Wiles, H B
1991-01-01
The most common variation in the thoracic systemic venous system is a persistent left superior vena cava draining to a coronary sinus. A rare anomaly is a persistent left superior vena cava connecting directly to the left atrium. In this situation it is believed that the coronary sinus must be absent. This report describes two cases of a persistent left superior vena cava draining to a left atrium with a normal coronary sinus. Images PMID:2015125
Ramman, Tarun Raina; Dutta, Nilanjan; Chowdhuri, Kuntal Roy; Agrawal, Sunny; Girotra, Sumir; Azad, Sushil; Radhakrishnan, Sitaraman; Iyer, Parvathi Unninayar; Iyer, Krishna Subramony
2018-01-01
Persistent left superior vena cava is a common congenital anomaly of the thoracic venous system. Left superior vena cava draining into left atrium is a malformation of sinus venosus and caval system. The anomaly may be a cause of unexplained hypoxia even in adults. It may give rise to various diagnostic and technical challenges during cardiac catheterization and open-heart surgery. It is often detected serendipitously during diagnostic workup. Isolated left superior vena cava opening into left atrium is very commonly associated with other congenital heart defects. But tetralogy of Fallot is very rarely associated with persistent left superior vena cava which drains into left atrium. We report four such cases who underwent surgical correction successfully.
Surgical approach to left ventricular inflow obstruction due to dilated coronary sinus.
Vargas, Florentino J; Rozenbaum, Jorge; Lopez, Ricardo; Granja, Miguel; De Dios, Ana; Zarlenga, Beatriz; Flores, Enrique; Fischman, Enrique; Kreutzer, Eduardo
2006-07-01
Left superior vena cava draining to a dilated coronary sinus can cause left ventricular inflow obstruction. Our purpose is to report 4 severely ill patients with this malformation who were operated upon and in whom repair was accomplished using an original surgical approach. An operative procedure was designed, which included complete resection of the wall of the coronary sinus along its entire extension in the left atrium; division of the left superior vena cava; and establishment of the left superior vena cava-right atrial continuity by a wide left superior vena cava-right atrial appendage anastomosis. The series included 1 patient with interrupted inferior vena cava-hemiazygous continuation to left superior vena cava. There were no deaths. Absence of residual left ventricular inflow obstruction was demonstrated at follow-up in all cases, together with an unobstructed left superior vena cava-right atrial appendage-right atrial connection. A predictable relief of the left ventricular inflow obstruction, together with preservation of an adequate drainage for the systemic venous return, were both achieved with this repair.
Boutayeb, Alaae; Marmade, Lahcen; Bensouda, Adil; Moughil, Said
2012-01-01
The left superior vena cava is the most common congenital venous anomaly in the chest; however, its drainage into the left atrium is exceptional. The aim of the paper is to describe our novel technique to connect the left superior vena cava to the right cavities using the left atrial appendage, without cardiopulmonary bypass. PMID:22802356
Heart Transplant in Patient With Isolated Left Superior Vena Cava by Atrial Appendage Rotation.
Reyes, Karl M; Gupta, Dipankar; Fricker, Frederick Jay; Cooke, Susan; Bleiweis, Mark S
2018-06-01
Orthotopic heart transplantation in patients with an isolated persistent left superior vena cava is extremely rare, and the anastomotic connection between a right-sided donor superior vena cava and left-sided recipient superior vena cava can be challenging to perform. We present a novel technique used in an infant female, using the left atrial appendage to extend the superior vena cava anastomosis. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Large thoracic tumor without superior vena cava syndrome.
Garmpis, Nikolaos; Damaskos, Christos; Patelis, Nikolaos; Dimitroulis, Dimitrios; Spartalis, Eleftherios; Tomos, Ioannis; Garmpi, Anna; Spartalis, Michael; Antoniou, Efstathios A; Kontzoglou, Konstantinos; Tomos, Periklis
2017-04-10
A 62 year-old male with long-standing smoking history presented with hemoptysis. Plain chest x-ray showed abnormal findings proximate to the right pulmonary hilum. Bronchoscopy revealed a fragile exophytic tumor of the right wall of the lower third of the trachea, infiltrating the right main bronchus (75% stenosis) and the right upper lobar bronchus (near total occlusion). Contrast-enhanced chest CT demonstrated a 7.2x4.9 cm tumor contiguous to the above-mentioned structures, mediastinal lymph node pathology, and a vessel coursing inferiorly to the left of the aortic arch and anterior to the left hilum. Despite the tumor constricting the right superior vena cava, no signs of superior vena cava syndrome were present. In this case, the patient does not present with Superior Vena Cava (SVC) syndrome, as expected due to the constriction of the (right) SVC caused by the tumor, since head and neck veins drain through the Persistent Left Superior Vena Cava (PLSVC). PLSVC is the most common thoracic venous anomaly with an incidence of 0.3% to 0.5% of the general population and it is a congenital anomaly caused by the failure of the left anterior cardinal vein to regress and to consequently form the ligament of Marshall during fetal development. It is associated with absence of the left brachiocephalic vein and in 10 to 20% of cases the right SVC is absent. Two potential draining points of the PLSVC have been previously reported. In the majority of cases PLSVC drains directly into the coronary sinus, but less frequently it drains into the left atrium or the left superior pulmonary vein. In cases where the PLSVC drains into the coronary sinus, congenital heart defects are rare. The patient usually remains asymptomatic and PLSVC is an incidental finding during radiographic imaging or medical procedures. When the PLSVC drains into the left atrium or the left superior pulmonary vein, a right-to-left shunt is formed; a condition usually asymptomatic. In some reported cases this PLSVC variant presents with persistent, unexplained hypoxia or cyanosis and embolisation causing recurrent transient ischemic attacks and/or cerebral abscesses. This PLSVC variant is more often associated with absence of the right SVC and congenital heart abnormalities.
Tansel, T; Harmandar, B; Dayioglu, E; Onursal, E
2006-02-01
The majority of patients with partial anomalous drainage of pulmonary veins are asymptomatic during infancy and childhood. Patients with significant left-to-right shunt develop symptoms and benefit from early corrective surgery. Anomalous pulmonary veins draining into inferior vena cava is very rare and frequently encountered in association with scimitar syndrome. The purpose of this case report is to describe a non-scimitar patient with cor triatriatum who had anomalous dual drainage of right pulmonary veins into inferior vena cava/left atrium and anomalous connection of persistent left superior vena cava with a common pulmonary venous chamber. The patient underwent an operation with redirection of anomalous pulmonary venous drainage into left atrium and ligation of persistent left superior vena cava.
Gun Shot to Thorax Resulting in Localized Hemothorax and Lung Contusion
2009-12-01
casualties) of patients. The AP view reveals an opacity in the left lung extending vertically from the proximal left clavicle to the hilum...just below the left clavicle , traveled from left to right towards the midline through the superior left lung, superior to the left pulmonary artery
Superior Temporal Gyrus Volume Abnormalities and Thought Disorder in Left-Handed Schizophrenic Men
Holinger, Dorothy P.; Shenton, Martha E.; Wible, Cynthia G.; Donnino, Robert; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert W.
2010-01-01
Objective Studies of schizophrenia have not clearly defined handedness as a differentiating variable. Moreover, the relationship between thought disorder and anatomical anomalies has not been studied extensively in left-handed schizophrenic men. The twofold purpose of this study was to investigate gray matter volumes in the superior temporal gyrus of the temporal lobe (left and right hemispheres) in left-handed schizophrenic men and left-handed comparison men, in order to determine whether thought disorder in the left-handed schizophrenic men correlated with tissue volume abnormalities. Method Left-handed male patients (N=8) with DSM-III-R diagnoses of schizophrenia were compared with left-handed comparison men (N=10) matched for age, socioeconomic status, and IQ. Magnetic resonance imaging (MRI) with a 1.5-T magnet was used to obtain scans, which consisted of contiguous 1.5-mm slices of the whole brain. MRI analyses (as previously defined by the authors) included the anterior, posterior, and total superior temporal gyrus in both the left and right hemispheres. Results There were three significant findings regarding the left-handed schizophrenic men: 1) bilaterally smaller gray matter volumes in the posterior superior temporal gyrus (16% smaller on the right, 15% smaller on the left); 2) a smaller volume on the right side of the total superior temporal gyrus; and 3) a positive correlation between thought disorder and tissue volume in the right anterior superior temporal gyrus. Conclusions These results suggest that expression of brain pathology differs between left-handed and right-handed schizophrenic men and that the pathology is related to cognitive disturbance. PMID:10553736
Chessa, Massimo; Carminati, Mario; Cinteză, Eliza Elena; Butera, Gianfranco; Giugno, Luca; Arcidiacono, Carmelo; Piazza, Luciane; Bulescu, Nicolae Cristian; Pome, Giuseppe; Frigiola, Alessandro; Giamberti, Alessandro
2016-01-01
Abnormal connection of the right superior caval vein to the left atrium is an uncommon systemic vein drainage anomaly, with only a few cases reported among congenital heart disease (CHD), around 20 cases published in the medical literature. The inferior vena cava connection with the left atrium, also very rare, can appear directly or in heterotaxy. Clinical suspicion arises due to the presence of cyanosis in the absence of other specific clinical signs (without other associated CHD). We present the cases of two children with abnormal superior and inferior systemic venous return. The first case is an abnormal connection of right superior vena cava to the left atrium associated with persistent left superior vena cava draining into the right atrium through the coronary sinus. The second case is an interruption of the inferior vena cava with hemiazygos continuation, drained into the left superior vena cava, which drained into the left atrium. The diagnosis was imagistic - echocardiography and angiography. Surgical treatment solutions vary from one case to another, usually following anatomic correction. Hypoxia accompanied by cyanosis must bring into question the pathology of systemic venous drainage anomaly, after other common causes have been excluded. Surgery is indicated in all cases due to the risk associated with the presence of right-to-left shunt.
Parsaee, Mozhgan; Pouraliakbar, Hamidreza; Ghadrdoost, Behshid; Moosavi, Jamal; Behjati, Mohaddeseh
2018-06-10
The most commonly reported collateral systems in the setting of superior vena cava obstruction are azygos venous system, vertebral venous system, external and internal thoracic venous system based on McLntire and Sykes classification. A 49-year-old female with renal disease complained dyspnea on exertion. Transesophageal echocardiography showed significant mitral annular calcification, large multi-lobulated mass at posterior aspect of RA, and complete obstruction of superior vena cava by thrombus formation. Computed tomography angiography showed a collateral vein to the left atrium (LA) roof. This case report is the first one which shows development of collateral vein from right subclavian to LA. © 2018 Wiley Periodicals, Inc.
Inferior Vena Cava Filter from Left-Sided Superior Vena Cava
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Sujit, E-mail: drsnnair@hotmail.com; Ettles, Duncan; Robinson, Graham
We describe the unusual case of a 71-year-old male with a history of deep vein thrombosis and recurrent multiple pulmonary embolism (PE) despite adequate anticoagulation. Computed tomography (CT) and brachiocephalic venography revealed a left-sided superior vena cava. We describe successful placement of an inferior vena cava filter via a left-sided superior vena cava.
Aydın, Kutlay; Tokur, Murat Emre; Ergan, Begüm
2018-01-01
A persistent left-sided superior vena cava (PLSVC) is the most frequent abnormality of the venous system; however, it is not a very well-known variation among physicians. Herein we report the case of a patient with a PLSVC who was diagnosed after central venous catheterization (CVC). An 80-year-old man was admitted to the emergency room with cardiopulmonary arrest. After the return of spontaneous circulation, CVC was blindly performed from the left jugular vein without any complications. However, routine chest X-ray after catheterization revealed that the catheter was moving down directly to the left heart. Thoracic computed tomography showed the right brachiocephalic vein draining into the left brachiocephalic vein and forming the left superior vena cava in front of the aortic arch. The left superior vena cava merged into the right atrium after crossing the left pulmonary artery. CVC is widely used in clinical practice, and therefore clinicians should be aware of possible variations in central veins, particularly during blind catheterization.
Specialization along the left superior temporal sulcus for auditory categorization.
Liebenthal, Einat; Desai, Rutvik; Ellingson, Michael M; Ramachandran, Brinda; Desai, Anjali; Binder, Jeffrey R
2010-12-01
The affinity and temporal course of functional fields in middle and posterior superior temporal cortex for the categorization of complex sounds was examined using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) recorded simultaneously. Data were compared before and after subjects were trained to categorize a continuum of unfamiliar nonphonemic auditory patterns with speech-like properties (NP) and a continuum of familiar phonemic patterns (P). fMRI activation for NP increased after training in left posterior superior temporal sulcus (pSTS). The ERP P2 response to NP also increased with training, and its scalp topography was consistent with left posterior superior temporal generators. In contrast, the left middle superior temporal sulcus (mSTS) showed fMRI activation only for P, and this response was not affected by training. The P2 response to P was also independent of training, and its estimated source was more anterior in left superior temporal cortex. Results are consistent with a role for left pSTS in short-term representation of relevant sound features that provide the basis for identifying newly acquired sound categories. Categorization of highly familiar phonemic patterns is mediated by long-term representations in left mSTS. Results provide new insight regarding the function of ventral and dorsal auditory streams.
Zhu, Linlin; Nie, Yaoxin; Chang, Chunqi; Gao, Jia-Hong; Niu, Zhendong
2014-06-01
The neural systems for phonological processing of written language have been well identified now, while models based on these neural systems are different for different language systems or age groups. Although each of such models is mostly concordant across different experiments, the results are sensitive to the experiment design and intersubject variability. Activation likelihood estimation (ALE) meta-analysis can quantitatively synthesize the data from multiple studies and minimize the interstudy or intersubject differences. In this study, we performed two ALE meta-analysis experiments: one was to examine the neural activation patterns of the phonological processing of two different types of written languages and the other was to examine the development characteristics of such neural activation patterns based on both alphabetic language and logographic language data. The results of our first meta-analysis experiment were consistent with the meta-analysis which was based on the studies published before 2005. And there were new findings in our second meta-analysis experiment, where both adults and children groups showed great activation in the left frontal lobe, the left superior/middle temporal gyrus, and the bilateral middle/superior occipital gyrus. However, the activation of the left middle/inferior frontal gyrus was found increase with the development, and the activation was found decrease in the following areas: the right claustrum and inferior frontal gyrus, the left inferior/medial frontal gyrus, the left middle/superior temporal gyrus, the right cerebellum, and the bilateral fusiform gyrus. It seems that adults involve more phonological areas, whereas children involve more orthographic areas and semantic areas. Copyright © 2013 Wiley Periodicals, Inc.
Marini, Davide; Castagno, Matteo; Millesimo, Michele; Ferroni, Francesca; Ferraro, Gaetana; Pace Napoleone, Carlo; Agnoletti, Gabriella
2017-10-01
Data regarding long-term outcome after percutaneous closure of left superior caval vein draining into the left atrium are lacking. The aim of the present study was to report the long-term follow-up by using contrast-enhanced CT. In all, three patients underwent percutaneous closure of left superior caval vein draining into the left atrium between 2005 and 2015. All of them were evaluated clinically and underwent contrast-enhanced CT. In one patient, the Amplatzer® Septal Occluder was used. In two patients, the Amplatzer® Vascular Plug type-1 was preferred: the device size/LSVC diameter ratio was 1.7 in the child and 1.2 in the adult. There were no early-onset or long-term onset complications. CT was performed 1, 2, and 10 years after the procedure, respectively. Complete occlusion of the vessel was documented in all. After 10 years since the procedure, CT revealed a persistent trivial residual shunt through the accessory hemiazygos vein in one patient, in whom the device was implanted above its drainage into the left superior caval vein. When an Amplatzer® Vascular Plug type-1 is oversized compared with the venous vessel diameter, it immediately assumes a dog-bone shape that disappears early to regain its shape memory and nominal size. Percutaneous occlusion of left superior caval vein draining into the left atrium has excellent early and long-term outcomes. The optimal implantation of the device is below the drainage of the accessory hemiazygos vein, when present. The device might be oversized compared with the left superior caval vein diameter according to the age of the patient.
Anomalies of the systemic venous return: a review.
Mazzucco, A; Bortolotti, U; Stellin, G; Gallucci, V
1990-06-01
Congenital anomalies of the systemic venous connection to the heart represent a rather wide and heterogeneous group of malformations, whose physiological consequences may vary from nil to the most severe form of systemic arterial desaturation. The malformations may be summarized as follows: (1) Left superior vena cava connected to the coronary sinus, interrupted inferior vena cava and absent right superior vena cava that do not indicate surgical repair 'per se', but require some technical attention during open heart surgery performed for other anomalies; (2) Left superior vena cava connected to the left atrium, due to incorporation of the coronary sinus into the left atrial cavity, resulting in a right-to-left-shunt; (3) Right superior vena cava or inferior vena cava draining into the left atrium, both are extremely rare and require treatment for the ensuing right-to-left shunt; (4) Total anomalous systemic venous connection to the left atrium, usually combined with atrial isomerism and other very complex heart malformations; (5) Cor triatriatum dexter, which has been frequently diagnosed as an anomalous venous connection for its similar hemodynamic consequences. Such anomalies are reviewed with particular respect to their surgical implications.
Baggett, Charles; Skeen, Shawn J.; Gantt, D. Scott; Trotter, Bradley R.; Birkemeier, Krista L.
2009-01-01
Isolated right superior vena cava drainage into the left atrium is an extremely rare cardiac anomaly, especially in the absence of other cardiac abnormalities. Only 28 of 5,127 reported consecutive congenital cardiac cases involved superior vena cava drainage into the left atrium, and all were associated with other cardiac anomalies. Of 19 reported cases of right superior vena cava drainage into the left atrium, most patients have been children who were experiencing mild hypoxemia and cyanosis. Herein, we describe the case of a 34-year-old woman who presented with asymptomatic hypoxemia in the peripartum period. She was diagnosed to have isolated drainage of the right superior vena cava into the left atrium. To the best of our knowledge, this is the 1st reported instance of such diagnosis by use of noninvasive imaging only, without cardiac catheterization. We also review the medical literature that pertains to our patient's anomaly. PMID:20069093
Liu, Yunqi; Liu, Yanqiu; Xiong, Mai; Li, Hanzhao; Liu, Donghong; Zhang, Xi
2017-04-01
The left circumflex coronary artery associated with a fistula to superior vena cava is a rare entity. We describe a 7-year-old girl who presented with a cardiac murmur and was diagnosed with a coronary artery fistula between the left circumflex artery and superior vena cava by echocardiography. The surgical occlusion of the fistula was successful. © 2017, Wiley Periodicals, Inc.
Septum primum atrial septal defect in an infant with hypoplastic left heart syndrome.
Loar, Robert W; Burkhart, Harold M; Taggart, Nathaniel W
2014-08-01
Hypoplastic left heart syndrome (HLHS) is a form of congenital heart disease characterized by severe underdevelopment of the left heart, leading to inadequate systemic blood flow. Several different atrial septal morphologies are observed in HLHS, most commonly a secundum atrial septal defect, patent foramen ovale, intact septum, and leftward displacement of the superior attachment of the septum primum. It has been postulated that atrial septal development is associated with the development of the left heart. We present a case of a newborn infant with HLHS and the unusual finding of a primum ASD.
Nakajima, Yutaka; Tokairin, Yutaka; Nakajima, Yasuaki; Kawada, Kenro; Nagai, Kagami; Yamaguchi, Kumiko; Akita, Keiichi; Kawano, Tatsuyuki
2018-03-01
Curative treatment of esophageal cancer requires meticulous superior mediastinal lymphadenectomy, in addition to esophagectomy, because superior mediastinal lymph node metastases are common in esophageal cancer. When preserving the tracheal branches of the left recurrent laryngeal nerve (RLN), good anatomical understanding is required for confirmation of the positional relationships between the courses of lymphatic vessels, lymph node distribution, and the left RLN and its tracheal branches. We performed a detailed anatomical examination of these relationships. Macroscopic anatomical observation and histological examination was performed on cadavers. In addition to hematoxylin and eosin staining, immunostaining using antipodoplanin antibody D2-40 (podoplanin) was performed to identify the lymphatic vessels. The tracheal branches of the left RLN were clearly observed, but no lymphatic vessels crossing the ventral or dorsal side of the branches were identified either macro-anatomically or histologically. No complex lymphatic network structure straddling the plane composed of tracheal branches of the left RLN was found in the left superior mediastinum. This suggests that dissection of the lymph nodes around the left RLN via the pneumomediastinum method using the left cervical approach may allow preservation of the tracheal branches of the left RLN by maintaining dissection accuracy.
Persistent left superior vena cava
Tyrak, Kamil W; Hołda, Mateusz K; Koziej, Mateusz; Piątek, Katarzyna; Klimek-Piotrowska, Wiesława
2017-01-01
Summary Persistent left superior vena cava (PLSVC) is the most common congenital malformation of thoracic venous return and is present in 0.3 to 0.5% of individuals in the general population. This heart specimen was dissected from a 35-yearold male cadaver whose cause of death was determined as non-cardiac. The heart was examined and we found a PLSVC draining into the coronary sinus. The right superior vena cava was present with a small-diameter ostium. An anomalous pulmonary vein pattern was observed; there was a common trunk to the left superior and left inferior pulmonary veins (diameter 17.8 mm) and an additional middle right pulmonary vein (diameter 2.7 mm) with two classic right pulmonary veins. The PLSVC draining into the coronary sinus had led to its enlargement, which could have altered the cardiac haemodynamics by significantly reducing the size of the left atrium and impeding its outflow via the mitral valve. PMID:28759082
Endometriosis of the lung: report of a case and literature review
2013-01-01
This paper reports a case of endometriosis of the lung in a 29-year-old woman with long-term periodic catamenial hemoptysis. A chest computed tomography image obtained during menstruation revealed a radiographic opaque lesion in the lingular segment of the left superior lobe. During bronchoscopy, bleeding in the mucosa of the distal bronchus of the lingular segment of the left superior lobe was observed. Histopathology subsequent to an exploratory thoracotomy confirmed the diagnosis of endometriosis of the left lung. The 2-year follow-up after lingular lobectomy of the left superior lobe showed no recurrence or complications. PMID:23634803
Rare Anomalous Origin of Superior Left Pulmonary Artery from Left Subclavian Vein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Tian-shi, E-mail: TerrenceLv@126.com; Wang, Chao, E-mail: wangchaoxs@163.com; Song, Li, E-mail: song9981@163.com
2013-10-15
We report for the first time an extremely rare anomalous origin of the superior left pulmonary artery in a 60 year-old man. Although it was occult in clinical indications, such a malformation still ought to be considered, especially during endovascular procedures.
The fenestrated Kawashima operation for single ventricle with interrupted inferior vena cava.
Hannan, Robert L; Rossi, Anthony F; Nykanen, David G; Lopez, Leo; Alonso, Francisco; White, Jeffrey A; Burke, Redmond P
2003-01-01
An 8-month-old boy with double outlet right ventricle with hypoplastic left ventricle, heterotaxy, left atrial isomerism, bilateral superior vena cavae without bridging vein, and interruption of the inferior vena cava with azygous continuation to the left superior cava underwent a bilateral bidirectional cavopulmonary anastomosis. A calibrated 3-mm connection between the right pulmonary artery and the common atrium was constructed with the proximal right superior vena cava to allow right to left shunting, analogous to a fenestration in a Fontan operation. We hypothesize that in small young patients undergoing the Kawashima operation a fenestration may improve postoperative hemodynamics.
Language comprehension and brain function in individuals with an optimal outcome from autism.
Eigsti, Inge-Marie; Stevens, Michael C; Schultz, Robert T; Barton, Marianne; Kelley, Elizabeth; Naigles, Letitia; Orinstein, Alyssa; Troyb, Eva; Fein, Deborah A
2016-01-01
Although Autism Spectrum Disorder (ASD) is generally a lifelong disability, a minority of individuals with ASD overcome their symptoms to such a degree that they are generally indistinguishable from their typically-developing peers. That is, they have achieved an Optimal Outcome (OO). The question addressed by the current study is whether this normalized behavior reflects normalized brain functioning, or alternatively, the action of compensatory systems. Either possibility is plausible, as most participants with OO received years of intensive therapy that could alter brain networks to align with typical function or work around ASD-related neural dysfunction. Individuals ages 8 to 21 years with high-functioning ASD (n = 23), OO (n = 16), or typical development (TD; n = 20) completed a functional MRI scan while performing a sentence comprehension task. Results indicated similar activations in frontal and temporal regions (left middle frontal, left supramarginal, and right superior temporal gyri) and posterior cingulate in OO and ASD groups, where both differed from the TD group. Furthermore, the OO group showed heightened "compensatory" activation in numerous left- and right-lateralized regions (left precentral/postcentral gyri, right precentral gyrus, left inferior parietal lobule, right supramarginal gyrus, left superior temporal/parahippocampal gyrus, left middle occipital gyrus) and cerebellum, relative to both ASD and TD groups. Behaviorally normalized language abilities in OO individuals appear to utilize atypical brain networks, with increased recruitment of language-specific as well as right homologue and other systems. Early intensive learning and experience may normalize behavioral language performance in OO, but some brain regions involved in language processing may continue to display characteristics that are more similar to ASD than typical development, while others show characteristics not like ASD or typical development.
Cerebellar development in childhood onset schizophrenia and non-psychotic siblings
Greenstein, Deanna; Lenroot, Rhoshel; Clausen, Liv; Gogtay, Nitin; Rapoport, Judith
2011-01-01
We explored regional and total volumetric cerebellar differences in probands and their unaffected full siblings relative to typically developing participants. Participants included 94 (51 males) patients diagnosed with childhood onset schizophrenia (COS), 80 related non-psychotic siblings (37 males) and 110 (64 males) typically developing participants scanned longitudinally. The sample mean age was 16.87(SD=4.7; range 6.5 to 29). We performed mixed model regressions to examine group differences in trajectory and volume. The COS group had smaller bilateral anterior lobes and anterior and total vermis volumes than controls. The COS group diverged from controls over time in total, left, right, and bilateral posterior inferior cerebellum. Siblings did not have any fixed volumetric differences relative to controls but differed from controls in developmental trajectories of total and right cerebellum, left inferior posterior, left superior posterior, and superior vermis. Results are consistent with previous COS findings and several reports of decreased cerebellar volume in adult onset schizophrenia. Sibling trajectories may represent a trait marker, although the effect size for volumetric differences in early adulthood may be small. PMID:21803550
Modified repair of mixed anomalous pulmonary venous connection.
van Son, J A; Hambsch, J; Mohr, F W
1998-05-01
A modified repair technique is reported for mixed total or partial anomalous pulmonary venous connection with the right superior pulmonary vein connecting to the superior vena cava, the right inferior pulmonary vein to the right atrium or left atrium, and the left pulmonary veins to the coronary sinus. The superior vena cava is transected above the highest right superior pulmonary vein, its cephalad end is anastomosed to the right atrial appendage, and a pericardial baffle is constructed between the cardiac ostium of the superior vena cava, the ostium of the right inferior pulmonary vein, and the left atrium, including the coronary sinus, which is unroofed. The reported technique may be valuable to avoid pulmonary venous obstruction in complex mixed forms of total or partial anomalous pulmonary venous connection.
Kinno, Ryuta; Ohashi, Hideaki; Mori, Yukiko; Shiromaru, Azusa; Ono, Kenjiro
2018-03-01
A 28-year-old right-handed man noticed weakness in his legs, three days after an ephedrine overdose. Initial brain magnetic resonance imaging showed lesions in the parietal regions bilaterally. Computed tomography angiography showed segmental and multifocal vasoconstriction of the cerebral arteries. After treatment, clinical and radiological findings resolved, suggesting the patient had reversible cerebral vasoconstriction syndrome with posterior reversible encephalopathy syndrome. However, he had residual agraphia of the left hand. Language testing revealed no difficulties in oral expression, auditory comprehension, understanding of written language, or writing with the right hand. I-123 iodoamphetamine single-photon emission computed tomography showed residual dysfunction in the left superior parietal lobule. There were no apparent signs of other disconnection syndromes or neuroimaging abnormalities in the corpus callosum. We diagnosed left-hand agraphia due to left parietal dysfunction. Our case suggests that left superior parietal dysfunction without callosal lesions is a possible cause of left-hand agraphia. Neural mechanisms for writing with the right or left hand may be separable at the cortical level.
Truman, A T; Rao, P S; Kulangara, R J
1980-01-01
A 4-month-old infant with cyanosis but without other abnormal cardiac findings is presented in whom the diagnosis of anomalous systemic venous connection to the left atrium was made by contrast echocardiography. The diagnosis was later confirmed by cardiac catheterisation and selective cineangiography. When saline was injected into a vein on the dorsum of each hand while echocardiographically recording the cardiac structures, the left atrium, left ventricle, and aorta were opacified without visualisation of the right ventricle. Similar study with injection into the right foot produced opacification of the right ventricle without visualisation of the left-sided structures. These data suggested normal drainage of the inferior vena cava with anomalous connection of the superior vena cava to the left atrium. A review of the previously reported cases of anomalous connection of the right superior vena cava to the left atrium is presented together with the possible embryological origin of this anomaly. Images PMID:7459157
Barber, Anita D; Srinivasan, Priti; Joel, Suresh E; Caffo, Brian S; Pekar, James J; Mostofsky, Stewart H
2012-01-01
Motor control relies on well-established motor circuits, which are critical for typical child development. Although many imaging studies have examined task activation during motor performance, none have examined the relationship between functional intrinsic connectivity and motor ability. The current study investigated the relationship between resting state functional connectivity within the motor network and motor performance assessment outside of the scanner in 40 typically developing right-handed children. Better motor performance correlated with greater left-lateralized (mean left hemisphere-mean right hemisphere) motor circuit connectivity. Speed, rhythmicity, and control of movements were associated with connectivity within different individual region pairs: faster speed was associated with more left-lateralized putamen-thalamus connectivity, less overflow with more left-lateralized supplementary motor-primary motor connectivity, and less dysrhythmia with more left-lateralized supplementary motor-anterior cerebellar connectivity. These findings suggest that for right-handed children, superior motor development depends on the establishment of left-hemisphere dominance in intrinsic motor network connectivity.
Zhou, You-long; Su, Cheng-guo; Liu, Shou-fang; Jin, Xiang-yu; Duan, Yan-li; Chen, Xiao-yan; Zhao, Shu-hua; Wang, Quan-liang; Dang, Chang-lin
2016-05-01
To observe amplitude changes of low frequency fluctuation in brain spontaneous nervous activities induced by needling at Hand Taiyin Lung Channel, and to preliminarily explore the possible brain function network of Hand Taiyin Lung Channel. By using functional magnetic resonance imaging (fMRI), 16 healthy volunteers underwent resting-state scanning (R1) and scanning with retained acupuncture at Hand Taiyin Lung Channel (acupuncture, AP). Data of fMRI collected were statistically calculated using amplitude of low frequency fluctuations (ALFF). Under R1 significantly enhanced ALFF occurred in right precuneus, left inferior parietal lobule, bilateral superior temporal gyrus, bilateral middle frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, left medial frontal gyrus. Under AP significantly enhanced ALFF occurred in right precuneus, bilateral superior frontal gyrus, cerebellum, bilateral middle frontal gyrus, right medial frontal gyrus, and so on. Compared with R1, needing at Hand Taiyin Lung Channel could significantly enhance ALFF in right gyrus subcallosum and right inferior frontal gyrus. Significant decreased ALFF appeared in right postcentral gyrus, left precuneus, left superior temporal gyrus, left middle temporal gyrus, and so on. Needing at Hand Taiyin Lung Channel could significantly change fixed activities of cerebral cortex, especially in right subcallosal gyrus, right inferior frontal gyrus, and so on.
Development of the Intrinsic Language Network in Preschool Children from Ages 3 to 5 Years.
Xiao, Yaqiong; Brauer, Jens; Lauckner, Mark; Zhai, Hongchang; Jia, Fucang; Margulies, Daniel S; Friederici, Angela D
2016-01-01
Resting state studies of spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) blood oxygen level dependent signal have shown great potential in mapping the intrinsic functional connectivity of the human brain underlying cognitive functions. The aim of the present study was to explore the developmental changes in functional networks of the developing human brain exemplified with the language network in typically developing preschool children. To this end, resting-sate fMRI data were obtained from native Chinese children at ages of 3 and 5 years, 15 in each age group. Resting-state functional connectivity (RSFC) was analyzed for four regions of interest; these are the left and right anterior superior temporal gyrus (aSTG), left posterior superior temporal gyrus (pSTG), and left inferior frontal gyrus (IFG). The comparison of these RSFC maps between 3- and 5-year-olds revealed that RSFC decreases in the right aSTG and increases in the left hemisphere between aSTG seed and IFG, between pSTG seed and IFG, as well as between IFG seed and posterior superior temporal sulcus. In a subsequent analysis, functional asymmetry of the language network seeding in aSTG, pSTG and IFG was further investigated. The results showed an increase of left lateralization in both RSFC of pSTG and of IFG from ages 3 to 5 years. The IFG showed a leftward lateralized trend in 3-year-olds, while pSTG demonstrated rightward asymmetry in 5-year-olds. These findings suggest clear developmental trajectories of the language network between 3- and 5-year-olds revealed as a function of age, characterized by increasing long-range connections and dynamic hemispheric lateralization with age. Our study provides new insights into the developmental changes of a well-established functional network in young children and also offers a basis for future cross-culture and cross-age studies of the resting-state language network.
Sikka, Ritu; Cuddy, Lola L.; Johnsrude, Ingrid S.; Vanstone, Ashley D.
2015-01-01
Several studies of semantic memory in non-musical domains involving recognition of items from long-term memory have shown an age-related shift from the medial temporal lobe structures to the frontal lobe. However, the effects of aging on musical semantic memory remain unexamined. We compared activation associated with recognition of familiar melodies in younger and older adults. Recognition follows successful retrieval from the musical lexicon that comprises a lifetime of learned musical phrases. We used the sparse-sampling technique in fMRI to determine the neural correlates of melody recognition by comparing activation when listening to familiar vs. unfamiliar melodies, and to identify age differences. Recognition-related cortical activation was detected in the right superior temporal, bilateral inferior and superior frontal, left middle orbitofrontal, bilateral precentral, and left supramarginal gyri. Region-of-interest analysis showed greater activation for younger adults in the left superior temporal gyrus and for older adults in the left superior frontal, left angular, and bilateral superior parietal regions. Our study provides powerful evidence for these musical memory networks due to a large sample (N = 40) that includes older adults. This study is the first to investigate the neural basis of melody recognition in older adults and to compare the findings to younger adults. PMID:26500480
Extreme premature with persistent left superior vena cava.
Aboitiz-Rivera, Carlos Manuel; Blachman-Braun, Ruben; Parra-Pérez, Mariana Yazmin
2017-10-01
Persistent left superior vena cava (PLSVC) is a congenital anomaly, that results when there is an absence of the normal regression of the left common precardinal vein during embryogenesis. Usually, this anomaly remains asymptomatic, however, when the PLSVC drains into the left atrium this could lead to a right-to-left shunt. Additionally, this can result in inadvertent delivery of air or thrombus into the systemic circulation with potential neurologic, cardiac and renal complications. In this article, we present a case of an extreme premature Mexican newborn in which the diagnosis was made after placement of a percutaneous central venues catheter.
Banaj, Nerisa; Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Iorio, Mariangela; Battaglia, Claudia; Pantoli, Donatella; Ducci, Giuseppe; Spalletta, Gianfranco
2018-06-01
The brain structural correlates of cognitive and psychopathological symptoms within the active phase in severely psychotic schizophrenic inpatients have been rarely investigated. Twenty-eight inpatients with a DSM-5 diagnosis of Schizophrenia (SZ), admitted for acute psychotic decompensation, were assessed through a comprehensive neuropsychological and psychopathological battery. All patients underwent a high-resolution T1-weighted magnetic resonance imaging investigation. Increased psychotic severity was related to reduced grey matter volumes in the medial portion of the right superior frontal cortex, the superior orbitofrontal cortex bilaterally and to white matter volume reduction in the medial portion of the left superior frontal area. Immediate verbal memory performance was related to left insula and inferior parietal cortex volume, while long-term visuo-spatial memory was related to grey matter volume of the right middle temporal cortex, and the right (lobule VII, CRUS1) and left (lobule VI) cerebellum. Moreover, psychotic severity correlated with cognitive inflexibility and negative symptom severity was related to visuo-spatial processing and reasoning disturbances. These findings indicate that a disruption of the cortical-subcortical-cerebellar circuit, and distorted memory function contribute to the development and maintenance of psychotic exacerbation.
Saundankar, Jelena; Ho, Andrew B; Salmon, Anthony P; Anderson, Robert H; Magee, Alan G
2017-07-01
Aims The pathophysiological entity of a persisting left-sided superior caval vein draining into the roof of the left atrium represents an extreme form of coronary sinus de-roofing. This is an uncommon, but well-documented condition associated with systemic desaturation due to a right-to-left shunt. Depending on the size of the coronary ostium, the defect may also present with right-sided volume loading. We describe two patients, both of whom presented with desaturation, and highlight the important anatomical features underscoring management. Methods and Results Both patients were managed interventionally with previous assessment of the size of the coronary sinus ostium through cross-sectional imaging. This revealed a restrictive interatrial communication at the right atrial mouth of the coronary sinus in both patients, which permitted an interventional approach, as the residual left-to-right shunt subsequent to closure of the aberrant vessel would be negligible. At intervention, test occlusion of the left superior caval vein allowed assessment of decompressing vessels before successful occlusion using an Amplatzer Vascular Plug. Persistence of a left superior caval vein draining to the left atrium may be associated with an interatrial communication at the mouth of the unroofed coronary sinus. The ostium of the de-roofed coronary sinus can be atretic, restrictive, normally sized, or enlarged. Careful assessment of the size of this defect is required before treatment. In view of its importance, which has received little attention in the literature to date, we suggest an additional consideration to the classification of unroofed coronary sinus.
Strasberg, Steven M; Sanchez, Luis A; Hawkins, William G; Fields, Ryan C; Linehan, David C
2012-05-01
Tumors of the neck of the pancreas may involve the superior mesenteric and portal veins as well as the termination of the splenic vein. This presents a difficult problem since the pancreas cannot be transected through the neck as is standard in a Whipple procedure. Here, we present our method of resecting such tumors, which we term "Whipple at the Splenic Artery (WATSA)". The superior mesenteric and portal veins are isolated below and above the pancreas, respectively. The pancreas and splenic vein are divided just to the right of the point that the splenic artery contacts the superior border of the pancreas. This plane of transection is approximately 2 cm to the left of the pancreatic neck and away from the tumor. The superior mesenteric artery is cleared from the left side of the patient. With the specimen remaining attached only by the superior mesenteric and portal veins, these structures are clamped and divided. Reconstruction is performed with or without a superficial femoral vein graft. The splenic vein is not reconstructed. Ten cases have been performed to date without mortality. We have previously shown that the pattern of venous collateral development following occlusion of the termination of the splenic vein in the manner described is not similar to that of cases of sinistral (left sided) portal hypertension. Whipple at the splenic artery (WATSA) is a safe method for resection of tumors of the neck of the pancreas with vein involvement. It should be performed in high-volume pancreatic surgery centers.
Crinion, Jenny; Price, Cathy J
2005-12-01
Previous studies have suggested that recovery of speech comprehension after left hemisphere infarction may depend on a mechanism in the right hemisphere. However, the role that distinct right hemisphere regions play in speech comprehension following left hemisphere stroke has not been established. Here, we used functional magnetic resonance imaging (fMRI) to investigate narrative speech activation in 18 neurologically normal subjects and 17 patients with left hemisphere stroke and a history of aphasia. Activation for listening to meaningful stories relative to meaningless reversed speech was identified in the normal subjects and in each patient. Second level analyses were then used to investigate how story activation changed with the patients' auditory sentence comprehension skills and surprise story recognition memory tests post-scanning. Irrespective of lesion site, performance on tests of auditory sentence comprehension was positively correlated with activation in the right lateral superior temporal region, anterior to primary auditory cortex. In addition, when the stroke spared the left temporal cortex, good performance on tests of auditory sentence comprehension was also correlated with the left posterior superior temporal cortex (Wernicke's area). In distinct contrast to this, good story recognition memory predicted left inferior frontal and right cerebellar activation. The implication of this double dissociation in the effects of auditory sentence comprehension and story recognition memory is that left frontal and left temporal activations are dissociable. Our findings strongly support the role of the right temporal lobe in processing narrative speech and, in particular, auditory sentence comprehension following left hemisphere aphasic stroke. In addition, they highlight the importance of the right anterior superior temporal cortex where the response was dissociated from that in the left posterior temporal lobe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erol, Ilknur; Cetin, I. Ilker; Alehan, Fuesun
A previously healthy 12-year-old girl presented with severe headache for 2 weeks. On physical examination, there was finger clubbing without apparent cyanosis. Neurological examination revealed only papiledema without focal neurologic signs. Cerebral magnetic resonance imaging showed the characteristic features of brain abscess in the left frontal lobe. Cardiologic workup to exclude a right-to-left shunt showed an abnormality of the systemic venous drainage: presence of isolated left superior vena cava draining into the left atrium in the absence of coronary sinus and atrial septal defect. This anomaly is rare, because only a few other cases have been reported.
Fischer, Corinne E; Ting, Windsor Kwan-Chun; Millikin, Colleen P; Ismail, Zahinoor; Schweizer, Tom A
2016-01-01
We conducted a neuroimaging analysis to understand the neuroanatomical correlates of gray matter loss in a group of mild cognitive impairment and early Alzheimer's disease patients who developed delusions. With data collected as part of the Alzheimer's Disease Neuroimaging Initiative, we conducted voxel-based morphometry to determine areas of gray matter change in the same Alzheimer's Disease Neuroimaging Initiative participants, before and after they developed delusions. We identified 14 voxel clusters with significant gray matter decrease in patient scans post-delusional onset, correcting for multiple comparisons (false discovery rate, p < 0.05). Major areas of difference included the right and left insulae, left precuneus, the right and left cerebellar culmen, the left superior temporal gyrus, the right posterior cingulate, the right thalamus, and the left parahippocampal gyrus. Although contrary to our initial predictions of enhanced right frontal atrophy, our preliminary work identifies several neuroanatomical areas, including the cerebellum and left posterior hemisphere, which may be involved in delusional development in these patients. Copyright © 2015 John Wiley & Sons, Ltd.
Combined Brown syndrome and superior oblique palsy without a trochlear nerve: case report.
Yang, Hee Kyung; Kim, Jae Hyoung; Kim, Ji-Soo; Hwang, Jeong-Min
2017-08-25
Congenital Brown syndrome is characterized by limited elevation particularly during adduction. The pathogenesis of congenital Brown syndrome is still controversial. A 6-year-old boy had been tilting his head to the left since infancy. He showed right hypertropia (RHT) of 2 prism diopters (Δ) in the primary position. He showed RHT 6Δ in right gaze, RHT 2Δ in left gaze, RHT 12Δ in right head tilt, and orthotropia in left head tilt. The right eye showed limitation of elevation and depression on adduction, and the left eye showed overdepression on adduction. MR images showed an absent right trochlear nerve with a hypoplastic ipsilateral superior oblique muscle. Congenital Brown syndrome may be associated with an absent trochlear nerve and hypoplastic superior oblique muscle suggesting an etiologic mechanism of congenital cranial dysinnervation disorder.
Wang, Yan-Jing; Liu, Lin; Zhang, Meng-Chao; Sun, Huan; Zeng, Hong; Yang, Ping
2016-08-01
Phrenic nerve injury and diaphragmatic stimulation are common complications following arrhythmia ablation and pacing therapies. Preoperative comprehension of phrenic nerve anatomy via non-invasive CT imaging may help to minimize the electrophysiological procedure-related complications. Coronary CT angiography data of 121 consecutive patients were collected. Imaging of left and right pericardiophrenic bundles was performed with volume rendering and multi-planar reformation techniques. The shortest spatial distances between phrenic nerves and key electrophysiology-related structures were determined. The frequencies of the shortest distances ≤5 mm, >5 mm and direct contact between phrenic nerves and adjacent structures were calculated. Left and right pericardiophrenic bundles were identified in 86.8% and 51.2% of the patients, respectively. The right phrenic nerve was <5 mm from right superior and inferior pulmonary veins in 92.0% and 3.2% of the patients, respectively. The percentage of right phrenic nerve, <5 mm from right atrium, superior caval vein, and superior caval vein-right atrium junction was 87.1%, 100%, and 62.9%, respectively. Left phrenic nerve was <5 mm from left atrial appendage, great cardiac vein, anterior and posterior interventricular veins, and left ventricular posterior veins in 81.9%, 1.0%, 39.1%, 28.6%, and 91.4% of the patients, respectively. Merely 0.06% left phrenic nerve had a distance <5 mm with left superior pulmonary vein, and none left phrenic nerve showed a distance <5 mm with left inferior pulmonary vein. One-stop enhanced CT scanning enabled detection of phrenic nerve anatomy, which might facilitate avoidance of the phrenic nerve-related complications in interventional electrophysiology. © 2016 Wiley Periodicals, Inc.
Mizuno, A; Nakamura, Y; Takayasu, H; Saitoh, H
1993-05-01
Successful repair of a 8-month-old girl with polysplenia was reported. The cardiovascular anomalies were TAPVC (II b), incomplete ECD, interruption of inferior vena cava with hemiazygos continuation, bilateral superior vena cava, and left superior vena cava draining into the coronary sinus. Cardiopulmonary bypass was established with ascending aortic perfusion and caval cannulation. A left superior vena cava was directly cannulated after establishing partial bypass. In this case the left pulmonary vein drained into the right atrium near the orifice of the coronary sinus, so the atrial septal flap was made and sutured between the orifice of the left pulmonary vein and the coronary sinus in order to avoid late pulmonary vein obstruction. Then, atrium was separated by an intraatrial baffle which was sutured to the atrial septal flap. Recently, it becomes possible to surgical repair of polysplenia syndrome according to the advancements of the diagnostic methods, cardiopulmonary bypass, and the technique of the open heart surgery.
