not altered. Microarray and RT-PCR showed down-regulation of several genes associated with cholesterol transport and steroid synthesis in the fetal testes. This study indicates that CQ inhibits testosterone synthesis and normal testis development in the rat fetus at human relevant doses.« less
Gorczyca, Janusz; Tomaszewski, Krzysztof A; Henry, Brandon Michael; Pękala, Przemysław Andrzej; Pasternak, Artur; Mizia, Ewa; Walocha, Jerzy A
2017-01-01
Detailed knowledge on the development of the pancreas is required to understand the variability in its blood supply. The aim of our study was to use the corrosion casting method combined with scanning electron microscopy to study the organization of the pancreatic microcirculation in human fetuses. The study was conducted on 28 human fetuses aged 18 to 25 gestational weeks. The fetal vasculature was appropriately prepared and then perfused with a low-viscosity Mercox CL-2R resin. The prepared vascular casts of the surface of the fetal pancreas were then examined in scanning electron microscopy and digitally analyzed. The lobular structure of the pancreas has a strong impact on the organization of the microvasculature. The lobular networks were supplied by the interlobular arteries and drained by the interlobular veins. The vascular system of fetal human pancreas has many portal connections, including islet-lobule and islet-duct portal circulations, which likely play a key role in the coordination of both endocrine and exocrine pancreatic functions. The organization of the microvascular network of the human pancreas in fetuses aged 18 to 25 gestational weeks is very similar to that of an adult but with more prominent features suggesting active processes of angiogenesis and vascular remodeling.
A Humanized Mouse Model Generated Using Surplus Neonatal Tissue.
Brown, Matthew E; Zhou, Ying; McIntosh, Brian E; Norman, Ian G; Lou, Hannah E; Biermann, Mitch; Sullivan, Jeremy A; Kamp, Timothy J; Thomson, James A; Anagnostopoulos, Petros V; Burlingham, William J
2018-04-10
Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs). Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Corbel, Tanguy; Perdu, Elisabeth; Gayrard, Véronique; Puel, Sylvie; Lacroix, Marlène Z; Viguié, Catherine; Toutain, Pierre-Louis; Zalko, Daniel; Picard-Hagen, Nicole
2015-04-01
The widespread human exposure to bisphenol A (BPA), an endocrine disruptor targeting developmental processes, underlines the need to better understand the mechanisms of fetal exposure. Animal studies have shown that at a late stage of pregnancy BPA is efficiently conjugated by the fetoplacental unit, mainly into BPA-glucuronide (BPA-G), which remains trapped within the fetoplacental unit. Fetal exposure to BPA-G might in turn contribute to in situ exposure to bioactive BPA, following its deconjugation into parent BPA at the level of fetal sensitive tissues. The objectives of our study were 1) to characterize the BPA glucurono- and sulfoconjugation capabilities of the ovine fetal liver at different developmental stages, 2) to compare hepatic conjugation activities in human and sheep, and 3) to evaluate the extent of BPA conjugation and deconjugation processes in placenta and fetal gonads. At an early stage of pregnancy, and despite functional sulfoconjugation activity, ovine fetuses expressed low hepatic BPA conjugation capabilities, suggesting that this stage of development represents a critical window in terms of BPA exposure. Conversely, the late ovine fetus expressed an efficient detoxification system that metabolized BPA into BPA-G. Hepatic glucuronidation activities were quantitatively similar in adult sheep and humans. In placenta, BPA conjugation and BPA-G deconjugation activities were relatively balanced, whereas BPA-G hydrolysis was systematically higher than BPA conjugation in gonads. The possible reactivation of BPA-G into BPA could contribute to an increased exposure of fetal sensitive tissues to bioactive BPA in situ. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Vasung, L; Jovanov-Milošević, N; Pletikos, M; Mori, S; Judaš, M; Kostović, Ivica
2011-01-01
Periventricular pathway (PVP) system of the developing human cerebrum is situated medial to the intermediate zone in the close proximity to proliferative cell compartments. In order to elucidate chemical properties and developing trajectories of the PVP we used DTI in combination with acetylcholinesterase histochemistry, SNAP-25 immunocytochemistry and axonal cytoskeletal markers (SMI312, MAP1b) immunocytochemistry on postmortem paraformaldehyde-fixed brains of 30 human fetuses ranging in age from 10 to 38 postconceptional weeks (PCW), 2 infants (age 1-3 months) and 1 adult brain. The PVP appears in the early fetal period (10-13 PCW) as two defined fibre bundles: the corpus callosum (CC) and the fetal fronto-occipital fascicle (FOF). In the midfetal period (15-18 PCW), all four components of the PVP can be identified: (1) the CC, which at rostral levels forms a voluminous callosal plate; (2) the FOF, with SNAP-25-positive fibers; (3) the fronto-pontine pathway (FPP) which for a short distance runs within the PVP; and (4) the subcallosal fascicle of Muratoff (SFM) which contains cortico-caudate projections. The PVPs are situated medial to the internal capsule at the level of the cortico-striatal junction; they remain prominent during the late fetal and early preterm period (19-28 PCW) and represent a portion of the wider periventricular crossroad of growing associative, callosal and projection pathways. In the perinatal period, the PVPs change their topographical relationships, decrease in size and the FOF looses its SNAP-25-reactivity. In conclusion, the hitherto undescribed PVP of the human fetal cerebrum contains forerunners of adult associative and projection pathways. Its transient chemical properties and relative exuberance suggest that the PVP may exert influence on the development of cortical connectivity (intermediate targeting) and other neurogenetic events such as neuronal proliferation. The PVP's topographical position also indicates that it is a major site of vulnerability in hypoxic-ischaemic perinatal brain injury. © Springer-Verlag 2010
Induced pluripotent stem (iPS) cells from human fetal stem cells.
Guillot, Pascale V
2016-02-01
Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jabbar, Shaima; Reuhl, Kenneth; Sarkar, Dipak K
2018-05-16
Excess alcohol use is known to promote development of aggressive tumors in various tissues in human patients, but the cause of alcohol promotion of tumor aggressiveness is not clearly understood. We used an animals model of fetal alcohol exposure that is known to promote tumor development and determined if alcohol programs the pituitary to acquire aggressive prolactin-secreting tumors. Our results show that pituitaries of fetal alcohol-exposed rats produced increased levels of intra-pituitary aromatase protein and plasma estrogen, enhanced pituitary tissue growth, and upon estrogen challenge developed prolactin-secreting tumors (prolactinomas) that were hemorrhagic and often penetrated into the surrounding tissue. Pituitary tumors of fetal alcohol-exposed rats produced higher levels of hemorrhage-associated genes and proteins and multipotency genes and proteins. Cells of pituitary tumor of fetal alcohol exposed rat grew into tumor spheres in ultra-low attachment plate, expressed multipotency genes, formed an increased number of colonies, showed enhanced cell migration, and induced solid tumors following inoculation in immunodeficient mice. These data suggest that fetal alcohol exposure programs the pituitary to develop aggressive prolactinoma after estrogen treatment possibly due to increase in stem cell niche within the tumor microenvironment.
Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).
Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E
2014-08-01
The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.
Effect of Dietary Iron on Fetal Growth in Pregnant Mice
Hubbard, Andrea C; Bandyopadhyay, Sheila; Wojczyk, Boguslaw S; Spitalnik, Steven L; Hod, Eldad A; Prestia, Kevin A
2013-01-01
Iron deficiency is the most common nutritional disorder. Children and pregnant women are at highest risk for developing iron deficiency because of their increased iron requirements. Iron-deficiency anemia during pregnancy is associated with adverse effects on fetal development, including low birth weight, growth retardation, hypertension, intrauterine fetal death, neurologic impairment, and premature birth. We hypothesized that pregnant mice fed an iron-deficient diet would have a similar outcome regarding fetal growth to that of humans. To this end, we randomly assigned female C57BL/6 mice to consume 1 of 4 diets (high-iron–low-bioavailability, high-iron–high-bioavailability, iron-replete, and iron-deficient) for 4 wk before breeding, followed by euthanasia on day 17 to 18 of gestation. Compared with all other groups, dams fed the high-iron–high-bioavailability diet had significantly higher liver iron. Hct and Hgb levels in dams fed the iron-deficient diet were decreased by at least 2.5 g/dL as compared with those of all other groups. In addition, the percentage of viable pups among dams fed the iron-deficient diet was lower than that of all other groups. Finally, compared with all other groups, fetuses from dams fed the iron-deficient diet had lower fetal brain iron levels, shorter crown–rump lengths, and lower weights. In summary, mice fed an iron-deficient diet had similar hematologic values and fetal outcomes as those of iron-deficient humans, making this a useful model for studying iron-deficiency anemia during pregnancy. PMID:23582419
Kummer, Lawrence W.; Lanthier, Paula; Kim, In-Jeong; Kuki, Atsuo; Thomas, Stephen J.
2018-01-01
Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis. PMID:29634758
An Embryonic Growth Pathway is Reactivated in Human Prostate Cancer
2005-06-01
and 13 weeks in the prostatic urothelium and nascent prostatic buds. Staining was slightly diminished at 16.5, further diminished at 18 to 20 and...in the human fetal prostate is contemporaneous with the fetal testosterone surge and with ductal budding of the prostatic urothelium . SHH expression...expression in the human fetal the fetal mouse.8 There was intense staining of all layers of prostate. the prostatic urothelium at 11.5 weeks
The UF family of hybrid phantoms of the developing human fetus for computational radiation dosimetry
NASA Astrophysics Data System (ADS)
Maynard, Matthew R.; Geyer, John W.; Aris, John P.; Shifrin, Roger Y.; Bolch, Wesley
2011-08-01
Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in skeletal size, individual organ masses and total fetal masses. The resulting series of fetal hybrid computational phantoms is applicable to organ-level and bone-level internal and external radiation dosimetry for human fetuses of various ages and weight percentiles
Towards a new era in fetal medicine in the Nordic countries.
Sitras, Vasilis
2016-08-01
Fetal medicine is a subspecialty of obstetrics investigating the development, growth and disease of the human fetus. The advances in fetal imaging (ultrasonography, MRI) and molecular diagnostic techniques, together with the possibility of intervention in utero, make fetal medicine an important, rapidly developing field within women's healthcare. Therefore, a variety of specialists, such as neonatologists, pediatric cardiologists, medical geneticists, radiologists and pediatric surgeons, are necessary to adjunct in the diagnosis and treatment of the fetus as a patient. In this commentary, we provide a description of some organizational and educational aspects of fetal medicine in the Nordic countries, using examples of the management of specific conditions such as aneuploidy screening, red cell allo-immunization and fetal interventions. Clearly, there are several cultural, legal, organizational and practical differences between the Nordic countries; these are not necessarily negative, given the high standards of care in all Nordic countries. The scope of the newly founded Nordic Network of Fetal Medicine is to enhance cooperation in clinical practice, education and research between the participant countries. Hopefully, this initiative will find the necessary political and economic support from the national authorities and bring a new era in the field of fetal medicine in the Nordic region. © 2016 Nordic Federation of Societies of Obstetrics and Gynecology.
de Groot, John C.M.J.; van Iperen, Liesbeth; Huisman, Margriet A.; Frijns, Johan H.M.
2015-01-01
ABSTRACT Sensorineural hearing loss (SNHL) is one of the most common congenital disorders in humans, afflicting one in every thousand newborns. The majority is of heritable origin and can be divided in syndromic and nonsyndromic forms. Knowledge of the expression profile of affected genes in the human fetal cochlea is limited, and as many of the gene mutations causing SNHL likely affect the stria vascularis or cochlear potassium homeostasis (both essential to hearing), a better insight into the embryological development of this organ is needed to understand SNHL etiologies. We present an investigation on the development of the stria vascularis in the human fetal cochlea between 9 and 18 weeks of gestation (W9–W18) and show the cochlear expression dynamics of key potassium‐regulating proteins. At W12, MITF+/SOX10+/KIT+ neural‐crest‐derived melanocytes migrated into the cochlea and penetrated the basement membrane of the lateral wall epithelium, developing into the intermediate cells of the stria vascularis. These melanocytes tightly integrated with Na+/K+‐ATPase‐positive marginal cells, which started to express KCNQ1 in their apical membrane at W16. At W18, KCNJ10 and gap junction proteins GJB2/CX26 and GJB6/CX30 were expressed in the cells in the outer sulcus, but not in the spiral ligament. Finally, we investigated GJA1/CX43 and GJE1/CX23 expression, and suggest that GJE1 presents a potential new SNHL associated locus. Our study helps to better understand human cochlear development, provides more insight into multiple forms of hereditary SNHL, and suggests that human hearing does not commence before the third trimester of pregnancy. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1219–1240, 2015 PMID:25663387
Gomes Fernandes, Maria; He, Nannan; Wang, Fang; Van Iperen, Liesbeth; Eguizabal, Cristina; Matorras, Roberto; Roelen, Bernard A J; Chuva De Sousa Lopes, Susana M
2018-02-01
What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers associated with piRNAs biogenesis like the TDRDs and HENMT1 in fetal GC. Non-applicable. This study is limited by the restricted number of samples and consequently stages analyzed. In the germline, PIWILs ensure the integrity of the human genome protecting it from 'parasitic sequences'. This study offers novel insights on the expression dynamics of PIWILs during the window of epigenetic remodeling and meiosis, and highlights important differences between humans and mice, which may prove particularly important to understand causes of infertility and improve both diagnosis and treatment in humans. M.G.F. was funded by Fundação para a Ciência e Tecnologia (FCT) [SFRH/BD/78689/2011]; N.H. by China Scholarship Council (CSC) [No. 201307040026] and F.W. by Medical Personnel Training Abroad Project of Henan Province [No. 2015022] and S.M.C.d.S.L. by the Netherlands Organization of Scientific Research (NWO) [ASPASIA 015.007.037] and the Interuniversity Attraction Poles-Phase VII [IUAP/PAI P7/14]. The authors have no conflicts of interest to declare. © The Author(s) 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.
Instrumentation of Near-term Fetal Sheep for Multivariate Chronic Non-anesthetized Recordings
Burns, Patrick; Liu, Hai Lun; Kuthiala, Shikha; Fecteau, Gilles; Desrochers, André; Durosier, Lucien Daniel; Cao, Mingju; Frasch, Martin G.
2015-01-01
The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli such as endotoxins, bacteria, umbilical cord occlusions, hypoxia and various pharmacological treatments. The life-saving clinical practices of glucocorticoid treatment in fetuses at risk of premature birth and the therapeutic hypothermia have been developed in this model. This is due to the unique amenability of the non-anesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation and in vivo organ imaging. Here we describe the surgical instrumentation procedure required to achieve a stable chronically instrumented non-anesthetized fetal sheep model including characterization of the post-operative recovery from blood gas, metabolic and inflammation standpoints. PMID:26555084
Antenatal Testing – A Reevaluation
Signore, Caroline; Freeman, Roger K.; Spong, Catherine Y.
2009-01-01
In August 2007, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Institutes of Health Office of Rare Diseases, the American College of Obstetricians and Gynecologists, and the American Academy of Pediatrics cosponsored a 2-day workshop to reassess the body of evidence supporting antepartum assessment of fetal well-being, identify key gaps in the evidence, and formulate recommendations for further research. Participants included experts in obstetrics and fetal physiology, and representatives from relevant stakeholder groups and organizations. This article is a summary of the discussions at the workshop, including synopses of oral presentations on the epidemiology of stillbirth and fetal neurological injury, fetal physiology, techniques for antenatal monitoring, and maternal and fetal indications for monitoring. Finally, a synthesis of recommendations for further research compiled from three breakout workgroups is presented. PMID:19300336
Impacts of maternal dietary protein intake on fetal survival, growth, and development.
Herring, Cassandra M; Bazer, Fuller W; Johnson, Gregory A; Wu, Guoyao
2018-03-01
Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H 2 S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new, effective means to improve embryonic/fetal survival and growth in mammals.
Steroid and xenobiotic receptor-mediated effects of bisphenol A on human osteoblasts.
Miki, Yasuhiro; Hata, Shuko; Nagasaki, Shuji; Suzuki, Takashi; Ito, Kiyoshi; Kumamoto, Hiroyuki; Sasano, Hironobu
2016-06-15
Bisphenol A, one of the industrial chemicals used in plastics and in the coating of dishes and medical equipment, behaves as an endocrine disruptor in the human body. Bisphenol A can bind directly to several types of nuclear receptors, including steroid and xenobiotic receptor (SXR). SXR plays an important role in bone metabolism through the activation of osteoblasts in vitro, but SXR protein localization has not been reported in bone tissues. Additionally, it is not known whether bisphenol A acts on osteoblasts through SXR activation. Therefore, in this study, we first examined the immunolocalization of the SXR protein in human adult and fetal bone tissues. We then examined the effects of bisphenol A on human osteoblasts in vitro. SXR immunoreactivity was detected in osteoblasts, but not in osteoclasts, of both adult and fetal bone tissues. In fetal bone tissues, the mesenchymal cells or fetal connective tissue were also positive for SXR immunoreactivity. Expression of SXR target genes (tsukushi, matrilin-2, and CYP3A4) and SXR response element-luciferase activity were increased by bisphenol A treatment in normal osteoblasts transfected with SXR (hFOB/SXR) and in osteoblast-like cells (MG-63). Bisphenol A also stimulated cell proliferation and collagen accumulation in hFOB/SXR cells. These results suggest that, as in other tissues, SXR plays important roles in bone metabolism and fetal bone development and that bisphenol A may disturb bone homeostasis in both adult and fetus through SXR. Copyright © 2016 Elsevier Inc. All rights reserved.
STAPLETON, Phoebe A.; MINARCHICK, Ms. Valerie C.; YI, Jinghai; ENGELS, Mr. Kevin; McBRIDE, Mr. Carroll R.; NURKIEWICZ, Timothy R.
2013-01-01
Objective The continued development and use of engineered nanomaterials (ENM) has given rise to concerns over the potential for human health effects. While the understanding of cardiovascular ENM toxicity is improving, one of the most complex and acutely demanding “special” circulations is the enhanced maternal system to support fetal development. The “Barker Hypothesis” proposes that fetal development within a hostile gestational environment may predispose/program future sensitivity. Therefore, the objective of this study was two-fold: 1) to determine if maternal ENM exposure alters uterine and/or fetal microvascular function and 2) test the Barker Hypothesis at the microvascular level. Study Design Pregnant (gestation day 10) Sprague-Dawley rats were exposed to nano-titanium dioxide aerosols (11.3±0.039 (mg/m3)*hour, 5 hours/day, 8.2±0.85 days) to evaluate the maternal and fetal microvascular consequences of maternal exposure. Microvascular tissue isolation (gestation day 20) and arteriolar reactivity studies (<150μm passive diameter) of the uterine premyometrial and fetal tail arteries were conducted. Results ENM exposures led to significant maternal and fetal microvascular dysfunction which presented as robustly compromised endothelium-dependent and -independent reactivity to pharmacologic and mechanical stimuli. Isolated maternal uterine arteriolar reactivity was consistent with a metabolically impaired profile and hostile gestational environment, impacting fetal weight. The fetal microvessels isolated from exposed dams demonstrate significant impairments to signals of vasodilation specific to mechanistic signaling and shear stress. Conclusion To our knowledge, this is the first report providing evidence that maternal ENM inhalation is capable of influencing fetal health, thereby supporting that the Barker Hypothesis is applicable at the microvascular level. PMID:23643573
Newby, Elizabeth A.; Myers, Dean A.
2015-01-01
In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus. PMID:26173460
Computational fluid dynamics (CFD) study on the fetal aortic coarctation
NASA Astrophysics Data System (ADS)
Zhou, Yue; Zhang, Yutao; Wang, Jingying
2018-03-01
Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.
Pearson, Helen; Britt, Rodney D; Pabelick, Christine M; Prakash, Y S; Amrani, Yassine; Pandya, Hitesh C
2015-12-01
Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Cultured fetal human ASM cells stimulated with TNF-α (0-20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases.
Pearson, Helen; Britt, Rodney D.; Pabelick, Christine M.; Prakash, Y.S.; Amrani, Yassine; Pandya, Hitesh C.
2016-01-01
Background Adult human airway smooth muscle (ASM) produce cytokines involved in recruitment and survival of leukocytes within airway walls. Cytokine generation by adult ASM is glucocorticoid-sensitive. Whether developing lung ASM produces cytokines in a glucocorticoid-sensitive fashion is unknown. Methods Cultured fetal human ASM cells stimulated with TNF-α (0–20 ng/ml) were incubated with TNF-α receptor-blocking antibodies, fluticasone (1 and 100 nm), or vehicle. Supernatants and cells were assayed for the production of CCL5, CXCL10, and CXCL8 mRNA and protein and glucocorticoid receptor phosphorylation. Results CCL5, CXCL10, and CXCL8 mRNA and protein production by fetal ASM cell was significantly and dose-dependently following TNF-α treatment. Cytokine mRNA and protein production were effectively blocked by TNF-α R1 and R2 receptor neutralizing antibodies but variably inhibited by fluticasone. TNF-α-induced TNF-R1 and R2 receptor mRNA expression was only partially attenuated by fluticasone. Glucocorticoid receptor phosphorylation at serine (Ser) 211 but not at Ser 226 was enhanced by fluticasone. Conclusion Production of CCL5, CXCL10, and CXCL8 by fetal ASM appears to involve pathways that are both qualitatively and mechanistically distinct to those described for adult ASM. The findings imply developing ASM has potential to recruit leukocyte into airways and, therefore, of relevance to childhood airway diseases. PMID:26331770
Cirulli, V.; Crisa, L.; Beattie, G.M.; Mally, M.I.; Lopez, A.D.; Fannon, A.; Ptasznik, A.; Inverardi, L.; Ricordi, C.; Deerinck, T.; Ellisman, M.; Reisfeld, R.A.; Hayek, A.
1998-01-01
Cell adhesion molecules (CAMs) are important mediators of cell–cell interactions and regulate cell fate determination by influencing growth, differentiation, and organization within tissues. The human pancarcinoma antigen KSA is a glycoprotein of 40 kD originally identified as a marker of rapidly proliferating tumors of epithelial origin. Interestingly, most normal epithelia also express this antigen, although at lower levels, suggesting that a dynamic regulation of KSA may occur during cell growth and differentiation. Recently, evidence has been provided that this glycoprotein may function as an epithelial cell adhesion molecule (Ep-CAM). Here, we report that Ep-CAM exhibits the features of a morphoregulatory molecule involved in the development of human pancreatic islets. We demonstrate that Ep-CAM expression is targeted to the lateral domain of epithelial cells of the human fetal pancreas, and that it mediates calcium-independent cell–cell adhesion. Quantitative confocal immunofluorescence in fetal pancreata identified the highest levels of Ep-CAM expression in developing islet-like cell clusters budding from the ductal epithelium, a cell compartment thought to comprise endocrine progenitors. A surprisingly reversed pattern was observed in the human adult pancreas, displaying low levels of Ep-CAM in islet cells and high levels in ducts. We further demonstrate that culture conditions promoting epithelial cell growth induce upregulation of Ep-CAM, whereas endocrine differentiation of fetal pancreatic epithelial cells, transplanted in nude mice, is associated with a downregulation of Ep-CAM expression. In addition, a blockade of Ep-CAM function by KS1/4 mAb induced insulin and glucagon gene transcription and translation in fetal pancreatic cell clusters. These results indicate that developmentally regulated expression and function of Ep-CAM play a morphoregulatory role in pancreatic islet ontogeny. PMID:9508783
De Paepe, Monique E.; Chu, Sharon; Hall, Susan; Heger, Nicholas; Thanos, Chris; Mao, Quanfu
2012-01-01
Background Coordinated remodeling of epithelium and vasculature is essential for normal postglandular lung development. The value of the human-to-rodent lung xenograft as model of fetal microvascular development remains poorly defined. Aim The aim of this study was to determine the fate of the endogenous (human-derived) microvasculature in fetal lung xenografts. Methods Lung tissues were obtained from spontaneous pregnancy losses (14–22 weeks’ gestation) and implanted in the renal subcapsular or dorsal subcutaneous space of SCID-beige mice (T, B and NK-cell-deficient) and/or nude rats (T-cell-deficient). Informed parental consent was obtained. Lung morphogenesis, microvascular angiogenesis and epithelial differentiation were assessed at two and four weeks post-transplantation by light microscopy, immunohistochemical and gene expression studies. Archival age-matched postmortem lungs served as control. Results The vascular morphology, density and proliferation of renal subcapsular grafts in SCID-beige mice were similar to age-matched control lungs, with preservation of the physiologic association between epithelium and vasculature. The microvasculature of subcutaneous grafts in SCID-beige mice was underdeveloped and dysmorphic, associated with significantly lower VEGF, endoglin, and angiopoietin-2 mRNA expression than renal grafts. Grafts at both sites displayed mild airspace dysplasia. Renal subcapsular grafts in nude rats showed frequent infiltration by host lymphocytes and obliterating bronchiolitis-like changes, associated with markedly decreased endogenous angiogenesis. Conclusion This study demonstrates the critical importance of host and site selection to ensure optimal xenograft development. When transplanted to severely immune suppressed, NK-cell-deficient hosts and engrafted in the renal subcapsular site, the human-to-rodent fetal lung xenograft provides a valid model of postglandular microvascular lung remodeling. PMID:22811288
Giri, Shibashish; Bader, Augustinus
2014-09-01
Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a conditional human fetal hepatocytes cell line with mesenchymal characteristics. Thus immortalization of human fetal hepatocytes cell line by telomerase biology offers a great challenge to examine basic biological mechanisms which are directly related to human and best cell source having unlimited population doubling for bioartificial support without any risk of replicative senescence and pathogenic risks.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Select Committee on Nutrition and Human Needs.
Part One of these hearings before the Select Committee on Nutrition and Human Needs of the United States Senate includes the testimony of scientists and doctors engaged in research regarding the relationship between maternal, fetal, and infant nutrition and optimum mental and physical development of the child. In testimony it was shown that the…
Child Health and Human Development: An Overview and Strategy for a Five-Year Research Plan.
ERIC Educational Resources Information Center
National Inst. of Child Health and Human Development (NIH), Bethesda, MD.
The first five-year research plans developed by the National Institute of Child Health and Human Development (NICHD), covering fiscal years 1983-1987 and 10 program areas, are published in this volume. Present knowledge is reviewed and research opportunities are indicated in the areas of reproduction, fetal development, the birth process, the…
Sutton, Patrice; Atchley, Dylan S.; Koustas, Erica; Lam, Juleen; Sen, Saunak; Robinson, Karen A.; Axelrad, Daniel A.; Woodruff, Tracey J.
2014-01-01
Background: The Navigation Guide methodology was developed to meet the need for a robust method of systematic and transparent research synthesis in environmental health science. We conducted a case study systematic review to support proof of concept of the method. Objective: We applied the Navigation Guide systematic review methodology to determine whether developmental exposure to perfluorooctanoic acid (PFOA) affects fetal growth in humans. Methods: We applied the first 3 steps of the Navigation Guide methodology to human epidemiological data: 1) specify the study question, 2) select the evidence, and 3) rate the quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using prespecified criteria. We evaluated each study for risk of bias and conducted meta-analyses on a subset of studies. We rated quality and strength of the entire body of human evidence. Results: We identified 18 human studies that met our inclusion criteria, and 9 of these were combined through meta-analysis. Through meta-analysis, we estimated that a 1-ng/mL increase in serum or plasma PFOA was associated with a –18.9 g (95% CI: –29.8, –7.9) difference in birth weight. We concluded that the risk of bias across studies was low, and we assigned a “moderate” quality rating to the overall body of human evidence. Conclusion: On the basis of this first application of the Navigation Guide systematic review methodology, we concluded that there is “sufficient” human evidence that developmental exposure to PFOA reduces fetal growth. Citation: Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, Robinson KA, Axelrad DA, Woodruff TJ. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1028–1039; http://dx.doi.org/10.1289/ehp.1307893 PMID:24968388
Ciaravino, Vic; Coronado, Dina; Lanphear, Cheryl; Hoberman, Alan; Chanda, Sanjay
2016-09-01
Tavaborole is a topical antifungal agent approved by the US Food and Drug Administration for the treatment of toenail onychomycosis. As part of the nonclinical development program, reproductive and developmental toxicity studies were conducted (rat oral fertility and early embryonic development, rat (oral) and rabbit (dermal) embryo-fetal development). There were no effects on fertility or reproductive performance at doses up to 300 mg/kg/d (107 times the maximum recommended human dose [MRHD] based on mean area under the plasma concentration-time curve comparisons). In the rat embryo-fetal development toxicity studies, teratogenicity was not observed at doses up to 100 mg/kg/d (29 times the MRHD). However, several treatment-related skeletal malformations and variations were observed at 300 mg/kg/d (570 times the MRHD). In rabbit embryo-fetal development toxicity studies dosed via oral or dermal administration, the no observable adverse effect level for maternal toxicity and embryo-fetal toxicity was 50 mg/kg/d (16 times the MRHD) and 5% (26 times the MRHD), respectively. © The Author(s) 2016.
Isolation, culture, and imaging of human fetal pancreatic cell clusters.
Lopez, Ana D; Kayali, Ayse G; Hayek, Alberto; King, Charles C
2014-05-18
For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation(1-9). However in vitro, genesis of insulin producing cells from human fetal ICCs is low(10); results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust(11-17). A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro(11-22), far fewer exist for ICCs(10,23,24). Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue(6). Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.
Fetal in vivo continuous cardiovascular function during chronic hypoxia
Allison, B. J.; Brain, K. L.; Niu, Y.; Kane, A. D.; Herrera, E. A.; Thakor, A. S.; Botting, K. J.; Cross, C. M.; Itani, N.; Skeffington, K. L.; Beck, C.
2016-01-01
Key points The in vivo fetal cardiovascular defence to chronic hypoxia has remained by and large an enigma because no technology has been available to induce significant and prolonged fetal hypoxia whilst recording longitudinal changes in fetal regional blood flow as the hypoxic pregnancy is developing.We introduce a new technique able to maintain chronically instrumented maternal and fetal sheep preparations under isobaric chronic hypoxia for most of gestation, beyond levels that can be achieved by high altitude and of relevance in magnitude to the human intrauterine growth‐restricted fetus.This technology permits wireless recording in free‐moving animals of longitudinal maternal and fetal cardiovascular function, including beat‐to‐beat alterations in pressure and blood flow signals in regional circulations.The relevance and utility of the technique is presented by testing the hypotheses that the fetal circulatory brain sparing response persists during chronic fetal hypoxia and that an increase in reactive oxygen species in the fetal circulation is an involved mechanism. Abstract Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean PaO2 levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l−1, P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase‐derived reactive oxygen species. PMID:26926316
Florio, Marta; Heide, Michael; Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline; Huttner, Wieland B; Hiller, Michael
2018-03-21
Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL , demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. © 2018, Florio et al.
Pinson, Anneline; Brandl, Holger; Albert, Mareike; Winkler, Sylke; Wimberger, Pauline
2018-01-01
Understanding the molecular basis that underlies the expansion of the neocortex during primate, and notably human, evolution requires the identification of genes that are particularly active in the neural stem and progenitor cells of the developing neocortex. Here, we have used existing transcriptome datasets to carry out a comprehensive screen for protein-coding genes preferentially expressed in progenitors of fetal human neocortex. We show that 15 human-specific genes exhibit such expression, and many of them evolved distinct neural progenitor cell-type expression profiles and levels compared to their ancestral paralogs. Functional studies on one such gene, NOTCH2NL, demonstrate its ability to promote basal progenitor proliferation in mice. An additional 35 human genes with progenitor-enriched expression are shown to have orthologs only in primates. Our study provides a resource of genes that are promising candidates to exert specific, and novel, roles in neocortical development during primate, and notably human, evolution. PMID:29561261
Insights in spatio-temporal characterization of human fetal neural stem cells.
Martín-Ibáñez, Raquel; Guardia, Inés; Pardo, Mónica; Herranz, Cristina; Zietlow, Rike; Vinh, Ngoc-Nga; Rosser, Anne; Canals, Josep M
2017-05-01
Primary human fetal cells have been used in clinical trials of cell replacement therapy for the treatment of neurodegenerative disorders such as Huntington's disease (HD). However, human fetal primary cells are scarce and difficult to work with and so a renewable source of cells is sought. Human fetal neural stem cells (hfNSCs) can be generated from human fetal tissue, but little is known about the differences between hfNSCs obtained from different developmental stages and brain areas. In the present work we characterized hfNSCs, grown as neurospheres, obtained from three developmental stages: 4-5, 6-7 and 8-9weeks post conception (wpc) and four brain areas: forebrain, cortex, whole ganglionic eminence (WGE) and cerebellum. We observed that, as fetal brain development proceeds, the number of neural precursors is diminished and post-mitotic cells are increased. In turn, primary cells obtained from older embryos are more sensitive to the dissociation process, their viability is diminished and they present lower proliferation ratios compared to younger embryos. However, independently of the developmental stage of derivation proliferation ratios were very low in all cases. Improvements in the expansion rates were achieved by mechanical, instead of enzymatic, dissociation of neurospheres but not by changes in the seeding densities. Regardless of the developmental stage, neurosphere cultures presented large variability in the viability and proliferation rates during the initial 3-4 passages, but stabilized achieving significant expansion rates at passage 5 to 6. This was true also for all brain regions except cerebellar derived cultures that did not expand. Interestingly, the brain region of hfNSC derivation influences the expansion potential, being forebrain, cortex and WGE derived cells the most expandable compared to cerebellar. Short term expansion partially compromised the regional identity of cortical but not WGE cultures. Nevertheless, both expanded cultures were multipotent and kept the ability to differentiate to region specific mature neuronal phenotypes. Copyright © 2017 Elsevier Inc. All rights reserved.
Animal models for clinical and gestational diabetes: maternal and fetal outcomes.
Kiss, Ana Ci; Lima, Paula Ho; Sinzato, Yuri K; Takaku, Mariana; Takeno, Marisa A; Rudge, Marilza Vc; Damasceno, Débora C
2009-10-19
Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl) and mild diabetes (glycemia between 120 and 300 mg/dl) on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16), severe (n = 50) and mild diabetes (n = 30). At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Experimental models of severe diabetes during pregnancy reproduced maternal and fetal outcomes of pregnant women presenting uncontrolled clinical diabetes. On the other hand, the mild diabetes model caused mild hyperglycemia during pregnancy, although it was not enough to reproduce the increased rate of macrosomic fetuses seen in women with gestational diabetes.
Does fractality in heart rate variability indicate the development of fetal neural processes?
NASA Astrophysics Data System (ADS)
Echeverría, J. C.; Woolfson, M. S.; Crowe, J. A.; Hayes-Gill, B. R.; Piéri, Jean F.; Spencer, C. J.; James, D. K.
2004-10-01
By using an improved detrended fluctuation analysis we studied the scaling behaviour of 53 long-term series of fetal heart rate fluctuations. Our results suggest that fractality begins to arise around 24 weeks of normal human gestation and that this condition, showing some additional developments, seems to be preserved during gestation. This may provide new evidence of a role played by cortical-to-subcortical pathways in the long-term fractal nature of heart rate variability data.
Herwig, M C; Müller, A M; Holz, F G; Loeffler, K U
2010-11-01
Information on the evaluation of prenatal ocular findings is sparse. This article provides an overview of the morphology in a cohort of human fetal eyes, with particular emphasis on interesting findings. The study investigated 216 eyes from 115 human fetuses. The majority of fetal eyes presented with a regular phenotype. Rarely, unexpected findings were discovered in fetuses with or without systemic malformations. Routine evaluation of fetal eyes reveals-albeit rarely-new aspects providing further knowledge and occasionally enabling the exact classification of syndromes.
Cahill, Alison G; Tuuli, Methodius G; Stout, Molly J; López, Julia D; Macones, George A
2018-05-01
Intrapartum electronic fetal monitoring is the most commonly used tool in obstetrics in the United States; however, which electronic fetal monitoring patterns predict acidemia remains unclear. This study was designed to describe the frequency of patterns seen in labor using modern nomenclature, and to test the hypothesis that visually interpreted patterns are associated with acidemia and morbidities in term infants. We further identified patterns prior to delivery, alone or in combination, predictive of acidemia and neonatal morbidity. This was a prospective cohort study of 8580 women from 2010 through 2015. Patients were all consecutive women laboring at ≥37 weeks' gestation with a singleton cephalic fetus. Electronic fetal monitoring patterns during the 120 minutes prior to delivery were interpreted in 10-minute epochs. Interpretation included the category system and individual electronic fetal monitoring patterns per the Eunice Kennedy Shriver National Institute of Child Health and Human Development criteria as well as novel patterns. The primary outcome was fetal acidemia (umbilical artery pH ≤7.10); neonatal morbidities were also assessed. Final regression models for acidemia adjusted for nulliparity, pregestational diabetes, and advanced maternal age. Area under the receiver operating characteristic curves were used to assess the test characteristics of individual models for acidemia and neonatal morbidity. Of 8580 women, 149 (1.7%) delivered acidemic infants. Composite neonatal morbidity was diagnosed in 757 (8.8%) neonates within the total cohort. Persistent category I, and 10-minute period of category III, were significantly associated with normal pH and acidemia, respectively. Total deceleration area was most discriminative of acidemia (area under the receiver operating characteristic curves, 0.76; 95% confidence interval, 0.72-0.80), and deceleration area with any 10 minutes of tachycardia had the greatest discriminative ability for neonatal morbidity (area under the receiver operating characteristic curves, 0.77; 95% confidence interval, 0.75-0.79). Once the threshold of deceleration area is reached the number of cesareans needed-to-be performed to potentially prevent 1 case of acidemia and morbidity is 5 and 6, respectively. Deceleration area is the most predictive electronic fetal monitoring pattern for acidemia, and combined with tachycardia for significant risk of morbidity, from the electronic fetal monitoring patterns studied. It is important to acknowledge that this study was performed in patients delivering ≥37 weeks, which may limit the generalizability to preterm populations. We also did not use computerized analysis of the electronic fetal monitoring patterns because human visual interpretation was the basis for the Eunice Kennedy Shriver National Institute of Child Health and Human Development categories, and importantly, it is how electronic fetal monitoring is used clinically. Copyright © 2018 Elsevier Inc. All rights reserved.
Lombardo, Michael V.; Ashwin, Emma; Auyeung, Bonnie; Chakrabarti, Bhismadev; Lai, Meng-Chuan; Taylor, Kevin; Hackett, Gerald; Bullmore, Edward T.; Baron-Cohen, Simon
2012-01-01
Background Sex differences are present in many neuropsychiatric conditions that affect emotion and approach-avoidance behavior. One potential mechanism underlying such observations is testosterone in early development. Although much is known about the effects of testosterone in adolescence and adulthood, little is known in humans about how testosterone in fetal development influences later neural sensitivity to valenced facial cues and approach-avoidance behavioral tendencies. Methods With functional magnetic resonance imaging we scanned 25 8–11-year-old children while viewing happy, fear, neutral, or scrambled faces. Fetal testosterone (FT) was measured via amniotic fluid sampled between 13 and 20 weeks gestation. Behavioral approach-avoidance tendencies were measured via parental report on the Sensitivity to Punishment and Sensitivity to Rewards questionnaire. Results Increasing FT predicted enhanced selectivity for positive compared with negatively valenced facial cues in reward-related regions such as caudate, putamen, and nucleus accumbens but not the amygdala. Statistical mediation analyses showed that increasing FT predicts increased behavioral approach tendencies by biasing caudate, putamen, and nucleus accumbens but not amygdala to be more responsive to positive compared with negatively valenced cues. In contrast, FT was not predictive of behavioral avoidance tendencies, either through direct or neurally mediated paths. Conclusions This work suggests that testosterone in humans acts as a fetal programming mechanism on the reward system and influences behavioral approach tendencies later in life. As a mechanism influencing atypical development, FT might be important across a range of neuropsychiatric conditions that asymmetrically affect the sexes, the reward system, emotion processing, and approach behavior. PMID:22763187
Lombardo, Michael V; Ashwin, Emma; Auyeung, Bonnie; Chakrabarti, Bhismadev; Lai, Meng-Chuan; Taylor, Kevin; Hackett, Gerald; Bullmore, Edward T; Baron-Cohen, Simon
2012-11-15
Sex differences are present in many neuropsychiatric conditions that affect emotion and approach-avoidance behavior. One potential mechanism underlying such observations is testosterone in early development. Although much is known about the effects of testosterone in adolescence and adulthood, little is known in humans about how testosterone in fetal development influences later neural sensitivity to valenced facial cues and approach-avoidance behavioral tendencies. With functional magnetic resonance imaging we scanned 25 8-11-year-old children while viewing happy, fear, neutral, or scrambled faces. Fetal testosterone (FT) was measured via amniotic fluid sampled between 13 and 20 weeks gestation. Behavioral approach-avoidance tendencies were measured via parental report on the Sensitivity to Punishment and Sensitivity to Rewards questionnaire. Increasing FT predicted enhanced selectivity for positive compared with negatively valenced facial cues in reward-related regions such as caudate, putamen, and nucleus accumbens but not the amygdala. Statistical mediation analyses showed that increasing FT predicts increased behavioral approach tendencies by biasing caudate, putamen, and nucleus accumbens but not amygdala to be more responsive to positive compared with negatively valenced cues. In contrast, FT was not predictive of behavioral avoidance tendencies, either through direct or neurally mediated paths. This work suggests that testosterone in humans acts as a fetal programming mechanism on the reward system and influences behavioral approach tendencies later in life. As a mechanism influencing atypical development, FT might be important across a range of neuropsychiatric conditions that asymmetrically affect the sexes, the reward system, emotion processing, and approach behavior. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Glynn, Laura M.; Sandman, Curt A.
2012-01-01
Maternal cortisol levels (at 15, 19, 25, 31 and 37 weeks' gestation) and fetal movement response to vibroacoustic stimulation (VAS; at 25, 31 and 37 weeks) were assessed in 190 mother-fetus pairs. Fetuses showed a response to the VAS at 25 weeks and there was evidence of increasing maturation in the response at 31 and 37 weeks. Early elevations in…
Cellular and Molecular Effect of MEHP Involving LXRα in Human Fetal Testis and Ovary
Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N’Tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie
2012-01-01
Background Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Methodology/Principal Findings Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10−4M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. Conclusions/Significance We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells. PMID:23118965
Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.
Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N'tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie
2012-01-01
Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4)M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.
Hernandez-Medrano, Juan H; Copping, Katrina J; Hoare, Andrew; Wapanaar, Wendela; Grivell, Rosalie; Kuchel, Tim; Miguel-Pacheco, Giuliana; McMillen, I Caroline; Rodgers, Raymond J; Perry, Viv E A
2015-01-01
The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14 mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60 d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98 dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36 dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60 d up to 23 dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system.
Instrumenting a Fetal Membrane on a Chip as Emerging Technology for Preterm Birth Research.
Gnecco, Juan S; Anders, Anjali P; Cliffel, David; Pensabene, Virginia; Rogers, Lisa M; Osteen, Kevin; Aronoff, David M
2017-01-01
Preterm birth (PTB) is clinically defined as process of giving birth before 37 weeks of gestation and is a leading cause of death among neonates and children under the age of five. Prematurity remains a critical issue in developed countries, yet our understanding of the pathophysiology of PTB remains largely unknown. Among pregnancy complications, subclinical infections such as chorioamnionitis (CAM) are implicated in up to 70% of PTB cases. Specifically, CAM is characterized by the infection of the fetal membranes that surround the developing fetus and extend from the placenta, and is often associated with preterm, premature rupture of the fetal membranes (PPROM). The fetal membrane plays a key structural role in maintaining the fetal and maternal compartments of the gravid uterus. However, our understanding of the mechanisms of PPROM and the spatio-temporal progress of CAM remains vastly unknown. A lack of human-derived models have hindered our understanding of the mechanism that govern spontaneous PTB. Thus, in this short review, we discuss the emerging microfabrication technologies, specifically, organ-on-chip (OoCs) models, that seek to recapitulate the cellular and molecular context of the gestational membranes in vitro. These models show promise to facilitate the investigation of pathologic mechanisms that drive these disease conditions by mimicking the interactive contribution of the major cell types that make up the microenvironment of the fetal membrane and enable high throughput screening. Herein, we histologically characterize the microenvironment of the fetal membrane as a metric for scaling to recapitulate the functional components of the human fetal membrane. We review the current OoC models of the gravid uterus and conceptualize an "Instrumented Fetal Membrane on a Chip" (IFMOC) design as a prototype for PPROM and CAM research. Lastly, we discuss further applications of these OoC models for toxicological or pharmacological screening and personalized medicine. Fetal membrane OoCs offer an innovative and valuable platform to explore complex interactions between multiple drug types, toxic substances, and/or pathogenic microbes and their potential impacts on pregnancy outcomes. Further work will be required by integrating technological and analytical capabilities in order to characterize the fetal membrane microenvironment for preterm birth research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Wang, Yan-Ping; Chen, Xu; Zhang, Zhi-Kun; Cui, Hong-Yan; Wang, Peng; Wang, Yue
2015-12-01
Kidney development is key to the onset of hypertension and cardiovascular diseases in adults, and in the fetal stage will be impaired by a lack of nutrients in utero in animal models. However, few human studies have been performed. Kidney samples from fetuses in a fetal growth restriction (FGR) environment were collected and the morphological characteristics were observed. Potentially molecular mechanisms were explored by analyzing apoptosis and kidney-development related gene expression. The results indicated that no malformations were observed in the kidney samples of the FGR group, but the mean kidney weight and volume were significantly decreased. Moreover, the ratio of apoptotic cells and Bax-positive cells was increased and the ratio of Bcl-2-positive cells was decreased in the FGR group, indicating potential apoptosis induction under an in utero FGR environment. Finally, aberrant expression of renin and angiotensinogen indicated potential kidney functional abnormalities in the FGR group. Our study suggested increased apoptosis and decreased renin and angiotensinogen expression during human kidney development in an FGR environment. The current results will be helpful to further explore the molecular mechanism of FGR and facilitate future studies of hypertension and cardiovascular diseases and the establishment of preventive methods. © The Author(s) 2014.
Microarray Analysis of Differential Gene Expression Profile Between Human Fetal and Adult Heart.
Geng, Zhimin; Wang, Jue; Pan, Lulu; Li, Ming; Zhang, Jitai; Cai, Xueli; Chu, Maoping
2017-04-01
Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.
LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.
Zhang, Hui; Sweezey, Neil B; Kaplan, Feige
2015-02-15
Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development. Copyright © 2015 the American Physiological Society.
Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism
Molehin, Deborah
2016-01-01
Background. Thyroid hormones (THs) are essential for normal human fetal development and play a major role in the regulation of glucose and lipid metabolism. Delivery of TH to target tissues is dependent on processes including TH synthesis, transport, and metabolism. Thyroid hormone endocrine disruptors (TH-EDCs) are chemical substances that interfere with these processes, potentially leading to adverse pregnancy outcomes. Objectives. This review focuses on the effects of prenatal exposures to combinations of TH-EDCs on fetal and neonatal glucose and lipid metabolism and also discusses the various mechanisms by which TH-EDCs interfere with other hormonal pathways. Methods. We conducted a comprehensive narrative review on the effects of TH-EDCs with particular emphasis on exposure during pregnancy. Discussion. TH imbalance has been linked to many metabolic processes and the effects of TH imbalance are particularly pronounced in early fetal development due to fetal dependence on maternal TH for proper growth and development. The pervasive presence of EDCs in the environment results in ubiquitous exposure to either single or mixtures of EDCs with deleterious effects on metabolism. Conclusions. Further evaluation of combined effects of TH-EDCs on fetal metabolic endpoints could improve advice provided to expectant mothers. PMID:26989557
NASA Astrophysics Data System (ADS)
Habas, Piotr A.; Kim, Kio; Chandramohan, Dharshan; Rousseau, Francois; Glenn, Orit A.; Studholme, Colin
2009-02-01
Recent advances in MR and image analysis allow for reconstruction of high-resolution 3D images from clinical in utero scans of the human fetal brain. Automated segmentation of tissue types from MR images (MRI) is a key step in the quantitative analysis of brain development. Conventional atlas-based methods for adult brain segmentation are limited in their ability to accurately delineate complex structures of developing tissues from fetal MRI. In this paper, we formulate a novel geometric representation of the fetal brain aimed at capturing the laminar structure of developing anatomy. The proposed model uses a depth-based encoding of tissue occurrence within the fetal brain and provides an additional anatomical constraint in a form of a laminar prior that can be incorporated into conventional atlas-based EM segmentation. Validation experiments are performed using clinical in utero scans of 5 fetal subjects at gestational ages ranging from 20.5 to 22.5 weeks. Experimental results are evaluated against reference manual segmentations and quantified in terms of Dice similarity coefficient (DSC). The study demonstrates that the use of laminar depth-encoded tissue priors improves both the overall accuracy and precision of fetal brain segmentation. Particular refinement is observed in regions of the parietal and occipital lobes where the DSC index is improved from 0.81 to 0.82 for cortical grey matter, from 0.71 to 0.73 for the germinal matrix, and from 0.81 to 0.87 for white matter.
Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation.
Watanabe, Natsumi; Tanaka, Minoru; Suzuki, Kaori; Kumanogoh, Atsushi; Kikutani, Hitoshi; Miyajima, Atsushi
2007-05-01
Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.
MacLean, Glenn A.; Menne, Tobias F.; Guo, Guoji; Sanchez, Danielle J.; Park, In-Hyun; Daley, George Q.; Orkin, Stuart H.
2012-01-01
Trisomy 21 is associated with hematopoietic abnormalities in the fetal liver, a preleukemic condition termed transient myeloproliferative disorder, and increased incidence of acute megakaryoblastic leukemia. Human trisomy 21 pluripotent cells of various origins, human embryionic stem (hES), and induced pluripotent stem (iPS) cells, were differentiated in vitro as a model to recapitulate the effects of trisomy on hematopoiesis. To mitigate clonal variation, we isolated disomic and trisomic subclones from the same parental iPS line, thereby generating subclones isogenic except for chromosome 21. Under differentiation conditions favoring development of fetal liver-like, γ-globin expressing, definitive hematopoiesis, we found that trisomic cells of hES, iPS, or isogenic origins exhibited a two- to fivefold increase in a population of CD43+(Leukosialin)/CD235+(Glycophorin A) hematopoietic cells, accompanied by increased multilineage colony-forming potential in colony-forming assays. These findings establish an intrinsic disturbance of multilineage myeloid hematopoiesis in trisomy 21 at the fetal liver stage. PMID:23045682
Yan, Y B; Song, H; Zhong, B S; Wang, Z Y; Ying, S J; Wang, F
2010-09-01
Hepatocyte transplantation has been widely confirmed in the animal model experiments as an effective method for treatment of fulminant hepatic failure. However, the lack of donor organs remains a major problem. One solution is the development of transplantable hepatocytes. Herein we have transplanted intraperitoneally an established immortalized human fetal hepatic cell line (HL-7702) into CCl(4)-treated mice with acute liver injury to determine whether they provided life-saving metabolic support. The results showed lower levels of blood ammonia and higher content of liver albumin (P < .05) after HL-7702 transplantation versus nontransplanted controls at days 3 and 7. Histologic examination showed the transplantation group to be less affected at day 7 with no difference at day 14. In conclusion, an established immortal human fetal hepatic cell line may be a promising cell source providing life-saving metabolic support as a bioartificial liver device for the treatment of acute liver injury. 2010. Published by Elsevier Inc.
Prenatal Imaging: Ultrasonography and Magnetic Resonance Imaging
Reddy, Uma M.; Filly, Roy A.; Copel, Joshua A.
2009-01-01
The Eunice Kennedy Shriver National Institute of Child Health and Human Development held a workshop on September 18–19, 2006, to summarize the available evidence on the role and performance of current fetal imaging technology and to establish a research agenda. Ultrasonography is the imaging modality of choice for pregnancy evaluation due to its relatively low cost, real-time capability, safety, and operator comfort and experience. First-trimester ultrasonography extends the available window for fetal observation and raises the possibility of performing an early anatomic survey. Three-dimensional ultrasonography has the potential to expand the clinical application of ultrasonography by permitting local acquisition of volumes and remote review and interpretation at specialized centers. New advances allow performance of fetal magnetic resonance imaging (MRI) without maternal or fetal sedation, with improved characterization and prediction of prognosis of certain fetal central nervous system anomalies such as ventriculomegaly when compared with ultrasonography. Fewer data exist on the usefulness of fetal MRI for non–central nervous system anomalies. PMID:18591320
Uptake and release of amino acids in the fetal-placental unit in human pregnancies.
Holm, Maia Blomhoff; Bastani, Nasser Ezzatkhah; Holme, Ane Moe; Zucknick, Manuela; Jansson, Thomas; Refsum, Helga; Mørkrid, Lars; Blomhoff, Rune; Henriksen, Tore; Michelsen, Trond Melbye
2017-01-01
The current concepts of human fetal-placental amino acid exchange and metabolism are mainly based on animal-, in vitro- and ex vivo models. We aimed to determine and assess the paired relationships between concentrations and arteriovenous differences of 19 amino acids on the maternal and fetal sides of the human placenta in a large study sample. This cross-sectional in vivo study included 179 healthy women with uncomplicated term pregnancies. During planned cesarean section, we sampled blood from incoming and outgoing vessels on the maternal (radial artery and uterine vein) and fetal (umbilical vein and artery) sides of the placenta. Amino acid concentrations were measured by liquid chromatography-tandem mass spectrometry. We calculated paired arteriovenous differences and performed Wilcoxon signed-rank tests and Spearman's correlations. In the umbilical circulation, we observed a positive venoarterial difference (fetal uptake) for 14 amino acids and a negative venoarterial difference (fetal release) for glutamic acid (p<0.001). In the maternal circulation, we observed a positive arteriovenous difference (uteroplacental uptake) for leucine (p = 0.005), isoleucine (p = 0.01), glutamic acid (p<0.001) and arginine (p = 0.04) and a negative arteriovenous difference (uteroplacental release) for tyrosine (p = 0.002), glycine (p = 0.01) and glutamine (p = 0.02). The concentrations in the maternal artery and umbilical vein were correlated for all amino acids except tryptophan, but we observed no correlations between the uteroplacental uptake and the fetal uptake or the umbilical vein concentration. Two amino acids showed a correlation between the maternal artery concentration and the fetal uptake. Our human in vivo study expands the current insight into fetal-placental amino acid exchange, and discloses some differences from what has been previously described in animals. Our findings are consistent with the concept that the fetal supply of amino acids in the human is the result of a dynamic interplay between fetal and placental amino acid metabolism and interconversions.
Canine fetal heart rate: do accelerations or decelerations predict the parturition day in bitches?
Gil, E M U; Garcia, D A A; Giannico, A T; Froes, T R
2014-10-15
Ultrasonography is a safe and efficient technique for monitoring fetal development and viability. One of the most important and widely used parameters to verify fetal viability is the fetal heart rate (HR). In human medicine, the fetal HR normally oscillates during labor in transient accelerations and decelerations associated with uterine contractions. The present study investigated whether these variations also occur in canine fetuses and its relationship to parturition. A cohort study was conducted in 15 pregnant bitches undergoing two-dimensional high-resolution ultrasonographic examination during the 8th and 9th week of gestation. Fetal HR was assessed in M-mode for 5 minutes in each fetus in all bitches. In addition, the bitches were monitored for clinical signs of imminent parturition. Associations between the HR, antepartum time, and delivery characteristics were evaluated with a Poisson regression model. Fetal HR acceleration and deceleration occurred in canine fetuses and predicted the optimal time of parturition. These findings can help veterinarians and sonographers better understand this phenomenon in canine fetuses. Copyright © 2014 Elsevier Inc. All rights reserved.