Cwik, Jan C; Sartory, Gudrun; Nuyken, Malte; Schürholt, Benjamin; Seitz, Rüdiger J
2017-09-01
Acute stress disorder (ASD) is predictive of the development of posttraumatic stress disorder (PTSD). In response to symptom provocation, the exposure to trauma-related pictures, ASD patients showed increased activation of the medial posterior areas of precuneus and posterior cingulate cortex as well as of superior prefrontal cortex in a previous study. The current study aimed at investigating which activated areas are predictive of the development of PTSD. Nineteen ASD patients took part in an fMRI study in which they were shown personalized trauma-related and neutral pictures within 4 weeks of the traumatic event. They were assessed for severity of PTSD 4 weeks later. Activation contrasts between trauma-related and neutral pictures were correlated with subsequent PTSD symptom severity. Greater activation in, among others, right medial precuneus, left retrosplenial cortex, precentral and right superior temporal gyrus as well as less activation in lateral, superior prefrontal and left fusiform gyrus was related to subsequently increased PTSD severity. The results are broadly in line with neural areas related to etiological models of PTSD, namely multisensory associative learning recruiting posterior regions on the one hand and failure to reappraise maladaptive cognitions, thought to involve prefrontal areas, on the other.
ERIC Educational Resources Information Center
Polson, Martha C.; And Others
A study tested a multiple-resources model of human information processing wherein the two cerebral hemispheres are assumed to have separate, limited-capacity pools of undifferentiated resources. The subjects were five right-handed males who had demonstrated right visual field-left hemisphere (RVF-LH) superiority for processing a centrally…
Baril, Donald T; Polanco, Patricio; Makaroun, Michel S; Chaer, Rabih A
2011-04-01
Nutcracker syndrome is an entity resulting from left renal vein compression by the superior mesenteric artery and the aorta, leading to symptoms of left flank pain and hematuria. Conventional treatment has been surgical, commonly through transposition of the left renal vein to a more caudal location on the inferior vena cava. Additionally, endovascular approaches, primarily via renal vein stenting, have been described for treatment of this syndrome. We report the case of a patient with Nutcracker syndrome who underwent successful left renal vein transposition but then developed recurrent symptoms 10 months postoperatively and was successfully treated with angioplasty and stenting. Copyright © 2011 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Oxytocin enhances brain function in children with autism.
Gordon, Ilanit; Vander Wyk, Brent C; Bennett, Randi H; Cordeaux, Cara; Lucas, Molly V; Eilbott, Jeffrey A; Zagoory-Sharon, Orna; Leckman, James F; Feldman, Ruth; Pelphrey, Kevin A
2013-12-24
Following intranasal administration of oxytocin (OT), we measured, via functional MRI, changes in brain activity during judgments of socially (Eyes) and nonsocially (Vehicles) meaningful pictures in 17 children with high-functioning autism spectrum disorder (ASD). OT increased activity in the striatum, the middle frontal gyrus, the medial prefrontal cortex, the right orbitofrontal cortex, and the left superior temporal sulcus. In the striatum, nucleus accumbens, left posterior superior temporal sulcus, and left premotor cortex, OT increased activity during social judgments and decreased activity during nonsocial judgments. Changes in salivary OT concentrations from baseline to 30 min postadministration were positively associated with increased activity in the right amygdala and orbitofrontal cortex during social vs. nonsocial judgments. OT may thus selectively have an impact on salience and hedonic evaluations of socially meaningful stimuli in children with ASD, and thereby facilitate social attunement. These findings further the development of a neurophysiological systems-level understanding of mechanisms by which OT may enhance social functioning in children with ASD.
Longitudinal changes in white matter microstructure after heavy cannabis use
Becker, Mary P.; Collins, Paul F.; Lim, Kelvin O.; Muetzel, R.L.; Luciana, M.
2015-01-01
Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment. PMID:26602958
Reflex tracheal contraction during pulmonary venous congestion in the dog.
Kappagoda, C T; Man, G C; Ravi, K; Teo, K K
1988-01-01
1. The effect of pulmonary venous congestion on tracheal tone was studied in dogs anaesthetized with alpha-chloralose. Pulmonary venous congestion was produced by partial obstruction of the mitral valve to increase left atrial pressure by 10 mmHg. Tracheal tone was measured in vivo by an isometric force displacement method. 2. Tracheal tone increased by 6.3 +/- 0.3 g from a control level of 91.6 +/- 2.8 g when left atrial pressure was increased by 10.5 +/- 0.3 mmHg. This response was abolished by cooling the cervical vagi to 8 degrees C at a point caudal to the origin of the superior laryngeal nerves. Also, sectioning the superior laryngeal nerves abolished this increase in tracheal tone. 3. Afferent activity recorded from rapidly adapting receptors of the airways increased significantly during pulmonary venous congestion. This increase in activity was abolished by cooling the vagi caudal to the recording site to 8-9 degrees C. 4. Administration of propranolol (0.5 mg/kg) failed to abolish this increase in tracheal tone while atropine (3 mg/kg) did so. 5. Stimulation of left atrial receptors without an increase in left atrial pressure and stimulation of right atrial receptors with and without increases in right atrial pressure did not cause any change in tracheal tone. 6. It is suggested that pulmonary venous congestion is associated with a reflex increase in tracheal tone, the afferent limb of which is formed by pulmonary receptors discharging into myelinated fibres in the cervical vagi and the efferent limb by parasympathetic cholinergic fibres in the superior laryngeal nerves. The afferent receptors are likely to be the rapidly adapting receptors. This reflex may be of importance in the development of the respiratory symptoms associated with left ventricular failure. PMID:3236242
Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P
2013-06-01
In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.
Barnes, Gareth R.; Penny, William D.; Iverson, Paul; Woodhead, Zoe V. J.; Griffiths, Timothy D.; Leff, Alexander P.
2013-01-01
In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics’ speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired. PMID:23715097
Remembering 1500 Pictures: The Right Hemisphere Remembers Better than the Left
ERIC Educational Resources Information Center
Laeng, Bruno; Overvoll, Morten; Ole Steinsvik, Oddmar
2007-01-01
We hypothesized that the right hemisphere would be superior to the left hemisphere in remembering having seen a specific picture before, given its superiority in perceptually encoding specific aspects of visual form. A large set of pictures (N=1500) of animals, human faces, artifacts, landscapes, and art paintings were shown for 2 s in central…
Wang, Su-zhen; Li, Jian-bin; Zhang, Ying-jie; Li, Feng-xiang; Wang, Wei; Liu, Tong-hai
2012-09-01
To measure the intrafraction displacement of the mediastinal metastatic lymph nodes of non-small cell lung cancer (NSCLC) based on four-dimensional computed tomography (4D-CT), and to provide the basis for the internal margin of metastatic mediastinal lymph nodes. Twenty-four NSCLC patients with mediastinal metastatic lymph nodes confirmed by contrast enhanced CT (short axis diameter ≥ 1 cm) were included in this study. 4D-CT simulation was carried out during free breathing and 10 image sets were acquired. The mediastinal metastatic lymph nodes and the dome of ipsilateral diaphragma were separately delineated on the CT images of 10 phases of breath cycle, and the lymph nodes were grouped as the upper, middle and lower mediastinal groups depending on the mediastinal station. Then the displacements of the lymph nodes in the left-right, anterior-posterior, superior-inferior directions and the 3-dimensional vector were measured. The differences of displacement in three directions for the same group of metastatic lymph nodes and in the same direction for different groups of metastatic lymph nodes were compared. The correlation between the displacement of ipsilateral diaphragma and mediastinal lymph nodes was analyzed in superior-inferior direction. The displacements in left-right, anterior-posterior and superior-inferior directions were (2.24 ± 1.55) mm, (1.87 ± 0.92) mm and (3.28 ± 2.59) mm for the total (53) mediastinal lymph nodes, respectively. The vectors were (4.70 ± 2.66) mm, (3.87 ± 2.45) mm, (4.97 ± 2.75) mm and (5.23 ± 2.67) mm for the total, upper, middle and lower mediastinal lymph nodes, respectively. For the upper mediastinal lymph nodes, the displacements in left-right, anterior-posterior and superior-inferior directions showed no significant difference between each other (P > 0.05). For the middle mediastinal lymph nodes, the displacements merely in anterior-posterior and superior-inferior directions showed significant difference (P = 0.005), while the displacements were not significantly different in the left-right and anterior-posterior, left-right and superior-inferior directions (P > 0.05). The displacements of the total and the lower mediastinal lymph nodes in left-right and superior-inferior, or anterior-posterior and superior-inferior directions were significantly different (P < 0.05), but was not significantly different in left-right and anterior-posterior directions (P > 0.05). The displacements of different group of mediastinal lymph nodes in a single direction or vector showed no significant difference (P > 0.05). In the superior-inferior direction, the correlation between the displacements of ipsilateral diaphragma and mediastinal lymph nodes were not statistically significant (P > 0.05). During free breathing, the differences between the intrafractional displacement of mediastinal metastatic lymph nodes in the same direction and its station were not statistically significant. The displacements of the total mediastinal metastatic lymph nodes in the superior-inferior direction were greater than that in the left-right and anterior-posterior directions, especially for the middle and lower mediastinal metastatic lymph nodes. There was no significant correlation between the displacements of ipsilateral diaphragma and the mediastinal metastatic lymph nodes in the superior-inferior direction, so it was unreasonable to estimate and predict the displacement of mediastinal metastatic lymph nodes by the displacement of ipsilateral diaphragma.
Whoever Doesn't HOP Must Be Superior: The Russian Left-Periphery and the Emergence of Superiority
ERIC Educational Resources Information Center
Scott, Tatiana V.
2012-01-01
This dissertation maps the left-periphery of the Russian language, presenting a new geometry of Russian main and subordinate clauses in order to account for a number of phenomena: single and multiple wh-constructions, sluicing constructions, and coordinate multiple wh-constructions (CMW), as well as to predict various occurring word-orders.…
Suture Embolism of the Left Superior Lobar Pulmonary Artery.
Ahn, Janice Seulgy; Grise, Joy; DelTondo, Joseph A
2018-05-31
Endogenous pulmonary thromboemboli are a common cause of noncardiac sudden natural death. Embolism of exogenous material is a rare but potential finding in autopsies following surgeries, medical procedures, penetrating trauma, and nonparenteral drug abuse. This report describes the first case of a suture embolism of the left superior lobar pulmonary artery following complicated abdominal surgery. © 2018 American Academy of Forensic Sciences.
Bonte, Milene; Frost, Martin A; Rutten, Sanne; Ley, Anke; Formisano, Elia; Goebel, Rainer
2013-12-01
We study the developmental trajectory of morphology and function of the superior temporal cortex (STC) in children (8-9 years), adolescents (14-15 years) and young adults. We analyze cortical surface landmarks and functional MRI (fMRI) responses to voices, other natural categories and tones and examine how hemispheric asymmetry and inter-subject variability change across age. Our results show stable morphological asymmetries across age groups, including a larger left planum temporale and a deeper right superior temporal sulcus. fMRI analyses show that a rightward lateralization for voice-selective responses is present in all groups but decreases with age. Furthermore, STC responses to voices change from being less selective and more spatially diffuse in children to highly selective and focal in adults. Interestingly, the analysis of morphological landmarks reveals that inter-subject variability increases during development in the right--but not in the left--STC. Similarly, inter-subject variability of cortically-realigned functional responses to voices, other categories and tones increases with age in the right STC. Our findings reveal asymmetric developmental changes in brain regions crucial for auditory and voice perception. The age-related increase of inter-subject variability in right STC suggests that anatomy and function of this region are shaped by unique individual developmental experiences. © 2013.
Zhang, Jiaxing; Zhang, Haiyan; Chen, Ji; Fan, Ming; Gong, Qiyong
2013-01-01
The present study aimed to investigate structural modulation of brain by high level of oxygen during its peak period of development. Voxel-based morphometry analysis of gray matter (GM) and white matter (WM) volumes and Tract-Based Spatial Statistics analysis of WM fractional anisotropy (FA) and mean diffusion (MD) based on MRI images were carried out on 21 Tibetan adolencents (15-18 years), who were born and raised in Qinghai-Tibetan Plateau (2900-4700 m) and have lived at sea level (SL) in the last 4 years. The control group consisted of matched Tibetan adolescents born and raised at high altitude all the time. SL immigrants had increased GM volume in the left insula, left inferior parietal gyrus, and right superior parietal gyrus and decreased GM in the left precentral cortex and multiple sites in cerebellar cortex (left lobule 8, bilateral lobule 6 and crus 1/2). Decreased WM volume was found in the right superior frontal gyrus in SL immigrants. SL immigrants had higher FA and lower MD at multiple sites of WM tracts. Moreover, we detected changes in ventilation and circulation. GM volume in cerebellum lobule 8 positively correlated with diastolic pressure, while GM volume in insula positively correlated vital capacity and hypoxic ventilatory response. Our finding indicate that the structural modulations of GM by high level of oxygen during its peak period of development are related to respiratory and circulatory regulations, while the modulation in WM mainly exhibits an enhancement in myelin maturation.
Anatomical substrates of cognitive and clinical dimensions in first episode schizophrenia.
Rigucci, S; Rossi-Espagnet, C; Ferracuti, S; De Carolis, A; Corigliano, V; Carducci, F; Mancinelli, I; Cicone, F; Tatarelli, R; Bozzao, A; Girardi, P; Comparelli, A
2013-10-01
To explore gray (GM) and white matter (WM) abnormalities and the relationships with neuropsychopathology in first-episode schizophrenia (FES). Nineteen patients with first episode of non-affective psychosis and 18 controls underwent a magnetic resonance voxel-based morphometry. Additionally, WM fractional anisotropy (FA) was calculated. For correlative analysis, symptoms and neuropsychological performances were scored by PANSS and by a comprehensive neuropsychological assessment respectively. Patients showed significantly decreased volume of left temporal lobe and disarray of all major WM tracts. Disorganized PANSS factor was inversely related to left cerebellar GM volume (corrected P = 0.03) and to WM FA of the left cerebellum, inferior fronto-occipital fasciculi (IFOF), and inferior longitudinal fasciculi (corrected P < 0.05). PANSS negative factor was inversely related to FA in the IFOF and superior longitudinal fasciculi (corrected P < 0.05). Impairment in facial emotion identification showed associations with temporo-occipital GM volume decrease (corrected P = 0.003) and WM disarray of superior and middle temporal gyri, anterior thalamic radiation, and superior longitudinal fasciculi (corrected P < 0.05). Speed of processing and visual memory correlated with WM abnormalities in fronto-temporal tracts. These results confirm how the structural development of key brain regions is related to neuropsychopathological dysfunction in FES, consistently with a neurodevelopmentally derived misconnection syndrome. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Partial anomalous pulmonary venous connection to the superior vena cava.
Aramendi, José I; Rey, Estibaliz; Hamzeh, Gadah; Crespo, Alejandro; Luis, Maite; Voces, Roberto
2011-04-01
We describe the surgical technique of reimplantation of the right superior pulmonary vein into the left atrium in 2 patients with partial anomalous pulmonary venous connection to the superior vena cava without atrial septal defect. A right axillary minithoracotomy is done through the fourth intercostal space. The pulmonary vein is detached from its origin in the superior vena cava. This is sutured with 6-0 reabsorbable polydioxanone suture (Ethicon, Somerville, NJ). A lateral clamp is applied to the left atrium, and the pulmonary vein is reimplanted. The patient is extubated in the operating room. Neither cardiopulmonary bypass nor blood transfusion was required. It is simple, safe, and reproducible. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Left hemisphere regions are critical for language in the face of early left focal brain injury.
Raja Beharelle, Anjali; Dick, Anthony Steven; Josse, Goulven; Solodkin, Ana; Huttenlocher, Peter R; Levine, Susan C; Small, Steven L
2010-06-01
A predominant theory regarding early stroke and its effect on language development, is that early left hemisphere lesions trigger compensatory processes that allow the right hemisphere to assume dominant language functions, and this is thought to underlie the near normal language development observed after early stroke. To test this theory, we used functional magnetic resonance imaging to examine brain activity during category fluency in participants who had sustained pre- or perinatal left hemisphere stroke (n = 25) and in neurologically normal siblings (n = 27). In typically developing children, performance of a category fluency task elicits strong involvement of left frontal and lateral temporal regions and a lesser involvement of right hemisphere structures. In our cohort of atypically developing participants with early stroke, expressive and receptive language skills correlated with activity in the same left inferior frontal regions that support language processing in neurologically normal children. This was true independent of either the amount of brain injury or the extent that the injury was located in classical cortical language processing areas. Participants with bilateral activation in left and right superior temporal-inferior parietal regions had better language function than those with either predominantly left- or right-sided unilateral activation. The advantage conferred by left inferior frontal and bilateral temporal involvement demonstrated in our study supports a strong predisposition for typical neural language organization, despite an intervening injury, and argues against models suggesting that the right hemisphere fully accommodates language function following early injury.
Advanced MRI in Acute Military TBI
2014-09-01
symptoms onmental health and service discharge outcomes. J Neurotrauma. 2013; 30(16):1391-1397. 16. GalarneauMR,Woodruff SI, Dye JL, Mohrle CR, Wade...related mild traumatic brain injury acute symptoms on mental health and service discharge outcomes. J. Neurotrauma 30, 1391–1397. 22. Casscells, S. (2007...radiation (include optic radiation) left 37 Anterior corona radiata right 102 Anterior corona radiata left 38 Superior corona radiata right 103 Superior
Lateralization of the human mirror neuron system.
Aziz-Zadeh, Lisa; Koski, Lisa; Zaidel, Eran; Mazziotta, John; Iacoboni, Marco
2006-03-15
A cortical network consisting of the inferior frontal, rostral inferior parietal, and posterior superior temporal cortices has been implicated in representing actions in the primate brain and is critical to imitation in humans. This neural circuitry may be an evolutionary precursor of neural systems associated with language. However, language is predominantly lateralized to the left hemisphere, whereas the degree of lateralization of the imitation circuitry in humans is unclear. We conducted a functional magnetic resonance imaging study of imitation of finger movements with lateralized stimuli and responses. During imitation, activity in the inferior frontal and rostral inferior parietal cortex, although fairly bilateral, was stronger in the hemisphere ipsilateral to the visual stimulus and response hand. This ipsilateral pattern is at variance with the typical contralateral activity of primary visual and motor areas. Reliably increased signal in the right superior temporal sulcus (STS) was observed for both left-sided and right-sided imitation tasks, although subthreshold activity was also observed in the left STS. Overall, the data indicate that visual and motor components of the human mirror system are not left-lateralized. The left hemisphere superiority for language, then, must be have been favored by other types of language precursors, perhaps auditory or multimodal action representations.
Chen, Cheng; Wang, Hui-Ling; Wu, Shi-Hao; Huang, Huan; Zou, Ji-Lin; Chen, Jun; Jiang, Tian-Zi; Zhou, Yuan; Wang, Gao-Hua
2015-01-01
Background: Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH. Methods: Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups. Results: DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen. Conclusion: Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH. PMID:26612293
Congenital cardiac malformations in relation to central venous access.
Thompson, Christine
During the third and seventh weeks of gestation, teratogenic exposure may lead to fetal abnormality such as congenital heart defects or intrauterine death. Congenital heart defects are present from birth, but may appear at any time, or only revealed postmortem. Often defects are present by degree. Some defects are life-threatening, while other, less severe conditions, may have minimal physiological impact. Left superior vena cava exists in early embryonic development, but the vessel degenerates as the cardiovascular system matures. When not associated with other malformations, an incidence of persistent left-sided superior vena cava (PLSVC) has no clinical signs or symptoms. However, it may not be as innocuous as it appears due to its association with the cyanotic defect, tetralogy of Fallot (TOF). Using a case history as an illustration it can be shown that all cases of defect or chromosomal suspicion should be documented as there may be implications for future interventions.
Ding, Wei-na; Sun, Jin-hua; Sun, Ya-Wen; Chen, Xue; Zhou, Yan; Zhuang, Zhi-guo; Li, Lei; Zhang, Yong; Xu, Jian-rong; Du, Ya-song
2014-05-30
Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process.
2014-01-01
Background Recent studies suggest that Internet gaming addiction (IGA) is an impulse disorder, or is at least related to impulse control disorders. In the present study, we hypothesized that different facets of trait impulsivity may be specifically linked to the brain regions with impaired impulse inhibition function in IGA adolescents. Methods Seventeen adolescents with IGA and seventeen healthy controls were scanned during performance of a response-inhibition Go/No-Go task using a 3.0 T MRI scanner. The Barratt Impulsiveness Scale (BIS)-11 was used to assess impulsivity. Results There were no differences in the behavioral performance on the Go/No-Go task between the groups. However, the IGA group was significantly hyperactive during No-Go trials in the left superior medial frontal gyrus, right anterior cingulate cortex, right superior/middle frontal gyrus, left inferior parietal lobule, left precentral gyrus, and left precuneus and cuneus. Further, the bilateral middle temporal gyrus, bilateral inferior temporal gyrus, and right superior parietal lobule were significantly hypoactive during No-Go trials. Activation of the left superior medial frontal gyrus was positively associated with BIS-11 and Chen Internet Addiction Scale (CIAS) total score across IGA participants. Conclusions Our data suggest that the prefrontal cortex may be involved in the circuit modulating impulsivity, while its impaired function may relate to high impulsivity in adolescents with IGA, which may contribute directly to the Internet addiction process. PMID:24885073
Comparison of superior septal approach with left atriotomy in mitral valve surgery
Aydin, Ebuzer; Arslan, Akin; Ozkokeli, Mehmet
2014-01-01
Objective In this study, we aimed to compare clinical outcomes of superior transseptal approach with the conventional left atriotomy in patients undergoing mitral valve surgery. Methods Between January 2010 and November 2012, a total of 91 consecutive adult patients (39 males, 52 females; mean age: 54.0±15.4 years; range, 16 to 82 years) who underwent mitral valve surgery in the Division of Cardiovascular Surgery at Koşuyolu Training Hospital were included. The patients were randomized to either superior transseptal approach (n=47) or conventional left atriotomy (n=44). Demographic characteristics of the patients, comorbidities, additional interventions, intraoperational data, pre- and postoperative electrophysiological study findings, and postoperative complications were recorded. Results Of all patients, 86.7% (n=79) were in New York Heart Association Class III, while 12 were in New York Heart Association Class IV. All patients underwent annuloplasty (42.9%) or valve replacement surgery (57.1%). There was no significant difference in pre- and postoperative electrocardiogram findings between the groups. Change from baseline in the cardiac rhythm was statistically significant in superior transseptal approach group alone (P<0.001). There was no statistically significant difference in mortality rate between the groups. Permanent pacemaker implantation was performed in 10.6% of the patients in superior transseptal approach group and 4.5% in the conventional left atriotomy group. No statistically significant difference in bleeding, total length of hospital and intensive care unit stay, the presence of low cardiac output syndrome was observed between the groups. Conclusion Our study results suggest that superior transseptal approach does not lead to serious or fatal adverse effects on sinus node function or atrial vulnerability, compared to conventional approach. PMID:25372911
Individual performance and leader's laterality in interactive contests.
Mukherjee, Satyam
2017-05-01
Left-handedness is known to provide an intrinsic and tactical advantage at top level in many sports involving interactive contests. Again, most of the renowned leaders of the world are known to have been left-handed. Leadership plays an important role in politics, sports and mentorship. In this paper we show that Cricket captains who bat left-handed have a strategic advantage over the right-handed captains in One Day International (ODI) and Test matches. The present study involving 46 left-handed captains and 148 right-handed captains in ODI matches, reveal a strong relation between leader's laterality and team member performance, demonstrating the critical importance of left-handedness and successful leadership. The odds for superior batting performance in an ODI match under left-handed captains are 89% higher than the odds under right-handed captains. Our study shows that left-handed captains are more successful in extracting superior performance from the batsmen and bowlers in ODI and Test matches; perhaps indicating left-handed leaders are better motivators as leaders when compared to right-handed captains.
Hemispheric processing asymmetries: implications for memory.
Funnell, M G; Corballis, P M; Gazzaniga, M S
2001-01-01
Recent research has demonstrated that memory for words elicits left hemisphere activation, faces right hemisphere activation, and nameable objects bilateral activation. This pattern of results was attributed to dual coding of information, with the left hemisphere employing a verbal code and the right a nonverbal code. Nameable objects can be encoded either verbally or nonverbally and this accounts for their bilateral activation. We investigated this hypothesis in a callosotomy patient. Consistent with dual coding, the left hemisphere was superior to the right in memory for words, whereas the right was superior for faces. Contrary to prediction, performance on nameable pictures was not equivalent in the two hemispheres, but rather resulted in a right hemisphere superiority. In addition, memory for pictures was significantly better than for either words or faces. These findings suggest that the dual code hypothesis is an oversimplification of the processing capabilities of the two hemispheres.
Lateralization of the connections of the ovary to the celiac ganglia in juvenile rats
Morán, Carolina; Zarate, Fabiola; Morán, José Luis; Handal, Anabella; Domínguez, Roberto
2009-01-01
During the development of the female rat, a maturing process of the factors that regulate the functioning of the ovaries takes place, resulting in different responses according to the age of the animal. Studies show that peripheral innervation is one relevant factor involved. In the present study we analyzed the anatomical relationship between the neurons in the celiac-superior mesenteric ganglia (CSMG), and the right or left ovary in 24 or 28 days old female pre-pubertal rats. The participation of the superior ovarian nerve (SON) in the communication between the CSMG and the ovaries was analyzed in animals with unilateral section of the SON, previous to injecting true blue (TB) into the ovarian bursa. The animals were killed seven days after treatment. TB stained neurons were quantified at the superior mesenteric-celiac ganglia. The number of labeled neurons in the CSMG of rats treated at 28 days of age was significantly higher than those treated on day 24. At age 24 days, injecting TB into the right ovary resulted in neuron stains on both sides of the celiac ganglia; whereas, injecting the left side the stains were exclusively ipsilateral. Such asymmetry was not observed when the rats were treated at age of 28 days. In younger rats, sectioning the left SON resulted in significantly lower number of stained neurons in the left ganglia while sectioning the right SON did not modify the number of stained neurons. When sectioning of the SON was performed to 28 days old rats, no staining was observed. Present results show that the number and connectivity of post-ganglionic neurons of the CSMG connected to the ovary of juvenile female rats change as the animal mature; that the SON plays a role in this communication process as puberty approaches; and that this maturing process is different for the right or the left ovary. PMID:19460167
Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.
Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei
2017-06-01
Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.
[Tourette syndrome and reading disorder in a boy with left parietofrontal tract disruption].
Martín Fernández-Mayoralas, D; Fernández-Jaén, A; Gómez Herrera, J J; Jiménez de la Peña, M
2014-01-01
We present the case of a nine-year-old boy with Tourette syndrome and reading disorder with a history of a severe infectious process in the late neonatal period. Brain MRI showed a left parietal malacotic cavity and diffusion tensor imaging and tractography showed a striking disruption of the white matter bundle that joins the left parietal region with the ipsilateral frontal region with involvement of the left superior longitudinal fasciculus and of the left arcuate fasciculus. Although Tourette syndrome and reading disorder are fundamentally hereditary neuropsychiatric disorders, they can also occur secondary to cerebral alterations like those existing in this boy. The introduction of modern neuroimaging techniques in patients with neuropsychiatric disorders (or the risk of developing them) can be very useful in the diagnosis and prognosis in the future. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.
Interindividual uniformity and variety of the "Writing center": a functional MRI study.
Sugihara, Genichi; Kaminaga, Tatsuro; Sugishita, Morihiro
2006-10-01
Our aim is to investigate the neural substrates for writing using fMRI (twenty right-handed subjects). We assumed that common areas involved in both writing with right and left hands are crucial to the central process of writing. We employed Japanese phonograms (Kana), in which phoneme-grapheme conversion would be extremely simple. Brain activation was examined under three conditions: (1) written naming with the right hand (WR), (2) written naming with the left hand (WL), and (3) naming silently (NA). While the comparison of WR to NA (WR>NA) exhibited activation only in the left frontoparietal area, the WL>NA comparison exhibited broader activation than the WR>NA comparison, i.e., the left frontoparietal area except the motor and sensory areas and the right frontoparietal area. A conjunction analysis in SPM2 revealed common areas of activation across the WR>NA and WL>NA comparisons, which are assumed to be crucial to writing. In the group analysis, three areas were found to be activated: the posterior end of the left superior frontal gyrus, which is superior and posterior to Exner's center; the anterior part of the left superior parietal lobule; and the lower part of the anterior limb of the left supramarginal gyrus. In the single-subject analysis, whereas the first two of the above three areas were found to be crucial for writing in all individuals, an interindividual inconsistency of involvement with writing was observed in three areas: the lower part of the anterior limb of the left supramarginal gyrus (60% involved); the right frontal region (47%); and the right intraparietal sulcus (47%).
Jung, Wookyoung; Kang, Joong-Gu; Jeon, Hyeonjin; Shim, Miseon; Sun Kim, Ji; Leem, Hyun-Sung; Lee, Seung-Hwan
2017-08-01
Faces are processed best when they are presented in the left visual field (LVF), a phenomenon known as LVF superiority. Although one eye contributes more when perceiving faces, it is unclear how the dominant eye (DE), the eye we unconsciously use when performing a monocular task, affects face processing. Here, we examined the influence of the DE on the LVF superiority for faces using event-related potentials. Twenty left-eye-dominant (LDE group) and 23 right-eye-dominant (RDE group) participants performed the experiments. Face stimuli were randomly presented in the LVF or right visual field (RVF). The RDE group exhibited significantly larger N170 amplitudes compared with the LDE group. Faces presented in the LVF elicited N170 amplitudes that were significantly more negative in the RDE group than they were in the LDE group, whereas the amplitudes elicited by stimuli presented in the RVF were equivalent between the groups. The LVF superiority was maintained in the RDE group but not in the LDE group. Our results provide the first neural evidence of the DE's effects on the LVF superiority for faces. We propose that the RDE may be more biologically specialized for face processing. © The Author (2017). Published by Oxford University Press.
Jung, Wookyoung; Kang, Joong-Gu; Jeon, Hyeonjin; Shim, Miseon; Sun Kim, Ji; Leem, Hyun-Sung
2017-01-01
Abstract Faces are processed best when they are presented in the left visual field (LVF), a phenomenon known as LVF superiority. Although one eye contributes more when perceiving faces, it is unclear how the dominant eye (DE), the eye we unconsciously use when performing a monocular task, affects face processing. Here, we examined the influence of the DE on the LVF superiority for faces using event-related potentials. Twenty left-eye-dominant (LDE group) and 23 right-eye-dominant (RDE group) participants performed the experiments. Face stimuli were randomly presented in the LVF or right visual field (RVF). The RDE group exhibited significantly larger N170 amplitudes compared with the LDE group. Faces presented in the LVF elicited N170 amplitudes that were significantly more negative in the RDE group than they were in the LDE group, whereas the amplitudes elicited by stimuli presented in the RVF were equivalent between the groups. The LVF superiority was maintained in the RDE group but not in the LDE group. Our results provide the first neural evidence of the DE’s effects on the LVF superiority for faces. We propose that the RDE may be more biologically specialized for face processing. PMID:28379584
Intraatrial baffle repair of isolated ventricular inversion with left atrial isomerism.
McElhinney, D B; Reddy, V M; Silverman, N H; Hanley, F L
1996-11-01
Isolated ventricular inversion with left atrial isomerism, partial anomalous pulmonary venous connection, and interruption of the inferior vena cava with azygos continuation to a right superior vena cava was diagnosed by echocardiography in a neonate. At 48 days of age, the patient underwent successful anatomic correction with redirection of flow from the superior vena cava and hepatic veins to the left-sided tricuspid valve, and flow from the pulmonary veins to the right-sided mitral valve. In the present report, the surgical techniques of this case are described, along with a survey of the surgical literature covering anatomic repair of isolated ventricular inversion.
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing
Weber, Kirsten; Lau, Ellen F.; Stillerman, Benjamin; Kuperberg, Gina R.
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment. PMID:27010386
The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing.
Weber, Kirsten; Lau, Ellen F; Stillerman, Benjamin; Kuperberg, Gina R
2016-01-01
Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions-a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.
Language Lateralization Shifts with Learning by Adults
Plante, Elena; Almryde, Kyle; Patterson, Dianne K.; Vance, Christopher J.; Asbjørnsen, Arve E.
2014-01-01
For the majority of the population, language is a left hemisphere lateralized function. During childhood, a pattern of increasing left lateralization for language has been described in brain imaging studies, suggesting this trait develops. This development could reflect change due to brain maturation or change due to skill acquisition, given that children acquire and refine language skills as they mature. We test the possibility that skill acquisition, independent of age-associated maturation can result in shifts in language lateralization in classic language cortex. We imaged adults exposed to unfamiliar language during three successive fMRI scans. Participants were then asked to identify specific words embedded in Norwegian sentences. Exposure to these sentences, relative to complex tones, resulted in consistent activation in the left and right superior temporal gyrus. Activation in this region became increasingly left lateralized with repeated exposure to the unfamiliar language. These results demonstrate that shifts in lateralization can be produced in the short-term within a learning context, independent of maturation. PMID:25285756
Permanent right ventricular pacing through an anomalous left superior vena cava.
Amikam, S; Lemer, J; Riss, E
1977-01-01
A persistent left superior vena cava can complicate the implantation of a transvenous pacemaker. In a patient who required a permanent pacemaker, this venous anomaly was discovered during the insertion of the electrode but it did not prevent long-term right ventricular pacing. This was achieved after the electrode had been manipulated through the coronary sinus and right atrium. A plan of management is proposed for dealing with this unexpected problem. Images PMID:601745
Lincoln's craniofacial microsomia: three-dimensional laser scanning of 2 Lincoln life masks.
Fishman, Ronald S; Da Silveira, Adriana
2007-08-01
Examination of 2 life masks of Abraham Lincoln's face was performed by means of 3-dimensional laser surface scanning. This technique enabled documentation and analysis of Lincoln's facial contours and demonstrated his marked facial asymmetry, particularly evident in the smaller left superior orbital rim. This may have led to retroplacement of the trochlea on the left side, leading, in turn, to the mild superior oblique paresis that was manifested intermittently during adulthood.
Neural signatures of lexical tone reading.
Kwok, Veronica P Y; Wang, Tianfu; Chen, Siping; Yakpo, Kofi; Zhu, Linlin; Fox, Peter T; Tan, Li Hai
2015-01-01
Research on how lexical tone is neuroanatomically represented in the human brain is central to our understanding of cortical regions subserving language. Past studies have exclusively focused on tone perception of the spoken language, and little is known as to the lexical tone processing in reading visual words and its associated brain mechanisms. In this study, we performed two experiments to identify neural substrates in Chinese tone reading. First, we used a tone judgment paradigm to investigate tone processing of visually presented Chinese characters. We found that, relative to baseline, tone perception of printed Chinese characters were mediated by strong brain activation in bilateral frontal regions, left inferior parietal lobule, left posterior middle/medial temporal gyrus, left inferior temporal region, bilateral visual systems, and cerebellum. Surprisingly, no activation was found in superior temporal regions, brain sites well known for speech tone processing. In activation likelihood estimation (ALE) meta-analysis to combine results of relevant published studies, we attempted to elucidate whether the left temporal cortex activities identified in Experiment one is consistent with those found in previous studies of auditory lexical tone perception. ALE results showed that only the left superior temporal gyrus and putamen were critical in auditory lexical tone processing. These findings suggest that activation in the superior temporal cortex associated with lexical tone perception is modality-dependent. © 2014 Wiley Periodicals, Inc.
Chu, Shuilian; Xiao, Dan; Wang, Shuangkun; Peng, Peng; Xie, Teng; He, Yong; Wang, Chen
2014-01-01
Nicotine is primarily rsponsible for the highly addictive properties of cigarettes. Similar to other substances, nicotine dependence is related to many important brain regions, particular in mesolimbic reward circuit. This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI), in order to provide the evidence of neurobiological mechanism of smoking. This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement. Sociodemographic, smoking related characteristics and fMRI images were collected and the data analyzed. Compared with nonsmokers, smokers showed fALFF increased significantly in the left middle occipital gyrus, left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus, right superior temporal gyrus, right extra nuclear, left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels). Compared with light smokers (pack years ≤ 20), heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus, right precentral gyrus, and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus, right/left frontal lobe/sub gyral, right/left cerebellum posterior lobe (cluster size >50 voxels). Compared with nonsevere nicotine dependent smokers (Fagerstrőm test for nicotine dependence, score ≤ 6), severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus, right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (cluster size >25 voxels). In smokers during rest, the activity of addiction related regions were increased and the activity of smoking feeling, memory, related regions were also changed. The resting state activity changes in many regions were associated with the cumulative amount of nicotine intake and the severity of nicotine dependence.
Altered brain activity for phonological manipulation in dyslexic Japanese children.
Kita, Yosuke; Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi
2013-12-01
Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children.
Altered brain activity for phonological manipulation in dyslexic Japanese children
Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi
2013-01-01
Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children. PMID:24052613
[The role of the right hemisphere on recovery from Wernicke's aphasia].
Tabuchi, M; Fujii, T; Yamadori, A; Onodera, K; Endou, K
1998-04-01
We report a rare case of severe Wernicke's aphasia who showed a rapid and surprisingly good recovery despite of a large infarct involving the left posterior language area. A 68-year-old right-handed woman without a family history of left-handedness developed a severe comprehension difficulty and paraphasic output following a large infarct in the left posterior temporoparietal region. However, in 6 weeks, naming, comprehension, and repetition of words became almost normal. Spontaneous speech also became almost normal, although comprehension and repetition of sentences remained slightly impaired. The lesion size remained unchanged. A dichotic listening test 4 months after the onset showed clear left ear superiority. We speculate from these observations that the dormant language function in the right hemisphere might have played a role for rapid and good recovery of this case.
Lan, Chen-Chia; Tsai, Shih-Jen; Huang, Chu-Chung; Wang, Ying-Hsiu; Chen, Tong-Ru; Yeh, Heng-Liang; Liu, Mu-En; Lin, Ching-Po; Yang, Albert C.
2016-01-01
Background: Depression and loneliness are prevalent and highly correlated phenomena among the elderly and influence both physical and mental health. Brain functional connectivity changes associated with depressive symptoms and loneliness are not fully understood. Methods: A cross-sectional functional MRI study was conducted among 85 non-demented male elders. Geriatric depression scale-short form (GDS) and loneliness scale were used to evaluate the severity of depressive symptoms and loneliness, respectively. Whole brain voxel-wise resting-state functional connectivity density (FCD) mapping was performed to delineate short-range FCD (SFCD) and long-range FCD (LFCD). Regional correlations between depressive symptoms or loneliness and SFCD or LFCD were examined using general linear model (GLM), with age incorporated as a covariate and depressive symptoms and loneliness as predictors. Results: Positive correlations between depressive symptoms and LFCD were observed in left rectal gyrus, left superior frontal gyrus, right supraorbital gyrus, and left inferior temporal gyrus. Positive correlations between depressive symptoms and SFCD were observed in left middle frontal gyrus, left superior frontal gyrus, bilateral superior medial frontal gyrus, left inferior temporal gyrus, and left middle occipital region. Positive correlations between SFCD and loneliness were centered over bilateral lingual gyrus. Conclusion: Depressive symptoms are associated with FCD changes over frontal and temporal regions, which may involve the cognitive control, affective regulation, and default mode networks. Loneliness is associated with FCD changes in bilateral lingual gyri that are known to be important in social cognition. Depressive symptoms and loneliness may be associated with different brain regions in non-demented elderly male. PMID:26793101
The Neural Regions Sustaining Episodic Encoding and Recognition of Objects
ERIC Educational Resources Information Center
Hofer, Alex; Siedentopf, Christian M.; Ischebeck, Anja; Rettenbacher, Maria A.; Widschwendter, Christian G.; Verius, Michael; Golaszewski, Stefan M.; Koppelstaetter, Florian; Felber, Stephan; Wolfgang Fleischhacker, W.
2007-01-01
In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral…
Arteriography after embolization before distal pancreatectomy with en bloc celiac axis resection.
Yamagami, Takuji; Yoshimatsu, Rika; Kajiwara, Kenji; Ishikawa, Masaki; Murakami, Yoshiaki; Uemura, Kenichiro; Awai, Kazuo
2015-01-01
To evaluate hemodynamics by arteriographic examinations with and without CT in the stomach wall and liver after preoperative embolization to redistribute blood flow to the stomach and liver, which is unified to be supplied from the superior mesenteric artery, before distal pancreatectomy with en bloc celiac axis resection (DP-CAR). In six patients with locally advanced cancer of the pancreatic body in whom DP-CAR was planned, the left gastric artery and common hepatic artery were embolized with coils. Celiac arteriography and superior mesenteric arteriography with and without CT were performed after embolization. In all six patients, intrahepatic arteries and the left gastric artery were not visualized on celiac arteriography. On both superior mesenteric arteriography and CT obtained while contrast medium was infused via the superior mesenteric artery and which was performed immediately after embolization procedures, the right gastric artery, gastroepiploic artery, gastroduodenal artery, and all hepatic arterial branches were clearly detected. Also the distal part of the left gastric artery close to the embolized point was detected with at least one of the imaging modalities. It was clarified radiologically that preoperative embolization results in increased blood supply to the stomach wall and liver through the pancreatic arcade.
Exploring What’s Missing: What Do Target Absent Trials Reveal About Autism Search Superiority?
Keehn, Brandon; Joseph, Robert M.
2016-01-01
We used eye-tracking to investigate the roles of enhanced discrimination and peripheral selection in superior visual search in autism spectrum disorder (ASD). Children with ASD were faster at visual search than their typically developing peers. However, group differences in performance and eye-movements did not vary with the level of difficulty of discrimination or selection. Rather, consistent with prior ASD research, group differences were mainly the effect of faster performance on target-absent trials. Eye-tracking revealed a lack of left-visual-field search asymmetry in ASD, which may confer an additional advantage when the target is absent. Lastly, ASD symptomatology was positively associated with search superiority, the mechanisms of which may shed light on the atypical brain organization that underlies social-communicative impairment in ASD. PMID:26762114
Chaim, Tiffany M.; Zhang, Tianhao; Zanetti, Marcus V.; da Silva, Maria Aparecida; Louzã, Mário R.; Doshi, Jimit; Serpa, Mauricio H.; Duran, Fabio L. S.; Caetano, Sheila C.; Davatzikos, Christos; Busatto, Geraldo F.
2014-01-01
Background Attention-Deficit/Hiperactivity Disorder (ADHD) is a prevalent disorder, but its neuroanatomical circuitry is still relatively understudied, especially in the adult population. The few morphometric magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) studies available to date have found heterogeneous results. This may be at least partly attributable to some well-known technical limitations of the conventional voxel-based methods usually employed to analyze such neuroimaging data. Moreover, there is a great paucity of imaging studies of adult ADHD to date that have excluded patients with history of use of stimulant medication. Methods A newly validated method named optimally-discriminative voxel-based analysis (ODVBA) was applied to multimodal (structural and DTI) MRI data acquired from 22 treatment-naïve ADHD adults and 19 age- and gender-matched healthy controls (HC). Results Regarding DTI data, we found higher fractional anisotropy in ADHD relative to HC encompassing the white matter (WM) of the bilateral superior frontal gyrus, right middle frontal left gyrus, left postcentral gyrus, bilateral cingulate gyrus, bilateral middle temporal gyrus and right superior temporal gyrus; reductions in trace (a measure of diffusivity) in ADHD relative to HC were also found in fronto-striatal-parieto-occipital circuits, including the right superior frontal gyrus and bilateral middle frontal gyrus, right precentral gyrus, left middle occipital gyrus and bilateral cingulate gyrus, as well as the left body and right splenium of the corpus callosum, right superior corona radiata, and right superior longitudinal and fronto-occipital fasciculi. Volumetric abnormalities in ADHD subjects were found only at a trend level of significance, including reduced gray matter (GM) in the right angular gyrus, and increased GM in the right supplementary motor area and superior frontal gyrus. Conclusions Our results suggest that adult ADHD is associated with neuroanatomical abnormalities mainly affecting the WM microstructure in fronto-parieto-temporal circuits that have been implicated in cognitive, emotional and visuomotor processes. PMID:25310815
Neuro-cognitive foundations of word stress processing - evidence from fMRI
2011-01-01
Background To date, the neural correlates of phonological word stress processing are largely unknown. Methods In the present study, we investigated the processing of word stress and vowel quality using an identity matching task with pseudowords. Results In line with previous studies, a bilateral fronto-temporal network comprising the superior temporal gyri extending into the sulci as well as the inferior frontal gyri was observed for word stress processing. Moreover, we found differences in the superior temporal gyrus and the superior temporal sulcus, bilaterally, for the processing of different stress patterns. For vowel quality processing, our data reveal a substantial contribution of the left intraparietal cortex. All activations were modulated by task demands, yielding different patterns for same and different pairs of stimuli. Conclusions Our results suggest that the left superior temporal gyrus represents a basic system underlying stress processing to which additional structures including the homologous cortex site are recruited with increasing difficulty. PMID:21575209
Three- and four-dimensional mapping of speech and language in patients with epilepsy.
Nakai, Yasuo; Jeong, Jeong-Won; Brown, Erik C; Rothermel, Robert; Kojima, Katsuaki; Kambara, Toshimune; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep; Asano, Eishi
2017-05-01
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Three- and four-dimensional mapping of speech and language in patients with epilepsy
Nakai, Yasuo; Jeong, Jeong-won; Brown, Erik C.; Rothermel, Robert; Kojima, Katsuaki; Kambara, Toshimune; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep
2017-01-01
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70–110 Hz) and beta (15–30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy. PMID:28334963
Lee, Philip S; Foss-Feig, Jennifer; Henderson, Joshua G; Kenworthy, Lauren E; Gilotty, Lisa; Gaillard, William D; Vaidya, Chandan J
2007-10-15
Superior performance on the Embedded Figures Task (EFT) has been attributed to weak central coherence in perceptual processing in Autism Spectrum Disorder (ASD). The present study used functional magnetic resonance imaging to examine the neural basis of EFT performance in 7- to 12-year-old ASD children and age- and IQ-matched controls. ASD children activated only a subset of the distributed network of regions activated in controls. In frontal cortex, control children activated left dorsolateral, medial and dorsal premotor regions whereas ASD children only activated the dorsal premotor region. In parietal and occipital cortices, activation was bilateral in control children but unilateral (left superior parietal and right occipital) in ASD children. Further, extensive bilateral ventral temporal activation was observed in control, but not ASD children. ASD children performed the EFT at the same level as controls but with reduced cortical involvement, suggesting that disembedded visual processing is accomplished parsimoniously by ASD relative to typically developing brains.
Primary aneurysmal bone cyst of coronoid process
Goyal, Amit; Tyagi, Isha; Syal, Rajan; Agrawal, Tanu; Jain, Manoj
2006-01-01
Background Aneurysmal bone cysts are relatively uncommon in the facial skeleton. These usually affect the mandible but origin from the coronoid process is even rarer. To the best of our knowledge, this is the first reported case of a coronoid process aneurysmal bone cyst presenting as temporal fossa swelling. Case presentation A 17 year old boy presented with a progressively increasing swelling in the left temporal region developed over the previous 8 months. An expansile lytic cystic lesion originating from the coronoid process of the left mandible and extending into the infratemporal and temporal fossa regions was found on CT scan. It was removed by a superior approach to the infratemporal fossa. Conclusion Aneurysmal bone cyst of the coronoid process can attain enormous dimensions until the temporal region is also involved. A superior approach to the infratemporal fossa is a reasonable approach for such cases, providing wide exposure and access to all parts of the lesion and ensuring better control and complete excision. PMID:16533409
Saitoh, Youichi; Osaki, Yasuhiro; Nishimura, Hiroshi; Hirano, Shun-ichiro; Kato, Amami; Hashikawa, Kazuo; Hatazawa, Jun; Yoshimine, Toshiki
2004-05-01
The mechanisms underlying poststroke pain have not been clearly identified. Although motor cortex stimulation (MCS) sometimes reduces poststroke pain successfully, the exact mechanism is not yet known. For further investigation of the neural pathways involved in the processing of poststroke pain and in pain reduction by MCS, the authors used positron emission tomography (PET) scanning to determine significant changes in regional cerebral blood flow (rCBF). This 58-year-old right-handed man suffered from right-sided poststroke pain for which he underwent implantation of a stimulation electrode in the right motor cortex. After 30 minutes of stimulation, his pain was remarkably reduced (Visual Analog Scale scores decreased 8 to 1) and he felt warmth in his left arm. The rCBF was studied using PET scanning with 15O-labeled water when the patient was in the following states: before MCS (painful condition, no stimulation) and after successful MCS (painless condition, no stimulation). The images were analyzed using statistical parametric mapping software. State-dependent differences in global blood flow were covaried using analysis of covariance. Comparisons of the patient's rCBF in the painful condition with that in the painless condition revealed significant rCBF increases in the left rectus gyrus (BA11), left superior frontal lobe (BA9), left anterior cingulate gyms (BA32), and the left thalamus (p < 0.05, corrected). On the other hand, there were significant decreases in rCBF in the right superior temporal gyrus (BA22, p < 0.01, corrected) and the left middle occipital gyrus (BA19, p < 0.05, corrected). The efficacy of MCS was mainly related to increased synaptic activity in the thalamus, whereas the activations in the rectus gyrus, anterior cingulate gyrus, and superior frontal cortex as well as the inactivation of the superior temporal lobe may be related to emotional processes. This is the first report in which the contralateral thalamus was significantly activated and pain relief was achieved using MCS.
Patterns of anomalous pulmonary venous drainage.
Snellen, H A; van Ingen, H C; Hoefsmit, E C
1968-07-01
All of our cases of abnormal pulmonary venous connections collected to the middle of 1965 and verified at surgery or autopsy have been reviewed by means of diagrams and tabulations, using a specially devised code to facilitate the survey. The material consisted of 52 autopsy cases (half of them obtained after surgery) and the cases of 72 patients who survived operation. The postmortem group was much younger than the surgical group and differed also from the latter by showing male preponderance as well as relatively many instances of total abnormal pulmonary venous connection and frequently associated cardiac anomalies. Partial anomalous connection of right pulmonary veins was 10 times more frequent than that of the left pulmonary veins. This was caused by (1) the frequent drainage of some of the right pulmonary veins into the junctional area between right atrium and superior vena cava in the presence of normal left pulmonary veins, and (2) the complete absence of isolated left pulmonary venous connection to the right atrium. Abnormal connection of solitary pulmonary veins was always effected to the most proximal venous structure among the four possible ones which are derived from the main embryonic channels (superior vena cava and inferior vena cava on the right side, and left superior vena cava and coronary sinus on the left side). Common pulmonary veins from one lung also drained in accordance with this proximity rule, if this may be taken to apply also to the drainage of right pulmonary veins into the right atrium. The one exception in our material was the drainage of all right pulmonary veins into the portal venous system. Total abnormal pulmonary venous connection may be found with all structures mentioned, but most frequently with the left superior vena cava, or coronary sinus, or both, usually by way of a common pulmonary vein. In a few cases however, drainage into different sites, all of them abnormal, did occur. Then again the proximity rule seemed to apply. A tentative embryological explanation is given for the patterns described.
Oiwa, H; Kawauchi, M; Chikada, M; Yagyu, K; Kotsuka, Y; Furuse, A
1995-01-01
A pulsatile total cavopulmonary shunt was successfully performed on a 5-year-old girl with hypoplastic right heart syndrome associated with abnormal systemic venous return; at the same time, modified mitral valve replacement was performed for mitral regurgitation. The right atrium, tricuspid valve and right ventricle were all extremely dimunitive. The diameter of the tricuspid valve was 50% of normal and the volume of the right ventricle was 8.6% of normal. In addition, there were severe subpumonary stenosis, a restrictive ventricular septal defect (VSD) and an atrial septal defect (ASD). The bilateral superior venae cavae (SVCs) and the hepatic vein drained to the left atrium, and the inferior vena cava was infrahepatically interrupted with a hemiazygos connection to the left superior vena cava. At the operation, each SVC was anastomosed end-to-side to each branch of the pulmonary artery (PA). The restrictive ventricular septal defect and stenotic subpulmonary lesion were left. The diameter of the ASD was reduced from 12 mm to 7 mm. The main PA was neither divided nor banded. The pulsatile blood flow from the left heart to the PA was regurated by a native restrictive VSD and stenotic subpulmonary lesion, and that from the right heart via the ASD was limited by reducing the size of the ASD. These described anatomic arrangements produced adequate antegrade pulsatile flow in the PA, which might prevent the development of pulmonary arteriovenous fistulae and, besides permit transfer of drainage of the hepatic vein from the left to the right atrium via the ASD in future.
When a loved one feels unfamiliar: a case study on the neural basis of Capgras delusion.
Thiel, Christiane M; Studte, Sara; Hildebrandt, Helmut; Huster, Rene; Weerda, Riklef
2014-03-01
Perception of familiar faces depends on a core system analysing visual appearance and an extended system dealing with inference of mental states and emotional responses. Damage to the core system impairs face perception as seen in prosopagnosia. In contrast, patients with Capgras delusion show intact face perception but believe that closely related persons are impostors. It has been suggested that two deficits are necessary for the delusion, an aberrant perceptual or affective experience that leads to a bizarre belief as well as an impaired ability to evaluate beliefs. Using functional magnetic resonance imaging, we compared neural activity to familiar and unfamiliar faces in a patient with Capgras delusion and an age matched control group. We provide evidence that Capgras delusion is related to dysfunctional activity in the extended face processing system. The patient, who developed the delusion for the partner after a large right prefrontal lesion sparing the ventromedial and medial orbitofrontal cortex, lacked neural activity to the partner's face in left posterior cingulate cortex and left posterior superior temporal sulcus. Further, we found impaired functional connectivity of the latter region with the left superior frontal gyrus and to a lesser extent with the right superior frontal sulcus/middle frontal gyrus. The findings of this case study suggest that the first factor in Capgras delusion may be reduced neural activity in the extended face processing system that deals with inference of mental states while the second factor may be due to a lesion in the right middle frontal gyrus. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guo, Wenbin; Liu, Feng; Zhang, Zhikun; Liu, Guiying; Liu, Jianrong; Yu, Liuyu; Xiao, Changqing; Zhao, Jingping
2015-01-01
The default-mode network (DMN) is vital in the neurobiology of schizophrenia, and the cerebellum participates in the high-order cognitive network such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities remains unclear in unaffected siblings of schizophrenia patients. Forty-six unaffected siblings of schizophrenia patients and 46 healthy controls were recruited for a resting-state scan. The images were analyzed using the functional connectivity (FC) method. The siblings showed significantly increased FCs between the left Crus I and the left superior medial prefrontal cortex (MPFC), as well as between the lobule IX and the bilateral MPFC (orbital part) and right superior MPFC compared with the controls. No significantly decreased FC was observed in the siblings relative to the controls. The analyses were replicated in 49 first-episode, drug-naive patients with schizophrenia, and the results showed that the siblings and the patients shared increased FCs between the left Crus I and the left superior MPFC, as well as between the lobule IX and the left MPFC (orbital part) compared with the controls. These findings suggest that increased cerebellar-DMN connectivities emerge earlier than illness onset, which highlight the contribution of the cerebellum to the DMN alterations in unaffected siblings. The shared increased cerebellar-DMN connectivities between the patients and the siblings may be used as candidate endophenotypes for schizophrenia. PMID:25956897
High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy
ERIC Educational Resources Information Center
Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano
2012-01-01
Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…
Pandit, Bhagya Narayan; Chaturvedi, Vivek; Parakh, Neeraj; Gade, Sandeep; Trehan, Vijay
2015-04-01
Treatment for superior vena cava syndrome (SVCS) by percutaneous interventions has become established as a definitive therapy. However, there is a significant risk of rupture during SVC intervention. We describe an uncommon case that developed SVC rupture during percutaneous intervention for idiopathic SVCS. This was managed successfully with pericardiocentesis and rapid implantation of covered stent in SVC by rapid guiding catheter swapping technique. This, however, led to inadvertent obstruction of left innominate vein which was successfully treated by kissing balloon inflation. At 18-month follow-up, he is asymptomatic with a well apposed patent stent-graft in the SVC.
Miyake, Makito; Fujimoto, Kiyohide; Matsushita, Chie; Chihara, Yoshitomo; Tanaka, Masahiro; Hirayama, Akihide; Hirao, Yoshihiko; Uemura, Hirotsugu
2009-06-01
A 24-year-old man was referred to our hospital with a painless mass on the left side of his neck. Ultrasonography detected right testicular tumor and computerized tomography scanning revealed a left supraclavicular lymph node mass and bulky retroperitoneal lymph node mass. He initially underwent right high orchiectomy, combination chemotherapy and retroperitoneal lymph node dissection for advanced testicular non-seminomatous germ cell tumor. Six years later, late relapse was detected in the lung. After complete remission of the lung metastasis with chemotherapy, the serum alpha-fetoprotein began to increase because of superior vena caval thrombus extending into the right atrium. Emergency surgical excision was performed successfully using extracorporeal circulation to prevent pulmonary embolism and the resected specimen pathologically revealed adenocarcinoma interpreted as teratoma malignant transformation. Adjuvant chemotherapy consisting of paclitaxel, ifosfamide and nedaplatin were administered for subsequent slight elevation of serum F-human chorionic gonadotropin beta, resulting in successful normalization again. Later, he suddenly died of cerebral infarction without any evidence of recurrence 138 months after his initial presentation. We report herein an extremely uncommon case of advanced testicular germ cell tumor with development of superior vena caval thrombus extending into the right atrium.
Magnetic resonance imaging mesencephalic tectum dimensions according to age and gender.
Sabanciogullari, Vedat; Salk, Ismail; Balaban, Hatice; Oztoprak, Ibrahim; Kelkit, Seref; Cimen, Mehmet
2013-01-01
To analyze and classify normal MRI tectum length and colliculus dimensions according to age and gender. Tectum length and colliculus diameters were measured on the T1 midsagittal and axial cranial MR images in the radiology archive of 532 (344 women, 188 men) patients aged 37.36+/-21.49 (range: 4-91) years old on average, and with no disorders affecting the mesencephalic tectum. All 532 patients underwent clinical MR imaging of the cranium at the MRI Unit of Sivas Numune Hospital and Sivas Cumhuriyet University Hospital, Sivas, Turkey between February and December 2011. Although there was a positive linear correlation between tectum length and age, there was a negative correlation between the anteroposterior diameter of the colliculus superior and colliculus inferior and age (p<0.01). While tectum length (M3) increases with age, the anteroposterior diameter of the colliculus superior and inferior (M1 and M2) decreased (p<0.01). The colliculi were larger, and the tectum was longer in men. Although there was no difference in size between right and left superior colliculi, the left colliculus inferior was larger than the right one. In addition to the fact that normal mesencephalic tectum dimensions provide information on the brain development of individuals, they may also be beneficial for the detection and treatment of related pathologies.
Kell, Christian A; Neumann, Katrin; Behrens, Marion; von Gudenberg, Alexander W; Giraud, Anne-Lise
2018-03-01
We previously reported speaking-related activity changes associated with assisted recovery induced by a fluency shaping therapy program and unassisted recovery from developmental stuttering (Kell et al., Brain 2009). While assisted recovery re-lateralized activity to the left hemisphere, unassisted recovery was specifically associated with the activation of the left BA 47/12 in the lateral orbitofrontal cortex. These findings suggested plastic changes in speaking-related functional connectivity between left hemispheric speech network nodes. We reanalyzed these data involving 13 stuttering men before and after fluency shaping, 13 men who recovered spontaneously from their stuttering, and 13 male control participants, and examined functional connectivity during overt vs. covert reading by means of psychophysiological interactions computed across left cortical regions involved in articulation control. Persistent stuttering was associated with reduced auditory-motor coupling and enhanced integration of somatosensory feedback between the supramarginal gyrus and the prefrontal cortex. Assisted recovery reduced this hyper-connectivity and increased functional connectivity between the articulatory motor cortex and the auditory feedback processing anterior superior temporal gyrus. In spontaneous recovery, both auditory-motor coupling and integration of somatosensory feedback were normalized. In addition, activity in the left orbitofrontal cortex and superior cerebellum appeared uncoupled from the rest of the speech production network. These data suggest that therapy and spontaneous recovery normalizes the left hemispheric speaking-related activity via an improvement of auditory-motor mapping. By contrast, long-lasting unassisted recovery from stuttering is additionally supported by a functional isolation of the superior cerebellum from the rest of the speech production network, through the pivotal left BA 47/12. Copyright © 2017 Elsevier Inc. All rights reserved.
Minagawa, N; Kashu, K
1989-06-01
16 adult subjects performed a tactile recognition task. According to our 1984 study, half of the subjects were classified as having a left hemispheric preference for the processing of visual stimuli, while the other half were classified as having a right hemispheric preference for the processing of visual stimuli. The present task was conducted according to the S1-S2 matching paradigm. The standard stimulus was a readily recognizable object and was presented tactually to either the left or right hand of each subject. The comparison stimulus was an object-picture and was presented visually by slide in a tachistoscope. The interstimulus interval was .05 sec. or 2.5 sec. Analysis indicated that the left-preference group showed right-hand superiority, and the right-preference group showed left-hand superiority. The notion of individual hemisphericity was supported in tactile processing.
White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.
Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef
2013-08-01
Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.
Longitudinal changes in white matter integrity among adolescent substance users.
Bava, Sunita; Jacobus, Joanna; Thayer, Rachel E; Tapert, Susan F
2013-01-01
The influence of repeated substance use during adolescent neurodevelopment remains unclear as there have been few prospective investigations. The aims of this study were to identify longitudinal changes in fiber tract integrity associated with alcohol- and marijuana-use severity over the course of 1.5 years. Adolescents with extensive marijuana- and alcohol-use histories by mid-adolescence (n = 41) and youth with consistently minimal if any substance use (n = 51) were followed over 18 months. Teens received diffusion tensor imaging and detailed substance-use assessments with toxicology screening at baseline and 18-month follow-ups (i.e., 182 scans in all), as well as interim substance-use interviews each 6 months. At an 18-month follow-up, substance users showed poorer white matter integrity in 7 tracts: (i) right superior longitudinal fasciculus, (ii) left superior longitudinal fasciculus, (iii) right posterior thalamic radiations, (iv) right prefrontal thalamic fibers, (v) right superior temporal gyrus white matter, (vi) right inferior longitudinal fasciculus, and (vii) left posterior corona radiata (ps < 0.01). More alcohol use during the interscan interval predicted higher mean diffusivity (i.e., worsened integrity) in right (p < 0.05) and left (p = 0.06) superior longitudinal fasciculi, above and beyond baseline values in these bundles. Marijuana use during the interscan interval did not predict change over time. More externalizing behaviors at Time 1 predicted lower fractional anisotropy and higher radial diffusivity (i.e., poorer integrity) of the right prefrontal thalamic fibers (p < 0.025). Findings add to previous cross-sectional studies reporting white matter disadvantages in youth with substance-use histories. In particular, alcohol use during adolescent neurodevelopment may be linked to reductions in white matter quality in association fiber tracts with frontal connections. In contrast, youth who engage in a variety of risk-taking behaviors may have unique neurodevelopmental trajectories characterized by truncated development in fronto-thalamic tracts, which could have functional and clinical consequences in young adulthood. Copyright © 2012 by the Research Society on Alcoholism.
Klamer, Silke; Milian, Monika; Erb, Michael; Rona, Sabine; Lerche, Holger; Ethofer, Thomas
2017-01-01
We aimed to identify reorganization processes of episodic memory networks in patients with left and right temporal lobe epilepsy (TLE) due to hippocampal sclerosis as well as their relations to neuropsychological memory performance. We investigated 28 healthy subjects, 12 patients with left TLE (LTLE) and 9 patients with right TLE (RTLE) with hippocampal sclerosis by means of functional magnetic resonance imaging (fMRI) using a face-name association task, which combines verbal and non-verbal memory functions. Regions-of-interest (ROIs) were defined based on the group results of the healthy subjects. In each ROI, fMRI activations were compared across groups and correlated with verbal and non-verbal memory scores. The face-name association task yielded activations in bilateral hippocampus (HC), left inferior frontal gyrus (IFG), left superior frontal gyrus (SFG), left superior temporal gyrus, bilateral angular gyrus (AG), bilateral medial prefrontal cortex and right anterior temporal lobe (ATL). LTLE patients demonstrated significantly less activation in the left HC and left SFG, whereas RTLE patients showed significantly less activation in the HC bilaterally, the left SFG and right AG. Verbal memory scores correlated with activations in the left and right HC, left SFG and right ATL and non-verbal memory scores with fMRI activations in the left and right HC and left SFG. The face-name association task can be employed to examine functional alterations of hippocampal activation during encoding of both verbal and non-verbal material in one fMRI paradigm. Further, the left SFG seems to be a convergence region for encoding of verbal and non-verbal material.
Na, Kyoung-Sae; Won, Eunsoo; Kang, June; Chang, Hun Soo; Yoon, Ho-Kyoung; Tae, Woo Suk; Kim, Yong-Ku; Lee, Min-Soo; Joe, Sook-Haeng; Kim, Hyun; Ham, Byung-Joo
2016-02-15
Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the groups. The right medial orbitofrontal, right lingual, right lateral occipital, left lateral orbitofrontal, left pars triangularis, and left lingual cortices were thinner in patients with MDD than in healthy controls. Among the MDD group, right pericalcarine, right medical orbitofrontal, right rostral middle frontal, right postcentral, right inferior temporal, right cuneus, right precuneus, left frontal pole, left superior frontal, left superior temporal, left rostral middle frontal and left lingual cortices had inverse correlations with methylation of BDNF promoters. Higher levels of BDNF promoter methylation may be closely associated with the reduced cortical thickness among patients with MDD. Serum BDNF levels were significantly lower in MDD, and showed an inverse relationship with BDNF methylation only in healthy controls. Particularly the prefrontal and occipital cortices seem to indicate key regions in which BDNF methylation has a significant effect on structure.
Xiao, Yaqiong; Friederici, Angela D; Margulies, Daniel S; Brauer, Jens
2016-03-01
The development of language comprehension abilities in childhood is closely related to the maturation of the brain, especially the ability to process syntactically complex sentences. Recent studies proposed that the fronto-temporal connection within left perisylvian regions, supporting the processing of syntactically complex sentences, is still immature at preschool age. In the current study, resting state functional magnetic resonance imaging data were acquired from typically developing 5-year-old children and adults to shed further light on the brain functional development. Children additionally performed a behavioral syntactic comprehension test outside the scanner. The amplitude of low-frequency fluctuations was analyzed in order to identify the functional correlation networks of language-relevant brain regions. Results showed an intrahemispheric correlation between left inferior frontal gyrus (IFG) and left posterior superior temporal sulcus (pSTS) in adults, whereas an interhemispheric correlation between left IFG and its right-hemispheric homolog was predominant in children. Correlation analysis between resting-state functional connectivity and sentence processing performance in 5-year-olds revealed that local connectivity within the left IFG is associated with competence of processing syntactically simple canonical sentences, while long-range connectivity between IFG and pSTS in left hemisphere is associated with competence of processing syntactically relatively more complex non-canonical sentences. The present developmental data suggest that a selective left fronto-temporal connectivity network for processing complex syntax is already in functional connection at the age of 5 years when measured in a non-task situation. The correlational findings provide new insight into the relationship between intrinsic functional connectivity and syntactic language abilities in preschool children. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gender differences in brain development in Chinese children and adolescents: a structural MRI study
NASA Astrophysics Data System (ADS)
Guo, Xiaojuan; Jin, Zhen; Chen, Kewei; Peng, Danling; Yao, Li
2008-03-01
Using optimized voxel-based morphometry (VBM), this study systematically investigated gender differences in brain development through magnetic resonance imaging (MRI) data in 158 Chinese normal children and adolescents aged 7.26 to 22.80 years (mean age 15.03+/-4.70 years, 78 boys and 80 girls). Gender groups were matched for measures of age, handedness, education level. The customized brain templates, including T I-weighted image and gray matter (GM)/white matter (WM)/cerebro-spinal fluid (CSF) prior probability maps, were created from all participants. Results showed that the total intracranial volume (TIV), global absolute GM and global WM volume in girls were significantly smaller than those in boys. The hippocampus grew faster in girls than that in boys, but the amygdala grew faster in boys than that in girls. The rate of regional GM decreases with age was steeper in the left superior parietal lobule, bilateral inferior parietal lobule, left precuneus, and bilateral supramarginal gyrus in boys compared to girls, which was possibly related to better spatial processing ability in boys. Regional GM volumes were greater in bilateral superior temporal gyrus, bilateral inferior frontal gyrus and bilateral middle frontal gyrus in girls. Regional WM volumes were greater in the left temporal lobe, right inferior parietal and bilateral middle frontal gyrus in girls. The gender differences in the temporal and frontal lobe maybe be related to better language ability in girls. These findings may aid in understanding the differences in cognitive function between boys and girls.
The brain adapts to orthography with experience: Evidence from English and Chinese
Cao, Fan; Brennan, Christine; Booth, James R.
2016-01-01
Using functional magnetic resonance imaging (fMRI), we examined the process of language specialization in the brain by comparing developmental changes in two contrastive orthographies: Chinese and English. In a visual word rhyming judgment task, we found a significant interaction between age and language in left inferior parietal lobule and left superior temporal gyrus, which was due to greater developmental increases in English than in Chinese. Moreover, we found that higher skill only in English children was correlated with greater activation in left inferior parietal lobule. These findings suggest that the regions associated with phonological processing are essential in English reading development. We also found greater developmental increases in English than in Chinese in left inferior temporal gyrus, suggesting refinement of this region for fine-grained word form recognition. In contrast, greater developmental increases in Chinese than in English were found in right middle occipital gyrus, suggesting the importance of holistic visual-orthographic analysis in Chinese reading acquisition. Our results suggest that the brain adapts to the special features of the orthography by engaging relevant brain regions to a greater degree over development. PMID:25444089
Wang, Jia; Fu, Kuang; Chen, Lei; Duan, Xujun; Guo, Xiaonan; Chen, Heng; Wu, Qiong; Xia, Wei; Wu, Lijie; Chen, Huafu
2017-01-01
Autism spectrum disorder (ASD) has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3-7-year-old children with ASD compared with typically developing controls (TDs), and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM) analysis on structural magnetic resonance imaging (sMRI) data to assess the differences of gray matter volume (GMV) between 31 autistic boys aged 3-7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG) and left postcentral gyrus (PCG) in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG) and greater negative connectivity with right superior parietal gyrus (SPG) and right superior occipital gyrus (SOG), which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory integration in ASD children.
Cao, Fan; Lee, Rebecca; Shu, Hua; Yang, Yanhui; Xu, Guoqing; Li, Kuncheng; Booth, James R
2010-05-01
Developmental differences in phonological and orthographic processing in Chinese were examined in 9 year olds, 11 year olds, and adults using functional magnetic resonance imaging. Rhyming and spelling judgments were made to 2-character words presented sequentially in the visual modality. The spelling task showed greater activation than the rhyming task in right superior parietal lobule and right inferior temporal gyrus, and there were developmental increases across tasks bilaterally in these regions in addition to bilateral occipital cortex, suggesting increased involvement over age on visuo-orthographic analysis. The rhyming task showed greater activation than the spelling task in left superior temporal gyrus and there were developmental decreases across tasks in this region, suggesting reduced involvement over age on phonological representations. The rhyming and spelling tasks included words with conflicting orthographic and phonological information (i.e., rhyming words spelled differently or nonrhyming words spelled similarly) or nonconflicting information. There was a developmental increase in the difference between conflicting and nonconflicting words in left inferior parietal lobule, suggesting greater engagement of systems for mapping between orthographic and phonological representations. Finally, there were developmental increases across tasks in an anterior (Broadman area [BA] 45, 46) and posterior (BA 9) left inferior frontal gyrus, suggesting greater reliance on controlled retrieval and selection of posterior lexical representations.
Rubia, Katya; Lim, Lena; Ecker, Christine; Halari, Rozmin; Giampietro, Vincent; Simmons, Andrew; Brammer, Michael; Smith, Anna
2013-12-01
Functional inhibitory neural networks mature progressively with age. However, nothing is known about the impact of gender on their development. This study employed functional magnetic resonance imaging (fMRI) to investigate the effects of age, sex, and sex by age interactions on the brain activation of 63 healthy males and females, between 13 and 38 years, performing a Stop task. Increasing age was associated with progressively increased activation in typical response inhibition areas of right inferior and dorsolateral prefrontal and temporo-parietal regions. Females showed significantly enhanced activation in left inferior and superior frontal and striatal regions relative to males, while males showed increased activation relative to females in right inferior and superior parietal areas. Importantly, left frontal and striatal areas that showed increased activation in females, also showed significantly increased functional maturation in females relative to males, while the right inferior parietal activation that was increased in males showed significantly increased functional maturation relative to females. The findings demonstrate for the first time that sex-dimorphic activation patterns of enhanced left fronto-striatal activation in females and enhanced right parietal activation in males during motor inhibition appear to be the result of underlying gender differences in the functional maturation of these brain regions. © 2013. Published by Elsevier Inc. All rights reserved.
Guo, Gongliang; Yang, Lili; Wu, Jinyi; Sun, Liqun
2017-01-01
Abstract Background: Dextrocardia, or right-lying heart, is an uncommon congenital heart disease in which the apex of the heart is located on the right side of chest. Persistent left superior vena cava (PLSVA) is a rare venous anomaly that is often associated with the abnormalities of cardiac transduction system. A case with combination of dextrocardia, persistent left superior vena cava, and sick sinus syndrome has not been reported. Methods: We used different techniques including cardiac color Doppler echocardiography, 24-hour Holter monitoring, and abdominal ultrasound to make a diagnosis and treated the patient by implanting a VVI pacemaker. Results: A 50-year-old woman was admitted with a syncope. Angiography of the right atrium and superior vena cava, echocardiography, electrocardiography, and abdominal ultrasound revealed the presence of the combination of mirror image dextrocardia, PLSVA, and sick sinus syndrome. The complex structural anomalies presented great technical challenges for interventional treatments. After thorough examination and understanding of the structural anatomy and anomalies of the superior and inferior vena cava and cardiac chambers, we successfully treated this patient by implanting a VVI pacemaker. Conclusion: Physicians must be aware of the complexity of the morphological and anatomical structures of dextrocardia accompanying PLSVC. Given that the diagnosis of situs inversus was performed at a relatively advanced age, it is therefore important to make such a correct diagnosis followed by appropriate therapeutic intervention. PMID:28151908
Hou, Yi-Cheng; Yang, Shwu-Huey; Wu, Yu-Te; Lai, Chien-Han
2016-06-01
To assess the existence of alterations in the micro-integrity of the fasciculus in prediabetic subjects. The issue of micro-integrity in white matter tracts has not been adequately addressed in prediabetes. Sixty-four prediabetic subjects and 54 controls were enrolled. All participants completed 24-hour diet records and 3-day diet records and received diffusion tensor imaging at 3T. The data for white matter micro-integrity were analyzed and compared between prediabetic subjects and controls with age and gender as covariates. In addition, voxel-wise regression between white matter micro-integrity, diet, and preprandial glucose levels were used to explore the relationship between white matter micro-integrity and diet or serum glucose levels. We found that prediabetic subjects had significant reductions in the micro-integrity of bilateral anterior thalamic radiation, left inferior longitudinal fasciculus, and left superior longitudinal fasciculus (corrected P < 0.05). In addition, total carbohydrate intake amount and preprandial serum glucose levels were negatively correlated with the micro-integrity in the left inferior longitudinal fasciculus and left anterior thalamic radiation (r: -0.47, corrected P < 0.05). Restrictive alterations in the white matter micro-integrity of the anterior thalamic radiation and inferior and superior longitudinal fasciculi might represent the initial "hot spots" for white matter tract alterations, which might play a role in the development of prediabetes. J. Magn. Reson. Imaging 2016;43:1500-1506. © 2016 Wiley Periodicals, Inc.
Nora, Anni; Renvall, Hanna; Kim, Jeong-Young; Service, Elisabet; Salmelin, Riitta
2015-01-01
Temporal and frontal activations have been implicated in learning of novel word forms, but their specific roles remain poorly understood. The present magnetoencephalography (MEG) study examines the roles of these areas in processing newly-established word form representations. The cortical effects related to acquiring new phonological word forms during incidental learning were localized. Participants listened to and repeated back new word form stimuli that adhered to native phonology (Finnish pseudowords) or were foreign (Korean words), with a subset of the stimuli recurring four times. Subsequently, a modified 1-back task and a recognition task addressed whether the activations modulated by learning were related to planning for overt articulation, while parametrically added noise probed reliance on developing memory representations during effortful perception. Learning resulted in decreased left superior temporal and increased bilateral frontal premotor activation for familiar compared to new items. The left temporal learning effect persisted in all tasks and was strongest when stimuli were embedded in intermediate noise. In the noisy conditions, native phonotactics evoked overall enhanced left temporal activation. In contrast, the frontal learning effects were present only in conditions requiring overt repetition and were more pronounced for the foreign language. The results indicate a functional dissociation between temporal and frontal activations in learning new phonological word forms: the left superior temporal responses reflect activation of newly-established word-form representations, also during degraded sensory input, whereas the frontal premotor effects are related to planning for articulation and are not preserved in noise. PMID:25961571
Nora, Anni; Renvall, Hanna; Kim, Jeong-Young; Service, Elisabet; Salmelin, Riitta
2015-01-01
Temporal and frontal activations have been implicated in learning of novel word forms, but their specific roles remain poorly understood. The present magnetoencephalography (MEG) study examines the roles of these areas in processing newly-established word form representations. The cortical effects related to acquiring new phonological word forms during incidental learning were localized. Participants listened to and repeated back new word form stimuli that adhered to native phonology (Finnish pseudowords) or were foreign (Korean words), with a subset of the stimuli recurring four times. Subsequently, a modified 1-back task and a recognition task addressed whether the activations modulated by learning were related to planning for overt articulation, while parametrically added noise probed reliance on developing memory representations during effortful perception. Learning resulted in decreased left superior temporal and increased bilateral frontal premotor activation for familiar compared to new items. The left temporal learning effect persisted in all tasks and was strongest when stimuli were embedded in intermediate noise. In the noisy conditions, native phonotactics evoked overall enhanced left temporal activation. In contrast, the frontal learning effects were present only in conditions requiring overt repetition and were more pronounced for the foreign language. The results indicate a functional dissociation between temporal and frontal activations in learning new phonological word forms: the left superior temporal responses reflect activation of newly-established word-form representations, also during degraded sensory input, whereas the frontal premotor effects are related to planning for articulation and are not preserved in noise.
Petridis, Ioannis; Miraglia, Roberto; Marrone, Gianluca; Gruttadauria, Salvatore; Luca, Angelo; Vizzini, Giovanni Battista; Gridelli, Bruno
2010-03-07
Transjugular intrahepatic portosystemic shunt (TIPSS) is considered a valid therapeutic option for the treatment of portal hypertension and its complications. The guidelines for this procedure have already been established on the basis of the normal vascular anatomy and of various technical radiological aspects. In some few rare cases, diagnosis of a congenital vascular anomaly can be made accidentally by interventional radiologists, making the procedure of the TIPSS placement extremely difficult or in some cases technically impossible. This report describes a rare vascular malformation characterized by the absence of the right superior vena cava and persistence of the left superior vena cava in a patient with a diagnosis of advanced liver cirrhosis who needed a TIPSS placement in order to control refractory ascites.
Electrostimulation mapping of comprehension of auditory and visual words.
Roux, Franck-Emmanuel; Miskin, Krasimir; Durand, Jean-Baptiste; Sacko, Oumar; Réhault, Emilie; Tanova, Rositsa; Démonet, Jean-François
2015-10-01
In order to spare functional areas during the removal of brain tumours, electrical stimulation mapping was used in 90 patients (77 in the left hemisphere and 13 in the right; 2754 cortical sites tested). Language functions were studied with a special focus on comprehension of auditory and visual words and the semantic system. In addition to naming, patients were asked to perform pointing tasks from auditory and visual stimuli (using sets of 4 different images controlled for familiarity), and also auditory object (sound recognition) and Token test tasks. Ninety-two auditory comprehension interference sites were observed. We found that the process of auditory comprehension involved a few, fine-grained, sub-centimetre cortical territories. Early stages of speech comprehension seem to relate to two posterior regions in the left superior temporal gyrus. Downstream lexical-semantic speech processing and sound analysis involved 2 pathways, along the anterior part of the left superior temporal gyrus, and posteriorly around the supramarginal and middle temporal gyri. Electrostimulation experimentally dissociated perceptual consciousness attached to speech comprehension. The initial word discrimination process can be considered as an "automatic" stage, the attention feedback not being impaired by stimulation as would be the case at the lexical-semantic stage. Multimodal organization of the superior temporal gyrus was also detected since some neurones could be involved in comprehension of visual material and naming. These findings demonstrate a fine graded, sub-centimetre, cortical representation of speech comprehension processing mainly in the left superior temporal gyrus and are in line with those described in dual stream models of language comprehension processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mengotti, Paola; D'Agostini, Serena; Terlevic, Robert; De Colle, Cristina; Biasizzo, Elsa; Londero, Danielle; Ferro, Adele; Rambaldelli, Gianluca; Balestrieri, Matteo; Zanini, Sergio; Fabbro, Franco; Molteni, Massimo; Brambilla, Paolo
2011-02-01
A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism. Twenty children with autism (mean age= 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values. Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development. These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may represent a neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social deficits. Copyright © 2010 Elsevier Inc. All rights reserved.
He, Mengyang; Qi, Changzhu; Lu, Yang; Song, Amanda; Hayat, Saba Z; Xu, Xia
2018-05-21
Extensive studies have shown that a sports expert is superior to a sports novice in visually perceptual-cognitive processes of sports scene information, however the attentional and neural basis of it has not been thoroughly explored. The present study examined whether a sport expert has the attentional superiority on scene information relevant to his/her sport skill, and explored what factor drives this superiority. To address this problem, EEGs were recorded as participants passively viewed sport scenes (tennis vs. non-tennis) and negative emotional faces in the context of a visual attention task, where the pictures of sport scenes or of negative emotional faces randomly followed the pictures with overlapping sport scenes and negative emotional faces. ERP results showed that for experts, the evoked potential of attentional competition elicited by the overlap of tennis scene was significantly larger than that evoked by the overlap of non-tennis scene, while this effect was absent for novices. The LORETA showed that the experts' left medial frontal gyrus (MFG) cortex was significantly more active as compared to the right MFG when processing the overlap of tennis scene, but the lateralization effect was not significant in novices. Those results indicate that experts have attentional superiority on skill-related scene information, despite intruding the scene through negative emotional faces that are prone to cause negativity bias toward their visual field as a strong distractor. This superiority is actuated by the activation of left MFG cortex and probably due to self-reference. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mollica, Richard F; Lyoo, In Kyoon; Chernoff, Miriam C; Bui, Hoan X; Lavelle, James; Yoon, Sujung J; Kim, Jieun E; Renshaw, Perry F
2009-11-01
A pilot study of South Vietnamese ex-political detainees who had been incarcerated in Vietnamese reeducation camps and resettled in the United States disclosed significant mental health problems associated with torture and traumatic head injury (THI). To identify structural brain alterations associated with THI and to investigate whether these deficits are associated with posttraumatic stress disorder and depression. Cross-sectional neuroimaging study. Massachusetts General Hospital and McLean Hospital. A subsample of Vietnamese ex-political detainees (n = 42) and comparison subjects (n = 16) selected from a community study of 337 ex-political detainees and 82 comparison subjects. Scores on the Vietnamese versions of the Hopkins Symptom Checklist-25 (HSCL) and Harvard Trauma Questionnaire for depression and posttraumatic stress disorder, respectively; cerebral regional cortical thickness; and manual volumetric morphometry of the amygdala, hippocampus, and thalamus. Ex-political detainees exposed to THI (n = 16) showed a higher rate of depression (odds ratio, 10.2; 95% confidence interval, 1.2-90.0) than those without THI exposure (n = 26). Ex-political detainees with THI had thinner prefrontotemporal cortices than those without THI exposure (P < .001 by the statistical difference brain map) in the left dorsolateral prefrontal and bilateral superior temporal cortices, controlling for age, handedness, and number of trauma/torture events (left superior frontal cortex [SFC], P = .006; left middle frontal cortex, P = .01; left superior temporal cortex [STC], P = .007; right STC, P = .01). Trauma/torture events were associated with bilateral amygdala volume loss (left, P = .045; right, P = .003). Cortical thinning associated with THI in the left SFC and bilateral STC was related to HSCL depression scores in THI-exposed (vs non-THI-exposed) ex-political detainees (left SFC, P for interaction = .007; left STC, P for interaction = .03; right STC, P for interaction = .02). Structural deficits in prefrontotemporal brain regions are linked to THI exposures. These brain lesions are associated with the symptom severity of depression in Vietnamese ex-political detainees.
Nath, Ranjit Kumar; Soni, Dheeraj Kumar
2015-12-01
A 22-year-old woman with severe mitral stenosis was referred to us for further evaluation and management. She was found to have severe mitral stenosis, severe tricuspid regurgitation with dilated right atrium and right ventricle with persistent left superior vena cava and hugely dilated coronary sinus. Valve was suitable for balloon mitral valvotomy. Cardiac catheterization showed interrupted inferior vena cava with azygos continuation to right atrium and large left superior vena cava draining to coronary sinus which was very much dilated. Right trans-jugular approach was tried for balloon mitral valvotomy, but was unsuccessful due to a very large right atrium and coronary sinus. Retrograde non trans-septal approach was used and balloon valvotomy was done successfully using a 24 mm × 40 mm TYSHAK balloon without any major complication. Reduction in the transmitral pressure gradient on cardiac catheterization data and transthoracic echocardiography confirmed successful procedure. Balloon mitral valvotomy can be done successfully in patients with the above unusual cardiac anatomy with no major procedural complications. © 2015 Wiley Periodicals, Inc.
Functional organization of the language network in three- and six-year-old children.
Vissiennon, Kodjo; Friederici, Angela D; Brauer, Jens; Wu, Chiao-Yi
2017-04-01
The organization of the language network undergoes continuous changes during development as children learn to understand sentences. In the present study, functional magnetic resonance imaging and behavioral measures were utilized to investigate functional activation and functional connectivity (FC) in three-year-old (3yo) and six-year-old (6yo) children during sentence comprehension. Transitive German sentences varying the word order (subject-initial and object-initial) with case marking were presented auditorily. We selected children who were capable of processing the subject-initial sentences above chance level accuracy from each age group to ensure that we were tapping real comprehension. Both age groups showed a main effect of word order in the left posterior superior temporal gyrus (pSTG), with greater activation for object-initial compared to subject-initial sentences. However, age differences were observed in the FC between left pSTG and the left inferior frontal gyrus (IFG). The 6yo group showed stronger FC between the left pSTG and Brodmann area (BA) 44 of the left IFG compared to the 3yo group. For the 3yo group, in turn, the FC between left pSTG and left BA 45 was stronger than with left BA 44. Our study demonstrates that while task-related activation was comparable, the small behavioral differences between age groups were reflected in the underlying functional organization revealing the ongoing development of the neural language network. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Remembering 1500 pictures: the right hemisphere remembers better than the left.
Laeng, Bruno; Øvervoll, Morten; Ole Steinsvik, Oddmar
2007-03-01
We hypothesized that the right hemisphere would be superior to the left hemisphere in remembering having seen a specific picture before, given its superiority in perceptually encoding specific aspects of visual form. A large set of pictures (N=1500) of animals, human faces, artifacts, landscapes, and art paintings were shown for 2s in central vision, or tachistoscopically (for 100ms) in each half visual field, to normal participants who were then tested 1-6 days later for their recognition. Images that were presented initially to the right hemisphere were better recognized than those presented to the left hemisphere. These results, obtained with participants with intact brains, large number of stimuli, and long retention delays, are consistent with previously described hemispheric differences in the memory of split-brain patients.
Intrinsic functional network architecture of human semantic processing: Modules and hubs.
Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao
2016-05-15
Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.
Kanazawa, Yuji; Nakamura, Kimihiro; Ishii, Toru; Aso, Toshihiko; Yamazaki, Hiroshi; Omori, Koichi
2017-01-01
Sign language is an essential medium for everyday social interaction for deaf people and plays a critical role in verbal learning. In particular, language development in those people should heavily rely on the verbal short-term memory (STM) via sign language. Most previous studies compared neural activations during signed language processing in deaf signers and those during spoken language processing in hearing speakers. For sign language users, it thus remains unclear how visuospatial inputs are converted into the verbal STM operating in the left-hemisphere language network. Using functional magnetic resonance imaging, the present study investigated neural activation while bilinguals of spoken and signed language were engaged in a sequence memory span task. On each trial, participants viewed a nonsense syllable sequence presented either as written letters or as fingerspelling (4-7 syllables in length) and then held the syllable sequence for 12 s. Behavioral analysis revealed that participants relied on phonological memory while holding verbal information regardless of the type of input modality. At the neural level, this maintenance stage broadly activated the left-hemisphere language network, including the inferior frontal gyrus, supplementary motor area, superior temporal gyrus and inferior parietal lobule, for both letter and fingerspelling conditions. Interestingly, while most participants reported that they relied on phonological memory during maintenance, direct comparisons between letters and fingers revealed strikingly different patterns of neural activation during the same period. Namely, the effortful maintenance of fingerspelling inputs relative to letter inputs activated the left superior parietal lobule and dorsal premotor area, i.e., brain regions known to play a role in visuomotor analysis of hand/arm movements. These findings suggest that the dorsal visuomotor neural system subserves verbal learning via sign language by relaying gestural inputs to the classical left-hemisphere language network.
Mickleborough, Marla J S; Kelly, Michael E; Gould, Layla; Ekstrand, Chelsea; Lorentz, Eric; Ellchuk, Tasha; Babyn, Paul; Borowsky, Ron
2015-01-01
Functional magnetic resonance imaging (fMRI) is a noninvasive and reliable tool for mapping eloquent cortex in patients prior to brain surgery. Ensuring intact perceptual and cognitive processing is a key goal for neurosurgeons, and recent research has indicated the value of including attentional network processing in pre-surgical fMRI in order to help preserve such abilities, including reading, after surgery. We report a 42-year-old patient with a large cavernous malformation, near the left basal ganglia. The lesion measured 3.8 × 1.7 × 1.8 cm. In consultation with the patient and the multidisciplinary cerebrovascular team, the decision was made to offer the patient surgical resection. The surgical resection involved planned access via the left superior parietal lobule using stereotactic location. The patient declined an awake craniotomy; therefore, direct electrocortical stimulation (ECS) could not be used for intraoperative language localization in this case. Pre-surgical planning included fMRI localization of language, motor, sensory, and attentional processing. The key finding was that both reading and attention-processing tasks revealed consistent activation of the left superior parietal lobule, part of the attentional control network, and the site of the planned surgical access. Given this information, surgical access was adjusted to avoid interference with the attentional control network. The lesion was removed via the left inferior parietal lobule. The patient had no new neurologic deficits postoperatively but did develop mild neuropathic pain in the left hand. This case report supports recent research that indicates the value of including fMRI maps of attentional tasks along with traditional language-processing tasks in preoperative planning in patients undergoing neurosurgery procedures. © 2015 S. Karger AG, Basel.
Postural Effects on the Mental Rotation of Body-Related Pictures: An fMRI Study.
Qu, Fangbing; Wang, Jianping; Zhong, Yuan; Ye, Haosheng
2018-01-01
This study investigated the embodied effects involved in the mental rotation of pictures of body parts (hands and feet). Blood oxygen level-dependent (BOLD) signals were collected from 18 healthy volunteers who performed mental rotation tasks of rotated drawings of hands under different arm postures. Congruent drawings of hands (those congruent with left-hand posture) evoked stronger activation in the left supplementary motor area (SMA), left precentral gyrus, and left superior parietal lobule (SPL) than did incongruent drawings of hands. Congruent drawings of hands (those congruent with right-hand posture) evoked significant activation in the left inferior parietal lobule (IPL), right SMA, bilateral middle frontal gyrus (MFG), left inferior frontal gyrus (IFG), and bilateral superior frontal gyrus (SFG) compared to that evoked by the incongruent drawings of hands. Similar methodology was implemented with drawings of feet. However, no significant differences in brain activation were observed between congruent and incongruent drawings of feet. This finding suggests that body posture influences body part-related mental rotation in an effector-specific manner. A direct comparison between the medially and laterally rotated drawings revealed activation in the right IPL, left precentral gyrus, bilateral IFG, and bilateral SFG. These results suggest that biomechanical constraints affect the cognitive process of mental rotation.
Unusual presentation of total anomalous systemic venous connection.