You and Me and Human Sexuality: A Student Booklet Written for Deaf Adolescents.
ERIC Educational Resources Information Center
Texas School for the Deaf, Austin.
This student booklet, designed to teach deaf adolescents about human sexuality, is written for students with a second- to fourth-grade reading level. Topics include: (1) relationships; (2) adolescent growth and development; (3) female and male anatomy; (4) conception, fetal development, and birth; (5) contraception; and (6) sexual intercourse and…
We have got you 'covered': how the meninges control brain development.
Siegenthaler, Julie A; Pleasure, Samuel J
2011-06-01
The meninges have traditionally been viewed as specialized membranes surrounding and protecting the adult brain from injury. However, there is increasing evidence that the fetal meninges play important roles during brain development. Through the release of diffusible factors, the meninges influence the proliferative and migratory behaviors of neural progenitors and neurons in the forebrain and hindbrain. Meningeal cells also secrete and organize the pial basement membrane (BM), a critical anchor point for the radially oriented fibers of neuroepithelial stem cells. With its emerging role in brain development, the potential that defects in meningeal development may underlie certain congenital brain abnormalities in humans should be considered. In this review, we will discuss what is known about assembly of the fetal meninges and review the role of meningeal-derived proteins in mouse and human brain development. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dall'Aglio, Cecilia; Polisca, Angela; Cappai, Maria Grazia; Mercati, Francesca; Troisi, Alessandro; Pirino, Carolina; Scocco, Paola; Maranesi, Margherita
2017-03-07
At present, data on the endocannabinoid system expression and distribution in the pancreatic gland appear scarce and controversial as descriptions are limited to humans and laboratory animals. Since the bovine pancreas is very similar to the human in endocrine portion development and control, studies on the fetal gland could prove to be very interesting, as an abnormal maternal condition during late pregnancy may be a predisposing trigger for adult metabolic disorders. The present investigation studied cannabinoid receptor type 2 presence and distribution in the bovine fetal pancreas towards the end of gestation. Histological analyses revealed numerous endocrinal cell clusters or islets which were distributed among exocrine adenomeri in connectival tissue. Immunohistochemistry showed that endocrine-islets contained some CB2-positive cells with a very peculiar localization that is a few primarily localized at the edges of islets and some of them also scattered in the center of the cluster. Characteristically, also the epithelium of the excretory ducts and the smooth muscle layers of the smaller arteries, in the interlobular glandular septa, tested positive for the CB2 endocannabinoid receptor. Conse - quently, the endocannabinoid system, via the cannabinoid receptor type 2, was hypothesized to play a major role in controlling pancreas function from normal fetal development to correct metabolic functioning in adulthood.
Fowler, Paul A.; Dorà, Natalie J.; McFerran, Helen; Amezaga, Maria R.; Miller, David W.; Lea, Richard G.; Cash, Phillip; McNeilly, Alan S.; Evans, Neil P.; Cotinot, Corinne; Sharpe, Richard M.; Rhind, Stewart M.
2008-01-01
Epidemiological studies of the impact of environmental chemicals on reproductive health demonstrate consequences of exposure but establishing causative links requires animal models using ‘real life’ in utero exposures. We aimed to determine whether prolonged, low-dose, exposure of pregnant sheep to a mixture of environmental chemicals affects fetal ovarian development. Exposure of treated ewes (n = 7) to pollutants was maximized by surface application of processed sewage sludge to pasture. Control ewes (n = 10) were reared on pasture treated with inorganic fertilizer. Ovaries and blood were collected from fetuses (n = 15 control and n = 8 treated) on Day 110 of gestation for investigation of fetal endocrinology, ovarian follicle/oocyte numbers and ovarian proteome. Treated fetuses were 14% lighter than controls but fetal ovary weights were unchanged. Prolactin (48% lower) was the only measured hormone significantly affected by treatment. Treatment reduced numbers of growth differentiation factor (GDF9) and induced myeloid leukaemia cell differentiation protein (MCL1) positive oocytes by 25–26% and increased pro-apoptotic BAX by 65% and 42% of protein spots in the treated ovarian proteome were differently expressed compared with controls. Nineteen spots were identified and included proteins involved in gene expression/transcription, protein synthesis, phosphorylation and receptor activity. Fetal exposure to environmental chemicals, via the mother, significantly perturbs fetal ovarian development. If such effects are replicated in humans, premature menopause could be an outcome. PMID:18436539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amson, R.; Przedborski, S.; Telerman, A.
The authors measured the human pim-1 protooncogene (PIM) expression during fetal development and in hematopoietic malignancies. The data indicate that during human fetal hematopoiesis the 33-kDa pim product, p33pim, is highly expressed in the liver and the spleen. In contrast, a the adult stage it is only slightly expressed in circulating granulocytes. Out of 70 hematopoietic malignancies analyzed, 51 patients and 19 cell lines, p33pim was overexpressed in {approx} 30% of the samples, particularly in myeloid and lymphoid acute leukemias. This overexpression was unrelated to any stage of cellular differentiation and was not due to gene rearrangement or amplification. Thesemore » results imply a physiological role of the pim-1 protooncogene during hematopoietic development and a deregulation in various leukemias.« less
Gastrointestinal and pancreatic hormones in the human fetus and mother at 18-21 weeks of gestation.
Adrian, T E; Soltesz, G; MacKenzie, I Z; Bloom, S R; Aynsley-Green, A
1995-01-01
Several gastrointestinal hormones appear to play an important developmental role in the newborn, particularly in preterm neonates. Although the cells producing these peptides develop towards the end of the first trimester, fetal secretion of these regulatory peptides has not hitherto been demonstrated. Using samples collected by fetoscopy at 19-21 weeks of gestation we have measured concentrations of several gastrointestinal and pancreatic hormones. Maternal venous and amniotic fluid hormone concentrations were measured simultaneously. Concentrations of the pancreatic hormones, insulin, glucagon and pancreatic polypeptide (PP) were similar in fetal and maternal blood. Gastrin and motilin were present in the fetal circulation but at about 30% (p < 0.05) and 60% (p < 0.01) of the maternal levels, respectively. In contrast, enteroglucagon concentrations were more than twofold higher in the fetal circulation compared with maternal levels (p < 0.05). Concentrations of gastric inhibitory polypeptide (GIP) in fetal blood were higher than levels in maternal blood but not significantly. Concentrations of GIP (p < 0.001) were higher in the amniotic fluid than the fetal circulation. Gastrin and glucagon levels were similar in amniotic fluid and fetal blood. In contrast, PP and motilin were present in amniotic fluid, but at lower concentrations than in fetal blood. Enteroglucagon was not detectable in amniotic fluid. In conclusion, several alimentary hormones are secreted in the fetus at midterm. Since these peptides have trophic, secretory and motor effects on the gut, it is likely that these regulatory peptides are involved in the functional development of the fetal intestine.
Use of monoclonal antibodies in a study of the development of T lymphocytes in the human fetus.
Asma, G E; Van den Bergh, R L; Vossen, J M
1983-01-01
A panel of monoclonal antibodies (OKT3, 4, 6, 8, 10, 11) was used for the identification of T lymphocyte subpopulations in cell suspensions of human fetal liver, thymus, bone marrow and spleen. In liver suspensions of 8-16 week old fetuses and in bone marrow suspensions (12-20 weeks) less than 5% of lymphocytes reacted with either OKT3, 11, 4, 8 or 6, whereas the OKT10 antibody bound to, respectively, 35 and 86% of lymphocytes in these tissues. In liver suspensions of 17-20 week old fetuses, about 20% of lymphocytes carried either the T3, 11, 4 or 8 antigen and more than 60% of lymphocytes were OKT10+. The maturation stages in fetal thymus (11-20 weeks) are comparable to those in the post-natal thymus, with the exception that a substantial proportion of fetal thymocytes expresses the T3 and T6 antigen simultaneously. In the fetal spleen (12-20 weeks), 40% of lymphocytes reacts with OKT3. These OKT3+ spleen cells may be divided into two subsets expressing either the T4 antigen or the T8 antigen. These OKT3+/OKT4+ and OKT3+/OKT8+ lymphoid cells of the fetal spleen can be further subdivided into a T10+ and T10- subpopulation. These data suggest that T lymphoid precursor cells, reacting with either none of the monoclonal antibodies or only with OKT10, are generated in fetal liver (up till 16 weeks gestational age) and bone marrow. Further maturation takes place in the fetal thymus, but also to a certain extent in peripheral lymphoid organs such as the fetal spleen, as evidenced by the coexistence of a T3+/T10+ and T3+/T10- subpopulation in this organ. PMID:6349881
Soncini, Emanuele; Paganelli, Simone; Vezzani, Cristina; Gargano, Giancarlo; Giovanni Battista, La Sala
2014-09-01
To assess the ability of the intrapartum fetal heart rate interpretation system developed in 2008 by the National Institute of Child Health and Human Development (NICHD) to predict fetal metabolic acidosis at delivery and neonatal neurological morbidity. We analyzed the intrapartum fetal heart rate tracings of 314 singleton fetuses at ≥ 37 weeks using the NICHD three-tier system of interpretation: Category I (normal), Category II (indeterminate) and Category III (abnormal). Category II was further divided into Category IIA, with moderate fetal heart rate variability or accelerations, and Category IIB, with minimal/absent fetal heart rate variability and no accelerations. The presence and duration of the different patterns were compared with several clinical neonatal outcomes and with umbilical artery acid-base balance at birth. The mean values of pH and base excess decreased proportionally as tracings worsened (p < 0.001). The duration of at least 30 min for Category III tracings was highly predictive of a pH <7.00 and a base excess ≤-12 mmol/L. The same was true for the duration of Category IIB tracings that lasted for at least 50 min. Our study demonstrates that the interpretation of fetal heart rate tracings based on a strictly standardized system is closely associated with umbilical artery acid-base status at delivery.
Maloyan, Alina; Muralimanoharan, Sribalasubashini; Huffman, Steven; Cox, Laura A; Nathanielsz, Peter W; Myatt, Leslie; Nijland, Mark J
2013-10-01
Human and animal studies show that suboptimal intrauterine environments lead to fetal programming, predisposing offspring to disease in later life. Maternal obesity has been shown to program offspring for cardiovascular disease (CVD), diabetes, and obesity. MicroRNAs (miRNAs) are small, noncoding RNA molecules that act as key regulators of numerous cellular processes. Compelling evidence links miRNAs to the control of cardiac development and etiology of cardiac pathology; however, little is known about their role in the fetal cardiac response to maternal obesity. Our aim was to sequence and profile the cardiac miRNAs that are dysregulated in the hearts of baboon fetuses born to high fat/high fructose-diet (HFD) fed mothers for comparison with fetal hearts from mothers eating a regular diet. Eighty miRNAs were differentially expressed. Of those, 55 miRNAs were upregulated and 25 downregulated with HFD. Twenty-two miRNAs were mapped to human; 14 of these miRNAs were previously reported to be dysregulated in experimental or human CVD. We used an Ingenuity Pathway Analysis to integrate miRNA profiling and bioinformatics predictions to determine miRNA-regulated processes and genes potentially involved in fetal programming. We found a correlation between miRNA expression and putative gene targets involved in developmental disorders and CVD. Cellular death, growth, and proliferation were the most affected cellular functions in response to maternal obesity. Thus, the current study reveals significant alterations in cardiac miRNA expression in the fetus of obese baboons. The epigenetic modifications caused by adverse prenatal environment may represent one of the mechanisms underlying fetal programming of CVD.
Drake, Amanda J; O'Shaughnessy, Peter J; Bhattacharya, Siladitya; Monteiro, Ana; Kerrigan, David; Goetz, Sven; Raab, Andrea; Rhind, Stewart M; Sinclair, Kevin D; Meharg, Andrew A; Feldmann, Jörg; Fowler, Paul A
2015-01-29
Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown. In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses. In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1). Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism.
Maturation of the developing human fetal prostate in a rodent xenograft model
Saffarini, Camelia M.; McDonnell, Elizabeth V.; Amin, Ali; Spade, Daniel J.; Huse, Susan M.; Kostadinov, Stefan; Hall, Susan J.; Boekelheide, Kim
2015-01-01
Background Prostate cancer is the most commonly diagnosed non-skin cancer in men. The etiology of prostate cancer is unknown, although both animal and epidemiologic data suggest that early life exposures to various toxicants, may impact DNA methylation status during development, playing an important role. Methods We have developed a xenograft model to characterize the growth and differentiation of human fetal prostate implants (gestational age 12-24 weeks) that can provide new data on the potential role of early life stressors on prostate cancer. The expression of key immunohistochemical markers responsible for prostate maturation was evaluated, including p63, cytokeratin 18, α-smooth muscle actin, vimentin, caldesmon, Ki-67, prostate specific antigen, estrogen receptor-α, and androgen receptor. Xenografts were separated into epithelial and stromal compartments using laser capture microdissection (LCM), and the DNA methylation status was assessed in >480,000 CpG sites throughout the genome. Results Xenografts demonstrated growth and maturation throughout the 200 days of post-implantation evaluation. DNA methylation profiles of laser capture micro-dissected tissue demonstrated tissue-specific markers clustered by their location in either the epithelium or stroma of human prostate tissue. Differential methylated promoter region CpG-associated gene analysis revealed significantly more stromal than epithelial DNA methylation in the 30 and 90-day xenografts. Functional classification analysis identified CpG-related gene clusters in methylated epithelial and stromal human xenografts. Conclusion This study of human fetal prostate tissue establishes a xenograft model that demonstrates dynamic growth and maturation, allowing for future mechanistic studies of the developmental origins of later life proliferative prostate disease. PMID:24038131
Szabo, Linda; Morey, Robert; Palpant, Nathan J; Wang, Peter L; Afari, Nastaran; Jiang, Chuan; Parast, Mana M; Murry, Charles E; Laurent, Louise C; Salzman, Julia
2015-06-16
The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated will shed light on potential functional roles they may play. We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant. The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, these results suggest a potentially significant role for circular RNA in human development.
Orr, Brigid; Vanpoucke, Griet; Grace, O Cathal; Smith, Lee; Anderson, Richard A; Riddick, Antony CP; Franco, Omar E; Hayward, Simon W; Thomson, Axel A
2011-01-01
BACKGROUND Androgens and paracrine signaling from mesenchyme/stroma regulate development and disease of the prostate, and gene profiling studies of inductive prostate mesenchyme have identified candidate molecules such as pleiotrophin (Ptn). METHODS Ptn transcripts and protein were localized by in situ and immunohistochemistry and Ptn mRNA was quantitated by Northern blot and qRT-PCR. Ptn function was examined by addition of hPTN protein to rat ventral prostate organ cultures, primary human fetal prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. RESULTS During development, Ptn transcripts and protein were expressed in ventral mesenchymal pad (VMP) and prostatic mesenchyme. Ptn was localized to mesenchyme surrounding ductal epithelial tips undergoing branching morphogenesis, and was located on the surface of epithelia. hPTN protein stimulated branching morphogenesis and stromal and epithelial proliferation, when added to rat VP cultures, and also stimulated growth of fetal human prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. PTN mRNA was enriched in patient-matched normal prostate fibroblasts versus prostate cancer associated fibroblasts. PTN also showed male enriched expression in fetal human male urethra versus female, and between wt male and ARKO male mice. Transcripts for PTN were upregulated by testosterone in fetal human prostate fibroblasts and organ cultures of female rat VMP. Ptn protein was increased by testosterone in organ cultures of female rat VMP and in rat male urethra compared to female. CONCLUSIONS Our data suggest that in the prostate Ptn functions as a regulator of both mesenchymal and epithelial proliferation, and that androgens regulate Ptn levels. Prostate 71:305–317, 2011. © 2010 Wiley-Liss, Inc. PMID:20812209
Kohl, T; Müller, A; Tchatcheva, K; Achenbach, S; Gembruch, U
2005-12-01
Because of insufficient imaging by maternal transabdominal fetal echocardiography (TAE) in a human fetus with aortic atresia, imperforate atrial septum and progressive cardiac failure, we assessed the feasibility of fetal transesophageal echocardiography (TEE) as a monitoring tool during fetal cardiac intervention at 24 + 6 weeks of gestation. Percutaneous fetoscopic intraesophageal deployment of the ultrasound catheter was achieved and did not result in any maternal or fetal complications. Fetal TEE permitted substantially clearer definition of fetal cardiac anatomy and intracardiac device manipulations than conventional maternal TAE. Despite the employment of various devices, no sufficiently large opening could be achieved within the atrial septum. Although the fetus tolerated the procedure remarkably well and satisfactory fetoplacental flow could be documented at the end of the procedure, the fetus died from progressive cardiac failure 3 days after the intervention. Fetoscopic TEE is feasible in the human fetus and permits substantially clearer definition of fetal cardiac anatomy and intracardiac manipulations than conventional maternal TAE. Based on the observation of spontaneous closure of multiple iatrogenic perforations of the atrial septum, specialized devices are required in order to improve the technical success rate of septoplasty methods and hence the survival odds of these high-risk patients.
Morton, Russell A; Diaz, Marvin R; Topper, Lauren A; Valenzuela, C Fernando
2014-07-13
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Identification of CYP3A7 for Glyburide Metabolism in Human Fetal Livers
Shuster, Diana L.; Risler, Linda J.; Prasad, Bhagwat; Calamia, Justina C.; Voellinger, Jenna L.; Kelly, Edward J.; Unadkat, Jashvant D.; Hebert, Mary F.; Shen, Danny D.; Thummel, Kenneth E.; Mao, Qingcheng
2014-01-01
Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u = 37.1, 13.0, and 8.7 ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4′-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. PMID:25450675
Identification of CYP3A7 for glyburide metabolism in human fetal livers.
Shuster, Diana L; Risler, Linda J; Prasad, Bhagwat; Calamia, Justina C; Voellinger, Jenna L; Kelly, Edward J; Unadkat, Jashvant D; Hebert, Mary F; Shen, Danny D; Thummel, Kenneth E; Mao, Qingcheng
2014-12-15
Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u=37.1, 13.0, and 8.7ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4'-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. Copyright © 2014 Elsevier Inc. All rights reserved.
Hirata, Go; Aoki, Shigeru; Sakamaki, Kentaro; Takahashi, Tsuneo; Hirahara, Fumiki; Ishikawa, Hiroshi
2016-01-01
To investigate clinical features of mirror syndrome. We retrospectively reviewed 71 cases of fetal hydrops with or without mirror syndrome, and compared with respect to maternal age, the body mass index, the primipara rate, the gestational age at delivery, the timing of fetal hydrops onset, the severity of fetal edema, placental swelling, the laboratory data and the fetal mortality. The data are expressed as the medians. Mirror syndrome developed in 29% (10/35) of the cases with fetal hydrops. In mirror group, the onset time of fetal hydrops was significantly earlier (29 weeks versus 31 weeks, p = 0.011), and the severity of fetal hydrops (fetal edema/biparietal diameter) was significantly higher than non-mirror group (0.23 versus 0.16, p < 0.001). There was significantly higher serum human chorionic gonadotropin (hCG) (453,000 IU/L versus 80,000 IU/L, p < 0.001) and lower hemoglobin (8.9 g/dL versus 10.1 g/dL, p =0.002), hypoalbuminemia (2.3 mg/dL versus 2.7 mg/dL, p = 0.007), hyperuricemia (6.4 mg/dL versus 5.0 mg/dL, p = 0.043) in mirror group. Mirror syndrome is occurred frequently in early and severe fetal hydrops and cause hemodilution and elevation of serum hCG.
Maternal obesity and neurodevelopmental and psychiatric disorders in offspring
Edlow, Andrea G.
2017-01-01
There is a growing body of evidence from both human epidemiologic and animal studies that prenatal and lactational exposure to maternal obesity and high-fat diet are associated with neurodevelopmental and psychiatric disorders in offspring. These disorders include cognitive impairment, autism spectrum disorders, attention deficit hyperactivity disorder, cerebral palsy, anxiety and depression, schizophrenia, and eating disorders. This review synthesizes human and animal data linking maternal obesity and high-fat diet consumption to abnormal fetal brain development and neurodevelopmental and psychiatric morbidity in offspring. In addition, it highlights key mechanisms by which maternal obesity and maternal diet might impact fetal and offspring neurodevelopment, including neuroinflammation; increased oxidative stress, dysregulated insulin, glucose, and leptin signaling; dysregulated serotonergic and dopaminergic signaling; and perturbations in synaptic plasticity. Finally, the review summarizes available evidence regarding investigational therapeutic approaches to mitigate the harmful effects of maternal obesity on fetal and offspring neurodevelopment. PMID:27684946
The influence of maternal smoking on transferrin sialylation and fetal biometric parameters.
Wrześniak, Marta; Królik, Małgorzata; Kepinska, Marta; Milnerowicz, Halina
2016-10-01
Transferrin is a glycosylated protein responsible for transporting iron, an essential metal responsible for proper fetal development. Tobacco is a heavily used xenobiotic having a negative impact on the human body and pregnancy outcomes. Aims of this study was to examine the influence of tobacco smoking on transferrin sialic acid residues and their connection with fetal biometric parameters in women with iron-deficiency. The study involved 173 samples from pregnant women, smokers and non-smokers, iron deficient and not. Transferrin sialylation was determined by capillary electrophoresis. The cadmium (Cd) level was measured by atomic absorption and the sialic acid concentration by the resorcinol method. Women with iron deficiencies who smoked gave birth earlier than non-smoking, non-iron-deficient women. The Cd level, but not the cotinine level, was positively correlated with transferrin sialylation in the blood of iron-deficient women who smoked; 3-, 4-, 5- and 6-sialoTf correlated negatively with fetal biometric parameters in the same group. It has been shown the relationship between Cd from tobacco smoking and fetal biometric parameters observed only in the iron deficient group suggests an additive effect of these two factors, and indicate that mothers with anemia may be more susceptible to Cd toxicity and disturbed fetal development. Copyright © 2016 Elsevier B.V. All rights reserved.
Tumor-homing peptides as tools for targeted delivery of payloads to the placenta
King, Anna; Ndifon, Cornelia; Lui, Sylvia; Widdows, Kate; Kotamraju, Venkata R.; Agemy, Lilach; Teesalu, Tambet; Glazier, Jocelyn D.; Cellesi, Francesco; Tirelli, Nicola; Aplin, John D.; Ruoslahti, Erkki; Harris, Lynda K.
2016-01-01
The availability of therapeutics to treat pregnancy complications is severely lacking mainly because of the risk of causing harm to the fetus. As enhancement of placental growth and function can alleviate maternal symptoms and improve fetal growth in animal models, we have developed a method for targeted delivery of payloads to the placenta. We show that the tumor-homing peptide sequences CGKRK and iRGD bind selectively to the placental surface of humans and mice and do not interfere with normal development. Peptide-coated nanoparticles intravenously injected into pregnant mice accumulated within the mouse placenta, whereas control nanoparticles exhibited reduced binding and/or fetal transfer. We used targeted liposomes to efficiently deliver cargoes of carboxyfluorescein and insulin-like growth factor 2 to the mouse placenta; the latter significantly increased mean placental weight when administered to healthy animals and significantly improved fetal weight distribution in a well-characterized model of fetal growth restriction. These data provide proof of principle for targeted delivery of drugs to the placenta and provide a novel platform for the development of placenta-specific therapeutics. PMID:27386551
Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques
Simmons, Heather A.; Salamat, M. Shahriar; Thoong, Troy H.; Weiler, Andrea M.; Barry, Gabrielle L.; Weisgrau, Kim L.; Vosler, Logan J.; Mohns, Mariel S.; Breitbach, Meghan E.; Stewart, Laurel M.; Newman, Christina M.; Graham, Michael E.; Turski, Patrick A.; Post, Jennifer; Hayes, Jennifer M.; Schotzko, Michele L.; Permar, Sallie R.; Rakasz, Eva G.; Capuano, Saverio; Tarantal, Alice F.; Osorio, Jorge E.; O’Connor, Shelby L.
2017-01-01
Infection with Zika virus (ZIKV) is associated with human congenital fetal anomalies. To model fetal outcomes in nonhuman primates, we administered Asian-lineage ZIKV subcutaneously to four pregnant rhesus macaques. While non-pregnant animals in a previous study contemporary with the current report clear viremia within 10–12 days, maternal viremia was prolonged in 3 of 4 pregnancies. Fetal head growth velocity in the last month of gestation determined by ultrasound assessment of head circumference was decreased in comparison with biparietal diameter and femur length within each fetus, both within normal range. ZIKV RNA was detected in tissues from all four fetuses at term cesarean section. In all pregnancies, neutrophilic infiltration was present at the maternal-fetal interface (decidua, placenta, fetal membranes), in various fetal tissues, and in fetal retina, choroid, and optic nerve (first trimester infection only). Consistent vertical transmission in this primate model may provide a platform to assess risk factors and test therapeutic interventions for interruption of fetal infection. The results may also suggest that maternal-fetal ZIKV transmission in human pregnancy may be more frequent than currently appreciated. PMID:28542585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.
2006-06-10
RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPAR{gamma}) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPAR{gamma}-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negativemore » siRNA). The inhibitory effect of PPAR{gamma}-siRNA was supported by testing human PPAR{gamma} mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP{sub 3}) expression, an adipocyte-specific marker. The current studies indicate that PPAR{gamma}-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells.« less
Ouyang, Austin; Jeon, Tina; Sunkin, Susan M.; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S.; Huang, Hao
2014-01-01
During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain. PMID:25448302
Fetal programming by maternal stress: Insights from a conflict perspective.
Del Giudice, Marco
2012-10-01
Maternal stress during pregnancy has pervasive effects on the offspring's physiology and behavior, including the development of anxious, reactive temperament and increased stress responsivity. These outcomes can be seen as the result of adaptive developmental plasticity: maternal stress hormones carry useful information about the state of the external world, which can be used by the developing fetus to match its phenotype to the predicted environment. This account, however, neglects the inherent conflict of interest between mother and fetus about the outcomes of fetal programming. The aim of this paper is to extend the adaptive model of prenatal stress by framing mother-fetus interactions in an evolutionary conflict perspective. In the paper, I show how a conflict perspective provides many new insights in the functions and mechanisms of fetal programming, with particular emphasis on human pregnancy. I then take advantage of those insights to make sense of some puzzling features of maternal and fetal physiology and generate novel empirical predictions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jennings, Rachel E; Berry, Andrew A; Strutt, James P; Gerrard, David T; Hanley, Neil A
2015-09-15
A wealth of data and comprehensive reviews exist on pancreas development in mammals, primarily mice, and other vertebrates. By contrast, human pancreatic development has been less comprehensively reviewed. Here, we draw together those studies conducted directly in human embryonic and fetal tissue to provide an overview of what is known about human pancreatic development. We discuss the relevance of this work to manufacturing insulin-secreting β-cells from pluripotent stem cells and to different aspects of diabetes, especially permanent neonatal diabetes, and its underlying causes. © 2015. Published by The Company of Biologists Ltd.
Tilburgs, T; Claas, F H J; Scherjon, S A
2010-03-01
Maternal lymphocytes at the fetal-maternal interface play a key role in the immune acceptance of the allogeneic fetus. Most studies focus on decidual NK cells and their interaction with fetal trophoblasts, whereas limited data are available on the mechanisms of fetus specific immune recognition and immune regulation by decidual T cells at the fetal-maternal interface. The aim of this review is to describe the phenotypic characteristics of decidual T cell subsets present at the fetal-maternal interface, their interaction with HLA-C expressed by fetal trophoblasts and their role in immune recognition and regulation at the fetal-maternal interface during human pregnancy. Copyright 2010 Elsevier Ltd. All rights reserved.
Embryologic and Fetal Development of the Human Eyelid
Abdulhafez, Mohamed H.; Fouad, Yousef A.; Dutton, Jonathan J.
2016-01-01
Purpose: To review the recent data about eyelid morphogenesis, and outline a timeline for eyelid development from the very early stages during embryonic life till final maturation of the eyelid late in fetal life. Methods: The authors extensively review major studies detailing human embryologic and fetal eyelid morphogenesis. These studies span almost a century and include some more recent cadaver studies. Numerous studies in the murine model have helped to better understand the molecular signals that govern eyelid embryogenesis. The authors summarize the current findings in molecular biology, and highlight the most significant studies in mice regarding the multiple and interacting signaling pathways involved in regulating normal eyelid morphogenesis. Results: Eyelid morphogenesis involves a succession of subtle yet strictly regulated morphogenetic episodes of tissue folding, proliferation, contraction, and even migration, which may occur simultaneously or in succession. Conclusions: Understanding the extraordinary process of building eyelid tissue in embryonic life, and deciphering its underlying signaling machinery has far reaching clinical implications beyond understanding the developmental abnormalities involving the eyelids, and may pave the way for achieving scar-reducing therapies in adult mammalian wounds, or control the spread of malignancies. PMID:27124372
Myocardial bridges of the coronary arteries in the human fetal heart.
Cakmak, Yusuf Ozgür; Cavdar, Safiye; Yalin, Aymelek; Yener, Nuran; Ozdogmus, Omer
2010-09-01
During the last century, many investigators reported on myocardial bridges in the adult human heart. In the present study, 39 human fetal hearts (the mean gestastional age was 30 weeks) were studied for myocardial bridging, and the results were correlated with adult data. Among the 39 (27 male and 12 female) fetal hearts studied, 26 bridges were observed on 18 fetal hearts (46.2%). Ten of the bridges had one myocardial bridge, whereas double myocardial bridges were observed in eight fetal hearts. The most frequent myocardial bridges were observed on the left anterior descending artery (LAD), which had 13 bridges (50%). Eight (30.7%) myocardial bridges were on the diagonal artery, and on the posterior descending artery there were five (19.3%). Myocardial bridges were not observed on the circumflex artery. The data presented in this study may provide potentially useful information for the preoperative evaluation of the newborn and may have a clinical implication for sudden fetal death.
Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.
Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J
2016-08-01
Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Bloise, Enrrico; Feuer, Sky K.; Rinaudo, Paolo F.
2014-01-01
BACKGROUND The number of children conceived using assisted reproductive technologies (ART) has reached >5 million worldwide and continues to increase. Although the great majority of ART children are healthy, many reports suggest a forthcoming risk of metabolic complications, which is further supported by the Developmental Origins of Health and Disease hypothesis of suboptimal embryo/fetal conditions predisposing adult cardiometabolic pathologies. Accumulating evidence suggests that fetal and placental growth kinetics are important features predicting post-natal health, but the relationship between ART and intrauterine growth has not been systematically reviewed. METHODS Relevant studies describing fetoplacental intrauterine phenotypes of concepti generated by in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI) and somatic cell nuclear transfer (SCNT) in the mouse, bovine and human were comprehensively researched using PubMed and Google Scholar. Intrauterine growth plots were created from tabular formatted data available in selected reports. RESULTS ART pregnancies display minor but noticeable alterations in fetal and placental growth curves across mammalian species. In all species, there is evidence of fetal growth restriction in the earlier stages of pregnancy, followed by significant increases in placental size and accelerated fetal growth toward the end of gestation. However, there is a species-specific effect of ART on birthweights, that additionally vary in a culture condition-, strain-, and/or stage at transfer-specific manner. We discuss the potential mechanisms that underlie these changes, and how they are affected by specific components of ART procedures. CONCLUSIONS ART may promote measurable alterations to intrauterine growth trajectory and placental function. Key findings include evidence that birthweight is not a reliable marker of fetal stress, and that increases in embryo manipulation result in more deviant fetal growth curves. Because growth kinetics in early life are particularly relevant to adult metabolic physiology, we advise more rigorous assessment of fetal growth and placental function in human ART pregnancies, as well as continued follow-up of ART offspring throughout post-natal life. Finally, strategies to minimize embryo manipulations should be adopted whenever possible. PMID:24947475
Zhang, Yanli; Wu, Junrong; Feng, Xiaoli; Wang, Ruolan; Chen, Aijie; Shao, Longquan
2017-12-01
With the broad use of nanotechnology, the number and variety of nanoparticles that humans can be exposed to has further increased. Consequently, there is growing concern about the potential effect of maternal exposure to various nanoparticles during pregnancy on a fetus. However, the nature of this risk is not fully known. Areas covered: In this review, materno-fetal transfer of nanoparticles through the placenta is described. Both prenatal and postnatal adverse effects, such as fetal resorption, malformation and injury to various organs in mice exposed to nanoparticles are reviewed. The potential mechanisms of toxicity are also discussed. Expert opinion: The toxicology and safe application of recently developed nanoparticles has attracted much attention in the past few years. Although many studies have demonstrated the toxicology of nanoparticles in various species, only a small number of studies have examined the effect on a fetus after maternal exposure to nanoparticles. This is particularly important, because the developing fetus is especially vulnerable to the toxic effects of nanoparticles during fetal development due to the unique physical stage of the fetus. Nanoparticles may directly or indirectly impair fetal development and growth after maternal exposure to nanoparticles.
[The role of oxidative stress in placental-related diseases of pregnancy].
Jauniaux, E; Burton, G J
2016-10-01
In normal pregnancies, the earliest stages of development take place in a low oxygen (O 2 ) environment. This physiological hypoxia of the early gestational sac protects the developing fetus against the deleterious and teratogenic effects of O 2 free radicals. Oxidative stress is manifested at the maternal-fetal interface from early pregnancy onwards. In early pregnancy, a well-controlled oxidative stress plays a role in modulating placental development, functions and remodelling. Focal trophoblastic oxidative damage and progressive villous degeneration trigger the formation of the fetal membranes, which is an essential developmental step enabling vaginal delivery. Our data have demonstrated that the first trimester placenta in humans is histiotrophic and not haemochorial. The development and maintenance of a physiological O 2 gradient between the uterine and fetal circulations is also essential for placental functions, such as transport and hormonal synthesis. Pathological oxidative stress arises when the production of reactive O 2 species overwhelms the intrinsic anti-oxidant defences causing indiscriminate damage to biological molecules, leading to loss of function and cell death. We here review the role of oxidative stress in the pathophysiology of miscarriage, pre-eclampsia and fetal growth restriction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Emerick, Mark C; Stein, Rebecca; Kunze, Robin; McNulty, Megan M; Regan, Melissa R; Hanck, Dorothy A; Agnew, William S
2006-08-01
We describe the regulated transcriptome of CACNA1G, a human gene for T-type Ca(v)3.1 calcium channels that is subject to extensive alternative RNA splicing. Fifteen sites of transcript variation include 2 alternative 5'-UTR promoter sites, 2 alternative 3'-UTR polyadenylation sites, and 11 sites of alternative splicing within the open reading frame. A survey of 1580 fetal and adult human brain full-length complementary DNAs reveals a family of 30 distinct transcripts, including multiple functional forms that vary in expression with development. Statistical analyses of fetal and adult transcript populations reveal patterns of linkages among intramolecular splice site configurations that change dramatically with development. A shift from nearly independent, biased splicing in fetal transcripts to strongly concerted splicing in adult transcripts suggests progressive activation of multiple "programs" of splicing regulation that reorganize molecular structures in differentiating cells. Patch-clamp studies of nine selected variants help relate splicing regulation to permutations of the gating parameters most likely to modify T-channel physiology in expressing neurons. Gating behavior reflects combinatorial interactions between variable domains so that molecular phenotype depends on ensembles of coselected domains, consistent with the observed emergence of concerted splicing during development. We conclude that the structural gene and networks of splicing regulatory factors define an integrated system for the phenotypic variation of Ca(v)3.1 biophysics during nervous system development. Copyright 2006 Wiley-Liss, Inc.
Fetal DNA does not induce preeclampsia-like symptoms when delivered in late pregnancy in the mouse.
Čonka, Jozef; Konečná, Barbora; Lauková, Lucia; Vlková, Barbora; Celec, Peter
2017-04-01
The etiology of preeclampsia is unclear. Fetal DNA is present in higher concentrations in the plasma of pregnant women suffering from preeclampsia than in the plasma of healthy pregnant women. A previously published study has shown that human fetal DNA injected into pregnant mice induces preeclampsia-like symptoms when administered between gestation days 10-14. The aim of our experiment was to determine whether or not similar effects would be induced by administration of human and mouse fetal DNA, as well as mouse adult DNA and lipopolysaccharide during late pregnancy in the mouse. Experimental animals were injected daily intraperitoneally during gestation days 14-18 with either saline - negative control, lipopolysaccharide - positive control, or various types of DNA. On gestation day 19, blood pressure and proteinuria were measured, and placental and fetal weights were recorded. Fetal and placental hypotrophy were induced only by lipopolysaccharide (p < 0.001). Neither fetal nor adult DNA induced changes in fetal/placental weight. None of the experimental groups had higher blood pressure or urinary protein in comparison to saline treated animals. In our experiment, we found that there was no effect from intraperitoneally injected human fetal DNA, mouse fetal DNA, or mouse adult DNA on pregnant mice. Additionally, relatively high doses of various types of DNA did not induce preeclampsia-like symptoms in mice when administered in late pregnancy. Our negative results support the hypothesis that the increase of fetal DNA circulating in maternal circulation during the third trimester is rather a consequence than a cause of preeclampsia. Copyright © 2017 Elsevier Ltd. All rights reserved.
EFFECTS OF ENVIRONMENTAL ANTIANDROGENS ON REPRODUCTIVE DEVELOPMENT IN EXPERIMENTAL ANIMALS
In mammals, the androgens testosterone (T) and dihydrotestosterone (DHT) are critical for normal male reproductive development and function. In humans, drugs that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can cause pseudohermaphrodi...
Structural development of human brain white matter from mid-fetal to perinatal stage
NASA Astrophysics Data System (ADS)
Ouyang, Austin; Yu, Qiaowen; Mishra, Virendra; Chalak, Lina; Jeon, Tina; Sivarajan, Muraleedharan; Jackson, Greg; Rollins, Nancy; Liu, Shuwei; Huang, Hao
2015-03-01
The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF). In this study, high resolution DTI of fetal brains at mid-fetal stage (20 weeks of gestation or 20wg), 19 brains in the middle of 3rd trimester (35wg) and 17 brains around term (40wg) were acquired. We established first population-averaged DTI templates at these three time points and extracted WM skeleton. 16 major WM tracts in limbic, projection, commissural and association tract groups were traced with DTI tractography in native space. The WM skeleton in the template space was inversely transformed back to the native space for measuring core WM microstructures of each individual tract. Continuous microstructural enhancement and volumetric increase of WM tracts were found from 20wg to 40wg. The microstructural enhancement from FA measurement is decelerated in late 3rd trimester compared to mid-fetal to middle 3rd trimester, while volumetric increase of prefrontal WM tracts is accelerated. The microstructural enhancement from 35wg to 40wg is heterogeneous among different tract groups with microstructures of association tracts undergoing most dramatic change. Besides decreases of RD indicating active myelination, the decrease of AD for most WM tracts during late 3rd trimester suggests axonal packing process.
Wang, Xiaogang; Durosier, L Daniel; Ross, Michael G; Richardson, Bryan S; Frasch, Martin G
2014-01-01
Severe fetal acidemia during labour can result in life-lasting neurological deficits, but the timely detection of this condition is often not possible. This is because the positive predictive value (PPV) of fetal heart rate (FHR) monitoring, the mainstay of fetal health surveillance during labour, to detect concerning fetal acidemia is around 50%. In fetal sheep model of human labour, we reported that severe fetal acidemia (pH<7.00) during repetitive umbilical cord occlusions (UCOs) is preceded ∼60 minutes by the synchronization of electroencephalogram (EEG) and FHR. However, EEG and FHR are cyclic and noisy, and although the synchronization might be visually evident, it is challenging to detect automatically, a necessary condition for bedside utility. Here we present and validate a novel non-parametric statistical method to detect fetal acidemia during labour by using EEG and FHR. The underlying algorithm handles non-stationary and noisy data by recording number of abnormal episodes in both EEG and FHR. A logistic regression is then deployed to test whether these episodes are significantly related to each other. We then apply the method in a prospective study of human labour using fetal sheep model (n = 20). Our results render a PPV of 68% for detecting impending severe fetal acidemia ∼60 min prior to pH drop to less than 7.00 with 100% negative predictive value. We conclude that this method has a great potential to improve PPV for detection of fetal acidemia when it is implemented at the bedside. We outline directions for further refinement of the algorithm that will be achieved by analyzing larger data sets acquired in prospective human pilot studies.
Sardesai, Varda S.; Shafiee, Abbas; Fisk, Nicholas M.
2017-01-01
Abstract Human placenta is rich in mesenchymal stem/stromal cells (MSC), with their origin widely presumed fetal. Cultured placental MSCs are confounded by a high frequency of maternal cell contamination. Our recent systematic review concluded that only a small minority of placental MSC publications report fetal/maternal origin, and failed to discern a specific methodology for isolation of fetal MSC from term villi. We determined isolation conditions to yield fetal and separately maternal MSC during ex vivo expansion from human term placenta. MSCs were isolated via a range of methods in combination; selection from various chorionic regions, different commercial media, mononuclear cell digest and/or explant culture. Fetal and maternal cell identities were quantitated in gender‐discordant pregnancies by XY chromosome fluorescence in situ hybridization. We first demonstrated reproducible maternal cell contamination in MSC cultures from all chorionic anatomical locations tested. Cultures in standard media rapidly became composed entirely of maternal cells despite isolation from fetal villi. To isolate pure fetal cells, we validated a novel isolation procedure comprising focal dissection from the cotyledonary core, collagenase/dispase digestion and explant culture in endothelial growth media that selected, and provided a proliferative environment, for fetal MSC. Comparison of MSC populations within the same placenta confirmed fetal to be smaller, more osteogenic and proliferative than maternal MSC. We conclude that in standard media, fetal chorionic villi‐derived MSC (CV‐MSC) do not grow readily, whereas maternal MSC proliferate to result in maternal overgrowth during culture. Instead, fetal CV‐MSCs require isolation under specific conditions, which has implications for clinical trials using placental MSC. Stem Cells Translational Medicine 2017;6:1070–1084 PMID:28205414
Animal models for clinical and gestational diabetes: maternal and fetal outcomes
Kiss, Ana CI; Lima, Paula HO; Sinzato, Yuri K; Takaku, Mariana; Takeno, Marisa A; Rudge, Marilza VC; Damasceno, Débora C
2009-01-01
Background Diabetes in pregnant women is associated with an increased risk of maternal and neonatal morbidity and remains a significant medical challenge. Diabetes during pregnancy may be divided into clinical diabetes and gestational diabetes. Experimental models are developed with the purpose of enhancing understanding of the pathophysiological mechanisms of diseases that affect humans. With regard to diabetes in pregnancy, experimental findings from models will lead to the development of treatment strategies to maintain a normal metabolic intrauterine milieu, improving perinatal development by preventing fetal growth restriction or macrosomia. Based on animal models of diabetes during pregnancy previously reported in the medical literature, the present study aimed to compare the impact of streptozotocin-induced severe (glycemia >300 mg/dl) and mild diabetes (glycemia between 120 and 300 mg/dl) on glycemia and maternal reproductive and fetal outcomes of Wistar rats to evaluate whether the animal model reproduces the maternal and perinatal results of clinical and gestational diabetes in humans. Methods On day 5 of life, 96 female Wistar rats were assigned to three experimental groups: control (n = 16), severe (n = 50) and mild diabetes (n = 30). At day 90 of life, rats were mated. On day 21 of pregnancy, rats were killed and their uterine horns were exposed to count implantation and fetus numbers to determine pre- and post-implantation loss rates. The fetuses were classified according to their birth weight. Results Severe and mild diabetic dams showed different glycemic responses during pregnancy, impairing fetal glycemia and weight, confirming that maternal glycemia is directly associated with fetal development. Newborns from severe diabetic mothers presented growth restriction, but mild diabetic mothers were not associated with an increased rate of macrosomic fetuses. Conclusion Experimental models of severe diabetes during pregnancy reproduced maternal and fetal outcomes of pregnant women presenting uncontrolled clinical diabetes. On the other hand, the mild diabetes model caused mild hyperglycemia during pregnancy, although it was not enough to reproduce the increased rate of macrosomic fetuses seen in women with gestational diabetes. PMID:19840387
Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Gulati, Twishi; Fang, Zhimin; Pathmanandavel, Sarennya; Diwan, Ashish D
2016-02-01
During embryogenesis vertebral segmentation is initiated by sclerotomal cell migration and condensation around the notochord, forming anlagen of vertebral bodies and intervertebral discs. The factors that govern the segmentation are not clear. Previous research demonstrated that mutations in growth differentiation factor 6 resulted in congenital vertebral fusion, suggesting this factor plays a role in development of vertebral column. In this study, we detected expression and localization of growth differentiation factor 6 in human fetal spinal column, especially in the period of early ossification of vertebrae and the developing intervertebral discs. The extracellular matrix proteins were also examined. Results showed that high levels of growth differentiation factor 6 were expressed in the nucleus pulposus of intervertebral discs and the hypertrophic chondrocytes adjacent to the ossification centre in vertebral bodies, where strong expression of proteoglycan and collagens was also detected. As fetal age increased, the expression of growth differentiation factor 6 was decreased correspondingly with the progress of ossification in vertebral bodies and restricted to cartilaginous regions. This expression pattern and the genetic link to vertebral fusion suggest that growth differentiation factor 6 may play an important role in suppression of ossification to ensure proper vertebral segmentation during spinal development. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Progesterone regulation of primordial follicle assembly in bovine fetal ovaries.
Nilsson, Eric E; Skinner, Michael K
2009-12-10
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice.
Progesterone Regulation of Primordial Follicle Assembly In Bovine Fetal Ovaries
Nilsson, Eric E.; Skinner, Michael K.
2009-01-01
Fertility in mammals is dependant on females having an adequate primordial follicle pool to supply oocytes for fertilization. The formation of primordial follicles is called ovarian follicular assembly. In rats and mice progesterone and estradiol have been shown to inhibit follicle assembly with assembly occurring after birth when the pups are removed from the high-steroid maternal environment. In contrast, primordial follicle assembly in other species, such as cattle and humans, occurs during fetal development before birth. The objective of the current study is to determine if progesterone levels regulate primordial follicle assembly in fetal bovine ovaries. Ovaries and blood were collected from bovine fetuses. Interestingly, ovarian progesterone and estradiol concentrations were found to decrease with increasing fetal age and correlated to increased primordial follicle assembly. Microarray analysis of fetal ovary RNA suggests that progesterone membrane receptor and estrogen nuclear receptor are expressed. Treatment of fetal bovine ovary cultures with a higher progesterone concentration significantly decreased primordial follicle assembly. Observations indicate that progesterone affects ovarian primordial follicle assembly in cattle, as it does in rats and mice. PMID:19747959
Cousins, Roderick; Wood, Charles E.
2010-01-01
Development and maturation of the fetal brain is critical for homeostasis in utero, responsiveness to fetal stress and, in ruminants, control of the timing of birth. In the sheep, as in the human, the placenta secretes estrogen and other signaling molecules into both the fetal and maternal blood, molecules whose entry or exit across the blood-brain barrier is likely to be facilitated by transporters. The purpose of this study was to test the hypothesis that the ovine fetal brain expresses organic anion transporters, and that the expression of these transporters varies as a function of brain region and fetal gestational age. Brains and pituitaries were collected at the time of sacrifice from fetal and newborn sheep at 80, 100, 120, 130, 145 days gestation and on the first day of postnatal life (parturition in sheep is at approximately 147 days gestation). Hypothalamus, medullary brainstem, cerebellum, and pituitary were processed for mRNA extraction and synthesis of cDNA (4–5/group). Real-time PCR analysis of OAT1 and OAT3 expression revealed significant expression of both genes in all of the tissues tested. In hypothalamus and cerebellum, there were statistically significant increases in the expression of one or both genes towards the end of gestation. In medullary brainstem and pituitary, the levels of expression were relatively unchanged as there were no statistically significant changes with developmental age. We conclude that the ovine fetal brain expresses both OAT1 and OAT3, that the pattern of expression suggests an increasing role for these transporters in the physiology of the developing fetal brain as the fetus nears the time of spontaneous parturition. PMID:20708067
Ji, Yamei; Yang, Xin; Su, Huixia
2018-02-01
The abnormal proliferation and migration of airway smooth muscle (ASM) cells play a critical role in airway remodeling during the development of asthma. MicroRNAs (miRNAs) have emerged as critical regulators of ASM cell proliferation and migration in airway remodeling. In this study, we aimed to investigate the potential role of miR-375 in the regulation of platelet-derived growth factor (PDGF)-induced fetal ASM cell proliferation and migration. Our results showed that miR-375 expression was significantly decreased in fetal ASM cells that were treated with PDGF. Functional data showed that overexpression of miR-375 inhibited the proliferation and migration of fetal ASM cells, whereas inhibition of miR-375 enhanced the proliferation and migration of fetal ASM cells. The results of bioinformatics analysis and a dual-luciferase reporter assay showed that miR-375 binds directly to the 3'-untranslated region of Janus kinase 2 (JAK2). Further data confirmed that miR-375 negatively regulates the expression of JAK2 in fetal ASM cells. Moreover, miR-375 also impeded the PDGF-induced activation of signal transducer and activator of transcription 3 (STAT3) in fetal ASM cells. However, restoration of JAK2 expression partially reversed the inhibitory effect of miR-375 on fetal ASM cell proliferation and migration. Overall, our results demonstrate that miR-375 inhibits fetal ASM cell proliferation and migration by targeting JAK2/STAT3 signaling. Our study provides a potential therapeutic target for the development of novel treatment strategies for pediatric asthma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
2015-01-01
Study Overview The incidence of adverse pregnancy outcomes is higher in pregnancies where the fetus is male. Sex specific differences in feto-placental perfusion indices identified by Doppler assessment have recently been associated with placental insufficiency and fetal growth restriction. This study aims to investigate sex specific differences in placental perfusion and to correlate these changes with fetal growth. It represents the largest comprehensive study under field conditions of uterine hemodynamics in a monotocous species, with a similar long gestation period to the human. Primiparous 14mo heifers in Australia (n=360) and UK (n=180) were either individually or group fed, respectively, diets with differing protein content (18, 14, 10 or 7% crude protein (CP)) from 60d prior to 98 days post conception (dpc). Fetuses and placentae were excised at 98dpc (n = 48). Fetal development an median uterine artery blood flow were assessed monthly from 36dpc until term using B-mode and Doppler ultrasonography. MUA blood flow to the male feto-placental unit increased in early pregnancy associated with increased fetal growth. Protein restriction before and shortly after conception (-60d up to 23dpc) increased MUA diameter and indices of velocity during late pregnancy, reduced fetal heart weight in the female fetus and increased heart rate at birth, but decreased systolic blood pressure at six months of age. Conclusion and Significance Sex specific differences both in feto-placental Doppler perfusion indices and response of these indices to dietary perturbations were observed. Further, maternal diet affected development of fetal cardiovascular system associated with altered fetal haemodynamics in utero, with such effects having a sex bias. The results from this study provide further insight into the gender specific circulatory differences present in the fetal period and developing cardiovascular system. PMID:25915506
Yong, Kylie Su Mei; Keng, Choong Tat; Tan, Shu Qi; Loh, Eva; Chang, Kenneth Te; Tan, Thiam Chye; Hong, Wanjin; Chen, Qingfeng
2016-09-01
We have recently discovered a unique CD34(lo)CD133(lo) cell population in the human fetal liver (FL) that gives rise to cells in the hepatic lineage. In this study, we further characterized the biological functions of FL CD34(lo)CD133(lo) cells. Our findings show that these CD34(lo)CD133(lo) cells express markers of both endodermal and mesodermal lineages and have the capability to differentiate into hepatocyte and mesenchymal lineage cells by ex vivo differentiation assays. Furthermore, we show that CD34(lo)CD133(lo) cells express growth factors that are important for human hematopoietic stem cell (HSC) expansion: stem cell factor (SCF), insulin-like growth factor 2 (IGF2), C-X-C motif chemokine 12 (CXCL12), and factors in the angiopoietin-like protein family. Co-culture of autologous FL HSCs and allogenic HSCs derived from cord blood with CD34(lo)CD133(lo) cells supports and expands both types of HSCs.These findings are not only essential for extending our understanding of the HSC niche during the development of embryonic and fetal hematopoiesis but will also potentially benefit adult stem cell transplantations in clinics because expanded HSCs demonstrate the same capacity as primary cells to reconstitute the human immune system and mediate long-term hematopoiesis in vivo. Together, CD34(lo)CD133(lo) cells not only serve as stem/progenitor cells for liver development but are also an essential component of the HSC niche in the human FL.
Ibuprofen results in alterations of human fetal testis development
Ben Maamar, Millissia; Lesné, Laurianne; Hennig, Kristin; Desdoits-Lethimonier, Christèle; Kilcoyne, Karen R.; Coiffec, Isabelle; Rolland, Antoine D.; Chevrier, Cécile; Kristensen, David M.; Lavoué, Vincent; Antignac, Jean-Philippe; Le Bizec, Bruno; Dejucq-Rainsford, Nathalie; Mitchell, Rod T.; Mazaud-Guittot, Séverine; Jégou, Bernard
2017-01-01
Among pregnant women ibuprofen is one of the most frequently used pharmaceutical compounds with up to 28% reporting use. Regardless of this, it remains unknown whether ibuprofen could act as an endocrine disruptor as reported for fellow analgesics paracetamol and aspirin. To investigate this, we exposed human fetal testes (7–17 gestational weeks (GW)) to ibuprofen using ex vivo culture and xenograft systems. Ibuprofen suppressed testosterone and Leydig cell hormone INSL3 during culture of 8–9 GW fetal testes with concomitant reduction in expression of the steroidogenic enzymes CYP11A1, CYP17A1 and HSD17B3, and of INSL3. Testosterone was not suppressed in testes from fetuses younger than 8 GW, older than 10–12 GW, or in second trimester xenografted testes (14–17 GW). Ex vivo, ibuprofen also affected Sertoli cell by suppressing AMH production and mRNA expression of AMH, SOX9, DHH, and COL2A1. While PGE2 production was suppressed by ibuprofen, PGD2 production was not. Germ cell transcripts POU5F1, TFAP2C, LIN28A, ALPP and KIT were also reduced by ibuprofen. We conclude that, at concentrations relevant to human exposure and within a particular narrow ‘early window’ of sensitivity within first trimester, ibuprofen causes direct endocrine disturbances in the human fetal testis and alteration of the germ cell biology. PMID:28281692
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortimer, C.H.; McNeilly, A.S.; Rees, L.H.