Vaidyanathan, Swaminathan; Kothandam, Sivakumar; Kumar, Rajesh; Pradhan, Priya M; Agarwal, Ravi
2017-07-01
A 9-year-old girl who presented with dyspnea on exertion was diagnosed with total anomalous systemic venous connection to the left atrium (both venae cavae), no left superior vena cava, and a moderate-sized atrial septal defect with severe pulmonary arterial hypertension and ectopic atrial rhythm. She underwent septation of the common atrium using autologous pericardium, thereby rerouting the superior vena cava, inferior vena cava, and coronary sinus to the right atrium. Her postoperative course was uneventful. This case is reported for its rarity of presentation with severe pulmonary arterial hypertension and ectopic atrial rhythm.
Wang, L; Li, K; Zhang, Q; Zeng, Y; Dai, W; Su, Y; Wang, G; Tan, Y; Jin, Z; Yu, X; Si, T
2014-05-01
Most knowledge regarding the effects of antidepressant drugs is at the receptor level, distal from the nervous system effects that mediate their clinical efficacy. Using functional magnetic resonance imaging (fMRI), this study investigated the effects of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on resting-state brain function in patients with major depressive disorder (MDD). Fourteen first-episode drug-naive MDD patients completed two fMRI scans before and after 8 weeks of escitalopram therapy. Scans were also acquired in 14 matched healthy subjects. Data were analyzed using the regional homogeneity (ReHo) approach. Compared to controls, MDD patients before treatment demonstrated decreased ReHo in the frontal (right superior frontal gyrus), temporal (left middle and right inferior temporal gyri), parietal (right precuneus) and occipital (left superior occipital gyrus and right cuneus) cortices, and increased ReHo in the left dorsal medial prefrontal gyrus and left anterior lobe of the cerebellum. Compared to the unmedicated state, ReHo in the patients after treatment was decreased in the left dorsal medial prefrontal gyrus, the right insula and the bilateral thalamus, and increased in the right superior frontal gyrus. Compared to controls, patients after treatment displayed a ReHo decrease in the right precuneus and a ReHo increase in the left anterior lobe of the cerebellum. Successful treatment with escitalopram may be associated with modulation of resting-state brain activity in regions within the fronto-limbic circuit. This study provides new insight into the effects of antidepressants on functional brain systems in MDD.
Enlarged right superior temporal gyrus in children and adolescents with autism.
Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Vitale, Matthew P; Hardan, Antonio Y
2010-11-11
The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age=13.5±3.4years; full-scale IQ=103.6±13.4) and 19 healthy controls (mean age=13.7±3.0years; full-scale IQ=103.9±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes was significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. Copyright © 2010 Elsevier B.V. All rights reserved.
Enlarged Right Superior Temporal Gyrus in Children and Adolescents with Autism
Jou, Roger J.; Minshew, Nancy J.; Keshavan, Matcheri S.; Vitale, Matthew P.; Hardan, Antonio Y.
2010-01-01
The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age = 13.5 ±3.4 years; full-scale IQ = 103.6 ±13.4) and 19 healthy controls (mean age = 13.7 ±3.0 years; full-scale IQ = 103.9 ±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes were significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. PMID:20833154
Left atrial extension of hepatoblastoma via left superior pulmonary vein.
Atalay, Atakan; Gocen, Uğur; Yaliniz, Hafize
2014-10-01
Hepatoblastoma is the most common malignant liver tumour in early childhood. The metastatic extension of hepatoblastoma into the left atrium via the pulmonary vein is rare. Reported lesions almost always involve a right-sided approach. Here we report the case of a 3-year-old girl with a recurrent hepatoblastoma at multiple sites, including the left atrium, brain, and lung. The patient was treated surgically for the prevention of further embolic complications and cardiac failure.
Dundas, Eva M.; Plaut, David C.; Behrmann, Marlene
2014-01-01
The adult human brain would appear to have specialized and independent neural systems for the visual processing of words and faces. Extensive evidence has demonstrated greater selectivity for written words in the left over right hemisphere, and, conversely, greater selectivity for faces in the right over left hemisphere. This study examines the emergence of these complementary neural profiles, as well as the possible relationship between them. Using behavioral and neurophysiological measures, in adults, we observed the standard finding of greater accuracy and a larger N170 ERP component in the left over right hemisphere for words, and conversely, greater accuracy and a larger N170 in the right over the left hemisphere for faces. We also found that, although children aged 7-12 years revealed the adult hemispheric pattern for words, they showed neither a behavioral nor a neural hemispheric superiority for faces. Of particular interest, the magnitude of their N170 for faces in the right hemisphere was related to that of the N170 for words in their left hemisphere. These findings suggest that the hemispheric organization of face recognition and of word recognition do not develop independently, and that word lateralization may precede and drive later face lateralization. A theoretical account for the findings, in which competition for visual representations unfolds over the course of development, is discussed. PMID:24933662
Dundas, Eva M; Plaut, David C; Behrmann, Marlene
2014-08-01
The adult human brain would appear to have specialized and independent neural systems for the visual processing of words and faces. Extensive evidence has demonstrated greater selectivity for written words in the left over right hemisphere, and, conversely, greater selectivity for faces in the right over left hemisphere. This study examines the emergence of these complementary neural profiles, as well as the possible relationship between them. Using behavioral and neurophysiological measures, in adults, we observed the standard finding of greater accuracy and a larger N170 ERP component in the left over right hemisphere for words, and conversely, greater accuracy and a larger N170 in the right over the left hemisphere for faces. We also found that although children aged 7-12 years revealed the adult hemispheric pattern for words, they showed neither a behavioral nor a neural hemispheric superiority for faces. Of particular interest, the magnitude of their N170 for faces in the right hemisphere was related to that of the N170 for words in their left hemisphere. These findings suggest that the hemispheric organization of face recognition and of word recognition does not develop independently, and that word lateralization may precede and drive later face lateralization. A theoretical account for the findings, in which competition for visual representations unfolds over the course of development, is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Braddick, Oliver; Atkinson, Janette; Akshoomoff, Natacha; Newman, Erik; Curley, Lauren B; Gonzalez, Marybel Robledo; Brown, Timothy; Dale, Anders; Jernigan, Terry
2017-12-01
Reduced global motion sensitivity, relative to global static form sensitivity, has been found in children with many neurodevelopmental disorders, leading to the "dorsal stream vulnerability" hypothesis (Braddick et al., 2003). Individual differences in typically developing children's global motion thresholds have been shown to be associated with variations in specific parietal cortical areas (Braddick et al., 2016). Here, in 125 children aged 5-12years, we relate individual differences in global motion and form coherence thresholds to fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF), a major fibre tract communicating between parietal lobe and anterior cortical areas. We find a positive correlation between FA of the right SLF and individual children's sensitivity to global motion coherence, while FA of the left SLF shows a negative correlation. Further analysis of parietal cortical area data shows that this is also asymmetrical, showing a stronger association with global motion sensitivity in the left hemisphere. None of these associations hold for an analogous measure of global form sensitivity. We conclude that a complex pattern of structural asymmetry, including the parietal lobe and the superior longitudinal fasciculus, is specifically linked to the development of sensitivity to global visual motion. This pattern suggests that individual differences in motion sensitivity are primarily linked to parietal brain areas interacting with frontal systems in making decisions on integrated motion signals, rather than in the extra-striate visual areas that perform the initial integration. The basis of motion processing deficits in neurodevelopmental disorders may depend on these same structures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lausberg, Hedda; Kazzer, Philipp; Heekeren, Hauke R; Wartenburger, Isabell
2015-10-01
Neuropsychological lesion studies evidence the necessity to differentiate between various forms of tool-related actions such as real tool use, tool use demonstration with tool in hand and without physical target object, and pantomime without tool in hand. However, thus far, neuroimaging studies have primarily focused only on investigating tool use pantomimes. The present fMRI study investigates pantomime without tool in hand as compared to tool use demonstration with tool in hand in order to explore patterns of cerebral signal modulation associated with acting with imaginary tools in hand. Fifteen participants performed with either hand (i) tool use pantomime with an imaginary tool in hand in response to visual tool presentation and (ii) tool use demonstration with tool in hand in response to visual-tactile tool presentation. In both conditions, no physical target object was present. The conjunction analysis of the right and left hands executions of tool use pantomime relative to tool use demonstration yielded significant activity in the left middle and superior temporal lobe. In contrast, demonstration relative to pantomime revealed large bihemispherically distributed homologous areas of activity. Thus far, fMRI studies have demonstrated the relevance of the left middle and superior temporal gyri in viewing, naming, and matching tools and related actions and contexts. Since in our study all these factors were equally (ir)relevant both in the tool use pantomime and the tool use demonstration conditions, the present findings enhance the knowledge about the function of these brain regions in tool-related cognitive processes. The two contrasted conditions only differ regarding the fact that the pantomime condition requires the individual to act with an imaginary tool in hand. Therefore, we suggest that the left middle and superior temporal gyri are specifically involved in integrating the projected mental image of a tool in the execution of a tool-specific movement concept. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oechslin, Mathias S.; Imfeld, Adrian; Loenneker, Thomas; Meyer, Martin; Jäncke, Lutz
2009-01-01
Previous neuroimaging studies have demonstrated that musical expertise leads to functional alterations in language processing. We utilized diffusion tensor imaging (DTI) to investigate white matter plasticity in musicians with absolute pitch (AP), relative pitch and non-musicians. Using DTI, we analysed the fractional anisotropy (FA) of the superior longitudinal fasciculus (SLF), which is considered the most primary pathway for processing and production of speech and music. In association with different levels of musical expertise, we found that AP is characterized by a greater left than right asymmetry of FA in core fibres of the SLF. A voxel-based analysis revealed three clusters within the left hemisphere SLF that showed significant positive correlations with error rates only for AP-musicians in an AP-test, but not for musicians without AP. We therefore conclude that the SLF architecture in AP musicians is related to AP acuity. In order to reconcile our observations with general aspects of development of fibre bundles, we introduce the Pioneer Axon Thesis, a theoretical approach to formalize axonal arrangements of major white matter pathways. PMID:20161812
Chou, Chien-Chih; Chen, Hsin-Han; Tsai, Yi-Yu; Li, You-Ling; Lin, Hui-Ju
2015-03-08
We reported a case of sudden monocular vision loss after calcium hydroxyapatite (CaHA) injection into the nasal tip and dorsum with detailed retina images. A healthy, 35-year-old woman received CaHA filler injection for nose augmentation. Ten minutes after the procedure, she developed nausea, vomiting, headache, ptosis, and left periorbital pain. After 30 minutes, she complained of progressively blurring vision in the left eye. The best-corrected visual acuity (BCVA) in her left eye was 30 cm ahead of hand motion. Left exotropia was noted in primary gaze. Limitations in adduction, supraduction, and infraduction of the left eye were also observed. Slit lamp examination of the left eye revealed a pink conjunctiva, a clear cornea, a mild anterior chamber reaction, a sluggish papillary light reflex, and a semi-dilated pupil. A positive relative afferent pupillary defect was observed in the left eye. Fundus examination revealed optic disc edema and some linear whitish opacity over the superior and temporal sites in the left eye, suggesting multiple CaHA emboli in the choroid vessels. Although the majority of adverse reactions are mild and transient, surgeons should be alert about extremely rare serious adverse events such as visual loss.
Cservenka, Anita; Casimo, Kaitlyn; Fair, Damien; Nagel, Bonnie
2014-01-01
Adolescents with a family history of alcoholism (FHP) are at heightened risk for developing alcohol use disorders (AUDs). The nucleus accumbens (NAcc), a key brain region for reward processing, is implicated in the development of AUDs. Thus, functional connectivity of the NAcc may be an important marker of risk in FHP youth. Resting state functional magnetic resonance imaging (rs-fcMRI) was used to examine the intrinsic connectivity of the NAcc in 47 FHP and 50 family history negative (FHN) youth, ages 10–16 years old. FHP and FHN adolescents showed significant group differences in resting state synchrony between the left NAcc and bilateral inferior frontal gyri and the left postcentral gyrus (PG). Additionally, FHP youth differed from FHN youth in right NAcc functional connectivity with the left orbitofrontal cortex (OFC), left superior temporal gyrus, right cerebellum, left PG, and right occipital cortex. These results indicate that FHP youth have less segregation between the NAcc and executive functioning brain regions, and less integration with reward-related brain areas, such as the OFC. The findings of the current study highlight that premorbid atypical connectivity of appetitive systems, in the absence of heavy alcohol use, may be a risk marker in FHP adolescents. PMID:24440571
Normal orbit skeletal changes in adolescents as determined through cone-beam computed tomography.
Lee, B; Flores-Mir, C; Lagravère, M O
2016-11-10
To determine three-dimensional spatial orbit skeletal changes in adolescents over a 19 to 24 months observation period assessed through cone-beam computed tomography (CBCT). The sample consisted of 50 adolescents aged 11 to 17. All were orthodontic patients who had two CBCTs taken with an interval of 19 to 24 months between images. The CBCTs were analyzed using the third-party software Avizo. Sixteen anatomical landmarks resulting in 24 distances were used to measure spatial structural changes of both orbits. Reliability and measurement error of all landmarks were calculated using ten CBCTs. Descriptive and t-test statistical analyses were used to determine the overall changes in the orbits. All landmarks showed excellent reliability with the largest measurement error being the Y-coordinate of the left most medial point of the temporalis grooves at 0.95 mm. The mean differences of orbital changes between time 1 and time 2 in the transverse, antero-posterior and vertical directions were 0.97, 0.36 and 0.33 mm respectively. Right to left most antero-inferior superior orbital rim distance had the greatest overall transverse change of 4.37 mm. Right most posterior point of lacrimal crest to right most postero-lateral point of the superior orbital fissure had the greatest overall antero-posterior change of 0.52 mm. Lastly, left most antero-inferior superior orbital rim to left most antero-superior inferior orbital rim had the greatest overall vertical change of 0.63 mm. The orbit skeletal changes in a period of 19-24 months in a sample of 11-17 year olds were statistically significant, but are not considered to be clinically significant. The overall average changes of orbit measurements were less than 1 mm.
Saggar, Manish; Quintin, Eve-Marie; Kienitz, Eliza; Bott, Nicholas T; Sun, Zhaochun; Hong, Wei-Chen; Chien, Yin-hsuan; Liu, Ning; Dougherty, Robert F; Royalty, Adam; Hawthorne, Grace; Reiss, Allan L
2015-05-28
A novel game-like and creativity-conducive fMRI paradigm is developed to assess the neural correlates of spontaneous improvisation and figural creativity in healthy adults. Participants were engaged in the word-guessing game of Pictionary(TM), using an MR-safe drawing tablet and no explicit instructions to be "creative". Using the primary contrast of drawing a given word versus drawing a control word (zigzag), we observed increased engagement of cerebellum, thalamus, left parietal cortex, right superior frontal, left prefrontal and paracingulate/cingulate regions, such that activation in the cingulate and left prefrontal cortices negatively influenced task performance. Further, using parametric fMRI analysis, increasing subjective difficulty ratings for drawing the word engaged higher activations in the left pre-frontal cortices, whereas higher expert-rated creative content in the drawings was associated with increased engagement of bilateral cerebellum. Altogether, our data suggest that cerebral-cerebellar interaction underlying implicit processing of mental representations has a facilitative effect on spontaneous improvisation and figural creativity.
Saggar, Manish; Quintin, Eve-Marie; Kienitz, Eliza; Bott, Nicholas T.; Sun, Zhaochun; Hong, Wei-Chen; Chien, Yin-hsuan; Liu, Ning; Dougherty, Robert F.; Royalty, Adam; Hawthorne, Grace; Reiss, Allan L.
2015-01-01
A novel game-like and creativity-conducive fMRI paradigm is developed to assess the neural correlates of spontaneous improvisation and figural creativity in healthy adults. Participants were engaged in the word-guessing game of PictionaryTM, using an MR-safe drawing tablet and no explicit instructions to be “creative”. Using the primary contrast of drawing a given word versus drawing a control word (zigzag), we observed increased engagement of cerebellum, thalamus, left parietal cortex, right superior frontal, left prefrontal and paracingulate/cingulate regions, such that activation in the cingulate and left prefrontal cortices negatively influenced task performance. Further, using parametric fMRI analysis, increasing subjective difficulty ratings for drawing the word engaged higher activations in the left pre-frontal cortices, whereas higher expert-rated creative content in the drawings was associated with increased engagement of bilateral cerebellum. Altogether, our data suggest that cerebral-cerebellar interaction underlying implicit processing of mental representations has a facilitative effect on spontaneous improvisation and figural creativity. PMID:26018874
Luo, Cheng; Yang, Fei; Deng, Jiayan; Zhang, Yaodan; Hou, Changyue; Huang, Yue; Cao, Weifang; Wang, Jianjun; Xiao, Ruhui; Zeng, Nanlin; Wang, Xiaoming; Yao, Dezhong
2016-06-01
There are 2 intrinsic networks in the human brain: the task positive network (TPN) and task negative network (alternately termed the default mode network, DMN) in which inverse correlations have been observed during resting state and event-related functional magnetic resonance imaging (fMRI). The antagonism between the 2 networks might indicate a dynamic interaction in the brain that is associated with development.To evaluate the alterations in the relations of the 2 networks in children with benign childhood epilepsy with centrotemporal spikes (BECTS), resting state fMRI was performed in 17 patients with BECTS and 17 healthy controls. The functional and effective connectivities of 29 nodes in the TPN and DMN were analyzed. Positive functional connectivity (FC) within the networks and negative FC between the 2 networks were observed in both groups.The patients exhibited increased FC within both networks, particularly in the frontoparietal nodes such as the left superior frontal cortex, and enhanced antagonism between the 2 networks, suggesting abnormal functional integration of the nodes of the 2 networks in the patients. Granger causality analysis revealed a significant difference in the degree of outflow to inflow in the left superior frontal cortex and the left ventral occipital lobe.The alterations observed in the combined functional and effective connectivity analyses might indicate an association of an abnormal ability to integrate information between the DMN and TPN and the epileptic neuropathology of BECTS and provide preliminary evidence supporting the occurrence of abnormal development in children with BECTS.
Qiu, Wei-hong; Wu, Hui-xiang; Yang, Qing-lu; Kang, Zhuang; Chen, Zhao-cong; Li, Kui; Qiu, Guo-rong; Xie, Chun-qing; Wan, Gui-fang; Chen, Shao-qiong
2017-01-01
Aphasia is an acquired language disorder that is a common consequence of stroke. The pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language. The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults. The activation frequency, volumes, and intensity in the regions related to language, such as the left inferior frontal gyrus (Broca's area), the left superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca's area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the left inferior temporal gyrus was stronger in patients compared with healthy controls. These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas. PMID:28250756
2013-01-01
Background There is an accumulating body of evidence indicating that neuronal functional specificity to basic sensory stimulation is mutable and subject to experience. Although fMRI experiments have investigated changes in brain activity after relative to before perceptual learning, brain activity during perceptual learning has not been explored. This work investigated brain activity related to auditory frequency discrimination learning using a variational Bayesian approach for source localization, during simultaneous EEG and fMRI recording. We investigated whether the practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, control the learning process. Results The results of fMRI analyses revealed significant attention and learning related activity in left and right superior temporal gyrus STG as well as the left inferior frontal gyrus IFG. Current source localization of simultaneously recorded EEG data was estimated using a variational Bayesian method. Analysis of current localized to the left inferior frontal gyrus and the right superior temporal gyrus revealed gamma band activity correlated with behavioral performance. Conclusions Rapid improvement in task performance is accompanied by plastic changes in the sensory cortex as well as superior areas gated by selective attention. Together the fMRI and EEG results suggest that gamma band activity in the right STG and left IFG plays an important role during perceptual learning. PMID:23316957
Shtyrov, Yury; Osswald, Katja; Pulvermüller, Friedemann
2008-01-01
The mismatch negativity response, considered a brain correlate of automatic preattentive auditory processing, is enhanced for word stimuli as compared with acoustically matched pseudowords. This lexical enhancement, taken as a signature of activation of language-specific long-term memory traces, was investigated here using functional magnetic resonance imaging to complement the previous electrophysiological studies. In passive oddball paradigm, word stimuli were randomly presented as rare deviants among frequent pseudowords; the reverse conditions employed infrequent pseudowords among word stimuli. Random-effect analysis indicated clearly distinct patterns for the different lexical types. Whereas the hemodynamic mismatch response was significant for the word deviants, it did not reach significance for the pseudoword conditions. This difference, more pronounced in the left than right hemisphere, was also assessed by analyzing average parameter estimates in regions of interests within both temporal lobes. A significant hemisphere-by-lexicality interaction confirmed stronger blood oxygenation level-dependent mismatch responses to words than pseudowords in the left but not in the right superior temporal cortex. The increased left superior temporal activation and the laterality of cortical sources elicited by spoken words compared with pseudowords may indicate the activation of cortical circuits for lexical material even in passive oddball conditions and suggest involvement of the left superior temporal areas in housing such word-processing neuronal circuits.
1991-08-14
tip will enter the superior vena cava and right atrium at different distances, denoted by the incremental markings every 10 cm on the catheter. Once...mitral valve is open, an unobstructed column of blood exists from the PA to the left atrium and the left ventricle. Therefore, pressure is approximately...Pressures measured by the distal port (PA pressure) reflect end-diastolic pressures. RA = right atrium ; RV x right ventricle, LA z left atrium ; LV = left
Pastura, Giuseppe; Kubo, Tadeu Takao Almodovar; Gasparetto, Emerson Leandro; Figueiredo, Otavio; Mattos, Paulo; Prüfer Araújo, Alexandra
2017-12-01
Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) rests on clinical criteria. Nonetheless, neuroimaging studies have demonstrated that children with ADHD have different cortical thickness and volume measures to typically developing children (TDC). In general, studies do not evaluate the influence of clinical presentation in the brain morphometry of ADHD children. Our objective was to perform a pilot study in order to evaluate cortical thickness and brain volume in a sample of Brazilian ADHD children and compare these to those of TDC, taking into account the influence of clinical presentation. We performed an analytic study comparing 17 drug-naïve ADHD children of both genders, aged between 7 and 10, and 16 TDC. ADHD subjects were first considered as one group and further separated based on clinical presentation. The brain volume did not differ between patients and TDC. Smaller cortical thicknesses were identified on the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex. When compared to TDC, combined and inattentive ADHD presentations depicted smaller cortical thickness with high significance and power. The same magnitude of results was not observed when comparing inattentive ADHD and TDC. In this pilot study, ADHD is associated with abnormalities involving the cortical thickness of the posterior attentional system. The cortical thickness in the left superior, medium and inferior temporal cortex, as well as in the left inferior parietal cortex may differ according to ADHD presentations.
Guo, Wenbin; Liu, Feng; Zhang, Zhikun; Liu, Guiying; Liu, Jianrong; Yu, Liuyu; Xiao, Changqing; Zhao, Jingping
2015-11-01
The default-mode network (DMN) is vital in the neurobiology of schizophrenia, and the cerebellum participates in the high-order cognitive network such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities remains unclear in unaffected siblings of schizophrenia patients. Forty-six unaffected siblings of schizophrenia patients and 46 healthy controls were recruited for a resting-state scan. The images were analyzed using the functional connectivity (FC) method. The siblings showed significantly increased FCs between the left Crus I and the left superior medial prefrontal cortex (MPFC), as well as between the lobule IX and the bilateral MPFC (orbital part) and right superior MPFC compared with the controls. No significantly decreased FC was observed in the siblings relative to the controls. The analyses were replicated in 49 first-episode, drug-naive patients with schizophrenia, and the results showed that the siblings and the patients shared increased FCs between the left Crus I and the left superior MPFC, as well as between the lobule IX and the left MPFC (orbital part) compared with the controls. These findings suggest that increased cerebellar-DMN connectivities emerge earlier than illness onset, which highlight the contribution of the cerebellum to the DMN alterations in unaffected siblings. The shared increased cerebellar-DMN connectivities between the patients and the siblings may be used as candidate endophenotypes for schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Combat Surgery: Medical Decision Trees for Treatment of Naval Combat Casualties
1991-02-01
inferior vena cava ? NO Is there a hole or tear of left atrium and/or pulmonary veins? NO l ** HEART INJURY ASSESSMENT MODULE T027 2...from holes in either superior or inferior vena cava ? YES NO See Pericardial Vena Cava Injury Module See Bleeding Into Pericardium Module T018...MODULE T018 1/1 Is blood coming from area of superior vena cava ? YES NO See Superior Vena Cava Wound
Left hemisphere specialization for the control of voluntary movement rate.
Agnew, John A; Zeffiro, Thomas A; Eden, Guinevere F
2004-05-01
Although persuasive behavioral evidence demonstrates the superior dexterity of the right hand in most people under a variety of conditions, little is known about the neural mechanisms responsible for this phenomenon. As this lateralized superiority is most evident during the performance of repetitive, speeded movement, we used parametric rate variations to compare visually paced movement of the right and left hands. Twelve strongly right-handed subjects participated in a functional magnetic resonance imaging (fMRI) experiment involving variable rate thumb movements. For movements of the right hand, contralateral rate-related activity changes were identified in the precentral gyrus, thalamus, and posterior putamen. For left-hand movements, activity was seen only in the contralateral precentral gyrus, consistent with the existence of a rate-sensitive motor control subsystem involving the left, but not the right, medial premotor corticostriatal loop in right-handed individuals. We hypothesize that the right hemisphere system is less skilled at controlling variable-rate movements and becomes maximally engaged at a lower movement rate without further modulation. These findings demonstrate that right- and left-hand movements engage different neural systems to control movement, even during a relatively simple thumb flexion task. Specialization of the left hemisphere corticostriatal system for dexterity is reflected in asymmetric mechanisms for movement rate control.
Nestor, Paul G; Onitsuka, Toshiaki; Gurrera, Ronald J; Niznikiewicz, Margaret; Frumin, Melissa; Shenton, Martha E; McCarley, Robert W
2007-03-01
We sought to identify the functional correlates of reduced magnetic resonance imaging (MRI) volumes of the superior temporal gyrus (STG) and the fusiform gyrus (FG) in patients with chronic schizophrenia. MRI volumes, positive/negative symptoms, and neuropsychological tests of facial memory and executive functioning were examined within the same subjects. The results indicated two distinct, dissociable brain structure-function relationships: (1) reduced left STG volume-positive symptoms-executive deficits; (2) reduced left FG-negative symptoms-facial memory deficits. STG and FG volume reductions may each make distinct contributions to symptoms and cognitive deficits of schizophrenia.
Multi-modal information processing for visual workload relief
NASA Technical Reports Server (NTRS)
Burke, M. W.; Gilson, R. D.; Jagacinski, R. J.
1980-01-01
The simultaneous performance of two single-dimensional compensatory tracking tasks, one with the left hand and one with the right hand, is discussed. The tracking performed with the left hand was considered the primary task and was performed with a visual display or a quickened kinesthetic-tactual (KT) display. The right-handed tracking was considered the secondary task and was carried out only with a visual display. Although the two primary task displays had afforded equivalent performance in a critical tracking task performed alone, in the dual-task situation the quickened KT primary display resulted in superior secondary visual task performance. Comparisons of various combinations of primary and secondary visual displays in integrated or separated formats indicate that the superiority of the quickened KT display is not simply due to the elimination of visual scanning. Additional testing indicated that quickening per se also is not the immediate cause of the observed KT superiority.
Twomey, Tae; Waters, Dafydd; Price, Cathy J; Evans, Samuel; MacSweeney, Mairéad
2017-09-27
To investigate how hearing status, sign language experience, and task demands influence functional responses in the human superior temporal cortices (STC) we collected fMRI data from deaf and hearing participants (male and female), who either acquired sign language early or late in life. Our stimuli in all tasks were pictures of objects. We varied the linguistic and visuospatial processing demands in three different tasks that involved decisions about (1) the sublexical (phonological) structure of the British Sign Language (BSL) signs for the objects, (2) the semantic category of the objects, and (3) the physical features of the objects.Neuroimaging data revealed that in participants who were deaf from birth, STC showed increased activation during visual processing tasks. Importantly, this differed across hemispheres. Right STC was consistently activated regardless of the task whereas left STC was sensitive to task demands. Significant activation was detected in the left STC only for the BSL phonological task. This task, we argue, placed greater demands on visuospatial processing than the other two tasks. In hearing signers, enhanced activation was absent in both left and right STC during all three tasks. Lateralization analyses demonstrated that the effect of deafness was more task-dependent in the left than the right STC whereas it was more task-independent in the right than the left STC. These findings indicate how the absence of auditory input from birth leads to dissociable and altered functions of left and right STC in deaf participants. SIGNIFICANCE STATEMENT Those born deaf can offer unique insights into neuroplasticity, in particular in regions of superior temporal cortex (STC) that primarily respond to auditory input in hearing people. Here we demonstrate that in those deaf from birth the left and the right STC have altered and dissociable functions. The right STC was activated regardless of demands on visual processing. In contrast, the left STC was sensitive to the demands of visuospatial processing. Furthermore, hearing signers, with the same sign language experience as the deaf participants, did not activate the STCs. Our data advance current understanding of neural plasticity by determining the differential effects that hearing status and task demands can have on left and right STC function. Copyright © 2017 Twomey et al.
Retinal venous thrombosis in a young patient with coagulation factor XII deficiency.
Borrego-Sanz, L; Santos-Bueso, E; Sáenz-Francés, F; Martínez-de-la-Casa, J M; García-Feijoo, J; Gegúndez-Fernández, J A; García-Sánchez, J
2014-08-01
A 35-year-old woman, with no relevant medical history, was referred for sudden vision loss in the left eye. Ophthalmological examination showed best corrected visual acuity of 1.0 in the right eye and 0.3 in left eye, with normal anterior pole and intraocular pressure. Fundus examination of the left eye revealed a venous thrombosis in the superior temporal branch, with dilated and tortuous retinal veins. The patient was referred to the hematology unit for thrombophilia study, and was diagnosed with a coagulation XII or Hageman factor deficiency. The development of retinal vessel occlusions, in patients under 50 years of age, is frequently associated with thrombophilia or hypercoagulability disorders. Factor XII deficiency is a rare condition, and its presence could contribute to a higher risk of thromboembolic events. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.
The seats of reason? An imaging study of deductive and inductive reasoning.
Goel, V; Gold, B; Kapur, S; Houle, S
1997-03-24
We carried out a neuroimaging study to test the neurophysiological predictions made by different cognitive models of reasoning. Ten normal volunteers performed deductive and inductive reasoning tasks while their regional cerebral blood flow pattern was recorded using [15O]H2O PET imaging. In the control condition subjects semantically comprehended sets of three sentences. In the deductive reasoning condition subjects determined whether the third sentence was entailed by the first two sentences. In the inductive reasoning condition subjects reported whether the third sentence was plausible given the first two sentences. The deduction condition resulted in activation of the left inferior frontal gyrus (Brodmann areas 45, 47). The induction condition resulted in activation of a large area comprised of the left medial frontal gyrus, the left cingulate gyrus, and the left superior frontal gyrus (Brodmann areas 8, 9, 24, 32). Induction was distinguished from deduction by the involvement of the medial aspect of the left superior frontal gyrus (Brodmann areas 8, 9). These results are consistent with cognitive models of reasoning that postulate different mechanisms for inductive and deductive reasoning and view deduction as a formal rule-based process.
Cerebellar contributions to biological motion perception in autism and typical development.
Jack, Allison; Keifer, Cara M; Pelphrey, Kevin A
2017-04-01
Growing evidence suggests that posterior cerebellar lobe contributes to social perception in healthy adults. However, they know little about how this process varies across age and with development. Using cross-sectional fMRI data, they examined cerebellar response to biological (BIO) versus scrambled (SCRAM) motion within typically developing (TD) and autism spectrum disorder (ASD) samples (age 4-30 years old), characterizing cerebellar response and BIO > SCRAM-selective effective connectivity, as well as associations with age and social ability. TD individuals recruited regions throughout cerebellar posterior lobe during BIO > SCRAM, especially bilateral lobule VI, and demonstrated connectivity with right posterior superior temporal sulcus (RpSTS) in left VI, Crus I/II, and VIIIb. ASD individuals showed BIO > SCRAM activity in left VI and left Crus I/II, and bilateral connectivity with RpSTS in Crus I/II and VIIIb/IX. No between-group differences emerged in well-matched subsamples. Among TD individuals, older age predicted greater BIO > SCRAM response in left VIIb and left VIIIa/b, but reduced connectivity between RpSTS and widespread regions of the right cerebellum. In ASD, older age predicted greater response in left Crus I and bilateral Crus II, but decreased effective connectivity with RpSTS in bilateral Crus I/II. In ASD, increased BIO > SCRAM signal in left VI/Crus I and right Crus II, VIIb, and dentate predicted lower social symptomaticity; increased effective connectivity with RpSTS in right Crus I/II and bilateral VI and I-V predicted greater symptomaticity. These data suggest that posterior cerebellum contributes to the neurodevelopment of social perception in both basic and clinical populations. Hum Brain Mapp 38:1914-1932, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?
Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S
2015-09-01
Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min
2018-06-01
We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Müller-Vahl, Kirsten R; Grosskreutz, Julian; Prell, Tino; Kaufmann, Jörn; Bodammer, Nils; Peschel, Thomas
2014-01-07
Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS "only" (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded.
Li, Ting; Yan, Xu; Li, Yuan; Wang, Junjie; Li, Qiang; Li, Hong; Li, Junfeng
2017-01-01
There have been many neuroimaging studies of human personality traits, and it have already provided glimpse into the neurobiology of complex traits. And most of previous studies adopt voxel-based morphology (VBM) analysis to explore the brain-personality mechanism from two levels (vertex and regional based), the findings are mixed with great inconsistencies and the brain-personality relations are far from a full understanding. Here, we used a new method of surface-based morphology (SBM) analysis, which provides better alignment of cortical landmarks to generate about the associations between cortical morphology and the personality traits across 120 healthy individuals at both vertex and regional levels. While to further reveal local functional correlates of the morphology-personality relationships, we related surface-based functional homogeneity measures to the regions identified in the regional-based SBM correlation. Vertex-wise analysis revealed that people with high agreeableness exhibited larger areas in the left superior temporal gyrus. Based on regional parcellation we found that extroversion was negatively related with the volume of the left lateral occipito-temporal gyrus and agreeableness was negatively associated with the sulcus depth of the left superior parietal lobule. Moreover, increased regional homogeneity in the left lateral occipito-temporal gyrus is related to the scores of extroversion, and increased regional homogeneity in the left superior parietal lobule is related to the scores of agreeableness. These findings provide supporting evidence of a link between personality and brain structural mysteries with a method of SBM, and further suggest that local functional homogeneity of personality traits has neurobiological relevance that is likely based on anatomical substrates.
Simard, Isabelle; Luck, David; Mottron, Laurent; Zeffiro, Thomas A; Soulières, Isabelle
2015-01-01
Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM) test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid "reasoning" network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual perception has a central role in autistic cognition.
Simard, Isabelle; Luck, David; Mottron, Laurent; Zeffiro, Thomas A.; Soulières, Isabelle
2015-01-01
Different test types lead to different intelligence estimates in autism, as illustrated by the fact that autistic individuals obtain higher scores on the Raven's Progressive Matrices (RSPM) test than they do on the Wechsler IQ, in contrast to relatively similar performance on both tests in non-autistic individuals. However, the cerebral processes underlying these differences are not well understood. This study investigated whether activity in the fluid “reasoning” network, which includes frontal, parietal, temporal and occipital regions, is differently modulated by task complexity in autistic and non-autistic individuals during the RSPM. In this purpose, we used fMRI to study autistic and non-autistic participants solving the 60 RSPM problems focussing on regions and networks involved in reasoning complexity. As complexity increased, activity in the left superior occipital gyrus and the left middle occipital gyrus increased for autistic participants, whereas non-autistic participants showed increased activity in the left middle frontal gyrus and bilateral precuneus. Using psychophysiological interaction analyses (PPI), we then verified in which regions did functional connectivity increase as a function of reasoning complexity. PPI analyses revealed greater connectivity in autistic, compared to non-autistic participants, between the left inferior occipital gyrus and areas in the left superior frontal gyrus, right superior parietal lobe, right middle occipital gyrus and right inferior temporal gyrus. We also observed generally less modulation of the reasoning network as complexity increased in autistic participants. These results suggest that autistic individuals, when confronted with increasing task complexity, rely mainly on visuospatial processes when solving more complex matrices. In addition to the now well-established enhanced activity observed in visual areas in a range of tasks, these results suggest that the enhanced reliance on visual perception has a central role in autistic cognition. PMID:26594629
ERIC Educational Resources Information Center
Suegami, Takashi; Laeng, Bruno
2013-01-01
It has been shown that the left and right cerebral hemispheres (LH and RH) respectively process qualitative or "categorical" spatial relations and metric or "coordinate" spatial relations. However, categorical spatial information could be thought as divided into two types: semantically-coded and visuospatially-coded categorical information. We…
Vijayaraman, Pugazhendhi; Dandamudi, Gopi; Naperkowski, Angela; Oren, Jess; Storm, Randle; Ellenbogen, Kenneth A
2012-10-01
Complete electrical isolation of pulmonary veins (PVs) remains the cornerstone of ablation therapy for atrial fibrillation. Entrance block without exit block has been reported to occur in 40% of the patients. Far-field capture (FFC) can occur during pacing from the superior PVs to assess exit block, and this may appear as persistent conduction from PV to left atrium (LA). To facilitate accurate assessment of exit block. Twenty consecutive patients with symptomatic atrial fibrillation referred for ablation were included in the study. Once PV isolation (entrance block) was confirmed, pacing from all the bipoles on the Lasso catheter was used to assess exit block by using a pacing stimulus of 10 mA at 2 ms. Evidence for PV capture without conduction to LA was necessary to prove exit block. If conduction to LA was noticed, pacing output was decreased until there was PV capture without conduction to LA or no PV capture was noted to assess for far-field capture in both the upper PVs. All 20 patients underwent successful isolation (entrance block) of all 76 (4 left common PV) veins: mean age 58 ± 9 years; paroxysmal atrial fibrillation 40%; hypertension 70%, diabetes mellitus 30%, coronary artery disease 15%; left ventricular ejection fraction 55% ± 10%; LA size 42 ± 11 mm. Despite entrance block, exit block was absent in only 16% of the PVs, suggesting persistent PV to LA conduction. FFC of LA appendage was noted in 38% of the left superior PVs. FFC of the superior vena cava was noted in 30% of the right superior PVs. The mean pacing threshold for FFC was 7 ± 4 mA. Decreasing pacing output until only PV capture (loss of FFC) is noted was essential to confirm true exit block. FFC of LA appendage or superior vena cava can masquerade as persistent PV to LA conduction. A careful assessment for PV capture at decreasing pacing output is essential to exclude FFC. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Echocardiographic characteristics of the criss-cross heart.
Yang, Ya-Li; Wang, Xin-Fang; Cheng, Tsung O; Xie, Ming-Xing; Lü, Qing; He, Lin; Lu, Xiao-Fang; Wang, Jing; Li, Ling; Anderson, Robert H
2010-04-15
To assess the ultrasonic characteristics of the criss-cross heart, and explore the value of echocardiography in the diagnosis of this rare congenital cardiac defect. We reviewed the echocardiographic findings in 4 patients having criss-crossed atrioventricular connections at our hospital, and compared the findings with observations at surgery in 3 of the patients. In all 4 patients, there was usual atrial arrangement, right hand ventricular topology, and concordant atrioventricular connections. The inlet components of the ventricular mass, however, crossed such that the apical component of the morphologically right ventricle was situated anteriorly and superiorly, and extended to the left relative to the apex of the morphologically left ventricle. The ventriculo-arterial connections were concordant in 1 patient, double outlet from the morphologically right ventricle in 2, and discordant in the other. In all 4 patients, it proved impossible to obtain the standard 4-chamber view showing simultaneously all four chambers and both atrioventricular valves. A series of apical 4-chamber or subcostal coronal views, obtained by tilting the transducer from posterior to anterior, demonstrate initially the connection of the left-sided left atrium and the right-sided left ventricle through the mitral valve. More anterior angulation of the transducer then showed the right-sided right atrium to be connected to the left-sided right ventricle through the tricuspid valve, confirming the presence of twisted atrioventricular connections. Color Doppler imaging displayed the crossing of the atrioventricular connections without mixing of the streams. Short-axis views across the ventricular mass confirmed that the right ventricle was superior, anterior, and to the left of the left ventricle, and demonstrated the horizontal position of the ventricular septum. When viewed subcostally, the distance between the tricuspid valve and the orifice of the inferior vena cava was significantly increased relative to normal findings. The echocardiographic findings were confirmed during surgical interventions in 3 patients, apart from the failure to diagnose one instance of persistent patency of the left superior vena cava. The failure to obtain a characteristic 4-chamber view in any cut was diagnostic for recognition of the criss-crossed atrioventricular junctions. Transthoracic echocardiography provides definitive images of this rare arrangement, and accurately defines the associated cardiac abnormalities. Copyright 2009. Published by Elsevier Ireland Ltd.
Analysis of left atrial respiratory and cardiac motion for cardiac ablation therapy
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R.; Johnson, S. B.; Lehmann, H. I.; Robb, R. A.; Packer, D. L.
2015-03-01
Cardiac ablation therapy is often guided by models built from preoperative computed tomography (CT) or magnetic resonance imaging (MRI) scans. One of the challenges in guiding a procedure from a preoperative model is properly synching the preoperative models with cardiac and respiratory motion through computational motion models. In this paper, we describe a methodology for evaluating cardiac and respiratory motion in the left atrium and pulmonary veins of a beating canine heart. Cardiac catheters were used to place metal clips within and near the pulmonary veins and left atrial appendage under fluoroscopic and ultrasound guidance and a contrast-enhanced, 64-slice multidetector CT scan was collected with the clips in place. Each clip was segmented from the CT scan at each of the five phases of the cardiac cycle at both end-inspiration and end-expiration. The centroid of each segmented clip was computed and used to evaluate both cardiac and respiratory motion of the left atrium. A total of three canine studies were completed, with 4 clips analyzed in the first study, 5 clips in the second study, and 2 clips in the third study. Mean respiratory displacement was 0.2+/-1.8 mm in the medial/lateral direction, 4.7+/-4.4 mm in the anterior/posterior direction (moving anterior on inspiration), and 9.0+/-5.0 mm superior/inferior (moving inferior with inspiration). At end inspiration, the mean left atrial cardiac motion at the clip locations was 1.5+/-1.3 mm in the medial/lateral direction, and 2.1+/-2.0 mm in the anterior/posterior and 1.3+/-1.2 mm superior/inferior directions. At end expiration, the mean left atrial cardiac motion at the clip locations was 2.0+/-1.5mm in the medial/lateral direction, 3.0+/-1.8mm in the anterior/posterior direction, and 1.5+/-1.5 mm in the superior/inferior directions.
Peña-Melián, Angel; Rosas, Antonio; García-Tabernero, Antonio; Bastir, Markus; De La Rasilla, Marco
2011-08-01
The endocranial surface description and comparative analyses of two new neandertal occipital fragments (labelled SD-1149 and SD-370a) from the El Sidrón site (Asturias, Spain) reveal new aspects of neandertal brain morphological asymmetries. The dural sinus drainage pattern, as observed on the sagittal-transverse system, as well as the cerebral occipito-petalias, point out a slightly differential configuration of the neandertal brain when compared to other Homo species, especially H. sapiens. The neandertal dural sinus drainage pattern is organized in a more asymmetric mode, in such a way that the superior sagittal sinus (SSS) drains either to the right or to the left transverse sinuses, but in no case in a confluent mode (i.e. simultaneous continuation of SSS with both right (RTS) and left (LTS) transverse sinuses). Besides, the superior sagittal sinus shows an accentuated deviation from of the mid-sagittal plane in its way to the RTS in 35% of neandertals. This condition, which increases the asymmetry of the system, is almost nonexistent neither in the analyzed Homo fossil species sample nor in that of anatomically modern humans. Regarding the cerebral occipito-petalias, neandertals manifest one of the lowest percentages of left petalia of the Homo sample (including modern H. sapiens). As left occipito-petalia is the predominant pattern in hominins, it seems as if neandertals would have developed a different pattern of brain hemispheres asymmetry. Finally, the relief and position of the the cerebral sulci and gyri impressions observed in the El Sidrón occipital specimens look similar to those observed in modern H. sapiens. Copyright © 2011 Wiley-Liss, Inc.
Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.
2015-01-01
Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561
Sunami, Kishiko; Ishii, Akira; Takano, Sakurako; Yamamoto, Hidefumi; Sakashita, Tetsushi; Tanaka, Masaaki; Watanabe, Yasuyoshi; Yamane, Hideo
2013-11-06
In daily communication, we can usually still hear the spoken words as if they had not been masked and can comprehend the speech when spoken words are masked by background noise. This phenomenon is known as phonemic restoration. Since little is known about the neural mechanisms underlying phonemic restoration for speech comprehension, we aimed to identify the neural mechanisms using magnetoencephalography (MEG). Twelve healthy male volunteers with normal hearing participated in the study. Participants were requested to carefully listen to and understand recorded spoken Japanese stories, which were either played forward (forward condition) or in reverse (reverse condition), with their eyes closed. Several syllables of spoken words were replaced by 300-ms white-noise stimuli with an inter-stimulus interval of 1.6-20.3s. We compared MEG responses to white-noise stimuli during the forward condition with those during the reverse condition using time-frequency analyses. Increased 3-5 Hz band power in the forward condition compared with the reverse condition was continuously observed in the left inferior frontal gyrus [Brodmann's areas (BAs) 45, 46, and 47] and decreased 18-22 Hz band powers caused by white-noise stimuli were seen in the left transverse temporal gyrus (BA 42) and superior temporal gyrus (BA 22). These results suggest that the left inferior frontal gyrus and left transverse and superior temporal gyri are involved in phonemic restoration for speech comprehension. Our findings may help clarify the neural mechanisms of phonemic restoration as well as develop innovative treatment methods for individuals suffering from impaired speech comprehension, particularly in noisy environments. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Development of brain networks involved in spoken word processing of Mandarin Chinese.