1976-10-01
A highly sensitive radioimmunoassay for the gonadotropin releasing hormone has been developed in order to study its physiological importance in man. In view of the expected low concentrations in peripheral blood, large volumes of human plasma were extracted by two different methods and the characteristics of the radioimmunoassayable material compared with those of synthetic decapeptide and extracts of human hypothalami. The results indicate that radioimmunoassayable gonadotropin releasing hormone is present in some human plasmas but the plasma concentrations are less than 2.5 pg/ml. Peripheral levels were more consistently measurable in women at midcycle and after the menopause. The hormone wasmore » undetectable in the plasma of normal men, human cerebrospinal fluid, and fetal cerebral tissue, but was present in fetal hypothalami.« less
Schwarzer, Caroline; Esteves, Telma Cristina; Araúzo-Bravo, Marcos J; Le Gac, Séverine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele
2012-09-01
Do different human ART culture protocols prepare embryos differently for post-implantation development? The type of ART culture protocol results in distinct cellular and molecular phenotypes in vitro at the blastocyst stage as well as subsequently during in vivo development. It has been reported that ART culture medium affects human development as measured by gestation rates and birthweights. However, due to individual variation across ART patients, it is not possible as yet to pinpoint a cause-effect relationship between choice of culture medium and developmental outcome. In a prospective study, 13 human ART culture protocols were compared two at a time against in vivo and in vitro controls. Superovulated mouse oocytes were fertilized in vivo using outbred and inbred mating schemes. Zygotes were cultured in medium or in the oviduct and scored for developmental parameters 96 h later. Blastocysts were either analyzed or transferred into fosters to measure implantation rates and fetal development. In total, 5735 fertilized mouse oocytes, 1732 blastocysts, 605 fetuses and 178 newborns were examined during the course of the study (December 2010-December 2011). Mice of the B6C3F1, C57Bl/6 and CD1 strains were used as oocyte donors, sperm donors and recipients for embryo transfer, respectively. In vivo fertilized B6C3F1 oocytes were allowed to cleave in 13 human ART culture protocols compared with mouse oviduct and optimized mouse medium (KSOM(aa)). Cell lineage composition of resultant blastocysts was analyzed by immunostaining and confocal microscopy (trophectoderm, Cdx2; primitive ectoderm, Nanog; primitive endoderm, Sox17), global gene expression by microarray analysis, and rates of development to midgestation and to term. Mouse zygotes show profound variation in blastocyst (49.9-91.9%) and fetal (15.7-62.0%) development rates across the 13 ART culture protocols tested (R(2)= 0.337). Two opposite protocols, human tubal fluid/multiblast (high fetal rate) and ISM1/ISM2 (low fetal rate), were analyzed in depth using outbred and inbred fertilization schemes. Resultant blastocysts show imbalances of cell lineage composition; culture medium-specific deviation of gene expression (38 genes, ≥ 4-fold) compared with the in vivo pattern; and produce different litter sizes (P ≤ 0.0076) after transfer into fosters. Confounding effects of subfertility, life style and genetic heterogeneity are reduced to a minimum in the mouse model compared with ART patients. This is an animal model study. Mouse embryo responses to human ART media are not transferable 1-to-1 to human development due to structural and physiologic differences between oocytes of the two species. Our data promote awareness that human ART culture media affect embryo development. Effects reported here in the mouse may apply also in human, because no ART medium presently available on the market has been optimized for human embryo development. The mouse embryo assay (MEA), which requires ART media to support at least 80% blastocyst formation, is in need of reform and should be extended to include post-implantation development.
Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi
We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less
Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease
Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; ...
2014-08-19
We report here that the key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Throughmore » a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.« less
Pasqualini, Jorge R; Chetrite, Gérard S
2016-07-01
The fetal endocrine system constitutes the earliest system developing in fetal life and operates during all the steps of gestation. Its regulation is in part dependent on the secretion of placental and/or maternal precursors emanating across the feto-maternal interface. Human fetal and placental compartments possess all the enzymatic systems necessary to produce steroid hormones. However, their activities are different and complementary: the fetus is very active in converting acetate into cholesterol, in transforming pregnanes to androstanes, various hydroxylases, sulfotransferases, while all these transformations are absent or very limited in the placenta. This compartment can transform cholesterol to C21-steroids, convert 5-ene to 4-ene steroids, and has a high capacity to aromatize C19 precursors and to hydrolyze sulfates. Steroid hormone receptors are present at an early stage of gestation and are functional for important physiological activities. The production rate of some steroids greatly increases with fetal evolution (e.g. estriol increases 500-1000 times in relation to non-pregnant women). Other hormones, such as glucocorticoids, in particular the stress hormone cortisol, adipokines (e.g. leptin, adiponectin), insulin-like growth factors, are also a key factor for regulating reproduction, metabolism, appetite and may be significant in programming the fetus and its growth. We can hypothesize that the fetal and placental factors controlling hormonal levels in the fetal compartment can be of capital importance in the normal development of extra-uterine life.
Josephson, A; Widenfalk, J; Trifunovski, A; Widmer, H R; Olson, L; Spenger, C
2001-11-12
We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. Messenger RNA was found encoding RET, GFR alpha-1, BDNF, trkB, and trkC in the adult human spinal cord and BDNF, NT-3, p75, trkB, and trkC in the fetal human spinal cord. The percentage of adult human DRG cells expressing p75, trkA, trkB, or trkC was 57, 46, 29, and 24%, respectively, and that of DRG cells expressing RET, GFR alpha-1, GFR alpha-2, or GFR alpha-3 was 79, 20, 51, and 32%, respectively. GFR alpha-2 was expressed selectively in small, GFR alpha-3 principally in small and GFR alpha-1 and RET in both large and small adult human DRG neurons. p75 and trkB were expressed by a wide range of DRG neurons while trkA was expressed in most small diameter and trkC primarily in large DRG neurons. Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord. Copyright 2001 Wiley-Liss, Inc.
Anderson, Richard A.; Johnston, Zoe C.; Chetty, Tarini; Smith, Lee B.; Mckinnell, Chris; Dean, Afshan; Homer, Natalie Z.; Jorgensen, Anne; Camacho-Moll, Maria-Elena; Sharpe, Richard M.; Mitchell, Rod T.
2016-01-01
Most common male reproductive disorders are linked to lower testosterone exposure in fetal life, although the factors responsible for suppressing fetal testosterone remain largely unknown. Protracted use of acetaminophen during pregnancy is associated with increased risk of cryptorchidism in sons, but effects on fetal testosterone production have not been demonstrated. We used a validated xenograft model to expose human fetal testes to clinically relevant doses and regimens of acetaminophen. Exposure to a therapeutic dose of acetaminophen for 7 days significantly reduced plasma testosterone (45% reduction; p=0.025) and seminal vesicle weight (a biomarker of androgen exposure; 18% reduction; p=0.005) in castrate host mice bearing human fetal testis xenografts, whereas acetaminophen exposure for just 1 day did not alter either parameter. Plasma acetaminophen concentrations (at 1 hour after the final dose) in exposed host mice were substantially below those reported in humans after a therapeutic oral dose. Subsequent in utero exposure studies in rats indicated that the acetaminophen-induced reduction in testosterone likely results from reduced expression of key steroidogenic enzymes (Cyp11a1, Cyp17a1). Our results suggest that protracted use of acetaminophen (1 week) may suppress fetal testosterone production, which could have adverse consequences. Further studies are required to establish the dose-response and treatment-duration relationships to delineate the maximum dose and treatment period without this adverse effect. PMID:25995226
Christian, Lisa M.
2011-01-01
It is well-established that psychological stress promotes immune dysregulation in nonpregnant humans and animals. Stress promotes inflammation, impairs antibody responses to vaccination, slows wound healing, and suppresses cell-mediated immune function. Importantly, the immune system changes substantially to support healthy pregnancy, with attenuation of inflammatory responses and impairment of cell-mediated immunity. This adaptation is postulated to protect the fetus from rejection by the maternal immune system. Thus, stress-induced immune dysregulation during pregnancy has unique implications for both maternal and fetal health, particularly preterm birth. However, very limited research has examined stress-immune relationships in pregnancy. The application of psychoneuroimmunology research models to the perinatal period holds great promise for elucidating biological pathways by which stress may affect adverse pregnancy outcomes, maternal health, and fetal development. PMID:21787802
Gaudriault, Pierre; Mazaud-Guittot, Séverine; Lavoué, Vincent; Coiffec, Isabelle; Lesné, Laurianne; Dejucq-Rainsford, Nathalie; Scholze, Martin; Kortenkamp, Andreas
2017-01-01
Background: Numerous chemicals are capable of disrupting androgen production, but the possibility that they might act together to produce effects greater than those of the most effective component in the mixture has not been studied directly in human tissues. Suppression of androgen synthesis in fetal life has been associated with testis maldescent, malformations of the genitalia at birth, and poor semen quality later in life. Objectives: Our aim was to investigate whether chemicals can act together to disrupt androgen production in human fetal testis explants and to evaluate the importance of mixture effects when characterizing the hazard of individual chemicals. Methods: We used an organotypic culture system of human fetal testes explants called FEtal Gonad Assay (FEGA) with tissue obtained at 10 and 12 gestational wk (GW 10–12), to screen 27 chemicals individually for their possible anti-androgenic effect. Based on the results of the screen, we selected 11 compounds and tested them as mixtures. Results: We evaluated mixtures composed of four and eight antiandrogens that contained the pharmaceuticals ketoconazole and theophylline and several previously untested chemicals, such as the pesticides imazalil and propiconazole. Mixtures of antiandrogens can suppress testosterone synthesis in human fetal testicular explants to an extent greater than that seen with individual chemicals. This revealed itself as a shift towards lower doses in the dose–response curves of individual antiandrogens that became more pronounced as the number of components increased from four to eight. Conclusions: Our results with the FEGA provide the foundations of a predictive human mixture risk assessment approach for anti-androgenic exposures in fetal life. https://doi.org/10.1289/EHP1014 PMID:28796631
Gaudriault, Pierre; Mazaud-Guittot, Séverine; Lavoué, Vincent; Coiffec, Isabelle; Lesné, Laurianne; Dejucq-Rainsford, Nathalie; Scholze, Martin; Kortenkamp, Andreas; Jégou, Bernard
2017-08-04
Numerous chemicals are capable of disrupting androgen production, but the possibility that they might act together to produce effects greater than those of the most effective component in the mixture has not been studied directly in human tissues. Suppression of androgen synthesis in fetal life has been associated with testis maldescent, malformations of the genitalia at birth, and poor semen quality later in life. Our aim was to investigate whether chemicals can act together to disrupt androgen production in human fetal testis explants and to evaluate the importance of mixture effects when characterizing the hazard of individual chemicals. We used an organotypic culture system of human fetal testes explants called FEtal Gonad Assay (FEGA) with tissue obtained at 10 and 12 gestational wk (GW 10-12), to screen 27 chemicals individually for their possible anti-androgenic effect. Based on the results of the screen, we selected 11 compounds and tested them as mixtures. We evaluated mixtures composed of four and eight antiandrogens that contained the pharmaceuticals ketoconazole and theophylline and several previously untested chemicals, such as the pesticides imazalil and propiconazole. Mixtures of antiandrogens can suppress testosterone synthesis in human fetal testicular explants to an extent greater than that seen with individual chemicals. This revealed itself as a shift towards lower doses in the dose-response curves of individual antiandrogens that became more pronounced as the number of components increased from four to eight. Our results with the FEGA provide the foundations of a predictive human mixture risk assessment approach for anti-androgenic exposures in fetal life. https://doi.org/10.1289/EHP1014.
Accelerated recruitment of new brain development genes into the human genome.
Zhang, Yong E; Landback, Patrick; Vibranovski, Maria D; Long, Manyuan
2011-10-01
How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain.
Yang, M Y; Cushman, R A; Fortune, J E
2017-05-01
Does anti-Müllerian hormone (AMH) inhibit activation (initiation of growth) of primordial follicles and attenuate the growth of primary follicles in cattle, an excellent animal model for human ovarian follicular development? AMH inhibited activation of bovine primordial follicles and attenuated the growth of activated follicles in vitro. In mice null mutant for AMH, the pool of primordial follicles is depleted prematurely and AMH inhibits follicle activation in vitro. Results of studies with human ovarian tissue in vitro were inconsistent. Our previous work provided indirect evidence that AMH inhibits follicle activation in bovine ovaries. Pieces of fetal bovine ovarian cortex (2 pieces/culture well), obtained during mid or late pregnancy, were cultured in control medium or with graded doses of AMH for 2, 10 or 12 days. Effects of treatment on follicle activation and growth were determined by histological morphometry; follicles in every 20th histological section were staged (primordial or primary), counted, and measured. In addition, AMH was immunolocalized in bovine ovaries obtained at various times during pregnancy (n = 20 ovaries). Bovine fetal ovaries at mid or late gestation were obtained at a commercial abattoir. Pieces of ovarian cortex were cultured without or with AMH and fixed for histological morphometry on Day 0 and at the end of culture. Treatments were applied to duplicate cultures from each of two or three fetuses. In 12-day cultures, addition of AMH was delayed until the third day. Histological analysis provided information about the types, numbers and sizes of follicles in cortical pieces before and after treatments. Ovaries obtained during the second and third trimesters were assessed for the presence of AMH by immunohistochemistry. AMH (100-500 ng/ml) inhibited follicle activation in response to an activator (insulin) in ovarian cortical pieces from fetal ovaries in late gestation. Dose-dependent inhibitory effects on the diameters of primary follicles and their oocytes were also observed. These results were obtained only when AMH was added to cultures in advance of insulin (presumably because it penetrates tissue more slowly than insulin). Results of experiments with cortical pieces from fetal ovaries at mid-gestation, when follicles are forming, showed that AMH did not inhibit the formation of follicles. Immunohistochemical localization of AMH showed that it is not present in fetal ovaries until the third trimester, when it was localized to the granulosa cells of secondary and small antral follicles. The experiments were performed with fetal ovaries because follicles form and follicle activation begins during fetal life in cattle (as it does in humans), so fetal ovarian cortex of later gestation provides tissue rich in primordial follicles. We assume, but have no experimental evidence, that our findings also apply to post-natal ovaries. Although circulating AMH is used as an indication of the follicular reserve in women, little is known about AMH in human ovaries. Cattle are an excellent non-primate model for human ovarian follicular development and, hence, the findings suggest similar roles for AMH in human follicular development. Not applicable. This research was supported by National Research Initiative Competitive Grants no. 00-35203-9151, 2003-35203-13532, and 2008-35203-05989) from the U.S. Dept. of Agriculture's National Institute of Food and Agriculture to JEF and by an NIH National Research Service Award (F32 HD08264) to RAC. There are no conflicts of interest or competing interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Guo, Zhuyu; Schaack, Jerome; Hay, William W; Zita, Matteo Moretto; Parast, Mana; Shao, Jianhua
2016-11-01
The main objective of this study was to investigate whether maternal adiponectin regulates fetal growth through the endocrine system in the fetal compartment. Adiponectin knockout (Adipoq (-/-) ) mice and in vivo adenovirus-mediated reconstitution were used to study the regulatory effect of maternal adiponectin on fetal growth. Primary human trophoblast cells were treated with adiponectin and a specific peroxisome proliferator-activated receptor α (PPARα) agonist or antagonist to study the underlying mechanism through which adiponectin regulates fetal growth. The body weight of fetuses from Adipoq (-/-) dams was significantly greater than that of wild-type dams at both embryonic day (E)14.5 and E18.5. Adenoviral vector-mediated maternal adiponectin reconstitution attenuated the increased fetal body weight induced by maternal adiponectin deficiency. Significantly increased blood glucose, triacylglycerol and NEFA levels were observed in Adipoq (-/-) dams, suggesting that nutrient supply contributes to maternal adiponectin-regulated fetal growth. Although fetal blood IGF-1 concentrations were comparable in fetuses from Adipoq (-/-) and wild-type dams, remarkably low levels of IGF-binding protein 1 (IGFBP-1) were observed in the serum of fetuses from Adipoq (-/-) dams. IGFBP-1 was identified in the trophoblast cells of human and mouse placentas. Maternal fasting robustly increased IGFBP-1 levels in mouse placentas, while reducing fetal weight. Significantly low IGFBP-1 levels were found in placentas of Adipoq (-/-) dams. Adiponectin treatment increased IGFBP-1 levels in primary cultured human trophoblast cells, while the PPARα antagonist, MK886, abolished this stimulatory effect. These results indicate that, in addition to nutrient supply, maternal adiponectin inhibits fetal growth by increasing IGFBP-1 expression in trophoblast cells.
[Influence of valproic acid (depakine I.V.) on human placenta metabolism--experimental model].
Semczuk-Sikora, Anna; Rogowska, Wanda; Semczuk, Marian
2003-08-01
The pregnancy in women with epilepsy is associated with an increased incidence of congenital malformations in offspring. Currently, anti-epileptic drugs (AEDs) are concerned to be a major etiologic factor of abnormal fetal development but the pathomechanism of teratogenicity of AEDs is complex and not well understood. The purpose of this study was to evaluate an influence of one of the AED-valproic acid (VPA) on placental metabolism (glucose consumption and lactate production). Term human placental cotyledons were perfused in vitro using a recycling perfusion of maternal and fetal circulations. A total 18 placentas were perfused either with 75 micrograms/ml of VPA (therapeutic dose) or with 225 micrograms/ml of VPA (toxic dose). Eight placentas were perfused with a medium without VPA and served as controls. During 2.5 h of experiment, both maternal and fetal glucose consumption and lactate production were measured every 30 minutes. The introduction of different concentrations of VPA into the perfusion system did not effect placental glucose consumption and lactate production rates in both maternal and fetal compartments. The teratogenic effect of valproic acid is not associated with metabolic disturbances of glucose or lactate in the placental tissue.
The placenta: the forgotten essential organ of iron transport
Cao, Chang
2016-01-01
Optimal iron nutrition in utero is essential for development of the fetus and helps establish birth iron stores adequate to sustain growth in early infancy. In species with hemochorial placentas, such as humans and rodents, iron in the maternal circulation is transferred to the fetus by directly contacting placental syncytiotrophoblasts. Early kinetic studies provided valuable data on the initial uptake of maternal transferrin, an iron-binding protein, by the placenta. However, the remaining steps of iron trafficking across syncytiotrophoblasts and through the fetal endothelium into the fetal blood remain poorly characterized. Over the last 20 years, identification of transmembrane iron transporters and the iron regulatory hormone hepcidin has greatly expanded the knowledge of cellular iron transport and its regulation by systemic iron status. In addition, emerging human and animal data demonstrating comprised fetal iron stores in severe maternal iron deficiency challenge the classic dogma of exclusive fetal control over the transfer process and indicate that maternal and local signals may play a role in regulating this process. This review compiles current data on the kinetic, molecular, and regulatory aspects of placental iron transport and considers new questions and knowledge gaps raised by these advances. PMID:27261274
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.
1987-06-01
To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. Inmore » RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.« less
Impact of Fetal-Neonatal Iron Deficiency on Recognition Memory at 2 Months of Age.
Geng, Fengji; Mai, Xiaoqin; Zhan, Jianying; Xu, Lin; Zhao, Zhengyan; Georgieff, Michael; Shao, Jie; Lozoff, Betsy
2015-12-01
To assess the effects of fetal-neonatal iron deficiency on recognition memory in early infancy. Perinatal iron deficiency delays or disrupts hippocampal development in animal models and thus may impair related neural functions in human infants, such as recognition memory. Event-related potentials were used in an auditory recognition memory task to compare 2-month-old Chinese infants with iron sufficiency or deficiency at birth. Fetal-neonatal iron deficiency was defined 2 ways: high zinc protoporphyrin/heme ratio (ZPP/H > 118 μmol/mol) or low serum ferritin (<75 μg/L) in cord blood. Late slow wave was used to measure infant recognition of mother's voice. Event related potentials patterns differed significantly for fetal-neonatal iron deficiency as defined by high cord ZPP/H but not low ferritin. Comparing 35 infants with iron deficiency (ZPP/H > 118 μmol/mol) to 92 with lower ZPP/H (iron-sufficient), only infants with iron sufficiency showed larger late slow wave amplitude for stranger's voice than mother's voice in frontal-central and parietal-occipital locations, indicating the recognition of mother's voice. Infants with iron sufficiency showed electrophysiological evidence of recognizing their mother's voice, whereas infants with fetal-neonatal iron deficiency did not. Their poorer auditory recognition memory at 2 months of age is consistent with effects of fetal-neonatal iron deficiency on the developing hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.
King, Julia H; Kwan, Sze Ting Cecilia; Yan, Jian; Klatt, Kevin C; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A
2017-07-18
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3 +/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3 +/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3 +/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.
Growth and development of the brain and impact on cognitive outcomes.
Hüppi, Petra S
2010-01-01
Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental plasticity or disruption of the developmental program' summarizes these events. Increases in white matter, which speed up communication between brain cells, growing complexity of neuronal networks suggested by gray and white matter changes, and environmentally sensitive plasticity are all essential aspects in a child's ability to mentalize and maintain the adaptive flexibility necessary for achieving high sociocognitive functioning. Advancement in neuroimaging has opened up new ways for examining the developing human brain in vivo, the study of the effects of early antenatal, perinatal and neonatal events on later structural and functional brain development resulting in developmental disabilities or developmental resilience. In this review, methods of quantitative assessment of human brain development, such as 3D-MRI with image segmentation, diffusion tensor imaging to assess connectivity and functional MRI to visualize brain function will be presented. Copyright (c) 2010 S. Karger AG, Basel.
The Hypothalamic-Pituitary-Adrenal Axis and the Fetus.
Morsi, Amr; DeFranco, Donald; Witchel, Selma
2018-06-06
Glucocorticoids (GCs), cortisol in humans, influence multiple essential maturational events during gestation. In the human fetus, fetal hypothalamic-pituitary-adrenal (HPA) axis function, fetal adrenal steroidogenesis, placental 11β- hydroxysteroid dehydrogenase type 2 activity, maternal cortisol concentrations, and environmental factors impact fetal cortisol exposure. The beneficial effects of synthetic glucocorticoids (sGCs), such as dexamethasone and betamethasone, on fetal lung maturation have significantly shifted the management of preterm labor and threatened preterm birth. Accumulating evidence suggests that exposure to sGCs in utero at critical developmental stages can alter the function of organ systems and that these effects may have sequelae that extend into adult life. Maternal stress and environmental influences may also impact fetal GC exposure. This article explores the vulnerability of the fetal HPA axis to endogenous GCs and exogenous sGCs. © 2018 S. Karger AG, Basel.
Placental Glucose Transfer: A Human In Vivo Study
Holme, Ane M.; Roland, Marie Cecilie P.; Lorentzen, Bjørg; Michelsen, Trond M.; Henriksen, Tore
2015-01-01
Objectives The placental transfer of nutrients is influenced by maternal metabolic state, placenta function and fetal demands. Human in vivo studies of this interplay are scarce and challenging. We aimed to establish a method to study placental nutrient transfer in humans. Focusing on glucose, we tested a hypothesis that maternal glucose concentrations and uteroplacental arterio-venous difference (reflecting maternal supply) determines the fetal venous-arterial glucose difference (reflecting fetal consumption). Methods Cross-sectional in vivo study of 40 healthy women with uncomplicated term pregnancies undergoing planned caesarean section. Glucose and insulin were measured in plasma from maternal and fetal sides of the placenta, at the incoming (radial artery and umbilical vein) and outgoing vessels (uterine vein and umbilical artery). Results There were significant mean (SD) uteroplacental arterio-venous 0.29 (0.23) mmol/L and fetal venous-arterial 0.38 (0.31) mmol/L glucose differences. The transplacental maternal-fetal glucose gradient was 1.22 (0.42) mmol/L. The maternal arterial glucose concentration was correlated to the fetal venous glucose concentration (r = 0.86, p<0.001), but not to the fetal venous-arterial glucose difference. The uteroplacental arterio-venous glucose difference was neither correlated to the level of glucose in the umbilical vein, nor fetal venous-arterial glucose difference. The maternal-fetal gradient was correlated to fetal venous-arterial glucose difference (r = 0.8, p<0.001) and the glucose concentration in the umbilical artery (r = −0.45, p = 0.004). Glucose and insulin concentrations were correlated in the mother (r = 0.52, p = 0.001), but not significantly in the fetus. We found no significant correlation between maternal and fetal insulin values. Conclusions We did not find a relation between indicators of maternal glucose supply and the fetal venous-arterial glucose difference. Our findings indicate that the maternal-fetal glucose gradient is significantly influenced by the fetal venous-arterial difference and not merely dependent on maternal glucose concentration or the arterio-venous difference on the maternal side of the placenta. PMID:25680194
A comprehensive analysis of the human placenta transcriptome
USDA-ARS?s Scientific Manuscript database
As the conduit for nutrients and growth signals, the placenta is critical to establishing an environment sufficient for fetal growth and development. To better understand the mechanisms regulating placental development and gene expression, we characterized the transcriptome of term placenta from 20 ...
Maternal influences on fetal microbial colonization and immune development
Romano-Keeler, Joann; Weitkamp, Jörn-Hendrik
2014-01-01
While critical for normal development, the exact timing of establishment of the intestinal microbiome is unknown. For example, although preterm labor and birth have been associated with bacterial colonization of the amniotic cavity and fetal membranes for many years, the prevailing dogma of a sterile intrauterine environment during normal term pregnancies has been challenged more recently. While found to be a key contributor of evolution in the animal kingdom, maternal transmission of commensal bacteria may also constitute a critical process during healthy pregnancies in humans with yet unclear developmental importance. Metagenomic sequencing has elucidated a rich placental microbiome in normal term pregnancies likely providing important metabolic and immune contributions to the growing fetus. Conversely, an altered microbial composition during pregnancy may produce aberrant metabolites impairing fetal brain development and life-long neurological outcomes. Here we review the current understanding of microbial colonization at the feto-maternal interface and explain how normal gut colonization drives a balanced neonatal mucosal immune system, while dysbiosis contributes to aberrant immune function early in life and beyond. We discuss how maternal genetics, diet, medications, and probiotics inform the fetal microbiome in preparation for perinatal and postnatal bacterial colonization. PMID:25310759
Haker, Björn; Fuchs, Sigrid; Dierlamm, Judith; Brümmendorf, Tim H; Wege, Henning
2007-10-18
As a culture model to study hepatocarcinogenesis, telomerase-immortalized human fetal hepatocytes were monitored for karyotype changes evolving in long-term culture and development of functional defects in DNA damage response. G-banding revealed acquisition of characteristic karyotype abnormalities, e.g., trisomy 7 and monosomy X, in two independently immortalized and cultured populations after 80-100 population doublings. Interestingly, the detected aneuploidies resemble some of the genetic events observed in hepatocellular cancer. However, these genetic changes were not sufficient to induce oncogenic transformation reflected by absence of anchorage-independent growth. Furthermore, long-term cultured telomerase-immortalized cells preserved p53 expression levels and effective p53-mediated damage response.
A new customized fetal growth standard for African American women: the PRB/NICHD Detroit Study
Tarca, Adi L.; Romero, Roberto; Gudicha, Dereje W.; Erez, Offer; Hernandez-Andrade, Edgar; Yeo, Lami; Bhatti, Gaurav; Pacora, Percy; Maymon, Eli; Hassan, Sonia S.
2018-01-01
Background The assessment of fetal growth disorders requires a standard. Current nomograms for the assessment of fetal growth in African American women have been derived either from neonatal (rather than fetal) biometry data or have not been customized for maternal ethnicity, weight, height, parity, and fetal sex. Objective We sought to 1) develop a new customized fetal growth standard for African American mothers; and 2) compare such a standard to three existing standards for the classification of fetuses as small (SGA) or large (LGA) for gestational age. Study Design A retrospective cohort study included 4,183 women (4,001 African American and 182 Caucasian) from the Detroit metropolitan area who underwent ultrasound examinations between 14 and 40 weeks of gestation (the median number of scans per pregnancy was 5, interquartile range 3-7) and for whom relevant covariate data were available. Longitudinal quantile regression was used to build models defining the “normal” estimated fetal weight (EFW) centiles for gestational age in African American women, adjusted for maternal height, weight, parity, and fetal sex, and excluding pathologic factors with a significant effect on fetal weight. The resulting Perinatology Research Branch/Eunice Kennedy Shriver National Institute of Child Health and Human Development (hereinafter, PRB/NICHD) growth standard was compared to 3 other existing standards—the customized gestation-related optimal weight (GROW) standard; the Eunice Kennedy Shriver National Institute of Child Health and Human Development (hereinafter, NICHD) African American standard; and the multinational World Health Organization (WHO) standard—utilized to screen fetuses for SGA (<10th centile) or LGA (>90th centile) based on the last available ultrasound examination for each pregnancy. Results 1) First, the mean birthweight at 40 weeks was 133g higher for neonates born to Caucasian than to African American mothers and 150g higher for male than female neonates; maternal weight, height, and parity had a positive effect on birthweight.Second, analysis of longitudinal EFW revealed the following features of fetal growth: (1) all weight centiles were about 2% higher for male than for female fetuses; (2) maternal height had a positive effect on EFW, with larger fetuses being affected more (2% increase in the 95th centile of weight for each 10-cm increase in height); and (3) maternal weight and parity had a positive effect on EFW that increased with gestation and varied among the weight centiles. Third, the screen-positive rate for SGA was 7.2% for the NICHD African American standard, 12.3% for the GROW standard, 13% for the WHO standard customized by fetal sex, and 14.4% for the PRB/NICHD customized standard. For all standards, the screen-positive rate for SGA was at least two-fold higher among fetuses delivered preterm than at term.Fourth, the screen-positive rate for LGA was 8.7% for the GROW standard, 9.2% for the PRB/NICHD customized standard, 10.8% for the WHO standard customized by fetal sex, and 12.3% for the NICHD African American standard. Finally, the highest overall agreement among standards was between the GROW and PRB/NICHD customized standards (Cohen’s inter-rater agreement, kappa=0.85). Conclusions We developed a novel customized PRB/NICHD fetal growth standard from fetal data in an African American population without assuming proportionality of the effects of covariates and also without assuming that these effects are equal on all centiles of weight; we also provide an easy-to-use centile calculator. This standard classified more fetuses as being at risk for SGA compared to existing standards, especially among fetuses delivered preterm, but classified about the same number of LGA fetuses. The comparison among the four growth standards also revealed that the most important factor determining agreement among standards is whether they account for the same factors known to affect fetal growth. PMID:29422207
Gonadotropin-releasing hormone immunoreactivity in the adult and fetal human olfactory system.
Kim, K H; Patel, L; Tobet, S A; King, J C; Rubin, B S; Stopa, E G
1999-05-01
Studies in fetal brain tissue of rodents, nonhuman primates and birds have demonstrated that cells containing gonadotropin-releasing hormone (GnRH) migrate from the olfactory placode across the nasal septum into the forebrain. The purpose of this study was to examine GnRH neurons in components of the adult and fetal human olfactory system. In the adult human brain (n=4), immunoreactive GnRH was evident within diffusely scattered cell bodies and processes in the olfactory bulb, olfactory nerve, olfactory cortex, and nervus terminalis located on the anterior surface of the gyrus rectus. GnRH-immunoreactive structures showed a similar distribution in 20-week human fetal brains (n=2), indicating that the migration of GnRH neurons is complete at this time. In 10-11-week fetal brains (n=2), more cells were noted in the nasal cavity than in the brain. Our data are consistent with observations made in other species, confirming olfactory derivation and migration of GnRH neurons into the brain from the olfactory placode. Copyright 1999 Elsevier Science B.V.
Cell Cycle Regulators during Human Atrial Development
Kim, Won Ho; Joo, Chan Uhng; Ku, Ja Hong; Ryu, Chul Hee; Koh, Keum Nim; Koh, Gou Young; Ko, Jae Ki
1998-01-01
Objectives The molecular mechanisms that regulate cardiomyocyte cell cycle and terminal differentiation in humans remain largely unknown. To determine which cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) are important for cardiomyocyte proliferation, we have examined protein levels of cyclins, CDKs and CKIs during normal atrial development in humans. Methods Atrial tissues were obtained in the fetus from inevitable abortion and in the adult during surgery, Cyclin and CDK proteins were determined by Western blot analysis, CDK activities were determined by phosphorylation amount using specific substrate. Results Most cyclins and CDKs were high during the fetal period and their levels decreased at different rates during the adult period. While the protein levels of cyclin D1, cyclin D3, CDK4, CDK6 and CDK2 were still detectable in adult atria, the protein levels of cyclin E, cyclin A, cyclin B, cdc2 and PCNA were not detectable. Interestingly, p27KIP 1 protein increased markedly in the adult period, while p21C IP 1 protein in atria was detectable only in the fetal period. While the activities of CDK6, CDK2 and cdc2 decreased markedly, the activity of CDK4 did not change from the fetal period to the adult period. Conclusion These findings indicate that marked reduction of protein levels and activities of cyclins and CDKs, and marked induction of p27KIP 1 in atria, are associated with the withdrawal of cardiac cell cycle in adult humans. PMID:9735660
Precious, Sophie V; Zietlow, Rike; Dunnett, Stephen B; Kelly, Claire M; Rosser, Anne E
2017-06-01
Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ex utero: live human fetal research and the films of Davenport Hooker.
Wilson, Emily K
2014-01-01
Between 1932 and 1963 University of Pittsburgh anatomist Davenport Hooker, Ph.D., performed and filmed noninvasive studies of reflexive movement on more than 150 surgically aborted human fetuses. The resulting imagery and information would contribute substantially to new visual and biomedical conceptions of fetuses as baby-like, autonomous human entities that emerged in the 1960s and 1970s. Hooker's methods, though broadly conforming to contemporary research practices and views of fetuses, would not have been feasible later. But while Hooker and the 1930s medical and general public viewed live fetuses as acceptable materials for nontherapeutic research, they also shared a regard for fetuses as developing humans with some degree of social value. Hooker's research and the various reactions to his work demonstrate the varied and changing perspectives on fetuses and fetal experimentation, and the influence those views can have on biomedical research.
Taylor, C A; Overstreet, J W; Samuels, S J; Boyers, S P; Canfield, R E; O'Connor, J F; Hanson, F W; Lasley, B L
1992-06-01
To develop an economical, nonradiometric immunoenzymometric assay (IEMA) for the detection of urinary human chorionic gonadotropin (hCG) in studies of early fetal loss. To be effective, the IEMA must have a sensitivity equal to the standard immunoradiometric assay (IRMA) and sufficient specificity to eliminate the need for screening most nonconceptive cycles with the expensive and labor-intensive IRMA. Two different assays were used to measure hCG in daily early morning urine samples from potential conceptive cycles. Women undergoing donor artificial insemination (AI) were evaluated in a prospective study. Ninety-two women volunteers were selected on the basis of apparent normal reproductive health. Artificial insemination with nonfrozen donor semen was performed by cervical cup twice each menstrual cycle at 48-hour intervals, and daily urine samples were self-collected throughout the menstrual cycle. An IEMA was developed to detect urinary hCG using the same antibodies as in the standard IRMA; a study was designed to determine whether this nonradiometric assay could successfully detect the early fetal loss that was detected by the IRMA. Of 224 menstrual cycles analyzed by both assays, a total of six early fetal losses were detected by the IRMA. When the tentative screening rule was set to allow all six of these losses and 95% of future losses to be detected by the IEMA, an additional 34 false-positive results were detected by the IEMA. The specificity of the IEMA with this rule was calculated to be 84%. An IEMA based on the same antibodies used for the standard IRMA can serve as an efficient screening assay for the detection of early fetal loss. When the IEMA is used in this manner, nearly 80% of screened menstrual cycles can be eliminated without further testing by the IRMA.
A Summary of Pathways or Mechanisms Linking Preconception Maternal Nutrition with Birth Outcomes.
King, Janet C
2016-07-01
Population, human, animal, tissue, and molecular studies show collectively and consistently that maternal nutrition in the pre- or periconception period influences fetal growth and development, which subsequently affects the individual's long-term health. It is known that nutrition during pregnancy is an important determinant of the offspring's growth and health. However, now there is evidence that the mother's nutritional status at conception also influences pregnancy outcome and long-term health. For example, the mother's nutritional status at conception influences the way energy is partitioned between maternal and fetal needs. Furthermore, placental development during the first weeks of gestation reflects maternal nutrition and establishes mechanisms for balancing maternal and fetal nutritional needs. Also, maternal nutritional signals at fertilization influence epigenetic remodeling of fetal genes. These findings all indicate that maternal parenting begins before conception. The following papers from a symposium on preconception nutrition presented at the 2015 Scientific Sessions and Annual Meeting of the ASN emphasize the importance of maternal nutrition at conception on the growth and long-term health of the child. © 2016 American Society for Nutrition.
Wolfs, T G A M; Kallapur, S G; Knox, C L; Thuijls, G; Nitsos, I; Polglase, G R; Collins, J J P; Kroon, E; Spierings, J; Shroyer, N F; Newnham, J P; Jobe, A H; Kramer, B W
2013-05-01
Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.
Development of the penis during the human fetal period (13 to 36 weeks after conception).
Gallo, Carla B M; Costa, Waldemar S; Furriel, Angelica; Bastos, Ana L; Sampaio, Francisco J B
2013-11-01
We analyzed the development of the area of the penis and erectile structures (corpora cavernosa and corpus spongiosum) and the thickness of the tunica albuginea during the fetal period (13 to 36 weeks after conception) in humans to establish normative patterns of growth. We studied 56 male human fetuses at 13 to 36 weeks after conception. We used histochemical and morphometric techniques to analyze the parameters of total penile area, area of corpora cavernosa, area of corpus spongiosum, and thickness of tunica albuginea in the dorsal and ventral regions using ImageJ software (National Institutes of Health, Bethesda, Maryland). Between 13 and 36 weeks after conception the area of the penis varies from 0.95 to 24.25 mm2. The area of the corpora cavernosa varies from 0.28 to 9.12 mm2, and the area of the corpus spongiosum varies from 0.14 to 3.99 mm2. The thickness of the tunica albuginea varies from 0.029 to 0.296 mm in the dorsal region and from 0.014 to 0.113 mm in the ventral region of the corpora cavernosa. We found a strong correlation between the total penile area, corpora cavernosa and corpus spongiosum with fetal age (weeks following conception). The growth rate was more intense during the second trimester (13 to 24 weeks of gestation) compared to the third trimester (25 to 36 weeks). Tunica albuginea thickness also was strongly correlated with fetal age and this structure was thicker in the dorsal vs ventral region. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Harris, Craig; Dolinoy, Dana C.
2014-01-01
While urine has been an easily accessible and feasible matrix for human biomonitoring, analytical measurements in internal tissues and organs can provide more accurate exposure assessments to understand disease etiology. This is especially important for the endocrine active compound, bisphenol A (BPA), where studies investigating internal doses at sensitive periods of human development are currently lacking. Herein, BPA concentrations, BPA-specific metabolizing enzyme gene expression, and global DNA methylation were characterized across three matched tissues from elective pregnancy terminations of 2nd trimester human fetuses: the placenta, liver, and kidney (N=12 each; N=36 total). Compared to liver (free: 0.54-50.5 ng/g), BPA concentrations were lower in matched placenta (<0.05-25.4 ng/g) and kidney (0.08-11.1 ng/g) specimens. BPA-specific metabolism gene expression of GUSB, UGT2B15, STS, and SULT1A1 differed across each tissue type; however, conjugation and deconjugation expression patterns were similar across the fetus. Average LINE1 and CCGG global methylation were 58.3 and 59.2% in placenta, 79.5 and 66.4% in fetal liver, and 77.9 and 77.0% in fetal kidney, with significant tissue-specific DNA methylation differences in both LINE1 (p-value <0.001) and CCGG content (p-value <0.001). Total BPA concentrations were positively associated with global methylation for the placenta only using the LINE1 assay (p-value: 0.002), suggesting organ-specific biological effects after fetal exposure. Utilizing sensitive human clinical specimens, results are informative for BPA toxicokinetics and toxicodynamics assessment in the developing human fetus. PMID:25434263
Caffeine Augments Anesthesia Neurotoxicity in the Fetal Macaque Brain.
Noguchi, Kevin K; Johnson, Stephen A; Manzella, Francesca M; Masuoka, Kobe L; Williams, Sasha L; Martin, Lauren D; Dissen, Gregory A; Ikonomidou, Chrysanthy; Schenning, Katie J; Olney, John W; Brambrink, Ansgar M
2018-03-28
Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.
Nahar, Muna S.; Liao, Chunyang; Kannan, Kurunthachalam; Dolinoy, Dana C.
2013-01-01
Widespread exposure to the endocrine active compound, bisphenol A (BPA), is well documented in humans. A growing body of literature suggests adverse health outcomes associated with varying ranges of exposure to BPA. In the current study, we measured the internal dose of free BPA and conjugated BPA and evaluated gene expression of bio-transformation enzymes specific for BPA metabolism in 50 first- and second-trimester human fetal liver samples. Both free BPA and conjugated BPA concentrations varied widely, with free BPA exhibiting three times higher concentrations than conjugated BPA concentrations. As compared to gender-matched adult liver controls, UDP-glucuronyltransferase, sulfotransferase, and steroid sulfatase genes exhibited reduced expression whereas β-glucuronidase mRNA expression remained unchanged in the fetal tissues. This study provides evidence that there is considerable exposure to BPA during human pregnancy and that the capacity for BPA metabolism is altered in the human fetal liver. PMID:23208979
Human Fetal Membranes at Term: Dead Tissue or Signalers of Parturition?
MENON, Ramkumar
2017-01-01
Various endocrine, immune, and mechanical factors produced by feto-maternal compartments at term increase intrauterine inflammatory loads to induce labor. The role of fetal (placental) membranes (amniochorion) as providers of parturition signals has not been well investigated. Fetal membranes line the intrauterine cavity and grow with and protect the fetus. Fetal membranes exist as an entity between the mother and fetus and perform unique functions during pregnancy. Membranes undergo a telomere-dependent p38 MAPK-induced senescence and demonstrate a decline in functional and mechanical abilities at term, showing signs of aging. Fetal membrane senescence is also allied with completion of fetal maturation at term as the fetus readies for delivery, which may also indicate the end of independent life and longevity of fetal membranes as their functional role concludes. Fetal membrane senescence is accelerated at term because of oxidative stress and increased stretching. Senescent fetal membranes cells produce senescence-associated secretory phenotype (SASP-inflammation) and also release proinflammatory damage-associated molecular patterns (DAMPs), namely HMGB1 and cell-free fetal telomere fragments. In a feedback loop, SASP and DAMPs increase senescence and enhance the inflammatory load to promote labor. Membranes increase the inflammatory load to disrupt homeostatic balance to transition quiescent uterine tissues toward a labor phenotype. Therefore, along with other well-described labor-promoting signals, senescent fetal membranes may also contribute to human term parturition. PMID:27452431
Human fetal membranes at term: Dead tissue or signalers of parturition?
Menon, Ramkumar
2016-08-01
Various endocrine, immune, and mechanical factors produced by feto-maternal compartments at term increase intrauterine inflammatory loads to induce labor. The role of fetal (placental) membranes (amniochorion) as providers of parturition signals has not been well investigated. Fetal membranes line the intrauterine cavity and grow with and protect the fetus. Fetal membranes exist as an entity between the mother and fetus and perform unique functions during pregnancy. Membranes undergo a telomere-dependent p38 MAPK-induced senescence and demonstrate a decline in functional and mechanical abilities at term, showing signs of aging. Fetal membrane senescence is also allied with completion of fetal maturation at term as the fetus readies for delivery, which may also indicate the end of independent life and longevity of fetal membranes as their functional role concludes. Fetal membrane senescence is accelerated at term because of oxidative stress and increased stretching. Senescent fetal membranes cells produce senescence-associated secretory phenotype (SASP-inflammation) and also release proinflammatory damage-associated molecular patterns (DAMPs), namely HMGB1 and cell-free fetal telomere fragments. In a feedback loop, SASP and DAMPs increase senescence and enhance the inflammatory load to promote labor. Membranes increase the inflammatory load to disrupt homeostatic balance to transition quiescent uterine tissues toward a labor phenotype. Therefore, along with other well-described labor-promoting signals, senescent fetal membranes may also contribute to human term parturition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Knockout maternal adiponectin increases fetal growth in mice: potential role for trophoblast IGFBP-1
Qiao, Liping; Wattez, Jean-Sebastien; Lee, Samuel; Guo, Zhuyu; Schaack, Jerome; Hay, William W.; Moretto Zita, Matteo; Parast, Mana; Shao, Jianhua
2016-01-01
Aims/hypothesis The main objective of this study was to investigate whether maternal adiponectin regulates fetal growth through the endocrine system in the fetal compartment. Methods Adiponectin knockout (Adipoq−/−) mice and in vivo adenovirus-mediated reconstitution were used to study the regulatory effect of maternal adiponectin on fetal growth. Primary human trophoblast cells were treated with adiponectin and a specific peroxisome proliferator-activated receptor α (PPARα) agonist or antagonist to study the underlying mechanism through which adiponectin regulates fetal growth. Results The body weight of fetuses from Adipoq−/− dams was significantly greater than that of wild-type dams at both embryonic day (E)14.5 and E18.5. Adenoviral vector-mediated maternal adiponectin reconstitution attenuated the increased fetal body weight induced by maternal adiponectin deficiency. Significantly increased blood glucose, triacylglycerol and NEFA levels were observed in Adipoq−/− dams, suggesting that nutrient supply contributes to maternal adiponectin-regulated fetal growth. Although fetal blood IGF-1 concentrations were comparable in fetuses from Adipoq−/− and wild-type dams, remarkably low levels of IGF-binding protein 1 (IGFBP-1) were observed in the serum of fetuses from Adipoq−/− dams. IGFBP-1 was identified in the trophoblast cells of human and mouse placentas. Maternal fasting robustly increased IGFBP-1 levels in mouse placentas, while reducing fetal weight. Significantly low IGFBP-1 levels were found in placentas of Adipoq−/− dams. Adiponectin treatment increased IGFBP-1 levels in primary cultured human trophoblast cells, while the PPARα antagonist, MK886, abolished this stimulatory effect. Conclusions/interpretation These results indicate that, in addition to nutrient supply, maternal adiponectin inhibits fetal growth by increasing IGFBP-1 expression in trophoblast cells. PMID:27495989
The maternal to fetal transfer of immunoglobulins associated with placental lesions in sheep.
Poitras, B J; Miller, R B; Wilkie, B N; Bosu, W T
1986-01-01
In this study we evaluated maternofetal transmission of immunoglobulins in ewes under conditions of altered placental morphology. Intravenous injection of human red blood cells was used to induce immunoglobulins in pregnant ewes. The hemagglutination test was used to detect antibody in maternal serum, fetal and placental fluids. Placental injury was induced by intravenous inoculation of Escherichia coli endotoxin or spores of Aspergillus fumigatus into pregnant ewes at days 99 or 100 of gestation respectively. Placental infarction, thrombosis of maternal placental vessels and variable neutrophil infiltrate characterized lesions produced by A. fumigatus. Endotoxin treated ewes developed marked placental edema, congestion, hemorrhage and focal loss of uterine epithelium. Human red blood cell agglutinating antibody was not detected in placental or fetal fluids obtained from ewes with either of the above placental lesions. Placentitis of undetermined etiology was observed in seven ewes. Two ewes had received A. fumigatus, two had received endotoxin and three were untreated ewes. Histological examination of their placentas revealed trophoblastic and endometrial epithelial necrosis and necrotizing vasculitis of the chorioallantois. Human red blood cell agglutinating antibody was detected only in the fetal and placental fluids of the seven ewes with these placental lesions. The nature of these lesions would have produced a functional confluence of the maternal and fetal circulations. Antibody transfer from dam to fetus was observed only in association with placental lesions which produced this confluence of circulations. The character of the placental lesions, rather than the mere presence of placental lesions apparently determined the transfer of immunoglobulins.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3742359
BPI-fold (BPIF) containing/plunc protein expression in human fetal major and minor salivary glands.
Alves, Daniel Berretta Moreira; Bingle, Lynne; Bingle, Colin David; Lourenço, Silvia Vanessa; Silva, Andréia Aparecida; Pereira, Débora Lima; Vargas, Pablo Agustin
2017-01-16
The aim of this study was to determine expression, not previously described, of PLUNC (palate, lung, and nasal epithelium clone) (BPI-fold containing) proteins in major and minor salivary glands from very early fetal tissue to the end of the second trimester and thus gain further insight into the function of these proteins. Early fetal heads, and major and minor salivary glands were collected retrospectively and glands were classified according to morphodifferentiation stage. Expression of BPI-fold containing proteins was localized through immunohistochemistry. BPIFA2, the major BPI-fold containing protein in adult salivary glands, was detected only in the laryngeal pharynx; the lack of staining in salivary glands suggested salivary expression is either very late in development or is only in adult tissues. Early expression of BPIFA1 was seen in the trachea and nasal cavity with salivary gland expression only seen in late morphodifferentiation stages. BPIFB1 was seen in early neural tissue and at later stages in submandibular and sublingual glands. BPIFA1 is significantly expressed in early fetal oral tissue but BPIFB1 has extremely limited expression and the major salivary BPIF protein (BPIFA2) is not produced in fetal development. Further studies, with more sensitive techniques, will confirm the expression pattern and enable a better understanding of embryonic BPIF protein function.
Ethics, public policy, and human fetal tissue transplantation research.
Childress, James F
1991-06-01
This article focuses on the deliberations of the National Institutes of Health Human Fetal Tissue Transplantation Research Panel in 1988. It explores various arguments for and against the use of fetal tissue for transplantation research, following elective abortion, and for and against the use of federal funds for such research. After examining the relevance of various positions on the moral status of the fetus and the morality of abortion, the article critically examines charges that such research, especially with federal funds, would involve complicity in the moral evil of abortion, would legitimate abortion practices, and would provide incentives for abortions. Finally, it considers whether the donation model is appropriate for the transfer of human fetal tissue and whether the woman who chooses to have an abortion is the apppropriate donor of the tissue.
Uchida, Naoya; Demirci, Selami; Haro-Mora, Juan J; Fujita, Atsushi; Raines, Lydia N; Hsieh, Matthew M; Tisdale, John F
2018-06-15
In vitro erythroid differentiation from primary human cells is valuable to develop genetic strategies for hemoglobin disorders. However, current erythroid differentiation methods are encumbered by modest transduction rates and high baseline fetal hemoglobin production. In this study, we sought to improve both genetic modification and hemoglobin production among human erythroid cells in vitro . To model therapeutic strategies, we transduced human CD34 + cells and peripheral blood mononuclear cells (PBMCs) with lentiviral vectors and compared erythropoietin-based erythroid differentiation using fetal-bovine-serum-containing media and serum-free media. We observed more efficient transduction (85%-93%) in serum-free media than serum-containing media (20%-69%), whereas the addition of knockout serum replacement (KSR) was required for serum-free media to promote efficient erythroid differentiation (96%). High-level adult hemoglobin production detectable by electrophoresis was achieved using serum-free media similar to serum-containing media. Importantly, low fetal hemoglobin production was observed in the optimized serum-free media. Using KSR-containing, serum-free erythroid differentiation media, therapeutic adult hemoglobin production was detected at protein levels with β-globin lentiviral transduction in both CD34 + cells and PBMCs from sickle cell disease subjects. Our in vitro erythroid differentiation system provides a practical evaluation platform for adult hemoglobin production among human erythroid cells following genetic manipulation.
Localization of congenital tegmen tympani defects.
Tóth, Miklós; Helling, Kai; Baksa, Gábor; Mann, Wolf
2007-12-01
This study sets out to demonstrate the normal developmental steps of the tegmen tympani and thus explains the typical localization of congenital tegmental defects. For this study, 79 macerated and formalin-fixed human temporal bones from 14th fetal week to adults were observed and prepared. Macroscopic and microscopic examination of the prenatal and postnatal changes of the tegmen tympani during its development. Temporal bones from 14th fetal week to adults underwent descriptive anatomic studies to understand the normal development of the tegmen tympani and to find a possible cause of its congenital defects. The medial part of the tegmen tympani develops from the otic capsule during chondral ossification, thus forming the tegmental process of the petrous part. The lateral part shows membranous ossification. The tegmental process cases a temporary bony dehiscence lateral to the geniculate ganglion between the 23rd and 25th fetal week. Congenital defects develop near the geniculate ganglion and seem to be due to an incomplete development of tegmental process of otic capsule. Because of that, congenital lesion of the tegmen tympani can be defined as an inner ear defect.
Altered autonomic control of heart rate variability in the chronically hypoxic fetus.
Shaw, C J; Allison, B J; Itani, N; Botting, K J; Niu, Y; Lees, C C; Giussani, D A
2018-03-31
Fetal heart rate variability (FHRV) has long been recognised as a powerful predictor of fetal wellbeing, and a decrease in FHRV is associated with fetal compromise. However, the mechanisms by which FHRV is reduced in the chronically hypoxic fetus have yet to be established. The sympathetic and parasympathetic influences on heart rate mature at different rates throughout fetal life, and can be assessed by time domain and power spectral analysis of FHRV. In this study of chronically instrumented fetal sheep in late gestation, we analysed FHRV daily over a 16 day period towards term, and compared changes between fetuses of control and chronically hypoxic pregnancy. We show that FHRV in sheep is reduced by chronic hypoxia, predominantly due to dysregulation of the sympathetic control of the fetal heart rate. This presents a potential mechanism by which a reduction in indices of FHRV predicts fetuses at increased risk of neonatal morbidity and mortality in humans. Reduction in overall FHRV may therefore provide a biomarker that autonomic dysregulation of fetal heart rate control has taken place in a fetus where uteroplacental dysfunction is suspected. Although fetal heart rate variability (FHRV) has long been recognised as a powerful predictor of fetal wellbeing, the mechanisms by which it is reduced in the chronically hypoxic fetus have yet to be established. In particular, the physiological mechanism underlying the reduction of short term variation (STV) in fetal compromise remains unclear. In this study, we present a longitudinal study of the development of autonomic control of FHRV, assessed by indirect indices, time domain and power spectral analysis, in normoxic and chronically hypoxic, chronically catheterised, singleton fetal sheep over the last third of gestation. We used isobaric chambers able to maintain pregnant sheep for prolonged periods in hypoxic conditions (stable fetal femoral arterial PO2 10-12 mmHg), and a customised wireless data acquisition system to record beat-to-beat variation in the fetal heart rate. We determined in vivo longitudinal changes in overall FHRV and the sympathetic and parasympathetic contribution to FHRV in hypoxic (n = 6) and normoxic (n = 6) ovine fetuses with advancing gestational age. Normoxic fetuses show gestational age-related increases in overall indices of FHRV, and in the sympathetic nervous system contribution to FHRV (P < 0.001). Conversely, gestational age-related increases in overall FHRV were impaired by exposure to chronic hypoxia, and there was evidence of suppression of the sympathetic nervous system control of FHRV after 72 h of exposure to hypoxia (P < 0.001). This demonstrates that exposure to late gestation isolated chronic fetal hypoxia has the potential to alter the development of the autonomic nervous system control of FHRV in sheep. This presents a potential mechanism by which a reduction in indices of FHRV in human fetuses affected by uteroplacental dysfunction can predict fetuses at increased risk. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Prody, C A; Zevin-Sonkin, D; Gnatt, A; Goldberg, O; Soreq, H
1987-01-01
To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase (BtChoEase; EC 3.1.1.8) and Torpedo electric organ "true" acetylcholinesterase (AcChoEase; EC 3.1.1.7). Using these probes, we isolated several cDNA clones from lambda gt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)+ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These findings demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species. Images PMID:3035536
45 CFR 46.206 - Research involving, after delivery, the placenta, the dead fetus or fetal material.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., the dead fetus or fetal material. 46.206 Section 46.206 Public Welfare DEPARTMENT OF HEALTH AND HUMAN... placenta, the dead fetus or fetal material. (a) Research involving, after delivery, the placenta; the dead fetus; macerated fetal material; or cells, tissue, or organs excised from a dead fetus, shall be...
45 CFR 46.206 - Research involving, after delivery, the placenta, the dead fetus or fetal material.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., the dead fetus or fetal material. 46.206 Section 46.206 Public Welfare DEPARTMENT OF HEALTH AND HUMAN... placenta, the dead fetus or fetal material. (a) Research involving, after delivery, the placenta; the dead fetus; macerated fetal material; or cells, tissue, or organs excised from a dead fetus, shall be...
45 CFR 46.206 - Research involving, after delivery, the placenta, the dead fetus or fetal material.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., the dead fetus or fetal material. 46.206 Section 46.206 Public Welfare DEPARTMENT OF HEALTH AND HUMAN... placenta, the dead fetus or fetal material. (a) Research involving, after delivery, the placenta; the dead fetus; macerated fetal material; or cells, tissue, or organs excised from a dead fetus, shall be...
45 CFR 46.206 - Research involving, after delivery, the placenta, the dead fetus or fetal material.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., the dead fetus or fetal material. 46.206 Section 46.206 Public Welfare Department of Health and Human... placenta, the dead fetus or fetal material. (a) Research involving, after delivery, the placenta; the dead fetus; macerated fetal material; or cells, tissue, or organs excised from a dead fetus, shall be...
45 CFR 46.206 - Research involving, after delivery, the placenta, the dead fetus or fetal material.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., the dead fetus or fetal material. 46.206 Section 46.206 Public Welfare DEPARTMENT OF HEALTH AND HUMAN... placenta, the dead fetus or fetal material. (a) Research involving, after delivery, the placenta; the dead fetus; macerated fetal material; or cells, tissue, or organs excised from a dead fetus, shall be...
Maternal exposure to hurricane destruction and fetal mortality.
Zahran, Sammy; Breunig, Ian M; Link, Bruce G; Snodgrass, Jeffrey G; Weiler, Stephan; Mielke, Howard W
2014-08-01
The majority of research documenting the public health impacts of natural disasters focuses on the well-being of adults and their living children. Negative effects may also occur in the unborn, exposed to disaster stressors when critical organ systems are developing and when the consequences of exposure are large. We exploit spatial and temporal variation in hurricane behaviour as a quasi-experimental design to assess whether fetal death is dose-responsive in the extent of hurricane damage. Data on births and fetal deaths are merged with Parish-level housing wreckage data. Fetal outcomes are regressed on housing wreckage adjusting for the maternal, fetal, placental and other risk factors. The average causal effect of maternal exposure to hurricane destruction is captured by difference-in-differences analyses. The adjusted odds of fetal death are 1.40 (1.07-1.83) and 2.37 (1.684-3.327) times higher in parishes suffering 10-50% and >50% wreckage to housing stock, respectively. For every 1% increase in the destruction of housing stock, we observe a 1.7% (1.1-2.4%) increase in fetal death. Of the 410 officially recorded fetal deaths in these parishes, between 117 and 205 may be attributable to hurricane destruction and postdisaster disorder. The estimated fetal death toll is 17.4-30.6% of the human death toll. The destruction caused by Hurricanes Katrina and Rita imposed significant measurable losses in terms of fetal death. Postdisaster migratory dynamics suggest that the reported effects of maternal exposure to hurricane destruction on fetal death may be conservative. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Lo, Jamie O; Schabel, Matthias C; Roberts, Victoria H J; Wang, Xiaojie; Lewandowski, Katherine S; Grant, Kathleen A; Frias, Antonio E; Kroenke, Christopher D
2017-03-01
Prenatal alcohol exposure leads to impaired fetal growth, brain development, and stillbirth. Placental impairment likely contributes to these adverse outcomes, but the mechanisms and specific vasoactive effects of alcohol that links altered placental function to impaired fetal development remain areas of active research. Recently, we developed magnetic resonance imaging techniques in nonhuman primates to characterize placental blood oxygenation through measurements of T 2 * and perfusion using dynamic contrast-enhanced magnetic resonance imaging. The objective of this study was to evaluate the effects of first-trimester alcohol exposure on macaque placental function and to characterize fetal brain development in vivo. Timed-pregnant Rhesus macaques (n=12) were divided into 2 groups: control (n=6) and ethanol exposed (n=6). Animals were trained to self-administer orally either 1.5 g/kg/d of a 4% ethanol solution (equivalent to 6 drinks/d) or an isocaloric control fluid from preconception until gestational day 60 (term is G168). All animals underwent Doppler ultrasound scanning followed by magnetic resonance imaging that consisted of T 2 * and dynamic contrast-enhanced measurements. Doppler ultrasound scanning was used to measure uterine artery and umbilical vein velocimetry and diameter to calculate uterine artery volume blood flow and placental volume blood flow. After noninvasive imaging, animals underwent cesarean delivery for placenta collection and fetal necropsy at gestational day 110 (n=6) or 135 (n=6). Fetal weight and biparietal diameter were significantly smaller in ethanol-exposed animals compared with control animals at gestational day 110. By Doppler ultrasound scanning, placental volume blood flow was significantly lower (P=.04) at gestational day 110 in ethanol-exposed vs control animals. A significant reduction in placental blood flow was evident by dynamic contrast-enhanced magnetic resonance imaging. As we demonstrated recently, T 2 * values vary throughout the placenta and reveal gradients in blood deoxyhemoglobin concentration that range from highly oxygenated blood (long T 2 *) proximal to spiral arteries to highly deoxygenated blood (short T 2 *). Distributions of T 2 *throughout the placenta show significant global reduction in T 2 * (and hence high blood deoxyhemoglobin concentration) in ethanol-exposed vs control animals at gestational day 110 (P=.02). Fetal brain measurements indicated impaired growth and development at gestational day 110, but less so at gestational day 135 in ethanol-exposed vs control animals. Chronic first-trimester ethanol exposure significantly reduces placental perfusion and oxygen supply to the fetal vasculature later in pregnancy. These perturbations of placental function are associated with fetal growth impairments. However, differences between ethanol-exposed and control animals in placental function and fetal developmental outcomes were smaller at gestational day 135 than at gestational day 110. These findings are consistent with placental adaptation to early perturbations that allow for compensated placental function and maintenance of fetal growth. Copyright © 2017 Elsevier Inc. All rights reserved.
miRNA expression in control and FSHD fetal human muscle biopsies.
Portilho, Débora Morueco; Alves, Marcelo Ribeiro; Kratassiouk, Gueorgui; Roche, Stéphane; Magdinier, Frédérique; de Santana, Eliane Corrêa; Polesskaya, Anna; Harel-Bellan, Annick; Mouly, Vincent; Savino, Wilson; Butler-Browne, Gillian; Dumonceaux, Julie
2015-01-01
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development. Muscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays. During human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD. This work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.
Paterson, Clare; Wang, Yanhong; Kleinman, Joel E.; Law, Amanda J.
2015-01-01
OBJECTIVE Neuregulin 1 (NRG1) is a multifunctional neurotrophin and a critical mediator of neurodevelopment and risk for schizophrenia. NRG1 undergoes extensive alternative splicing, and association of brain NRG1-IV isoform expression with the schizophrenia-risk polymorphism, rs6994992, is a potential molecular mechanism of risk. Novel splice variants of NRG1-IV (NRG1-IVNV), with predicted unique signaling capabilities, have been cloned in fetal brain. Because the developmental expression and genetic regulation of NRG1-IVNV in human brain and relationship to schizophrenia is unknown, the authors investigated the temporal dynamics of NRG1-IVNV transcription, compared to the major NRG1 isoforms (types I-IV), across human prenatal and postnatal prefrontal cortical development and examined the association of rs6994992 with NRG1-IVNV expression. METHOD NRG1, types I-IV and NRG1-IVNV isoform expression was evaluated using quantitative real-time PCR in prefrontal cortex during human fetal brain development (14-39 weeks gestation: N=41) and postnatally through aging (age range 0-83 years: N=195). The association of rs6994992 genotype with NRG1-IVNV expression was determined. In-vitro assays were performed to determine the subcellular distribution and proteolytic processing of NRG1-IVNV isoforms. RESULTS Expression of NRG1, types I, II, III was temporally regulated during human prenatal and postnatal neocortical development and the trajectory of NRG1-IVNV was unique, being expressed from 16 weeks gestation until 3 years of age, after which it was undetectable. NRG1-IVNVs expression was associated with rs6994992 genotype, whereby homozygosity for the schizophrenia-risk allele (T) conferred lower cortical NRG1-IVNV levels. Finally, in-vitro cellular assays demonstrate that NRG1-IVNV is a novel nuclear enriched, truncated NRG1 protein that is resistant to proteolytic processing. CONCLUSION This study provides the first quantitative map of NRG1 isoform expression during human neocortical development and aging and identifies a potential mechanism of early developmental risk for schizophrenia at the NRG1 locus, involving a novel class of NRG1 proteins. PMID:24935406
NASA Astrophysics Data System (ADS)
Hansen, John T.; Sladek, John R.
1989-11-01
This article reviews some of the significant contributions of fetal research and fetal tissue research over the past 20 years. The benefits of fetal research include the development of vaccines, advances in prenatal diagnosis, detection of malformations, assessment of safe and effective medications, and the development of in utero surgical therapies. Fetal tissue research benefits vaccine development, assessment of risk factors and toxicity levels in drug production, development of cell lines, and provides a source of fetal cells for ongoing transplantation trials. Together, fetal research and fetal tissue research offer tremendous potential for the treatment of the fetus, neonate, and adult.
Berger, Robert G; Lefèvre, Pavine L C; Ernest, Sheila R; Wade, Michael G; Ma, Yi-Qian; Rawn, Dorothea F K; Gaertner, Dean W; Robaire, Bernard; Hales, Barbara F
2014-06-05
Brominated flame retardants are incorporated into a wide variety of consumer products and are known to enter into the surrounding environment, leading to human exposure. There is accumulating evidence that these compounds have adverse effects on reproduction and development in humans and animal models. Animal studies have generally characterized the outcome of exposure to a single technical mixture or congener. Here, we determined the impact of exposure of rats prior to mating and during gestation to a mixture representative of congener levels found in North American household dust. Adult female Sprague-Dawley rats were fed a diet containing 0, 0.75, 250 or 750mg/kg of a mixture of flame retardants (polybrominated diphenyl ethers, hexabromocyclododecane) from two weeks prior to mating to gestation day 20. This formulation delivered nominal doses of 0, 0.06, 20 and 60mg/kg body weight/day. The lowest dose approximates high human exposures based on house dust levels and the dust ingestion rates of toddlers. Litter size and resorption sites were counted and fetal development evaluated. No effects on maternal health, litter size, fetal viability, weights, crown rump lengths or sex ratios were detected. The proportion of litters with fetuses with anomalies of the digits (soft tissue syndactyly or malposition of the distal phalanges) was increased significantly in the low (0.06mg/kg/day) dose group. Skeletal analysis revealed a decreased ossification of the sixth sternebra at all exposure levels. Thus, exposure to an environmentally relevant mixture of brominated flame retardants results in developmental abnormalities in the absence of apparent maternal toxicity. The relevance of these findings for predicting human risk is yet to be determined. Copyright © 2014. Published by Elsevier Ireland Ltd.
Pavlov, Nadine; Guibourdenche, Jean; Degrelle, Séverine A.; Evain-Brion, Danièle
2014-01-01
The placenta is a transient organ essential for fetal development. During human placental development, chorionic villi grow in coordination with a large capillary network resulting from both vasculogenesis and angiogenesis. Angiogenin is one of the most potent inducers of neovascularisation in experimental models in vivo. We and others have previously mapped angiogenin expression in the human term placenta. Here, we explored angiogenin involvement in early human placental development. We studied, angiogenin expression by in situ hybridisation and/or by RT-PCR in tissues and primary cultured trophoblastic cells and angiogenin cellular distribution by coimmunolabelling with cell markers: CD31 (PECAM-1), vascular endothelial cadherin (VE-cadherin), vascular endothelial growth factor receptor-2 (VEGF-R2), Tie-2, von Willebrand factor, CD34, erythropoeitin receptor (Epo-R), alpha-smooth muscle actin, CD45, cytokeratin 7, and Ki-67. Extravillous and villous cytotrophoblasts, isolated and differentiated in vitro, expressed and secreted angiogenin. Angiogenin was detected in villous trophoblastic layers, and structured and nascent fetal vessels. In decidua, it was expressed by glandular epithelial cells, vascular cells and macrophages. The observed pattern of angiogenin expression is compatible with a role in blood vessel formation and in cross-talk between trophoblasts and endothelial cells. In view of angiogenin properties, we suggest that angiogenin may participate in placental vasculogenesis and organogenesis. PMID:25093183
Wynne-Edwards, Katherine E.; Edwards, Heather E.; Hancock, Trina M.
2013-01-01
Context Fetal stress is relevant to newborn outcomes. Corticosterone is rarely quantified in human clinical endocrinology and is found at much lower concentrations than cortisol. However, fetal corticosterone is a candidate hormone as a fetal stress signal. Objective Test the hypothesis that preferential fetal corticosterone synthesis occurs in response to fetal intra-partum stress. Design Cross-sectional comparison of paired serum corticosteroid concentrations in umbilical artery and vein from 300 women providing consent at admission to a General Hospital Labor and Delivery unit. Pre-term and multiple births were excluded, leaving 265 healthy deliveries. Main Outcome Measures Corticosterone and cortisol concentrations determined by LC-MS/MS for umbilical cord venous (V) and arterial (A) samples and used to calculate fetal synthesis (A−V) and proportional fetal synthesis ([A−V]/V). Chart-derived criteria stratified samples by type of delivery, maternal regional analgesia, augmentation of contractions, and clinical rationale for emergent Caesarian delivery. Results Cortisol concentrations were higher than corticosterone concentrations; however, the fetus preferentially secretes corticosterone (148% vs 49% proportional increase for cortisol) and differentially secretes corticosterone as fetal stress increases. Fetal corticosterone synthesis is elevated after passage through the birth canal relative to Caesarian deliveries. For vaginal deliveries, augmentation of contractions does not affect corticosteroid concentrations whereas maternal regional analgesia decreases venous (maternal) concentrations and increases fetal synthesis. Fetal corticosterone synthesis is also elevated after C-section indicated by cephalopelvic disproportion after labor, whereas cortisol is not. Conclusions The full-term fetus preferentially secretes corticosterone in response to fetal stress during delivery. Fetal corticosterone could serve as a biomarker of fetal stress. PMID:23798989
Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease
Rodríguez-Rodríguez, Pilar; Ramiro-Cortijo, David; Reyes-Hernández, Cynthia G.; López de Pablo, Angel L.; González, M. Carmen; Arribas, Silvia M.
2018-01-01
Lifestyle and genetic background are well known risk factors of cardiovascular disease (CVD). A third contributing factor is suboptimal fetal development, due to nutrient or oxygen deprivation, placental insufficiency, or exposure to toxic substances. The fetus adapts to adverse intrauterine conditions to ensure survival; the immediate consequence is low birth weight (LBW) and the long-term effect is an increased susceptibility to develop CVD in adult life. This process is known as Developmental Origins of Health and Disease (DOHaD) or fetal programming of CVD. The influence of fetal life for the future cardiovascular health of the individual has been evidenced by numerous epidemiologic studies in populations suffering from starvation during intrauterine life. Furthermore, experimental animal models have provided support and enabled exploring the underlying mechanisms. Oxidative stress seems to play a central role in fetal programming of CVD, both in the response of the feto-placental unit to the suboptimal intrauterine environment and in the alterations of physiologic systems of cardiovascular control, ultimately leading to disease. This review aims to summarize current knowledge on the alterations in oxidative balance in response to fetal stress factors covering two aspects. Firstly, the evidence from human studies of the implication of oxidative stress in LBW induced by suboptimal conditions during intrauterine life, emphasizing the role of the placenta. In the second part we summarize data on specific redox alterations in key cardiovascular control organs induced by exposure to known stress factors in experimental animals and discuss the emerging role of the mitochondria. PMID:29875698
I've got a feeling: Urban and rural indigenous children's beliefs about early life mentality.
Emmons, Natalie A; Kelemen, Deborah A
2015-10-01
This cross-cultural investigation explored children's reasoning about their mental capacities during the earliest period of human physical existence--the prenatal period. For comparison, children's reasoning about the observable period of infancy was also examined. A total of 283 5- to 12-year-olds from two distinct cultures (urban Ecuador and rural indigenous Shuar) participated. Across cultures, children distinguished the fetal period from infancy, attributing fewer capacities to fetuses. However, for both the infancy and fetal periods, children from both cultures privileged the functioning of emotions and desires over epistemic states (i.e., abilities for thought and memory). Children's justifications to questions about fetal mentality revealed that although epistemic states were generally regarded as requiring physical maturation to function, emotions and desires were seen as functioning as a de facto result of prenatal existence and in response to the prospect of future birth and being part of a social group. These results show that from early in development, children across cultures possess nuanced beliefs about the presence and functioning of mental capacities. Findings converge with recent results to suggest that there is an early arising bias to view emotions and desires as the essential inviolable core of human mentality. The current findings have implications for understanding the role that emerging cognitive biases play in shaping conceptions of human mentality across different cultures. They also speak to the cognitive foundations of moral beliefs about fetal rights. Copyright © 2015 Elsevier Inc. All rights reserved.
Examining the transplacental passage of apixaban using the dually perfused human placenta.
Bapat, P; Pinto, L S R; Lubetsky, A; Aleksa, K; Berger, H; Koren, G; Ito, S
2016-07-01
Essentials Apixaban is a novel oral anticoagulant that has not been studied in pregnant patients. Our objective was to determine the rate and extent of the placental transfer of apixaban. Apixaban rapidly crosses the ex vivo term human placenta from maternal to fetal circulation. Fetal apixaban levels in vivo are estimated to be 35-90% of the corresponding maternal levels. Background Apixaban is a novel oral anticoagulant that is increasingly being prescribed to women of reproductive age. However, information regarding its placental transfer is non-existent. Objective To determine the rate and extent of placental transfer of apixaban, using the human placenta ex vivo. Methods Placentae collected after Caesarean or vaginal delivery of healthy term infants were perfused in the respective maternal and fetal circulation. At the start of the experiment, apixaban was added to the maternal circulation at a concentration of 150 ng mL(-1) , and samples from maternal and fetal reservoirs were collected over 3 h. Results There was a rapid decline of apixaban in the maternal compartment, followed by emergence in the fetal compartment with a median fetal-to-maternal drug concentration ratio of 0.77 (interquartile range [IQR], 0.76-0.81) and fetal concentration of 39.0 ng mL(-1) (IQR, 36.8-40.6) after 3 h (n = 5). The perfusion results were subsequently adjusted to account for differences in the concentration of plasma proteins in maternal and fetal blood, as apixaban remains highly bound to albumin and alpha-1 acid glycoprotein. After the adjustment, the predicted fetal-to-maternal ratio of total (bound plus unbound) apixaban concentrations in vivo ranged from 0.35 to 0.90. Conclusions We conclude that unbound apixaban rapidly crosses from the maternal to fetal circulation. We further predict that total apixaban concentrations in cord blood in vivo are 35-90% of the corresponding maternal levels, suggesting that apixaban could have a possible adverse effect on fetal and neonatal coagulation. © 2016 International Society on Thrombosis and Haemostasis.
Kwan, Sze Ting (Cecilia); Yan, Jian; Klatt, Kevin C.; Jiang, Xinyin; Roberson, Mark S.; Caudill, Marie A.
2017-01-01
Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/− (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/− female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/− mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline. PMID:28718809
Nijland, Mark J; Mitsuya, Kozoh; Li, Cun; Ford, Stephen; McDonald, Thomas J; Nathanielsz, Peter W; Cox, Laura A
2010-01-01
Decreased maternal nutrient availability during pregnancy induces compensatory fetal metabolic and endocrine responses. Knowledge of cellular changes involved is critical to understanding normal and abnormal development. Several studies in rodents and sheep report increased fetal plasma cortisol and associated increased gluconeogenesis in response to maternal nutrient reduction (MNR) but observations in primates are lacking. We determined MNR effects on fetal liver phosphoenolpyruvate carboxykinase 1 (protein, PEPCK1; gene, PCK1 orthologous/homologous human chromosomal region 20q13.31) at 0.9 gestation (G). Female baboon social groups were fed ad libitum (control, CTR) or 70% CTR (MNR) from 0.16 to 0.9G when fetuses were delivered by caesarean section under general anaesthesia. Plasma cortisol was elevated in fetuses of MNR mothers (P < 0.05). Immunoreactive PEPCK1 protein was located around the liver lobule central vein and was low in CTR fetuses but rose to 63% of adult levels in MNR fetuses. PCK1 mRNA measured by QRT-PCR increased in MNR (2.3-fold; P < 0.05) while the 25% rise in protein by Western blot analysis was not significant. PCK1 promoter methylation analysis using bisulfite sequencing was significantly reduced in six out of nine CpG-dinucleotides evaluated in MNR compared with CTR liver samples. In conclusion, these are the first data from a fetal non-human primate indicating hypomethylation of the PCK1 promoter in the liver following moderate maternal nutrient reduction. PMID:20176628
EFFECTS OF ENVIRONMENTAL ANTIANDROGENS IN EXPERIMENTAL ANIMALS
In mammals, the androgens testosterone (T) and dihydrotestosterone (DHT) are critical for normal male reproductive development and function. In humans, drugs that act as androgen receptor (AR) agonists and antagonists or inhibit fetal steroidogenesis can cause pseudohermaphrodi...
Dunford, Louise J; Sinclair, Kevin D; Kwong, Wing Y; Sturrock, Craig; Clifford, Bethan L; Giles, Tom C; Gardner, David S
2014-11-01
This paper identifies a common nutritional pathway relating maternal through to fetal protein-energy malnutrition (PEM) and compromised fetal kidney development. Thirty-one twin-bearing sheep were fed either a control (n=15) or low-protein diet (n=16, 17 vs. 8.7 g crude protein/MJ metabolizable energy) from d 0 to 65 gestation (term, ∼ 145 d). Effects on the maternal and fetal nutritional environment were characterized by sampling blood and amniotic fluid. Kidney development was characterized by histology, immunohistochemistry, vascular corrosion casts, and molecular biology. PEM had little measureable effect on maternal and fetal macronutrient balance (glucose, total protein, total amino acids, and lactate were unaffected) or on fetal growth. PEM decreased maternal and fetal urea concentration, which blunted fetal ornithine availability and affected fetal hepatic polyamine production. For the first time in a large animal model, we associated these nutritional effects with reduced micro- but not macrovascular development in the fetal kidney. Maternal PEM specifically impacts the fetal ornithine cycle, affecting cellular polyamine metabolism and microvascular development of the fetal kidney, effects that likely underpin programming of kidney development and function by a maternal low protein diet. © FASEB.
Cardioprotective stress response in the human fetal heart.
Coles, John G; Boscarino, Cathy; Takahashi, Mark; Grant, Diane; Chang, Astra; Ritter, Julia; Dai, Xiaojing; Du, Changqing; Musso, Gabriel; Yamabi, Hideaki; Goncalves, Jason; Kumar, Ashu Sunny; Woodgett, James; Lu, Huanzhang; Hannigan, Gregory
2005-05-01
We propose that the fetal heart is highly resilient to hypoxic stress. Our objective was to elucidate the human fetal gene expression profile in response to simulated ischemia and reperfusion to identify molecular targets that account for the innate cardioprotection exhibited by the fetal phenotype. Primary cultures of human fetal cardiac myocytes (gestational age, 15-20 weeks) were exposed to simulated ischemia and reperfusion in vitro by using a simulated ischemic buffer under anoxic conditions. Total RNA from treated and baseline cells were isolated, reverse transcribed, and labeled with Cy3 or Cy5 and hybridized to a human cDNA microarray for expression analysis. This analysis revealed a highly significant (false discovery rate, <3%) suppression of interleukin 6 transcript levels during the reperfusion phase confirmed by means of quantitative polymerase chain reaction (0.25 +/- 0.11-fold). Interleukin 6 signaling during ischemia and reperfusion was assessed at the protein expression level by means of Western measurements of interleukin 6 receptor, the signaling subunit of the interleukin 6 receptor complex (gp130), and signal transducer of activated transcription 3. Posttranslational changes in the protein kinase B signaling pathway were determined on the basis of the phosphorylation status of protein kinase B, mitogen-activated protein kinase, and glycogen synthase kinase 3beta. The effect of suppression of a prohypertrophic kinase, integrin-linked kinase, with short-interfering RNA was determined in an ischemia and reperfusion-stressed neonatal rat cardiac myocyte model. Endogenous secretion of interleukin 6 protein in culture supernatants was measured by enzyme-linked immunosorbent assay. Human fetal cardiac myocytes exhibited a significantly lower rate of apoptosis induction during ischemia and reperfusion and after exposure to staurosporine and recombinant interleukin 6 compared with that observed in neonatal rat cardiac myocytes ( P < .05 for all comparisons, analysis of variance). Exposure to exogenously added recombinant interleukin 6 increased the apoptotic rate in both rat and human fetal cardiac myocytes ( P < .05). Short-interfering RNA-mediated suppression of integrin-linked kinase, a prohypertrophy upstream kinase regulating protein kinase B and glycogen synthase kinase 3beta phosphorylation, was cytoprotective against ischemia and reperfusion-induced apoptosis in neonatal rat cardiac myocytes ( P < .05). Human fetal cardiac myocytes exhibit a uniquely adaptive transcriptional response to ischemia and reperfusion that is associated with an apoptosis-resistant phenotype. The stress-inducible fetal cardiac myocyte gene repertoire is a useful platform for identification of targets relevant to the mitigation of cardiac ischemic injury and highlights a novel avenue involving interleukin 6 modulation for preventing the cardiac myocyte injury associated with ischemia and reperfusion.
Localization of mRNA for CHRNA7 in human fetal brain.
Agulhon, C; Abitbol, M; Bertrand, D; Malafosse, A
1999-08-02
The aim of this study was to determine the regional distribution in situ of the mRNA for the alpha 7 subunit of the neuronal nicotinic acetylcholine receptor in human fetal brain. We found high levels of alpha 7 gene expression in nuclei that receive sensory information, such as those of the neocortex and hippocampus, the thalamic nuclei, the reticular thalamic nucleus, the pontine nuclei and the superior olive complex. These data support a possible regulatory function for alpha 7-containing receptors in sensory processing, which may be involved in the pathological physiology of schizophrenia and autism. Early alpha 7 gene expression is also consistent with a morphogenetic role for alpha 7 receptors in central nervous system development.
Adrenergic receptors in human fetal liver membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falkay, G.; Kovacs, L.
1990-01-01
The adrenergic receptor binding capacities in human fetal and adult livers were measured to investigate the mechanism of the reduced alpha-1 adrenoreceptor response of the liver associated with a reciprocal increase in beta-adrenoreceptor activity in a number of conditions. Alpha-1 and beta-adrenoreceptor density were determined using {sup 3}H-prazosin and {sup 3}H-dihydroalprenolol, respectively, as radioligand. Heterogeneous populations of beta-adrenoreceptors were found in fetal liver contrast to adult. Decreased alpha-1 and increased beta-receptor density were found which may relate to a decreased level in cellular differentiation. These findings may be important for the investigation of perinatal hypoglycemia of newborns after treatment ofmore » premature labor with beta-mimetics. This is the first demonstration of differences in the ratio of alpha-1 and beta-adrenoceptors in human fetal liver.« less
Prenatal Exposure to Maternal Depression and Cortisol Influences Infant Temperament
ERIC Educational Resources Information Center
Davis, Elysia Poggi; Glynn, Laura M.; Schetter, Christine Dunkel; Hobel, Calvin; Chicz-Demet, Aleksandra; Sandman, Curt A.
2007-01-01
Background: Accumulating evidence indicates that prenatal maternal and fetal processes can have a lasting influence on infant and child development. Results from animal models indicate that prenatal exposure to maternal stress and stress hormones has lasting consequences for development of the offspring. Few prospective studies of human pregnancy…
Biology Today: New Developments in Reproductive Biology.
ERIC Educational Resources Information Center
Flannery, Maura C.
1982-01-01
Briefly reviews research studies focusing on sex differences in the human brain. One study suggests that the presence of androgens either during fetal development or at puberty (rather than their continued presence) determines spatial ability. Cautions against accepting this hypothesis of hormonal influence of spatial ability are discussed.…
Fetal tissue research: an ongoing story of professionally responsible success.
Gelber, Shari E; McCullough, Laurence B; Chervenak, Frank A
2015-12-01
Therapies derived from fetal tissue research are some of the greatest success stories in medicine. Research using fetal tissue has allowed for development of vaccines for numerous diseases including polio, rubella, and measles. These vaccines have saved countless lives, improved quality of life, and decreased the need for induced abortion secondary to congenital infection. Research using cell lines derived from fetal tissue has assisted in better understanding disease pathogenesis and has served to produce human proteins as research reagents and therapies. Ongoing research points to the potential for fetal tissue to be used to cure debilitating diseases such as Parkinson disease. These scientific and medical advances are dependent on the use of fetal tissue from aborted fetuses. While the practice of induced abortion despite societal benefit may be theologically objectionable to some, these practices are professionally responsible. Federal regulations exist to discourage patients from being influenced by the societal benefit of fetal research in arriving at the decision to terminate as well as to prevent researchers from influencing a patient's decision. After a patient has chosen termination of pregnancy, it is consistent with professional responsibility to allow her to choose the disposition of the cadaveric fetal tissue. While some may view induced abortion and societal benefit from this practice as an ethical burden, the principle of justice makes it ethically obligatory to bear this ethical burden. The success story of cadaveric fetal tissue research and treatment should continue unhindered, to fulfill professional responsibility to current and future patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Frasch, Martin G; Keen, Ashley E; Gagnon, Robert; Ross, Michael G; Richardson, Bryan S
2011-01-01
Severe fetal acidemia during labour with arterial pH below 7.00 is associated with increased risk of hypoxic-ischemic brain injury. Electronic fetal heart rate (FHR) monitoring, the mainstay of intrapartum surveillance, has poor specificity for detecting fetal acidemia. We studied brain electrical activity measured with electrocorticogram (ECOG) in the near term ovine fetus subjected to repetitive umbilical cord occlusions (UCO) inducing FHR decelerations, as might be seen in human labour, to delineate the time-course for ECOG changes with worsening acidemia and thereby assess the potential clinical utility of fetal ECOG. Ten chronically catheterized fetal sheep were studied through a series of mild, moderate and severe UCO until the arterial pH was below 7.00. At a pH of 7.24 ± 0.04, 52 ± 13 min prior to the pH dropping <7.00, spectral edge frequency (SEF) increased to 23 ± 2 Hz from 3 ± 1 Hz during each FHR deceleration (p<0.001) and was correlated to decreases in FHR and in fetal arterial blood pressure during each FHR deceleration (p<0.001). The UCO-related changes in ECOG occurred in advance of the pH decreasing below 7.00. These ECOG changes may be a protective mechanism suppressing non-essential energy needs when oxygen supply to the fetal brain is decreased acutely. By detecting such "adaptive brain shutdown," the need for delivery in high risk pregnant patients may be more accurately predicted than with FHR monitoring alone. Therefore, monitoring fetal electroencephalogram (EEG, the human equivalent of ECOG) during human labour may be a useful adjunct to FHR monitoring.
Frasch, Martin G.; Keen, Ashley E.; Gagnon, Robert; Ross, Michael G.; Richardson, Bryan S.
2011-01-01
Background Severe fetal acidemia during labour with arterial pH below 7.00 is associated with increased risk of hypoxic-ischemic brain injury. Electronic fetal heart rate (FHR) monitoring, the mainstay of intrapartum surveillance, has poor specificity for detecting fetal acidemia. We studied brain electrical activity measured with electrocorticogram (ECOG) in the near term ovine fetus subjected to repetitive umbilical cord occlusions (UCO) inducing FHR decelerations, as might be seen in human labour, to delineate the time-course for ECOG changes with worsening acidemia and thereby assess the potential clinical utility of fetal ECOG. Methodology/Principal Findings Ten chronically catheterized fetal sheep were studied through a series of mild, moderate and severe UCO until the arterial pH was below 7.00. At a pH of 7.24±0.04, 52±13 min prior to the pH dropping <7.00, spectral edge frequency (SEF) increased to 23±2 Hz from 3±1 Hz during each FHR deceleration (p<0.001) and was correlated to decreases in FHR and in fetal arterial blood pressure during each FHR deceleration (p<0.001). Conclusions/Significance The UCO-related changes in ECOG occurred in advance of the pH decreasing below 7.00. These ECOG changes may be a protective mechanism suppressing non-essential energy needs when oxygen supply to the fetal brain is decreased acutely. By detecting such “adaptive brain shutdown,” the need for delivery in high risk pregnant patients may be more accurately predicted than with FHR monitoring alone. Therefore, monitoring fetal electroencephalogram (EEG, the human equivalent of ECOG) during human labour may be a useful adjunct to FHR monitoring. PMID:21789218
Effects of estrogen coadministration on epoxiconazole toxicity in rats.
Stinchcombe, Stefan; Schneider, Steffen; Fegert, Ivana; Rey Moreno, Maria Cecilia; Strauss, Volker; Gröters, Sibylle; Fabian, Eric; Fussell, Karma C; Pigott, Geoffrey H; van Ravenzwaay, Bennard
2013-06-01
Epoxiconazole (EPX; CAS-No. 133855-98-8) is a triazole class-active substance of plant protection products. At a dose level of 50 mg/kg bw/day, it causes a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (gestation day [GD] 7-18 or 21), as reported previously (Taxvig et al., 2007, 2008) and confirmed in these studies. Late fetal resorptions occurred in the presence of significant maternal toxicity such as clear reduction of corrected body weight gain, signs of anemia, and, critically, a marked reduction of maternal estradiol plasma levels. Furthermore, estradiol supplementation at dose levels of 0.5 or 1.0 μg/animal/day of estradiol cyclopentylpropionate abolished the EPX-mediated late fetal resorptions. No increased incidences of external malformations were found in rats cotreated with 50 mg/kg bw/day EPX and estradiol cyclopentylpropionate, indicating that the occurrence of malformations was not masked by fetal mortality under the study conditions. Overall, the study data indicate that fetal mortality observed in rat studies with EPX is not the result of direct fetal toxicity but occurs indirectly via depletion of maternal estradiol levels. The clarification of the human relevance of the estrogen-related mechanism behind EPX-mediated late fetal resorptions in rats warrants further studies. In particular, this should involve investigation of the placenta (Rey Moreno et al., 2013), since it is the materno-fetal interface and crucial for fetal maintenance. The human relevance is best addressed in a species which is closer to humans with reference to placentation and hormonal regulation of pregnancy, such as the guinea pig (Schneider et al., 2013). © 2013 Wiley Periodicals, Inc.
Satterfield, M Carey; Bazer, Fuller W; Spencer, Thomas E; Wu, Guoyao
2010-02-01
Adequate placental blood flow is essential for the optimal delivery of nutrients from mother to fetus for conceptus growth. Restricted fetal development results from pathophysiological and environmental factors that alter utero-placental blood flow, placental function, and, therefore, nutrient availability in the fetus. To test this hypothesis, 0, 75, or 150 mg/d sildenafil citrate (Viagra) was administered subcutaneously from d 28 to 115 of gestation to either nutrient-restricted [50% of NRC requirements) or adequately-fed ewes (100% of NRC requirements). On d 115, maternal, fetal, and placental tissues and fluids were collected. Concentrations of total amino acids and polyamines in uterine venous and arterial sera, amniotic and allantoic fluids, and fetal umbilical venous serum were lower (P < 0.05) in nutrient-restricted ewes than in adequately fed ewes, as were the ratios of total amino acids in fetal umbilical venous serum to uterine arterial serum. Sildenafil citrate dose-dependently increased (P < 0.05) total amino acids and polyamines in amniotic fluid, allantoic fluid, and fetal serum without affecting values in maternal serum. Fetal weight was lower (P < 0.05) in nutrient-restricted ewes on d 115. Sildenafil citrate treatment dose-dependently increased (P < 0.05) fetal weight in both nutrient-restricted and adequately fed ewes. This study supports the hypothesis that long-term sildenafil citrate treatment enhances fetal growth, at least in part, by increasing the availability of amino acids in the conceptus. These findings may lead to the clinical use of sildenafil citrate in human pregnancies suspected to be at risk for intrauterine fetal growth retardation.
Fetal thrombocytopenia in pregnancies with fetal human parvovirus-B19 infection.
Melamed, Nir; Whittle, Wendy; Kelly, Edmond N; Windrim, Rory; Seaward, P Gareth R; Keunen, Johannes; Keating, Sarah; Ryan, Greg
2015-06-01
Fetal infection with human parvovirus B19 (hParvo-B19) has been associated mainly with fetal anemia, although data regarding other fetal hematologic effects are limited. Our aim was to assess the rate and consequences of severe fetal thrombocytopenia after fetal hParvo-B19 infection. We conducted a retrospective study of pregnancies that were complicated by fetal hParvo-B19 infection that underwent fetal blood sampling (FBS). The characteristics and outcomes of fetuses with severe thrombocytopenia (<50 × 10(9)/L) were compared with those of fetuses with a platelet concentration of ≥50 × 10(9)/L (control fetuses). Fetuses in whom 3 FBSs were performed (n = 4) were analyzed to assess the natural history of platelet levels after fetal hParvo-B19 infection. A total of 37 pregnancies that were affected by fetal hParvo-B19 infection were identified. Of the 29 cases that underwent FBS and had information regarding fetal platelets, 11 cases (38%) were complicated by severe fetal thrombocytopenia. Severely thrombocytopenic fetuses were characterized by a lower hemoglobin concentration (2.6 ± 0.9 g/dL vs 5.5 ± 3.6 g/dL; P = .01), lower reticulocyte count (9.1% ± 2.8% vs 17.3% ± 10.6%; P = .02), and lower gestational age at the time of diagnosis (21.4 ± 3.1 wk vs 23.6 ± 2.2 wk; P = .03). Both the fetal death rate within 48 hours of FBS (27.3% vs 0%; P = .02) and the risk of prematurity (100.0% vs 13.3%; P < .001) were higher in fetuses with severe thrombocytopenia. Fetal thrombocytopenia was more common during the second trimester but, in some cases, persisted into the third trimester. Intrauterine transfusion (IUT) of red blood cells resulted in a further mean decrease of 40.1% ± 31.0% in fetal platelet concentration. Severe fetal thrombocytopenia is relatively common after fetal hParvo-B19 infection, can be further worsened by IUT, and may be associated with an increased risk of procedure-related fetal loss after either FBS or IUT. Copyright © 2015. Published by Elsevier Inc.
Autoradiographic localization of specific (/sup 3/H)dexamethasone binding in fetal lung
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, D.G.; Butley, M.S.; Cunha, G.R.
1984-10-01
The cellular and subcellular localization of specific (/sup 3/H)dexamethasone binding was examined in fetal mouse lung at various stages of development and in human fetal lung at 8 weeks of gestation using a rapid in vitro steroid incubation technique followed by thaw-mount autoradiography. Competition studies with unlabeled steroids demonstrate the specificity of (/sup 3/H)dexamethasone labeling, and indicate that fetal lung mesenchyme is a primary glucocorticoid target during lung development. Autoradiographs of (/sup 3/H)dexamethasone binding in lung tissue at early stages of development demonstrate that the mesenchyme directly adjacent to the more proximal portions of the bronchiolar network is heavily labeled.more » In contrast, the epithelium which will later differentiate into bronchi and bronchioles, is relatively unlabeled. Distal portions of the growing epithelium, destined to become alveolar ducts and alveoli, do show nuclear localization of (/sup 3/H)dexamethasone. In addition, by utilizing a technique which allows the simultaneous examination of extracellular matrix components and (/sup 3/H)dexamethasone binding, a relationship is observed between extensive mesenchymal (/sup 3/H)dexamethasone binding and extensive extracellular matrix accumulation. Since glucocorticoids stimulate the synthesis of many extracellular matrix components, these results suggest a role for these hormones in affecting mesenchymal-epithelial interactions during lung morphogenesis.« less
Influences of pre- and postnatal nutritional exposures on vascular/endocrine systems in animals.
Hoet, J J; Ozanne, S; Reusens, B
2000-01-01
Human epidemiological and animal studies have revealed the long-term effects of malnutrition during gestation and early life on the health of the offspring. The aim of the current review is to survey the different means of achieving fetal malnutrition and its consequences, mainly in animals, and to identify key areas in which to direct future research. We address the impact of various models of a maternal protein-restricted diet and global maternal caloric restriction (either through the reduction of nutrient supply or through mechanic devices), the influence of maternal diabetes, and other maternal causes of fetal damage (maternal infections and toxic food components). More specifically, we enumerate data on how the different insults at different prenatal and early postnatal periods affect and program the development and the function of organs involved in diabetes, hypertension, and cardiovascular disease. Particular emphasis is given to the endocrine pancreas, but insulin-sensitive tissues, kidneys, and vasculature are also analyzed. Where available, the protective effects of maternal food supplementation for fetal organ development and function are discussed. Specific attention is paid to the amino acids profile, and the preventive role of taurine is discussed. Tentative indications about critical time windows for fetal development under different deleterious conditions are presented whenever possible. We also discuss future research and intervention. PMID:10852855
Chan, Shiao Y; Andrews, Marcus H; Lingas, Rania; McCabe, Chris J; Franklyn, Jayne A; Kilby, Mark D; Matthews, Stephen G
2005-01-01
Thyroid hormone deprivation during fetal life has been implicated in neurodevelopmental morbidity. In humans, poor growth in utero is also associated with fetal hypothyroxinaemia. In guinea pigs, a short period (48 h) of maternal nutrient deprivation at gestational day (gd) 50 results in fetuses with hypothyroxinaemia and increased brain/body weight ratios. Thyroid hormone action is mediated by nuclear thyroid hormone receptors (TRs) and is dependent upon the prereceptor regulation of supply of triiodothyronine (T3) by deiodinase enzymes. Examination of fetal guinea pig brains using in situ hybridization demonstrated widespread expression of mRNAs encoding TRα1, α2 and β1, with regional colocalization of deiodinase type 2 (D2) mRNA in the developing forebrain, limbic structures, brainstem and cerebellum at gd52. With maternal nutrient deprivation, TRα1 and β1 mRNA expression was significantly increased in the male, but decreased in the female fetal hippocampus and cerebellum and other areas showing high TR expression under euthyroid conditions. Maternal nutrient deprivation resulted in elevated D2 mRNA expression in males and females. Deiodinase type 3 (D3) mRNA expression was confined to the shell of the nucleus accumbens, the posterior amygdalohippocampal area, brainstem and cerebellum, and did not change with maternal nutrient deprivation. In conclusion, maternal nutrient deprivation resulted in sex-specific changes in TR mRNA expression and a generalized increase in D2 mRNAs within the fetal brain. These changes may represent a protective mechanism to maintain appropriate thyroid hormone action in the face of fetal hypothyroxinaemia in order to optimize brain development. PMID:15878952
Saffarini, Camelia M.; McDonnell-Clark, Elizabeth V.; Amin, Ali; Huse, Susan M.; Boekelheide, Kim
2015-01-01
Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM) isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure. PMID:25799167
Fetal Iron Deficiency and Genotype Influence Emotionality in Infant Rhesus Monkeys123
Golub, Mari S; Hogrefe, Casey E
2015-01-01
Background: Anemia during the third trimester of fetal development affects one-third of the pregnancies in the United States and has been associated with postnatal behavioral outcomes. This study examines how fetal iron deficiency (ID) interacts with the fetal monoamine oxidase A (MAOA) genotype. MAOA metabolizes monoamine neurotransmitters. MAOA polymorphisms in humans affect temperament and modify the influence of early adverse environments on later behavior. Objective: The aim of the study was to advance translation of developmental ID research in animal models by taking into account genetic factors that influence outcomes in human populations. Methods: Male infant rhesus monkeys 3–4 mo old born to mothers fed an ID (10 ppm iron) diet were compared with controls (100 ppm iron). Infant monkeys with high- or low-transcription rate MAOA polymorphisms were equally distributed between diet groups. Behavioral responses to a series of structured experiences were recorded during a 25-h separation of the infants from their mothers. Results: Infant monkeys with low-transcription MAOA polymorphisms more clearly demonstrated the following ID effects suggested in earlier studies: a 4% smaller head circumference, a 39% lower cortisol response to social separation, a 129% longer engagement with novel visual stimuli, and 33% lesser withdrawal in response to a human intruder. The high MAOA genotype ID monkeys demonstrated other ID effects: less withdrawal and emotionality after social separation and lower “fearful” ratings. Conclusion: MAOA × ID interactions support the role of monoamine neurotransmitters in prenatal ID effects in rhesus monkeys and the potential involvement of common human polymorphisms in determining the pattern of neurobehavioral effects produced by inadequate prenatal nutrition. PMID:25733484
Pepe, Gerald J.; Lynch, Terrie J.; Albrecht, Eugene D.
2013-01-01
ABSTRACT Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen. PMID:24132960
Pepe, Gerald J; Lynch, Terrie J; Albrecht, Eugene D
2013-12-01
Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen.
Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P
2015-01-01
BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. CONCLUSIONS Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. Prostate 75: 764–776, 2015. © The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25663004
Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P
2015-05-01
Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44⁻ CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44⁻ CD49f(Hi) FC, adult Epcam⁺ CD44⁻ CD49f(Hi) TIC, Epcam⁺ CD44⁺ CD49f(Hi) basal cells (BC), and Epcam⁺ CD44⁻ CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.
Gangisetty, Omkaram; Wynne, Olivia; Jabbar, Shaima; Nasello, Cara; Sarkar, Dipak K.
2015-01-01
Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells. PMID:26509893
Gao, Shuai; Yan, Liying; Wang, Rui; Li, Jingyun; Yong, Jun; Zhou, Xin; Wei, Yuan; Wu, Xinglong; Wang, Xiaoye; Fan, Xiaoying; Yan, Jie; Zhi, Xu; Gao, Yun; Guo, Hongshan; Jin, Xiao; Wang, Wendong; Mao, Yunuo; Wang, Fengchao; Wen, Lu; Fu, Wei; Ge, Hao; Qiao, Jie; Tang, Fuchou
2018-06-01
The development of the digestive tract is critical for proper food digestion and nutrient absorption. Here, we analyse the main organs of the digestive tract, including the oesophagus, stomach, small intestine and large intestine, from human embryos between 6 and 25 weeks of gestation as well as the large intestine from adults using single-cell RNA-seq analyses. In total, 5,227 individual cells are analysed and 40 cell types clearly identified. Their crucial biological features, including developmental processes, signalling pathways, cell cycle, nutrient digestion and absorption metabolism, and transcription factor networks, are systematically revealed. Moreover, the differentiation and maturation processes of the large intestine are thoroughly investigated by comparing the corresponding transcriptome profiles between embryonic and adult stages. Our work offers a rich resource for investigating the gene regulation networks of the human fetal digestive tract and adult large intestine at single-cell resolution.
Experimental intrauterine growth retardation.
van Marthens, E; Harel, S; Zamenshof, S
1975-01-01
The effects of experimental intrauterine growth retardation on subsequent fetal development, especially with respect to brain development, were studied in a new animal model. The rabbit was chosen since it has a perinatal pattern of brain development similar to that of the human. Experimental ischemia was induced during the last trimester by ligation of spiral arterioles and the differential effects on fetal development at term (30th gestational day) are reported. Specific brain regions were examined for wet weight, total cell number (DNA) and total protein content. Highly significant decreases in all these parameters were found in both the cortex and cerebellum following experimental intrauterine growth retardation; these two organs were differentially affected. The prospects and advantages of using this animal model for the study of the postnatal "catch-up growth" are discussed.
Amniotic fluid: the use of high-dimensional biology to understand fetal well-being.
Kamath-Rayne, Beena D; Smith, Heather C; Muglia, Louis J; Morrow, Ardythe L
2014-01-01
Our aim was to review the use of high-dimensional biology techniques, specifically transcriptomics, proteomics, and metabolomics, in amniotic fluid to elucidate the mechanisms behind preterm birth or assessment of fetal development. We performed a comprehensive MEDLINE literature search on the use of transcriptomic, proteomic, and metabolomic technologies for amniotic fluid analysis. All abstracts were reviewed for pertinence to preterm birth or fetal maturation in human subjects. Nineteen articles qualified for inclusion. Most articles described the discovery of biomarker candidates, but few larger, multicenter replication or validation studies have been done. We conclude that the use of high-dimensional systems biology techniques to analyze amniotic fluid has significant potential to elucidate the mechanisms of preterm birth and fetal maturation. However, further multicenter collaborative efforts are needed to replicate and validate candidate biomarkers before they can become useful tools for clinical practice. Ideally, amniotic fluid biomarkers should be translated to a noninvasive test performed in maternal serum or urine.
The impact of IUGR on pancreatic islet development and β-cell function.
Boehmer, Brit H; Limesand, Sean W; Rozance, Paul J
2017-11-01
Placental insufficiency is a primary cause of intrauterine growth restriction (IUGR). IUGR increases the risk of developing type 2 diabetes mellitus (T2DM) throughout life, which indicates that insults from placental insufficiency impair β-cell development during the perinatal period because β-cells have a central role in the regulation of glucose tolerance. The severely IUGR fetal pancreas is characterized by smaller islets, less β-cells, and lower insulin secretion. Because of the important associations among impaired islet growth, β-cell dysfunction, impaired fetal growth, and the propensity for T2DM, significant progress has been made in understanding the pathophysiology of IUGR and programing events in the fetal endocrine pancreas. Animal models of IUGR replicate many of the observations in severe cases of human IUGR and allow us to refine our understanding of the pathophysiology of developmental and functional defects in islet from IUGR fetuses. Almost all models demonstrate a phenotype of progressive loss of β-cell mass and impaired β-cell function. This review will first provide evidence of impaired human islet development and β-cell function associated with IUGR and the impact on glucose homeostasis including the development of glucose intolerance and diabetes in adulthood. We then discuss evidence for the mechanisms regulating β-cell mass and insulin secretion in the IUGR fetus, including the role of hypoxia, catecholamines, nutrients, growth factors, and pancreatic vascularity. We focus on recent evidence from experimental interventions in established models of IUGR to understand better the pathophysiological mechanisms linking placental insufficiency with impaired islet development and β-cell function. © 2017 Society for Endocrinology.
Krentz, Anthony D.; Murphy, Mark W.; Zhang, Teng; Sarver, Aaron L.; Jain, Sanjay; Griswold, Michael D.; Bardwell, Vivian J.; Zarkower, David
2013-01-01
Dmrt1(doublesex and mab-3 related transcription factor 1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some variability in genetic background in these crosses, this result is consistent with previous genetic mapping of teratoma susceptibility loci to the region containing Gfra1. Using Nanos3-cre we also uncovered a strong genetic interaction between Dmrt1 and Nanos3, suggesting parallel functions for these two genes in fetal germ cells. Finally, we used chromatin immunoprecipitation (ChIP-seq) analysis to identify a number of potentially direct DMRT1 targets. This analysis suggested that DMRT1 controls pluripotency via transcriptional repression of Esrrb, Nr5a2/Lrh1, and Sox2. Given the strong evidence for involvement of DMRT1 in human TGCT, the downstream genes and pathways identified in this study provide potentially useful candidates for roles in the human disease. PMID:23473982
Ghetie, Victor
2003-01-01
Objective: The purpose of this study was to investigate the transport of inhibin A and to determine its effects on fetal vascular pressure at elevated levels in the human placenta using 125I -labeled synthetic glycoprotein. Methods: Synthetic inhibinAwas prepared and was shown to be consistent with the natural form by high-pressure liquid chromatography (HPLC) and molecular weight determination by gas-chromatography mass spectrometry. The standardized Na125I process yielded 125I -labeled inhibin A with a radioactivity of 106 cpm/μg. This compound was placed in the human placenta in maternal–fetal and fetal–maternal studies using antipyrine and 14C -labeled inulin as controls to determine the bidirectional transfer of the compound. Results: Maternal–fetal and fetal–maternal clearance indices were 0.045± 0.003 and 0, respectively. In eight placentas there was no evidence of vascular pressure changes due to the presence of up to 5000 pg of inhibin A. Conclusions: There is minimal maternal–fetal transfer and no detectable fetal–maternal transfer in normotensive and pregnancy-induced hypertensive placentas. In addition, there are no pressure changes in the fetal vascular system due to the clinically significant levels of inhibin A. PMID:14627215
A survey of human brain transcriptome diversity at the single cell level.
Darmanis, Spyros; Sloan, Steven A; Zhang, Ye; Enge, Martin; Caneda, Christine; Shuer, Lawrence M; Hayden Gephart, Melanie G; Barres, Ben A; Quake, Stephen R
2015-06-09
The human brain is a tissue of vast complexity in terms of the cell types it comprises. Conventional approaches to classifying cell types in the human brain at single cell resolution have been limited to exploring relatively few markers and therefore have provided a limited molecular characterization of any given cell type. We used single cell RNA sequencing on 466 cells to capture the cellular complexity of the adult and fetal human brain at a whole transcriptome level. Healthy adult temporal lobe tissue was obtained during surgical procedures where otherwise normal tissue was removed to gain access to deeper hippocampal pathology in patients with medical refractory seizures. We were able to classify individual cells into all of the major neuronal, glial, and vascular cell types in the brain. We were able to divide neurons into individual communities and show that these communities preserve the categorization of interneuron subtypes that is typically observed with the use of classic interneuron markers. We then used single cell RNA sequencing on fetal human cortical neurons to identify genes that are differentially expressed between fetal and adult neurons and those genes that display an expression gradient that reflects the transition between replicating and quiescent fetal neuronal populations. Finally, we observed the expression of major histocompatibility complex type I genes in a subset of adult neurons, but not fetal neurons. The work presented here demonstrates the applicability of single cell RNA sequencing on the study of the adult human brain and constitutes a first step toward a comprehensive cellular atlas of the human brain.
Aqueous Humor Rapidly Stimulates Myocilin Secretion from Human Trabecular Meshwork Cells
Resch, Zachary T.; Hann, Cheryl R.; Cook, Kimberly A.; Fautsch, Michael P.