Cao, Fan; Khalid, Kainat; Lee, Rebecca; Brennan, Christine; Yang, Yanhui; Li, Kuncheng; Bolger, Donald J; Booth, James R
2011-08-01
Developmental differences in phonological and orthographic processing of Chinese spoken words were examined in 9-year-olds, 11-year-olds and adults using functional magnetic resonance imaging (fMRI). Rhyming and spelling judgments were made to two-character words presented sequentially in the auditory modality. Developmental comparisons between adults and both groups of children combined showed that age-related changes in activation in visuo-orthographic regions depended on a task. There were developmental increases in the left inferior temporal gyrus and the right inferior occipital gyrus in the spelling task, suggesting more extensive visuo-orthographic processing in a task that required access to these representations. Conversely, there were developmental decreases in activation in the left fusiform gyrus and left middle occipital gyrus in the rhyming task, suggesting that the development of reading is marked by reduced involvement of orthography in a spoken language task that does not require access to these orthographic representations. Developmental decreases may arise from the existence of extensive homophony (auditory words that have multiple spellings) in Chinese. In addition, we found that 11-year-olds and adults showed similar activation in the left superior temporal gyrus across tasks, with both groups showing greater activation than 9-year-olds. This pattern suggests early development of perceptual representations of phonology. In contrast, 11-year-olds and 9-year-olds showed similar activation in the left inferior frontal gyrus across tasks, with both groups showing weaker activation than adults. This pattern suggests late development of controlled retrieval and selection of lexical representations. Altogether, this study suggests differential effects of character acquisition on development of components of the language network in Chinese as compared to previous reports on alphabetic languages. Published by Elsevier Inc.
Breier, J.I.; Hasan, K.M.; Zhang, W.; Men, D.; Papanicolaou, A.C.
2011-01-01
BACKGROUND AND PURPOSE Knowledge of the anatomic basis of aphasia after stroke has both theoretic and clinical implications by informing models of cortical connectivity and providing data for diagnosis and prognosis. In this study we use diffusion tensor imaging to address the relationship between damage to specific white matter tracts and linguistic deficits after left hemisphere stroke. MATERIALS AND METHODS Twenty patients aged 38–77 years with a history of stroke in the left hemisphere underwent diffusion tensor imaging, structural MR imaging, and language testing. All of the patients were premorbidly right handed and underwent imaging and language testing at least 1 month after stroke. RESULTS Lower fractional anisotropy (FA) values in the superior longitudinal and arcuate fasciculi of the left hemisphere, an indication of greater damage to these tracts, were correlated with decreased ability to repeat spoken language. Comprehension deficits after stroke were associated with lower FA values in the arcuate fasciculus of the left hemisphere. The findings for repetition were independent of MR imaging ratings of the degree of damage to cortical areas of the left hemisphere involved in language function. There were no findings for homotopic tracts in the right hemisphere. CONCLUSION This study provides support for a specific role for damage to the superior longitudinal and arcuate fasciculi in the left hemisphere in patients with deficits in repetition of speech in aphasia after stroke. PMID:18039757
Superior Temporal Sulcus Disconnectivity During Processing of Metaphoric Gestures in Schizophrenia
Straube, Benjamin; Green, Antonia; Sass, Katharina; Kircher, Tilo
2014-01-01
The left superior temporal sulcus (STS) plays an important role in integrating audiovisual information and is functionally connected to disparate regions of the brain. For the integration of gesture information in an abstract sentence context (metaphoric gestures), intact connectivity between the left STS and the inferior frontal gyrus (IFG) should be important. Patients with schizophrenia have problems with the processing of metaphors (concretism) and show aberrant structural connectivity of long fiber bundles. Thus, we tested the hypothesis that patients with schizophrenia differ in the functional connectivity of the left STS to the IFG for the processing of metaphoric gestures. During functional magnetic resonance imaging data acquisition, 16 patients with schizophrenia (P) and a healthy control group (C) were shown videos of an actor performing gestures in a concrete (iconic, IC) and abstract (metaphoric, MP) sentence context. A psychophysiological interaction analysis based on the seed region from a previous analysis in the left STS was performed. In both groups we found common positive connectivity for IC and MP of the STS seed region to the left middle temporal gyrus (MTG) and left ventral IFG. The interaction of group (C>P) and gesture condition (MP>IC) revealed effects in the connectivity to the bilateral IFG and the left MTG with patients exhibiting lower connectivity for the MP condition. In schizophrenia the left STS is misconnected to the IFG, particularly during the processing of MP gestures. Dysfunctional integration of gestures in an abstract sentence context might be the basis of certain interpersonal communication problems in the patients. PMID:23956120
Schmithorst, Vincent J; Holland, Scott K
2007-03-01
A Bayesian method for functional connectivity analysis was adapted to investigate between-group differences. This method was applied in a large cohort of almost 300 children to investigate differences in boys and girls in the relationship between intelligence and functional connectivity for the task of narrative comprehension. For boys, a greater association was shown between intelligence and the functional connectivity linking Broca's area to auditory processing areas, including Wernicke's areas and the right posterior superior temporal gyrus. For girls, a greater association was shown between intelligence and the functional connectivity linking the left posterior superior temporal gyrus to Wernicke's areas bilaterally. A developmental effect was also seen, with girls displaying a positive correlation with age in the association between intelligence and the functional connectivity linking the right posterior superior temporal gyrus to Wernicke's areas bilaterally. Our results demonstrate a sexual dimorphism in the relationship of functional connectivity to intelligence in children and an increasing reliance on inter-hemispheric connectivity in girls with age.
Yamamoto, Michihiro; Zaima, Masazumi; Yamamoto, Hidekazu; Harada, Hideki; Kawamura, Junichiro; Yamada, Masahiro; Yazawa, Tekefumi; Kawasoe, Junya
2017-12-02
For left-sided pancreatic ductal adenocarcinoma (PDAC), radical antegrade modular pancreatosplenectomy (RAMPS) is a reasonable surgical approach for tumor-free margin resection and systemic lymph node clearance. In pancreaticoduodenectomy for PDAC, the superior mesenteric artery (SMA)-first approach (or the "artery-first approach") has become the standard procedure. With improvements in laparoscopic instruments and techniques, some surgeons attempted to apply laparoscopic RAMPS (L-RAMPS) for carefully selected patients with left-sided PDAC. However, owing to several technical difficulties in this procedure, its application remains uncommon. Moreover, the artery-first approach in L-RAMPS has not been reported. Here, we developed the artery-first approach L-RAMPS for left-sided PDAC and have presented the same in this report. Between June 2014 and July 2015, 16 patients with left-sided PDAC were referred to our division for pancreatic resection. The following technique was used for performing L-RAMPS on 3 of the 16 patients (19%). Six trocars were placed. After opening the omental bursa, only the middle segment of the pancreas was initially separated from both the left renal vein and the SMA. We termed this procedure as the "artery-first approach using a dome-shaped dorsomedial dissection (3D) technique." This 3D technique enabled the interruption of the entire arterial supply to the specimen while preserving the venous drainage through the splenic vein for preventing venous congestion. The technique also contributed to the early detection of no tumor infiltration into the SMA and the early determination of posterior dissection plane. After pancreatic neck transection, the splenic artery and vein were divided. Finally, the pancreatic tail and spleen were dissected in a right-to-left direction. All operations were completed without any intraoperative complications. The median blood loss and retrieved lymph node count were 75 mL and 37, respectively, which were superior to those reported by other previous studies on L-RAMPS. All resection margins were free of carcinoma. No severe postoperative complications were observed. The artery-first approach L-RAMPS using 3D technique is safe and feasible to perform. The significance of our proposed procedure is minimal blood loss and precise lymphadenectomy. Therefore, this novel technique may become the preferred treatment for left-sided PDAC in selected cases.
2009-12-01
Centro de Estudios Superiores Navales Mexican Navy México, DF México 5. Dr. Jose O. Sinibaldi Naval Postgraduate School Monterey, CA. 6. Dr. Robert S. Hixson Naval Postgraduate School Monterey, CA ...EXPERIMENTAL SETUP AND PROCEDURE............................................. 67 A. HIGH-SPEED VISION SYSTEM...Mexican Navy, “Con la Satisfacción del Deber Cumplido.” To all of them, I am sincerely grateful. xviii THIS PAGE INTENTIONALLY LEFT BLANK xix
Bilateral ophthalmic artery occlusion in rhino-orbito-cerebral mucormycosis.
Song, Yoo Mi; Shin, Sun Young
2008-03-01
To report a case of bilateral ophthalmic artery occlusion in rhino-orbito-cerebral mucormycosis. Reviewed clinical charts, photographs, and fluorescein angiography An 89-year-old man with poorly controlled diabetes developed sudden bilateral ptosis, complete ophthalmoplegia of the right eye, and superior rectus palsy of the left eye. Brain and orbit magnetic resonance imaging showed midbrain infarction and mild diffuse sinusitis. On the 2nd day of hospitalization, sudden visual loss and light reflex loss developed. There were retinal whitening, absence of retinal arterial filling, and a total lack of choroidal perfusion on fluorescein angiography of the right eye. The left eye showed a cherry red spot in the retina and the absence of retinal arterial filling and partial choroidal perfusion on fluorescein angiography. On rhinologic examination, mucormyosis was noticed. Despite treatment, visual acuity and light reflex did not recover and he died 4 days after admission. Bilateral ophthalmic artery occlusion can occur in rhino-orbital-cerebral mucormycosis.
Variations in the origins of the thyroid arteries on CT angiography.
Esen, Kaan; Ozgur, Anil; Balci, Yuksel; Tok, Sermin; Kara, Engin
2018-02-01
To investigate the anatomical variations in the origins of the thyroid arteries on CT angiography images. The presence and the origins of the superior thyroid artery, the inferior thyroid artery, and the thyroidea ima artery were retrospectively evaluated based on carotid CT angiography examinations. The bifurcation level of the common carotid artery with respect to the cervical vertebrae and disc spaces was also determined. A total of 640 patients were included in the study. The right and left superior thyroid arteries arose from the external carotid artery in 413 (64.5%) and 254 (39.7%) patients, from the bifurcation of the common carotid artery in 131 (20.5%) and 148 (23.1%) patients, and from the common carotid artery in 90 (14.1%) and 226 (35.3%) patients, respectively. We could not observe the right and the left superior thyroid arteries in 6 (0.9%) and 12 (1.9%) of the patients, respectively. However, the right and left inferior thyroid arteries were not identified in 14 (2.2%) and 45 (7%) of the patients, respectively. The thyroidea ima artery was detected in 2.3% of the patients. The visualization of thyroid arteries on CT angiography images enables the anatomy of the arterial supply system of the thyroid gland to be explored in a noninvasive manner prior to surgery.
MRI Assessment of Superior Temporal Gyrus in Williams Syndrome
Sampaio, Adriana; Sousa, Nuno; Férnandez, Montse; Vasconcelos, Cristiana; Shenton, Martha E.; Gonçalves, Óscar F.
2009-01-01
Objective To evaluate volumes and asymmetry of superior temporal gyrus (STG) and correlate these measures with a neurocognitive evaluation of verbal performance in Williams syndrome (WS) and in a typically developing age-matched and sex-matched group. Background Despite initial claims of language strength in WS, recent studies suggest delayed language milestones. The STG is implicated in linguistic processing and is a highly lateralized brain region. Method Here, we examined STG volumes and asymmetry of STG in WS patients and in age-matched controls. We also correlated volume of STG with a subset of verbal measures. Magnetic resonance imaging scans were obtained on a GE 1.5-T magnet with 1.5-mm contiguous slices, and were used to measure whole gray matter, white matter, and cerebrospinal fluid volumes, and also STG volume. Results Results revealed significantly reduced intracranial volume in WS patients, compared with controls. Right and left STG were also significantly smaller in WS patients. In addition, compared with normal controls, a lack of normal left >right STG asymmetry was evident in WS. Also of note was the finding that, in contrast to controls, WS patients did not reveal a positive correlation between verbal intelligence quotient and left STG volume, which further suggests a disruption in this region of the brain. Conclusions In conclusion, atypical patterns of asymmetry and reduced STG volume in WS were observed, which may, in part, contribute to some of the linguistic impairments found in this cohort of WS patients. PMID:18797257
Speech perception in autism spectrum disorder: An activation likelihood estimation meta-analysis.
Tryfon, Ana; Foster, Nicholas E V; Sharda, Megha; Hyde, Krista L
2018-02-15
Autism spectrum disorder (ASD) is often characterized by atypical language profiles and auditory and speech processing. These can contribute to aberrant language and social communication skills in ASD. The study of the neural basis of speech perception in ASD can serve as a potential neurobiological marker of ASD early on, but mixed results across studies renders it difficult to find a reliable neural characterization of speech processing in ASD. To this aim, the present study examined the functional neural basis of speech perception in ASD versus typical development (TD) using an activation likelihood estimation (ALE) meta-analysis of 18 qualifying studies. The present study included separate analyses for TD and ASD, which allowed us to examine patterns of within-group brain activation as well as both common and distinct patterns of brain activation across the ASD and TD groups. Overall, ASD and TD showed mostly common brain activation of speech processing in bilateral superior temporal gyrus (STG) and left inferior frontal gyrus (IFG). However, the results revealed trends for some distinct activation in the TD group showing additional activation in higher-order brain areas including left superior frontal gyrus (SFG), left medial frontal gyrus (MFG), and right IFG. These results provide a more reliable neural characterization of speech processing in ASD relative to previous single neuroimaging studies and motivate future work to investigate how these brain signatures relate to behavioral measures of speech processing in ASD. Copyright © 2017 Elsevier B.V. All rights reserved.
Multimodality language mapping in patients with left-hemispheric language dominance on Wada test
Kojima, Katsuaki; Brown, Erik C.; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi
2012-01-01
Objective We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. Methods We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Results Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p < 0.05), while those in the dorsolateral-premotor and inferior-Rolandic regions were detected by both methods equally. Stimulation of language-related ECoG sites, compared to the others, more frequently elicited language symptoms (p < 0.00001). One patient developed dysphasia requiring in-patient speech therapy following resection of the dorsolateral-premotor and inferior-Rolandic regions containing language-related ECoG sites not otherwise detected by stimulation. Conclusions Language-related gamma-oscillations may serve as an alternative biomarker of underlying language function in patients with left-hemispheric language-dominance. Significance Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. PMID:22503906
Internal jugular thrombophlebitis caused by dermal infection.
Yoshikawa, Hisao; Suzuki, Makoto; Nemoto, Naohiko; Hara, Hidehiko; Hashimoto, Go; Otsuka, Takenori; Moroi, Masao; Nakamura, Masato; Sugi, Kaoru
2011-01-01
A 29-year-old man presented with complaints of fever and pain and itching of his left neck with atopic dermatitis and abrasion. These symptoms had persisted for two days and dullness and fever developed, but the patient did not consult a physician. On the following day, he had a fever of 40°C and redness and swelling of the left neck. He visited a local clinic and was hospitalized with suspected cellulitis. A thrombus was detected in the internal jugular vein on MRI, and he was referred to our hospital. Neck ultrasonography showed the presence of an immovable thrombus in the area from the left internal jugular vein to the left brachiocephalic peripheral vein. Blood analysis indicated a major inflammatory response and juvenile idiopathic thrombophlebitis was suspected. A filter was carefully inserted into the superior vena cava, and anticoagulant therapy and medication with antibiotics led to remission. We present this case as a rare example of a condition mimicking Lemierre syndrome that was caused by dermal infection, and we include a review of the literature.
Cerebral Aneurysm from Cardiobacterium hominis Endocarditis.
Glucksman, Aaron; Naut, Edgar
2016-05-01
A 43-year-old male with a history of bioprosthetic aortic valve replacement and tricuspid valve annuloplasty presented with vertigo and was found to have an acute infarct in the left superior cerebellum, as well as a left-middle cerebral artery mycotic aneurysm. Blood cultures grew Cardiobacterium hominis and bioprosthetic aortic valve vegetation was found on transthoracic echocardiogram.
Mental Number Line Disruption in a Right-Neglect Patient after a Left-Hemisphere Stroke
ERIC Educational Resources Information Center
Pia, Lorenzo; Corazzini, Luca Latini; Folegatti, Alessia; Gindri, Patrizia; Cauda, Franco
2009-01-01
A right-neglect patient with focal left-hemisphere damage to the posterior superior parietal lobe was assessed for numerical knowledge and tested on the bisection of numerical intervals and visual lines. The semantic and verbal knowledge of numbers was preserved, whereas the performance in numerical tasks that strongly emphasize the visuo-spatial…
Does Categorical Perception in the Left Hemisphere Depend on Language?
ERIC Educational Resources Information Center
Holmes, Kevin J.; Wolff, Phillip
2012-01-01
Categorical perception (CP) refers to the influence of category knowledge on perception and is revealed by a superior ability to discriminate items across categories relative to items within a category. In recent years, the finding that CP is lateralized to the left hemisphere in adults has been interpreted as evidence for a kind of CP driven by…
The Right Hemisphere Advantage in Visual Change Detection Depends on Temporal Factors
ERIC Educational Resources Information Center
Spotorno, Sara; Faure, Sylvane
2011-01-01
What accounts for the Right Hemisphere (RH) functional superiority in visual change detection? An original task which combines one-shot and divided visual field paradigms allowed us to direct change information initially to the RH or the Left Hemisphere (LH) by deleting, respectively, an object included in the left or right half of a scene…
Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J J; Wang, Meiyun; Zhou, Dong; Gong, Qiyong
2016-07-04
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
The lexical processing of abstract and concrete nouns.
Papagno, Costanza; Fogliata, Arianna; Catricalà, Eleonora; Miniussi, Carlo
2009-03-31
Recent activation studies have suggested different neural correlates for processing concrete and abstract words. However, the precise localization is far from being defined. One reason for the heterogeneity of these results could lie in the extreme variability of experimental paradigms, ranging from explicit semantic judgments to lexical decision tasks (auditory and/or visual). The present study explored the processing of abstract/concrete nouns by using repetitive Transcranial Magnetic Stimulation (rTMS) and a lexical decision paradigm in neurologically-unimpaired subjects. Four sites were investigated: left inferior frontal, bilaterally posterior-superior temporal and left posterior-inferior parietal. An interference on accuracy was found for abstract words when rTMS was applied over the left temporal site, while for concrete words accuracy decreased when rTMS was applied over the right temporal site. Accuracy for abstract words, but not for concrete words, decreased after frontal stimulation as compared to the sham condition. These results suggest that abstract lexical entries are stored in the posterior part of the left temporal superior gyrus and possibly in the left frontal inferior gyrus, while the regions involved in storing concrete items include the right temporal cortex. It cannot be excluded, however, that additional areas, not tested in this experiment, are involved in processing both, concrete and abstract nouns.
Modality Specific Cerebro-Cerebellar Activations in Verbal Working Memory: An fMRI Study
Kirschen, Matthew P.; Chen, S. H. Annabel; Desmond, John E.
2010-01-01
Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominately in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load. PMID:20714061
Modality specific cerebro-cerebellar activations in verbal working memory: an fMRI study.
Kirschen, Matthew P; Chen, S H Annabel; Desmond, John E
2010-01-01
Verbal working memory (VWM) engages frontal and temporal/parietal circuits subserving the phonological loop, as well as, superior and inferior cerebellar regions which have projections from these neocortical areas. Different cerebro-cerebellar circuits may be engaged for integrating aurally- and visually-presented information for VWM. The present fMRI study investigated load (2, 4, or 6 letters) and modality (auditory and visual) dependent cerebro-cerebellar VWM activation using a Sternberg task. FMRI revealed modality-independent activations in left frontal (BA 6/9/44), insular, cingulate (BA 32), and bilateral inferior parietal/supramarginal (BA 40) regions, as well as in bilateral superior (HVI) and right inferior (HVIII) cerebellar regions. Visual presentation evoked prominent activations in right superior (HVI/CrusI) cerebellum, bilateral occipital (BA19) and left parietal (BA7/40) cortex while auditory presentation showed robust activations predominantly in bilateral temporal regions (BA21/22). In the cerebellum, we noted a visual to auditory emphasis of function progressing from superior to inferior and from lateral to medial regions. These results extend our previous findings of fMRI activation in cerebro-cerebellar networks during VWM, and demonstrate both modality dependent commonalities and differences in activations with increasing memory load.
Brain activation while forming memories of fearful and neutral faces in women and men.
Fischer, Håkan; Sandblom, Johan; Nyberg, Lars; Herlitz, Agneta; Bäckman, Lars
2007-11-01
Event-related functional MRI (fMRI) was used to assess brain activity during encoding of fearful and neutral faces in 12 women and 12 men. In a subsequent memory analysis, the authors separated successful from unsuccessful encoding of both types of faces, based on whether they were remembered or forgotten in a later recognition memory test. Overall, women and men recruited overlapping neural circuitries. Both sexes activated right-sided medial-temporal regions during successful encoding of fearful faces. Successful encoding of neutral faces was associated with left-sided lateral prefrontal and right-sided superior frontal activation in both sexes. In women, relatively greater encoding related activity for neutral faces was seen in the superior parietal and parahippocampal cortices. By contrast, men activated the left and right superior/middle frontal cortex more than women during successful encoding of the same neutral faces. These findings suggest that women and men use similar neural networks to encode facial information, with only subtle sex differences observed for neutral faces.
Neural correlates of socioeconomic status in the developing human brain.
Noble, Kimberly G; Houston, Suzanne M; Kan, Eric; Sowell, Elizabeth R
2012-07-01
Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that language, memory, social-emotional processing, and cognitive control exhibit relatively large differences across SES. Here we investigated whether volumetric differences could be observed across SES in several neural regions that support these skills. In a sample of 60 socioeconomically diverse children, highly significant SES differences in regional brain volume were observed in the hippocampus and the amygdala. In addition, SES × age interactions were observed in the left superior temporal gyrus and left inferior frontal gyrus, suggesting increasing SES differences with age in these regions. These results were not explained by differences in gender, race or IQ. Likely mechanisms include differences in the home linguistic environment and exposure to stress, which may serve as targets for intervention at a time of high neural plasticity. © 2012 Blackwell Publishing Ltd.
Planton, Samuel; Jucla, Mélanie; Roux, Franck-Emmanuel; Démonet, Jean-François
2013-01-01
Handwriting is a modality of language production whose cerebral substrates remain poorly known although the existence of specific regions is postulated. The description of brain damaged patients with agraphia and, more recently, several neuroimaging studies suggest the involvement of different brain regions. However, results vary with the methodological choices made and may not always discriminate between "writing-specific" and motor or linguistic processes shared with other abilities. We used the "Activation Likelihood Estimate" (ALE) meta-analytical method to identify the cerebral network of areas commonly activated during handwriting in 18 neuroimaging studies published in the literature. Included contrasts were also classified according to the control tasks used, whether non-specific motor/output-control or linguistic/input-control. These data were included in two secondary meta-analyses in order to reveal the functional role of the different areas of this network. An extensive, mainly left-hemisphere network of 12 cortical and sub-cortical areas was obtained; three of which were considered as primarily writing-specific (left superior frontal sulcus/middle frontal gyrus area, left intraparietal sulcus/superior parietal area, right cerebellum) while others related rather to non-specific motor (primary motor and sensorimotor cortex, supplementary motor area, thalamus and putamen) or linguistic processes (ventral premotor cortex, posterior/inferior temporal cortex). This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions. These findings provide new insights into cognitive processes involved in handwriting and their cerebral substrates. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gaser, Christian; Nenadic, Igor; Buchsbaum, Bradley R; Hazlett, Erin A; Buchsbaum, Monte S
2004-01-01
Enlargement of the lateral ventricles is among the most frequently reported macroscopic brain structural changes in schizophrenia, although variable in extent and localization. The authors investigated whether ventricular enlargement is related to regionally specific volume loss. High-resolution magnetic resonance imaging scans from 39 patients with schizophrenia were analyzed with deformation-based morphometry, a voxel-wise whole brain morphometric technique. Significant negative correlations with the ventricle-brain ratio were found for voxels in the left and right thalamus and posterior putamen and in the left superior temporal gyrus and insula. Thalamic shrinkage, especially of medial nuclei and the adjacent striatum and insular cortex, appear to be important contributors to ventricular enlargement in schizophrenia.
Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M
2016-12-20
Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P <0.005). Multiple comparison analysis showed that compared with patients in the 1-month follow-up, patients in the 3-month follow-up showed that brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus.Compared with patients in the 3-month follow-up, patients in the 6-month follow-up showed that brain function areas increased in left superior temporal gyrus, left middle temporal gyrus, right temporal pole, right island of inferior frontal gyrus, and decreased in left cerebelum, left orbital inferior frontal gyrus; patients in the 12-month follow-up showed that there were no obvious increase and decrease brain function areas.Compared with patients in the 6-month follow-up, patients in the 12-month follow-up showed that there were no obvious increase brain function areas , but brain function areas decreased in bilateral middle temportal gyrus( P <0.001). Brain regions were positively related to blood ammonia in right middle cingulate gyrus, right central operculum, left parahippocampal gyrus, while as brain regions were negatively related to blood ammonia in bilateral medial prefrontal lobe, anterior cingulate and paracingulate gyrus, right top edge of angular gyrus, right middle temportal gyrus, left anterior central gyrus, left posterior central gyrus (all P <0.005). Conclusion: The resting state brain function increased or decreased with course of disease in cirrhosis patients after TIPS operation. The brain activity of limbic system and sensorimotor system all had significant correlation with blood ammonia levels. The blood ammonia level and the function of relative brain regions after 6-month with TIPS operation can be gradually improved.
Higher integrity of the motor and visual pathways in long-term video game players.
Zhang, Yang; Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan
2015-01-01
Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.
Higher integrity of the motor and visual pathways in long-term video game players
Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan
2015-01-01
Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance. PMID:25805981
Domahs, Ulrike; Klein, Elise; Huber, Walter; Domahs, Frank
2013-06-01
Using a stress violation paradigm, we investigated whether metrical feet constrain the way prosodic patterns are processed and evaluated. Processing of correctly versus incorrectly stressed words was associated with activation in left posterior angular and retrosplenial cortex, indicating the recognition of an expected and familiar pattern, whereas the inverse contrast yielded enhanced bilateral activation in the superior temporal gyrus, reflecting higher costs in auditory (re-)analysis. More fine-grained analyses of severe versus mild stress violations revealed activations of the left superior temporal and left anterior angular gyrus whereas the opposite contrast led to frontal activations including Broca's area and its right-hemisphere homologue, suggesting that detection of mild violations lead to increased effort in working memory and deeper phonological processing. Our results provide first evidence that different incorrect stress patterns are processed in a qualitatively different way and that the underlying foot structure seems to determine potential stress positions in German words. Copyright © 2013 Elsevier Inc. All rights reserved.
Evaluation of SuperLU on multicore architectures
NASA Astrophysics Data System (ADS)
Li, X. S.
2008-07-01
The Chip Multiprocessor (CMP) will be the basic building block for computer systems ranging from laptops to supercomputers. New software developments at all levels are needed to fully utilize these systems. In this work, we evaluate performance of different high-performance sparse LU factorization and triangular solution algorithms on several representative multicore machines. We included both Pthreads and MPI implementations in this study and found that the Pthreads implementation consistently delivers good performance and that a left-looking algorithm is usually superior.
Chen, Hua Hsua; Nicoletti, Mark A; Hatch, John P; Sassi, Roberto B; Axelson, David; Brambilla, Paolo; Monkul, E Serap; Keshavan, Matcheri S; Ryan, Neal D; Birmaher, Boris; Soares, Jair C
2004-06-03
Abnormalities in left superior temporal gyrus (STG) have been reported in adult bipolar patients. However, it is not known whether such abnormalities are already present early in the course of this illness. Magnetic resonance imaging (MRI) morphometric analysis of STG was performed in 16 DSM-IV children and adolescents with bipolar disorder (mean age+/-SD 15.5+/-3.4 years) and 21 healthy controls (mean age+/-SD 16.9+/-3.8 years). Subjects underwent a 3D spoiled gradient recalled acquisition MRI examination. Using analysis of covariance with age, gender and intra-cranial brain volume as covariates, we found significantly smaller left total STG volumes in bipolar patients (12.5+/-1.5 cm(3)) compared with healthy controls (13.6+/-2.5 cm(3)) (F=4.45, d.f.=1, 32, P=0.04). This difference was accounted for by significantly smaller left and right STG white matter volumes in bipolar patients. Decreased white matter connections may be the core of abnormalities in STG, which is an important region for speech, language and communication, and could possibly underlie neurocognitive deficits present in bipolar patients.
Van Praagh, S; Geva, T; Lock, J E; Nido, P J; Vance, M S; Van Praagh, R
2003-01-01
Since the posterior wall of the right superior vena cava (RSVC) is contiguous with the anterior wall of the right upper pulmonary veins, a localized defect in this common wall may create a cavopulmonary venous confluence without eliminating the normal connection of the same right pulmonary veins with the left atrium (LA). Through this defect, blood of the unroofed right pulmonary veins will drain into the RSVC and right atrium (RA), and blood from the RSVC may shunt into the right pulmonary veins and LA. Hemodynamically, the RSVC will become biatrial. If the RSVC blood flows preferentially into the LA, its right atrial orifice will become stenotic or even atretic. If atretic, the normally positioned RSVC will drain entirely into the LA. In this report, we present the clinical and anatomical findings of two postmortem cases with biatrial drainage of the RSVC. We also document the clinical, echocardiographic, angiocardiographic, and surgical data of a living patient with left atrial drainage of the RSVC and tetralogy of Fallot with pulmonary atresia. The relevant literature and surgical treatment are reviewed, and the morphogenesis of the biatrial and left atrial RSVC is considered.
Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W
2001-03-01
Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.
Optic disc coloboma in two nigerian siblings: Case report and review of literature.
Babalola, Y O; Olawoye, O O; Idam, P O
2017-11-01
We report two cases of bilateral asymmetric optic disc coloboma (ODC) in siblings. The index patient is a 9-year-old Nigerian girl with severe cognitive deficit who presented with a poor vision of 3 years' duration. She had a history of childhood febrile convulsions and delayed developmental milestones. Her visual acuity could not be assessed because she had a cognitive deficit and expressive aphasia. Ocular examination revealed a very large excavated right optic disc with only a strip of remnant neuro-retinal rim superiorly, and a smaller left optic disc with inferior disc excavation, superior wedge of the pink neuro-retinal rim as well as a temporal optic disc pit. No systemic features of syndromes associated with ODCs and intellectual disability were present in both patients. The younger sibling an 8-year-old girl later presented to the eye clinic with a 5-month history of poor vision in the left eye. Ocular examination revealed visual acuity of 6/6 in the right eye and counting fingers in the left eye. Dilated binocular indirect ophthalmoscopy revealed a right large excavated colobomatous disc and a left small disc with infero-temporal disc coloboma.
A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing.
Wu, Chiao-Yi; Ho, Moon-Ho Ringo; Chen, Shen-Hsing Annabel
2012-10-15
A growing body of neuroimaging evidence has shown that Chinese character processing recruits differential activation from alphabetic languages due to its unique linguistic features. As more investigations on Chinese character processing have recently become available, we applied a meta-analytic approach to summarize previous findings and examined the neural networks for orthographic, phonological, and semantic processing of Chinese characters independently. The activation likelihood estimation (ALE) method was used to analyze eight studies in the orthographic task category, eleven in the phonological and fifteen in the semantic task categories. Converging activation among three language-processing components was found in the left middle frontal gyrus, the left superior parietal lobule and the left mid-fusiform gyrus, suggesting a common sub-network underlying the character recognition process regardless of the task nature. With increasing task demands, the left inferior parietal lobule and the right superior temporal gyrus were specialized for phonological processing, while the left middle temporal gyrus was involved in semantic processing. Functional dissociation was identified in the left inferior frontal gyrus, with the posterior dorsal part for phonological processing and the anterior ventral part for semantic processing. Moreover, bilateral involvement of the ventral occipito-temporal regions was found for both phonological and semantic processing. The results provide better understanding of the neural networks underlying Chinese orthographic, phonological, and semantic processing, and consolidate the findings of additional recruitment of the left middle frontal gyrus and the right fusiform gyrus for Chinese character processing as compared with the universal language network that has been based on alphabetic languages. Copyright © 2012 Elsevier Inc. All rights reserved.
Sexual dimorphism of the planum temporale in schizophrenia: A MRI study.
Delvecchio, Giuseppe; Pigoni, Alessandro; Perlini, Cinzia; Barillari, Marco; Ruggeri, Mirella; Altamura, Alfredo Carlo; Bellani, Marcella; Brambilla, Paolo
2017-10-01
Anatomical alterations in the superior temporal gyrus have been consistently reported in patients with schizophrenia, and they have mostly been linked to positive symptoms, including hallucinations and thought disorders. The superior temporal gyrus is considered one of the most asymmetric and lateralized structure of the human brain, and the process of lateralization seems to vary according to gender in the normal population. However, although it has been consistently suggested that patients with schizophrenia did not show normal brain lateralization in several regions, only few studies investigated it in the superior temporal gyrus and its sub-regions considering the effects of gender. In this context, the aim of this study was to evaluate sexual dimorphism in superior temporal gyrus volumes in a sample of patients with schizophrenia compared to age- and gender-matched healthy controls. A total of 72 right/left-handed males (40 schizophrenia patients and 32 healthy controls) and 45 right/left-handed females (18 schizophrenia patients and 27 healthy controls) underwent clinical evaluation and a 1.5T magnetic resonance imaging scan. Gray and white matter volumes of regions of interest within the superior temporal gyrus were manually detected, including the Heschl's gyrus and the planum temporale. Female patients with schizophrenia presented a reduction in left planum temporale gray matter volumes ( F = 4.58, p = 0.03) and a lack of the normal planum temporale asymmetry index ( t = 0.27; p = 0.79) compared to female controls ( t = 5.47; p = 0.001). No differences were found between males for any volumes or laterality indices. Finally, in female patients with schizophrenia, Heschl's gyrus gray and white matter volumes negatively correlated with positive symptoms ( r = -0.56, p = 0.01). Our results showed that sexual dimorphism plays a key role on planum temporale in schizophrenia, underlining the importance of gender as a modulator of brain morphology and lateralization of schizophrenia.
Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki
2009-12-01
The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Seventy-eight healthy subjects (32 males, mean age 46.6+/-18.2 years; 46 females, mean age 40.6+/-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake.
Plessen, Kerstin J.; Hugdahl, Kenneth; Bansal, Ravi; Hao, Xuejun
2014-01-01
We assessed the correlations of age, sex, and cognitive performance with measures of asymmetry in cortical thickness on high-resolution MRIs in 215 healthy human children and adults, 7–59 years of age. A left > right asymmetry in thickness of the cortical mantle was present throughout the entire lateral, dorsal, and mesial surfaces of the frontal lobe, extending into primary sensory, superior parietal, and anterior superior temporal cortices. A right > left asymmetry was present in the lateral, mesial, and dorsal surfaces of the posterior temporal, parietal, and occipital cortices, as well as in the entire inferior surface of the brain. An exaggerated left > right asymmetry was detected in females in anterior brain regions, and an exaggerated right > left asymmetry was detected in males in the orbitofrontal, inferior parietal, and inferior occipital cortices. Weaker moderating effects of sex were scattered along the mesial surface of the brain. Age significantly moderated asymmetry measures in the inferior sensorimotor, inferior parietal, posterior temporal, and inferior occipital cortices. The age × asymmetry interaction derived from a steeper decline in cortical thickness with age in the right hemisphere than in the left on the lateral surface, whereas it derived from a steeper decline with age in the left hemisphere than in the right on the mesial surface. Finally, measures of performance on working memory and vocabulary tasks improved with increasing magnitudes of normal asymmetries in regions thought to support these cognitive capacities. PMID:24790200
Homan, Philipp; Kindler, Jochen; Hauf, Martinus; Walther, Sebastian; Hubl, Daniela; Dierks, Thomas
2013-01-01
Background: The left superior temporal gyrus (STG) has been suggested to play a key role in auditory verbal hallucinations (AVH) in patients with schizophrenia. Methods: Eleven medicated subjects with schizophrenia and medication-resistant AVH and 19 healthy controls underwent perfusion magnetic resonance (MR) imaging with arterial spin labeling (ASL). Three additional repeated measurements were conducted in the patients. Patients underwent a treatment with transcranial magnetic stimulation (TMS) between the first 2 measurements. The main outcome measure was the pooled cerebral blood flow (CBF), which consisted of the regional CBF measurement in the left STG and the global CBF measurement in the whole brain. Results: Regional CBF in the left STG in patients was significantly higher compared to controls (p < 0.0001) and to the global CBF in patients (p < 0.004) at baseline. Regional CBF in the left STG remained significantly increased compared to the global CBF in patients across time (p < 0.0007), and it remained increased in patients after TMS compared to the baseline CBF in controls (p < 0.0001). After TMS, PANSS (p = 0.003) and PSYRATS (p = 0.01) scores decreased significantly in patients. Conclusions: This study demonstrated tonically increased regional CBF in the left STG in patients with schizophrenia and auditory hallucinations despite a decrease in symptoms after TMS. These findings were consistent with what has previously been termed a trait marker of AVH in schizophrenia. PMID:23805093
Brain activity in near-death experiencers during a meditative state.
Beauregard, Mario; Courtemanche, Jérôme; Paquette, Vincent
2009-09-01
To measure brain activity in near-death experiencers during a meditative state. In two separate experiments, brain activity was measured with functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) during a Meditation condition and a Control condition. In the Meditation condition, participants were asked to mentally visualize and emotionally connect with the "being of light" allegedly encountered during their "near-death experience". In the Control condition, participants were instructed to mentally visualize the light emitted by a lamp. In the fMRI experiment, significant loci of activation were found during the Meditation condition (compared to the Control condition) in the right brainstem, right lateral orbitofrontal cortex, right medial prefrontal cortex, right superior parietal lobule, left superior occipital gyrus, left anterior temporal pole, left inferior temporal gyrus, left anterior insula, left parahippocampal gyrus and left substantia nigra. In the EEG experiment, electrode sites showed greater theta power in the Meditation condition relative to the Control condition at FP1, F7, F3, T5, P3, O1, FP2, F4, F8, P4, Fz, Cz and Pz. In addition, higher alpha power was detected at FP1, F7, T3 and FP2, whereas higher gamma power was found at FP2, F7, T4 and T5. The results indicate that the meditative state was associated with marked hemodynamic and neuroelectric changes in brain regions known to be involved either in positive emotions, visual mental imagery, attention or spiritual experiences.
Powell, J L; Parkes, L; Kemp, G J; Sluming, V; Barrick, T R; García-Fiñana, M
2012-04-05
Diffusion tensor magnetic resonance imaging provides a way of assessing the asymmetry of white matter (WM) connectivity, the degree of anisotropic diffusion within a given voxel being a marker of coherently bundled myelinated fibers. Voxel-based statistical analysis was performed on fractional anisotropy (FA) images of 42 right- and 40 left-handers, to assess differences in underlying WM anisotropy and FA asymmetry across the whole brain. Right-handers show greater anisotropy than left-handers in the uncinate fasciculus (UF) within the limbic lobe, and WM underlying prefrontal cortex, medial and inferior frontal gyri. Significantly greater leftward FA asymmetry in cerebellum posterior lobe is seen in left- than right-handers, and males show significantly greater rightward (right-greater-than-left) FA asymmetry in regions of middle occipital lobe, medial temporal gyrus, and a region of the superior longitudinal fasciculus underlying the supramarginal gyrus. Leftward (left-greater-than-right) anisotropy is found in regions of the arcuate fasciculus (AF), UF, and WM underlying pars triangularis in both handedness groups, with right-handers alone showing additional leftward FA asymmetry along the length of the superior temporal gyrus. Overall results indicate that although both handedness groups show anisotropy in similar WM regions, greater anisotropy is observed in right-handers compared with left-handers. The largest differences in FA asymmetry are found between males and females, suggesting a greater effect of sex than handedness on FA asymmetry. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Plessen, Kerstin J; Hugdahl, Kenneth; Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S
2014-04-30
We assessed the correlations of age, sex, and cognitive performance with measures of asymmetry in cortical thickness on high-resolution MRIs in 215 healthy human children and adults, 7-59 years of age. A left > right asymmetry in thickness of the cortical mantle was present throughout the entire lateral, dorsal, and mesial surfaces of the frontal lobe, extending into primary sensory, superior parietal, and anterior superior temporal cortices. A right > left asymmetry was present in the lateral, mesial, and dorsal surfaces of the posterior temporal, parietal, and occipital cortices, as well as in the entire inferior surface of the brain. An exaggerated left > right asymmetry was detected in females in anterior brain regions, and an exaggerated right > left asymmetry was detected in males in the orbitofrontal, inferior parietal, and inferior occipital cortices. Weaker moderating effects of sex were scattered along the mesial surface of the brain. Age significantly moderated asymmetry measures in the inferior sensorimotor, inferior parietal, posterior temporal, and inferior occipital cortices. The age × asymmetry interaction derived from a steeper decline in cortical thickness with age in the right hemisphere than in the left on the lateral surface, whereas it derived from a steeper decline with age in the left hemisphere than in the right on the mesial surface. Finally, measures of performance on working memory and vocabulary tasks improved with increasing magnitudes of normal asymmetries in regions thought to support these cognitive capacities.
Sharp Central Venous Recanalization by Means of a TIPS Needle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honnef, Dagmar, E-mail: honnef@rad.rwth-aachen.de; Wingen, Markus; Guenther, Rolf W.
The purpose of this study was to perform an alternative technique for recanalization of a chronic occlusion of the left brachiocephalic vein that could not be traversed with a guidewire. Restoration of a completely thrombosed left brachiocephalic vein was attempted in a 76-year-old male hemodialysis patient with massive upper inflow obstruction, massive edema of the face, neck, shoulder, and arm, and occlusion of the stented right brachiocephalic vein/superior vena cava. Vessel negotiation with several guidewires and multipurpose catheters proved unsuccessful. The procedure was also non-viable using a long, 21G puncture needle. Puncture of the superior vena cava (SVC) at themore » distal circumference of the stent in the right brachiocephalic vein/superior vena cava, however, was feasible with a transjugular intrahepatic portosystemic shunt (TIPS) set under biplanar fluoroscopy using the distal end of the right brachiocephalic vein as a target, followed by balloon dilatation and partial extraction of thrombotic material of the left brachiocephalic vein with a wire basket. Finally, two overlapping stents were deployed to avoid early re-occlusion. Venography demonstrated complete vessel patency with free contrast media flow via the stents into the SVC, which was reconfirmed in follow-up examinations. Immediate clinical improvement was observed. Venous vascular recanalization of chronic venous occlusion by means of a TIPS needle is feasible as a last resort under certain precautions.« less
Wang, Shuai; Zhang, Yan; Lv, Luxian; Wu, Renrong; Fan, Xiaoduo; Zhao, Jingping; Guo, Wenbin
2018-02-01
Structural and functional abnormalities have been reported in the brain of patients with adolescent-onset schizophrenia (AOS). The brain regional functional synchronization in patients with AOS remains unclear. We analyzed resting-state functional magnetic resonance scans in 48 drug-naive patients with AOS and 31 healthy controls by using regional homogeneity (ReHo), a measurement that reflects brain local functional connectivity or synchronization and indicates regional integration of information processing. Then, receiver operating characteristic curves and support vector machines were used to evaluate the effect of abnormal regional homogeneity in differentiating patients from controls. Patients with AOS showed significantly increased ReHo values in the bilateral superior medial prefrontal cortex (MPFC) and significantly decreased ReHo values in the left superior temporal gyrus (STG), right precentral lobule, right inferior parietal lobule (IPL), and left paracentral lobule when compared with controls. A combination of the ReHo values in bilateral superior MPFC, left STG, and right IPL was able to discriminate patients from controls with the sensitivity of 88.24%, specificity of 91.89%, and accuracy of 90.14%. The brain regional functional synchronization abnormalities exist in drug-naive patients with AOS. A combination of ReHo values in these abnormal regions might serve as potential imaging biomarker to identify patients with AOS. Copyright © 2017 Elsevier B.V. All rights reserved.
Karita, K; Izumi, H; Tabata, T; Kuriwada, S; Sasano, T; Sanjo, D
1989-01-01
This study was carried out to investigate the nervous control of the blood flow in the periodontal ligament measured by laser Doppler flowmeter. Ten adult cats were anesthetized with pentobarbital sodium (initial dose of 30 mg/kg, i.v. and maintenance dose of 5 mg/kg, i.v.). After enucleating the left eye ball, the superior alveolar nerve was exposed. The bone overlying the labial aspect of the left maxillary canine tooth root was pared away until a transparent layer of bone was left covering the periodontal ligament. A laser light from a probe of the flowmeter fixed at the tooth was beamed through the thinned bone. Three different patterns of responses were observed following the electrical stimulation of the distal end of the cut superior alveolar nerve: an increasing, a decreasing and a biphasic change of blood flow. The application of capsaicin onto the superior alveolar nerve reduced the response of blood flow increase but had no effect on the response of blood flow decrease. On the other hand, the response of blood flow decrease was completely inhibited by the pretreatment with phentolamine while the response of blood flow increase was not affected. The present results suggest that blood flow in the periodontal ligament of cats is controlled by sympathetic alpha-adrenergic fibers for vasoconstriction and by sensory fibers for vasodilation.
Lee, Jooyeon; Torosyan, Nare; Silverman, Daniel H
2017-01-01
Natural compounds in grapes such as resveratrol are known for their antioxidant and anti-inflammatory properties. Some studies have shown a potential role for grapes or wine in slowing cognitive decline and other effects of aging. However, well-controlled experimental data obtained in human subjects are still in need of further development. Here we aimed to systematically assess effects of grapes on regional cerebral metabolism. Ten subjects with mild decline in cognition (mean, 72.2±4.7years; 50% female) were included in this analysis. Participants were randomized into an active grape formulation arm or a placebo arm which consumed a formulation free of polyphenols for six months. Cognitive performance was measured through neuropsychological assessments performed at baseline and 6months after initiation of therapy. Changes in brain metabolism occurring with each therapy regimen were assessed by brain PET scans with the radiotracer [F-18] fluorodeoxyglucose (FDG), obtained during initial evaluation and 6months later. Standardized volumes of interest (sVOI) and statistical parametric mapping (SPM) methods were applied to FDG-PET scans to identify significant regional cerebral metabolic changes. In contrast to participants taking the active grape formulation, who displayed no significant decline in metabolism, the placebo arm underwent significant metabolic decline in sVOI's of the right posterior cingulate cortex (p=0.01), and left superior posterolateral temporal cortex (p=0.04). SPM analyses also found significant declines in the placebo group, particularly in left prefrontal, cingulate, and left superior posterolateral temporal cortex (p<0.01) with stable brain metabolism in the active formulation arm. No significant differences were seen in scores on the neuropsychological battery of tests between the two groups. However, metabolism in right superior parietal cortex and left inferior anterior temporal cortex was correlated with improvements in attention/working memory, as measured with WAIS-III Digital Span within the active formulation group (r=-0.69, p=0.04). The placebo arm had declines in regions of the brain known to be significantly affected in the early stages of Alzheimer's disease, while the active formulation group was spared such decline. This suggests a protective effect of grapes against early pathologic metabolic decline. Copyright © 2016 Elsevier Inc. All rights reserved.