2010-01-01
Myocilin, a protein associated with the development of glaucoma, is expressed in most eye tissues with highest expression observed in trabecular meshwork cells. In culture, primary human trabecular meshwork cells incubated in 10% fetal bovine serum have reduced myocilin expression compared to in vivo, but incubation in human aqueous humor, their normal in vivo nutrient source, restores myocilin expression to near in vivo levels. To investigate the mechanism by which human aqueous humor stimulates myocilin accumulation in conditioned media from normal human trabecular meshwork cells, three independent trabecular meshwork cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) containing various supplements: fetal bovine serum (10%), human serum (0.2%), porcine aqueous humor (50%), bovine serum albumin (0.1%), dexamethasone (10−7 M), human aqueous humor (50%) or heat-inactivated human aqueous humor (50%). Conditioned media from cultured primary trabecular meshwork cells following incubation in human aqueous humor showed significant accumulation of myocilin in a time- (15 minutes) and dose-dependent manner (half maximal effective concentration ~ 30%) while intracellular myocilin levels decreased. Minimal myocilin accumulation was observed in conditioned media isolated from trabecular meshwork cells cultured in DMEM containing fetal bovine or human serum, bovine serum albumin, porcine aqueous humor, dexamethasone or DMEM alone. Heat inactivation of human aqueous humor nearly eliminated human aqueous humor-stimulated myocilin secretion. Inhibitors of new protein synthesis, gene transcription, the endoplasmic reticulum/Golgi system and endocytic/exocytic secretory pathways failed to inhibit human aqueous humor-stimulated myocilin secretion. Using immunolabeling and transmission electron microscopy, myocilin was found associated with 70–90 nm vesicle-like structures within the cytoplasm of human aqueous humor treated trabecular meshwork cells. These studies suggest that myocilin secretion from trabecular meshwork cells occurs in a Golgi-independent manner following human aqueous humor treatment. Heat-labile factors in human aqueous humor are responsible for the time- and dose-dependent release of myocilin from vesicle-like structures within the cytoplasm of trabecular meshwork cells. PMID:20932969
Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.
Proshchina, Alexandra E; Krivova, Yulia S; Barabanov, Valeriy M; Saveliev, Sergey V
2014-01-01
The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.
Ontogeny of Neuro-Insular Complexes and Islets Innervation in the Human Pancreas
Proshchina, Alexandra E.; Krivova, Yulia S.; Barabanov, Valeriy M.; Saveliev, Sergey V.
2014-01-01
The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis. PMID:24795697
Rapid cortical oscillations and early motor activity in premature human neonate.
Milh, Mathieu; Kaminska, Anna; Huon, Catherine; Lapillonne, Alexandre; Ben-Ari, Yehezkel; Khazipov, Rustem
2007-07-01
Delta-brush is the dominant pattern of rapid oscillatory activity (8-25 Hz) in the human cortex during the third trimester of gestation. Here, we studied the relationship between delta-brushes in the somatosensory cortex and spontaneous movements of premature human neonates of 29-31 weeks postconceptional age using a combination of scalp electroencephalography and monitoring of motor activity. We found that sporadic hand and foot movements heralded the appearance of delta-brushes in the corresponding areas of the cortex (lateral and medial regions of the contralateral central cortex, respectively). Direct hand and foot stimulation also reliably evoked delta-brushes in the same areas. These results suggest that sensory feedback from spontaneous fetal movements triggers delta-brush oscillations in the central cortex in a somatotopic manner. We propose that in the human fetus in utero, before the brain starts to receive elaborated sensory input from the external world, spontaneous fetal movements provide sensory stimulation and drive delta-brush oscillations in the developing somatosensory cortex contributing to the formation of cortical body maps.
Rusu, M C; Motoc, A G M; Pop, F; Folescu, R
2013-01-01
Five samples of human midterm fetal uterus and fallopian tube (four donor bodies) were used to assess whether or not processes of angiogenesis are guided by endothelial tip cells (ETCs), and if cytokine-receptors, such as CD117/c-kit and PDGFR-α, are expressed in the microenvironment of the endothelial tubes. CD34 labeled microvessels in the uterine wall (myometrium and endometrium) and in the wall of the uterine (fallopian) tube, and accurately identified ETCs in both organs. We conclude that sprouting angiogenesis in the developing human female tract is guided by ETCs. Moreover, CD117/c-kit antibodies labeled mural networks of pericytes, α-SMA-positive and desmin-negative, related to the endometrial (but not myometrial) microvessels, and similar labeling was identified in the wall of the uterine tube. PDGFR-α positive labeling, stromal and pericytary, was also found. Thus, sprouting angiogenesis in human fetal genital organs appears to be guided by tip cells and is influenced by tyrosine kinase receptor signaling.
Generation and Characterization of JCV Permissive Hybrid Cell Lines
Sariyer, Ilker K.; Safak, Mahmut; Gordon, Jennifer; Khalili, Kamel
2009-01-01
JC virus (JCV) is a human neurotropic polyomavirus whose replication in the central nervous system induces the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). JCV particles have been detected primarily in oligodendrocytes and astrocytes of the brains of patients with PML and in the laboratory its propagation is limited to primary cultures of human fetal glial cells. In this short communication, the development of a new cell culture system is described through the fusion of primary human fetal astrocytes with the human glioblastoma cell line, U-87MG. The new hybrid cell line obtained from this fusion has the capacity to support efficiently expression of JCV and replication of viral DNA in vitro up to 16 passages. This cell line can serve as a reliable culture system to study the biology of JCV host cell interaction, determine the mechanisms involved in cell type specific replication of JCV, and provide a convenient cell culture system for high throughput screening of anti-viral agents. PMID:19442856
Zwier, M V; Baardman, M E; van Dijk, T H; Jurdzinski, A; Wisse, L J; Bloks, V W; Berger, R M F; DeRuiter, M C; Groen, A K; Plösch, T
2017-08-01
LDL receptor-related protein type 2 (LRP2) is highly expressed on both yolk sac and placenta. Mutations in the corresponding gene are associated with severe birth defects in humans, known as Donnai-Barrow syndrome. We here characterized the contribution of LRP2 and maternal plasma cholesterol availability to maternal-fetal cholesterol transport and fetal cholesterol levels in utero in mice. Lrp2 +/- mice were mated heterozygously to yield fetuses of all three genotypes. Half of the dams received a 0.5% probucol-enriched diet during gestation to decrease maternal HDL cholesterol. At E13.5, the dams received an injection of D7-labelled cholesterol and were provided with 1- 13 C acetate-supplemented drinking water. At E16.5, fetal tissues were collected and maternal cholesterol transport and fetal synthesis quantified by isotope enrichments in fetal tissues by GC-MS. The Lrp2 genotype did not influence maternal-fetal cholesterol transport and fetal cholesterol. However, lowering of maternal plasma cholesterol levels by probucol significantly reduced maternal-fetal cholesterol transport. In the fetal liver, this was associated with increased cholesterol synthesis rates. No indications were found for an interaction between the Lrp2 genotype and maternal probucol treatment. Maternal-fetal cholesterol transport and endogenous fetal cholesterol synthesis depend on maternal cholesterol concentrations but do not involve LRP2 in the second half of murine pregnancy. Our results suggest that the mouse fetus can compensate for decreased maternal cholesterol levels. It remains a relevant question how the delicate system of cholesterol transport and synthesis is regulated in the human fetus and placenta. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Manning, Lois R.; Russell, J. Eric; Popowicz, Anthony M.; Manning, Robert S.; Padovan, Julio C.; Manning, James M.
2013-01-01
A previously unrecognized function of normal human hemoglobins occurring during protein assembly is described - - self-regulation of subunit pairings and their durations arising from the variable strengths of their subunit interactions. Although it is known that many mutant human hemoglobins have altered subunit interface strengths, those of the normal embryonic, fetal, and adult human hemoglobins have not been considered to differ significantly. However, in a comprehensive study of both types of subunit interfaces of seven of the eight normal oxy human hemoglobins, we found that the strength, i.e. the free energies of the tetramer-dimer interfaces, contrary to previous reports, differ by 3-orders of magnitude and display an undulating profile similar to the transitions (“switches”) of various globin subunit types over time. The dimer interface strengths are also variable and correlate linearly with their developmental profile; embryonic hemoglobins are the weakest, fetal hemoglobin is of intermediate strength, and adult hemoglobins are the strongest. The pattern also correlates generally with their different O2 affinities and responses to allosteric regulatory molecules. Acetylation of fetal hemoglobin weakens its unusually strong subunit interactions and occurs progressively as its expression diminishes and adult hemoglobin A formations begins; a causal relationship is suggested. The relative contributions of globin gene order and competition among subunits due to differences in their interface strengths were found to be complementary and establish a connection between genetics, thermodynamics, and development. PMID:19583196
... other neural tube defects. Information from the National Library of Medicine’s MedlinePlus Neural Tube Defects ... by improper closure of the neural tube (the part of a human embryo that becomes the brain and spinal cord) during fetal development. Iniencephaly is in the same family of neural ...
Update on the National Acrylamide Project
USDA-ARS?s Scientific Manuscript database
Acrylamide, a suspected human carcinogen that may delay fetal development, is a Maillard reaction product that forms when carbohydrate-rich foods are cooked at high temperatures. Processed potato products, including French fries and potato chips, make a substantial contribution to total dietary acry...
21 CFR 884.2620 - Fetal electroencephalographic monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal electroencephalographic monitor. 884.2620 Section 884.2620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OBSTETRICAL AND GYNECOLOGICAL DEVICES Obstetrical and Gynecological Monitoring Devices § 884.2620 Fetal...
21 CFR 864.7455 - Fetal hemoglobin assay.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin...
21 CFR 864.7455 - Fetal hemoglobin assay.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin...
21 CFR 864.7455 - Fetal hemoglobin assay.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin...
Prenatal choline and the development of schizophrenia
FREEDMAN, Robert; ROSS, Randal G.
2015-01-01
Background The primary prevention of illness at the population level, the ultimate aim of medicine, seems out of reach for schizophrenia. Schizophrenia has a strong genetic component, and its pathogenesis begins long before the emergence of psychosis, as early as fetal brain development. Cholinergic neurotransmission at nicotinic receptors is a pathophysiological mechanism related to one aspect of this genetic risk. Choline activates these nicotinic receptors during fetal brain development. Dietary supplementation of maternal choline thus emerges as a possible intervention in pregnancy to alter the earliest developmental course of the illness. Aim Review available literature on the relationship of choline supplementation or choline levels during pregnancy and fetal brain development. Methods A Medline search was used to identify studies assessing effects of choline in human fetal development. Studies of other prenatal risk factors for schizophrenia and the role of cholinergic neurotransmission in its pathophysiology were also identified. Results Dietary requirements for choline are high during pregnancy because of its several uses, including membrane biosynthesis, one-carbon metabolism, and cholinergic neurotransmission. Its ability to act directly at high concentrations as a nicotinic agonist is critical for normal brain circuit development. Dietary supplementation in the second and third trimesters with phosphatidyl-choline supports these functions and is associated generally with better fetal outcome. Improvement in inhibitory neuronal functions whose deficit is associated with schizophrenia and attention deficit disorder has been observed. Conclusion Prenatal dietary supplementation with phosphatidyl-choline and promotion of diets rich in choline-containing foods (meats, soybeans, and eggs) are possible interventions to promote fetal brain development and thereby decrease the risk of subsequent mental illnesses. The low risk and short (sixmonth) duration of the intervention makes it especially conducive to population-wide adoption. Similar findings with folate for the prevention of cleft palate led to recommendations for prenatal pharmacological supplementation and dietary improvement. However, definitive proof of the efficacy of prenatal choline supplementation will not be available for decades (because of the 20-year lag until the onset of schizophrenia), so public health officials need to decide whether or not promoting choline supplementation is justified based on the limited information available. PMID:26120259
Sucharov, Carmen C; Mariner, Peter D; Nunley, Karin R; Long, Carlin; Leinwand, Leslie; Bristow, Michael R
2006-09-01
Beta-adrenergic signaling plays an important role in the natural history of dilated cardiomyopathies. Chronic activation of beta-adrenergic receptors (beta1-AR and beta2-AR) during periods of cardiac stress ultimately harms the failing heart by mechanisms that include alterations in gene expression. Here, we show that stimulation of beta-ARs with isoproterenol in neonate rat ventricular myocytes causes a "fetal" response in the relative activities of the human cardiac fetal and/or adult gene promoters that includes repression of the human and rat alpha-myosin heavy chain (alpha-MyHC) promoters with simultaneous activation of the human atrial natriuretic peptide (ANP) and rat beta-MyHC promoters. We also show that the promoter changes correlate with changes in endogenous gene expression as measured by mRNA expression. Furthermore, we show that these changes are specifically mediated by the beta1-AR, but not the beta2-AR, and are independent of alpha1-AR stimulation. We also demonstrate that the fetal gene response is independent of cAMP and protein kinase A, whereas inhibition of Ca2+/calmodulin-dependent protein kinase (CaMK) pathway blocks isoproterenol-mediated fetal gene program induction. Finally, we show that induction of the fetal program is dependent on activation of the L-type Ca2+ channel. We conclude that in neonatal rat cardiac myocytes, agonist-occupied beta1-AR mobilizes Ca2+ stores to activate fetal gene induction through cAMP independent pathways that involve CaMK.
Large-scale production of embryonic red blood cells from human embryonic stem cells.
Olivier, Emmanuel N; Qiu, Caihong; Velho, Michelle; Hirsch, Rhoda Elison; Bouhassira, Eric E
2006-12-01
To develop a method to produce in culture large number of erythroid cells from human embryonic stem cells. Human H1 embryonic stem cells were differentiated into hematopoietic cells by coculture with a human fetal liver cell line, and the resulting CD34-positive cells were expanded in vitro in liquid culture using a three-step method. The erythroid cells produced were then analyzed by light microscopy and flow cytometry. Globin expression was characterized by quantitative reverse-transcriptase polymerase chain reaction and by high-performance liquid chromatography. CD34-positive cells produced from human embryonic stem cells could be efficiently differentiated into erythroid cells in liquid culture leading to a more than 5000-fold increase in cell number. The erythroid cells produced are similar to primitive erythroid cells present in the yolk sac of early human embryos and did not enucleate. They are fully hemoglobinized and express a mixture of embryonic and fetal globins but no beta-globin. We have developed an experimental protocol to produce large numbers of primitive erythroid cells starting from undifferentiated human embryonic stem cells. As the earliest human erythroid cells, the nucleated primitive erythroblasts, are not very well characterized because experimental material at this stage of development is very difficult to obtain, this system should prove useful to answer a number of experimental questions regarding the biology of these cells. In addition, production of mature red blood cells from human embryonic stem cells is of great potential practical importance because it could eventually become an alternate source of cell for transfusion.
Alcohol-induced apoptosis of oligodendrocytes in the fetal macaque brain.
Creeley, Catherine E; Dikranian, Krikor T; Johnson, Stephen A; Farber, Nuri B; Olney, John W
2013-06-12
In utero exposure of the fetal non-human primate (NHP) brain to alcohol on a single occasion during early or late third-trimester gestation triggers widespread acute apoptotic death of cells in both gray and white matter (WM) regions of the fetal brain. In a prior publication, we documented that the dying gray matter cells are neurons, and described the regional distribution and magnitude of this cell death response. Here, we present new findings regarding the magnitude, identity and maturational status of the dying WM cells in these alcohol-exposed fetal NHP brains. Our findings document that the dying WM cells belong to the oligodendrocyte (OL) lineage. OLs become vulnerable when they are just beginning to generate myelin basic protein in preparation for myelinating axons, and they remain vulnerable throughout later stages of myelination. We found no evidence linking astrocytes, microglia or OL progenitors to this WM cell death response. The mean density (profiles per mm3) of dying WM cells in alcohol-exposed brains was 12.7 times higher than the mean density of WM cells dying by natural apoptosis in drug-naive control brains. In utero exposure of the fetal NHP brain to alcohol on a single occasion triggers widespread acute apoptotic death of neurons (previous study) and of OLs (present study) throughout WM regions of the developing brain. The rate of OL apoptosis in alcohol-exposed brains was 12.7 times higher than the natural OL apoptosis rate. OLs become sensitive to the apoptogenic action of alcohol when they are just beginning to generate constituents of myelin in their cytoplasm, and they remain vulnerable throughout later stages of myelination. There is growing evidence for a similar apoptotic response of both neurons and OLs following exposure of the developing brain to anesthetic and anticonvulsant drugs. Collectively, this body of evidence raises important questions regarding the role that neuro and oligo apoptosis may play in the human condition known as fetal alcohol spectrum disorder (FASD), and also poses a question whether other apoptogenic drugs, although long considered safe for pediatric/obstetric use, may have the potential to cause iatrogenic FASD-like developmental disability syndromes.
Gestational bisphenol A exposure and testis development.
Williams, Cecilia; Bondesson, Maria; Krementsov, Dimitry N; Teuscher, Cory
Virtually all humans are exposed to bisphenol A (BPA). Since BPA can act as a ligand for estrogen receptors, potential hazardous effects of BPA should be evaluated in the context of endogenous estrogenic hormones. Because estrogen is metabolized in the placenta, developing fetuses are normally exposed to very low endogenous estrogen levels. BPA, on the other hand, passes through the placenta and might have distinct adverse consequences during the sensitive stages of fetal development. Testicular gametogenesis and steroidogenesis begin early during fetal development. These processes are sensitive to estrogens and play a role in determining the number of germ stem cells, sperm count, and male hormone levels in adulthood. Although studies have shown a correlation between BPA exposure and perturbed reproduction, a clear consensus has yet to be established as to whether current human gestational BPA exposure results in direct adverse effects on male genital development and reproduction. However, studies in animals and in vitro have provided direct evidence for the ability of BPA exposure to influence male reproductive development. This review discusses the current knowledge of potential effects of BPA exposure on male reproductive health and whether gestational exposure adversely affects testis development.
Hallmark, Nina; Walker, Marion; McKinnell, Chris; Mahood, I. Kim; Scott, Hayley; Bayne, Rosemary; Coutts, Shiona; Anderson, Richard A.; Greig, Irene; Morris, Keith; Sharpe, Richard M.
2007-01-01
Background Certain phthalates can impair Leydig cell distribution and steroidogenesis in the fetal rat in utero, but it is unknown whether similar effects might occur in the human. Objectives Our aim in this study was to investigate the effects of di(n-butyl) phthalate (DBP), or its metabolite monobutyl phthalate (MBP), on testosterone production and Leydig cell aggregation (LCA) in fetal testis explants from the rat and human, and to compare the results with in vivo findings for DBP-exposed rats. We also wanted to determine if DBP/MBP affects testosterone production in vivo in the neonatal male marmoset. Methods Fetal testis explants obtained from the rat [gestation day (GD)19.5] and from the human (15–19 weeks of gestation) were cultured for 24–48 hr with or without human chorionic gonadotropin (hCG) or 22R-hydroxycholesterol (22R-OH), and with or without DBP/MBP. Pregnant rats and neonatal male marmosets were dosed with 500 mg/kg/day DBP or MBP. Results Exposure of rats in utero to DBP (500 mg/kg/day) for 48 hr before GD21.5 induced major suppression of intratesticular testosterone levels and cytochrome P450 side chain cleavage enzyme (P450scc) expression; this short-term treatment induced LCA, but was less marked than longer term (GD13.5–20.5) DBP treatment. In vitro, MBP (10−3 M) did not affect basal or 22R-OH-stimulated testosterone production by fetal rat testis explants but slightly attenuated hCG-stimulated steroidogenesis; MBP induced minor LCA in vitro. None of these parameters were affected in human fetal testis explants cultured with 10−3 M MBP for up to 48 hr. Because the in vivo effects of DBP/MBP were not reproduced in vitro in the rat, the absence of MBP effects in vitro on fetal human testes is inconclusive. In newborn (Day 2–7) marmosets, administration of a single dose of 500 mg/kg MBP significantly (p = 0.019) suppressed blood testosterone levels 5 hr later. Similar treatment of newborn co-twin male marmosets for 14 days resulted in increased Leydig cell volume per testis (p = 0.011), compared with co-twin controls; this is consistent with MBP-induced inhibition of steroidogenesis followed by compensatory Leydig cell hyperplasia/hypertrophy. Conclusions These findings suggest that MBP/DBP suppresses steroidogenesis by fetal-type Leydig cells in primates as in rodents, but this cannot be studied in vitro. PMID:17431488
Circular RNA expression profiles and features in human tissues: a study using RNA-seq data.
Xu, Tianyi; Wu, Jing; Han, Ping; Zhao, Zhongming; Song, Xiaofeng
2017-10-03
Circular RNA (circRNA) is one type of noncoding RNA that forms a covalently closed continuous loop. Similar to long noncoding RNA (lncRNA), circRNA can act as microRNA (miRNA) 'sponges' to regulate gene expression, and its abnormal expression is related to diseases such as atherosclerosis, nervous system disorders and cancer. So far, there have been no systematic studies on circRNA abundance and expression profiles in human adult and fetal tissues. We explored circRNA expression profiles using RNA-seq data for six adult and fetal normal tissues (colon, heart, kidney, liver, lung, and stomach) and four gland normal tissues (adrenal gland, mammary gland, pancreas, and thyroid gland). A total of 8120, 25,933 and 14,433 circRNAs were detected by at least two supporting junction reads in adult, fetal and gland tissues, respectively. Among them, 3092, 14,241 and 6879 circRNAs were novel when compared to the published results. In each adult tissue type, we found at least 1000 circRNAs, among which 36.97-50.04% were tissue-specific. We reported 33 circRNAs that were ubiquitously expressed in all the adult tissues we examined. To further explore the potential "housekeeping" function of these circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network containing 17 circRNAs, 22 miRNAs and 90 mRNAs. Furthermore, we found that both the abundance and the relative expression level of circRNAs were higher in fetal tissue than adult tissue. The number of circRNAs in gland tissues, especially in mammary gland (9665 circRNA candidates), was higher than that of other adult tissues (1160-3777). We systematically investigated circRNA expression in a variety of human adult and fetal tissues. Our observation of different expression level of circRNAs in adult and fetal tissues suggested that circRNAs might play their role in a tissue-specific and development-specific fashion. Analysis of circRNA-miRNA-mRNA network provided potential targets of circRNAs. High expression level of circRNAs in mammary gland might be attributed to the rich innervation.
Uterine artery blood flow, fetal hypoxia and fetal growth
Browne, Vaughn A.; Julian, Colleen G.; Toledo-Jaldin, Lillian; Cioffi-Ragan, Darleen; Vargas, Enrique; Moore, Lorna G.
2015-01-01
Evolutionary trade-offs required for bipedalism and brain expansion influence the pregnancy rise in uterine artery (UtA) blood flow and, in turn, reproductive success. We consider the importance of UtA blood flow by reviewing its determinants and presenting data from 191 normotensive (normal, n = 125) or hypertensive (preeclampsia (PE) or gestational hypertension (GH), n = 29) Andean residents of very high (4100–4300 m) or low altitude (400 m, n = 37). Prior studies show that UtA blood flow is reduced in pregnancies with intrauterine growth restriction (IUGR) but whether the IUGR is due to resultant fetal hypoxia is unclear. We found higher UtA blood flow and Doppler indices of fetal hypoxia in normotensive women at high versus low altitude but similar fetal growth. UtA blood flow was markedly lower in early-onset PE versus normal high-altitude women, and their fetuses more hypoxic as indicated by lower fetal heart rate, Doppler indices and greater IUGR. We concluded that, despite greater fetal hypoxia, fetal growth was well defended by higher UtA blood flows in normal Andeans at high altitude but when compounded by lower UtA blood flow in early-onset PE, exaggerated fetal hypoxia caused the fetus to respond by decreasing cardiac output and redistributing blood flow to help maintain brain development at the expense of growth elsewhere. We speculate that UtA blood flow is not only an important supply line but also a trigger for stimulating the metabolic and other processes regulating feto-placental metabolism and growth. Studies using the natural laboratory of high altitude are valuable for identifying the physiological and genetic mechanisms involved in human reproductive success. PMID:25602072
Localization and counting of CD68-labelled macrophages in placentas of normal and preeclamptic women
NASA Astrophysics Data System (ADS)
Al-khafaji, Lina Ali; Al-Yawer, Malak A.
2017-09-01
In the human placenta, there are two types of placental macrophages Hofbauer cells of fetal villi and decidual macrophages of maternal decidua basalis. Placental macrophages adopt a specialized phenotype that may hold a key role in synthesis of vital mediators involved in the establishment and maintenance of pregnancy, parturition and maternal-fetal tolerance. Aberrant behavior of these macrophages can affect trophoblast functions and placental development and potentially can lead to a spectrum of adverse pregnancy outcomes. Yet, the populations and functions of placental macrophages in women with different parity and women with preeclampsia remain ill-defined and subject of controversy. Immuno-histochemical study using CD68 primary antibody revealed a significant increase in number of CD68 positive fetal and decidual macrophages in preeclamptic subgroups as compared to controls. Fetal macrophages were seen to be localized near fetal vessel wall and near syncytium which were significantly increased in primiparous preeclamptic subgroup. Our study assumed that there may be intermingling of signals between macrophages and trophoblast cells resulting in impairment of trophoblast invasion and spiral artery remodeling which is the primary placental defect in pregnancies complicated by preeclampsia.
Akison, Lisa K; Nitert, Marloes Dekker; Clifton, Vicki L; Moritz, Karen M; Simmons, David G
2017-06-01
Normal placental function is essential for optimal fetal growth. Transport of glucose from mother to fetus is critical for fetal nutrient demands and can be stored in the placenta as glycogen. However, the function of this glycogen deposition remains a matter of debate: It could be a source of fuel for the placenta itself or a storage reservoir for later use by the fetus in times of need. While the significance of placental glycogen remains elusive, mounting evidence indicates that altered glycogen metabolism and/or deposition accompanies many pregnancy complications that adversely affect fetal development. This review will summarize histological, biochemical and molecular evidence that glycogen accumulates in a) placentas from a variety of experimental rodent models of perturbed pregnancy, including maternal alcohol exposure, glucocorticoid exposure, dietary deficiencies and hypoxia and b) placentas from human pregnancies with complications including preeclampsia, gestational diabetes mellitus and intrauterine growth restriction (IUGR). These pregnancies typically result in altered fetal growth, developmental abnormalities and/or disease outcomes in offspring. Collectively, this evidence suggests that changes in placental glycogen deposition is a common feature of pregnancy complications, particularly those associated with altered fetal growth. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Bocheva, Georgeta; Boyadjieva, Nadka
2011-12-01
Osteoporosis is a common age-related disorder and causes acute and long-term disability and economic cost. Many factors influence the accumulation of bone minerals, including heredity, diet, physical activity, gender, endocrine functions, and risk factors such as alcohol, drug abuse, some pharmacological drugs or cigarette smoking. The pathology of bone development during intrauterine life is a factor for osteoporosis. Moreover, the placental transfer of nutrients plays an important role in the building of bones of fetuses. The importance of maternal calcium intake and vitamin D status are highlighted in this review. Various environmental factors including nutrition state or maternal stress may affect the epigenetic state of a number of genes during fetal development of bones. Histone modifications as histone hypomethylation, histone hypermethylation, hypoacetylation, etc. are involved in chromatin remodeling, known to contribute to the epigenetic landscape of chromosomes, and play roles in both fetal bone development and osteoporosis. This review will give an overview of epigenetic modulation of bone development and placental transfer of nutrients. In addition, the data from animal and human studies support the role of epigenetic modulation of calcium and vitamin D in the pathogenesis of osteoporosis. We review the evidence suggesting that various genes are involved in regulation of osteoclast formation and differentiation by osteoblasts and stem cells. Epigenetic changes in growth factors as well as cytokines play a rol in fetal bone development. On balance, the data suggest that there is a link between epigenetic changes in placental transfer of nutrients, including calcium and vitamin D, abnormal intrauterine bone development and pathogenesis of osteoporosis.
Nitric oxide synthase mRNA expression in human fetal membranes: a possible role in parturition.
Dennes, W J; Slater, D M; Bennett, P R
1997-04-07
Nitric oxide (NO) is a potent endogenous smooth-muscle relaxant. It is synthesised from 1-arginine by isoforms of nitric oxide synthase (NOS). Whilst it is clear that the uterus responds to NO by relaxation, NOS expression has not been investigated in fetal membranes or myometrium in human pregnancy. This study has shown, using semi-quantitative RT-PCR, expression of cNOS mRNA in human amnion, chorion-decidua, and placenta. iNOS mRNA expression was demonstrated in human amnion, chorion-decidua, and placenta. It is possible that NO synthesised in fetal membranes may act either directly to inhibit myometrial contractility or indirectly to interact with other labour-associated genes, such as cyclo-oxygenase, to coordinate the onset of labour.
The development of fetal dosimetry and its application to A-bomb survivors exposed in utero.
Chen, Jing
2012-03-01
The cohort of the atomic bomb survivors of Hiroshima and Nagasaki comprises the major basis for investigations of health effects induced by ionising radiation in humans. To study the health effects associated with radiation exposure before birth, fetal dosimetry is needed if significant differences exist between the fetal absorbed dose and the mother's uterine dose. Combining total neutron and gamma ray free-in-air fluences at 1 m above ground with fluence-to-absorbed dose conversion coefficients, fetal doses were calculated for various exposure orientations at the ground distance of 1500 m from the hypocentres in Hiroshima and Nagasaki. The results showed that the mother's uterine dose can serve as a good surrogate for the dose of the embryo and fetus in the first trimester. However, significant differences exist between doses of the fetus of different ages. If the mother's uterine dose were used as a surrogate, doses to the fetus in the last two trimesters could be overestimated by more than 20 % for exposure orientations facing towards and away from the hypocentre while significantly underestimated for lateral positions relative to the hypocentre. In newer fetal models, the brain is modelled for all fetal ages. Brain doses to the 3-month fetus are generally higher than those to an embryo and fetus of other ages. In most cases, brain absorbed doses differ significantly from the doses to the entire fetal body. In order to accurately assess radiation effects to the fetal brain, it is necessary to determine brain doses separately.
Kiserud, Torvid; Benachi, Alexandra; Hecher, Kurt; Perez, Rogelio González; Carvalho, José; Piaggio, Gilda; Platt, Lawrence D
2018-02-01
Ultrasound biometry is an important clinical tool for the identification, monitoring, and management of fetal growth restriction and development of macrosomia. This is even truer in populations in which perinatal morbidity and mortality rates are high, which is a reason that much effort is put onto making the technique available everywhere, including low-income societies. Until recently, however, commonly used reference ranges were based on single populations largely from industrialized countries. Thus, the World Health Organization prioritized the establishment of fetal growth charts for international use. New fetal growth charts for common fetal measurements and estimated fetal weight were based on a longitudinal study of 1387 low-risk pregnant women from 10 countries (Argentina, Brazil, Democratic Republic of Congo, Denmark, Egypt, France, Germany, India, Norway, and Thailand) that provided 8203 sets of ultrasound measurements. The participants were characterized by median age 28 years, 58% nulliparous, normal body mass index, with no socioeconomic or nutritional constraints (median caloric intake, 1840 calories/day), and had the ability to attend the ultrasound sessions, thus essentially representing urban populations. Median gestational age at birth was 39 weeks, and birthweight was 3300 g, both with significant differences among countries. Quantile regression was used to establish the fetal growth charts, which also made it possible to demonstrate a number of features of fetal growth that previously were not well appreciated or unknown: (1) There was an asymmetric distribution of estimated fetal weight in the population. During early second trimester, the distribution was wider among fetuses <50th percentile compared with those above. The pattern was reversed in the third trimester, with a notably wider variation >50th percentile. (2) Although fetal sex, maternal factors (height, weight, age, and parity), and country had significant influence on fetal weight (1-4.5% each), their effect was graded across the percentiles. For example, the positive effect of maternal height on fetal weight was strongest on the lowest percentiles and smallest on the highest percentiles for estimated fetal weight. (3) When adjustment was made for maternal covariates, there was still a significant effect of country as covariate that indicated that ethnic, cultural, and geographic variation play a role. (4) Variation between populations was not restricted to fetal size because there were also differences in growth trajectories. (5) The wide physiologic ranges, as illustrated by the 5th-95th percentile for estimated fetal weight being 2205-3538 g at 37 weeks gestation, signify that human fetal growth under optimized maternal conditions is not uniform. Rather, it has a remarkable variation that largely is unexplained by commonly known factors. We suggest this variation could be part of our common biologic strategy that makes human evolution extremely successful. The World Health Organization fetal growth charts are intended to be used internationally based on low-risk pregnancies from populations in Africa, Asia, Europe, and South America. We consider it prudent to test and monitor whether the growth charts' performance meets the local needs, because refinements are possible by a change in cut-offs or customization for fetal sex, maternal factors, and populations. In the same line, the study finding of variations emphasizes the need for carefully adjusted growth charts that reflect optimal local growth when public health issues are addressed. Copyright © 2017 Elsevier Inc. All rights reserved.
Lim, Ratana; Morwood, Carrington J.; Barker, Gillian; Lappas, Martha
2014-01-01
Infection-induced preterm birth is the largest cause of infant death and of neurological disabilities in survivors. Silibinin, from milk thistle, exerts potent anti-inflammatory activities in non-gestational tissues. The aims of this study were to determine the effect of silibinin on pro-inflammatory mediators in (i) human fetal membranes and myometrium treated with bacterial endotoxin lipopolysaccharide (LPS) or the pro-inflammatory cytokine IL-1β, and (ii) in preterm fetal membranes with active infection. The effect of silibinin on infection induced inflammation and brain injury in pregnant mice was also assessed. Fetal membranes and myometrium (tissue explants and primary cells) were treated with 200 μM silibinin in the presence or absence of 10 μg/ml LPS or 1 ng/ml IL-1β. C57BL/6 mice were injected with 70 mg/kg silibinin with or without 50 μg LPS on embryonic day 16. Fetal brains were collected after 6 h. In human fetal membranes, silibinin significantly decreased LPS-stimulated expression of IL-6 and IL-8, COX-2, and prostaglandins PGE2 and PGF2α. In primary amnion and myometrial cells, silibinin also decreased IL-1β-induced MMP-9 expression. Preterm fetal membranes with active infection treated with silibinin showed a decrease in IL-6, IL-8 and MMP-9 expression. Fetal brains from mice treated with silibinin showed a significant decrease in LPS-induced IL-8 and ninjurin, a marker of brain injury. Our study demonstrates that silibinin can reduce infection and inflammation-induced pro-labour mediators in human fetal membranes and myometrium. Excitingly, the in vivo results indicate a protective effect of silibinin on infection-induced brain injury in a mouse model of preterm birth. PMID:24647589
Modifications of Erectile Tissue Components in the Penis during the Fetal Period
Gallo, Carla B. M.; Costa, Waldemar S.; Furriel, Angelica; Bastos, Ana L.; Sampaio, Francisco J. B.
2014-01-01
Background The penile erectile tissue has a complex microscopic anatomy with important functions in the mechanism of penile erection. The knowledge of such structures is necessary for understanding the normal physiology of the adult penis. Therefore, it is important to know the changes of these penile structures during fetal development. This study aims to analyze the development of the main components of the erectile tissue, such as collagen, smooth muscle fibers and elastic system fibers, in human fetuses. Methodology/Principal Findings We studied the penises of 56 human fetuses aged 13 to 36 weeks post-conception (WPC). We used histochemical and immunohistochemical staining, as well as morphometric techniques to analyze the collagen, smooth muscle fibers and elastic system fibers in the corpus cavernosum and in the corpus spongiosum. These elements were identified and quantified as percentage by using the Image J software (NIH, Bethesda, USA). From 13 to 36 WPC, in the corpus cavernosum, the amount of collagen, smooth muscle fibers and elastic system fibers varied from 19.88% to 36.60%, from 4.39% to 29.76% and from 1.91% to 8.92%, respectively. In the corpus spongiosum, the amount of collagen, smooth muscle fibers and elastic system fibers varied from 34.65% to 45.89%, from 0.60% to 11.90% and from 3.22% to 11.93%, respectively. Conclusions We found strong correlation between the elements analyzed with fetal age, both in corpus cavernosum and corpus spongiosum. The growth rate of these elements was more intense during the second trimester (13 to 24 WPC) of gestation, both in corpus cavernosum and in corpus spongiosum. There is greater proportional amount of collagen in the corpus spongiosum than in corpus cavernosum during all fetal period. In the corpus spongiosum, there is about four times more collagen than smooth muscle fibers and elastic system fibers, during all fetal period studied. PMID:25170760
Acetaminophen and pregnancy: short- and long-term consequences for mother and child.
Thiele, Kristin; Kessler, Timo; Arck, Petra; Erhardt, Annette; Tiegs, Gisa
2013-03-01
Counter-intuitively, over-the-counter medication is commonly taken by pregnant women. In this context, acetaminophen (APAP, e.g. Paracetamol, Tylenol) is generally recommended by physicians to treat fever and pain during pregnancy. Thus, APAP ranks at the top of the list of medications taken prenatally. Insights on an increased risk for pregnancy complications such as miscarriage, stillbirth, preterm birth or fetal malformations upon APAP exposure are rather ambiguous. However, emerging evidence arising from human trials clearly reveals a significant correlation between APAP use during pregnancy and an increased risk for the development of asthma in children later in life. Pathways through which APAP increases this risk are still elusive. APAP can be liver toxic and since APAP appears to freely cross the placenta, therapeutic and certainly toxic doses could not only affect maternal, but also fetal hepatocytes. It is noteworthy that during fetal development, the liver transiently functions as the main hematopoietic organ. We here review the effect of APAP on metabolic and immunological parameters in pregnant women and on fetal development and immune ontogeny in order to delineate novel, putative and to date underrated pathways through which APAP use during pregnancy can impair maternal, fetal and long term children's health. We conclude that future studies are urgently needed to reconsider the safety and dosage of APAP during pregnancy and - based on the advances made in the field of reproduction as well as APAP metabolism - we propose pathways, which should be addressed in future research and clinical endeavors. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Huntriss, John; Lu, Jianping; Hemmings, Karen; Bayne, Rosemary; Anderson, Richard; Rutherford, Anthony; Balen, Adam; Elder, Kay; Picton, Helen M
2017-01-01
Gametocyte-specific factor 1 has been shown in other species to be required for the silencing of retrotransposons via the Piwi-interacting RNA (piRNA) pathway. In this study, we aimed to isolate and assess expression of transcripts of the gametocyte-specific factor 1 (GTSF1) gene in the human female germline and in preimplantation embryos. Complementary DNA (cDNA) libraries from human fetal ovaries and testes, human oocytes and preimplantation embryos and ovarian follicles isolated from an adult ovarian cortex biopsy were used to as templates for PCR, cloning and sequencing, and real time PCR experiments of GTSF1 expression. GTSF1 cDNA clones that covered the entire coding region were isolated from human oocytes and preimplantation embryos. GTSF1 mRNA expression was detected in archived cDNAs from staged human ovarian follicles, germinal vesicle (GV) stage oocytes, metaphase II oocytes, and morula and blastocyst stage preimplantation embryos. Within the adult female germline, expression was highest in GV oocytes. GTSF1 mRNA expression was also assessed in human fetal ovary and was observed to increase during gestation, from 8 to 21 weeks, during which time oogonia enter meiosis and primordial follicle formation first occurs. In human fetal testis, GTSF1 expression also increased from 8 to 19 weeks. To our knowledge, this report is the first to describe the expression of the human GTSF1 gene in human gametes and preimplantation embryos.
Walker, Natasha; Filis, Panagiotis; Soffientini, Ugo; Bellingham, Michelle; O’Shaughnessy, Peter J; Fowler, Paul A
2017-01-01
Abstract The placenta is a critical organ during pregnancy, essential for the provision of an optimal intrauterine environment, with fetal survival, growth, and development relying on correct placental function. It must allow nutritional compounds and relevant hormones to pass into the fetal bloodstream and metabolic waste products to be cleared. It also acts as a semipermeable barrier to potentially harmful chemicals, both endogenous and exogenous. Transporter proteins allow for bidirectional transport and are found in the syncytiotrophoblast of the placenta and endothelium of fetal capillaries. The major transporter families in the human placenta are ATP-binding cassette (ABC) and solute carrier (SLC), and insufficiency of these transporters may lead to deleterious effects on the fetus. Transporter expression levels are gestation-dependent and this is of considerable clinical interest as levels of drug resistance may be altered from one trimester to the next. This highlights the importance of these transporters in mediating correct and timely transplacental passage of essential compounds but also for efflux of potentially toxic drugs and xenobiotics. We review the current literature on placental molecular transporters with respect to their localization and ontogeny, the influence of fetal sex, and the relevance of animal models. We conclude that a paucity of information exists, and further studies are required to unlock the enigma of this dynamic organ. PMID:28339967
Zhou, Ting; Tan, Lei; Cederquist, Gustav Y; Fan, Yujie; Hartley, Brigham J; Mukherjee, Suranjit; Tomishima, Mark; Brennand, Kristen J; Zhang, Qisheng; Schwartz, Robert E; Evans, Todd; Studer, Lorenz; Chen, Shuibing
2017-08-03
Zika virus (ZIKV) infects fetal and adult human brain and is associated with serious neurological complications. To date, no therapeutic treatment is available to treat ZIKV-infected patients. We performed a high-content chemical screen using human pluripotent stem cell-derived cortical neural progenitor cells (hNPCs) and found that hippeastrine hydrobromide (HH) and amodiaquine dihydrochloride dihydrate (AQ) can inhibit ZIKV infection in hNPCs. Further validation showed that HH also rescues ZIKV-induced growth and differentiation defects in hNPCs and human fetal-like forebrain organoids. Finally, HH and AQ inhibit ZIKV infection in adult mouse brain in vivo. Strikingly, HH suppresses viral propagation when administered to adult mice with active ZIKV infection, highlighting its therapeutic potential. Our approach highlights the power of stem cell-based screens and validation in human forebrain organoids and mouse models in identifying drug candidates for treating ZIKV infection and related neurological complications in fetal and adult patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects
NASA Astrophysics Data System (ADS)
Kaur, Sarbjit
Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition. Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30-60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting. A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation generated a range of viscosities. The chemically cured complex coacervate, with sodium (meta) periodate crosslinker, was tested in pig animal studies, showing promising results. The adhesive adhered to the fetal membrane tissue, with maximum strength of 473 +/- 82 KPa on aluminum substrates. The elastic modulus increased with increasing methacrylation on both the polyphosphate and polyamine within the coacervate. Photopolymerized complex coacervate adhesive was photocured using Eosin-Y and treiethanolamine photoinitiators, using a green laser diode. Soft substrate bond strength increased with increasing PEG-dA concentration to a maximum of ~90 kPa. The crosslinked complex coacervate adhesives with PEG networks swelled less than 5% over 30 days in physiological conditions. The sterile glue was nontoxic, deliverable through a fine cannula, and stable over a long time period. Preliminary animal studies show a novel innovative method to seal fetal membrane defects in humans, in utero.
Butler, John E; Sinkora, Marek; Wertz, Nancy; Holtmeier, Wolfgang; Lemke, Caitlin D
2006-01-01
Birth in all higher vertebrates is at the center of the critical window of development in which newborns transition from dependence on innate immunity to dependence on their own adaptive immunity, with passive maternal immunity bridging this transition. Therefore we have studied immunological development through fetal and early neonatal life. In swine, B cells appear earlier in fetal development than T cells. B cell development begins in the yolk sac at the 20th day of gestation (DG20), progresses to fetal liver at DG30 and after DG45 continues in bone marrow. The first wave of developing T cells is gammadelta cells expressing a monomorphic Vdelta rearrangement. Thereafter, alphabeta T cells predominate and at birth, at least 19 TRBV subgroups are expressed, 17 of which appear highly homologous with those in humans. In contrast to the T cell repertoire and unlike humans and mice, the porcine pre-immune VH (IGHV-D-J) repertoire is highly restricted, depending primarily on CDR3 for diversity. The V-KAPPA (IGKV-J) repertoire and apparently also the V-LAMBDA (IGLV-J) repertoire, are also restricted. Diversification of the pre-immune B cell repertoire of swine and the ability to respond to both T-dependent and T-independent antigen depends on colonization of the gut after birth in which colonizing bacteria stimulate with Toll-like receptor ligands, especially bacterial DNA. This may explain the link between repertoire diversification and the anatomical location of primary lymphoid tissue like the ileal Peyers patches. Improper development of adaptive immunity can be caused by infectious agents like the porcine reproductive and respiratory syndrome virus that causes immune dysregulation resulting in immunological injury and autoimmunity.
Fetal ethanol exposure increases ethanol intake by making it smell and taste better
Youngentob, Steven L.; Glendinning, John I.
2009-01-01
Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability. PMID:19273846
Fetal ethanol exposure increases ethanol intake by making it smell and taste better.
Youngentob, Steven L; Glendinning, John I
2009-03-31
Human epidemiologic studies reveal that fetal ethanol exposure is highly predictive of adolescent ethanol avidity and abuse. Little is known about how fetal exposure produces these effects. It is hypothesized that fetal ethanol exposure results in stimulus-induced chemosensory plasticity. Here, we asked whether gestational ethanol exposure increases postnatal ethanol avidity in rats by altering its taste and odor. Experimental rats were exposed to ethanol in utero via the dam's diet, whereas control rats were either pair-fed an iso-caloric diet or given food ad libitum. We found that fetal ethanol exposure increased the taste-mediated acceptability of both ethanol and quinine hydrochloride (bitter), but not sucrose (sweet). Importantly, a significant proportion of the increased ethanol acceptability could be attributed directly to the attenuated aversion to ethanol's quinine-like taste quality. Fetal ethanol exposure also enhanced ethanol intake and the behavioral response to ethanol odor. Notably, the elevated intake of ethanol was also causally linked to the enhanced odor response. Our results demonstrate that fetal exposure specifically increases ethanol avidity by, in part, making it taste and smell better. More generally, they establish an epigenetic chemosensory mechanism by which maternal patterns of drug use can be transferred to offspring. Given that many licit (e.g., tobacco products) and illicit (e.g., marijuana) drugs have noteworthy chemosensory components, our findings have broad implications for the relationship between maternal patterns of drug use, child development, and postnatal vulnerability.
Wang, Rongpin; Wilkinson, Molly; Kane, Tara; Takahashi, Emi
2017-01-01
There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34-40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development.
Wang, Rongpin; Wilkinson, Molly; Kane, Tara; Takahashi, Emi
2017-01-01
There has been evidence that during brain development, emerging thalamocortical (TC) and corticothalamic (CT) pathways converge in some brain regions and follow each other's trajectories to their final destinations. Corpus callosal (CC) pathways also emerge at a similar developmental stage, and are known to converge with TC pathways in specific cortical regions in mature brains. Given the functional relationships between TC and CC pathways, anatomical convergence of the two pathways are likely important for their functional integration. However, it is unknown (1) where TC and CT subcortically converge in the human brain, and (2) where TC and CC converge in the cortex of the human brain, due to the limitations of non-invasive methods. The goals of this study were to describe the spatio-temporal relationships in the development of the TC/CT and CC pathways in the human brain, using high-angular resolution diffusion MR imaging (HARDI) tractography. Emerging cortical, TC and CC pathways were identified in postmortem fetal brains ranging from 17 gestational weeks (GW) to 30 GW, as well as in vivo 34–40 GW newborns. Some pathways from the thalami were found to be converged with pathways from the cerebral cortex as early as 17 GW. Such convergence was observed mainly in anterior and middle regions of the brain until 21 GW. At 22 GW and onwards, posterior pathways from the thalami also converged with cortical pathways. Many CC pathways reached the full length up to the cortical surface as early as 17 GW, while pathways linked to thalami (not only TC axons but also including pathways linked to thalamic neuronal migration) reached the cortical surface at and after 20 GW. These results suggest that CC pathways developed earlier than the TC pathways. The two pathways were widespread at early stages, but by 40 GW they condensed and formed groups of pathways that projected to specific regions of the cortex and overlapped in some brain regions. These results suggest that HARDI tractography has the potential to identify developing TC/CT and CC pathways with the timing and location of their convergence in fetal stages persisting in postnatal development. PMID:29163000
Rosario, Fredrick J; Kanai, Yoshikatsu; Powell, Theresa L; Jansson, Thomas
2013-02-01
Abnormal fetal growth increases the risk for perinatal complications and predisposes for the development of obesity, diabetes and cardiovascular disease later in life. Emerging evidence suggests that changes in placental amino acid transport directly contribute to altered fetal growth. However, the molecular mechanisms regulating placental amino acid transport are largely unknown. Here we combined small interfering (si) RNA-mediated silencing approaches with protein expression/localization and functional studies in cultured primary human trophoblast cells to test the hypothesis that mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) regulate amino acid transporters by post-translational mechanisms. Silencing raptor (inhibits mTORC1) or rictor (inhibits mTORC2) markedly decreased basal System A and System L amino acid transport activity but had no effect on growth factor-stimulated amino acid uptake. Simultaneous inhibition of mTORC1 and 2 completely inhibited both basal and growth factor-stimulated amino acid transport activity. In contrast, mTOR inhibition had no effect on serotonin transport. mTORC1 or mTORC2 silencing markedly decreased the plasma membrane expression of specific System A (SNAT2, SLC38A2) and System L (LAT1, SLC7A5) transporter isoforms without affecting global protein expression. In conclusion, mTORC1 and mTORC2 regulate human trophoblast amino acid transporters by modulating the cell surface abundance of specific transporter isoforms. This is the first report showing regulation of amino acid transport by mTORC2. Because placental mTOR activity and amino acid transport are decreased in human intrauterine growth restriction our data are consistent with the possibility that dysregulation of placental mTOR plays an important role in the development of abnormal fetal growth.
Age-related changes in expression and function of Toll-like receptors in human skin
Iram, Nousheen; Mildner, Michael; Prior, Marion; Petzelbauer, Peter; Fiala, Christian; Hacker, Stefan; Schöppl, Alice; Tschachler, Erwin; Elbe-Bürger, Adelheid
2012-01-01
Toll-like receptors (TLRs) initiate innate immune responses and direct subsequent adaptive immunity. They play a major role in cutaneous host defense against micro-organisms and in the pathophysiology of several inflammatory skin diseases. To understand the role of TLRs in the acquisition of immunological competence, we conducted a comprehensive study to evaluate TLR expression and function in the developing human skin before and after birth and compared it with adults. We found that prenatal skin already expresses the same spectrum of TLRs as adult skin. Strikingly, many TLRs were significantly higher expressed in prenatal (TLRs 1-5) and infant and child (TLRs 1 and 3) skin than in adult skin. Surprisingly, neither dendritic cell precursors in prenatal skin nor epidermal Langerhans cells and dermal dendritic cells in adult skin expressed TLRs 3 and 6, whereas the staining pattern and intensity of both TLRs in fetal basal keratinocytes was almost comparable to those of adults. Stimulation of primary human keratinocytes from fetal, neonatal and adult donors with selected TLR agonists revealed that the synthetic TLR3 ligand poly (I:C) specifically, mimicking viral double-stranded RNA, induced a significantly enhanced secretion of CXCL8/IL8, CXCL10/IP-10 and TNFα in fetal and neonatal keratinocytes compared with adult keratinocytes. This study demonstrates quantitative age-specific modifications in TLR expression and innate skin immune reactivity in response to TLR activation. Thus, antiviral innate immunity already in prenatal skin may contribute to protect the developing human body from viral infections in utero in a scenario where the adaptive immune system is not yet fully functional. PMID:23034637
Pharmacokinetics of Fluoxetine in Pregnant Baboons (Papio spp.)
Shoulson, Rivka L; Stark, Raymond L; Garland, Marianne
2014-01-01
Fluoxetine is used to treat a number of psychiatric conditions in humans and behavioral problems in animals. Its use in pregnancy must balance maternal benefit with potential risk to the fetus. Knowledge of adult and fetal drug disposition can assist clinicians in selecting therapy that minimizes adverse effects to the fetus. Nonhuman primate models are used frequently in drug dose-translation studies, and pregnancy in baboons has many similarities to human pregnancy. Accordingly, pharmacokinetic analysis of a series of fluoxetine and norfluoxetine administrations to pregnant baboons was performed. The mean maternal baboon steady-state clearance of fluoxetine (42 mL/min/kg) was considerably higher than that in humans. Norfluoxetine, the major active metabolite, had a higher metabolite-to-drug ratio (8.7) than that found in humans, particularly with oral dosing. These results are consistent with more extensive metabolism in baboons than in humans and leads to a higher clearance than would be expected from allometric scaling. Fetal-to-maternal fluoxetine and norfluoxetine ratios under steady-state conditions were similar to those in humans, with fetal concentrations of fluoxetine 42% and norfluoxetine 47% of maternal concentrations. The fetal clearance of fluoxetine (303 ± 176 mL/min) and norfluoxetine (450 mL/min) exceeded reported placental blood flow. Understanding these species-associated differences in metabolism is a prerequisite to extrapolating data between species. Nonetheless, nonhuman primates are likely to remain valuable models for pharmacokinetic studies during pregnancy, particularly those directed toward fetal neurodevelopmental effects. Our results also are applicable to determining appropriate dosing of nonhuman primates in clinical settings. PMID:25650979
Mild Diabetes Models and Their Maternal-Fetal Repercussions
Damasceno, D. C.; Sinzato, Y. K.; Bueno, A.; Netto, A. O.; Dallaqua, B.; Gallego, F. Q.; Iessi, I. L.; Corvino, S. B.; Serrano, R. G.; Marini, G.; Piculo, F.; Calderon, I. M. P.; Rudge, M. V. C.
2013-01-01
The presence of diabetes in pregnancy leads to hormonal and metabolic changes making inappropriate intrauterine environment, favoring the onset of maternal and fetal complications. Human studies that explore mechanisms responsible for changes caused by diabetes are limited not only for ethical reasons but also by the many uncontrollable variables. Thus, there is a need to develop appropriate experimental models. The diabetes induced in laboratory animals can be performed by different methods depending on dose, route of administration, and the strain and age of animal used. Many of these studies are carried out in neonatal period or during pregnancy, but the results presented are controversial. So this paper, addresses the review about the different models of mild diabetes induction using streptozotocin in pregnant rats and their repercussions on the maternal and fetal organisms to propose an adequate model for each approached issue. PMID:23878822
Roles of glucocorticoids in human parturition: a controversial fact?
Li, X Q; Zhu, P; Myatt, L; Sun, K
2014-05-01
The pivotal role of glucocorticoids in the initiation of parturition has been very well documented in several domestic mammalian animal species. However the role of glucocorticoids in human parturition remains controversial mainly because of the absence of effect of synthetic glucocorticoids, given to promote fetal organ maturation in pregnant women with threatened preterm delivery, on the length of gestation. This article will review studies of glucocorticoids in human parturition and provide evidence for an important role of glucocorticoids in human parturition as well but a simultaneous high concentration of estrogen within the intrauterine tissues may be necessary for GCs to initiate parturition. The synthetic GCs dexamethasone and betamethasone pass through the placenta intact resulting in potent negative feedback on the fetal HPA axis and diminished production of DHEA from fetal adrenal glands for estrogen synthesis by the placenta. This may negate the effect of systemic administration of GCs on the induction of labor, especially in cases where the myometrium is not yet fully primed by estrogen. Endogenous glucocorticoids are inactivated by the placental 11β-HSD2 thus limiting the negative feedback of maternal cortisol on the fetal HPA axis and allowing the simultaneous rise of cortisol and estrogen levels towards the end of gestation. Therefore, endogenous glucocorticoids, particularly glucocorticoids produced locally in the intrauterine tissues may play an important role in parturition in humans by enhancing prostaglandin production in the fetal membranes and stimulating estrogen and CRH production in the placenta. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Shengbiao; Amidi, Fataneh; Beall, Marie; Gui, Lizhen; Ross, Michael G
2006-04-01
The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amniotic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if AQP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP). AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of AQP3 expression. We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytiotrophoblasts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA significantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment. This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second-messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.
Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome
Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.
2016-01-01
Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral deficits after the first 2 postnatal weeks. These results uncover important differences in prenatal phenotype between Dp16 animals and humans with DS and other DS mouse models. PMID:26961948
Drews, Barbara; Harmann, Leanne M; Beehler, Leann L; Bell, Barbara; Drews, Reinhard F; Hildebrandt, Thomas B
2011-01-01
The bonobo, Pan paniscus, is one of the most endangered primate species. In the context of the Bonobo Species Survival Plan(®), the Milwaukee County Zoo established a successful breeding group. Although the bonobo serves as a model species for human evolution, no prenatal growth curves are available. To develop growth graphs, the animals at the Milwaukee County Zoo were trained by positive reinforcement to allow for ultrasound exams without restraint. With this method, the well being of mother and fetus were maintained and ultrasound exams could be performed frequently. The ovulation date of the four animals in the study was determined exactly so that gestational age was known for each examination. Measurements of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL) were used to create growth curves. Prenatal growth of P. paniscus was compared with the data of humans and the common chimpanzee, P. troglodytes. With respect to cranial structures, such as BPD and HC, humans have significant acceleration of growth compared with P. paniscus and P. troglodytes. In P. paniscus, growth of AC was similar to HC throughout pregnancy, whereas in humans AC only reaches the level of HC close to term. Growth rate of FL was similar in humans and the two Pan species until near day 180 post-ovulation. After that, the Pan species FL growth slowed compared with human FL. The newly developed fetal growth curves of P. paniscus will assist in monitoring prenatal development and predicting birth dates of this highly endangered species. © 2010 Wiley-Liss, Inc.
Impact of maternal steroids during pregnancy.
Reynolds, Rebecca M
2016-12-01
Increased fetal exposure to glucocorticoids is a key mechanism thought to underlie the early life programming of later life disease. There is substantial experimental data in animal models in support of this hypothesis. Emerging evidence suggests glucocorticoid programming may also occur in humans with some studies now linking maternal endogenous cortisol levels with size at birth and gestation at delivery. The dramatic changes to the maternal hypothalamic-pituitary-adrenal axis during pregnancy mean that large-scale studies in humans are challenging to conduct. One of the key regulators of fetal glucocorticoid exposure is the activity of placental "barrier" enzyme 11β-hydroxysteroid dehydrogenase type 2 (HSD2) which converts active cortisol to inactive cortisone. In animal models, this enzyme is down-regulated by various influences including maternal malnutrition, inflammation or stress but it is not known whether this is a major factor in regulation of human fetal glucocorticoid exposure. More studies are needed to understand the mechanisms whereby altered fetal glucocorticoid exposure may alter fetal growth trajectories and whether changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy could be suitable as a biomarker to identify those pregnancies most at risk. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Twaddle, Nathan C; Vanlandingham, Michelle; Beland, Frederick A; Doerge, Daniel R
2018-05-01
Arsenic is ubiquitous in the earth's crust, and human diseases are linked with exposures that are similar to dietary intake estimates. Metabolic methylation of inorganic arsenic facilitates excretion of pentavalent metabolites and decreases acute toxicity; however, tissue binding of trivalent arsenic intermediates is evidence for concomitant metabolic activation. Pregnant and fetal CD-1 mice comprise a key animal model for arsenic carcinogenesis since adult-only exposures have minimal effects. This study evaluated inorganic arsenic and its metabolites in pentavalent and trivalent states in blood and tissues from maternal and fetal CD-1 mice after repeated administration of arsenite through drinking water. After 8 days of exposure, DMA species were ubiquitous in dams and fetuses. Despite the presence of MMA III in dams, none was observed in any fetal sample. This difference may be important in assessing fetal susceptibility to arsenic toxicity because MMA production has been linked with human disease. Binding of DMA III in fetal tissues provided evidence for metabolic activation, although the role for such binding in arsenic toxicity is unclear. This study provides links between administered dose, metabolism, and internal exposures from a key animal model of arsenic toxicity to better understand risks from human exposure to environmental arsenic. Copyright © 2018. Published by Elsevier Ltd.
Elsworth, John D.; Jentsch, J. David; VandeVoort, Catherine A.; Roth, Robert H.; Redmond, D. Eugene; Leranth, Csaba
2013-01-01
Prevalent use of bisphenol-A (BPA) in the manufacture of resins, plastics and paper products has led to frequent exposure of most people to this endocrine disruptor. Some rodent studies have suggested that BPA can exert detrimental effects on brain development. However as rodent models cannot be relied on to predict consequences of human exposure to BPA during development, it is important to investigate the effects of BPA on non-human primate brain development. Previous research suggests that BPA preferentially targets dopamine neurons in ventral mesencephalon and glutamatergic neurons in hippocampus, so the present work examined the susceptibility of these systems to low dose BPA exposure at the fetal and juvenile stages of development in non-human primates. Exposure of pregnant rhesus monkeys to relatively low levels of BPA during the final 2 months of gestation, induced abnormalities in fetal ventral mesencephalon and hippocampus. Specifically, light microscopy revealed a decrease in tyrosine hydroxylase-expressing (dopamine) neurons in the midbrain of BPA-exposed fetuses and electron microscopy identified a reduction in spine synapses in the CA1 region of hippocampus. In contrast, administration of BPA to juvenile vervet monkeys (14–18 months of age) was without effect on these indices, or on dopamine and serotonin concentrations in striatum and prefrontal cortex, or on performance of a cognitive task that tests working memory capacity. These data indicate that BPA exerts an age-dependent detrimental impact on primate brain development, at blood levels within the range measured in humans having only environmental contact with BPA. PMID:23337607
Cornish, Elisa E; Natoli, Riccardo C; Hendrickson, Anita; Provis, Jan M
2004-01-08
Relatively little is known of the expression and distribution of FGF receptors (FGFR) in the primate retina. We investigated expression of FGFRs in developing and adult Macaca monkey retina, paying particular attention to the cone rich, macular region. One fetal human retina was used for diagnostic PCR using primers designed for FGFR1, FGFR2, FGFR3, FGFR4, and FGFR like-protein 1 (FGFrl1) and for probe design to FGFR3, FGFR4, and FGFrl1. Rat cDNA was used to synthesize probes for FGFR1 and FGFR2 with 90% and 93% homology to human, respectively. Paraffin sections of retina from macaque fetuses sacrificed at fetal days (Fd) 64, 73, 85, 105, 115, 120, and 165, and postnatal ages 2.5 and 11 years were used to detect FGF receptors by immunohistochemistry and in situ hybridization. PCR showed each of the FGF receptors are expressed in fetal human retina. In situ hybridization indicated that mRNA for each receptor is expressed in all retinal cell layers during development, but most intensely in the ganglion cell layer (GCL). FGFR2 mRNA is reduced in the adult inner (INL) and outer (ONL) nuclear layers, while FGFrl1 mRNA is virtually absent from the adult ONL. FGFR4 mRNA is particularly intense in fetal and adult cone photoreceptors. Immunoreactivity to FGFR1-FGFR4 was detected in the interphotoreceptor matrix in what appeared to be RPE microvilli associated with developing photoreceptor outer segments, and generally is high in the GCL and low in the INL. Different patterns of FGFR3 and FGFR4 immunoreactivities in the outer plexiform layer (OPL) suggest localization of FGFR3 to horizontal cell processes, with FGFR4 being expressed by both horizontal and bipolar cell processes. FGFR1, FGFR3, and FGFR4 immunoreactivities are present in the inner segments and somata of adult cones. The pedicles of developing and adult cones are FGFR1 and FGFR3 immunoreactive, and the basal, synaptic region is FGFR4 immunoreactive. FGFR4 labels cones almost in their entirety from early in development and is not detected in rods. The fibers of Henle are intensely FGFR4 immunoreactive in adult cones. The results show high levels of FGF receptor expression in developing and adult retina. Differential distribution of FGF receptors across developing and adult photoreceptors suggests specific roles for FGF signalling in development and maintenance of photoreceptors, particularly the specialized cones of the fovea.
Lofthouse, E. M.; Perazzolo, S.; Brooks, S.; Crocker, I. P.; Glazier, J. D.; Johnstone, E. D.; Panitchob, N.; Sibley, C. P.; Widdows, K. L.; Sengers, B. G.
2015-01-01
Membrane transporters are considered essential for placental amino acid transfer, but the contribution of other factors, such as blood flow and metabolism, is poorly defined. In this study we combine experimental and modeling approaches to understand the determinants of [14C]phenylalanine transfer across the isolated perfused human placenta. Transfer of [14C]phenylalanine across the isolated perfused human placenta was determined at different maternal and fetal flow rates. Maternal flow rate was set at 10, 14, and 18 ml/min for 1 h each. At each maternal flow rate, fetal flow rates were set at 3, 6, and 9 ml/min for 20 min each. Appearance of [14C]phenylalanine was measured in the maternal and fetal venous exudates. Computational modeling of phenylalanine transfer was undertaken to allow comparison of the experimental data with predicted phenylalanine uptake and transfer under different initial assumptions. Placental uptake (mol/min) of [14C]phenylalanine increased with maternal, but not fetal, flow. Delivery (mol/min) of [14C]phenylalanine to the fetal circulation was not associated with fetal or maternal flow. The absence of a relationship between placental phenylalanine uptake and net flux of phenylalanine to the fetal circulation suggests that factors other than flow or transporter-mediated uptake are important determinants of phenylalanine transfer. These observations could be explained by tight regulation of free amino acid levels within the placenta or properties of the facilitated transporters mediating phenylalanine transport. We suggest that amino acid metabolism, primarily incorporation into protein, is controlling free amino acid levels and, thus, placental transfer. PMID:26676251
Elias, Alexander A; Ghaly, Andrew; Matushewski, Brad; Regnault, Timothy R H; Richardson, Bryan S
2016-02-01
We determined the impact of moderate maternal nutrient restriction (MNR) in guinea pigs on pregnancy outcomes, maternal/fetal growth parameters, and blood analytes to further characterize the utility of this model for inducing fetal growth restriction (FGR). Thirty guinea pig sows were fed ad libitum (Control) or 70% of the control diet prepregnant switching to 90% at midpregnancy (MNR). Animals were necropsied near term with weights obtained on all sows, fetuses, and placenta. Fetal blood sampling and organ dissection were undertaken in appropriate for gestational age (AGA) fetuses from Control litters and FGR fetuses from MNR litters using > or < 80 g which approximated the 10th percentile for the population weight distribution of the Control fetuses. MNR fetal demise rates (1/43) were extremely low in contrast to that seen with uterine artery ligation/ablation models, albeit with increased preterm delivery in MNR sows (3 of 15). We confirm that MNR fetuses are smaller and have increased placental/fetal weight ratios as often seen in human FGR infants. We provide justification for using a fetal weight threshold for categorizing AGA Control and FGR-MNR cohorts reducing population variance, and show that FGR-MNR fetuses have asymmetrical organ growth, and are polycythemic and hypoglycemic which are also well associated with moderate FGR in humans. These findings further support the utility of moderate MNR in guinea pigs for inducing FGR with many similarities to that in humans with moderate growth restriction whether resulting from maternal undernourishment or placental insufficiency. © The Author(s) 2015.
Christian, M S; Brent, R L; Calda, P
2007-02-01
A large National Institutes of Health (NIH) study showed that pharmacy-compounded 17alpha-hydroxyprogesterone caproate (17-OHP-C) reduced the incidence of preterm birth. The study results included a signal that 17-OHP-C may be associated with an increase in the rate of miscarriages and stillbirths. The most probable cause of an increased incidence of miscarriage/stillbirths may be the use of 17-OHP-C in high-risk patients. The current search of the non-clinical literature was performed to identify whether there were any signals from studies in animals that might suggest concerns for the safe use of progestins generally, and 17-OHP-C specifically, in the prevention of preterm birth in humans. An extensive literature search was performed for progesterone, 17-hydroxyprogesterone, and 17-OHP-C, using Medline and Toxline databases, textbooks, and then the obtained publications. Because 17-OHP-C does not have a standardized clinical formulation or optimal route of administration identified, all formulations, vehicles, routes and doses were included in the search, as well as treatment during any stage of pregnancy. All publications obtained were reviewed for relevancy; those in German, French, Italian or Russian were translated. None of the relevant non-clinical studies conducted in mice, rats, rabbits, guinea pigs, horses or non-human primates met current standards for determining reproductive and developmental effects as part of the process of drug development. Most studies focused on the potential of 17-OHP-C for teratogenicity. Many studies used supra-pharmacologic and/or high multiples of human exposure in their study design. Overall, 17-OHP-C was consistently shown to be less potent than progesterone, and neither progesterone nor 17-OHP-C consistently adversely affected maternal weight, embryo-fetal viability or caused malformations. One study in rhesus monkeys raises concerns because resorption/abortion occurred at the human equivalent dose of 17-OHP-C, 10 mg/kg; this finding did not occur in cynomolgus monkeys. The absence of information regarding the serum levels of both progesterone and 17-OHP-C in the animal studies and in humans, as well as presumed inter-species metabolic differences, make it difficult to conclude that the findings with 17-OHP-C in rhesus monkeys and the signal in the NIH trial are related. A few studies in rats raised questions regarding potential effects on postnatal development, but in the absence of better study designs, the relevancy of these findings to human risk are also questionable at best. There is a signal for embryo-fetal toxicity associated with 17-OHP-C in the two largest clinical trials conducted to date; there is also a signal for embryo-fetal toxicity with 17-OHP-C in rhesus monkeys and possibly one in rodent species. The relationship between these signals is unclear given the absence of state-of-the-art reproductive toxicology studies and human pharmacokinetic studies.
Pregnancy and Infants' Outcome: Nutritional and Metabolic Implications.
Berti, C; Cetin, I; Agostoni, C; Desoye, G; Devlieger, R; Emmett, P M; Ensenauer, R; Hauner, H; Herrera, E; Hoesli, I; Krauss-Etschmann, S; Olsen, S F; Schaefer-Graf, U; Schiessl, B; Symonds, M E; Koletzko, B
2016-01-01
Pregnancy is a complex period of human growth, development, and imprinting. Nutrition and metabolism play a crucial role for the health and well-being of both mother and fetus, as well as for the long-term health of the offspring. Nevertheless, several biological and physiological mechanisms related to nutritive requirements together with their transfer and utilization across the placenta are still poorly understood. In February 2009, the Child Health Foundation invited leading experts of this field to a workshop to critically review and discuss current knowledge, with the aim to highlight priorities for future research. This paper summarizes our main conclusions with regards to maternal preconceptional body mass index, gestational weight gain, placental and fetal requirements in relation to adverse pregnancy and long-term outcomes of the fetus (nutritional programming). We conclude that there is an urgent need to develop further human investigations aimed at better understanding of the basis of biochemical mechanisms and pathophysiological events related to maternal-fetal nutrition and offspring health. An improved knowledge would help to optimize nutritional recommendations for pregnancy.
GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.
Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak
2015-01-01
Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.
Seferovic, Maxim; Martín, Claudia Sánchez-San; Tardif, Suzette D; Rutherford, Julienne; Castro, Eumenia C C; Li, Tony; Hodara, Vida L; Parodi, Laura M; Giavedoni, Luis; Layne-Colon, Donna; Tamhankar, Manasi; Yagi, Shigeo; Martyn, Calla; Reyes, Kevin; Suter, Melissa A; Aagaard, Kjersti M; Chiu, Charles Y; Patterson, Jean L
2018-05-01
During its most recent outbreak across the Americas, Zika virus (ZIKV) was surprisingly shown to cause fetal loss and congenital malformations in acutely and chronically infected pregnant women. However, understanding the underlying pathogenesis of ZIKV congenital disease has been hampered by a lack of relevant in vivo experimental models. Here we present a candidate New World monkey model of ZIKV infection in pregnant marmosets that faithfully recapitulates human disease. ZIKV inoculation at the human-equivalent of early gestation caused an asymptomatic seroconversion, induction of type I/II interferon-associated genes and proinflammatory cytokines, and persistent viremia and viruria. Spontaneous pregnancy loss was observed 16-18 days post-infection, with extensive active placental viral replication and fetal neurocellular disorganization similar to that seen in humans. These findings underscore the key role of the placenta as a conduit for fetal infection, and demonstrate the utility of marmosets as a highly relevant model for studying congenital ZIKV disease and pregnancy loss.
Challenges and opportunities in developmental integrative physiology☆
Mueller, C.A.; Eme, J.; Burggren, W.W.; Roghair, R.D.; Rundle, S.D.
2015-01-01
This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony — an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. ‘Critical windows’ are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. “Catch-up growth” in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of “fetal programing”). Grand challenges for developmental physiology include integrating variation in developmental timing within and across generations, applying multiple stressor dosages and stressor exposure at different developmental timepoints, assessment of epigenetic and parental influences, developing new animal models and techniques, and assessing and implementing these designs and models in human health and development. PMID:25711780
Development of the genital ducts and external genitalia in the early human embryo.
Sajjad, Yasmin
2010-10-01
The course of development of the human genital tract is undifferentiated to the 9th week of development. At this time two symmetrical paired ducts known as the mesonephric (MD) and paramesonephric ducts (PMD) are present, which together with the urogenital sinus provide the tissue sources for internal and external genital development. Normal differentiation of the bipotential external genitalia and reproductive ducts are dependent upon the presence or absence of certain hormones. Masculinization of the internal and external genitalia during fetal development depends on the existence of two discrete testicular hormones. Testosterone secreted from Leydig cells induces the differentiation of the mesonephric ducts into the epididymis, vasa deferentia and seminal vesicles, whereas anti-Müllerian hormone (AMH) produced by Sertoli cells induces the regression of the paramesonephric ducts. The absence of AMH action in early fetal life results in the formation of the fallopian tubes, uterus and upper third of the vagina. In some target tissues, testosterone is converted to dihydrotestosterone, which is responsible for the masculinization of the urogenital sinus and external genitalia. © 2010 The Author. Journal of Obstetrics and Gynaecology Research © 2010 Japan Society of Obstetrics and Gynecology.
Intermediate filament protein nestin is expressed in developing meninges.
Yay, A; Ozdamar, S; Canoz, O; Baran, M; Tucer, B; Sonmez, M F
2014-01-01
Nestin is a type VI intermediate filament protein known as a marker for progenitor cells that can be mostly found in tissues during the embryonic and fetal periods. In our study, we aimed to determine the expression of nestin in meninges covering the brain tissue at different developmental stages and in the new born. In this study 10 human fetuses in different development stages between developmental weeks 9-34 and a newborn brain tissue were used. Fetuses in paraffin section were stained with H+E and nestin immunohistochemical staining protocol was performed. In this study, in the human meninges intense nestin expression was detected as early as in the 9th week of development. Intensity of this expression gradually decreased in later stages of development and nestin expression still persisted in a small population of newborn meningeal cells. In the present study, nestin positive cells gradually diminished in the developing and maturing meninges during the fetal period. This probably depends on initiation of a decrease in nestin expression and replacement with other tissue-specific intermediate filaments while the differentiation process continues. These differences can make significant contributions to the investigation and diagnosis of various pathological disorders (Tab. 1, Fig. 3, Ref. 36).
Fetal Alcohol Syndrome: The Impact on Children's Ability To Learn. Occasional Paper #10.
ERIC Educational Resources Information Center
Troccoli, Karen B.
This paper provides information on the incidence and prevalence of alcohol-related birth defects, the human and economic costs of fetal alcohol syndrome (FAS) and fetal alcohol effects (FAE), and examples of prevention and intervention strategies that can help reduce the occurrence of and ameliorate the consequences of FAS/FAE. It discusses the…
Bibliography on Fetal Alcohol Syndrome and Related Issues. Second Edition.
ERIC Educational Resources Information Center
All Indian Pueblo Council, Albuquerque, NM.
The bibliography on Fetal Alcohol Syndrome presents 312 unannotated journal articles for use by professionals working with American Indian people and is designed to serve as a vital source of knowledge on alcohol and child health. The bibliography is intended to list articles on Fetal Alcohol Syndrome and humans, and only highlight a minimal…
Three-dimensional growth dynamics of the liver in the human fetus.
Szpinda, Michał; Paruszewska-Achtel, Monika; Woźniak, Alina; Badura, Mateusz; Mila-Kierzenkowska, Celestyna; Wiśniewski, Marcin
2015-07-01
The fetal liver is indubitably the earliest and the most severely affected organ by abnormal fetal growth. The size of the fetal liver assessed by three-dimensional ultrasonography is indispensable in determining the status of fetal growth, nutrition and maturity, and in the early recognition and monitoring fetal micro- and macrosomias. The aim of the present study was to measure the human fetal liver length, transverse and sagittal diameters to establish their age-specific reference intervals, the 3rd, 10th, 50th, 90th, and 97th smoothed centile curves, and the relative growth of the liver calculated for the 50th centile. Using anatomical, digital (NIS-Elements AR 3.0, Nikon) and statistical methods (one-way ANOVA test for paired data and post hoc RIR Tukey test, Shapiro-Wilk test, Fisher's test, Student's t test, the Altman-Chitty method), length, transverse and sagittal diameters of the liver for the 3rd, 10th, 50th, 90th, and 97th centiles were assessed in 69 human fetuses of both sexes (32 males and 37 females) aged 18-30 weeks, derived from spontaneous abortions or stillbirths. No male-female differences (P > 0.05) concerning the three parameters studied were found. During the study period, the fetal liver increased tri-dimensionally: in length from 19.51 ± 1.02 to 39.65 ± 7.05 mm, in transverse diameter from 29.44 ± 3.73 to 53.13 ± 5.31 mm, and in sagittal diameter from 22.97 ± 3.79 to 43.22 ± 5.49 mm. The natural logarithmic models were found to fit the data with gestational age (P < 0.001) in the following five cutoff points: 3rd, 10th, 50th, 90th and 97th centiles. The values of liver parameters in relation to gestational age in weeks were calculated by the following logarithmic regressions: y = -82.778 + 35.752 × ln(age) ± Z × (-2.778 + 0.308 × age) for liver length, y = -123.06 + 52.668 × ln(age) ± Z × (3.156 + 0.049 × age) for liver transverse diameter, and y = -108.94 + 46.052 × ln(age) ± Z × (-0.541 + 0.188 × age) for liver sagittal diameter. For the 50th centile, at the range of 18-30 weeks, the growth rates per week were gradually decreasing from 1.93 to 1.21 mm for length, from 2.85 to 1.79 mm for transverse diameter, and from 2.49 to 1.56 mm for sagittal diameter of the liver (P < 0.05). During the study period both the length-to-transverse diameter ratio and the sagittal-to-transverse diameter ratio of the liver changed little, attaining the values of 0.71 ± 0.11 and 0.87 ± 0.12, respectively. The fetal liver does not reveal sex differences in its length, transverse and sagittal diameters. The fetal liver length, transverse and sagittal diameters grow logarithmically. The regression equations for the estimation of the mean and standard deviation of liver length, transverse and sagittal diameters allow for calculating any desired centiles according to gestational age. The three-dimensional evolution of the fetal liver follows proportionately. The age-specific reference intervals for evolving liver length, transverse and sagittal diameters constitute the normative values of potential relevance in monitoring normal fetal development and screening for disturbances in fetal growth.
Towards a New Study on Associative Learning in Human Fetuses: Fetal Associative Learning in Primates
ERIC Educational Resources Information Center
Kawai, Nobuyuki
2010-01-01
Research has revealed that fetuses can learn from events in their environment. The most convincing evidence for fetal learning is habituation to vibroacoustic stimulation (VAS) in human fetuses and classical conditioning in rat fetuses. However, these two research areas have been independent of each other. There have been few attempts at classical…
Age-related differences in human skin proteoglycans.
Carrino, David A; Calabro, Anthony; Darr, Aniq B; Dours-Zimmermann, Maria T; Sandy, John D; Zimmermann, Dieter R; Sorrell, J Michael; Hascall, Vincent C; Caplan, Arnold I
2011-02-01
Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin.
Human fetal bone cells in delivery systems for bone engineering.
Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann
2011-11-01
The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.
VandeVoort, Catherine A.; Gerona, Roy R.; vom Saal, Frederick S.; Tarantal, Alice F.; Hunt, Patricia A.; Hillenweck, Anne; Zalko, Daniel
2016-01-01
The present study was conducted in pregnant rhesus monkeys to determine the rapidity and extent to which BPA reaches the fetal compartment following oral ingestion, and the 24-hr fate of BPA. To assess metabolism changes during the course of pregnancy, we compared BPA biotransformation during the second and third trimesters in the same animals, measuring the levels of sulfated, gluronidated, and free BPA in maternal serum, amniotic fluid, and fetal serum. All animals showed measurable unconjugated and conjugated BPA in the fetal compartment and slow clearance compared to maternal serum. There were higher levels of BPA-G in amniotic fluid at 150 days gestation compared to 100 days gestation, as well as higher levels of BPA-G than BPA-S. We also monitored 3H-BPA (and metabolites) in key tissues and excreta from a mother and fetus and from a non-pregnant female. The elimination of radioactivity was rapid, but residues were still detectable 24 hr after dosing in all tissues analyzed. These data suggest that, in primates, rapid maternal processing of BPA does not alleviate the risk of exposure to the developing fetus. This study elevates concerns about levels of current BPA human exposure from potentially a large number of unknown sources and the risks posed to developing fetuses. PMID:27930651
Fetal-Maternal Interactions in the Synepitheliochorial Placenta Using the eGFP Cloned Cattle Model
Mess, Andrea; Perecin, Felipe; Bressan, Fabiana Fernandes; Mesquita, Ligia Garcia; Miglino, Maria Angelica; Pimentel, José RodrigoValim; Neto, Paulo Fantinato; Meirelles, Flávio Vieira
2013-01-01
Background To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Methodology/Principal Findings Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Conclusions/Significance Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse. PMID:23724045
Fetal-maternal interactions in the synepitheliochorial placenta using the eGFP cloned cattle model.
Pereira, Flavia Thomaz Verechia; Oliveira, Lilian J; Barreto, Rodrigo da Silva Nunes; Mess, Andrea; Perecin, Felipe; Bressan, Fabiana Fernandes; Mesquita, Ligia Garcia; Miglino, Maria Angelica; Pimentel, José RodrigoValim; Fantinato Neto, Paulo; Meirelles, Flávio Vieira
2013-01-01
To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse.
Ber-H2 (CD30) Immunohistochemical Staining of Human Fetal Tissues
2005-01-01
OBJECTIVE: CD30 antigen has long been considered to be restricted to the tumour cells of Hodgkin's disease and of anaplastic large cell lymphoma as well as to T and B activated lymphocytes. It is now apparent that the range of normal and neoplastic cells, which may express CD30 antigen, is much wider than was at first thought. In order to gain insight into the physiological function of CD30 antigen, we studied the distribution of its expression in the tissues of fetuses from week 8th to week 16th. MATERIALS AND METHODS: We investigated the immunohistochemical expression of CD30 antigen in paraffin-embedded tissue samples representing all systems from 30 fetuses after therapeutic abortion at 8th to 10th and 12th to 16th week of gestation, respectively, using the monoclonal antibody Ber-H2. RESULTS: Our results demonstrated that CD30 is expressed early in human fetal development (8th to 10th week of gestation) in several fetal tissues derived from all three germ layers (gastrointestinal tract, special glands of the postpharyngeal foregut, urinary, musculoskeletal, reproductive, nervous, endocrine systems), with the exception of the skin and hematolymphoid system (thymus), in which the antigen is expressed later on (10th week onwards). Expression of CD30 was restricted to the hematolymphoid system in the 12-16 weeks of gestation. No expression of the marker was observed in the respiratory and cardiovascular systems during the entire period examined. CONCLUSIONS: CD30 antigen is of importance in cell development, and proliferation. It is also pathway-related to terminal differentiation in many fetal tissues and organs. PMID:16244703
Mahemuti, Laziyan; Chen, Qixuan; Coughlan, Melanie C; Qiao, Cunye; Chepelev, Nikolai L; Florian, Maria; Dong, Dillon; Woodworth, Robert G; Yan, Jin; Cao, Xu-Liang; Scoggan, Kylie A; Jin, Xiaolei; Willmore, William G
2018-04-01
Experimental and/or epidemiological studies suggest that prenatal exposure to bisphenol A (BPA) may delay fetal lung development and maturation and increase the susceptibility to childhood respiratory disease. However, the underlying mechanisms remain to be elucidated. In our previous study with cultured human fetal lung fibroblasts (HFLF), we demonstrated that 24-h exposure to 1 and 100 µM BPA increased GPR30 protein in the nuclear fraction. Exposure to 100 μM BPA had no effects on cell viability, but increased cytoplasmic expression of ERβ and release of GDF-15, as well as decreased release of IL-6, ET-1, and IP-10 through suppression of NFκB phosphorylation. By performing global gene expression and pathway analysis in this study, we identified molecular pathways, gene networks, and key molecules that were affected by 100, but not 0.01 and 1 µM BPA in HFLF. Using multiple genomic and proteomic tools, we confirmed these changes at both gene and protein levels. Our data suggest that 100 μM BPA increased CYP1B1 and HSD17B14 gene and protein expression and release of endogenous estradiol, which was associated with increased ROS production and DNA double-strand breaks, upregulation of genes and/or proteins in steroid synthesis and metabolism, and activation of Nrf2-regulated stress response pathways. In addition, BPA activated ATM-p53 signaling pathway, resulting in increased cell cycle arrest at G1 phase, senescence and autophagy, and decreased cell proliferation in HFLF. The results suggest that prenatal exposure to BPA at certain concentrations may affect fetal lung development and maturation, and thereby affecting susceptibility to childhood respiratory diseases.
Developmental origins of inflammatory and immune diseases.
Chen, Ting; Liu, Han-Xiao; Yan, Hui-Yi; Wu, Dong-Mei; Ping, Jie
2016-08-01
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-09-28
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung.
Pre-birth origins of allergy and asthma.
Gatford, K L; Wooldridge, A L; Kind, K L; Bischof, R; Clifton, V L
2017-09-01
Allergy is a chronic disease that can develop as early as infancy, suggesting that early life factors are important in its aetiology. Variable associations between size at birth, a crude marker of the fetal environment, and allergy have been reported in humans and require comprehensive review. Associations between birth weight and allergy are however confounded in humans, and we and others have therefore begun exploring the effects of early life events on allergy in experimental models. In particular, we are using ovine models to investigate whether and how a restricted environment before birth protects against allergy, whether methyl donor availability contributes to allergic protection in IUGR, and why maternal asthma during pregnancy is associated with increased risks of allergic disease in children. We found that experimental intrauterine growth restriction (IUGR) in sheep reduced cutaneous responses to antigens in progeny, despite normal or elevated IgE responses. Furthermore, maternal methyl donor supplementation in late pregnancy partially reversed effects of experimental IUGR, consistent with the proposal that epigenetic pathways underlie some but not all effects of IUGR on allergic susceptibility. Ovine experimental allergic asthma with exacerbations reduces relative fetal size in late gestation, with some changes in immune populations in fetal thymus suggestive of increased activation. Maternal allergic asthma in mice also predisposes progeny to allergy development. In conclusion, these findings in experimental models provide direct evidence that a perturbed environment before birth alters immune system development and postnatal function, and provide opportunities to investigate underlying mechanisms and develop and evaluate interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Tuersunjiang, Nuermaimaiti; Odhiambo, John F.; Long, Nathan M.; Shasa, Desiree R.; Nathanielsz, Peter W.
2013-01-01
Obesity at conception and excess gestational weight gain pose significant risks for adverse health consequences in human offspring. This study evaluated the effects of reducing dietary intake of obese/overfed ewes beginning in early gestation on fetal development. Sixty days prior to conception, ewes were assigned to a control diet [CON: 100% of National Research Council (NRC) recommendations], a diet inducing maternal obesity (MO: 150% of NRC recommendations), or a maternal obesity intervention diet (MOI: 150% of NRC recommendations to day 28 of gestation, then 100% NRC) until necropsy at midgestation (day 75) or late (day 135) gestation. Fetal size and weight, as well as fetal organ weights, were greater (P < 0.05) at midgestation in MO ewes than those of CON and MOI ewes. By late gestation, whereas fetal size and weight did not differ among dietary groups, cardiac ventricular weights and wall thicknesses as well as liver and perirenal fat weights remained elevated in fetuses from MO ewes compared with those from CON and MOI ewes. MO ewes and fetuses exhibited elevated (P < 0.05) plasma concentrations of triglycerides, cholesterol, insulin, glucose, and cortisol at midgestation compared with CON and MOI ewes and fetuses. In late gestation, whereas plasma triglycerides and cholesterol, insulin, and cortisol remained elevated in MO vs. CON and MOI ewes and fetuses, glucose concentrations were elevated in both MO and MOI fetuses compared with CON fetuses, which was associated with elevated placental GLUT3 expression in both groups. These data are consistent with the concept that reducing maternal diet of obese/overfed ewes to requirements from early gestation can prevent subsequent alterations in fetal growth, adiposity, and glucose/insulin dynamics. PMID:23921140
Tuersunjiang, Nuermaimaiti; Odhiambo, John F; Long, Nathan M; Shasa, Desiree R; Nathanielsz, Peter W; Ford, Stephen P
2013-10-01
Obesity at conception and excess gestational weight gain pose significant risks for adverse health consequences in human offspring. This study evaluated the effects of reducing dietary intake of obese/overfed ewes beginning in early gestation on fetal development. Sixty days prior to conception, ewes were assigned to a control diet [CON: 100% of National Research Council (NRC) recommendations], a diet inducing maternal obesity (MO: 150% of NRC recommendations), or a maternal obesity intervention diet (MOI: 150% of NRC recommendations to day 28 of gestation, then 100% NRC) until necropsy at midgestation (day 75) or late (day 135) gestation. Fetal size and weight, as well as fetal organ weights, were greater (P < 0.05) at midgestation in MO ewes than those of CON and MOI ewes. By late gestation, whereas fetal size and weight did not differ among dietary groups, cardiac ventricular weights and wall thicknesses as well as liver and perirenal fat weights remained elevated in fetuses from MO ewes compared with those from CON and MOI ewes. MO ewes and fetuses exhibited elevated (P < 0.05) plasma concentrations of triglycerides, cholesterol, insulin, glucose, and cortisol at midgestation compared with CON and MOI ewes and fetuses. In late gestation, whereas plasma triglycerides and cholesterol, insulin, and cortisol remained elevated in MO vs. CON and MOI ewes and fetuses, glucose concentrations were elevated in both MO and MOI fetuses compared with CON fetuses, which was associated with elevated placental GLUT3 expression in both groups. These data are consistent with the concept that reducing maternal diet of obese/overfed ewes to requirements from early gestation can prevent subsequent alterations in fetal growth, adiposity, and glucose/insulin dynamics.
Type I interferons instigate fetal demise after Zika virus infection.
Yockey, Laura J; Jurado, Kellie A; Arora, Nitin; Millet, Alon; Rakib, Tasfia; Milano, Kristin M; Hastings, Andrew K; Fikrig, Erol; Kong, Yong; Horvath, Tamas L; Weatherbee, Scott; Kliman, Harvey J; Coyne, Carolyn B; Iwasaki, Akiko
2018-01-05
Zika virus (ZIKV) infection during pregnancy is associated with adverse fetal outcomes, including microcephaly, growth restriction, and fetal demise. Type I interferons (IFNs) are essential for host resistance against ZIKV, and IFN-α/β receptor (IFNAR)-deficient mice are highly susceptible to ZIKV infection. Severe fetal growth restriction with placental damage and fetal resorption is observed after ZIKV infection of type I IFN receptor knockout ( Ifnar1 -/- ) dams mated with wild-type sires, resulting in fetuses with functional type I IFN signaling. The role of type I IFNs in limiting or mediating ZIKV disease within this congenital infection model remains unknown. In this study, we challenged Ifnar1 -/- dams mated with Ifnar1 +/- sires with ZIKV. This breeding scheme enabled us to examine pregnant dams that carry a mixture of fetuses that express ( Ifnar1 +/- ) or do not express IFNAR ( Ifnar1 -/- ) within the same uterus. Virus replicated to a higher titer in the placenta of Ifnar1 -/- than within the Ifnar1 +/- concepti. Yet, rather unexpectedly, we found that only Ifnar1 +/- fetuses were resorbed after ZIKV infection during early pregnancy, whereas their Ifnar1 -/- littermates continue to develop. Analyses of the fetus and placenta revealed that, after ZIKV infection, IFNAR signaling in the conceptus inhibits development of the placental labyrinth, resulting in abnormal architecture of the maternal-fetal barrier. Exposure of midgestation human chorionic villous explants to type I IFN, but not type III IFNs, altered placental morphology and induced cytoskeletal rearrangements within the villous core. Our results implicate type I IFNs as a possible mediator of pregnancy complications, including spontaneous abortions and growth restriction, in the context of congenital viral infections. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Kollmann, Tobias R.; Pettoello-Mantovani, Massimo; Katopodis, Nikos F.; Hachamovitch, Moshe; Rubinstein, Arye; Kim, Ana; Goldstein, Harris
1996-04-01
To improve the usefulness of in vivo models for the investigation of the pathophysiology of human immunodeficiency virus (HIV) infection, we modified the construction of SCID mice implanted with human fetal thymus and liver (thy/liv-SCID-hu mice) so that the peripheral blood of the mice contained significant numbers of human monocytes and T cells. After inoculation with HIV-159, a primary patient isolate capable of infecting monocytes and T cells, the modified thy/liv-SCID-hu mice developed disseminated HIV infection that was associated with plasma viremia. The development of plasma viremia and HIV infection in thy/liv-SCID-hu mice inoculated with HIV-159 was inhibited by acute treatment with human interleukin (IL) 10 but not with human IL-12. The human peripheral blood mononuclear cells in these modified thy/liv-SCID-hu mice were responsive in vivo to treatment with exogenous cytokines. Human interferon γ expression in the circulating human peripheral blood mononuclear cells was induced by treatment with IL-12 and inhibited by treatment with IL-10. Thus, these modified thy/liv-SCID-hu mice should prove to be a valuable in vivo model for examining the role of immunomodulatory therapy in modifying HIV infection. Furthermore, our demonstration of the in vivo inhibitory effect of IL-10 on acute HIV infection suggests that further studies may be warranted to evaluate whether there is a role for IL-10 therapy in preventing HIV infection in individuals soon after exposure to HIV such as for children born to HIV-infected mothers.
Deisher, Theresa A; Doan, Ngoc V; Koyama, Kumiko; Bwabye, Sarah
2015-01-01
To assess the public health consequences of fetal cell line manufactured vaccines that contain residual human fetal DNA fragments utilizing laboratory and ecological approaches including statistics, molecular biology and genomics. MMR coverage and autism disorder or autism spectrum disorder prevalence data for Norway, Sweden and the UK were obtained from public and government websites as well as peer reviewed published articles. Biologically, the size and quantity of the contaminating fetal DNA in Meruvax II and Havrix as well as the propensity of various cell lines for cellular and nuclear uptake of primitive human DNA fragments were measured and quantified using gel electrophoresis, fluorescence microscopy and fluorometry. Lastly, genomic analysis identified the specific sites where fetal DNA fragment integration into a child's genome is most likely to occur. The average MMR coverage for the three countries fell below 90% after Dr. Wakefield's infamous 1998 publication but started to recover slowly after 2001 until reaching over 90% coverage again by 2004. During the same time period, the average autism spectrum disorder prevalence in the United Kingdom, Norway and Sweden dropped substantially after birth year 1998 and gradually increased again after birth year 2000. Average single stranded DNA and double stranded DNA in Meruvax II were 142.05 ng/vial and 35.00 ng/vial, respectively, and 276.00 ng/vial and 35.74 ng/vial in Havrix respectively. The size of the fetal DNA fragments in Meruvax II was approximately 215 base pairs. There was spontaneous cellular and nuclear DNA uptake in HFF1 and NCCIT cells. Genes that have been linked to autism (autism associated genes; AAGs) have a more concentrated susceptibility for insults to genomic stability in comparison to the group of all genes contained within the human genome. Of the X chromosome AAGs, 15 of 19 have double strand break motifs less than 100 kilobases away from the center of a meiotic recombination hotspot located within an exon. Vaccines manufactured in human fetal cell lines contain unacceptably high levels of fetal DNA fragment contaminants. The human genome naturally contains regions that are susceptible to double strand break formation and DNA insertional mutagenesis. The "Wakefield Scare" created a natural experiment that may demonstrate a causal relationship between fetal cell-line manufactured vaccines and ASD prevalence.
Characterization of choline transporters in the human placenta over gestation.
Baumgartner, Heidi K; Trinder, Kinsey M; Galimanis, Carly E; Post, Annalisa; Phang, Tzu; Ross, Randal G; Winn, Virginia D
2015-12-01
The developing fetus relies on the maternal blood supply to provide the choline it requires for making membrane lipids, synthesizing acetylcholine, and performing important methylation reactions. It is vital, therefore, that the placenta is efficient at transporting choline from the maternal to the fetal circulation. Although choline transporters have been found in term placenta samples, little is known about what cell types express specific choline transporters and how expression of the transporters may change over gestation. The objective of this study was to characterize choline transporter expression levels and localization in the human placenta throughout placental development. We analyzed CTL1 and -2 expression over gestation in human placental biopsies from 6 to 40 weeks gestation (n = 6-10 per gestational window) by immunoblot analysis. To determine the cellular expression pattern of the choline transporters throughout gestation, immunofluorescence analysis was then performed. Both CTL1 and CTL2 were expressed in the chorionic villi from 6 weeks gestation to term. Labor did not alter expression levels of either transporter. CTL1 localized to the syncytial trophoblasts and the endothelium of the fetal vasculature within the chorionic villous structure. CTL2 localized mainly to the stroma early in gestation and by the second trimester co-localized with CTL1 at the fetal vasculature. The differential expression pattern of CTL1 and CTL2 suggests that CTL1 is the key transporter involved in choline transport from maternal circulation and both transporters are likely involved in stromal and endothelial cell choline transport. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of Choline Transporters in the Human Placenta over Gestation
Baumgartner, Heidi K.; Trinder, Kinsey M.; Galimanis, Carly E.; Post, Annalisa; Phang, Tzu; Ross, Randal G.; Winn, Virginia D.
2015-01-01
INTRODUCTION The developing fetus relies on the maternal blood supply to provide the choline it requires for making membrane lipids, synthesizing acetylcholine, and performing important methylation reactions. It is vital, therefore, that the placenta is efficient at transporting choline from maternal to fetal circulation. Although choline transporters have been found in term placenta samples, little is known about what cell types express specific choline transporters and how expression of the transporters may change over gestation. The objective of this study was to characterize choline transporter expression levels and localization in the human placenta throughout placental development. METHODS We analyzed CTL1 and −2 expression over gestation in human placental biopsies from 6 to 40 weeks gestation (n=6–10 per gestational window) by immunoblot analysis. To determine the cellular expression pattern of the choline transporters throughout gestation, immunofluorescence analysis was then performed. RESULTS Both CTL1 and CTL2 were expressed in the chorionic villi from 6 weeks gestation to term. Labor did not alter expression levels of either transporter. CTL1 localized to the syncytial trophoblasts and the endothelium of the fetal vasculature within the chorionic villous structure. CTL2 localized mainly to the stroma early in gestation and by the second trimester co-localized with CTL1 at the fetal vasculature. DISCUSSION The differential expression pattern of CTL1 and CTL2 suggests that CTL1 is the key transporter involved in choline transport from maternal circulation and both transporters are likely involved in stromal and endothelial cell choline transport. PMID:26601765
Boekelheide, Kim
2014-01-01
In utero exposure to antiandrogenic xenobiotics such as di-n-butyl phthalate (DBP) has been linked to congenital defects of the male reproductive tract, including cryptorchidism and hypospadias, as well as later life effects such as testicular cancer and decreased sperm counts. Experimental evidence indicates that DBP has in utero antiandrogenic effects in the rat. However, it is unclear whether DBP has similar effects on androgen biosynthesis in human fetal testis. To address this issue, we developed a xenograft bioassay with multiple androgen-sensitive physiological endpoints, similar to the rodent Hershberger assay. Adult male athymic nude mice were castrated, and human fetal testis was xenografted into the renal subcapsular space. Hosts were treated with human chorionic gonadotropin for 4 weeks to stimulate testosterone production. During weeks 3 and 4, hosts were exposed to DBP or abiraterone acetate, a CYP17A1 inhibitor. Although abiraterone acetate (14 d, 75mg/kg/d po) dramatically reduced testosterone and the weights of androgen-sensitive host organs, DBP (14 d, 500mg/kg/d po) had no effect on androgenic endpoints. DBP did produce a near-significant trend toward increased multinucleated germ cells in the xenografts. Gene expression analysis showed that abiraterone decreased expression of genes related to transcription and cell differentiation while increasing expression of genes involved in epigenetic control of gene expression. DBP induced expression of oxidative stress response genes and altered expression of actin cytoskeleton genes. PMID:24284787
Does rat fetal DNA induce preeclampsia in pregnant rats?
Konečná, B; Borbélyová, V; Celec, P; Vlková, B
2015-02-01
Cell-free fetal DNA in maternal circulation is higher during preeclampsia. It is unclear whether it is the cause or the consequence of the disease. The aim of this study was to prove whether injected rat fetal DNA induces preeclampsia-like symptoms in pregnant Wistar rats. They received daily i.p. injections of water or rat fetal DNA (400 μg) from gestation day 14 to 18. Blood pressure, proteinuria, placental and fetal weight were measured at gestation day 19. Plasma DNase activity, proteinuria and creatinine clearance were assessed. There was no significant difference in any of the measured parameters. The results of this study do not confirm the hypothesis that fetal DNA might induce preeclampsia. This is in contrast to others using human fetal DNA in mice. Further studies should be focused on the effects of fetal DNA from the same species protected from DNase activity.
Development and function of human innate immune cells in a humanized mouse model.
Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A
2014-04-01
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.
Development and function of human innate immune cells in a humanized mouse model
Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V.; Teichmann, Lino L.; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A. Karolina; Manz, Markus G.; Flavell, Richard A.
2014-01-01
Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models are unable to support development of human innate immune cells, including myeloid cells and NK cells. Here we describe a mouse strain, called MI(S)TRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked in to their respective mouse loci. The human cytokines support the development and function of monocytes/macrophages and natural killer cells derived from human fetal liver or adult CD34+ progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MI(S)TRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology. PMID:24633240
Wilkinson, Molly; Kane, Tara; Wang, Rongpin; Takahashi, Emi
2017-12-01
The thalamus plays an important role in signal relays in the brain, with thalamocortical (TC) neuronal pathways linked to various sensory/cognitive functions. In this study, we aimed to see fetal and postnatal development of the thalamus including neuronal migration to the thalamus and the emergence/maturation of the TC pathways. Pathways from/to the thalami of human postmortem fetuses and in vivo subjects ranging from newborns to adults with no neurological histories were studied using high angular resolution diffusion MR imaging (HARDI) tractography. Pathways likely linked to neuronal migration from the ventricular zone and ganglionic eminence (GE) to the thalami were both successfully detected. Between the ventricular zone and thalami, more tractography pathways were found in anterior compared with posterior regions, which was well in agreement with postnatal observations that the anterior TC segment had more tract count and volume than the posterior segment. Three different pathways likely linked to neuronal migration from the GE to the thalami were detected. No hemispheric asymmetry of the TC pathways was quantitatively observed during development. These results suggest that HARDI tractography is useful to identify multiple differential neuronal migration pathways in human brains, and regional differences in brain development in fetal ages persisted in postnatal development. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Analgesic use in pregnancy and male reproductive development
Hurtado-Gonzalez, Pablo; Mitchell, Rod T.
2017-01-01
Purpose of review Male reproductive disorders are common and increasing in incidence in many countries. Environmental factors (including pharmaceuticals) have been implicated in the development of these disorders. This review aims to summarise the emerging epidemiological and experimental evidence for a potential role of in-utero exposure to analgesics in the development of male reproductive disorders. Recent findings A number of epidemiological studies have demonstrated an association between in-utero exposure to analgesics and the development of cryptorchidism, although these findings are not consistent across all studies. Where present, these associations primarily relate to exposure during the second trimester of pregnancy. In-vivo and in-vitro experimental studies have demonstrated variable effects of exposure to analgesics on Leydig cell function in the fetal testis of rodents, particularly in terms of testosterone production. These effects frequently involve exposures that are in excess of those to which humans are exposed. Investigation of the effects of analgesics on human fetal testis have also demonstrated effects on Leydig cell function. Variation in species, model system, dosage and timing of exposure is likely to contribute to differences in the findings between studies. Summary There is increasing evidence for analgesic effects on the developing testis that have the potential to impair reproductive function. However, the importance of these findings in relation to human-relevant exposures and the risk of male reproductive disorders remains unclear. PMID:28277341
Fetal Neurobehavioral Development and the Role of Maternal Nutrient Intake and Psychological Health
ERIC Educational Resources Information Center
Spann, Marisa; Smerling, Jennifer; Gustafsson, Hanna C.; Foss, Sophie; Monk, Catherine
2014-01-01
Measuring and understanding fetal neurodevelopment provides insight regarding the developing brain. Maternal nutrient intake and psychological stress during pregnancy each impact fetal neurodevelopment and influence childhood outcomes and are thus important factors to consider when studying fetal neurobehavioral development. The authors provide an…
Gattenlöhner, S.; Jörißen, H.; Huhn, M.; Vincent, A.; Beeson, D.; Tzartos, S.; Mamalaki, A.; Etschmann, B.; Muller-Hermelink, H. K.; Koscielniak, E.; Barth, S.; Marx, A.
2010-01-01
Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumor in children and is highly resistant to all forms of treatment currently available once metastasis or relapse has commenced. As it has recently been determined that the acetylcholine receptor (AChR) γ-subunit, which defines the fetal AChR (fAChR) isoform, is almost exclusively expressed in RMS post partum, we recombinantly fused a single chain variable fragment (scFv) derived from a fully human anti-fAChR Fab-fragment to Pseudomonas exotoxin A to generate an anti-fAChR immunotoxin (scFv35-ETA). While scFv35-ETA had no damaging effect on fAChR-negative control cell lines, it killed human embryonic and alveolar RMS cell lines in vitro and delayed RMS development in a murine transplantation model. These results indicate that scFv35-ETA may be a valuable new therapeutic tool as well as a relevant step towards the development of a fully human immunotoxin directed against RMS. Moreover, as approximately 20% of metastatic malignant melanomas (MMs) display rhabdoid features including the expression of fAChR, the immunotoxin we developed may also prove to be of significant use in the treatment of these more common and most often fatal neoplasms. PMID:20204062
Neurexin 1 (NRXN1) Splice Isoform Expression During Human Neocortical Development and Aging
Jenkins, Aaron K.; Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Kleinman, Joel E.; Law, Amanda J.
2015-01-01
Neurexin 1 (NRXN1), a presynaptic adhesion molecule, is implicated in several neurodevelopmental disorders characterized by synaptic dysfunction including, autism, intellectual disability, and schizophrenia. To gain insight into NRXN1’s involvement in human cortical development we used quantitative real time PCR to examine the expression trajectories of NRXN1, and its predominant isoforms NRXN1-α and NRXN1-β in prefrontal cortex from fetal stages to aging. Additionally, we investigated whether prefrontal cortical expression levels of NRXN1 transcripts are altered in schizophrenia or bipolar disorder in comparison to non-psychiatric control subjects. We observed that all three NRXN1 transcripts were highly expressed during human fetal cortical development, dramatically increasing with gestational age. In the postnatal DLPFC, expression levels were negatively correlated with age, peaking at birth until approximately 3 years of age, after which levels declined dramatically to be stable across the lifespan. NRXN1-β expression was modestly but significantly elevated in the brains of patients with schizophrenia compared to non-psychiatric controls, whereas NRXN1-α expression was increased in bipolar disorder. These data provide novel evidence that NRXN1 expression is highest in human prefrontal cortex during critical developmental windows relevant to the onset and diagnosis of a range of neurodevelopmental disorders, and that NRXN1 expression may be differentially altered in neuropsychiatric disorders. PMID:26216298
Habas, Piotr A.; Kim, Kio; Corbett-Detig, James M.; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. James; Studholme, Colin
2010-01-01
Modeling and analysis of MR images of the developing human brain is a challenge due to rapid changes in brain morphology and morphometry. We present an approach to the construction of a spatiotemporal atlas of the fetal brain with temporal models of MR intensity, tissue probability and shape changes. This spatiotemporal model is created from a set of reconstructed MR images of fetal subjects with different gestational ages. Groupwise registration of manual segmentations and voxelwise nonlinear modeling allow us to capture the appearance, disappearance and spatial variation of brain structures over time. Applying this model to atlas-based segmentation, we generate age-specific MR templates and tissue probability maps and use them to initialize automatic tissue delineation in new MR images. The choice of model parameters and the final performance are evaluated using clinical MR scans of young fetuses with gestational ages ranging from 20.57 to 24.71 weeks. Experimental results indicate that quadratic temporal models can correctly capture growth-related changes in the fetal brain anatomy and provide improvement in accuracy of atlas-based tissue segmentation. PMID:20600970
Fetal pathology produced by ethylene oxide treatment of the murine zygote.
Rutledge, J C; Generoso, W M
1989-06-01
Exposure of female mice to ethylene oxide by inhalation 1 or 6 h after mating produced not only multitemporal death of conceptuses but also high rates of abnormalities among surviving fetuses. In contrast, only marginal effects were observed when females were exposed 9 or 25 h after mating. The abnormalities found among 17 day gestation live fetuses were predominated by hydrops and eye defects, which, together, constitute 54% of all anomalies. Most of the remaining anomalies were distributed among 5 other types: small size, cleft palate, and cardiac, abdominal wall, or extremity and/or tail defects. In a follow-up study, the fetuses of females treated 6 h postmating were examined at 11-15 days gestation and the progression of fetal death and of malformations was studied. Results indicate that the expression of most fetal anomalies does not become apparent until late in gestation. Several of these induced anomalies are similar to common human sporadic birth defects. This new class of experimentally induced fetal anomalies provides a new avenue for investigating zygotic biology and a system for studying the progression of aberrant development.
Wang, Tingting; Chen, Man; Liu, Lian; Cheng, Huaiyan; Yan, You-E; Feng, Ying-Hong; Wang, Hui
2011-01-01
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a single site CpG methylation at nt −377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. PMID:21971485
Nicholas, Christina L.