Abnormal brain function in neuromyelitis optica: A fMRI investigation of mPASAT.
Wang, Fei; Liu, Yaou; Li, Jianjun; Sondag, Matthew; Law, Meng; Zee, Chi-Shing; Dong, Huiqing; Li, Kuncheng
2017-10-01
Cognitive impairment with the Neuromyelitis Optica (NMO) patients is debated. The present study is to study patterns of brain activation in NMO patients during a pair of task-related fMRI. We studied 20 patients with NMO and 20 control subjects matched for age, gender, education and handedness. All patients with NMO met the 2006 Wingerchuk diagnostic criteria. The fMRI paradigm included an auditory attention monitoring task and a modified version of the Paced Auditory Serial Addition Task (mPASAT). Both tasks were temporally and spatially balanced, with the exception of task difficulty. In mPASAT, Activation regions in control subjects included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA45), bilateral inferior parietal lobule (BA7), left cingulate gyrus (BA32), left insula (BA13), and cerebellum. Activation regions in NMO patients included bilateral superior temporal gyri (BA22), left inferior frontal gyrus (BA9), right cingulate gyrus (BA32), right inferior parietal gyrus (BA40), left insula (BA13) and cerebellum. Some dispersed cognition related regions are greater in the patients. The present study showed altered cerebral activation during mPASAT in patients with NMO relative to healthy controls. These results are speculated to provide further evidence for brain plasticity in patients with NMO. Copyright © 2017 Elsevier B.V. All rights reserved.
Neck Pain One Week after Pacemaker Generator Replacement.
Graham, Ross F; Wightman, John M
2015-07-01
The incidence of cardiac pacemaker implantation has risen markedly in the past three decades, making awareness of possible postprocedural complications critical to the emergency physician. This case is the first documented instance of internal jugular (IJ) deep vein thrombosis (DVT) from an uncomplicated pacemaker generator replacement. A patient presented to an Emergency Department with a 2-day history of mild left temporal headache migrating to his left neck. The patient did not volunteer this information, but review of systems revealed a temporary transvenous pacemaker inserted through the right IJ vein 1 week previously during a routine exchange of a left-sided cardiac pacemaker generator. Manipulation of the existing pacemaker wires entering the left subclavian vein was minimal. Computed tomographic angiography of the neck demonstrated near-complete thrombotic occlusion of the entire length of his left IJ vein. This required hospital admission for observation and treatment with anticoagulation. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: DVT, with thrombotic extension into adjacent vessels anywhere along the course of pacemaker wires, should be considered by the emergency provider in the evaluation of head, neck, or upper extremity symptoms after recent or remote implantation or manipulation of a transvenous cardiac pacemaker, including generator replacement. Failure to identify and treat appropriately could result in significant morbidity and mortality from airway edema, septic thrombophlebitis, superior vena cava syndrome, superior sagittal sinus thrombosis, or pulmonary embolism. Published by Elsevier Inc.
Guo, Wen-bin; Liu, Feng; Chen, Jin-dong; Gao, Keming; Xue, Zhi-min; Xu, Xi-jia; Wu, Ren-rong; Tan, Chang-lian; Sun, Xue-li; Liu, Zhe-ning; Chen, Hua-fu; Zhao, Jing-ping
2012-10-01
Patients with treatment-resistant depression (TRD) and those with treatment-sensitive depression (TSD) responded to antidepressants differently. Previous studies have commonly shown that patients with TRD or TSD had abnormal neural activity in different brain regions. In the present study, we used a coherence-based ReHo (Cohe-ReHo) approach to test the hypothesis that patients with TRD or TSD had abnormal neural activity in different brain regions. Twenty-three patients with TRD, 22 with TSD, and 19 healthy subjects (HS) matched with gender, age, and education level participated in the study. ANOVA analysis revealed widespread differences in Cohe-ReHo values among the three groups in different brain regions which included bilateral superior frontal gyrus, bilateral cerebellum, left inferior temporal gyrus, left occipital cortex, and both sides of fusiform gyrus. Compared to HS, lower Cohe-ReHo values were observed in TRD group in bilateral superior frontal gyrus and left cerebellum; in contrast, in TSD group, lower Cohe-ReHo values were mainly found in bilateral superior frontal gyrus. Compared to TSD group, TRD group had lower Cohe-ReHo in bilateral cerebellum and higher Cohe-ReHo in left fusiform gyrus. There was a negative correlation between Cohe-ReHo values of the left fusiform gyrus and illness duration in the pooled patients (r = 0.480, p = 0.001). The sensitivity and specificity of cerebellar Cohe-ReHo values differentiating TRD from TSD were 83% and 86%, respectively. Compared to healthy controls, both TRD and TSD patients shared the majority of brain regions with abnormal neural activity. However, the lower Cohe-ReHo values in the cerebellum might be as a marker to differentiate TRD from TSD with high sensitivity and specificity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Degenerative jargon aphasia: unusual progression of logopenic/phonological progressive aphasia?
Caffarra, Paolo; Gardini, Simona; Cappa, Stefano; Dieci, Francesca; Concari, Letizia; Barocco, Federica; Ghetti, Caterina; Ruffini, Livia; Prati, Guido Dalla Rosa
2013-01-01
Primary progressive aphasia (PPA) corresponds to the gradual degeneration of language which can occur as nonfluent/agrammatic PPA, semantic variant PPA or logopenic variant PPA. We describe the clinical evolution of a patient with PPA presenting jargon aphasia as a late feature. At the onset of the disease (ten years ago) the patient showed anomia and executive deficits, followed later on by phonemic paraphasias and neologisms, deficits in verbal short-term memory, naming, verbal and semantic fluency. At recent follow-up the patient developed an unintelligible jargon with both semantic and neologistic errors, as well as with severe deficit of comprehension which precluded any further neuropsychological assessment. Compared to healthy controls, FDG-PET showed a hypometabolism in the left angular and middle temporal gyri, precuneus, caudate, posterior cingulate, middle frontal gyrus, and bilaterally in the superior temporal and inferior frontal gyri. The clinical and neuroimaging profile seems to support the hypothesis that the patient developed a late feature of logopenic variant PPA characterized by jargonaphasia and associated with superior temporal and parietal dysfunction.
ERIC Educational Resources Information Center
US Department of Education, 2008
2008-01-01
The No Child Left Behind Blue Ribbon Schools Program honors public and private K-12 schools that are either academically superior in their state or that demonstrate dramatic gains in student achievement. This document includes 2008 statistical information for public and private blue ribbon schools for 45 states. In addition to summarized totals,…
Nonlinear modulation of interacting between COMT and depression on brain function.
Gong, L; He, C; Yin, Y; Ye, Q; Bai, F; Yuan, Y; Zhang, H; Lv, L; Zhang, H; Zhang, Z; Xie, C
2017-09-01
The catechol-O-methyltransferase (COMT) gene is related to dopamine degradation and has been suggested to be involved in the pathogenesis of major depressive disorder (MDD). However, how this gene affects brain function properties in MDD is still unclear. Fifty patients with MDD and 35 cognitively normal participants underwent a resting-state functional magnetic resonance imaging scan. A voxelwise and data-drive global functional connectivity density (gFCD) analysis was used to investigate the main effects and the interactions of disease states and COMT rs4680 gene polymorphism on brain function. We found significant group differences of the gFCD in bilateral fusiform area (FFA), post-central and pre-central cortex, left superior temporal gyrus (STG), rectal and superior temporal gyrus and right ventrolateral prefrontal cortex (vlPFC); abnormal gFCDs in left STG were positively correlated with severity of depression in MDD group. Significant disease×COMT interaction effects were found in the bilateral calcarine gyrus, right vlPFC, hippocampus and thalamus, and left SFG and FFA. Further post-hoc tests showed a nonlinear modulation effect of COMT on gFCD in the development of MDD. Interestingly, an inverted U-shaped modulation was found in the prefrontal cortex (control system) but U-shaped modulations were found in the hippocampus, thalamus and occipital cortex (processing system). Our study demonstrated nonlinear modulation of the interaction between COMT and depression on brain function. These findings expand our understanding of the COMT effect underlying the pathophysiology of MDD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Extended Endoscopic Endonasal Approach for Craniopharyngioma Removal.
Messerer, Mahmoud; Maduri, Rodolfo; Daniel, Roy Thomas
2018-02-01
Objective Endoscopic transsphenoidal extended endoscopic approach (EEA) represents a valid alternative to microsurgery for craniopharyngiomas removal, especially for retrochiasmatic lesions without large parasellar extension. The present video illustrates the salient surgical steps of the EEA for craniopahryngioma removal. Patient A 52-year-old man presented with a bitemporal hemianopia and a bilateral decreased visual acuity. MRI showed a Kassam type III cystic craniopharyngioma with a solid component ( Fig. 1 , panels A and B). Surgical Procedure The head is rotated 10 degrees toward the surgeons. The nasal step is started through the left nostril with a middle turbinectomy. A nasoseptal flap is harvested and positioned in the left choana. The binostril approach allows a large sphenoidotomy to expose the key anatomic landmarks. The craniotomy boundaries are the planum sphenoidale superiorly, the median opticocarotid recesses, the internal carotid artery laterally and the clival recess inferiorly. After dural opening and superior intercavernous sinus coagulation, the tumor is entirely removed ( Fig. 2 , panels A and B). Skull base reconstruction is ensured by fascia lata grafting and nasoseptal flap positioning. Results Postoperative MRI showed the complete tumor resection ( Fig. 1 , panels C and D). At 3 months postoperatively, the bitemporal hemianopia regressed and the visual acuity improved. A novel left homonymous hemianopia developed secondary to optic tract manipulation. Conclusions The extended EEA is a valid surgical approach for craniopharyngioma resection. A comprehensive knowledge of the sellar and parasellar anatomy is mandatory for safe tumor removal with decreased morbidity and satisfactory oncologic results. The link to the video can be found at: https://youtu.be/NrCPPnVK2qA .
Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin
2012-02-01
In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that have been implicated in EOS and cannabis use disorders (CUD). T1-weighted magnetic resonance images were acquired from adolescents with EOS (n = 35), CUD (n = 16), EOS + CUD (n = 13), and healthy controls (HC) (n = 51). Using FreeSurfer, brain volume was examined within frontal, temporal, parietal and subcortical ROIs by a 2 (EOS versus no EOS) × 2 (CUD versus no CUD) design using multivariate analysis of covariance. In ROIs in which volumetric differences were identified, additional analyses of cortical thickness and surface area were conducted. A significant EOS-by-CUD interaction was observed. In the left superior parietal region, both "pure" EOS and "pure" CUD had smaller gray matter volumes that were associated with lower surface area compared with HC. A similar alteration was observed in the comorbid group compared with HC, but there was no additive volumetric deficit found in the comorbid group compared with the separate groups. In the left thalamus, the comorbid group had smaller gray matter volumes compared with the CUD and HC groups. These preliminary data indicate that the presence of a CUD may moderate the relationship between EOS and cerebral cortical gray matter structure in the left superior parietal lobe. Future research will follow this cohort over adolescence to further examine the impact of cannabis use on neurodevelopment.
Multimodality language mapping in patients with left-hemispheric language dominance on Wada test.
Kojima, Katsuaki; Brown, Erik C; Rothermel, Robert; Carlson, Alanna; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Mittal, Sandeep; Fuerst, Darren; Sood, Sandeep; Asano, Eishi
2012-10-01
We determined the utility of electrocorticography (ECoG) and stimulation for detecting language-related sites in patients with left-hemispheric language-dominance on Wada test. We studied 13 epileptic patients who underwent language mapping using event-related gamma-oscillations on ECoG and stimulation via subdural electrodes. Sites showing significant gamma-augmentation during an auditory-naming task were defined as language-related ECoG sites. Sites at which stimulation resulted in auditory perceptual changes, failure to verbalize a correct answer, or sensorimotor symptoms involving the mouth were defined as language-related stimulation sites. We determined how frequently these methods revealed language-related sites in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions. Language-related sites in the superior-temporal and inferior-frontal gyri were detected by ECoG more frequently than stimulation (p < 0.05), while those in the dorsolateral-premotor and inferior-Rolandic regions were detected by both methods equally. Stimulation of language-related ECoG sites, compared to the others, more frequently elicited language symptoms (p < 0.00001). One patient developed dysphasia requiring in-patient speech therapy following resection of the dorsolateral-premotor and inferior-Rolandic regions containing language-related ECoG sites not otherwise detected by stimulation. Language-related gamma-oscillations may serve as an alternative biomarker of underlying language function in patients with left-hemispheric language-dominance. Measurement of language-related gamma-oscillations is warranted in presurgical evaluation of epileptic patients. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Congenital heart disease manifested as acute abdominal pain.
Macha, Mahender; Gupta, Dipin; Molina, Ezequiel; Palma, Jon; Rothman, Steven
2007-06-12
We present a case of a 53-year-old man with complaints of severe abdominal pain and nausea. Emergency department abdominal workup was non-diagnostic. Physical examination revealed signs of right- and left-heart failure. A past medical history of dysrhythmias and chronic abdominal complaints prompted hospital admission. Subsequent right heart catheterization revealed a significant left-to-right shunt. CT scan of the chest and angiography confirmed the diagnosis of an abnormal ascending vein between the innominate vein and the left superior pulmonary vein. After the anomalous vein was ligated, the patient's abdominal pain resolved.
Cerebral specialization for spatial processing in adults with Down syndrome.
Elliott, D; Pollock, B J; Chua, R; Weeks, D J
1995-05-01
Cerebral specialization for spatial processing in adults with Down syndrome was examined. In the first experiment, both control and right-handed subjects with Down syndrome exhibited no lateral advantage in a dihaptic shape-matching task, whereas left-handed subjects with Down syndrome displayed an expected left-hand advantage. In a visual field dot enumeration task in the second experiment, all groups exhibited left-field superiority. Thus, atypical cerebral organization of function in adults with Down syndrome appears to be confined to speech perception (Elliott & Weeks, 1993).
Hatzidakis, A; Krokidis, M; Androulakakis, Z; Rossi, M
2015-01-01
We report a case of a 54-year-old male patient with background history of hypertension, which suffered a Stanford type A thoraco-abdominal aortic dissection with extension to the visceral arteries. The patient initially underwent surgical repair with replacement of the ascending aorta and of the hemiarch in the acute phase of the dissection. Postoperatively, he developed non-specific abdominal pain that was not related to meals but led to weight loss of 20 kg within the first five post-operative months. Follow-up computerized tomography scan revealed a chronic subphrenic aortic dissection extending to the celiac axis (with involvement of the left gastric and the splenic artery), the left renal artery and the superior mesenteric artery (SMA). The hepatic artery took origin from the SMA and received blood from the true lumen of the vessel, and the right renal artery was entirely supplied from the true aortic lumen. After exclusion of other causes of abdominal pain, the patient was treated with percutaneous stent placement in the dissected SMA with significant improvement of his symptoms. This case report emphasizes the role of visceral artery endovascular techniques in the management of patients with complicated chronic aortic dissection. Hippokratia 2015; 19 (3): 270-273.
Differentiating maturational and training influences on fMRI activation during music processing.
Ellis, Robert J; Norton, Andrea C; Overy, Katie; Winner, Ellen; Alsop, David C; Schlaug, Gottfried
2012-04-15
Two major influences on how the brain processes music are maturational development and active musical training. Previous functional neuroimaging studies investigating music processing have typically focused on either categorical differences between "musicians versus nonmusicians" or "children versus adults." In the present study, we explored a cross-sectional data set (n=84) using multiple linear regression to isolate the performance-independent effects of age (5 to 33 years) and cumulative duration of musical training (0 to 21,000 practice hours) on fMRI activation similarities and differences between melodic discrimination (MD) and rhythmic discrimination (RD). Age-related effects common to MD and RD were present in three left hemisphere regions: temporofrontal junction, ventral premotor cortex, and the inferior part of the intraparietal sulcus, regions involved in active attending to auditory rhythms, sensorimotor integration, and working memory transformations of pitch and rhythmic patterns. By contrast, training-related effects common to MD and RD were localized to the posterior portion of the left superior temporal gyrus/planum temporale, an area implicated in spectrotemporal pattern matching and auditory-motor coordinate transformations. A single cluster in right superior temporal gyrus showed significantly greater activation during MD than RD. This is the first fMRI which has distinguished maturational from training effects during music processing. Copyright © 2012 Elsevier Inc. All rights reserved.
Growth of language-related brain areas after foreign language learning.
Mårtensson, Johan; Eriksson, Johan; Bodammer, Nils Christian; Lindgren, Magnus; Johansson, Mikael; Nyberg, Lars; Lövdén, Martin
2012-10-15
The influence of adult foreign-language acquisition on human brain organization is poorly understood. We studied cortical thickness and hippocampal volumes of conscript interpreters before and after three months of intense language studies. Results revealed increases in hippocampus volume and in cortical thickness of the left middle frontal gyrus, inferior frontal gyrus, and superior temporal gyrus for interpreters relative to controls. The right hippocampus and the left superior temporal gyrus were structurally more malleable in interpreters acquiring higher proficiency in the foreign language. Interpreters struggling relatively more to master the language displayed larger gray matter increases in the middle frontal gyrus. These findings confirm structural changes in brain regions known to serve language functions during foreign-language acquisition. Copyright © 2012 Elsevier Inc. All rights reserved.
Lincoln's vertical strabismus.
Goldstein, J H
1997-01-01
The vertical strabismus manifested by Abraham Lincoln has been noted. This article reviews the historical findings and provides a specific diagnosis. Previous reports of symptoms and history relating to Lincoln's left hypertropia were reviewed. A series of photographs were reviewed. Lincoln's own description of his symptoms is provided. Previous history indicates an intermittent left hypertropia. A family history of vertical strabismus was noted with regard to Mr Lincoln's cousin. There also is a history of trauma to the left frontal area and life-mask evidence of fracture over the left eye. The findings include a history of head tilt and diplopia, presumably most readily in downgaze. Given the history and findings, the diagnosis of left superior oblique paresis of either congenital or traumatic origin seems appropriate.
Barch, Deanna; Pagliaccio, David; Belden, Andy; Harms, Michael P; Gaffrey, Michael; Sylvester, Chad M; Tillman, Rebecca; Luby, Joan
2016-06-01
In this study, the authors tested the hypothesis that poverty experienced in early childhood, as measured by income-to-needs ratio, has an impact on functional brain connectivity at school age, which in turn mediates influences on child negative mood/depression. Participants were from a prospective longitudinal study of emotion development. Preschoolers 3-5 years of age were originally ascertained from primary care and day care sites in the St. Louis area and then underwent annual behavioral assessments for up to 12 years. Healthy preschoolers and those with a history of depression symptoms underwent neuroimaging at school age. Using functional MRI, the authors examined whole brain resting-state functional connectivity with the left and right hippocampus and amygdala. Lower income-to-needs ratio at preschool age was associated with reduced connectivity between hippocampus and amygdala and a number of regions at school age, including the superior frontal cortex, lingual gyrus, posterior cingulate, and putamen. Lower income-to-needs ratio predicted greater negative mood/depression severity at school age, as did connectivity between the left hippocampus and the right superior frontal cortex and between the right amygdala and the right lingual gyrus. Connectivity mediated the relationship between income-to-needs ratio and negative mood/depression at the time of scanning. These findings suggest that poverty in early childhood, as assessed by at least one measure, may influence the development of hippocampal and amygdala connectivity in a manner leading to negative mood symptoms during later childhood.
The intrinsic resting state voice network in Parkinson's disease
New, Anneliese B.; Parkinson, Amy L.; Eickhoff, Claudia R.; Reetz, Kathrin; Hoffstaedter, Felix; Mathys, Christian; Sudmeyer, Martin; Michely, Jochen; Caspers, Julian; Grefkes, Christian; Larson, Charles R.; Ramig, Loraine O.; Fox, Peter T.; Eickhoff, Simon B.
2015-01-01
Abstract Over 90 percent of patients with Parkinson's disease experience speech‐motor impairment, namely, hypokinetic dysarthria characterized by reduced pitch and loudness. Resting‐state functional connectivity analysis of blood oxygen level‐dependent functional magnetic resonance imaging is a useful measure of intrinsic neural functioning. We utilized resting‐state functional connectivity modeling to analyze the intrinsic connectivity in patients with Parkinson's disease within a vocalization network defined by a previous meta‐analysis of speech (Brown et al., 2009). Functional connectivity of this network was assessed in 56 patients with Parkinson's disease and 56 gender‐, age‐, and movement‐matched healthy controls. We also had item 5 and 18 of the UPDRS, and the PDQ‐39 Communication subscale available for correlation with the voice network connectivity strength in patients. The within‐group analyses of connectivity patterns demonstrated a lack of subcortical–cortical connectivity in patients with Parkinson's disease. At the cortical level, we found robust (homotopic) interhemispheric connectivity but only inconsistent evidence for many intrahemispheric connections. When directly contrasted to the control group, we found a significant reduction of connections between the left thalamus and putamen, and cortical motor areas, as well as reduced right superior temporal gyrus connectivity. Furthermore, most symptom measures correlated with right putamen, left cerebellum, left superior temporal gyrus, right premotor, and left Rolandic operculum connectivity in the voice network. The results reflect the importance of (right) subcortical nodes and the superior temporal gyrus in Parkinson's disease, enhancing our understanding of the neurobiological underpinnings of vocalization impairment in Parkinson's disease. Hum Brain Mapp 36:1951–1962, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25627959
Chen, Hui Juan; Wang, Yun Fei; Qi, Rongfeng; Schoepf, U Joseph; Varga-Szemes, Akos; Ball, B Devon; Zhang, Zhe; Kong, Xiang; Wen, Jiqiu; Li, Xue; Lu, Guang Ming; Zhang, Long Jiang
2017-04-01
The purpose of this study was to investigate patterns in the amygdala-based emotional processing circuit of hemodialysis patients using resting-state functional MR imaging (rs-fMRI). Fifty hemodialysis patients (25 with depressed mood and 25 without depressed mood) and 26 healthy controls were included. All subjects underwent neuropsychological tests and rs-fMRI, and patients also underwent laboratory tests. Functional connectivity of the bilateral amygdala was compared among the three groups. The relationship between functional connectivity and clinical markers was investigated. Depressed patients showed increased positive functional connectivity of the left amygdala with the left superior temporal gyrus and right parahippocampal gyrus (PHG) but decreased amygdala functional connectivity with the left precuneus, angular gyrus, posterior cingulate cortex (PCC), and left inferior parietal lobule compared with non-depressed patients (P < 0.05, AlphaSim corrected). Depressed patients had increased positive functional connectivity of the right amygdala with bilateral supplementary motor areas and PHG but decreased amygdala functional connectivity with the right superior frontal gyrus, superior parietal lobule, bilateral precuneus, and PCC (P < 0.05, AlphaSim corrected). After including anxiety as a covariate, we discovered additional decreased functional connectivity with anterior cingulate cortex (ACC) for bilateral amygdala (P < 0.05, AlphaSim corrected). For the depressed, neuropsychological test scores were correlated with functional connectivity of multiple regions (P < 0.05, AlphaSim corrected). In conclusion, functional connectivity in the amygdala-prefrontal-PCC-limbic circuits was impaired in depressive hemodialysis patients, with a gradual decrease in ACC between controls, non-depressed, and depressed patients for the right amygdala. This indicates that ACC plays a role in amygdala-based emotional regulatory circuits in these patients.
van Leeuwen, Tessa M; Petersson, Karl Magnus; Hagoort, Peter
2010-08-10
In synaesthesia, sensations in a particular modality cause additional experiences in a second, unstimulated modality (e.g., letters elicit colour). Understanding how synaesthesia is mediated in the brain can help to understand normal processes of perceptual awareness and multisensory integration. In several neuroimaging studies, enhanced brain activity for grapheme-colour synaesthesia has been found in ventral-occipital areas that are also involved in real colour processing. Our question was whether the neural correlates of synaesthetically induced colour and real colour experience are truly shared. First, in a free viewing functional magnetic resonance imaging (fMRI) experiment, we located main effects of synaesthesia in left superior parietal lobule and in colour related areas. In the left superior parietal lobe, individual differences between synaesthetes (projector-associator distinction) also influenced brain activity, confirming the importance of the left superior parietal lobe for synaesthesia. Next, we applied a repetition suppression paradigm in fMRI, in which a decrease in the BOLD (blood-oxygenated-level-dependent) response is generally observed for repeated stimuli. We hypothesized that synaesthetically induced colours would lead to a reduction in BOLD response for subsequently presented real colours, if the neural correlates were overlapping. We did find BOLD suppression effects induced by synaesthesia, but not within the colour areas. Because synaesthetically induced colours were not able to suppress BOLD effects for real colour, we conclude that the neural correlates of synaesthetic colour experience and real colour experience are not fully shared. We propose that synaesthetic colour experiences are mediated by higher-order visual pathways that lie beyond the scope of classical, ventral-occipital visual areas. Feedback from these areas, in which the left parietal cortex is likely to play an important role, may induce V4 activation and the percept of synaesthetic colour.
Chen, Xin; Qin, Lei; Pan, Dan; Huang, Yanqi; Yan, Lifen; Wang, Guangyi; Liu, Yubao; Liang, Changhong; Liu, Zaiyi
2014-04-01
To prospectively compare the reproducibility of normal liver apparent diffusion coefficient (ADC) measurements by using different respiratory motion compensation techniques with multiple breath-hold (MBH), free-breathing (FB), respiratory-triggered (RT), and navigator-triggered (NT) diffusion-weighted (DW) imaging and to compare the ADCs at different liver anatomic locations. The study protocol was approved by the institutional review board, and written informed consent was obtained from each participant. Thirty-nine volunteers underwent liver DW imaging twice. Imaging was performed with a 1.5-T MR imager with MBH, FB, RT, and NT techniques (b = 0, 100, and 500 sec/mm(2)). Three representative sections--superior, central, and inferior--were selected on left and right liver lobes, respectively. On each selected section, three regions of interest were drawn, and ADCs were measured. Analysis of variance was used to assess ADCs among the four techniques and various anatomic locations. Reproducibility of ADCs was assessed with the Bland-Altman method. ADCs obtained with MBH (range: right lobe, [1.641-1.662] × 10(-3)mm(2)/sec; left lobe, [2.034-2.054] ×10(-3)mm(2)/sec) were higher than those obtained with FB (right, [1.349-1.391] ×10(-3)mm(2)/sec; left, [1.630-1.700] ×10(-3)mm(2)/sec), RT (right, [1.439-1.455] ×10(-3)mm(2)/sec; left, [1.720-1.755] ×10(-3)mm(2)/sec), or NT (right, [1.387-1.400] ×10(-3)mm(2)/sec; left, [1.661-1.736] ×10(-3)mm(2)/sec) techniques (P < .001); however, no significant difference was observed between ADCs obtained with FB, RT, and NT techniques (P = .130 to P >.99). ADCs showed a trend to decrease moving from left to right. Reproducibility in the left liver lobe was inferior to that in the right, and the central middle segment in the right lobe had the most reproducible ADC. Statistical differences in ADCs were observed in the left-right direction in the right lobe (P < .001), but they were not observed in the superior-inferior direction (P = .144-.450). However, in the left liver lobe, statistical differences existed in both directions (P = .001 to P = .016 in the left-right direction, P < .001 in the superior-inferior direction). Both anatomic location and DW imaging technique influence liver ADC measurements and their reproducibility. FB DW imaging is recommended for liver DW imaging because of its good reproducibility and shorter acquisition time compared with that of MBH, RT, and NT techniques. RSNA, 2014
Cross-sectional echocardiographic diagnosis of systemic venous return.
Huhta, J C; Smallhorn, J F; Macartney, F J; Anderson, R H; de Leval, M
1982-01-01
To determine the sensitivity and specificity of cross-sectional echocardiography in diagnosing anomalous systemic venous return we used the technique in 800 consecutive children with congenital heart disease and whom the diagnosis was ultimately confirmed by angiography. Cross-sectional echocardiography was performed without prior knowledge of the diagnosis in all but 11 patients, who were recalled because of a known abnormality of atrial situs. The sensitivity of cross-sectional echocardiographic detection of various structures was as follows: right superior vena cava 792/792 (100%); left superior vena cava 46/48 (96%); bilateral superior vena cava 38/40 (95%); bridging innominate vein with bilateral superior vena cava 13/18 (72%); connection of superior caval segment to heart (coronary sinus or either atrium) (100%); absence of suprarenal inferior vena cava 23/23 (100%); azygos continuation of the inferior vena cava 31/33 (91%); downstream connection of azygos continuation, once seen, 21/21 (100%); partial anomalous hepatic venous connection (one hepatic vein not connected to the inferior vena cava) 1/1 (100%); total anomalous hepatic venous connection (invariably associated with left isomerism) 23/23 (100%). The specificity of each above diagnoses was 100% except in one infant with exomphalos in whom absence of the suprarenal inferior vena cava was incorrectly diagnosed. Thus cross-sectional echocardiography is an extremely specific and highly sensitive method of recognizing anomalous systemic venous return. It is therefore of great value of planning both cardiac catheterisation and cannulation for open heart surgery. Images PMID:6751361
Polspoel, Brecht; Peters, Lien; Vandermosten, Maaike; De Smedt, Bert
2017-09-01
Arithmetic development is characterized by strategy shifts between procedural strategy use and fact retrieval. This study is the first to explicitly investigate children's neural activation associated with the use of these different strategies. Participants were 26 typically developing 4th graders (9- to 10-year-olds), who, in a behavioral session, were asked to verbally report on a trial-by-trial basis how they had solved 100 subtraction and multiplication items. These items were subsequently presented during functional magnetic resonance imaging. An event-related design allowed us to analyze the brain responses during retrieval and procedural trials, based on the children's verbal reports. During procedural strategy use, and more specifically for the decomposition of operands strategy, activation increases were observed in the inferior and superior parietal lobes (intraparietal sulci), inferior to superior frontal gyri, bilateral areas in the occipital lobe, and insular cortex. For retrieval, in comparison to procedural strategy use, we observed increased activity in the bilateral angular and supramarginal gyri, left middle to inferior temporal gyrus, right superior temporal gyrus, and superior medial frontal gyrus. No neural differences were found between the two operations under study. These results are the first in children to provide direct evidence for alternate neural activation when different arithmetic strategies are used and further unravel that previously found effects of operation on brain activity reflect differences in arithmetic strategy use. Hum Brain Mapp 38:4657-4670, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Serotonin Modulation of Cerebral Glucose Metabolism in Depressed Older Adults
Smith, Gwenn S.; Kramer, Elisse; Hermann, Carol.; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David
2009-01-01
Background Monoamine dysfunction, particularly of the serotonin system, has been the dominant hypothesis guiding research and treatment development in affective disorders. The majority of research has been performed in mid-life depressed adults. The importance of understanding the neurobiology of depression in older adults is underscored by increased rates of mortality and completed suicide and an increased risk of Alzheimer's dementia. To evaluate the dynamic response of the serotonin system, the acute effects of citalopram infusion on cerebral glucose metabolism was measured in depressed older adults and control subjects. The hypothesis was tested that smaller decreases in metabolism would be observed in cortical and limbic regions in depressed older adults relative to controls. Methods Sixteen depressed older adults and thirteen controls underwent two resting Positron Emission Tomography (PET) studies with the radiotracer [18F]-2-deoxy-2-fluoro-D-glucose after placebo and citalopram infusions. Results In controls compared to depressed older adults, greater citalopram induced decreases in cerebral metabolism were observed in the right anterior cingulate, middle temporal (bilaterally), left precuneus, and left parahippocampal gyri. Greater decreases in the depressed older adults than controls was observed in left superior and left middle frontal gyri and increases in left inferior parietal lobule, left cuneus, left thalamus and right putamen. Conclusion In depressed older adults relative to controls, the cerebral metabolic response to citalopram is blunted in cortico-cortico and cortico-limbic pathways and increased in the left hemisphere (greater decrease interiorly and increases posterior). These findings suggest both blunted and compensatory cerebral metabolic responses to citalopram in depressed older adults. PMID:19368900
Orlov, Natasza D; Giampietro, Vincent; O'Daly, Owen; Lam, Sheut-Ling; Barker, Gareth J; Rubia, Katya; McGuire, Philip; Shergill, Sukhwinder S; Allen, Paul
2018-02-12
Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.
Brain Activation during Addition and Subtraction Tasks In-Noise and In-Quiet
Abd Hamid, Aini Ismafairus; Yusoff, Ahmad Nazlim; Mukari, Siti Zamratol-Mai Sarah; Mohamad, Mazlyfarina
2011-01-01
Background: In spite of extensive research conducted to study how human brain works, little is known about a special function of the brain that stores and manipulates information—the working memory—and how noise influences this special ability. In this study, Functional magnetic resonance imaging (fMRI) was used to investigate brain responses to arithmetic problems solved in noisy and quiet backgrounds. Methods: Eighteen healthy young males performed simple arithmetic operations of addition and subtraction with in-quiet and in-noise backgrounds. The MATLAB-based Statistical Parametric Mapping (SPM8) was implemented on the fMRI datasets to generate and analyse the activated brain regions. Results: Group results showed that addition and subtraction operations evoked extended activation in the left inferior parietal lobe, left precentral gyrus, left superior parietal lobe, left supramarginal gyrus, and left middle temporal gyrus. This supported the hypothesis that the human brain relatively activates its left hemisphere more compared with the right hemisphere when solving arithmetic problems. The insula, middle cingulate cortex, and middle frontal gyrus, however, showed more extended right hemispheric activation, potentially due to the involvement of attention, executive processes, and working memory. For addition operations, there was extensive left hemispheric activation in the superior temporal gyrus, inferior frontal gyrus, and thalamus. In contrast, subtraction tasks evoked a greater activation of similar brain structures in the right hemisphere. For both addition and subtraction operations, the total number of activated voxels was higher for in-noise than in-quiet conditions. Conclusion: These findings suggest that when arithmetic operations were delivered auditorily, the auditory, attention, and working memory functions were required to accomplish the executive processing of the mathematical calculation. The respective brain activation patterns appear to be modulated by the noisy background condition. PMID:22135581
Culture modulates brain activity during empathy with anger.
de Greck, Moritz; Shi, Zhenhao; Wang, Gang; Zuo, Xiangyu; Yang, Xuedong; Wang, Xiaoying; Northoff, Georg; Han, Shihui
2012-02-01
Interdependent cultures (such as the Chinese) and independent cultures (such as the German) differ in their attitude towards harmony that is more valued in interdependent cultures. Interdependent and independent cultures also differ in their appreciation of anger--an emotion that implies the disruption of harmony. The present study investigated if interdependent and independent cultures foster distinct brain activity associated with empathic processing of familiar angry, familiar neutral, and unfamiliar neutral faces. Using functional MRI, we scanned Chinese and German healthy subjects during an intentional empathy task, a control task (the evaluation of skin color), and a baseline condition. The subject groups were matched with regard to age, gender, and education. Behaviorally, Chinese subjects described themselves as significantly more interdependent compared to German subjects. The contrast 'intentional empathy for familiar angry'>'baseline' revealed several regions, including the left inferior frontal cortex, the left supplementary motor area, and the left insula, that showed comparable hemodynamic responses in both groups. However, the left dorsolateral prefrontal cortex had stronger hemodynamic responses in Chinese subjects in the contrast 'intentional empathy for familiar angry'>'baseline'. Germans, in contrast, showed stronger hemodynamic responses in the right temporo-parietal junction, right inferior and superior temporal gyrus, and left middle insula for the same contrast. Hemodynamic responses in the latter three brain regions correlated with interdependences scores over all subjects. Our results suggest that enhanced emotion regulation during empathy with anger in the interdependent lifestyle is mediated by the left dorsolateral prefrontal cortex. Increased tolerance towards the expression of anger in the independent lifestyle, in contrast, is associated with increased activity of the right inferior and superior temporal gyrus and the left middle insula. Copyright © 2011 Elsevier Inc. All rights reserved.
Berninger, Virginia W.; Gebregziabher, Mulugeta; Tsu, Loretta
2016-01-01
Abstract Meta-analysis of voxel-based morphometry dyslexia studies and direct analysis of 293 reading disability and control cases from six different research sites were performed to characterize defining gray matter features of reading disability. These analyses demonstrated consistently lower gray matter volume in left posterior superior temporal sulcus/middle temporal gyrus regions and left orbitofrontal gyrus/pars orbitalis regions. Gray matter volume within both of these regions significantly predicted individual variation in reading comprehension after correcting for multiple comparisons. These regional gray matter differences were observed across published studies and in the multisite dataset after controlling for potential age and gender effects, and despite increased anatomical variance in the reading disability group, but were not significant after controlling for total gray matter volume. Thus, the orbitofrontal and posterior superior temporal sulcus gray matter findings are relatively reliable effects that appear to be dependent on cases with low total gray matter volume. The results are considered in the context of genetics studies linking orbitofrontal and superior temporal sulcus regions to alleles that confer risk for reading disability. PMID:26835509
Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R
2015-01-01
Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.
Buchan, Iris; Covvey, H. Dominic; Rakowski, Harry
1985-01-01
A program has been developed for left ventricular (LV) border tracking on ultrasound images. For each frame, forty border points at equally-spaced angles around the LV center are found gradually during three passes. Pass 1 uses adaptive thresholding to find the most obvious border points. Pass 2 then uses an artificial intelligence technique of finding possible border path segments, associating a score with each, and, from paths with superior scores, obtaining more of the border points. Pass 3 closes any remaining gaps by interpolation. The program tracks the LV border quite well in spite of dropout and interference from intracardiac structures, except during end-systole. Multi-level passes provide a very useful structure for border tracking, with increasingly slow but more sophisticated algorithms possible at higher levels for use when earlier passes recognise failure.
Cavernous hemangioma of the orbit: an unusual acute presentation
Louisraj, Sophia; Ponnudurai, Thendral; Rodriguez, Dominic; Thomas, Philip A; Nelson Jesudasan, Christadoss Arul
2017-01-01
We report an unusual presentation of an orbital cavernous hemangioma in a 26-year-old female, who noted sudden redness and swelling of the left eye (LE) on waking up. At presentation, upper eyelid edema with periorbital ecchymosis and subconjunctival hemorrhage were noted in the LE. Although there was transient symptomatic relief with topical medications, blurring of vision developed in the LE. When seen 10 days later, the patient’s LE showed axial proptosis. Magnetic resonance imaging revealed an intraconal soft tissue mass in the superomedial quadrant of the left orbit. Superior orbitotomy with mass excision was done; histopathological examination of the excised mass revealed a cavernous hemangioma. The patient had complete visual recovery following surgery. To our knowledge, an acute presentation of an orbital cavernous hemangioma with subconjunctival hemorrhage and periorbital ecchymosis has not previously been reported. PMID:28769595
Dual Tasking and Working Memory in Alcoholism: Relation to Frontocerebellar Circuitry
Chanraud, Sandra; Pitel, Anne-Lise; Rohlfing, Torsten; Pfefferbaum, Adolf; Sullivan, Edith V
2010-01-01
Controversy exists regarding the role of cerebellar systems in cognition and whether working memory compromise commonly marking alcoholism can be explained by compromise of nodes of corticocerebellar circuitry. We tested 17 alcoholics and 31 age-matched controls with dual-task, working memory paradigms. Interference tasks competed with verbal and spatial working memory tasks using low (three item) or high (six item) memory loads. Participants also underwent structural MRI to obtain volumes of nodes of the frontocerebellar system. On the verbal working memory task, both groups performed equally. On the spatial working memory with the high-load task, the alcoholic group was disproportionately more affected by the arithmetic distractor than were controls. In alcoholics, volumes of the left thalamus and left cerebellar Crus I volumes were more robust predictors of performance in the spatial working memory task with the arithmetic distractor than the left frontal superior cortex. In controls, volumes of the right middle frontal gyrus and right cerebellar Crus I were independent predictors over the left cerebellar Crus I, left thalamus, right superior parietal cortex, or left middle frontal gyrus of spatial working memory performance with tracking interference. The brain–behavior correlations suggest that alcoholics and controls relied on the integrity of certain nodes of corticocerebellar systems to perform these verbal and spatial working memory tasks, but that the specific pattern of relationships differed by group. The resulting brain structure–function patterns provide correlational support that components of this corticocerebellar system not typically related to normal performance in dual-task conditions may be available to augment otherwise dampened performance by alcoholics. PMID:20410871
Structural changes in white matter are uniquely related to children’s reading development
Myers, Chelsea A.; Vandermosten, Maaike; Farris, Emily A.; Hancock, Roeland; Gimenez, Paul; Black, Jessica M.; Casto, Brandi; Drahos, Miroslav; Tumber, Mandeep; Hendren, Robert L.; Hulme, Charles; Hoeft, Fumiko
2014-01-01
This study examined whether variations in brain development between kindergarten and Grade 3 predicted individual differences in reading ability at the latter time point. Structural MRI measurements indicated that increases in volume of two left temporo-parietal white matter clusters are unique predictors of reading outcome at Grade 3. Using diffusion MRI, the larger of these two clusters was identified as a location where fibers of the long segment of arcuate fasciculus and superior corona radiata intersect, and the smaller cluster as the posterior arcuate fasciculus. Bias-free regression analyses using regions-of-interest from prior literature revealed white matter volume changes in temporo-parietal white matter, together with preliteracy measures, predicted 56% of the variance in reading outcomes. Our findings demonstrate the important contribution of developmental differences in areas of left dorsal white matter, often implicated in phonological processing, as a sensitive early biomarker for later reading abilities, and by extension, reading difficulties. PMID:25212581
Auditory Spatial Perception: Auditory Localization
2012-05-01
cochlear nucleus, TB – trapezoid body, SOC – superior olivary complex, LL – lateral lemniscus, IC – inferior colliculus. Adapted from Aharonson and...Figure 5. Auditory pathways in the central nervous system. LE – left ear, RE – right ear, AN – auditory nerve, CN – cochlear nucleus, TB...fibers leaving the left and right inner ear connect directly to the synaptic inputs of the cochlear nucleus (CN) on the same (ipsilateral) side of
Regional Homogeneity Changes in Nicotine Addicts by Resting-State fMRI.
Chen, Hongbo; Mo, Shaofeng
2017-01-01
To reveal the brain functional changes of nicotine addicts compared with those of non-smokers and explore the objective biomarker for nicotine dependence evaluation. A total of 14 smokers and 11 non-smoking controls were recruited for this study. Resting-state functional magnetic resonance imaging and regional homogeneity (ReHo) were applied in the neural activity analysis. Two-sample t-test was performed to examine the voxel-wise difference between the smokers and the controls. Correlation analysis between the ReHo values and the Fagerstrom Test for Nicotine Dependence (FTND) scores were performed to explore the biomarkers for the clinical characteristics of smokers. The ReHo values from the right superior frontal gyrus of the Brodmann's area (BA) 9 to the right middle frontal gyrus and the ReHo value from the left and right precuneus (BA 23) to the left and right middle cingulum gyrus were lower in the smokers than in the non-smokers. The ReHo value in the precuneus (BA 23) was significantly and positively correlated with the FTND score of smokers. The ReHo values in the right superior frontal gyrus and left precuneus can be used to separate the smokers from the non-smokers. In particular, the left precuneus is a potential neuroimaging biomarker for nicotine addicts.
Jiang, Jiehui; Sun, Yiwu; Zhou, Hucheng; Li, Shaoping; Huang, Zhemin; Wu, Ping; Shi, Kuangyu; Zuo, Chuantao; Neuroimaging Initiative, Alzheimer's Disease
2018-01-01
18 F-FDG PET scan is one of the most frequently used neural imaging scans. However, the influence of age has proven to be the greatest interfering factor for many clinical dementia diagnoses when analyzing 18 F-FDG PET images, since radiologists encounter difficulties when deciding whether the abnormalities in specific regions correlate with normal aging, disease, or both. In the present paper, the authors aimed to define specific brain regions and determine an age-correction mathematical model. A data-driven approach was used based on 255 healthy subjects. The inferior frontal gyrus, the left medial part and the left medial orbital part of superior frontal gyrus, the right insula, the left anterior cingulate, the left median cingulate, and paracingulate gyri, and bilateral superior temporal gyri were found to have a strong negative correlation with age. For evaluation, an age-correction model was applied to 262 healthy subjects and 50 AD subjects selected from the ADNI database, and partial correlations between SUVR mean and three clinical results were carried out before and after age correction. All correlation coefficients were significantly improved after the age correction. The proposed model was effective in the age correction of both healthy and AD subjects.
Maruyama, Tsukasa; Takeuchi, Hikaru; Taki, Yasuyuki; Motoki, Kosuke; Jeong, Hyeonjeong; Kotozaki, Yuka; Nakagawa, Seishu; Nouchi, Rui; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Sakaki, Kohei; Sasaki, Yukako; Magistro, Daniele; Kawashima, Ryuta
2018-01-01
Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension.
Shi, Changzheng; Miao, Guodong; Yang, Qiong; Gao, Wei; Wolff, Jason J.; Chan, Raymond C. K.; Shen, Dinggang
2014-01-01
Disrupted white matter integrity and abnormal cortical thickness are widely reported in the pathophysiology of obsessive-compulsive disorder (OCD). However, the relationship between alterations in white matter connectivity and cortical thickness in OCD is unclear. In addition, the heritability of this relationship is poorly understood. To investigate the relationship of white matter microstructure with cortical thickness, we measure fractional anisotropy (FA) of white matter in 30 OCD patients, 19 unaffected siblings and 30 matched healthy controls. Then, we take those regions of significantly altered FA in OCD patients compared with healthy controls to perform fiber tracking. Next, we calculate the fiber quantity in the same tracts. Lastly, we compare cortical thickness in the target regions of those tracts. Patients with OCD exhibited decreased FA in cingulum, arcuate fibers near the superior parietal lobule, inferior longitudinal fasciculus near the right superior temporal gyrus and uncinate fasciculus. Siblings showed reduced FA in arcuate fibers near the superior parietal lobule and anterior limb of internal capsule. Significant reductions in both fiber quantities and cortical thickness in OCD patients and their unaffected siblings were also observed in the projected brain areas when using the arcuate fibers near the left superior parietal lobule as the starting points. Reduced FA in the left superior parietal lobule was observed not only in patients with OCD but also in their unaffected siblings. Originated from the superior parietal lobule, the number of fibers was also found to be decreased and the corresponding cortical regions were thinner relative to controls. The linkage between disrupted white matter integrity and the abnormal cortical thickness may be a vulnerability marker for OCD. PMID:24489665
NASA Technical Reports Server (NTRS)
1973-01-01
This view shows the west end of Lake Superior and Duluth, MN (47.0N, 91.0W). Portions of Minnesota, Michigan and Ontario, Canada are in the scene. The Duluth metropolitan area is at the west end of the lake. The discoloration plume in the water at Duluth is the result of tailings from the iron ore smelters that process the iron ore from the nearby open pit mines seen near the upper left corner of the photo.