2016-01-01
Objectives The midface of extant H. sapiens is known to undergo shape changes through fetal and neo-natal ontogeny; however, little work has been done to quantify these shape changes. Further, while midfacial traits which vary in frequency between populations of extant humans are presumed to develop prenatally, patterns of population-specific variation maxillary shape across ontogeny are not well documented. Only one study of fetal ontogeny which included specific discussion of the midface has taken a 3D geometric morphometric approach, and that study was limited to one population (Japanese). The present research project seeks to augment our understanding of fetal maxillary growth patterns, most especially in terms of intraspecific variation. Materials and Methods Three-dimensional coordinate landmark data were collected on the right maxillae of 102 fetal and neo-natal individuals from three groups (Euro-American, African-American, “Mixed Ancestry”). Results Shape changes were seen mainly in the lateral wall of the piriform aperture, the anterior nasal spine, and the subnasal alveolar region. The greatest difference across age groups (2nd Trimester, 3rd Trimester, Neonates) was between the second and third trimester. Euro-Americans and African-Americans clustered by population and differences in midfacial morphology related to ancestry could be discerned as early as the second trimester (p=0.002), indicating that population variation in maxillary morphology appears very early in ontogeny. Discussion The midface is a critical region of the skull for assessing ancestry and these results indicate that maxillary morphology may be useful for estimating ancestry for prenatal individuals as young as the second trimester. PMID:27412693
Bosle, Janine; Goetz, Sven; Raab, Andrea; Krupp, Eva M; Scheckel, Kirk G; Lombi, Enzo; Meharg, Andrew A; Fowler, Paul A; Feldmann, Jörg
2016-12-20
Maternal diet and lifestyle choices may affect placental transfer of cobalamin (Cbl) to the fetus. Fetal liver concentration of Cbl reflects nutritional status with regards to vitamin B12, but at these low concentration current Cbl measurement methods lack robustness. An analytical method based on enzymatic extraction with subsequent reversed-phase-high-pressure liquid chromatography (RP-HPLC) separation and parallel ICPMS and electrospray ionization (ESI)-Orbitrap-MS to determine specifically Cbl species in liver samples of only 10-50 mg was developed using 14 pig livers. Subsequently 55 human fetal livers were analyzed. HPLC-ICPMS analysis for cobalt (Co) and Cbl gave detection limits of 0.18 ng/g and 0.88 ng/g d.m. in liver samples, respectively, with a recovery of >95%. Total Co (Co t ) concentration did not reflect the amount of Cbl or vitamin B12 in the liver. Cbl bound Co contributes only 45 ± 15% to Co t . XRF mapping and μXANES analysis confirmed the occurrence of non-Cbl cobalt in pig liver hot spots indicating particular Co. No correlations of total cobalt nor Cbl with fetal weight or weeks of gestation were found for the human fetal livers. Although no gender difference could be identified for total Co concentration, female livers were significantly higher in Cbl concentration (24.1 ± 7.8 ng/g) than those from male fetuses (19.8 ± 7.1 ng/g) (p = 0.04). This HPLC-ICPMS method was able to quantify total Co t and Cbl in fetus liver, and it was sensitive and precise enough to identify this gender difference.
Antiinflammatory Effects of Budesonide in Human Fetal Lung
Barrette, Anne Marie; Roberts, Jessica K.; Chapin, Cheryl; Egan, Edmund A.; Segal, Mark R.; Oses-Prieto, Juan A.; Chand, Shreya; Burlingame, Alma L.
2016-01-01
Lung inflammation in premature infants contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease with long-term sequelae. Pilot studies administering budesonide suspended in surfactant have found reduced BPD without the apparent adverse effects that occur with systemic dexamethasone therapy. Our objective was to determine budesonide potency, stability, and antiinflammatory effects in human fetal lung. We cultured explants of second-trimester fetal lung with budesonide or dexamethasone and used microscopy, immunoassays, RNA sequencing, liquid chromatography/tandem mass spectrometry, and pulsating bubble surfactometry. Budesonide suppressed secreted chemokines IL-8 and CCL2 (MCP-1) within 4 hours, reaching a 90% decrease at 12 hours, which was fully reversed 72 hours after removal of the steroid. Half-maximal effects occurred at 0.04–0.05 nM, representing a fivefold greater potency than for dexamethasone. Budesonide significantly induced 3.6% and repressed 2.8% of 14,500 sequenced mRNAs by 1.6- to 95-fold, including 119 genes that contribute to the glucocorticoid inflammatory transcriptome; some are known targets of nuclear factor-κB. By global proteomics, 22 secreted inflammatory proteins were hormonally regulated. Two glucocorticoid-regulated genes of interest because of their association with lung disease are CHI3L1 and IL1RL1. Budesonide retained activity in the presence of surfactant and did not alter its surface properties. There was some formation of palmitate-budesonide in lung tissue but no detectable metabolism to inactive 16α-hydroxy prednisolone. We concluded that budesonide is a potent and stable antiinflammatory glucocorticoid in human fetal lung in vitro, supporting a beneficial antiinflammatory response to lung-targeted budesonide:surfactant treatment of infants for the prevention of BPD. PMID:27281349
Antiinflammatory Effects of Budesonide in Human Fetal Lung.
Barrette, Anne Marie; Roberts, Jessica K; Chapin, Cheryl; Egan, Edmund A; Segal, Mark R; Oses-Prieto, Juan A; Chand, Shreya; Burlingame, Alma L; Ballard, Philip L
2016-11-01
Lung inflammation in premature infants contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease with long-term sequelae. Pilot studies administering budesonide suspended in surfactant have found reduced BPD without the apparent adverse effects that occur with systemic dexamethasone therapy. Our objective was to determine budesonide potency, stability, and antiinflammatory effects in human fetal lung. We cultured explants of second-trimester fetal lung with budesonide or dexamethasone and used microscopy, immunoassays, RNA sequencing, liquid chromatography/tandem mass spectrometry, and pulsating bubble surfactometry. Budesonide suppressed secreted chemokines IL-8 and CCL2 (MCP-1) within 4 hours, reaching a 90% decrease at 12 hours, which was fully reversed 72 hours after removal of the steroid. Half-maximal effects occurred at 0.04-0.05 nM, representing a fivefold greater potency than for dexamethasone. Budesonide significantly induced 3.6% and repressed 2.8% of 14,500 sequenced mRNAs by 1.6- to 95-fold, including 119 genes that contribute to the glucocorticoid inflammatory transcriptome; some are known targets of nuclear factor-κB. By global proteomics, 22 secreted inflammatory proteins were hormonally regulated. Two glucocorticoid-regulated genes of interest because of their association with lung disease are CHI3L1 and IL1RL1. Budesonide retained activity in the presence of surfactant and did not alter its surface properties. There was some formation of palmitate-budesonide in lung tissue but no detectable metabolism to inactive 16α-hydroxy prednisolone. We concluded that budesonide is a potent and stable antiinflammatory glucocorticoid in human fetal lung in vitro, supporting a beneficial antiinflammatory response to lung-targeted budesonide:surfactant treatment of infants for the prevention of BPD.
Effects of Inevitable Environmental Pollutants.
ERIC Educational Resources Information Center
Howes, Carollee; Krakow, Joanne
This paper examines the effects of unavoidable pollutants on fetal development in humans. Inevitable pollutants such as radiation, pesticides, gases and lead found in the air, water, and food of our industrialized society are discussed as well as psychological correlates of industrialization and urbanization such as stress, increased noise levels…
Prater, M Renee; Johnson, Victor J; Germolec, Dori R; Luster, Michael I; Holladay, Steven D
2006-01-16
Synthetic oligodeoxynucleotides (ODN) containing CpG motifs, characteristic of bacterial DNA, are currently being evaluated as vaccine adjuvants for inducing protective immunity. Recently, there is increasing pressure to vaccinate pregnant women against maternally transmitted diseases including AIDS and tetanus, as well as against potential bio-weapons such as anthrax. CpG vaccines are effective because they trigger transient increases in T(H)1 cytokine production. Recent literature suggests, however, that a shift toward a T(H)1 cytokine profile during pregnancy may increase the risk of fetal morphologic defects. On this basis, we hypothesized that exposure to CpG motifs during pregnancy could result in T(H)1 inflammation leading to adverse effects on fetal development. To address this hypothesis, pregnant C57BL/6 mice were injected with CpG ODN (0-300 microg/dam) and maternal and fetal outcomes were determined. Injection of dams with the highest dose of CpG ODN resulted in markedly increased fetal resorptions and craniofacial/limb defects, while lower doses had little, if any effects. Histological examination of placentas revealed cellular necrosis with mixed inflammation and calcification in the spongiotrophoblast layer and dysregulation of labyrinthine vascular development. Concomitant elevations in maternal serum cytokine levels were observed including interleukin (IL)-2, IL-10 and IL-12. Treatment with 300 microg of non-CpG ODN did not cause any adverse effects. The 300 microg dose of CpG ODN used in the present study is 30-fold higher than the highest dose that has been administered to humans during clinical trials. These results suggest that the induction of T(H)1 cytokines during pregnancy by CpG motifs may potentially increase the risk of fetal loss and morphologic defects in mice, at least at high doses, and support the need for further investigation of teratogenesis that may result from exposure to vaccine adjuvants designed to produce T(H)1 cytokine profile shifts.
Fowler, Paul A; Anderson, Richard A; Saunders, Philippa T; Kinnell, Hazel; Mason, J Ian; Evans, Dean B; Bhattacharya, Siladitya; Flannigan, Samantha; Franks, Stephen; Monteiro, Ana; O'Shaughnessy, Peter J
2011-06-01
Ovarian primordial follicle formation is critical for subsequent human female fertility. It is likely that steroid, and especially estrogen, signaling is required for this process, but details of the pathways involved are currently lacking. The aim was to identify and characterize key members of the steroid-signaling pathway expressed in the second trimester human fetal ovary. We conducted an observational study of the female fetus, quantifying and localizing steroid-signaling pathway members. The study was conducted at the Universities of Aberdeen, Edinburgh, and Glasgow. Ovaries were collected from 43 morphologically normal human female fetuses from women undergoing elective termination of second trimester pregnancies. We measured mRNA transcript levels and immunolocalized key steroidogenic enzymes and steroid receptors, including those encoded by ESR2, AR, and CYP19A1. Levels of mRNA encoding the steroidogenic apparatus and steroid receptors increased across the second trimester. CYP19A1 transcript increased 4.7-fold during this period with intense immunostaining for CYP19A detected in pregranulosa cells around primordial follicles and somatic cells around oocyte nests. ESR2 was localized primarily to germ cells, but androgen receptor was exclusively expressed in somatic cells. CYP17A1 and HSD3B2 were also localized to oocytes, whereas CYP11A1 was detected in oocytes and some pregranulosa cells. The human fetal ovary expresses the machinery to produce and detect multiple steroid signaling pathways, including estrogenic signaling, with the oocyte acting as a key component. This study provides a step-change in our understanding of local dynamics of steroid hormone signaling during the key period of human primordial follicle formation.
Ribeiro, Milene Rocha; Moreli, Jusciele Brogin; Marques, Rafael Elias; Papa, Michelle Premazzi; Meuren, Lana Monteiro; Rahal, Paula; de Arruda, Luciana Barros; Oliani, Antonio Helio; Oliani, Denise Cristina Mós Vaz; Oliani, Sonia Maria; Narayanan, Aarthi; Nogueira, Maurício Lacerda
2018-06-06
Zika virus (ZIKV) is a flavivirus that has been highly correlated with the development of neurological disorders and other malformations in newborns and stillborn fetuses after congenital infection. This association is supported by the presence of ZIKV in the fetal brain and amniotic fluid, and findings suggest that infection of the placental barrier is a critical step for fetal ZIKV infection in utero. Therefore, relevant models to investigate the interaction between ZIKV and placental tissues are essential for understanding the pathogenesis of Zika syndrome. In this report, we demonstrate that explant tissue from full-term human placentas sustains a productive ZIKV infection, though the results depend on the strain. Viral infection was found to be associated with pro-inflammatory cytokine expression and apoptosis of the infected tissue, and these findings confirm that placental explants are targets of ZIKV replication. We propose that human placental explants are useful as a model for studying ZIKV infection ex vivo.
Day, P.E.L.; Cleal, J.K.; Lofthouse, E.M.; Goss, V.; Koster, G.; Postle, A.; Jackson, J.M.; Hanson, M.A.; Jackson, A.A.; Lewis, R.M.
2013-01-01
Introduction Placental glutamine synthesis has been demonstrated in animals and is thought to increase the availability of this metabolically important amino acid to the fetus. Glutamine is of fundamental importance for cellular replication, cellular function and inter-organ nitrogen transfer. The objective of this study was to investigate the role of glutamate/glutamine metabolism by the isolated perfused human placenta in the provision of glutamine to the fetus. Methods Glutamate metabolism was investigated in the isolated dually perfused human placental cotyledon. U–13C-glutamate was used to investigate the movement of carbon and 15N-leucine to study movement of amino-nitrogen. Labelled amino acids were perfused via maternal or fetal arteries at defined flow rates. The enrichment and concentration of amino acids in the maternal and fetal veins were measured following 5 h of perfusion. Results Glutamate taken up from the maternal and fetal circulations was primarily converted into glutamine the majority of which was released into the maternal circulation. The glutamine transporter SNAT5 was localised to the maternal-facing membrane of the syncytiotrophoblast. Enrichment of 13C or 15N glutamine in placental tissue was lower than in either the maternal or fetal circulation, suggesting metabolic compartmentalisation within the syncytiotrophoblast. Discussion Placental glutamine synthesis may help ensure the placenta's ability to supply this amino acid to the fetus does not become limiting to fetal growth. Glutamine synthesis may also influence placental transport of other amino acids, metabolism, nitrogen flux and cellular regulation. Conclusions Placental glutamine synthesis may therefore be a central mechanism in ensuring that the human fetus receives adequate nutrition and is able to maintain growth. PMID:24183194
Morén, Constanza; Hernández, Sandra; Guitart-Mampel, Mariona; Garrabou, Glòria
2014-09-22
Mitochondrial toxicity can be one of the most dreadful consequences of exposure to a wide range of external agents including pathogens, therapeutic agents, abuse drugs, toxic gases and other harmful chemical substances. However, little is known about the effects of mitochondrial toxicity on pregnant women exposed to these agents that may exert transplacental activity and condition fetal remodeling. It has been hypothesized that mitochondrial toxicity may be involved in some adverse obstetric outcomes. In the present study, we investigated the association between exposure to mitochondrial toxic agents and pathologic conditions ranging from fertility defects, detrimental fetal development and impaired newborn health due to intra-uterine exposure. We have reviewed data from studies in human subjects to propose mechanisms of mitochondrial toxicity that could be associated with the symptoms present in both exposed pregnant and fetal patients. Since some therapeutic interventions or accidental exposure cannot be avoided, further research is needed to gain insight into the molecular pathways leading to mitochondrial toxicity during pregnancy. The ultimate objective of these studies should be to reduce the mitochondrial toxicity of these agents and establish biomarkers for gestational monitoring of harmful effects.
Shakleya, Diaa M.
2011-01-01
A validated method for simultaneous LCMSMS quantification of nicotine, cocaine, 6-acetylmorphine (6AM), codeine, and metabolites in 100 mg fetal human brain was developed and validated. After homogenization and solid-phase extraction, analytes were resolved on a Hydro-RP analytical column with gradient elution. Empirically determined linearity was from 5–5,000 pg/mg for cocaine and benzoylecgonine (BE), 25–5,000 pg/mg for cotinine, ecgonine methyl ester (EME) and 6AM, 50–5000 pg/mg for trans-3-hydroxycotinine (OH-cotinine) and codeine, and 250–5,000 pg/mg for nicotine. Potential endogenous and exogenous interferences were resolved. Intra- and inter-assay analytical recoveries were ≥92%, intra- and inter-day and total assay imprecision were ≤14% RSD and extraction efficiencies were ≥67.2% with ≤83% matrix effect. Method applicability was demonstrated with a postmortem fetal brain containing 40 pg/mg cotinine, 65 pg/mg OH-cotinine, 13 pg/mg cocaine, 34 pg/mg EME, and 525 pg/mg BE. This validated method is useful for determination of nicotine, opioid, and cocaine biomarkers in brain. PMID:19229524
Hutton, Lisa C; Yan, Edwin; Yawno, Tamara; Castillo-Melendez, Margie; Hirst, Jon J; Walker, David W
2014-12-01
The vulnerability of the fetal and newborn brain to events in utero or at birth that cause damage arising from perturbations of cerebral blood flow and metabolism, such as the accumulation of free radicals and excitatory transmitters to neurotoxic levels, has received considerable attention over the last few decades. Attention has usually been on the damage to cerebral structures, particularly, periventricular white matter. The rapid growth of the cerebellum in the latter half of fetal life in species with long gestations, such as the human and sheep, suggests that this may be a particularly important time for the development of cerebellar structure and function. In this short review, we summarize data from recent studies with fetal sheep showing that the developing cerebellum is particularly sensitive to infectious processes, chronic hypoxia and asphyxia. The data demonstrates that the cerebellum should be further studied in insults of this nature as it responds differently to the remainder of the brain. Damage to this region of the brain has implications not only for the development of motor control and posture, but also for higher cognitive processes and the subsequent development of complex behaviours, such as learning, memory and attention.
Reflexive Research Ethics in Fetal Tissue Xenotransplantation Research
Panikkar, Bindu; Smith, Natasha; Brown, Phil
2013-01-01
For biomedical research in which the only involvement of the human subject is the provision of tissue or organ samples, a blanket consent, i.e. consent to use the tissue for anything researchers wish to do, is considered by many to be adequate for legal and IRB requirements. Alternatively, a detailed informed consent provides patients or study participants with more thorough information about the research topic. We document here the beliefs and opinions of the research staff on informed consent and the discussion-based reflexive research ethics process that we employed in our fetal tissue xenotransplantion research on the impact of environmental exposures on fetal development. Reflexive research ethics entails the continued adjustment of research practice according to relational and reflexive understandings of what might be beneficent or harmful. Such reflexivity is not solely an individual endeavor, but rather a collective relationship between all actors in the research process. PMID:23074992
Fetal-to-maternal signaling to initiate parturition
Reinl, Erin L.; England, Sarah K.
2015-01-01
Multiple processes are capable of activating the onset of parturition; however, the specific contributions of the mother and the fetus to this process are not fully understood. In this issue of the JCI, Gao and colleagues present evidence that steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2) regulate surfactant protein-A (SP-A) and platelet-activating factor (PAF) expression, which increases in the developing fetal lung. WT dams crossed with males deficient for both SRC-1 and SRC-2 had suppressed myometrial inflammation, increased serum progesterone, and delayed parturition, which could be reconciled by injection of either SP-A or PAF into the amnion. Together, the results of this study demonstrate that the fetal lungs produce signals to initiate labor in the mouse. This work underscores the importance of the fetus as a contributor to the onset of murine, and potentially human, parturition. PMID:26098207
Embryo-fetal development studies with the dietary supplement vinpocetine in the rat and rabbit.
Catlin, Natasha; Waidyanatha, Suramya; Mylchreest, Eve; Miller-Pinsler, Lutfiya; Cunny, Helen; Foster, Paul; Sutherland, Vicki; McIntyre, Barry
2018-06-01
Dietary supplement and natural product use is increasing within the United States, resulting in growing concern for exposure in vulnerable populations, including young adults and women of child-bearing potential. Vinpocetine is a semisynthetic derivative of the Vinca minor extract, vincamine. Human exposure to vinpocetine occurs through its use as a dietary supplement for its purported nootropic and neuroprotective effects. To investigate the effects of vinpocetine on embryo-fetal development, groups of 25 pregnant Sprague-Dawley rats and 8 pregnant New Zealand White rabbits were orally administered 0, 5, 20, or 60 mg vinpocetine/kg and 0, 25, 75, 150, or 300 mg/kg daily from gestational day (GD) 6-20 and GD 7-28, respectively. Pregnant rats dosed with vinpocetine demonstrated dose-dependent increases in postimplantation loss, higher frequency of early and total resorptions, lower fetal body weights, and fewer live fetuses following administration of 60 mg/kg, in the absence of maternal toxicity. Additionally, the rat fetuses displayed dose-dependent increases in the incidences of ventricular septum defects and full supernumerary thoracolumbar ribs. Similarly, albeit at higher doses than the rats, pregnant rabbits administered vinpocetine displayed an increase in postimplantation loss and fewer live fetuses (300 mg/kg), in addition to significantly lower fetal body weights (≥75 mg/kg). In conclusion, vinpocetine exposure resulted in similar effects on embryo-fetal development in the rat and rabbit. The species differences in sensitivity and magnitude of response is likely attributable to a species difference in metabolism. Taken together, these data suggest a potential hazard for pregnant women who may be taking vinpocetine. © 2018 Wiley Periodicals, Inc.
Development of prenatal lateralization: evidence from fetal mouth movements.
Reissland, N; Francis, B; Aydin, E; Mason, J; Exley, K
2014-05-28
Human lateralized behaviors relate to the asymmetric development of the brain. Research of the prenatal origins of laterality is equivocal with some studies suggesting that fetuses exhibit lateralized behavior and other not finding such laterality. Given that by around 22weeks of gestation the left cerebral hemisphere compared to the right is significantly larger in both male and female fetuses we expected that the right side of the fetal face would show more movement with increased gestation. This longitudinal study investigated whether fetuses from 24 to 36weeks of gestation showed increasing lateralized behaviors during mouth opening and whether lateralized mouth movements are related to fetal age, gender and maternal self-reported prenatal stress. Following ethical approval, fifteen healthy fetuses (8 girls) of primagravid mothers were scanned four times from 24 to 36-gestation. Two types of mouth opening movements - upper lip raiser and mouth stretch - were coded in 60 scans for 10min. We modeled the proportion of right mouth opening for each fetal scan using a generalized linear mixed model, which takes account of the repeated measures design. There was a significant increase in the proportion of lateralized mouth openings over the period increasing by 11% for each week of gestational age (LRT change in deviance=10.92, 1df; p<0.001). No gender differences were found nor was there any effect of maternally reported stress on fetal lateralized mouth movements. There was also evidence of left lateralization preference in mouth movement, although no evidence of changes in lateralization bias over time. This longitudinal study provides important new insights into the development of lateralized mouth movements from 24 to 36 weeks of gestation. Copyright © 2014 Elsevier Inc. All rights reserved.
HOX genes in human lung: altered expression in primary pulmonary hypertension and emphysema.
Golpon, H A; Geraci, M W; Moore, M D; Miller, H L; Miller, G J; Tuder, R M; Voelkel, N F
2001-03-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3' end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases.
Golpon, Heiko A.; Geraci, Mark W.; Moore, Mark D.; Miller, Heidi L.; Miller, Gary J.; Tuder, Rubin M.; Voelkel, Norbert F.
2001-01-01
HOX genes belong to the large family of homeodomain genes that function as transcription factors. Animal studies indicate that they play an essential role in lung development. We investigated the expression pattern of HOX genes in human lung tissue by using microarray and degenerate reverse transcriptase-polymerase chain reaction survey techniques. HOX genes predominantly from the 3′ end of clusters A and B were expressed in normal human adult lung and among them HOXA5 was the most abundant, followed by HOXB2 and HOXB6. In fetal (12 weeks old) and diseased lung specimens (emphysema, primary pulmonary hypertension) additional HOX genes from clusters C and D were expressed. Using in situ hybridization, transcripts for HOXA5 were predominantly found in alveolar septal and epithelial cells, both in normal and diseased lungs. A 2.5-fold increase in HOXA5 mRNA expression was demonstrated by quantitative reverse transcriptase-polymerase chain reaction in primary pulmonary hypertension lung specimens when compared to normal lung tissue. In conclusion, we demonstrate that HOX genes are selectively expressed in the human lung. Differences in the pattern of HOX gene expression exist among fetal, adult, and diseased lung specimens. The altered pattern of HOX gene expression may contribute to the development of pulmonary diseases. PMID:11238043
Omega-3 fatty acid supplementation in perinatal settings.
Blanchard, Dawn S
2006-01-01
The purpose of this article is (a) to explain the role of omega-3 fatty acids in human health, specifically in fetal/neonatal development, (b) to summarize the recent research behind the innovations in infant formula manufacturing and advertisement of omega-3 fatty acid supplementation for pregnant and lactating mothers, and (c) to relate the research findings to clinical practice. Omega-3 fatty acid supplementation in perinatal settings is discussed here from three vantage points: (a) supplementation of the third-trimester pregnant woman to enhance fetal development, (b) supplementation of the lactating mother to enhance development of the breastfeeding infant, and (c) supplementation of infant formulas to enhance development of the bottle-feeding infant. Supplementation can occur by increasing one's intake of foods high in omega-3 fatty acids or by ingesting fatty acid nutritional supplements. The challenge of supplementation for vegan and vegetarian women is also addressed.
The impact of medical technology on the pregnant woman's right to privacy.
Annas, G J
1987-01-01
It has been suggested that the advance of science and technology in the West has changed both the relationship of man to nature and of man to man. With regard to human reproduction, science and technology in medicine may certainly change the relationship of man to nature and of man to man, but also the concept of what it means to be human. Efforts must be taken to guarantee the rights of all humans. The author explores developing reproductive medical technology to consider how it may change our concept of humanness and how that change may be accommodated, encouraged, or impeded by the relationship between the government and its pregnant citizens as defined by the US Constitution and the right to privacy. Sections discuss the Constitution at the beginning of life; sterilization and the right to procreate; contraception, abortion, and the right not to procreate; and surrogacy. The author also discusses constitutional issues when the interests of a pregnant woman conflict with those of the fetus in terms of fetal surgery, forced cesarean-section cases, and the fetal abuse case of Pamela Monson Stewart.
Hamabe, Yui; Hirose, Ayumi; Yamada, Shigehito; Uwabe, Chigako; Okada, Tomohisa; Togashi, Kaori; Kose, Katsumi; Takakuwa, Tetsuya
2013-06-01
Normal liver growth was described morphologically and morphometrically using magnetic resonance imaging (MRI) data of human fetuses, and compared with embryonic liver to establish a normal reference chart for clinical use. MRI images from 21 fetuses at 16-26 weeks of gestation and eight embryos at Carnegie stage (CS)23 were investigated in the present study. Using the image data, the morphology of the liver as well as its adjacent organs was extracted and reconstructed three-dimensionally. Morphometry of fetal liver growth was performed using simple regression analysis. The fundamental morphology was similar in all cases of the fetal livers examined. The liver tended to grow along the transversal axis. The four lobes were clearly recognizable in the fetal liver but not in the embryonic liver. The length of the liver along the three axes, liver volume and four lobes correlated with the bodyweight (BW). The morphogenesis of the fetal liver on the dorsal and caudal sides was affected by the growth of the abdominal organs, such as the stomach, duodenum and spleen, and retroperitoneal organs, such as the right adrenal gland and right kidney. The main blood vessels such as inferior vena cava, portal vein and umbilical vein made a groove on the surface of the liver. Morphology of the fetal liver was different from that of the embryonic liver at CS23. The present data will be useful for evaluating the development of the fetal liver and the adjacent organs that affect its morphology. © 2012 The Japan Society of Hepatology.
Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E
2017-07-01
Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P < .001; right: 0.810, 0.753; P < .01). Altered location and depth patterns of sulcal basins were the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.
Magnetic resonance angiography of fetal vasculature at 3.0 T.
Neelavalli, Jaladhar; Krishnamurthy, Uday; Jella, Pavan K; Mody, Swati S; Yadav, Brijesh K; Hendershot, Kelly; Hernandez-Andrade, Edgar; Yeo, Lami; Cabrera, Maria D; Haacke, Ewart M; Hassan, Sonia S; Romero, Roberto
2016-12-01
Magnetic resonance angiography has not been used much previously for visualizing fetal vessels in utero for reasons that include a contraindication for the use of exogenous contrast agents, maternal respiratory motion and fetal motion. In this work, we report the feasibility of using an appropriately modified clinical time-of-flight magnetic resonance imaging sequence for non-contrast angiography of human fetal and placental vessels at 3.0 T. Using this 2D angiography technique, it is possible to visualize fetal vascular networks in late pregnancy. • 3D-visualization of fetal vasculature is feasible using non-contrast MRA at 3.0 T. • Visualization of placental vasculature is also possible with this method. • Fetal MRA can serve as a vascular localizer for quantitative MRI studies. • This method can be extended to 1.5 T.
Cawyer, Chase R; Anderson, Sarah B; Szychowski, Jeff M; Neely, Cherry; Owen, John
2018-03-01
To compare the accuracy of a new regression-derived formula developed from the National Fetal Growth Studies data to the common alternative method that uses the average of the gestational ages (GAs) calculated for each fetal biometric measurement (biparietal diameter, head circumference, abdominal circumference, and femur length). This retrospective cross-sectional study identified nonanomalous singleton pregnancies that had a crown-rump length plus at least 1 additional sonographic examination with complete fetal biometric measurements. With the use of the crown-rump length to establish the referent estimated date of delivery, each method's (National Institute of Child Health and Human Development regression versus Hadlock average [Radiology 1984; 152:497-501]), error at every examination was computed. Error, defined as the difference between the crown-rump length-derived GA and each method's predicted GA (weeks), was compared in 3 GA intervals: 1 (14 weeks-20 weeks 6 days), 2 (21 weeks-28 weeks 6 days), and 3 (≥29 weeks). In addition, the proportion of each method's examinations that had errors outside prespecified (±) day ranges was computed by using odds ratios. A total of 16,904 sonograms were identified. The overall and prespecified GA range subset mean errors were significantly smaller for the regression compared to the average (P < .01), and the regression had significantly lower odds of observing examinations outside the specified range of error in GA intervals 2 (odds ratio, 1.15; 95% confidence interval, 1.01-1.31) and 3 (odds ratio, 1.24; 95% confidence interval, 1.17-1.32) than the average method. In a contemporary unselected population of women dated by a crown-rump length-derived GA, the National Institute of Child Health and Human Development regression formula produced fewer estimates outside a prespecified margin of error than the commonly used Hadlock average; the differences were most pronounced for GA estimates at 29 weeks and later. © 2017 by the American Institute of Ultrasound in Medicine.
Thomas Rajarethnem, Huban; Megur Ramakrishna Bhat, Kumar; Jc, Malsawmzuali; Kumar Gopalkrishnan, Siva; Mugundhu Gopalram, Ramesh Babu; Rai, Kiranmai Sesappa
2017-01-01
Choline is an essential nutrient for humans which plays an important role in structural integrity and signaling functions. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, highly enriched in cell membranes of the brain. Dietary intake of choline or DHA alone by pregnant mothers directly affects fetal brain development and function. But no studies show the efficacy of combined supplementation of choline and DHA on fetal neurodevelopment. The aim of the present study was to analyze fetal neurodevelopment on combined supplementation of pregnant dams with choline and DHA. Pregnant dams were divided into five groups: normal control [NC], saline control [SC], choline [C], DHA, and C + DHA. Saline, choline, and DHA were given as supplements to appropriate groups of dams. NC dams were undisturbed during entire gestation. On postnatal day (PND) 40, brains were processed for Cresyl staining. Pups from choline or DHA supplemented group showed significant ( p < 0.05) increase in number of neurons in hippocampus when compared to the same in NC and SC groups. Moreover, pups from C + DHA supplemented group showed significantly higher number of neurons ( p < 0.001) in hippocampus when compared to the same in NC and SC groups. Thus combined supplementation of choline and DHA during normal pregnancy enhances fetal hippocampal neurodevelopment better than supplementation of choline or DHA alone.
Maternal high-fat diet is associated with impaired fetal lung development
Mayor, Reina S.; Finch, Katelyn E.; Zehr, Jordan; Morselli, Eugenia; Neinast, Michael D.; Frank, Aaron P.; Hahner, Lisa D.; Wang, Jason; Rakheja, Dinesh; Palmer, Biff F.; Rosenfeld, Charles R.; Savani, Rashmin C.
2015-01-01
Maternal nutrition has a profound long-term impact on infant health. Poor maternal nutrition influences placental development and fetal growth, resulting in low birth weight, which is strongly associated with the risk of developing chronic diseases, including heart disease, hypertension, asthma, and type 2 diabetes, later in life. Few studies have delineated the mechanisms by which maternal nutrition affects fetal lung development. Here, we report that maternal exposure to a diet high in fat (HFD) causes placental inflammation, resulting in placental insufficiency, fetal growth restriction (FGR), and inhibition of fetal lung development. Notably, pre- and postnatal exposure to maternal HFD also results in persistent alveolar simplification in the postnatal period. Our novel findings provide a strong association between maternal diet and fetal lung development. PMID:26092997
The expression patterns of pro-apoptotic and anti-apoptotic factors in human fetal and adult ovary.
Poljicanin, Ana; Vukusic Pusic, Tanja; Vukojevic, Katarina; Caric, Ana; Vilovic, Katarina; Tomic, Snjezana; Soljic, Violeta; Saraga-Babic, Mirna
2013-07-01
The influence of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins on the cell death (caspase-3, TUNEL) of different ovarian cell lineages was immunohistochemically analyzed in six fetal and five adult human ovaries in order to disclose possible mechanisms of cell number control. Mild to moderate expression of Bcl-2 characterized ovarian surface epithelium, follicular cells and oocytes of 15 and 22 week human ovaries, while expression of Bax and caspase-3 gradually increased in all ovarian cell populations, except caspase-3 in the ovarian surface epithelium. Different levels of Bax and Bcl-2 proteins co-expression characterized fetal ovarian cells, while TUNEL and caspase-3 co-expression was found only in some of them. In adult ovaries, Bcl-2 was moderately and Bax strongly expressed in the surface ovarian epithelium and stroma. Bcl-2 and Bax expression in granulosa and theca interna cells varied depending on the stage of follicular atresia. Caspase-3 apoptotic cells characterized granulosa cells of adult atretic follicles. Our results indicate that intracellular levels of Bcl-2 and Bax protein might regulate the final destiny of developing germ cells. Caspase-3 dependent apoptosis seems to be the most important, but not the only cell death pathway in ovaries. In adult ovaries, caspase-dependent cell death characterized granulosa cells, but not the germ cells. Copyright © 2012 Elsevier GmbH. All rights reserved.
Ontogeny of a novel pituitary protein (7B2) in the human fetal intestine.
Suzuki, H; Christofides, N D; Adrian, T E; Chretien, M; Seidah, N G; Polak, J M; Bloom, S R
1985-11-28
The developmental profile of the concentration of a novel pituitary protein (7B2) was studied immunochemically in the human gastrointestinal tract from 12 weeks of gestation to 4 months after birth and was compared to the distribution in the adult. 7B2-like immunoreactivity (IR-7B2) was detected in all segments studied, but no gross changes were seen through fetal life. At term higher concentrations of IR-7B2 were found in the duodenum and the antrum, which is similar to the distribution of adult man. Gel permeation chromatography revealed that the main peak of 7B2 immunoreactivity in the fetal intestinal extract eluted with a Kav of 0.3. Similar elution profiles were also observed in extracts of human adult intestine.
Nutrition Implications for Fetal Alcohol Spectrum Disorder12
Young, Jennifer K.; Giesbrecht, Heather E.; Eskin, Michael N.; Aliani, Michel; Suh, Miyoung
2014-01-01
Prenatal alcohol exposure produces a multitude of detrimental alcohol-induced defects in children collectively known as fetal alcohol spectrum disorder (FASD). Children with FASD often exhibit delayed or abnormal mental, neural, and physical growth. Socioeconomic status, race, genetics, parity, gravidity, age, smoking, and alcohol consumption patterns are all factors that may influence FASD. Optimal maternal nutritional status is of utmost importance for proper fetal development, yet is often altered with alcohol consumption. It is critical to determine a means to resolve and reduce the physical and neurological malformations that develop in the fetus as a result of prenatal alcohol exposure. Because there is a lack of information on the role of nutrients and prenatal nutrition interventions for FASD, the focus of this review is to provide an overview of nutrients (vitamin A, docosahexaenoic acid, folic acid, zinc, choline, vitamin E, and selenium) that may prevent or alleviate the development of FASD. Results from various nutrient supplementation studies in animal models and FASD-related research conducted in humans provide insight into the plausibility of prenatal nutrition interventions for FASD. Further research is necessary to confirm positive results, to determine optimal amounts of nutrients needed in supplementation, and to investigate the collective effects of multiple-nutrient supplementation. PMID:25398731
The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome.
Miller, Suzanne L; Huppi, Petra S; Mallard, Carina
2016-02-15
Fetal growth restriction (FGR) is a significant complication of pregnancy describing a fetus that does not grow to full potential due to pathological compromise. FGR affects 3-9% of pregnancies in high-income countries, and is a leading cause of perinatal mortality and morbidity. Placental insufficiency is the principal cause of FGR, resulting in chronic fetal hypoxia. This hypoxia induces a fetal adaptive response of cardiac output redistribution to favour vital organs, including the brain, and is in consequence called brain sparing. Despite this, it is now apparent that brain sparing does not ensure normal brain development in growth-restricted fetuses. In this review we have brought together available evidence from human and experimental animal studies to describe the complex changes in brain structure and function that occur as a consequence of FGR. In both humans and animals, neurodevelopmental outcomes are influenced by the timing of the onset of FGR, the severity of FGR, and gestational age at delivery. FGR is broadly associated with reduced total brain volume and altered cortical volume and structure, decreased total number of cells and myelination deficits. Brain connectivity is also impaired, evidenced by neuronal migration deficits, reduced dendritic processes, and less efficient networks with decreased long-range connections. Subsequent to these structural alterations, short- and long-term functional consequences have been described in school children who had FGR, most commonly including problems in motor skills, cognition, memory and neuropsychological dysfunctions. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Two human homeobox genes, c1 and c8: structure analysis and expression in embryonic development.
Simeone, A; Mavilio, F; Acampora, D; Giampaolo, A; Faiella, A; Zappavigna, V; D'Esposito, M; Pannese, M; Russo, G; Boncinelli, E
1987-07-01
Two human cDNA clones (HHO.c1.95 and HHO.c8.5111) containing a homeobox region have been characterized, and the respective genomic regions have been partially analyzed. Expression of the corresponding genes, termed c1 and c8, was evaluated in different organs and body parts during human embryonic/fetal development. HHO.c1.95 apparently encodes a 217-amino acid protein containing a class I homeodomain that shares 60 out of 61 amino acid residues with the Antennapedia homeodomain of Drosophila melanogaster. HHO.c8.5111 encodes a 153-amino acid protein containing a homeodomain identical to that of the frog AC1 gene. Clones HHO.c1 and HHO.c8 detect by blot-hydridization one and two specific polyadenylylated transcripts, respectively. These are differentially expressed in spinal cord, backbone rudiments, limb buds (or limbs), heart, and skin of human embryos and early fetuses in the 5- to 9-week postfertilization period, thus suggesting that the c1 and c8 genes play a key role in a variety of developmental processes. Together, the results of the embryonic/fetal expression of c1 and c8 and those of two previously analyzed genes (c10 and c13) indicate a coherent pattern of expression of these genes in early human ontogeny.
Effects of Marijuana on Fetal Development.
ERIC Educational Resources Information Center
Hoyt, Les Leanne
1981-01-01
Presents an historical perspective of the public view of marijuana and examines current empirical research concerning the consequences of marijuana use on the human fetus. Included are 1979 university survey results which explore respondents' knowledge about the effects of marijuana and the relationship this has to the mass media. (Author)
Concurrent determination of bisphenol A pharmacokinetics in maternal and fetal rhesus monkeys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, Tucker A.; Twaddle, Nathan C.; Roegge, Cindy S.
Bisphenol A (BPA) is an important industrial chemical used as the monomer for polycarbonate plastic and in epoxy resins for food can liners. Worldwide biomonitoring studies consistently find a high prevalence of BPA conjugates in urine (> 90%) in amounts consistent with aggregate exposure at levels below 1 μg/kg bw/d. The current study used LC/MS/MS to measure concurrently the pharmacokinetics of aglycone (active) and conjugated (inactive) deuterated BPA (d6) in maternal and fetal rhesus monkey serum, amniotic fluid, and placenta following intravenous injection in the dam (100 μg/kg bw). Internal exposures of the fetus to aglycone d6-BPA (serum AUC) weremore » attenuated by maternal, placental, and fetal Phase II metabolism to less than half that in the dam. Levels of aglycone and conjugated d6-BPA measured in whole placenta were consistent with a role in metabolic detoxification. The monotonic elimination of aglycone d6-BPA from the fetal compartment accompanied by persistent conjugate levels provides further evidence arguing against the hypothesis that BPA conjugates are selectively deconjugated by either the placenta or fetus. These results also provide benchmarks to guide the interpretation of human cord blood, amniotic fluid, and placenta sampling and measurement strategies as a basis for estimating fetal exposures to BPA. This study in a non-human primate model provides additional pharmacokinetic data for use in PBPK modeling of perinatal exposures to BPA from food contact, medical devices, and other environmental sources. - Highlights: ► Maternal, placental, and fetal Phase II metabolism attenuate fetal exposure to BPA. ► Serum AUC for aglycone BPA in fetal monkeys is less than half of that in the dam. ► BPA profiles in monkey fetus rule out selective deconjugation and accumulation. ► BPA levels in monkey placenta are similar to other metabolically active tissues. ► Some published human cord blood data for BPA are inconsistent with these measurements.« less
Zeisel, Steven H
2011-10-01
The consequences of fetal exposure to alcohol are very diverse and the likely molecular mechanisms involved must be able to explain how so many developmental processes could go awry. If pregnant rat dams are fed alcohol, their pups develop abnormalities characteristic of fetal alcohol spectrum disorders (FASD), but if these rat dams were also treated with choline, the effects from ethanol were attenuated in their pups. Choline is an essential nutrient in humans, and is an important methyl group donor. Alcohol exposure disturbs the metabolism of choline and other methyl donors. Availability of choline during gestation directly influences epigenetic marks on DNA and histones, and alters gene expression needed for normal neural and endothelial progenitor cell proliferation. Maternal diets low in choline alter development of the mouse hippocampus, and decrement memory for life. Women eating low-choline diets have an increased risk of having an infant with a neural tube or orofacial cleft birth defect. Thus, the varied effects of choline could affect the expression of FASD, and studies on choline might shed some light on the underlying molecular mechanisms responsible for FASD.
A cranial nail for fetal shunting.
Saunders, R L; Simmons, G M; Edwards, W H; Crow, H C
1985-01-01
A small number of human fetal hydrocephalics have been treated by ventriculoamniotic shunts of silastic tubing. The Colorado device appears to be the one most commonly used. The original experimental device tested on a primate model resembled a hollow shingle nail. This was designed by Michedja and Hodgen, contained a spring valve, measured approximately 32 X 4 mm and was placed by hysterotomy. An attractive feature of this design was its fixation by impaction in the skull, preventing displacement by fetal activity, a reported disadvantage with the silastic devices. To our knowledge, no one has used this nail-like design and tailored it to transuterine percutaneous placement in a human case.
PAX genes in development and disease: the role of PAX2 in urogenital tract development.
Eccles, Michael R; He, Shujie; Legge, Michael; Kumar, Rajiv; Fox, Jody; Zhou, Chaoming; French, Michelle; Tsai, Robert W S
2002-01-01
PAX genes play an important role in fetal development. Moreover, heterozygous mutations in several PAX genes cause human disease. Here we review the role of PAX2 in kidney development, focusing on the morphological effects of PAX2 mutations. We discuss the role of PAX2 in the context of an inhibitory field model of kidney branching morphogenesis and summarize recent progress in this area.
Fetal tissue research and the misread compromise.
Kearney, W; Vawter, D E; Gervais, K G
1991-01-01
The bill to restore federal funding for human fetal tissue research has been passed by the House and awaits Senate approval. But it requires women who are willing to donate fetal tissue to certify that they did not have an abortion with the intent to donate. It further requires researchers to keep the certifications on file and available for government audit. Both requirements spell trouble.
Malek, A; Leiser, R
2009-01-01
Magnesium aspartate hydrochloride (Magnesiocard, Mg-Asp-HCl) is proposed as a substitute of magnesium sulfate for the treatment of preeclampsia and premature labor. After an i.v. administration of a dose equivalent to that used in the treatment of preeclampsia to nonpregnant volunteers, a 10-fold increase of aspartic acid (Asp) over the physiological level was observed. Animal experiments have demonstrated that highly increased fetal levels of acidic amino acids such as Asp could be associated with neurotoxic damage in the fetal brain. The influence of such an elevation of Asp concentration in the maternal circuit on the fetal level, using the in vitro perfusion model of human placenta, was investigated. After a control phase (2h), a therapeutic dose of Mg combined with Asp (Magnesiocard, Mg-Asp-HCl) was applied to the maternal circuit approaching 10 times the physiological level of Asp. The administration was performed in two different phases simulating either a peak of maximum concentration (bolus application, 2h) or a steady state level (initially added, 4h). In four experiments, during experimental phases (6h) a slow increase in concentration in the fetal circuit was seen for Mg, AIB (alpha-aminoisobutyric acid, artificial amino acid) and creatinine confirming previous observations. In contrast, no net transfer of Asp across the placenta was seen. A continuous decrease in the concentration of Asp on both maternal and fetal side suggests active uptake and metabolization by the placenta. Viability control parameters remained stable indicating the absence of an effect on placental metabolism, permeability and morphology. Elevation of Asp concentration up to 10 times the physiological level by the administration of Mg-Asp-HCl to the maternal circuit under in vitro perfusion conditions of human placenta has no influence on the fetal level of Asp suggesting no transfer of Asp from the maternal to fetal compartment. Therefore, the administration of Mg-Asp-HCl to preeclamptic patients would be beneficial for the patients without any impact on placental or fetal physiology.
Sweiry, J H; Page, K R; Dacke, C G; Abramovich, D R; Yudilevich, D L
1986-12-01
Rapid uptake and efflux of 45Ca2+ and [3H]choline at the maternal and fetal interfaces of the syncytiotrophoblast in the dually-perfused human placenta was investigated by application of the single circulation paired-tracer dilution method (Yudilevich, Eaton, Short & Leichtweiss 1979). Cotyledons were perfused with Krebs-bicarbonate containing dextran (30 g/l; MW = 60-70,000) at 20 and 6 ml/min on maternal and fetal sides, respectively. The paired-tracer (test substrate and extracellular marker) technique consisted of an intra-arterial injection of a tracer bolus, followed by venous sampling over 5-6 min. There was a rapid (sec) uptake of 45Ca2+, followed by backflux (efflux into the ipsilateral circulation) which, over 5-6 min, was 59-100% on the fetal side. It was more variable but generally lower on the maternal interface. At 0.1 mM calcium, 45Ca2+ maximal uptake (Umax) was about 53% on the fetal side but on the maternal side it was variable and averaged 17%. At 2.4 mM calcium fetal side Umax was reduced to 40%. However, on the maternal side the effect was not consistent. Unidirectional influx (nmol/min per g) appeared to be not different on the two sides of the placenta. For [3H]choline (in choline-free perfusates) Umax was about 50% and 30% on fetal and maternal sides, respectively; tracer backflux was variable on the maternal side and averaged 50% on the fetal side. [3H]Choline uptake was highly inhibited by either 1.0 mM choline or the specific competitive inhibitor, hemicholinium-3 (0.1 mM). Specific transplacental transfer of 45Ca2+ (i.e. in excess of the extracellular marker) was not significant in either direction. For [3H]choline there was an apparent small excess (about 4%) preferential towards the fetal circulation. These findings in the human placenta are similar to those demonstrated previously in the guinea-pig placenta which suggested the existence of specific transport systems for choline and calcium on both sides of the syncytiotrophoblast.
Sandman, Curt A; Davis, Elysia P; Buss, Claudia; Glynn, Laura M
2012-01-01
Accumulating evidence from a relatively small number of prospective studies indicates that exposure to prenatal stress profoundly influences the developing human fetus with consequences that persist into childhood and very likely forever. Maternal/fetal dyads are assessed at ∼20, ∼25, ∼31 and ∼36 weeks of gestation. Infant assessments begin 24 h after delivery with the collection of cortisol and behavioral responses to the painful stress of the heel-stick procedure and measures of neonatal neuromuscular maturity. Infant cognitive, neuromotor development, stress and emotional regulation are evaluated at 3, 6 12 and 24 months of age. Maternal psychosocial stress and demographic information is collected in parallel with infant assessments. Child neurodevelopment is assessed with cognitive tests, measures of adjustment and brain imaging between 5 and 8 years of age. Psychobiological markers of stress during pregnancy, especially early in gestation, result in delayed fetal maturation, disrupted emotional regulation and impaired cognitive performance during infancy and decreased brain volume in areas associated with learning and memory in 6- to 8-year-old children. We review findings from our projects that maternal endocrine alterations that accompany pregnancy and influence fetal/infant/child development are associated with decreased affective responses to stress, altered memory function and increased risk for postpartum depression. Our findings indicate that the mother and her fetus both are influenced by exposure to psychosocial and biological stress. The findings that fetal and maternal programming occur in parallel may have important implications for long-term child development and mother/child interactions. Copyright © 2011 S. Karger AG, Basel.
Cardiac muscle regeneration: lessons from development
Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.
2011-01-01
The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131
Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.
Chang, Chan-Jung; Mitra, Koyel; Koya, Mariko; Velho, Michelle; Desprat, Romain; Lenz, Jack; Bouhassira, Eric E
2011-01-01
We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.
Thiele, Kristin; Solano, M Emilia; Huber, Samuel; Flavell, Richard A; Kessler, Timo; Barikbin, Roja; Jung, Roman; Karimi, Khalil; Tiegs, Gisa; Arck, Petra C
2015-10-01
Acetaminophen (APAP; ie, Paracetamol or Tylenol) is generally self-medicated to treat fever or pain and recommended to pregnant women by their physicians. Recent epidemiological studies reveal an association between prenatal APAP use and an increased risk for asthma. Our aim was to identify the effects of APAP in pregnancy using a mouse model. Allogeneically mated C57Bl/6J females were injected i.p. with 50 or 250 mg/kg APAP or phosphate-buffered saline on gestation day 12.5; nonpregnant females served as controls. Tissue samples were obtained 1 or 4 days after injection. APAP-induced liver toxicity was mirrored by significantly increased plasma alanine aminotransferase levels. In uterus-draining lymph nodes of pregnant dams, the frequencies of mature dendritic cells and regulatory T cells significantly increased on 250 mg/kg APAP. Plasma progesterone levels significantly decreased in dams injected with APAP, accompanied by a morphologically altered placenta. Although overall litter sizes and number of fetal loss remained unaltered, a reduced fetal weight and a lower frequency of hematopoietic stem cells in the fetal liver were observed on APAP treatment. Our data provide strong evidence that prenatal APAP interferes with maternal immune and endocrine adaptation to pregnancy, affects placental function, and impairs fetal maturation and immune development. The latter may have long-lasting consequences on children's immunity and account for the increased risk for asthma observed in humans. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Fetal stem cell transplantation: Past, present, and future
Ishii, Tetsuya; Eto, Koji
2014-01-01
Since 1928, human fetal tissues and stem cells have been used worldwide to treat various conditions. Although the transplantation of the fetal midbrain substantia nigra and dopaminergic neurons in patients suffering from Parkinson’s disease is particularly noteworthy, the history of other types of grafts, such as those of the fetal liver, thymus, and pancreas, should be addressed as there are many lessons to be learnt for future stem cell transplantation. This report describes previous practices and complications that led to current clinical trials of isolated fetal stem cells and embryonic stem (ES) cells. Moreover, strategies for transplantation are considered, with a particular focus on donor cells, cell processing, and the therapeutic cell niche, in addition to ethical issues associated with fetal origin. With the advent of autologous induced pluripotent stem cells and ES cells, clinical dependence on fetal transplantation is expected to gradually decline due to lasting ethical controversies, despite landmark achievements. PMID:25258662
Dye, Briana R; Dedhia, Priya H; Miller, Alyssa J; Nagy, Melinda S; White, Eric S; Shea, Lonnie D; Spence, Jason R
2016-01-01
Human pluripotent stem cell (hPSC) derived tissues often remain developmentally immature in vitro, and become more adult-like in their structure, cellular diversity and function following transplantation into immunocompromised mice. Previously we have demonstrated that hPSC-derived human lung organoids (HLOs) resembled human fetal lung tissue in vitro (Dye et al., 2015). Here we show that HLOs required a bioartificial microporous poly(lactide-co-glycolide) (PLG) scaffold niche for successful engraftment, long-term survival, and maturation of lung epithelium in vivo. Analysis of scaffold-grown transplanted tissue showed airway-like tissue with enhanced epithelial structure and organization compared to HLOs grown in vitro. By further comparing in vitro and in vivo grown HLOs with fetal and adult human lung tissue, we found that in vivo transplanted HLOs had improved cellular differentiation of secretory lineages that is reflective of differences between fetal and adult tissue, resulting in airway-like structures that were remarkably similar to the native adult human lung. DOI: http://dx.doi.org/10.7554/eLife.19732.001 PMID:27677847
Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.
Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom
2012-01-01
Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.
Saleem, Sahar N
2013-07-01
Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.
IVF culture medium affects human intrauterine growth as early as the second trimester of pregnancy.
Nelissen, Ewka C M; Van Montfoort, Aafke P A; Smits, Luc J M; Menheere, Paul P C A; Evers, Johannes L H; Coonen, Edith; Derhaag, Josien G; Peeters, Louis L; Coumans, Audrey B; Dumoulin, John C M
2013-08-01
When does a difference in human intrauterine growth of singletons conceived after IVF and embryo culture in two different culture media appear? Differences in fetal development after culture of embryos in one of two IVF media were apparent as early as the second trimester of pregnancy. Abnormal fetal growth patterns are a major risk factor for the development of chronic diseases in adult life. Previously, we have shown that the medium used for culturing embryos during the first few days after fertilization significantly affects the birthweight of the resulting human singletons. The exact onset of this growth difference was unknown. In this retrospective cohort study, all 294 singleton live births after fresh embryo transfer in the period July 2003 to December 2006 were included. These embryos originated from IVF treatments that were part of a previously described clinical trial. Embryos were allocated to culture in either Vitrolife or Cook commercially available sequential culture media. We analysed ultrasound examinations at 8 (n = 290), 12 (n = 83) and 20 weeks' (n = 206) gestation and used first-trimester serum markers [pregnancy-associated plasma protein-A (PAPP-A) and free β-hCG]. Differences between study groups were tested by the Student's t-test, χ(2) test or Fisher's exact test, and linear multivariable regression analysis to adjust for possible confounders (for example, parity, gestational age at the time of ultrasound and fetal gender). A total of 294 singleton pregnancies (Vitrolife group nVL = 168, Cook group: nC = 126) from 294 couples were included. At 8 weeks' gestation, there was no difference between crown-rump length-based and ovum retrieval-based gestational age (ΔGA) (nVL = 163, nC = 122, adjusted mean difference, -0.04 days, P = 0.84). A total of 83 women underwent first-trimester screening at 12 weeks' gestation (nVL = 45, nC = 38). ΔGA, nuchal translucency (multiples of median, MoM) and PAPP-A (MoM) did not differ between the study groups. Free β-hCG (MoM) ± SEM differed significantly (1.55 ± 0.19 in Vitrolife versus 1.06 ± 0.10 in Cook; P = 0.031, Student's t-test). At 20 weeks' gestation, a more advanced GA, reflecting an increased fetal growth, was seen at ultrasound examination in the Vitrolife group (n = 115) when compared with the Cook group (n = 91). After adjustment for confounding factors, both the difference between GA based on three biparietal diameter dating formulas minus the actual (ovum retrieval based) GA (adjusted mean difference + 1.14 days (P = 0.04), +1.14 days (P = 0.04) and +1.36 days (P = 0.048)), as well as head circumference (HC) and trans-cerebellar diameter (TCD) were significantly higher in the Vitrolife group (HCvl 177.3 mm, HCc 175.9 mm, adjusted mean difference 1.8, P = 0.03; TCDvl 20.5 mm, TCDc 20.2 mm, adjusted mean difference 0.4, P = 0.008). A first trimester (12 weeks) fetal screening was not yet offered routinely during the study period, therefore only 28% of women in our study participated in this elective screening programme. Although all sonographers were experienced and specially trained to perform these ultrasound examinations and were unaware of the randomization procedure, we cannot totally rule out possible intra- and inter-observer variability. Despite being indispensable in daily practice, sonographic weight formulas have a limited accuracy. According to the fetal origins hypothesis, many adult diseases originate in utero owing to adaptations made by the fetus to the environment it encounters. This study indicates that the embryonic environment is already important for fetal development. Therefore, our study emphasizes the need to investigate fetal growth patterns after assisted reproduction technologies and long-term health outcomes of IVF children, especially in relation to the culture medium used during the first few days of preimplantation development. Not applicable.
Fetal Growth and Neurobehavioral Outcomes in Childhood
Chatterji, Pinka; Lahiri, Kajal; Kim, Dohyung
2014-01-01
Using a sample of sibling pairs from a nationally representative U.S. survey, we examine the effects of the fetal growth rate on a set of neurobehavioral outcomes in childhood measured by parent-reported diagnosed developmental disabilities and behavior problems. Based on models that include mother fixed effects, we find that the fetal growth rate, a marker for the fetal environment, is negatively associated with lifetime diagnosis of developmental delay. We also find that the fetal growth rate is negatively associated with disruptive behaviors among male children. These results suggest that developmental disabilities and problem behaviors may play a role in explaining the well-documented association between birth weight and human capital outcomes measured in adulthood. PMID:25464342
The impact of leptin on perinatal development and psychopathology.
Valleau, Jeanette C; Sullivan, Elinor L
2014-11-01
Leptin has long been associated with metabolism as it is a critical regulator of both food intake and energy expenditure, but recently, leptin dysregulation has been proposed as a mechanism of psychopathology. This review discusses the evidence supporting a role for leptin in mental health disorders and describes potential mechanisms that may underlie this association. Leptin plays a critical role in pregnancy and in fetal growth and development. Leptin's role and profile during development is examined in available human studies, and the validity of applying studies conducted in animal models to the human population are discussed. Rodents experience a postnatal leptin surge, which does not occur in humans or larger animal models. This suggests that further research using large mammal models, which have a leptin profile across pregnancy and development similar to humans, are of high importance. Maternal obesity and hyperleptinemia correlate with increased leptin levels in the umbilical cord, placenta, and fetus. Leptin levels are thought to impact fetal brain development; likely by activating proinflammatory cytokines that are known to impact many of the neurotransmitter systems that regulate behavior. Leptin is likely involved in behavioral regulation as leptin receptors are widely distributed in the brain, and leptin influences cortisol release, the mesoaccumbens dopamine pathway, serotonin synthesis, and hippocampal synaptic plasticity. In humans, both high and low levels of leptin are reported to be associated with psychopathology. This inconsistency is likely due to differences in the metabolic state of the study populations. Leptin resistance, which occurs in the obese state, may explain how both high and low levels of leptin are associated with psychopathology, as well as the comorbidity of obesity with numerous mental illnesses. Leptin resistance is likely to influence disorders such as depression and anxiety where high leptin levels have been correlated with symptomatology. Schizophrenia is also associated with both low and high leptin levels. However, as anti-psychotics pharmacotherapy induces weight gain, which elevates leptin levels, drug-naïve populations are needed for further studies. Elevated circulating leptin is consistently found in childhood neurodevelopmental disorders including autism spectrum disorders and Rhett disorder. Further, studies on the impact of leptin and leptin resistance on psychopathology and neurodevelopmental disorders are important directions for future research. Studies examining the mechanisms by which exposure to maternal obesity and hyperleptinemia during fetal development impact brain development and behavior are critical for the health of future generations. Copyright © 2014 Elsevier B.V. All rights reserved.
The Impact of Leptin on Perinatal Development and Psychopathology
Valleau, Jeanette C.; Sullivan, Elinor L.
2014-01-01
Leptin has long been associated with metabolism as it is a critical regulator of both food intake and energy expenditure, but recently, leptin dysregulation has been proposed as a mechanism of psychopathology. This review discusses the evidence supporting a role for leptin in mental health disorders and describes potential mechanisms that may underlie this association. Leptin plays a critical role in pregnancy and in fetal growth and development. Leptin’s role and profile during development is examined in available human studies and the validity of applying studies conducted in animal models to the human population are discussed. Rodents experience a postnatal leptin surge, which does not occur in humans or larger animal models. This suggests that further research using large mammal models, which have a leptin profile across pregnancy and development similar to humans, are of high importance. Maternal obesity and hyperleptinemia correlate with increased leptin levels in the umbilical cord, placenta, and fetus. Leptin levels are thought to impact fetal brain development; likely by activating proinflammatory cytokines that are known to impact many of the neurotransmitter systems that regulate behavior. Leptin is likely involved in behavioral regulation as leptin receptors are widely distributed in the brain, and leptin influences cortisol release, the mesoaccumbens dopamine pathway, serotonin synthesis, and hippocampal synaptic plasticity. In humans, both high and low levels of leptin are reported to be associated with psychopathology. This inconsistency is likely due to differences in the metabolic state of the study populations. Leptin resistance, which occurs in the obese state, may explain how both high and low levels of leptin are associated with psychopathology, as well as the comorbidity of obesity with numerous mental illnesses. Leptin resistance is likely to influence disorders such as depression and anxiety where both high and low leptin levels have been correlated with symptomatology. Schizophrenia is also associated with both low and high leptin levels. However, as antipsychotics pharmacotherapy induces weight gain, which elevates leptin levels, drug-naïve populations are needed for further studies. Elevated circulating leptin is consistently found in childhood neurodevelopmental disorders including Autism Spectrum Disorders and Rhett disorder. Further studies on the impact of leptin and leptin resistance on psychopathology and neurodevelopmental disorders are important directions for future research. Studies examining the mechanisms by which exposure to maternal obesity and hyperleptinemia during fetal development impact brain development and behavior are critical for the health of future generations. PMID:24862904
Effect of tocolytic drugs on fetal heart rate variability: a systematic review.
Verdurmen, Kim M J; Hulsenboom, Alexandra D J; van Laar, Judith O E H; Oei, S Guid
2017-10-01
Tocolytics may cause changes in fetal heart rate (HR) pattern, while fetal heart rate variability (HRV) is an important marker of fetal well-being. We aim to systematically review the literature on how tocolytic drugs affect fetal HRV. We searched CENTRAL, PubMed and EMBASE up to June 2016. Studies published in English, using computerized or visual analysis to describe the effect of tocolytics on HRV in human fetuses were included. Studies describing tocolytics during labor, external cephalic version, pre-eclampsia and infection were excluded. Eventually, we included six studies, describing 169 pregnant women. Nifedipine, atosiban and indomethacin administration show no clinically important effect on fetal HRV. Following administration of magnesium sulfate decreased variability and cases of bradycardia are described. Fenoterol administration results in a slight increase in fetal HR with no changes in variability. After ritodrine administration increased fetal HR and decreased variability is seen. The effect of co-administration of corticosteroids should be taken into account. In order to prevent iatrogenic preterm labor, the effects of tocolytic drugs on fetal HRV should be taken into account when monitoring these fetuses.
Mitchell, Timothy; MacDonald, James W; Srinouanpranchanh, Sengkeo; Bammler, Theodor K; Merillat, Sean; Boldenow, Erica; Coleman, Michelle; Agnew, Kathy; Baldessari, Audrey; Stencel-Baerenwald, Jennifer E; Tisoncik-Go, Jennifer; Green, Richard R; Gale, Michael J; Rajagopal, Lakshmi; Adams Waldorf, Kristina M
2018-04-01
Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P<.05). A total of 609 probe sets were expressed differentially (>1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis, angiogenesis, and tissue remodeling (eg, angiotensin I converting enzyme 2, STEAP family member 4, natriuretic peptide A, and secreted frizzled-related protein 4; all P<.05). Multiple gene sets and pathways that are involved in cardiac morphogenesis and vasculogenesis were downregulated significantly by gene set and Ingenuity Pathway Analysis (hallmark transforming growth factor beta signaling, cellular morphogenesis during differentiation, morphology of cardiovascular system; all P<.05). Disruption of gene networks for cardiac morphogenesis and vasculogenesis occurred in the preterm fetal heart of nonhuman primates with preterm labor, intraamniotic infection, and severe fetal inflammation. Inflammatory injury to the fetal heart in utero may contribute to the development of heart disease later in life. Development of preterm labor therapeutics must also target fetal inflammation to lessen organ injury and potential long-term effects on cardiac function. Copyright © 2018 Elsevier Inc. All rights reserved.
Glasser, S W; Korfhagen, T R; Wert, S E; Bruno, M D; McWilliams, K M; Vorbroker, D K; Whitsett, J A
1991-10-01
Transgenic mice bearing chimeric genes consisting of 5'-sequences derived from the human surfactant protein C (SP-C) gene and the bacterial chloramphenicol acetyltransferase (CAT) gene were generated. Analysis of CAT activity was utilized to demonstrate tissue-specific and developmental expression of chimeric genes containing 3.7 kb of sequences from the human SP-C gene. Lung-specific expression of the 3.7 SP-C-CAT transgene was observed in eight distinct transgenic mouse lines. Expression of the 3.7 SP-C-CAT transgene was first detected in fetal lung on day 11 of gestation and increased dramatically with advancing gestational age, reaching adult levels of activity before birth. In situ hybridization demonstrated that expression of 3.7 SP-C-CAT mRNA was confined to the distal respiratory epithelium. Antisense CAT hybridization was detected in bronchiolar and type II epithelial cells in the adult lung of the 3.7 SP-C-CAT transgenic mice. In situ hybridization of four distinct 3.7 SP-C-CAT transgenic mouse lines demonstrated bronchiolar-alveolar expression of the chimeric CAT gene, although the relative intensity of expression at each site varied within the lines studied. Glucocorticoids increased murine SP-C mRNA in fetal lung organ culture. Likewise, expression of 3.7 SP-C-CAT transgene increased during fetal lung organ or explant culture and was further enhanced by glucocorticoid in vitro. The 5'-regions of human SP-C conferred developmental, lung epithelial, and glucocorticoid-enhanced expression of bacterial CAT in transgenic mice. The increased expression of SP-C accompanying prenatal lung development and exposure to glucocorticoid is mediated, at least in part, at the transcriptional level, being influenced by cis-active elements contained within the 5'-flanking region of the human SP-C gene.
Expression pattern of RAGE and IGF-1 in the human fetal ovary and ovarian serous carcinoma.
Poljicanin, Ana; Filipovic, Natalija; Vukusic Pusic, Tanja; Soljic, Violeta; Caric, Ana; Saraga-Babic, Mirna; Vukojevic, Katarina
2015-01-01
The expression pattern of RAGE and IGF-1 proteins in different ovarian cell lineages was histologically analyzed in six fetal, nine adult human ovaries, and nine serous ovarian carcinomas (OSC) using immunohistochemical methods. Mild expression of IGF-1 in ovarian surface epithelium (Ose) and oocytes in the 15-week human ovaries increased to moderate or strong in the stromal cells, oocytes and follicular cells in week 22. Occasional mild RAGE expression was observed in Ose during week 15, while strong expression characterized primordial follicles in week 22. In the reproductive human ovary, IGF-1 was mildly to moderately expressed in all ovarian cell lineages except in theca cells of the tertiary follicle where IGF-1 was negative. RAGE was strongly positive in the granulosa cells and some theca cells of the tertiary follicle, while negative to mildly positive in all cells of the secondary follicle. In the postmenopausal human ovary IGF-1 and RAGE were mildly expressed in Ose and stroma. In OSC, cells were strongly positive to IGF-1 and RAGE, except for some negative stromal cells. Different levels of IGF-1 and RAGE co-expression characterized fetal ovarian cells during development. In reproductive ovaries, IGF-1 and RAGE were co-localized in the granulosa and theca interna cells of tertiary follicles, while in postmenopausal ovaries and OSC, IGF-1 and RAGE were co-localized in Ose and OSC cells respectively. Our results indicate that intracellular levels of IGF-1 and RAGE protein might regulate the final destiny of the ovarian cell populations prior and during folliculogenesis, possibly controlling the metastatic potential of OSC as well. Copyright © 2015. Published by Elsevier GmbH.
Perez-Muñoz, Maria Elisa; Arrieta, Marie-Claire; Ramer-Tait, Amanda E; Walter, Jens
2017-04-28
After more than a century of active research, the notion that the human fetal environment is sterile and that the neonate's microbiome is acquired during and after birth was an accepted dogma. However, recent studies using molecular techniques suggest bacterial communities in the placenta, amniotic fluid, and meconium from healthy pregnancies. These findings have led many scientists to challenge the "sterile womb paradigm" and propose that microbiome acquisition instead begins in utero, an idea that would fundamentally change our understanding of gut microbiota acquisition and its role in human development. In this review, we provide a critical assessment of the evidence supporting these two opposing hypotheses, specifically as it relates to (i) anatomical, immunological, and physiological characteristics of the placenta and fetus; (ii) the research methods currently used to study microbial populations in the intrauterine environment; (iii) the fecal microbiome during the first days of life; and (iv) the generation of axenic animals and humans. Based on this analysis, we argue that the evidence in support of the "in utero colonization hypothesis" is extremely weak as it is founded almost entirely on studies that (i) used molecular approaches with an insufficient detection limit to study "low-biomass" microbial populations, (ii) lacked appropriate controls for contamination, and (iii) failed to provide evidence of bacterial viability. Most importantly, the ability to reliably derive axenic animals via cesarean sections strongly supports sterility of the fetal environment in mammals. We conclude that current scientific evidence does not support the existence of microbiomes within the healthy fetal milieu, which has implications for the development of clinical practices that prevent microbiome perturbations after birth and the establishment of future research priorities.
Automated Software Analysis of Fetal Movement Recorded during a Pregnant Woman's Sleep at Home.
Nishihara, Kyoko; Ohki, Noboru; Kamata, Hideo; Ryo, Eiji; Horiuchi, Shigeko
2015-01-01
Fetal movement is an important biological index of fetal well-being. Since 2008, we have been developing an original capacitive acceleration sensor and device that a pregnant woman can easily use to record fetal movement by herself at home during sleep. In this study, we report a newly developed automated software system for analyzing recorded fetal movement. This study will introduce the system and compare its results to those of a manual analysis of the same fetal movement signals (Experiment I). We will also demonstrate an appropriate way to use the system (Experiment II). In Experiment I, fetal movement data reported previously for six pregnant women at 28-38 gestational weeks were used. We evaluated the agreement of the manual and automated analyses for the same 10-sec epochs using prevalence-adjusted bias-adjusted kappa (PABAK) including quantitative indicators for prevalence and bias. The mean PABAK value was 0.83, which can be considered almost perfect. In Experiment II, twelve pregnant women at 24-36 gestational weeks recorded fetal movement at night once every four weeks. Overall, mean fetal movement counts per hour during maternal sleep significantly decreased along with gestational weeks, though individual differences in fetal development were noted. This newly developed automated analysis system can provide important data throughout late pregnancy.
Automated Software Analysis of Fetal Movement Recorded during a Pregnant Woman’s Sleep at Home
Nishihara, Kyoko; Ohki, Noboru; Kamata, Hideo; Ryo, Eiji; Horiuchi, Shigeko
2015-01-01
Fetal movement is an important biological index of fetal well-being. Since 2008, we have been developing an original capacitive acceleration sensor and device that a pregnant woman can easily use to record fetal movement by herself at home during sleep. In this study, we report a newly developed automated software system for analyzing recorded fetal movement. This study will introduce the system and compare its results to those of a manual analysis of the same fetal movement signals (Experiment I). We will also demonstrate an appropriate way to use the system (Experiment II). In Experiment I, fetal movement data reported previously for six pregnant women at 28-38 gestational weeks were used. We evaluated the agreement of the manual and automated analyses for the same 10-sec epochs using prevalence-adjusted bias-adjusted kappa (PABAK) including quantitative indicators for prevalence and bias. The mean PABAK value was 0.83, which can be considered almost perfect. In Experiment II, twelve pregnant women at 24-36 gestational weeks recorded fetal movement at night once every four weeks. Overall, mean fetal movement counts per hour during maternal sleep significantly decreased along with gestational weeks, though individual differences in fetal development were noted. This newly developed automated analysis system can provide important data throughout late pregnancy. PMID:26083422
Immunologic Regulation in Pregnancy: From Mechanism to Therapeutic Strategy for Immunomodulation
Chen, Shyi-Jou; Liu, Yung-Liang; Sytwu, Huey-Kang
2012-01-01
The immunologic interaction between the fetus and the mother is a paradoxical communication that is regulated by fetal antigen presentation and/or by recognition of and reaction to these antigens by the maternal immune system. There have been significant advances in understanding of abnormalities in the maternal-fetal immunologic relationship in the placental bed that can lead to pregnancy disorders. Moreover, immunologic recognition of pregnancy is vital for the maintenance of gestation, and inadequate recognition of fetal antigens may cause abortion. In this paper, we illustrate the complex immunologic aspects of human reproduction in terms of the role of human leukocyte antigen (HLA), immune cells, cytokines and chemokines, and the balance of immunity in pregnancy. In addition, we review the immunologic processes of human reproduction and the current immunologic therapeutic strategies for pathological disorders of pregnancy. PMID:22110530
Analysis of human soft palate morphogenesis supports regional regulation of palatal fusion
Danescu, Adrian; Mattson, Melanie; Dool, Carly; Diewert, Virginia M; Richman, Joy M
2015-01-01
It is essential to complete palate closure at the correct time during fetal development, otherwise a serious malformation, cleft palate, will ensue. The steps in palate formation in humans take place between the 7th and 12th week and consist of outgrowth of palatal shelves from the paired maxillary prominences, reorientation of the shelves from vertical to horizontal, apposition of the medial surfaces, formation of a bilayered seam, degradation of the seam and bridging of mesenchyme. However, in the soft palate, the mechanism of closure is unclear. In previous studies it is possible to find support for both fusion and the alternative mechanism of merging. Here we densely sample the late embryonic-early fetal period between 54 and 74 days post-conception to determine the timing and mechanism of soft palate closure. We found the epithelial seam extends throughout the soft palates of 57-day specimens. Cytokeratin antibody staining detected the medial edge epithelium and distinguished clearly that cells in the midline retained their epithelial character. Compared with the hard palate, the epithelium is more rapidly degraded in the soft palate and only persists in the most posterior regions at 64 days. Our results are consistent with the soft palate following a developmentally more rapid program of fusion than the hard palate. Importantly, the two regions of the palate appear to be independently regulated and have their own internal clocks regulating the timing of seam removal. Considering data from human genetic and mouse studies, distinct anterior-posterior signaling mechanisms are likely to be at play in the human fetal palate. PMID:26299693
ERIC Educational Resources Information Center
Qiu, Xing; Chen, Shaw-Ree; Barrett, Emily S.; Velez, Marissa; Conn, Kelly; Heinert, Sara
2014-01-01
Endocrine disrupting chemicals (EDCs) such as Bisphenol A (BPA) and phthalates are ubiquitous in our environment and a growing body of research indicates that EDCs may adversely affect human development. Fetal development is particularly susceptible to EDC exposure, and prenatal care providers are being asked to educate women about the risks of…
Wen, Qing; Wang, Yuqian; Tang, Jixin; Cheng, C Yan; Liu, Yi-Xun
2016-01-01
Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.
Drugs of abuse that cause developing neurons to commit suicide.
Farber, Nuri B; Olney, John W
2003-12-30
When neuronal activity is abnormally suppressed during the developmental period of synaptogenesis, the timing and sequence of synaptic connections is disrupted, and this causes nerve cells to receive an internal signal to commit suicide, a form of cell death known as "apoptosis". By altering glutamate and GABA transmission alcohol suppresses neuronal activity, causing millions of nerve cells to commit suicide in the developing brain. This proapoptotic effect of alcohol provides a likely explanation for the diminished brain size and lifelong neurobehavioral disturbances associated with the human fetal alcohol syndrome. These findings have public health significance, not only in relation to fetal alcohol syndrome, but also in relation to several other drugs of abuse and various drugs used in obstetric and pediatric medicine, because these additional drugs (e.g. phencyclidine, ketamine, benzodiazepines, barbiturates) also suppress neuronal activity and drive developing neurons to commit suicide.
Binder, N K; Evans, J; Gardner, D K; Salamonsen, L A; Hannan, N J
2014-10-10
Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and fetal development. Western blot analysis revealed the presence of VEGF121 and 165 isoforms in human uterine fluid. Time-lapse microscopy analysis revealed that VEGF (n = 22) and VEGF121 (n = 23) treatment significantly reduced the preimplantation mouse embryo time to cavitation (P < 0.05). VEGF and VEGF165 increased both blastocyst cell number (VEGF n = 27; VEGF165 n = 24: P < 0.001) and outgrowth (n = 15/treatment: 66 h, P < 0.001; 74, 90, 98 and 114 h, P < 0.01) on fibronectin compared with control. Furthermore, rhVEGF improved implantation rates and enhanced fetal limb development (P < 0.05). Due to the nature of this work, embryo development and implantation was only examined in the mouse. The absence or reduction in levels of VEGF during the preimplantation period likely affects key events during embryo development, implantation and placentation. The potential for improvement of clinical IVF outcomes by the addition of VEGF to human embryo culture media needs further investigation. This study was supported by a University of Melbourne Early Career Researcher Grant #601040, the NHMRC (L.A.S., Program grant #494802; Fellowship #1002028; N.J.H., Fellowship # 628927; J.E.; project grant #1047756) and L.A.S., Monash IVF Research and Education Foundation. N.K.B. was supported by an Australian Postgraduate Award. Work at PHI-MIMR Institute was also supported by the Victorian Government's Operational Infrastructure Support Program. There are no conflicts of interest to declare. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Growth and development of the placenta in the capybara (Hydrochaeris hydrochaeris)
Kanashiro, Claudia; Santos, Tatiana C; Miglino, Maria Angelica; Mess, Andrea M; Carter, Anthony M
2009-01-01
Background The guinea pig is an attractive model for human pregnancy and placentation, mainly because of its haemomonochorial placental type, but is rather small in size. Therefore, to better understand the impact of body mass, we studied placental development in the capybara which has a body mass around 50 kg and a gestation period of around 150 days. We paid attention to the development of the lobulated arrangement of the placenta, the growth of the labyrinth in the course of gestation, the differentiation of the subplacenta, and the pattern of invasion by extraplacental trophoblast. Methods Material was collected from six animals at pregnancy stages ranging from the late limb bud stage to mid gestation. Methods included latex casts, standard histology, immunohistochemistry for cytokeratin, vimentin, alpha-smooth muscle actin, and proliferating cell nuclear antigen as well as transmission electron microscopy. Results At the limb bud stage, the placenta was a pad of trophoblast covered by a layer of mesoderm from which fetal vessels were beginning to penetrate at folds in the surface. By 70 days, the placenta comprised areas of labyrinth (lobes) separated by interlobular areas. Placental growth resulted predominantly from proliferation of cellular trophoblast situated in nests at the fetal side of the placenta and along internally directed projections on fetal mesenchyme. Additional proliferation was demonstrated for cellular trophoblast within the labyrinth. Already at the limb bud stage, there was a prominent subplacenta comprising cellular and syncytial trophoblast with mesenchyme and associated blood vessels. At 90 days, differentiation was complete and similar to that seen in other hystricognath rodents. Overlap of fetal vessels and maternal blood lacunae was confirmed by latex injection of the vessels. At all stages extraplacental trophoblast was associated with the maternal arterial supply and consisted of cellular trophoblast and syncytial streamers derived from the subplacenta. Conclusion All important characteristics of placental development and organization in the capybara resembled those found in smaller hystricognath rodents including the guinea pig. These features apparently do not dependent on body size. Clearly, placentation in hystricognaths adheres to an extraordinarily stable pattern suggesting they can be used interchangeably as models of human placenta. PMID:19493333
Epidemiology of fetal alcohol syndrome in a South African community in the Western Cape Province.
May, P A; Brooke, L; Gossage, J P; Croxford, J; Adnams, C; Jones, K L; Robinson, L; Viljoen, D
2000-01-01
OBJECTIVES: This study determined the characteristics of fetal alcohol syndrome in a South African community, and methodology was designed for the multidisciplinary study of fetal alcohol syndrome in developing societies. METHODS: An active case ascertainment, 2-tier methodology was used among 992 first-grade pupils. A case-control design, using measures of growth, development, dysmorphology, and maternal risk, delineated characteristics of children with fetal alcohol syndrome. RESULTS: A high rate of fetal alcohol syndrome was found in the schools--40.5 to 46.4 per 1000 children aged 5 to 9 years--and age-specific community rates (ages 6-7) were 39.2 to 42.9. These rates are 18 to 141 times greater than in the United States. Rural residents had significantly more fetal alcohol syndrome. After control for ethnic variation, children with fetal alcohol syndrome had traits similar to those elsewhere: poor growth and development, congruent dysmorphology, and lower intellectual functioning. CONCLUSIONS: This study documented the highest fetal alcohol syndrome rate to date in an overall community population. Fetal alcohol syndrome initiatives that incorporate innovative sampling and active case ascertainment methods can be used to obtain timely and accurate data among developing populations. PMID:11111264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tingting; Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Chen, Man
Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in the synthesis of steroid hormones, essential to fetal development. We have reported that the StAR expression in fetal adrenal is inhibited in a rat model of nicotine-induced intrauterine growth retardation (IUGR). Here using primary human fetal adrenal cortex (pHFAC) cells and a human fetal adrenal cell line NCI-H295A, we show that nicotine inhibits StAR expression and cortisol production in a dose- and time-dependent manner, and prolongs the inhibitory effect on cells proliferating over 5 passages after termination of nicotine treatment. Methylation detection within the StAR promoter region uncovers a singlemore » site CpG methylation at nt -377 that is sensitive to nicotine treatment. Nicotine-induced alterations in frequency of this point methylation correlates well with the levels of StAR expression, suggesting an important role of the single site in regulating StAR expression. Further studies using bioinformatics analysis and siRNA approach reveal that the single CpG site is part of the Pax6 binding motif (CGCCTGA) in the StAR promoter. The luciferase activity assays validate that Pax6 increases StAR gene expression by binding to the glucagon G3-like motif (CGCCTGA) and methylation of this site blocks Pax6 binding and thus suppresses StAR expression. These data identify a nicotine-sensitive CpG site at the Pax6 binding motif in the StAR promoter that may play a central role in regulating StAR expression. The results suggest an epigenetic mechanism that may explain how nicotine contributes to onset of adult diseases or disorders such as metabolic syndrome via fetal programming. -- Highlights: Black-Right-Pointing-Pointer Nicotine-induced StAR inhibition in two human adrenal cell models. Black-Right-Pointing-Pointer Nicotine-induced single CpG site methylation in StAR promoter. Black-Right-Pointing-Pointer Persistent StAR inhibition and single CpG methylation after nicotine termination. Black-Right-Pointing-Pointer Single CpG methylation located at Pax6 binding motif regulates StAR expression.« less
Winterbottom, Emily F; Koestler, Devin C; Fei, Dennis Liang; Wika, Eric; Capobianco, Anthony J; Marsit, Carmen J; Karagas, Margaret R; Robbins, David J
2017-06-14
Sex-specific factors play a major role in human health and disease, including responses to environmental stresses such as toxicant exposure. Increasing evidence suggests that such sex differences also exist during fetal development. In a previous report using the resources of the New Hampshire Birth Cohort Study (NHBCS), we found that low-to-moderate in utero exposure to arsenic, a highly toxic and widespread pollutant, was associated with altered expression of several key developmental genes in the fetal portion of the placenta. These associations were sex-dependent, suggesting that in utero arsenic exposure differentially impacts male and female fetuses. In the present study, we investigated the molecular basis for these sex-specific responses to arsenic. Using NanoString technology, we further analyzed the fetal placenta samples from the NHBCS for the expression of genes encoding arsenic transporters and metabolic enzymes. Multivariable linear regression analysis was used to examine their relationship with arsenic exposure and with key developmental genes, after stratification by fetal sex. We found that maternal arsenic exposure was strongly associated with expression of the AQP9 gene, encoding an aquaglyceroporin transporter, in female but not male fetal placenta. Moreover, AQP9 expression associated with that of a subset of female-specific arsenic-responsive genes. Our results suggest that AQP9 is upregulated in response to arsenic exposure in female, but not male, fetal placenta. Based on these results and prior studies, increased AQP9 expression may lead to increased arsenic transport in the female fetal placenta, which in turn may alter the expression patterns of key developmental genes that we have previously shown to be associated with arsenic exposure. Thus, this study suggests that AQP9 may play a role in the sex-specific effects of in utero arsenic exposure.
Hübner, Stephanie; Reich, Bettina; Heckmann, Matthias
2015-12-15
Preterm birth is a major risk factor for cerebral complications, such as hemorrhage or periventricular leukomalacia, which lead to lifelong neurodevelopmental deficits. Hypoxia/ischemia, inflammation, hyperoxia, and prematurity itself contribute to the extent of impaired neurodevelopment. Preterm birth leads to disruption of the placental supply of estrogens and progesterone. Postnatally, the plasma levels of estrogens and progesterone drop 100-fold. Preterm infants are deprived of the placental supply of these hormones for up to sixteen weeks. Thus, supplementation of estradiol and progesterone to mimic intrauterine conditions may potentially improve a premature infant́s extrauterine development and help protect the brain against neurological complications. However, preliminary clinical studies did not find improved outcomes except for a trend towards less cerebral palsy. The decrease in estrogen and progesterone concentrations is accompanied by persistent, high postnatal production of fetal zone steroids, mainly dehydroepiandrosterone, which serve as precursors for maternal estrogen synthesis during pregnancy. This commentary will combine knowledge from endocrinology, pharmacology, and neonatology to explain the discrepancies between promising animal models and clinical findings. Most important targets will be classical and non-classical estrogen receptors, which interact differently-not only with estrogens but also with fetal zone steroids. The fetal zone is unique among humans and higher primates. Therefore, a clearly defined model is required to study the role of sex steroids and their receptors before further clinical studies begin. Copyright © 2015 Elsevier Inc. All rights reserved.
Vitamin D: Effects on human reproduction, pregnancy, and fetal well-being.
Heyden, E L; Wimalawansa, S J
2018-06-01
Pregnancy places exceptional demands on vitamin D and calcium availability; thus, their deficiencies during pregnancy threaten the woman and her fetus. Globally, vitamin D and other micronutrient deficiencies are common during pregnancy, especially in developing countries where pregnant women have less access to nutritional supplements. Vitamin D deficiency has been reported to be as high as 40% among pregnant women. As a pregnancy progresses, the requirements for vitamin D increase and thus, can worsen preexisting hypovitaminosis D. Consequently, hypovitaminosis D is increasingly associated with a higher incidence of fetal miscarriage, preeclampsia, gestational diabetes, bacterial vaginosis, and impaired fetal and childhood growth and development. This review explores the recent advances in the understanding of vitamin D and the pivotal role it plays in human reproduction, with an emphasis on pregnancy and its outcomes. Given the seriousness of the issue, there is a pressing need for clinicians to become aware of the risks associated with not identifying and correcting vitamin D deficiency. Identifying and correcting vitamin D deficiency, including safe exposure to sunlight, is particularly relevant for those who seek assistance with fertility issues or prenatal counseling, and those in the beginning of their pregnancy. The data point to a significant protective effects of vitamin D during pregnancy when the 25(OH)D serum level exceeds 30 ng/mL before pregnancy and during the first trimester and, sufficient levels are maintained throughout the pregnancy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transplacental transfer of 2-naphthol in human placenta.
Mirghani, Hisham; Osman, Nawal; Dhanasekaran, Subramanian; Elbiss, Hassan M; Bekdache, Gharid
2015-01-01
To determine the transfer of 2-naphthol (2-NPH) in fullterm human placental tissues. Six placentas were studied. The ex-vivo dual closed-loop human placental cotyledon perfusion model was used. 2-NPH was added to the perfusate in the maternal compartment. Samples were obtained from the maternal and fetal up to 360 min measuring. The mean fetal weight was 2880 ± 304.2 g. Mean perfused cotyledon weight was 26.3 (±5.5) g. All unperfused placental tissue samples contained NPH with a mean level of 7.98 (±1.73) μg\\g compared to a mean of 15.58 (±4.53) μg\\g after 360 min perfusion. A rapid drop in maternal 2-NPH concentration was observed; from 5.54 μg\\g in the first 15 min and 13.8 μg\\g in 360 min. The fetal side increased from 0.65 μg\\g in the initial 15 min to 1.5 μg\\g in 360 min. The transfer rate of NPH was much lower than that of antipyrine. 2-NPH has the ability to rapidly across the placenta from the maternal to the fetal compartment within 15 min. The placenta seems to play a role in limiting the passage of 2-NPH in the fetal compartment.
Hutson, J R; Garcia-Bournissen, F; Davis, A; Koren, G
2011-07-01
Dual perfusion of a single placental lobule is the only experimental model to study human placental transfer of substances in organized placental tissue. To date, there has not been any attempt at a systematic evaluation of this model. The aim of this study was to systematically evaluate the perfusion model in predicting placental drug transfer and to develop a pharmacokinetic model to account for nonplacental pharmacokinetic parameters in the perfusion results. In general, the fetal-to-maternal drug concentration ratios matched well between placental perfusion experiments and in vivo samples taken at the time of delivery of the infant. After modeling for differences in maternal and fetal/neonatal protein binding and blood pH, the perfusion results were able to accurately predict in vivo transfer at steady state (R² = 0.85, P < 0.0001). Placental perfusion experiments can be used to predict placental drug transfer when adjusting for extra parameters and can be useful for assessing drug therapy risks and benefits in pregnancy.
Nicotine and the Developing Human
England, Lucinda J.; Bunnell, Rebecca E.; Pechacek, Terry F.; Tong, Van T.; McAfee, Tim A.
2015-01-01
The elimination of cigarettes and other combusted tobacco products in the U.S. would prevent tens of millions of tobacco-related deaths. It has been suggested that the introduction of less harmful nicotine delivery devices, such as electronic cigarettes or other electronic nicotine delivery systems, will accelerate progress toward ending combustible cigarette use. However, careful consideration of the potential adverse health effects from nicotine itself is often absent from public health debates. Human and animal data support that nicotine exposure during periods of developmental vulnerability (fetal through adolescent stages) has multiple adverse health consequences, including impaired fetal brain and lung development, and altered development of cerebral cortex and hippocampus in adolescents. Measures to protect the health of pregnant women and children are needed and could include (1) strong prohibitions on marketing that increase youth uptake; (2) youth access laws similar to those in effect for other tobacco products; (3) appropriate health warnings for vulnerable populations; (4) packaging to prevent accidental poisonings; (5) protection of non-users from exposure to secondhand electronic cigarette aerosol; (6) pricing that helps minimize youth initiation and use; (7) regulations to reduce product addiction potential and appeal for youth; and (8) the age of legal sale. PMID:25794473
Fu, Lijuan; Shi, Zhimin; Luo, Guanzheng; Tu, Weihong; Wang, XiuJie; Fang, Zhide; Li, XiaoChing
2014-10-01
Mutations in the human FOXP2 gene cause speech and language impairments. The FOXP2 protein is a transcription factor that regulates the expression of many downstream genes, which may have important roles in nervous system development and function. An adequate amount of functional FOXP2 protein is thought to be critical for the proper development of the neural circuitry underlying speech and language. However, how FOXP2 gene expression is regulated is not clearly understood. The FOXP2 mRNA has an approximately 4-kb-long 3' untranslated region (3' UTR), twice as long as its protein coding region, indicating that FOXP2 can be regulated by microRNAs (miRNAs). We identified multiple miRNAs that regulate the expression of the human FOXP2 gene using sequence analysis and in vitro cell systems. Focusing on let-7a, miR-9, and miR-129-5p, three brain-enriched miRNAs, we show that these miRNAs regulate human FOXP2 expression in a dosage-dependent manner and target specific sequences in the FOXP2 3' UTR. We further show that these three miRNAs are expressed in the cerebellum of the human fetal brain, where FOXP2 is known to be expressed. Our results reveal novel regulatory functions of the human FOXP2 3' UTR sequence and regulatory interactions between multiple miRNAs and the human FOXP2 gene. The expression of let-7a, miR-9, and miR-129-5p in the human fetal cerebellum is consistent with their roles in regulating FOXP2 expression during early cerebellum development. These results suggest that various genetic and environmental factors may contribute to speech and language development and related neural developmental disorders via the miRNA-FOXP2 regulatory network.
[Fetal growth and activity at 20 to 24 weeks of gestation (preliminary study)].
Conde, Ana; Figueiredo, Bárbara; Tendais, Iva; Pereira, Ana F; Afonso, Elisa; Nogueira, Raúl
2008-01-01
Recent researches show that psychological development begins much before birth and prenatal influences can explain a significant part of the future variability in infants' behaviour and development. The aim of this study was to characterize the fetal development between 20 and 24 weeks of gestation, related to the measures of fetal growth-- iparietal diameter, abdominal circumference, head circumference, femur length and fetal weight-- and fetal activity--fetal heart rate and fetal movements. We also tried to establish if there are any differences in these measures related to the mothers' and fetus' sociodemographic features, obstetrical conditions and exposure to drugs. The sample of this study involved 48 fetus (52.1% female and 47.9% male) with an estimated gestational age (GA) between 20-24 weeks (Mean = 21 weeks and 1 day), whose mothers had appointments at the Obstetric and Gynaecological medical consultation of Júlio Dinis Maternity Hospital (MJD, Oporto). A video tape of the fetal behaviour was made and ultrasound biometry measurements were collected from the morphological ultrasound report. A statistical analysis of fetal data, after gestational age control, showed differences in fetal growth measures related to mothers' occupational status [F(1,41) = 7.28; p = .000], marital status [F(1,41) = 2.61; p = .04], household arrangements [F(1,41) = 2.91; p = .03] and coffee consumption [F(1,40) = 2.55; p = .05]. Differences in fetal activity measures (fetal heart rate) associated to fetus gender [F(1,16) = 5.84; p = .009] were also found. We can conclude about the sensibility of fetal development to prenatal factors related to the mothers' and fetus' sociodemographic features and exposure to drugs.
Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël
2017-07-21
Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2 + population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3 , a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.
Animal models for prenatal gene therapy: rodent models for prenatal gene therapy.
Roybal, Jessica L; Endo, Masayuki; Buckley, Suzanne M K; Herbert, Bronwen R; Waddington, Simon N; Flake, Alan W
2012-01-01
Fetal gene transfer has been studied in various animal models, including rabbits, guinea pigs, cats, dogs, and nonhuman primate; however, the most common model is the rodent, particularly the mouse. There are numerous advantages to mouse models, including a short gestation time of around 20 days, large litter size usually of more than six pups, ease of colony maintenance due to the small physical size, and the relatively low expense of doing so. Moreover, the mouse genome is well defined, there are many transgenic models particularly of human monogenetic disorders, and mouse-specific biological reagents are readily available. One criticism has been that it is difficult to perform procedures on the fetal mouse with suitable accuracy. Over the past decade, accumulation of technical expertise and development of technology such as high-frequency ultrasound have permitted accurate vector delivery to organs and tissues. Here, we describe our experiences of gene transfer to the fetal mouse with and without ultrasound guidance from mid to late gestation. Depending upon the vector type, the route of delivery and the age of the fetus, specific or widespread gene transfer can be achieved, making fetal mice excellent models for exploratory biodistribution studies.
A PKM2 signature in the failing heart
Rees, Meredith L.; Subramaniam, Janani; Li, Yuanteng; Hamilton, Dale J.; Frazier, O. Howard; Taegtmeyer, Heinrich
2015-01-01
A salient feature of the failing heart is metabolic remodeling towards predominant glucose metabolism and activation of the fetal gene program. Sunitinib is a multitargeted receptor tyrosine kinase inhibitor used for the treatment of highly vascularized tumors. In diabetic patients, sunitinib significantly decreases blood glucose. However, a considerable proportion of sunitinib-treated patients develop cardiac dysfunction or failure. We asked whether sunitinib treatment results in shift towards glycolysis in the heart. Glucose uptake by the heart was increased fivefold in mice treated with sunitinib. Transcript analysis by qPCR revealed an induction of genes associated with glycolysis and reactivation of the fetal gene program. Additionally, we observed a shift in the enzyme pyruvate kinase from the adult M1 (PKM1) isoform to the fetal M2 (PKM2) isoform, a hallmark of the Warburg Effect. This novel observation led us to examine whether a similar shift occurs in human heart failure. Examination of tissue from patients with heart failure similarly displayed an induction of PKM2. Moreover, this phenomenon was partially reversed following mechanical unloading. We propose that pyruvate kinase isoform switching represents a novel feature of the fetal gene program in the failing heart. PMID:25735978
Adam, Stefanie; Elfeky, Omar; Kinhal, Vyjayanthi; Dutta, Suchismita; Lai, Andrew; Jayabalan, Nanthini; Nuzhat, Zarin; Palma, Carlos; Rice, Gregory E; Salomon, Carlos
2017-06-01
The maternal physiology experiences numerous changes during pregnancy which are essential in controlling and maintaining maternal metabolic adaptations and fetal development. The human placenta is an organ that serves as the primary interface between the maternal and fetal circulation, thereby supplying the fetus with nutrients, blood and oxygen through the umbilical cord. During gestation, the placenta continuously releases several molecules into maternal circulation, including hormones, proteins, RNA and DNA. Interestingly, the presence of extracellular vesicles (EVs) of placental origin has been identified in maternal circulation across gestation. EVs can be categorised according to their size and/or origin into microvesicles (∼150-1000 nm) and exosomes (∼40-120 nm). Microvesicles are released by budding from the plasmatic membrane, whereas exosome release is by fusion of multivesicular bodies with the plasmatic membrane. Exosomes released from placental cells have been found to be regulated by oxygen tension and glucose concentration. Furthermore, maternal exosomes have the ability to stimulate cytokine release from endothelial cells. In this review, we will discuss the role of EVs during fetal-maternal communication during gestation with a special emphasis on exosomes. Copyright © 2016. Published by Elsevier Ltd.
Murine fetal echocardiography.
Kim, Gene H
2013-02-15
Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures.
Epigenetic approaches for the detection of fetal DNA in maternal plasma
Tsui, Dana WY; Chiu, Rossa WK
2010-01-01
The presence of fetal DNA in the plasma of pregnant women has opened up new possibilities for noninvasive prenatal diagnosis. Over the past decades, different types of fetal markers have been developed, initially based on discriminative genetic markers such as male-specific signals or paternally-inherited polymorphisms, and gradually evolved to the detection of fetal-specific transcripts or epigenetic signatures. This development has extended the coverage of the application of cell-free fetal DNA to essentially all pregnancies, regardless of the gender of the fetus or its polymorphic status. In this review, we present an overview of the development of noninvasive prenatal diagnosis through epigenetics. We introduce the basis of how fetal DNA could be detected from a large background of maternal DNA in maternal plasma based on fetal-specific DNA methylation patterns. We evaluate the methodologies involved and discuss the factors that affect the robustness of the detection. We review the progress in adopting fetal epigenetic markers for noninvasive prenatal assessment of fetal chromosomal aneuploidies and pregnancy-associated disorders. We conclude with comments on the future directions regarding the search for new fetal epigenetic markers and the clinical implementation of epigenetic approaches for noninvasive prenatal diagnosis. PMID:21327153
Novakovic, Predrag; Harding, John C. S.; Al-Dissi, Ahmad N.; Ladinig, Andrea; Detmer, Susan E.
2016-01-01
The pathogenesis of fetal death caused by porcine reproductive and respiratory syndrome virus (PRRSV) remains unclear. The objective of this study was to improve our understanding of the pathogenesis by assessing potential relationships between specific histopathological lesions and PRRSV RNA concentration in the fetuses and the maternal-fetal interface. Pregnant gilts were inoculated with PRRSV (n = 114) or sham inoculated (n = 19) at 85±1 days of gestation. Dams and their litters were humanely euthanized and necropsied 21 days later. PRRSV RNA concentration was measured by qRT-PCR in the maternal-fetal interface and fetal thymus (n = 1391). Presence of fetal lesions was positively related to PRRSV RNA concentration in the maternal-fetal interface and fetal thymus (P<0.05 for both), but not to the distribution or severity of vasculitis, or the severity of endometrial inflammation. The presence of fetal and umbilical lesions was associated with greater odds of meconium staining (P<0.05 for both). The distribution and severity of vasculitis in endometrium were not significantly related to PRRSV RNA concentration in maternal-fetal interface or fetal thymus. Endometrial inflammation severity was positively related to distribution and severity of vasculitis in endometrium (P<0.001 for both). Conclusions from this study suggest that type 2 PRRSV infection in pregnant gilts induces significant histopathological lesions at maternal-fetal interface, but they are not associated with presence of PRRSV in the maternal-fetal interface at 21 days post infection. Conversely, fetal pathological lesions are associated with presence of PRRSV in the maternal-fetal interface and fetal thymus, and meconium staining is significantly associated with the presence of both fetal and umbilical lesions observed 21 days post infection. PMID:26963101
Lai, Chang Quan; Lim, Guat Ling; Jamil, Muhammad; Mattar, Citra Nurfarah Zaini; Biswas, Arijit; Yap, Choon Hwai
2016-10-01
The mechanics of intracardiac blood flow and the epigenetic influence it exerts over the heart function have been the subjects of intense research lately. Fetal intracardiac flows are especially useful for gaining insights into the development of congenital heart diseases, but have not received due attention thus far, most likely because of technical difficulties in collecting sufficient intracardiac flow data in a safe manner. Here, we circumvent such obstacles by employing 4D STIC ultrasound scans to quantify the fetal heart motion in three normal 20-week fetuses, subsequently performing 3D computational fluid dynamics simulations on the left ventricles based on these patient-specific heart movements. Analysis of the simulation results shows that there are significant differences between fetal and adult ventricular blood flows which arise because of dissimilar heart morphology, E/A ratio, diastolic-systolic duration ratio, and heart rate. The formations of ventricular vortex rings were observed for both E- and A-wave in the flow simulations. These vortices had sufficient momentum to last until the end of diastole and were responsible for generating significant wall shear stresses on the myocardial endothelium, as well as helicity in systolic outflow. Based on findings from previous studies, we hypothesized that these vortex-induced flow properties play an important role in sustaining the efficiency of diastolic filling, systolic pumping, and cardiovascular flow in normal fetal hearts.
Sun, Mary Y.; Habeck, Jason M.; Meyer, Katie M.; Koch, Jill M.; Ramadoss, Jayanth; Blohowiak, Sharon E.; Magness, Ronald R.; Kling, Pamela J.
2013-01-01
Background Fetal growth restriction is reported to be associated with impaired placental iron transport. Transferrin receptor (TfR) is a major placental iron transporter in humans, but is unstudied in sheep. TfR is regulated by both iron and nitric oxide (NO), the molecule produced by endothelial NOS (eNOS). We hypothesized that limited placental development downregulates both placental TfR and eNOS expression, thereby lowering fetal tissue iron. Methods An ovine surgical uterine space restriction (USR) model, combined with multifetal gestation, tested the extremes of uterine and placental adaptation. Blood, tissues, and placentomes from non-space restricted (NSR) singletons were compared to USR fetuses at 120 or 130 days of gestation (GD). Results When expressed proportionate to fetal weight, liver iron content did not differ while renal iron was higher in USR vs. NSR fetuses. Renal TfR protein expression did not differ, but placental TfR expression was lower in USR fetuses at GD130. Placental levels of TfR correlated to eNOS. TfR was localized throughout the placentome, including the hemophagous zone, implicating a role for TfR in ovine placental iron transport. Conclusion In conclusion, fetal iron was regulated in an organ-specific fashion. In USR fetuses, NO-mediated placental adaptations may prevent the normal upregulation of placental TfR at GD130. PMID:23202722
Feltes, Bruno César; de Faria Poloni, Joice; Notari, Daniel Luis; Bonatto, Diego
2013-01-01
The physiological and molecular effects of tobacco smoke in adult humans and the development of cancer have been well described. In contrast, how tobacco smoke affects embryonic development remains poorly understood. Morphological studies of the fetuses of smoking pregnant women have shown various physical deformities induced by constant fetal exposure to tobacco components, especially nicotine. In addition, nicotine exposure decreases fetal body weight and bone/cartilage growth in addition to decreasing cranial diameter and tibia length. Unfortunately, the molecular pathways leading to these morphological anomalies are not completely understood. In this study, we applied interactome data mining tools and small compound interaction networks to elucidate possible molecular pathways associated with the effects of tobacco smoke components during embryonic development in pregnant female smokers. Our analysis showed a relationship between nicotine and 50 additional harmful substances involved in a variety of biological process that can cause abnormal proliferation, impaired cell differentiation, and increased oxidative stress. We also describe how nicotine can negatively affect retinoic acid signaling and cell differentiation through inhibition of retinoic acid receptors. In addition, nicotine causes a stress reaction and/or a pro-inflammatory response that inhibits the agonistic action of retinoic acid. Moreover, we show that the effect of cigarette smoke on the developing fetus could represent systemic and aggressive impacts in the short term, causing malformations during certain stages of development. Our work provides the first approach describing how different tobacco constituents affect a broad range of biological process in human embryonic development.
Feltes, Bruno César; Poloni, Joice de Faria; Notari, Daniel Luis; Bonatto, Diego
2013-01-01
The physiological and molecular effects of tobacco smoke in adult humans and the development of cancer have been well described. In contrast, how tobacco smoke affects embryonic development remains poorly understood. Morphological studies of the fetuses of smoking pregnant women have shown various physical deformities induced by constant fetal exposure to tobacco components, especially nicotine. In addition, nicotine exposure decreases fetal body weight and bone/cartilage growth in addition to decreasing cranial diameter and tibia length. Unfortunately, the molecular pathways leading to these morphological anomalies are not completely understood. In this study, we applied interactome data mining tools and small compound interaction networks to elucidate possible molecular pathways associated with the effects of tobacco smoke components during embryonic development in pregnant female smokers. Our analysis showed a relationship between nicotine and 50 additional harmful substances involved in a variety of biological process that can cause abnormal proliferation, impaired cell differentiation, and increased oxidative stress. We also describe how nicotine can negatively affect retinoic acid signaling and cell differentiation through inhibition of retinoic acid receptors. In addition, nicotine causes a stress reaction and/or a pro-inflammatory response that inhibits the agonistic action of retinoic acid. Moreover, we show that the effect of cigarette smoke on the developing fetus could represent systemic and aggressive impacts in the short term, causing malformations during certain stages of development. Our work provides the first approach describing how different tobacco constituents affect a broad range of biological process in human embryonic development. PMID:23637898
Digital atlas of fetal brain MRI.
Chapman, Teresa; Matesan, Manuela; Weinberger, Ed; Bulas, Dorothy I
2010-02-01
Fetal MRI can be performed in the second and third trimesters. During this time, the fetal brain undergoes profound structural changes. Interpretation of appropriate development might require comparison with normal age-based models. Consultation of a hard-copy atlas is limited by the inability to compare multiple ages simultaneously. To provide images of normal fetal brains from weeks 18 through 37 in a digital format that can be reviewed interactively. This will facilitate recognition of abnormal brain development. T2-W images for the atlas were obtained from fetal MR studies of normal brains scanned for other indications from 2005 to 2007. Images were oriented in standard axial, coronal and sagittal projections, with laterality established by situs. Gestational age was determined by last menstrual period, earliest US measurements and sonogram performed on the same day as the MR. The software program used for viewing the atlas, written in C#, permits linked scrolling and resizing the images. Simultaneous comparison of varying gestational ages is permissible. Fetal brain images across gestational ages 18 to 37 weeks are provided as an interactive digital atlas and are available for free download from http://radiology.seattlechildrens.org/teaching/fetal_brain . Improved interpretation of fetal brain abnormalities can be facilitated by the use of digital atlas cataloging of the normal changes throughout fetal development. Here we provide a description of the atlas and a discussion of normal fetal brain development.
Fetal Brain Behavior and Cognitive Development.
ERIC Educational Resources Information Center
Joseph, R.
2000-01-01
Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…
2014-01-01
While the use of creatine in human pregnancy is yet to be fully evaluated, its long-term use in healthy adults appears to be safe, and its well documented neuroprotective properties have recently been extended by demonstrations that creatine improves cognitive function in normal and elderly people, and motor skills in sleep-deprived subjects. Creatine has many actions likely to benefit the fetus and newborn, because pregnancy is a state of heightened metabolic activity, and the placenta is a key source of free radicals of oxygen and nitrogen. The multiple benefits of supplementary creatine arise from the fact that the creatine-phosphocreatine [PCr] system has physiologically important roles that include maintenance of intracellular ATP and acid–base balance, post-ischaemic recovery of protein synthesis, cerebral vasodilation, antioxidant actions, and stabilisation of lipid membranes. In the brain, creatine not only reduces lipid peroxidation and improves cerebral perfusion, its interaction with the benzodiazepine site of the GABAA receptor is likely to counteract the effects of glutamate excitotoxicity – actions that may protect the preterm and term fetal brain from the effects of birth hypoxia. In this review we discuss the development of creatine synthesis during fetal life, the transfer of creatine from mother to fetus, and propose that creatine supplementation during pregnancy may have benefits for the fetus and neonate whenever oxidative stress or feto-placental hypoxia arise, as in cases of fetal growth restriction, premature birth, or when parturition is delayed or complicated by oxygen deprivation of the newborn. PMID:24766646
Kota, Sunil Kumar; Gayatri, Kotni; Jammula, Sruti; Meher, Lalit Kumar; Kota, Siva Krishna; Krishna, S. V. S.; Modi, Kirtikumar D.
2013-01-01
Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition. PMID:23961471
Generation of human cortical neurons from a new immortal fetal neural stem cell line.
Cacci, E; Villa, A; Parmar, M; Cavallaro, M; Mandahl, N; Lindvall, O; Martinez-Serrano, A; Kokaia, Z
2007-02-01
Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.
Hayashi, Risa; Nakai, Kenji; Fukushima, Akimune; Itoh, Manabu; Sugiyama, Toru
2009-03-01
Although ultrasonic diagnostic imaging and fetal heart monitors have undergone great technological improvements, the development and use of fetal electrocardiograms to evaluate fetal arrhythmias and autonomic nervous activity have not been fully established. We verified the clinical significance of the novel signal-averaged vector-projected high amplification ECG (SAVP-ECG) method in fetuses from 48 gravidas at 32-41 weeks of gestation and in 34 neonates. SAVP-ECGs from fetuses and newborns were recorded using a modified XYZ-leads system. Once noise and maternal QRS waves were removed, the P, QRS, and T wave intervals were measured from the signal-averaged fetal ECGs. We also compared fetal and neonatal heart rates (HRs), coefficients of variation of heart rate variability (CV) as a parasympathetic nervous activity, and the ratio of low to high frequency (LF/HF ratio) as a sympathetic nervous activity. The rate of detection of a fetal ECG by SAVP-ECG was 72.9%, and the fetal and neonatal QRS and QTc intervals were not significantly different. The neonatal CVs and LF/HF ratios were significantly increased compared with those in the fetus. In conclusion, we have developed a fetal ECG recording method using the SAVP-ECG system, which we used to evaluate autonomic nervous system development.