A novel variation of the recurrent laryngeal nerve.
Wu, Gaosong; Wang, Kun
2017-06-02
Injury to the recurrent laryngeal nerve is one of the most severe complications of thyroid surgery. Several anatomic variations of the nerve increase the likelihood of iatrogenic damage. A 50-year-old woman was presented to our department with a nodule in the right thyroid lobe, and she reported no voice changes. She had no history of surgery or radiation to the head or neck. Fine-needle aspiration was recorded as papillary thyroid carcinoma. The preoperative laryngoscopy revealed left vocal cord paralysis. Right thyroid lobectomy was performed. A scarce course of the left recurrent laryngeal nerve was found during the operation that ascended along the medial edge of the superior thyroid pole and finally disappeared beneath the superior cornu of the thyroid cartilage without any tracheal, esophageal, or laryngeal branches. The patient was discharged on the third postoperative day with the diagnoses of papillary thyroid carcinoma and congenital left vocal cord paralysis. The novel variation of the recurrent laryngeal nerve may challenge the current concept of the anatomy of the nerve. The vocal folds mobility should be examined routinely before surgery in patients undergoing thyroid operation.
Disha, Bansal; Prakashini, Koteshwara; Shetty, Ranjan K
2014-01-01
The most common venous abnormality of the thorax is persistent left superior vena cava (PLSVC), incidence being less than 0.5%. However, with congenital heart disease, it is about 6.1%. When the coronary sinus is dilated always search for PLSVC. The coronary sinus may communicate with the left atrium. This is known as an unroofed coronary sinus (UCS) and preoperatively documenting it is important. Of all the congenital cardiac anomalies, the sinus venosus defect (SVD) type of atrial septal defect (ASD) is most commonly associated with PLSVC and accounts for 4–11% of all ASDs. Multidetector CT can easily show all these abnormalities along with haemodynamics. On transoesophageal echocardiography it is difficult to characterise SVD and visualise a coronary sinus because of a limited window, contrast resolution and poor patient compliance. The complex of UCS and PLSVC is one such abnormality and its treatment requires careful assessment of other concomitant cardiac abnormalities to prevent post-treatment haemodynamic complications. PMID:24850552
Hahm, Jarang; Lee, Hyekyoung; Park, Hyojin; Kang, Eunjoo; Kim, Yu Kyeong; Chung, Chun Kee; Kang, Hyejin; Lee, Dong Soo
2017-01-01
To explain gating of memory encoding, magnetoencephalography (MEG) was analyzed over multi-regional network of negative correlations between alpha band power during cue (cue-alpha) and gamma band power during item presentation (item-gamma) in Remember (R) and No-remember (NR) condition. Persistent homology with graph filtration on alpha-gamma correlation disclosed topological invariants to explain memory gating. Instruction compliance (R-hits minus NR-hits) was significantly related to negative coupling between the left superior occipital (cue-alpha) and the left dorsolateral superior frontal gyri (item-gamma) on permutation test, where the coupling was stronger in R than NR. In good memory performers (R-hits minus false alarm), the coupling was stronger in R than NR between the right posterior cingulate (cue-alpha) and the left fusiform gyri (item-gamma). Gating of memory encoding was dictated by inter-regional negative alpha-gamma coupling. Our graph filtration over MEG network revealed these inter-regional time-delayed cross-frequency connectivity serve gating of memory encoding. PMID:28169281
Amin, Parth; Sharafuddin, Mel J; Laurich, Chad; Nicholson, Rachael M; Sun, Raphael C; Roh, Simon; Kresowik, Timothy F; Sharp, William J
2012-02-01
This article presents the case of a 42-year-old man who presented with superior vena cava (SVC) syndrome due to fibrosing mediastinitis with multiple failed attempts at recanalization. We initially treated him with unilateral sharp needle recanalization of the right innominate vein into the SVC stump followed by stenting. Although his symptoms improved immediately, they did not completely resolve. Six months later, he returned with worsening symptoms, and venography revealed in-stent restenosis. The patient requested simultaneous treatment on the left side. The right stent was dilated, and a 3-cm-long occlusion of the left innominate vein was recanalized, again using sharp needle technique, homing into the struts of the right-sided stent. Following fenestration of the stent, a second stent was deployed from the left side into the SVC, and the two Y limbs were sequentially dilated to allow a true bifurcation anatomy (figure). The patient had complete resolution of his symptoms and continues to do well 6 months later. Copyright © 2012 Annals of Vascular Surgery Inc. Published by Elsevier Inc. All rights reserved.
Outcomes following the Kawashima procedure for single-ventricle palliation in left atrial isomerism.
Vollebregt, Anne; Pushparajah, Kuberan; Rizvi, Maleeha; Hoschtitzky, Andreas; Anderson, David; Austin, Conal; Tibby, Shane M; Simpson, John
2012-03-01
Patients with left atrial isomerism and interrupted inferior vena cava palliated with a superior cavopulmonary connection or Kawashima procedure (KP) have a high incidence of developing pulmonary arteriovenous malformations. The necessity for hepatic vein redirection (HVR) and its timing remains a controversy. We aimed to assess the clinical outcome of patients with left atrial isomerism following a KP. The main end points were death, requirement for HVR and the impact of HVR on oxygen saturation. Retrospective review of 21 patients with a diagnosis of left atrial isomerism, interruption of the inferior vena cava and single-ventricle physiology managed with a KP at a single centre between January 1990 and March 2010. Twenty-one patients had a KP, with 12 subsequently undergoing HVR. There was relatively a constant monthly decrement in the proportion of patients who were free from death or HVR up until 60 months following the KP, with a dramatic increase in the hazard after this time. The Cox proportional hazards regression model demonstrated a reduced early risk for HVR or death in patients who underwent pulmonary artery banding versus arterial shunt as the primary procedure (hazard ratio: 0.10; P = 0.01), and an increased risk with bilateral superior vena cavas (SVCs) (hazard ratio: 3.4; P = 0.04) and age at KP (hazard ratio: 1.02 per month increase in age at KP; P = 0.02). HVR mortality was relatively high with 3 of 12 patients dying in the early postoperative period with profound cyanosis. The timing of HVR after the KP did not influence the postoperative rate of increase in oxygen saturation. These findings confirm that the majority of patients who undergo a KP will require HVR. Patients who are older at the time of the KP or having an initial arterial shunt or bilateral SVCs are at higher risk of HVR or death. The relatively high mortality at HVR was characterized by severe postoperative cyanosis.
Kamiya, Yuki; Ichikawa, Hiroo; Mizuma, Keita; Itaya, Kazuhiro; Shimizu, Yuki; Kawamura, Mitsuru
2014-01-01
A 48-year-old woman with no previous neurological diseases was transferred to our hospital because of sudden-onset unconsciousness. On arrival, she showed consciousness disturbance (E1V1M3 on the Glasgow Coma Scale), tetraplegia, right conjugate deviation and bilateral pathological reflexes. These symptoms resulted in a NIH stroke scale score of 32. Brain diffusion-weighted MR imaging (DWI) showed multiple hyper-intense lesions, and MR angiography revealed occlusions of the basilar artery (BA) and superior branch of the right middle cerebral artery (MCA). Transthoracic echocardiography disclosed a 51 × 24 mm myxoma in the left atrium. These findings led to diagnosis of acute ischemic stroke due to embolization from cardiac myxoma. Thrombolytic therapy with intravenous tissue plasminogen activator (IV tPA) was started 120 min after onset because there were no contraindications for this treatment. However, the symptoms did not resolve, and thus endovascular therapy was performed immediately after IV tPA. Angiography of the left vertebral artery initially showed BA occlusion, but a repeated angiogram resulted in spontaneous recanalization of the BA. However, the left posterior cerebral artery remained occluded by a residual embolus. Subsequently, occlusion found in the superior branch of the right MCA was treated by intra-arterial local thrombolysis using urokinase and thrombectomy with a foreign body retrieval device, but the MCA remained occluded. DWI after endovascular therapy showed new hyper-intense lesions in the bilateral medial thalamus and left occipital cortex. Clinically, neurological status did not improve, with a score of 5 on the modified Rankin Scale. IV tPA can be used for stroke due to cardiac myxoma, but development of brain aneurysms and metastases caused by myxoma is a concern. Given the difficulty of predicting an embolus composite from a thrombus or tumor particle, aspiration thrombectomy may be safer and more effective for stroke due to cardiac myxoma to avoid delayed formation of brain aneurysms and metastases.
Effects of age and sex on developmental neural networks of visual-spatial attention allocation.
Rubia, Katya; Hyde, Zoe; Halari, Rozmin; Giampietro, Vincent; Smith, Anna
2010-06-01
Compared to our understanding of the functional maturation of brain networks underlying complex cognitive abilities, hardly anything is known of the neurofunctional development of simpler cognitive abilities such as visuo-spatial attention allocation. Furthermore, nothing is known on the effect of gender on the functional development of attention allocation. This study employed event related functional magnetic resonance imaging to investigate effects of age, sex, and sex by age interactions on the brain activation of 63 males and females, between 13 to 38years, during a visual-spatial oddball task. Behaviourally, with increasing age, speed was traded for accuracy, indicative of a less impulsive performance style in older subjects. Increasing age was associated with progressively increased activation in typical areas of selective attention of lateral fronto-striatal and temporo-parietal brain regions. Sex difference analysis showed enhanced activation in right-hemispheric inferior frontal and superior temporal regions in females, and in left-hemispheric inferior temporo-parietal regions in males. Importantly, the age by sex interaction findings showed that these sex-dimorphic patterns of brain activation may be the result of underlying sex differences in the functional maturation of these brain regions, as females had sex-specific progressive age-correlations in the same right inferior fronto-striato-temporal areas, while male-specific age-correlations were in left medial temporal and parietal areas. The findings demonstrate progressive functional maturation of fronto-striato-parieto-temporal networks of the relatively simple function of attention allocation between early adolescence and mid-adulthood. They furthermore show that sex-dimorphic patterns of enhanced reliance on right inferior frontal, striatal and superior temporal regions in females and of left temporo-parietal regions in males during attention allocation may be the result of underlying sex differences in the functional maturation of these brain regions. Copyright 2010 Elsevier Inc. All rights reserved.
Shen, Weimin; Cui, Jie; Chen, Jianbin; Chen, Haini; Zou, Jijun; Ji, Yi
2012-11-01
We have developed a new technique for the treatment of mild types of cryptotia in which the cavum conchae cartilage was pulled superiorly and sutured it to the temporal bone to the temporal parietal junction periosteum securely. Then, the stitches for bolster fixation were inserted parallel to the auricular temporal sulcus and temporarily left untied. Our technique is easy to use and secures a firm bolster fixation, and the scar is hidden. We recommend it for the treatment of mild types of cryptotia.
Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Azuma, Junji; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako
2013-10-01
Many studies have reported motor impairments in autistic spectrum disorders (ASD). However, the brain mechanism underlying motor impairment in ASD remains unclear. Recent neuroimaging studies have suggested that underconnectivity between the cerebellum and other brain regions contributes to the features of ASD. In this study, we investigated the microstructural integrity of the cerebellar pathways, including the superior, middle, and inferior cerebellar peduncles, of children with and without ASD by using diffusion tensor imaging (DTI) tractography to determine whether the microstructural integrity of the cerebellar pathways is related to motor function in children with ASD. Thirteen children with ASD and 11 age-, gender-, handedness-, and IQ-matched typically developing (TD) controls were enrolled in this study. DTI outcome measurements, such as fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), for the cerebellar pathways were calculated. The Movement Assessment Battery for Children 2 (M-ABC 2) was used for assessing motor functions. There were no significant differences between the two groups in RD. However, compared to the TD subjects, patients with ASD had a significantly lower FA in the right superior cerebellar peduncle and lower AD in the left superior cerebellar peduncle, in addition to a significantly lower score in ball skills and the total test score of M-ABC 2. There was a significant positive correlation between the total test score of M-ABC 2 and FA in the right superior cerebellar peduncle in the ASD group. These findings suggest that the altered microstructural integrity of the superior cerebellar peduncle may be related to motor impairment in ASD.
Posterior semicircular canal dehiscence: value of VEMP and multidetector CT.
Vanspauwen, R; Salembier, L; Van den Hauwe, L; Parizel, P; Wuyts, F L; Van de Heyning, P H
2006-01-01
To illustrate that posterior semicircular canal dehiscence can present similarly to superior semicircular canal dehiscence. The symptomatology initially presented as probable Menière's disease evolving into a mixed conductive hearing loss with a Carhart notch-type perceptive component suggestive of otosclerosis-type stapes fixation. A small hole stapedotomy resulted in a dead ear and a horizontal semicircular canal hypofunction. Recurrent incapacitating vertigo attacks developed. Vestibular evoked myogenic potential (VEMP) testing demonstrated intact vestibulocollic reflexes. Additional evaluation with high resolution multidetector computed tomography (MDCT) of the temporal bone showed a dehiscence of the left posterior semicircular canal. Besides superior semicircular canal dehiscence, posterior semicircular canal dehiscence has to be included in the differential diagnosis of atypical Menière's disease and/or low tone conductive hearing loss. The value of performing MDCT before otosclerosis-type surgery is stressed. VEMP might contribute to establishing the differential diagnosis.
Bogousslavsky, J; Miklossy, J; Deruaz, J P; Assal, G; Regli, F
1987-01-01
A macular-sparing superior altitudinal hemianopia with no visuo-psychic disturbance, except impaired visual learning, was associated with bilateral ischaemic necrosis of the lingual gyrus and only partial involvement of the fusiform gyrus on the left side. It is suggested that bilateral destruction of the lingual gyrus alone is not sufficient to affect complex visual processing. The fusiform gyrus probably has a critical role in colour integration, visuo-spatial processing, facial recognition and corresponding visual imagery. Involvement of the occipitotemporal projection system deep to the lingual gyri probably explained visual memory dysfunction, by a visuo-limbic disconnection. Impaired verbal memory may have been due to posterior involvement of the parahippocampal gyrus and underlying white matter, which may have disconnected the intact speech areas from the left medial temporal structures. Images PMID:3585386
Atar, İlyas; Karaçağlar, Emir; Özçalık, Emre; Özin, Bülent; Müderrisoğlu, Haldun
2015-06-01
Presence of a persistent left superior vena cava (PLSVC) is generally clinically asymptomatic and discovered incidentally during central venous catheterization. However, PLSVC may cause technical difficulties during cardiac device implantation. An 82-year-old man with heart failure symptoms and an ejection fraction (EF) of 20% was scheduled for resynchronization therapy-defibrillator device (CRT-D) implantation. A PLSVC draining via a dilated coronary sinus into an enlarged right atrium was diagnosed. First, an active-fixation right ventricular lead was inserted into the right atrium through the PLSVC. The stylet was preshaped to facilitate its passage to the right ventricular apex. An atrial lead was positioned on the right atrium free wall, and an over-the-wire coronary sinus lead deployed to a stable position. CRT-D implantation procedure was successfully completed.
Structural modifications of the brain in acclimatization to high-altitude.
Zhang, Jiaxing; Yan, Xiaodan; Shi, Jinfu; Gong, Qiyong; Weng, Xuchu; Liu, Yijun
2010-07-06
Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17-22 yr) born and raised at HA of 2616-4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2-3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA.
Phenotype- and Genotype-Specific Structural Alterations in Spasmodic Dysphonia
Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F.; Frucht, Steven J.; Blitzer, Andrew; Ozelius, Laurie J.; Simonyan, Kristina
2017-01-01
Background Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Methods Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Results Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Conclusions Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. PMID:28186656
François, Clément; Ripollés, Pablo; Bosch, Laura; Garcia-Alix, Alfredo; Muchart, Jordi; Sierpowska, Joanna; Fons, Carme; Solé, Jorgina; Rebollo, Monica; Gaitán, Helena; Rodriguez-Fornells, Antoni
2016-04-01
Brain imaging methods have contributed to shed light on the possible mechanisms of recovery and cortical reorganization after early brain insult. The idea that a functional left hemisphere is crucial for achieving a normalized pattern of language development after left perinatal stroke is still under debate. We report the case of a 3.5-year-old boy born at term with a perinatal ischemic stroke of the left middle cerebral artery, affecting mainly the supramarginal gyrus, superior parietal and insular cortex extending to the precentral and postcentral gyri. Neurocognitive development was assessed at 25 and 42 months of age. Language outcomes were more extensively evaluated at the latter age with measures on receptive vocabulary, phonological whole-word production and linguistic complexity in spontaneous speech. Word learning abilities were assessed using a fast-mapping task to assess immediate and delayed recall of newly mapped words. Functional and structural imaging data as well as a measure of intrinsic connectivity were also acquired. While cognitive, motor and language levels from the Bayley Scales fell within the average range at 25 months, language scores were below at 42 months. Receptive vocabulary fell within normal limits but whole word production was delayed and the child had limited spontaneous speech. Critically, the child showed clear difficulties in both the immediate and delayed recall of the novel words, significantly differing from an age-matched control group. Neuroimaging data revealed spared classical cortical language areas but an affected left dorsal white-matter pathway together with right lateralized functional activations. In the framework of the model for Social Communication and Language Development, these data confirm the important role of the left arcuate fasciculus in understanding and producing morpho-syntactic elements in sentences beyond two word combinations and, most importantly, in learning novel word-referent associations, a building block of language acquisition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xiong, Xuan; Zhu, Li-Na; Dong, Xiao-xiao; Wang, Wei; Yan, Jun
2018-01-01
This study examined the effects of an 11-week aerobic exercise intervention on executive function (EF) and white matter integrity (WMI). In total, 28 deaf children (aged 9–13 years) were randomly assigned to either an 11-week exercise intervention or the control group. All the children had behavioral assessment and diffusion tensor imaging prior to and following the exercise intervention. The behavioral performance results demonstrated that EF was enhanced by exercise. Relative to the control group, WMI of the exercise intervention group showed (1) lower fractional anisotropy (FA) in the pontine crossing tract (PCT) and right cingulum (hippocampus) (CH), genu of the corpus callosum (gCC), right inferior cerebellar peduncle (ICP), left superior corona radiata (SCR), and left superior frontooccipital fasciculus (SFOF); (2) higher mean diffusivity (MD) in the gCC, right CH, right inferior frontooccipital fasciculus (IFOF), and left anterior limb of the internal capsule (ALIC); and (3) lower MD in the left ICP and left tapetum (TAP). Furthermore, the lower FA in gCC showed a significant negative correlation with improvement in behavioral performance, but the correlation was not significant after FDR correction. These results suggest that exercise can effectively improve deaf children's EF and reshape the WMI in deaf children. The improved EF by exercise is not related to a reshaping of WMI, but more studies on the relationship between EF and WMI by exercise may be needed. PMID:29853843
Multisensory speech perception without the left superior temporal sulcus.
Baum, Sarah H; Martin, Randi C; Hamilton, A Cris; Beauchamp, Michael S
2012-09-01
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. Copyright © 2012 Elsevier Inc. All rights reserved.
Wright, Hazel; Li, Xiaoyun; Fallon, Nicholas B; Crookall, Rebecca; Giesbrecht, Timo; Thomas, Anna; Halford, Jason C G; Harrold, Joanne; Stancak, Andrej
2016-05-01
The insula cortex and hypothalamus are implicated in eating behaviour, and contain receptor sites for peptides and hormones controlling energy balance. The insula encompasses multi-functional subregions, which display differential anatomical and functional connectivities with the rest of the brain. This study aimed to analyse the effect of fasting and satiation on the functional connectivity profiles of left and right anterior, middle, and posterior insula, and left and right hypothalamus. It was hypothesized that the profiles would be altered alongside changes in homeostatic energy balance. Nineteen healthy participants underwent two 7-min resting state functional magnetic resonance imaging scans, one when fasted and one when satiated. Functional connectivity between the left posterior insula and cerebellum/superior frontal gyrus, and between left hypothalamus and inferior frontal gyrus was stronger during fasting. Functional connectivity between the right middle insula and default mode structures (left and right posterior parietal cortex, cingulate cortex), and between right hypothalamus and superior parietal cortex was stronger during satiation. Differences in blood glucose levels between the scans accounted for several of the altered functional connectivities. The insula and hypothalamus appear to form a homeostatic energy balance network related to cognitive control of eating; prompting eating and preventing overeating when energy is depleted, and ending feeding or transferring attention away from food upon satiation. This study provides evidence of a lateralized dissociation of neural responses to energy modulations. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Schmidt, Lena; Depper, Lena; Kerkhoff, Georg
2013-01-01
Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed. PMID:24399962
Wang, Tianqi; Zhang, Xiaolong; Li, Ang; Zhu, Meifang; Liu, Shu; Qin, Wen; Li, Jin; Yu, Chunshui; Jiang, Tianzi; Liu, Bing
2017-01-01
Major psychiatric disorders, including attention deficit hyperactivity disorder (ADHD), autism (AUT), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SZ), are highly heritable and polygenic. Evidence suggests that these five disorders have both shared and distinct genetic risks and neural connectivity abnormalities. To measure aggregate genetic risks, the polygenic risk score (PGRS) was computed. Two independent general populations (N = 360 and N = 323) were separately examined to investigate whether the cross-disorder PGRS and PGRS for a specific disorder were associated with individual variability in functional connectivity. Consistent altered functional connectivity was found with the bilateral insula: for the left supplementary motor area and the left superior temporal gyrus with the cross-disorder PGRS, for the left insula and right middle and superior temporal lobe associated with the PGRS for autism, for the bilateral midbrain, posterior cingulate, cuneus, and precuneus associated with the PGRS for BD, and for the left angular gyrus and the left dorsolateral prefrontal cortex associated with the PGRS for schizophrenia. No significant functional connectivity was found associated with the PGRS for ADHD and MDD. Our findings indicated that genetic effects on the cross-disorder and disorder-specific neural connectivity of common genetic risk loci are detectable in the general population. Our findings also indicated that polygenic risk contributes to the main neurobiological phenotypes of psychiatric disorders and that identifying cross-disorder and specific functional connectivity related to polygenic risks may elucidate the neural pathways for these disorders.
Toward standardized mapping for left atrial analysis and cardiac ablation guidance
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R.; Linte, C. A.; Packer, D. L.; Robb, R. A.
2014-03-01
In catheter-based cardiac ablation, the pulmonary vein ostia are important landmarks for guiding the ablation procedure, and for this reason, have been the focus of many studies quantifying their size, structure, and variability. Analysis of pulmonary vein structure, however, has been limited by the lack of a standardized reference space for population based studies. Standardized maps are important tools for characterizing anatomic variability across subjects with the goal of separating normal inter-subject variability from abnormal variability associated with disease. In this work, we describe a novel technique for computing flat maps of left atrial anatomy in a standardized space. A flat map of left atrial anatomy is created by casting a single ray through the volume and systematically rotating the camera viewpoint to obtain the entire field of view. The technique is validated by assessing preservation of relative surface areas and distances between the original 3D geometry and the flat map geometry. The proposed methodology is demonstrated on 10 subjects which are subsequently combined to form a probabilistic map of anatomic location for each of the pulmonary vein ostia and the boundary of the left atrial appendage. The probabilistic map demonstrates that the location of the inferior ostia have higher variability than the superior ostia and the variability of the left atrial appendage is similar to the superior pulmonary veins. This technique could also have potential application in mapping electrophysiology data, radio-frequency ablation burns, or treatment planning in cardiac ablation therapy.
Schmidt, Lena; Depper, Lena; Kerkhoff, Georg
2013-01-01
Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed.
Multisensory Speech Perception Without the Left Superior Temporal Sulcus
Baum, Sarah H.; Martin, Randi C.; Hamilton, A. Cris; Beauchamp, Michael S.
2012-01-01
Converging evidence suggests that the left superior temporal sulcus (STS) is a critical site for multisensory integration of auditory and visual information during speech perception. We report a patient, SJ, who suffered a stroke that damaged the left tempo-parietal area, resulting in mild anomic aphasia. Structural MRI showed complete destruction of the left middle and posterior STS, as well as damage to adjacent areas in the temporal and parietal lobes. Surprisingly, SJ demonstrated preserved multisensory integration measured with two independent tests. First, she perceived the McGurk effect, an illusion that requires integration of auditory and visual speech. Second, her perception of morphed audiovisual speech with ambiguous auditory or visual information was significantly influenced by the opposing modality. To understand the neural basis for this preserved multisensory integration, blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) was used to examine brain responses to audiovisual speech in SJ and 23 healthy age-matched controls. In controls, bilateral STS activity was observed. In SJ, no activity was observed in the damaged left STS but in the right STS, more cortex was active in SJ than in any of the normal controls. Further, the amplitude of the BOLD response in right STS response to McGurk stimuli was significantly greater in SJ than in controls. The simplest explanation of these results is a reorganization of SJ's cortical language networks such that the right STS now subserves multisensory integration of speech. PMID:22634292
Turkoz, Riza; Ayabakan, Canan; Vuran, Can; Omay, Oğuz
2010-08-01
A 7-month-old boy with heterotaxy syndrome had partial atrioventricular septal defect and interrupted inferior vena cava with hemiazygos continuation to a left superior vena cava. The left side of the common atrium receiving all the venous drainage was in connection with the left ventricle and the aorta. The small atrium and the proximity of the pulmonary and hepatic vein orifices precluded complete baffling. This report describes an intraatrial baffle repair of anomalous systemic venous return without hepatic venous drainage. This resulted in good oxygenation postoperatively, with oxygen saturation ranging from 93% to 98%.
Neural underpinnings for model-oriented therapy of aphasic word production.
Abel, Stefanie; Weiller, Cornelius; Huber, Walter; Willmes, Klaus
2014-05-01
Model-oriented therapies of aphasic word production have been shown to be effective, with item-specific therapy effects being larger than generalisation effects for untrained items. However, it remains unclear whether semantic versus phonological therapy lead to differential effects, depending on type of lexical impairment. Functional imaging studies revealed that mainly left-hemisphere, perisylvian brain areas were involved in successful therapy-induced recovery of aphasic word production. However, the neural underpinnings for model-oriented therapy effects have not received much attention yet. We aimed at identifying brain areas indicating (1) general therapy effects using a naming task measured by functional magnetic resonance imaging (fMRI) in 14 patients before and after a 4-week naming therapy, which comprised increasing semantic and phonological cueing-hierarchies. We also intended to reveal differential effects (2) of training versus generalisation, (3) of therapy methods, and (4) of type of impairment as assessed by the connectionist Dell model. Training effects were stronger than generalisation effects, even though both were significant. Furthermore, significant impairment-specific therapy effects were observed for patients with phonological disorders (P-patients). (1) Left inferior frontal gyrus, pars opercularis (IFGoper), was a positive predictor of therapy gains while the right caudate was a negative predictor. Moreover, less activation decrease due to therapy in left-hemisphere temporo-parietal language areas was positively correlated with therapy gains. (2) Naming of trained compared to untrained words yielded less activation decrease in left superior temporal gyrus (STG) and precuneus, bilateral thalamus, and right caudate due to therapy. (3) Differential therapy effects could be detected in the right superior parietal lobule for the semantic method, and in regions involving bilateral anterior and mid cingulate, right precuneus, and left middle/superior frontal gyrus for the phonological method. (4) Impairment-specific changes of activation were found for P-patients in left IFGoper. Patients with semantic disorders (S-patients) relied on right frontal areas involving IFG, pars triangularis. After therapy, they revealed less activation decrease in areas involving left STG, caudate, paracentral lobule, and right rolandic operculum. Regarding naming performance, the present study corroborates previous findings on training and generalisation effects and reveals differential therapy effects for P-patients. Moreover, brain imaging results confirm a predominance of (1) general effects in the left brain hemisphere. (2) Brain regions related to visual strategy, monitoring/feedback, and articulatory patterns were characteristic for the familiar trained items. (3) Distinct regions associated with strategies, monitoring capacities, and linguistic information indicate the specific therapeutic influence on word retrieval. (4) While P-patients relied more on preserved phonological functions in the left hemisphere, S-patients revealed right-sided compensation of semantic processing as well as increased strategic efforts in both hemispheres. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Proximal dentatothalamocortical tract involvement in posterior fossa syndrome
Phillips, Nicholas S.; Laningham, Fred H.; Patay, Zoltan; Gajjar, Amar; Wallace, Dana; Boop, Frederick; Sanford, Robert; Ness, Kirsten K.; Ogg, Robert J.
2009-01-01
Posterior fossa syndrome is characterized by cerebellar dysfunction, oromotor/oculomotor apraxia, emotional lability and mutism in patients after infratentorial injury. The underlying neuroanatomical substrates of posterior fossa syndrome are unknown, but dentatothalamocortical tracts have been implicated. We used pre- and postoperative neuroimaging to investigate proximal dentatothalamocortical tract involvement in childhood embryonal brain tumour patients who developed posterior fossa syndrome following tumour resection. Diagnostic imaging from a cohort of 26 paediatric patients previously operated on for an embryonal brain tumour (13 patients prospectively diagnosed with posterior fossa syndrome, and 13 non-affected patients) were evaluated. Preoperative magnetic resonance imaging was used to define relevant tumour features, including two potentially predictive measures. Postoperative magnetic resonance and diffusion tensor imaging were used to characterize operative injury and tract-based differences in anisotropy of water diffusion. In patients who developed posterior fossa syndrome, initial tumour resided higher in the 4th ventricle (P = 0.035). Postoperative magnetic resonance signal abnormalities within the superior cerebellar peduncles and midbrain were observed more often in patients with posterior fossa syndrome (P = 0.030 and 0.003, respectively). The fractional anisotropy of water was lower in the bilateral superior cerebellar peduncles, in the bilateral fornices, white matter region proximate to the right angular gyrus (Tailerach coordinates 35, –71, 19) and white matter region proximate to the left superior frontal gyrus (Tailerach coordinates –24, 57, 20). Our findings suggest that multiple bilateral injuries to the proximal dentatothalamocortical pathways may predispose the development of posterior fossa syndrome, that functional disruption of the white matter bundles containing efferent axons within the superior cerebellar peduncles is a critical underlying pathophysiological component of posterior fossa syndrome, and that decreased fractional anisotropy in the fornices and cerebral cortex may be related to the abnormal neurobehavioural symptoms of posterior fossa syndrome. PMID:19805491
Play it again, Sam: brain correlates of emotional music recognition.
Altenmüller, Eckart; Siggel, Susann; Mohammadi, Bahram; Samii, Amir; Münte, Thomas F
2014-01-01
Music can elicit strong emotions and can be remembered in connection with these emotions even decades later. Yet, the brain correlates of episodic memory for highly emotional music compared with less emotional music have not been examined. We therefore used fMRI to investigate brain structures activated by emotional processing of short excerpts of film music successfully retrieved from episodic long-term memory. Eighteen non-musicians volunteers were exposed to 60 structurally similar pieces of film music of 10 s length with high arousal ratings and either less positive or very positive valence ratings. Two similar sets of 30 pieces were created. Each of these was presented to half of the participants during the encoding session outside of the scanner, while all stimuli were used during the second recognition session inside the MRI-scanner. During fMRI each stimulation period (10 s) was followed by a 20 s resting period during which participants pressed either the "old" or the "new" button to indicate whether they had heard the piece before. Musical stimuli vs. silence activated the bilateral superior temporal gyrus, right insula, right middle frontal gyrus, bilateral medial frontal gyrus and the left anterior cerebellum. Old pieces led to activation in the left medial dorsal thalamus and left midbrain compared to new pieces. For recognized vs. not recognized old pieces a focused activation in the right inferior frontal gyrus and the left cerebellum was found. Positive pieces activated the left medial frontal gyrus, the left precuneus, the right superior frontal gyrus, the left posterior cingulate, the bilateral middle temporal gyrus, and the left thalamus compared to less positive pieces. Specific brain networks related to memory retrieval and emotional processing of symphonic film music were identified. The results imply that the valence of a music piece is important for memory performance and is recognized very fast.
Play it again, Sam: brain correlates of emotional music recognition
Altenmüller, Eckart; Siggel, Susann; Mohammadi, Bahram; Samii, Amir; Münte, Thomas F.
2014-01-01
Background: Music can elicit strong emotions and can be remembered in connection with these emotions even decades later. Yet, the brain correlates of episodic memory for highly emotional music compared with less emotional music have not been examined. We therefore used fMRI to investigate brain structures activated by emotional processing of short excerpts of film music successfully retrieved from episodic long-term memory. Methods: Eighteen non-musicians volunteers were exposed to 60 structurally similar pieces of film music of 10 s length with high arousal ratings and either less positive or very positive valence ratings. Two similar sets of 30 pieces were created. Each of these was presented to half of the participants during the encoding session outside of the scanner, while all stimuli were used during the second recognition session inside the MRI-scanner. During fMRI each stimulation period (10 s) was followed by a 20 s resting period during which participants pressed either the “old” or the “new” button to indicate whether they had heard the piece before. Results: Musical stimuli vs. silence activated the bilateral superior temporal gyrus, right insula, right middle frontal gyrus, bilateral medial frontal gyrus and the left anterior cerebellum. Old pieces led to activation in the left medial dorsal thalamus and left midbrain compared to new pieces. For recognized vs. not recognized old pieces a focused activation in the right inferior frontal gyrus and the left cerebellum was found. Positive pieces activated the left medial frontal gyrus, the left precuneus, the right superior frontal gyrus, the left posterior cingulate, the bilateral middle temporal gyrus, and the left thalamus compared to less positive pieces. Conclusion: Specific brain networks related to memory retrieval and emotional processing of symphonic film music were identified. The results imply that the valence of a music piece is important for memory performance and is recognized very fast. PMID:24634661
Malherbe, C; Umarova, R M; Zavaglia, M; Kaller, C P; Beume, L; Thomalla, G; Weiller, C; Hilgetag, C C
2017-10-12
Stroke patients frequently display spatial neglect, an inability to report, or respond to, relevant stimuli in the contralesional space. Although this syndrome is widely considered to result from the dysfunction of a large-scale attention network, the individual contributions of damaged grey and white matter regions to neglect are still being disputed. Moreover, while the neuroanatomy of neglect in right hemispheric lesions is well studied, the contributions of left hemispheric brain regions to visuospatial processing are less well understood. To address this question, 128 left hemisphere acute stroke patients were investigated with respect to left- and rightward spatial biases measured as severity of deviation in the line bisection test and as Center of Cancellation (CoC) in the Bells Test. Causal functional contributions and interactions of nine predefined grey and white matter regions of interest in visuospatial processing were assessed using Multi-perturbation Shapley value Analysis (MSA). MSA, an inference approach based on game theory, constitutes a robust and exact multivariate mathematical method for inferring functional contributions from multi-lesion patterns. According to the analysis of performance in the Bells test, leftward attentional bias (contralesional deficit) was associated with contributions of the left superior temporal gyrus and rightward attentional bias with contributions of the left inferior parietal lobe, whereas the arcuate fascicle was contributed to both contra- and ipsilesional bias. Leftward and rightward deviations in the line bisection test were related to contributions of the superior longitudinal fascicle and the inferior parietal lobe, correspondingly. Thus, Bells test and line bisection tests, as well as ipsi- and contralesional attentional biases in these tests, have distinct neural correlates. Our findings demonstrate the contribution of different grey and white matter structures to contra- and ipsilesional spatial biases as revealed by left hemisphere stroke. The results provide new insights into the role of the left hemisphere in visuospatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterization and Utilization of Opiate-Like Hibernation Factors.
1993-12-08
duodenum, and both kidneys were dissected free, along with the abdominal aorta and the inferior vena cava . The chest was then opened, and the heart, and...lungs along with the aorta and the superior and inferior vena cava (IVC), were dissected free. The trachea was transected and an endotracheal tube was...pericardial incision was extended inferiorly, exposing the anterior aspect of the left atrium and the left -Page 36 - inferior pulmonary vein. The
Leadership for the 1970’s. Field Grade Officer Leadership
1974-08-01
which are done or displayed most frequently. As in Figure 1, five lists are presented. This figure is basically a description of perceived leadership...Figure 3 are basically expectations or lists of desired behavior. On the left of the figure are listed the behaviors which superiors and subordinates...The basic idea of this concept is that if an individual feels that, for example, his superior should always be easy to understand but, in fact
Yang, Xin-hua; Huang, Jia; Lan, Yong; Zhu, Cui-ying; Liu, Xiao-qun; Wang, Ye-fei; Cheung, Eric F C; Xie, Guang-rong; Chan, Raymond C K
2016-01-04
Anhedonia, the loss of interest or pleasure in reward processing, is a hallmark feature of major depressive disorder (MDD), but its underlying neurobiological mechanism is largely unknown. The present study aimed to examine the underlying neural mechanism of reward-related decision-making in patients with MDD. We examined behavioral and neural responses to rewards in patients with first-episode MDD (N=25) and healthy controls (N=25) using the Effort-Expenditure for Rewards Task (EEfRT). The task involved choices about possible rewards of varying magnitude and probability. We tested the hypothesis that individuals with MDD would exhibit a reduced neural response in reward-related brain structures involved in cost-benefit decision-making. Compared with healthy controls, patients with MDD showed significantly weaker responses in the left caudate nucleus when contrasting the 'high reward'-'low reward' condition, and blunted responses in the left superior temporal gyrus and the right caudate nucleus when contrasting high and low probabilities. In addition, hard tasks chosen during high probability trials were negatively correlated with superior temporal gyrus activity in MDD patients, while the same choices were negatively correlated with caudate nucleus activity in healthy controls. These results indicate that reduced caudate nucleus and superior temporal gyrus activation may underpin abnormal cost-benefit decision-making in MDD. Copyright © 2015 Elsevier Inc. All rights reserved.
Magrassi, Lorenzo; Bongetta, Daniele; Bianchini, Simonetta; Berardesca, Marta; Arienta, Cesare
2010-07-30
Classical neuropsychological models of writing separate central (linguistic) processes common to oral spelling, writing and typing from peripheral (motor) processes that are modality specific. Damage to the left superior parietal gyrus, an area of the cortex involved in peripheral processes specific to handwriting, should generate distorted graphemes but not misspelled words, while damage to other areas of the cortex like the frontal lobe should produce alterations in written and oral spelling without distorted graphemes. We describe the clinical and neuropsychological features of a patient with combined agraphia for handwriting and typewriting bearing a small glioblastoma in the left parietal lobe. His agraphia resolved after antiedema therapy and we tested by bipolar cortical stimulation his handwriting abilities during an awake neurosurgical procedure. We found that we could reversibly re-induce the same defects of writing by stimulating during surgery a limited area of the superior parietal gyrus in the same patient and in an independent patient that was never agraphic before the operation. In those patients stimulation caused spelling errors, poorly formed letters and in some cases a complete cessation of writing with minimal or no effects on oral spelling. Our results suggest that stimulating a specific area in the superior parietal gyrus we can generate different patterns of agraphia. Moreover, our findings also suggest that some of the central processes specific for typing and handwriting converge with motor processes at least in the limited portion of the superior parietal gyrus we mapped in our patients. Copyright 2010 Elsevier B.V. All rights reserved.
Processing of spectral and amplitude envelope of animal vocalizations in the human auditory cortex.
Altmann, Christian F; Gomes de Oliveira Júnior, Cícero; Heinemann, Linda; Kaiser, Jochen
2010-08-01
In daily life, we usually identify sounds effortlessly and efficiently. Two properties are particularly salient and of importance for sound identification: the sound's overall spectral envelope and its temporal amplitude envelope. In this study, we aimed at investigating the representation of these two features in the human auditory cortex by using a functional magnetic resonance imaging adaptation paradigm. We presented pairs of sound stimuli derived from animal vocalizations that preserved the time-averaged frequency spectrum of the animal vocalizations and the amplitude envelope. We presented the pairs in four different conditions: (a) pairs with the same amplitude envelope and mean spectral envelope, (b) same amplitude envelope, but different mean spectral envelope, (c) different amplitude envelope, but same mean spectral envelope and (d) both different amplitude envelope and mean spectral envelope. We found fMRI adaptation effects for both the mean spectral envelope and the amplitude envelope of animal vocalizations in overlapping cortical areas in the bilateral superior temporal gyrus posterior to Heschl's gyrus. Areas sensitive to the amplitude envelope extended further anteriorly along the lateral superior temporal gyrus in the left hemisphere, while areas sensitive to the spectral envelope extended further anteriorly along the right lateral superior temporal gyrus. Posterior tonotopic areas within the left superior temporal lobe displayed sensitivity for the mean spectrum. Our findings suggest involvement of primary auditory areas in the representation of spectral cues and encoding of general spectro-temporal features of natural sounds in non-primary posterior and lateral superior temporal cortex. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Neuroanatomical and Symptomatic Sex Differences in Individuals at Clinical High Risk for Psychosis.
Guma, Elisa; Devenyi, Gabriel A; Malla, Ashok; Shah, Jai; Chakravarty, M Mallar; Pruessner, Marita
2017-01-01
Sex differences have been widely observed in clinical presentation, functional outcome and neuroanatomy in individuals with a first-episode of psychosis, and chronic patients suffering from schizophrenia. However, little is known about sex differences in the high-risk stages for psychosis. The present study investigated sex differences in cortical and subcortical neuroanatomy in individuals at clinical high risk (CHR) for psychosis and healthy controls (CTL), and the relationship between anatomy and clinical symptoms in males at CHR. Magnetic resonance images were collected in 26 individuals at CHR (13 men) and 29 CTLs (15 men) to determine total and regional brain volumes and morphology, cortical thickness, and surface area (SA). Clinical symptoms were assessed with the brief psychiatric rating scale. Significant sex-by-diagnosis interactions were observed with opposite directions of effect in male and female CHR subjects relative to their same-sex controls in multiple cortical and subcortical areas. The right postcentral, left superior parietal, inferior parietal supramarginal, and angular gyri [<5% false discovery rate (FDR)] were thicker in male and thinner in female CHR subjects compared with their same-sex CTLs. The same pattern was observed in the right superior parietal gyrus SA at the regional and vertex level. Using a recently developed surface-based morphology pipeline, we observed sex-specific shape differences in the left hippocampus (<5% FDR) and amygdala (<10% FDR). Negative symptom burden was significantly higher in male compared with female CHR subjects ( p = 0.04) and was positively associated with areal expansion of the left amygdala in males (<5% FDR). Some limitations of the study include the sample size, and data acquisition at 1.5 T. This study demonstrates neuroanatomical sex differences in CHR subjects, which may be associated with variations in symptomatology in men and women with psychotic symptoms.
Multimodal imaging of temporal processing in typical and atypical language development.
Kovelman, Ioulia; Wagley, Neelima; Hay, Jessica S F; Ugolini, Margaret; Bowyer, Susan M; Lajiness-O'Neill, Renee; Brennan, Jonathan
2015-03-01
New approaches to understanding language and reading acquisition propose that the human brain's ability to synchronize its neural firing rate to syllable-length linguistic units may be important to children's ability to acquire human language. Yet, little evidence from brain imaging studies has been available to support this proposal. Here, we summarize three recent brain imaging (functional near-infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG)) studies from our laboratories with young English-speaking children (aged 6-12 years). In the first study (fNIRS), we used an auditory beat perception task to show that, in children, the left superior temporal gyrus (STG) responds preferentially to rhythmic beats at 1.5 Hz. In the second study (fMRI), we found correlations between children's amplitude rise-time sensitivity, phonological awareness, and brain activation in the left STG. In the third study (MEG), typically developing children outperformed children with autism spectrum disorder in extracting words from rhythmically rich foreign speech and displayed different brain activation during the learning phase. The overall findings suggest that the efficiency with which left temporal regions process slow temporal (rhythmic) information may be important for gains in language and reading proficiency. These findings carry implications for better understanding of the brain's mechanisms that support language and reading acquisition during both typical and atypical development. © 2014 New York Academy of Sciences.
Retico, Alessandra; Giuliano, Alessia; Tancredi, Raffaella; Cosenza, Angela; Apicella, Fabio; Narzisi, Antonio; Biagi, Laura; Tosetti, Michela; Muratori, Filippo; Calderoni, Sara
2016-01-01
Genetic, hormonal, and environmental factors contribute since infancy to sexual dimorphism in regional brain structures of subjects with typical development. However, the neuroanatomical differences between male and female children with autism spectrum disorders (ASD) are an intriguing and still poorly investigated issue. This study aims to evaluate whether the brain of young children with ASD exhibits sex-related structural differences and if a correlation exists between clinical ASD features and neuroanatomical underpinnings. A total of 152 structural MRI scans were analysed. Specifically, 76 young children with ASD (38 males and 38 females; 2-7 years of age; mean = 53 months, standard deviation = 17 months) were evaluated employing a support vector machine (SVM)-based analysis of the grey matter (GM). Group comparisons consisted of 76 age-, gender- and non-verbal-intelligence quotient-matched children with typical development or idiopathic developmental delay without autism. For both genders combined, SVM showed a significantly increased GM volume in young children with ASD with respect to control subjects, predominantly in the bilateral superior frontal gyrus (Brodmann area -BA- 10), bilateral precuneus (BA 31), bilateral superior temporal gyrus (BA 20/22), whereas less GM in patients with ASD was found in right inferior temporal gyrus (BA 37). For the within gender comparisons (i.e., females with ASD vs. controls and males with ASD vs. controls), two overlapping regions in bilateral precuneus (BA 31) and left superior frontal gyrus (BA 9/10) were detected. Sex-by-group analyses revealed in males with ASD compared to matched controls two male-specific regions of increased GM volume (left middle occipital gyrus-BA 19-and right superior temporal gyrus-BA 22). Comparisons in females with and without ASD demonstrated increased GM volumes predominantly in the bilateral frontal regions. Additional regions of significantly increased GM volume in the right anterior cingulate cortex (BA 32) and right cerebellum were typical only of females with ASD. Despite the specific behavioural correlates of sex-dimorphism in ASD, brain morphology as yet remains unclear and requires future dedicated investigations. This study provides evidence of structural brain gender differences in young children with ASD that possibly contribute to the different phenotypic disease manifestations in males and females.
Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease.
Novak, Marianne J U; Warren, Jason D; Henley, Susie M D; Draganski, Bogdan; Frackowiak, Richard S; Tabrizi, Sarah J
2012-04-01
Huntington's disease is an inherited neurodegenerative disease that causes motor, cognitive and psychiatric impairment, including an early decline in ability to recognize emotional states in others. The pathophysiology underlying the earliest manifestations of the disease is not fully understood; the objective of our study was to clarify this. We used functional magnetic resonance imaging to investigate changes in brain mechanisms of emotion recognition in pre-manifest carriers of the abnormal Huntington's disease gene (subjects with pre-manifest Huntington's disease): 16 subjects with pre-manifest Huntington's disease and 14 control subjects underwent 1.5 tesla magnetic resonance scanning while viewing pictures of facial expressions from the Ekman and Friesen series. Disgust, anger and happiness were chosen as emotions of interest. Disgust is the emotion in which recognition deficits have most commonly been detected in Huntington's disease; anger is the emotion in which impaired recognition was detected in the largest behavioural study of emotion recognition in pre-manifest Huntington's disease to date; and happiness is a positive emotion to contrast with disgust and anger. Ekman facial expressions were also used to quantify emotion recognition accuracy outside the scanner and structural magnetic resonance imaging with voxel-based morphometry was used to assess the relationship between emotion recognition accuracy and regional grey matter volume. Emotion processing in pre-manifest Huntington's disease was associated with reduced neural activity for all three emotions in partially separable functional networks. Furthermore, the Huntington's disease-associated modulation of disgust and happiness processing was negatively correlated with genetic markers of pre-manifest disease progression in distributed, largely extrastriatal networks. The modulated disgust network included insulae, cingulate cortices, pre- and postcentral gyri, precunei, cunei, bilateral putamena, right pallidum, right thalamus, cerebellum, middle frontal, middle occipital, right superior and left inferior temporal gyri, and left superior parietal lobule. The modulated happiness network included postcentral gyri, left caudate, right cingulate cortex, right superior and inferior parietal lobules, and right superior frontal, middle temporal, middle occipital and precentral gyri. These effects were not driven merely by striatal dysfunction. We did not find equivalent associations between brain structure and emotion recognition, and the pre-manifest Huntington's disease cohort did not have a behavioural deficit in out-of-scanner emotion recognition relative to controls. In addition, we found increased neural activity in the pre-manifest subjects in response to all three emotions in frontal regions, predominantly in the middle frontal gyri. Overall, these findings suggest that pathophysiological effects of Huntington's disease may precede the development of overt clinical symptoms and detectable cerebral atrophy.
Hu, Wei; Lee, Hwee Ling; Zhang, Qiang; Liu, Tao; Geng, Li Bo; Seghier, Mohamed L.; Shakeshaft, Clare; Twomey, Tae; Green, David W.; Yang, Yi Ming
2010-01-01
Previous neuroimaging studies have suggested that developmental dyslexia has a different neural basis in Chinese and English populations because of known differences in the processing demands of the Chinese and English writing systems. Here, using functional magnetic resonance imaging, we provide the first direct statistically based investigation into how the effect of dyslexia on brain activation is influenced by the Chinese and English writing systems. Brain activation for semantic decisions on written words was compared in English dyslexics, Chinese dyslexics, English normal readers and Chinese normal readers, while controlling for all other experimental parameters. By investigating the effects of dyslexia and language in one study, we show common activation in Chinese and English dyslexics despite different activation in Chinese versus English normal readers. The effect of dyslexia in both languages was observed as less than normal activation in the left angular gyrus and in left middle frontal, posterior temporal and occipitotemporal regions. Differences in Chinese and English normal reading were observed as increased activation for Chinese relative to English in the left inferior frontal sulcus; and increased activation for English relative to Chinese in the left posterior superior temporal sulcus. These cultural differences were not observed in dyslexics who activated both left inferior frontal sulcus and left posterior superior temporal sulcus, consistent with the use of culturally independent strategies when reading is less efficient. By dissociating the effect of dyslexia from differences in Chinese and English normal reading, our results reconcile brain activation results with a substantial body of behavioural studies showing commonalities in the cognitive manifestation of dyslexia in Chinese and English populations. They also demonstrate the influence of cognitive ability and learning environment on a common neural system for reading. PMID:20488886
Hu, Wei; Lee, Hwee Ling; Zhang, Qiang; Liu, Tao; Geng, Li Bo; Seghier, Mohamed L; Shakeshaft, Clare; Twomey, Tae; Green, David W; Yang, Yi Ming; Price, Cathy J
2010-06-01
Previous neuroimaging studies have suggested that developmental dyslexia has a different neural basis in Chinese and English populations because of known differences in the processing demands of the Chinese and English writing systems. Here, using functional magnetic resonance imaging, we provide the first direct statistically based investigation into how the effect of dyslexia on brain activation is influenced by the Chinese and English writing systems. Brain activation for semantic decisions on written words was compared in English dyslexics, Chinese dyslexics, English normal readers and Chinese normal readers, while controlling for all other experimental parameters. By investigating the effects of dyslexia and language in one study, we show common activation in Chinese and English dyslexics despite different activation in Chinese versus English normal readers. The effect of dyslexia in both languages was observed as less than normal activation in the left angular gyrus and in left middle frontal, posterior temporal and occipitotemporal regions. Differences in Chinese and English normal reading were observed as increased activation for Chinese relative to English in the left inferior frontal sulcus; and increased activation for English relative to Chinese in the left posterior superior temporal sulcus. These cultural differences were not observed in dyslexics who activated both left inferior frontal sulcus and left posterior superior temporal sulcus, consistent with the use of culturally independent strategies when reading is less efficient. By dissociating the effect of dyslexia from differences in Chinese and English normal reading, our results reconcile brain activation results with a substantial body of behavioural studies showing commonalities in the cognitive manifestation of dyslexia in Chinese and English populations. They also demonstrate the influence of cognitive ability and learning environment on a common neural system for reading.
Ghosh, Justin; Singarayar, Suresh; Kabunga, Peter; McGuire, Mark A
2015-06-01
The phrenic nerves may be damaged during catheter ablation of atrial fibrillation. Phrenic nerve function is routinely monitored during ablation by stimulating the right phrenic nerve from a site in the superior vena cava (SVC) and manually assessing the strength of diaphragmatic contraction. However the optimal stimulation site, method of assessing diaphragmatic contraction, and techniques for monitoring the left phrenic nerve have not been established. We assessed novel techniques to monitor phrenic nerve function during cryoablation procedures. Pacing threshold and stability of phrenic nerve capture were assessed when pacing from the SVC, left and right subclavian veins. Femoral venous pressure waveforms were used to monitor the strength of diaphragmatic contraction. Stable capture of the left phrenic nerve by stimulation in the left subclavian vein was achieved in 96 of 100 patients, with a median capture threshold of 2.5 mA [inter-quartile range (IQR) 1.4-5.0 mA]. Stimulation of the right phrenic nerve from the subclavian vein was superior to stimulation from the SVC with lower pacing thresholds (1.8 mA IQR 1.4-3.3 vs. 6.0 mA IQR 3.4-8.0, P < 0.001). Venous pressure waveforms were obtained in all patients and attenuation of the waveform was always observed prior to onset of phrenic nerve palsy. The left phrenic nerve can be stimulated from the left subclavian vein. The subclavian veins are the optimal sites for phrenic nerve stimulation. Monitoring the femoral venous pressure waveform is a novel technique for detecting impending phrenic nerve damage. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
Kubera, Katharina M; Schmitgen, Mike M; Maier-Hein, Klaus H; Thomann, Philipp A; Hirjak, Dusan; Wolf, Robert C
2018-05-08
Impulsivity is an essential human personality trait and highly relevant for the development of several mental disorders. There is evidence that impulsivity is heritable, yet little is known about neural correlates reflecting early brain development. Here, we address the question whether motor, attentional and non-planning components, as reflected by the Barratt Impulsiveness Scale (BIS-11), are distinctly associated with cortical thickness and surface area variations in young healthy individuals. We investigated cortical thickness and surface area in 54 healthy volunteers (m/f = 30%/70%; age mean/SD = 24.9/4.02) using structural magnetic resonance imaging at 3 T together with surface-based analysis techniques. Impulsivity was examined on the Barratt impulsiveness scale (BIS-11) and related to the two distinct cortical measurements. Higher BIS-11 total scores were negatively associated with cortical thickness variations in the left lingual gyrus, left superior temporal gyrus, right cuneus, and right superior parietal gyrus (p<0.05 cluster-wise probability [CWP] corrected). Higher BIS-11 nonplanning scores were negatively associated with cortical thickness variations in bilateral pericalcarine gyrus (p<0.05 CWP corr.). In the orbitofrontal cortex motor impulsivity associated cortical thickness differs significantly between male and female. These data suggest distinct neurodevelopmental trajectories underlying impulsivity in healthy subjects. Impulsivity total scores appear to be specifically related to cortical thickness variations, in contrast to variations of cortical surface area. Furthermore, our findings underscores the importance of better characterizing gender-specific structural correlates of impulsivity. Copyright © 2018. Published by Elsevier B.V.
Bristow, Michael R; Kao, David P; Breathett, Khadijah K; Altman, Natasha L; Gorcsan, John; Gill, Edward A; Lowes, Brian D; Gilbert, Edward M; Quaife, Robert A; Mann, Douglas L
2017-11-01
Diagnosis, prognosis, treatment, and development of new therapies for diseases or syndromes depend on a reliable means of identifying phenotypes associated with distinct predictive probabilities for these various objectives. Left ventricular ejection fraction (LVEF) provides the current basis for combined functional and structural phenotyping in heart failure by classifying patients as those with heart failure with reduced ejection fraction (HFrEF) and those with heart failure with preserved ejection fraction (HFpEF). Recently the utility of LVEF as the major phenotypic determinant of heart failure has been challenged based on its load dependency and measurement variability. We review the history of the development and adoption of LVEF as a critical measurement of LV function and structure and demonstrate that, in chronic heart failure, load dependency is not an important practical issue, and we provide hemodynamic and molecular biomarker evidence that LVEF is superior or equal to more unwieldy methods of identifying phenotypes of ventricular remodeling. We conclude that, because it reliably measures both left ventricular function and structure, LVEF remains the best current method of assessing pathologic remodeling in heart failure in both individual clinical and multicenter group settings. Because of the present and future importance of left ventricular phenotyping in heart failure, LVEF should be measured by using the most accurate technology and methodologic refinements available, and improved characterization methods should continue to be sought. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Kalantre, Atul; Vettukattil, Joseph; Haw, Marcus; Veldtman, Gruschen R
2007-12-01
Paravalvular leaks are a recognized complication of valve replacement surgery. We report a 47-year-old man with left atrial isomerism, interrupted left sided inferior caval vein with unilateral left sided superior caval vein, a common atrium, and anomalous pulmonary venous connection to the coronary sinus, who had recurrent severe para-right atrioventricular (AV) regurgitation with gross right heart failure following tricuspid valve (TCV) replacement. He underwent a hybrid surgery-transcatheter treatment strategy in the cardiac catheterization laboratory, which led to significant improvement in hemodynamics and symptoms. This to our knowledge is the first reported case of a minimally invasive approach to para-right sided AV valve regurgitation.
Faisal, Tanvir R; Luo, Yunhua
2017-10-03
Hip fracture of elderly people-suffering from osteoporosis-is a severe public health concern, which can be reduced by providing a prior assessment of hip fracture risk. Image-based finite element analysis (FEA) has been considered an effective computational tool to assess the hip fracture risk. Considering the femoral neck region is the weakest, fracture risk indicators (FRI) are evaluated for both single-legged stance and sideways fall configurations and are compared between left and right femurs of each subject. Quantitative Computed Tomography (QCT) scan datasets of thirty anonymous patients' left and right femora have been considered for the FE models, which have been simulated with an equal magnitude of load applied to the aforementioned configurations. The requirement of bilateral hip assessment in predicting the fracture risk has been explored in this study. Comparing the sideways fall and single-legged stance, the FRI varies by 64 to 74% at the superior aspects and by 14 to 19% at the inferior surfaces of both the femora. The results of this in vivo analysis clearly substantiate that the fracture is expected to initiate at the superior surface of femoral neck region if a patient falls from his/her standing height. The distributions of FRI between the femurs vary considerably, and the variability is significant at the superior aspects. The p value (= 0.02) obtained from paired sample t-Test yields p value ≤ 0.05, which shows the evidence of variability of the FRI distribution between left and right femurs. Moreover, the comparison of FRIs between the left and right femur of men and women shows that women are more susceptible to hip fracture than men. The results and statistical variation clearly signify a need for bilateral hip scanning in predicting hip fracture risk, which is clinically conducted, at present, based on one hip chosen randomly and may lead to inaccurate fracture prediction. This study, although preliminary, may play a crucial role in assessing the hip fractures of the geriatric population and thereby, reducing the cost of treatment by taking predictive measure.
High-Intensity Interval Training in Patients With Heart Failure With Reduced Ejection Fraction
Halle, Martin; Conraads, Viviane; Støylen, Asbjørn; Dalen, Håvard; Delagardelle, Charles; Larsen, Alf-Inge; Hole, Torstein; Mezzani, Alessandro; Van Craenenbroeck, Emeline M.; Videm, Vibeke; Beckers, Paul; Christle, Jeffrey W.; Winzer, Ephraim; Mangner, Norman; Woitek, Felix; Höllriegel, Robert; Pressler, Axel; Monk-Hansen, Tea; Snoer, Martin; Feiereisen, Patrick; Valborgland, Torstein; Kjekshus, John; Hambrecht, Rainer; Gielen, Stephan; Karlsen, Trine; Prescott, Eva; Linke, Axel
2017-01-01
Background: Small studies have suggested that high-intensity interval training (HIIT) is superior to moderate continuous training (MCT) in reversing cardiac remodeling and increasing aerobic capacity in patients with heart failure with reduced ejection fraction. The present multicenter trial compared 12 weeks of supervised interventions of HIIT, MCT, or a recommendation of regular exercise (RRE). Methods: Two hundred sixty-one patients with left ventricular ejection fraction ≤35% and New York Heart Association class II to III were randomly assigned to HIIT at 90% to 95% of maximal heart rate, MCT at 60% to 70% of maximal heart rate, or RRE. Thereafter, patients were encouraged to continue exercising on their own. Clinical assessments were performed at baseline, after the intervention, and at follow-up after 52 weeks. Primary end point was a between-group comparison of change in left ventricular end-diastolic diameter from baseline to 12 weeks. Results: Groups did not differ in age (median, 60 years), sex (19% women), ischemic pathogenesis (59%), or medication. Change in left ventricular end-diastolic diameter from baseline to 12 weeks was not different between HIIT and MCT (P=0.45); left ventricular end-diastolic diameter changes compared with RRE were −2.8 mm (−5.2 to −0.4 mm; P=0.02) in HIIT and −1.2 mm (−3.6 to 1.2 mm; P=0.34) in MCT. There was also no difference between HIIT and MCT in peak oxygen uptake (P=0.70), but both were superior to RRE. However, none of these changes was maintained at follow-up after 52 weeks. Serious adverse events were not statistically different during supervised intervention or at follow-up at 52 weeks (HIIT, 39%; MCT, 25%; RRE, 34%; P=0.16). Training records showed that 51% of patients exercised below prescribed target during supervised HIIT and 80% above target in MCT. Conclusions: HIIT was not superior to MCT in changing left ventricular remodeling or aerobic capacity, and its feasibility remains unresolved in patients with heart failure. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00917046. PMID:28082387
High-Intensity Interval Training in Patients With Heart Failure With Reduced Ejection Fraction.
Ellingsen, Øyvind; Halle, Martin; Conraads, Viviane; Støylen, Asbjørn; Dalen, Håvard; Delagardelle, Charles; Larsen, Alf-Inge; Hole, Torstein; Mezzani, Alessandro; Van Craenenbroeck, Emeline M; Videm, Vibeke; Beckers, Paul; Christle, Jeffrey W; Winzer, Ephraim; Mangner, Norman; Woitek, Felix; Höllriegel, Robert; Pressler, Axel; Monk-Hansen, Tea; Snoer, Martin; Feiereisen, Patrick; Valborgland, Torstein; Kjekshus, John; Hambrecht, Rainer; Gielen, Stephan; Karlsen, Trine; Prescott, Eva; Linke, Axel
2017-02-28
Small studies have suggested that high-intensity interval training (HIIT) is superior to moderate continuous training (MCT) in reversing cardiac remodeling and increasing aerobic capacity in patients with heart failure with reduced ejection fraction. The present multicenter trial compared 12 weeks of supervised interventions of HIIT, MCT, or a recommendation of regular exercise (RRE). Two hundred sixty-one patients with left ventricular ejection fraction ≤35% and New York Heart Association class II to III were randomly assigned to HIIT at 90% to 95% of maximal heart rate, MCT at 60% to 70% of maximal heart rate, or RRE. Thereafter, patients were encouraged to continue exercising on their own. Clinical assessments were performed at baseline, after the intervention, and at follow-up after 52 weeks. Primary end point was a between-group comparison of change in left ventricular end-diastolic diameter from baseline to 12 weeks. Groups did not differ in age (median, 60 years), sex (19% women), ischemic pathogenesis (59%), or medication. Change in left ventricular end-diastolic diameter from baseline to 12 weeks was not different between HIIT and MCT ( P =0.45); left ventricular end-diastolic diameter changes compared with RRE were -2.8 mm (-5.2 to -0.4 mm; P =0.02) in HIIT and -1.2 mm (-3.6 to 1.2 mm; P =0.34) in MCT. There was also no difference between HIIT and MCT in peak oxygen uptake ( P =0.70), but both were superior to RRE. However, none of these changes was maintained at follow-up after 52 weeks. Serious adverse events were not statistically different during supervised intervention or at follow-up at 52 weeks (HIIT, 39%; MCT, 25%; RRE, 34%; P =0.16). Training records showed that 51% of patients exercised below prescribed target during supervised HIIT and 80% above target in MCT. HIIT was not superior to MCT in changing left ventricular remodeling or aerobic capacity, and its feasibility remains unresolved in patients with heart failure. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00917046. © 2017 The Authors.
Wang, Mengxing; Zhang, Jilei; Dong, Guangheng; Zhang, Hui; Lu, Haifeng; Du, Xiaoxia
2017-06-01
Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Jayarajan, Rajan Nishanth; Agarwal, Sri Mahavir; Viswanath, Biju; Kalmady, Sunil V; Venkatasubramanian, Ganesan; Srinath, Shoba; Chandrashekar, C R; Janardhan Reddy, Y C
2015-01-01
Adult patients with Obsessive Compulsive Disorder (OCD) have been shown to have gray matter (GM) volume differences from healthy controls in multiple regions - the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), medial frontal gyri (MFG), striatum, thalamus, and superior parietal lobule. However, there is paucity of data with regard to juvenile OCD. Hence, we examined GM volume differences between juvenile OCD patients and matched healthy controls using voxel based morphometry (VBM) with the above apriori regions of interest. Fifteen right handed juvenile patients with OCD and age- sex- handedness- matched healthy controls were recruited after administering the Mini International Neuropsychiatric Interview-KID and the Children's Yale-Brown Obsessive Compulsive Scale, and scanned using a 3 Tesla magnetic resonance imaging scanner. VBM methodology was followed. In comparison with healthy controls, patients had significantly smaller GM volumes in left ACC. YBOCS total score (current) showed significant negative correlation with GM volumes in bilateral OFC, and left superior parietal lobule. These findings while reiterating the important role of the orbito-fronto-striatal circuitry, also implicate in the parietal lobe - especially the superior parietal lobule as an important structure involved in the pathogenesis of OCD.
O'Boyle, M W; Bormann, L; Harts, K
1990-12-01
Previous work by O'Boyle and Sanford (1988) has demonstrated that the right hemisphere (RH) is superior to the left hemisphere (LH) in the matching of tape-recorded melodies to rhythm sequences tapped in the palms of the hands. This asymmetrical advantage was attributed to a RH superiority in the perceptual processing of intonation as compared to the rhythm component of these musical stimuli. In the present study, subjects were taught that the monotone sound of two wooden drumsticks struck together in a specified rhythm actually represented non-melodic translations of songs with identifiable melodies. After such mental associations had been formed, these non-melodic stimuli (which produced no asymmetric performance in Exp. 2 of the O'Boyle and Sanford study), now produced a RH advantage that was comparable to that induced by the original melodies. This finding suggests that the physical presence of intonation and its subsequent perceptual analysis, are not necessarily critical to the RH advantage reported by O'Boyle and Sanford (1988). Rather, the asymmetry may be related to a superior ability of the RH to generate and/or manipulate echoic images in memory.
Use Dose Bricks Concept to Implement Nasopharyngeal Carcinoma Treatment Planning
Wu, Jia-Ming; Yu, Tsan-Jung; Yeh, Shyh-An; Chao, Pei-Ju; Huang, Chih-Jou
2014-01-01
Purpose. A “dose bricks” concept has been used to implement nasopharyngeal carcinoma treatment plan; this method specializes particularly in the case with bell shape nasopharyngeal carcinoma case. Materials and Methods. Five noncoplanar fields were used to accomplish the dose bricks technique treatment plan. These five fields include (a) right superior anterior oblique (RSAO), (b) left superior anterior oblique (LSAO), (c) right anterior oblique (RAO), (d) left anterior oblique (LAO), and (e) superior inferior vertex (SIV). Nondivergence collimator central axis planes were used to create different abutting field edge while normal organs were blocked by multileaf collimators in this technique. Results. The resulting 92% isodose curves encompassed the CTV, while maximum dose was about 115%. Approximately 50% volume of parotid glands obtained 10–15% of total dose and 50% volume of brain obtained less than 20% of total dose. Spinal cord receives only 5% from the scatter dose. Conclusions. Compared with IMRT, the expenditure of planning time and costing, “dose bricks” may after all be accepted as an optional implementation in nasopharyngeal carcinoma conformal treatment plan; furthermore, this method also fits the need of other nonhead and neck lesions if organ sparing and noncoplanar technique can be executed. PMID:24967395
Cowan, F; Thoresen, M
1985-06-01
A pulsed Doppler bidirectional ultrasound system has been used to measure alterations in the blood velocities in the superior sagittal sinus of the healthy term newborn infant in response to unilateral and bilateral jugular venous occlusion. These maneuvers were performed with the baby lying in different positions: supine, prone, and on the side (both left and right), the neck flexed or extended, and with the head in the midline or turned 90 degrees to the side (both left and right). Transfontanel pressure was also measured in these positions during occlusions. Results show that turning the head effectively occludes the jugular vein on the side to which the head is turned and that occluding the other jugular vein does not force blood through this functional obstruction. The effect of different forms of external pressure to the head on the superior sagittal sinus velocities was also examined. Alterations in velocities were frequently profound although they varied considerably from baby to baby. This work shows how readily large fluctuations in cranial venous velocities and pressures can occur in the course of normal handling of babies.
Neural correlates of spontaneous deception: A functional near-infrared spectroscopy (fNIRS) study
Ding, Xiao Pan; Gao, Xiaoqing; Fu, Genyue; Lee, Kang
2013-01-01
Deception is commonly seen in everyday social interactions. However, most of the knowledge about the underlying neural mechanism of deception comes from studies where participants were instructed when and how to lie. To study spontaneous deception, we designed a guessing game modeled after Greene and Paxton (2009), in which lying is the only way to achieve the performance level needed to end the game. We recorded neural responses during the game using near-infrared spectroscopy (NIRS). We found that when compared to truth-telling, spontaneous deception, like instructed deception, engenders greater involvement of such prefrontal regions as the left superior frontal gyrus. We also found that the correct-truth trials produced greater neural activities in the left middle frontal gyrus and right superior frontal gyrus than the incorrect-truth trials, suggesting the involvement of the reward system. Furthermore, the present study confirmed the feasibility of using NIRS to study spontaneous deception. PMID:23340482
Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity.
Loui, Psyche; Li, H Charles; Hohmann, Anja; Schlaug, Gottfried
2011-04-01
Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess unique characteristics in both behavior and brain structure is absolute pitch (AP) musicians, who can name the appropriate pitch class of any given tone without a reference. Using diffusion tensor imaging and tractography, we observed hyperconnectivity in bilateral superior temporal lobe structures linked to AP possession. Furthermore, volume of tracts connecting left superior temporal gyrus to left middle temporal gyrus predicted AP performance. These findings extend previous reports of exaggerated temporal lobe asymmetry, may explain the higher incidence of AP in special populations, and may provide a model for understanding the heightened connectivity that is thought to underlie savant skills and cases of exceptional creativity.
Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity
Loui, Psyche; Charles Li, Hui C.; Hohmann, Anja; Schlaug, Gottfried
2010-01-01
Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess unique characteristics in both behavior and brain structure is absolute pitch (AP) musicians, who can name the appropriate pitch class of any given tone without a reference. Using diffusion tensor imaging and tractography, we observed hyperconnectivity in bilateral superior temporal lobe structures linked to AP possession. Furthermore, volume of tracts connecting left superior temporal gyrus to left middle temporal gyrus predicted AP performance. These findings extend previous reports of exaggerated temporal lobe asymmetry, may explain the higher incidence of AP in developmental disorders, and may provide a model for understanding the heightened connectivity that is thought to underlie savant skills and cases of exceptional creativity. PMID:20515408
Cavernous sinus thrombosis caused by contralateral sphenoid sinusitis: a case report
2013-01-01
Objective To report a rare case of unilateral cavernous sinus thrombosis caused by contralateral sphenoid sinusitis. Case report A 33-year-old female visited our hospital for severe, right-sided, temporal headache, chemosis, periorbital edema, and proptosis. These signs were associated with congested erythematous nasal mucosa with purulent discharge from the right superior nasal meatus. Contrast enhanced CT showed dilated left superior ophthalmic vein, suggestive of thrombosis, contrast enhancement of the left cavernous sinuses, and dilation of cavernous sinus, indicating cavernous sinus inflammation. The right maxillary, ethmoid and sphenoid sinuses showed mucosal thickening and retention of purulent material. She was diagnosed with cavernous sinus thrombosis caused by contralateral sphenoid sinusitis. All clinical symptoms and signs improved after endoscopic sphenoidotomy and appropriate medical treatment. Conclusions Sphenoiditis can cause contralateral cavernous sinus thrombosis. Early surgical sphenoidotomy and aggressive medical treatment are the cornerstones of successful management of this life-threatening complication. PMID:23497466
Co-localisation of abnormal brain structure and function in specific language impairment
Badcock, Nicholas A.; Bishop, Dorothy V.M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.
2012-01-01
We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. PMID:22137677
Modularity of music: evidence from a case of pure amusia.
Piccirilli, M; Sciarma, T; Luzzi, S
2000-10-01
A case of pure amusia in a 20 year old left handed non-professional musician is reported. The patient showed an impairment of music abilities in the presence of normal processing of speech and environmental sounds. Furthermore, whereas recognition and production of melodic sequences were grossly disturbed, both the recognition and production of rhythm patterns were preserved. This selective breakdown pattern was produced by a focal lesion in the left superior temporal gyrus. This case thus suggests that not only linguistic and musical skills, but also melodic and rhythmic processing are independent of each other. This functional dissociation in the musical domain supports the hypothesis that music components have a modular organisation. Furthermore, there is the suggestion that amusia may be produced by a lesion located strictly in one hemisphere and that the superior temporal gyrus plays a crucial part in melodic processing.
Motivation, affect, and hemispheric asymmetry: power versus affiliation.
Kuhl, Julius; Kazén, Miguel
2008-08-01
In 4 experiments, the authors examined to what extent information related to different social needs (i.e., power vs. affiliation) is associated with hemispheric laterality. Response latencies to a lateralized dot-probe task following lateralized pictures or verbal labels that were associated with positive or negative episodes related to power, affiliation, or achievement revealed clear-cut laterality effects. These effects were a function of need content rather than of valence: Power-related stimuli were associated with right visual field (left hemisphere) superiority, whereas affiliation-related stimuli were associated with left visual field (right hemisphere) superiority. Additional results demonstrated that in contrast to power, affiliation primes were associated with better discrimination between coherent word triads (e.g., goat, pass, and green, all related to mountain) and noncoherent triads, a remote associate task known to activate areas of the right hemisphere. (c) 2008 APA, all rights reserved
Hypoplastic left heart syndrome and pulmonary veno-occlusive disease in an infant.
D'Souza, Marise; Vergales, Jeffrey; Jayakumar, K Anitha
2013-01-01
This report describes an infant with heterotaxy syndrome and severe hypoplasia of the left heart who presented with profound cyanosis at birth despite a large patent ductus arteriosus. Pulmonary venous return was difficult to demonstrate by echocardiography. Angiography showed total anomalous pulmonary venous return via a plexus that drained through the paravertebral veins and bilateral superior vena cavae. Autopsy confirmed these findings, and histopathology demonstrated severe occlusive changes within the pulmonary veins.
1987-10-01
demonstrated that endotoxin shock is associated with a decrease in compliance of the superior and inferior vena cavae and probably £ Abstracts 17 central...site of a burn wound. METHODS: Anesthetized 350 gram male Long Evans rats were prepared by intrarenal inferior vena cava (IVC) ligation. The rats...elastase has been investigated in the superior vena caval and left atrium blood collected from 167 patients who underwent open heart surgery. The effect
1973-06-22
SL2-05-454 (22 June 1973) --- This view shows the west end of Lake Superior and Duluth, MN (47.0N, 91.0W). Portions of Minnesota, Michigan and Ontario, Canada are in the scene. The Duluth metropolitan area is at the west end of the lake. The discoloration plume in the water at Duluth is the result of tailings from the iron ore smelters that process the iron ore from the nearby open pit mines seen near the upper left corner of the photo. Photo credit: NASA
Blanc-Garin, J; Faure, S; Sabio, P
1993-05-01
The objective of this study was to analyze dynamic aspects of right hemisphere implementation in processing visual images. Two tachistoscopic, divided visual field experiments were carried out on a partial split-brain patient with no damage to the right hemisphere. In the first experiment, image generation performance for letters presented in the right visual field (/left hemisphere) was undeniably optimal. In the left visual field (/right hemisphere), performance was no better than chance level at first, but then improved dramatically across stimulation blocks, in each of five successive sessions. This was interpreted as revealing the progressive spontaneous activation of the right hemisphere's competence not shown initially. The aim of the second experiment was to determine some conditions under which this pattern was obtained. The experimental design contrasted stimuli (words and pictures) and representational activity (phonologic and visuo-imaged processing). The right visual field (/left hemisphere: LH) elicited higher performance than the left visual field (/right hemisphere, RH) in the three situations where verbal activity was required. No superiority could be found when visual images were to be generated from pictures: parallel and weak improvement of both hemispheres was observed across sessions. Two other patterns were obtained: improvement in RH performance (although LH performance remained superior) and an unexpectedly large decrease in RH performance. These data are discussed in terms of RH cognitive competence and hemisphere implementation.
Maruyama, Tsukasa; Taki, Yasuyuki; Motoki, Kosuke; Jeong, Hyeonjeong; Kotozaki, Yuka; Nakagawa, Seishu; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Sakaki, Kohei; Sasaki, Yukako; Magistro, Daniele; Kawashima, Ryuta
2018-01-01
Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension. PMID:29675038
Xia, Likun; Li, Shumei; Wang, Tianyue; Guo, Yaping; Meng, Lihong; Feng, Yunping; Cui, Yu; Wang, Fan; Ma, Jian; Jiang, Guihua
2017-01-01
Objective We aimed to examine how spontaneous brain activity might be related to the pathophysiology of generalized anxiety disorder (GAD). Patients and methods Using resting-state functional MRI, we examined spontaneous regional brain activity in 31 GAD patients (mean age, 36.87±9.16 years) and 36 healthy control participants (mean age, 39.53±8.83 years) matched for age, education, and sex from December 2014 to October 2015. We performed a two-sample t-test on the voxel-based analysis of the regional homogeneity (ReHo) maps. We used Pearson correlation analysis to compare scores from the Hamilton Anxiety Rating Scale, Hamilton Depression Rating Scale, State–Trait Anxiety Scale-Trait Scale, and mean ReHo values. Results We found abnormal spontaneous activity in multiple regions of brain in GAD patients, especially in the sensorimotor cortex and emotional regions. GAD patients showed decreased ReHo values in the right orbital middle frontal gyrus, left anterior cingulate cortex, right middle frontal gyrus, and bilateral supplementary motor areas, with increased ReHo values in the left middle temporal gyrus, left superior temporal gyrus, and right superior occipital gyrus. The ReHo value of the left middle temporal gyrus correlated positively with the Hamilton Anxiety Rating Scale scores. Conclusion These results suggest that altered local synchronization of spontaneous brain activity may be related to the pathophysiology of GAD. PMID:28790831
Sleep Duration and Subsequent Cortical Thinning in Cognitively Normal Older Adults.
Spira, Adam P; Gonzalez, Christopher E; Venkatraman, Vijay K; Wu, Mark N; Pacheco, Jennifer; Simonsick, Eleanor M; Ferrucci, Luigi; Resnick, Susan M
2016-05-01
To determine the association between self-reported sleep duration and cortical thinning among older adults. We studied 122 cognitively normal participants in the Baltimore Longitudinal Study of Aging with a mean age = 66.6 y (range, 51-84) at baseline sleep assessment and 69.5 y (range, 56-86) at initial magnetic resonance imaging (MRI) scan. Participants reported average sleep duration and completed a mean of 7.6 1.5-T MRI scans (range, 3-11), with mean follow-up from initial scan of 8.0 y (range, 2.0-11.8). In analyses adjusted for age, sex, education, race, and interval between sleep assessment and initial MRI scan, participants reporting > 7 h sleep at baseline had thinner cortex in the inferior occipital gyrus and sulcus of the left hemisphere at initial MRI scan than those reporting 7 h (cluster P < 0.05). In adjusted longitudinal analyses, compared to those reporting 7 h of sleep, participants reporting < 7 h exhibited higher rates of subsequent thinning in the superior temporal sulcus and gyrus, inferior and middle frontal gyrus, and superior frontal sulcus of the left hemisphere, and in the superior frontal gyrus of the right hemisphere; those reporting > 7 h of sleep had higher rates of thinning in the superior frontal and middle frontal gyrus of the left hemisphere (cluster P < 0.05 for all). In sensitivity analyses, adjustment for apolipoprotein E (APOE) e4 genotype reduced or eliminated some effects but revealed others. When reports of < 7 h of sleep were compared to reports of 7 or 8 h combined, there were no significant associations with cortical thinning. Among cognitively normal older adults, sleep durations of < 7 h and > 7 h may increase the rate of subsequent frontotemporal gray matter atrophy. Additional studies, including those that use objective sleep measures and investigate mechanisms linking sleep duration to gray matter loss, are needed. © 2016 Associated Professional Sleep Societies, LLC.
What Neural Substrates Trigger the Adept Scientific Pattern Discovery by Biologists?
NASA Astrophysics Data System (ADS)
Lee, Jun-Ki; Kwon, Yong-Ju
2011-04-01
This study investigated the neural correlates of experts and novices during biological object pattern detection using an fMRI approach in order to reveal the neural correlates of a biologist's superior pattern discovery ability. Sixteen healthy male participants (8 biologists and 8 non-biologists) volunteered for the study. Participants were shown fifteen series of organism pictures and asked to detect patterns amid stimulus pictures. Primary findings showed significant activations in the right middle temporal gyrus and inferior parietal lobule amongst participants in the biologist (expert) group. Interestingly, the left superior temporal gyrus was activated in participants from the non-biologist (novice) group. These results suggested that superior pattern discovery ability could be related to a functional facilitation of the parieto-temporal network, which is particularly driven by the right middle temporal gyrus and inferior parietal lobule in addition to the recruitment of additional brain regions. Furthermore, the functional facilitation of the network might actually pertain to high coherent processing skills and visual working memory capacity. Hence, study results suggested that adept scientific thinking ability can be detected by neuronal substrates, which may be used as criteria for developing and evaluating a brain-based science curriculum and test instrument.
Ryu, Nam Gyu; Lim, Byung Woo; Cho, Jae Keun; Kim, Jin
2016-09-01
We investigated whether experiencing right- or left-sided facial paralysis would affect an individual's ability to recognize one side of the human face using hybrid hemi-facial photos by preliminary study. Further investigation looked at the relationship between facial recognition ability, stress, and quality of life. To investigate predominance of one side of the human face for face recognition, 100 normal participants (right-handed: n = 97, left-handed: n = 3, right brain dominance: n = 56, left brain dominance: n = 44) answered a questionnaire that included hybrid hemi-facial photos developed to determine decide superiority of one side for human face recognition. To determine differences of stress level and quality of life between individuals experiencing right- and left-sided facial paralysis, 100 patients (right side:50, left side:50, not including traumatic facial nerve paralysis) answered a questionnaire about facial disability index test and quality of life (SF-36 Korean version). Regardless of handedness or hemispheric dominance, the proportion of predominance of the right side in human face recognition was larger than the left side (71% versus 12%, neutral: 17%). Facial distress index of the patients with right-sided facial paralysis was lower than that of left-sided patients (68.8 ± 9.42 versus 76.4 ± 8.28), and the SF-36 scores of right-sided patients were lower than left-sided patients (119.07 ± 15.24 versus 123.25 ± 16.48, total score: 166). Universal preference for the right side in human face recognition showed worse psychological mood and social interaction in patients with right-side facial paralysis than left-sided paralysis. This information is helpful to clinicians in that psychological and social factors should be considered when treating patients with facial-paralysis. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Lui, T H
2015-01-01
Eckert and Davis grade 3 superior peroneal retinaculum injury is rare and the optimal treatment is not yet determined. A 57 year-old lady sprained her left ankle resulting in grade 3 injury of the superior peroneal retinaculum and was treated by endoscopic retinaculum reconstruction. The fracture healed and the peroneal tendons were stabilized. However, it was complicated by protusion of the suture anchors into the posterolateral ankle gutter. The implants were successfully removed endoscopically. Proper selection of the size and dimension of the suture anchor and preoperative planning with computed tomogram is important for usage of suture anchors in the lateral malleolus.
Regional Brain Dysfunction Associated with Semantic Errors in Comprehension.
Shahid, Hinna; Sebastian, Rajani; Tippett, Donna C; Saxena, Sadhvi; Wright, Amy; Hanayik, Taylor; Breining, Bonnie; Bonilha, Leonardo; Fridriksson, Julius; Rorden, Chris; Hillis, Argye E
2018-02-01
Here we illustrate how investigation of individuals acutely after stroke, before structure/function reorganization through recovery or rehabilitation, can be helpful in answering questions about the role of specific brain regions in language functions. Although there is converging evidence from a variety of sources that the left posterior-superior temporal gyrus plays some role in spoken word comprehension, its precise role in this function has not been established. We hypothesized that this region is essential for distinguishing between semantically related words, because it is critical for linking the spoken word to the complete semantic representation. We tested this hypothesis in 127 individuals with 48 hours of acute ischemic stroke, before the opportunity for reorganization or recovery. We identified tissue dysfunction (acute infarct and/or hypoperfusion) in gray and white matter parcels of the left hemisphere, and we evaluated the association between rate of semantic errors in a word-picture verification tasks and extent of tissue dysfunction in each region. We found that after correcting for lesion volume and multiple comparisons, the rate of semantic errors correlated with the extent of tissue dysfunction in left posterior-superior temporal gyrus and retrolenticular white matter. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Astrophysics Data System (ADS)
Yamamoto, Utako; Kobayashi, Tetsuo; Kito, Shinsuke; Koga, Yoshihiko
We have analyzed cerebral white matter using magnetic resonance diffusion tensor imaging (MR-DTI) to measure the diffusion anisotropy of water molecules. The goal of this study is the quantitative evaluation of schizophrenia. Diffusion tensor images are acquired for patients with schizophrenia and healthy comparison subjects, group-matched for age, sex, and handedness. Fiber tracking is performed on the superior longitudinal fasciculus for the comparison between the patient and comparison groups. We have analysed and compared the cross-sectional area on the starting coronal plane and the mean and standard deviation of the fractional anisotropy and the apparent diffusion coefficient along fibers in the right and left hemispheres. In the right hemisphere, the cross-sectional areas in patient group are significantly smaller than those in the comparison group. Furthermore, in the comparison group, the cross-sectional areas in the right hemisphere are significantly larger than those in the left hemisphere, whereas there is no significant difference in the patient group. These results suggest that we may evaluate the disruption in white matter integrity in schizophrenic patients quantitatively by comparing the cross-sectional area of the superior longitudinal fasciculus in the right and left hemispheres.
Disentangling syntax and intelligibility in auditory language comprehension.
Friederici, Angela D; Kotz, Sonja A; Scott, Sophie K; Obleser, Jonas
2010-03-01
Studies of the neural basis of spoken language comprehension typically focus on aspects of auditory processing by varying signal intelligibility, or on higher-level aspects of language processing such as syntax. Most studies in either of these threads of language research report brain activation including peaks in the superior temporal gyrus (STG) and/or the superior temporal sulcus (STS), but it is not clear why these areas are recruited in functionally different studies. The current fMRI study aims to disentangle the functional neuroanatomy of intelligibility and syntax in an orthogonal design. The data substantiate functional dissociations between STS and STG in the left and right hemispheres: first, manipulations of speech intelligibility yield bilateral mid-anterior STS peak activation, whereas syntactic phrase structure violations elicit strongly left-lateralized mid STG and posterior STS activation. Second, ROI analyses indicate all interactions of speech intelligibility and syntactic correctness to be located in the left frontal and temporal cortex, while the observed right-hemispheric activations reflect less specific responses to intelligibility and syntax. Our data demonstrate that the mid-to-anterior STS activation is associated with increasing speech intelligibility, while the mid-to-posterior STG/STS is more sensitive to syntactic information within the speech. 2009 Wiley-Liss, Inc.
Fujimoto, Hiroshi; Matsuoka, Teruyuki; Kato, Yuka; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin
2017-01-01
Patients with Alzheimer's disease (AD) are frequently unaware of their cognitive symptoms and medical diagnosis. The term "anosognosia" is used to indicate a general lack of awareness of one's disease or disorder. The neural substrate underlying anosognosia in AD is unclear. Since anosognosia for memory disturbance might be an initial sign of AD, it is important to determine the neural correlates. This study was designed to investigate the characteristics and neural correlates of anosognosia for memory disturbance in patients with mild AD. The subjects were 49 patients with mild AD who participated in a retrospective cross-sectional study. None of the patients had been treated with cholinesterase inhibitors, memantine, or psychotropic drugs. All patients underwent magnetic resonance imaging (MRI). Anosognosia for memory disturbance was assessed based on the discrepancy between questionnaire scores of patients and their caregivers. Structural MRI data were analyzed to explore the association between anosognosia and brain atrophy, using a voxel-based approach. Statistical parametric mapping software was used to explore neural correlations. In image analysis, multiple regression analysis was performed to examine the relationship between anosognosia score and regional gray matter volume. Age, years of education, and total intracranial volume were entered as covariates. The anosognosia score for memory disturbance was significantly negatively correlated with gray matter volume in the left superior frontal gyrus. The left superior frontal gyrus was involved in anosognosia for memory disturbance, while the medial temporal lobe, which is usually damaged in mild AD, was not associated with anosognosia. The left superior frontal gyrus might be an important region for anosognosia in mild AD.
Wegrzyn, Martin; Herbert, Cornelia; Ethofer, Thomas; Flaisch, Tobias; Kissler, Johanna
2017-11-01
Visually presented emotional words are processed preferentially and effects of emotional content are similar to those of explicit attention deployment in that both amplify visual processing. However, auditory processing of emotional words is less well characterized and interactions between emotional content and task-induced attention have not been fully understood. Here, we investigate auditory processing of emotional words, focussing on how auditory attention to positive and negative words impacts their cerebral processing. A Functional magnetic resonance imaging (fMRI) study manipulating word valence and attention allocation was performed. Participants heard negative, positive and neutral words to which they either listened passively or attended by counting negative or positive words, respectively. Regardless of valence, active processing compared to passive listening increased activity in primary auditory cortex, left intraparietal sulcus, and right superior frontal gyrus (SFG). The attended valence elicited stronger activity in left inferior frontal gyrus (IFG) and left SFG, in line with these regions' role in semantic retrieval and evaluative processing. No evidence for valence-specific attentional modulation in auditory regions or distinct valence-specific regional activations (i.e., negative > positive or positive > negative) was obtained. Thus, allocation of auditory attention to positive and negative words can substantially increase their processing in higher-order language and evaluative brain areas without modulating early stages of auditory processing. Inferior and superior frontal brain structures mediate interactions between emotional content, attention, and working memory when prosodically neutral speech is processed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.
Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina
2017-04-01
Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Sentence processing and verbal working memory in a white-matter-disconnection patient.
Meyer, Lars; Cunitz, Katrin; Obleser, Jonas; Friederici, Angela D
2014-08-01
The Arcuate Fasciculus/Superior Longitudinal Fasciculus (AF/SLF) is the white-matter bundle that connects posterior superior temporal and inferior frontal cortex. Its causal functional role in sentence processing and verbal working memory is currently under debate. While impairments of sentence processing and verbal working memory often co-occur in patients suffering from AF/SLF damage, it is unclear whether these impairments result from shared white-matter damage to the verbal-working-memory network. The present study sought to specify the behavioral consequences of focal AF/SLF damage for sentence processing and verbal working memory, which were assessed in a single patient suffering from a cleft-like lesion spanning the deep left superior temporal gyrus, sparing most surrounding gray matter. While tractography suggests that the ventral fronto-temporal white-matter bundle is intact in this patient, the AF/SLF was not visible to tractography. In line with the hypothesis that the AF/SLF is causally involved in sentence processing, the patient׳s performance was selectively impaired on sentences that jointly involve both complex word orders and long word-storage intervals. However, the patient was unimpaired on sentences that only involved long word-storage intervals without involving complex word orders. On the contrary, the patient performed generally worse than a control group across standard verbal-working-memory tests. We conclude that the AF/SLF not only plays a causal role in sentence processing, linking regions of the left dorsal inferior frontal gyrus to the temporo-parietal region, but moreover plays a crucial role in verbal working memory, linking regions of the left ventral inferior frontal gyrus to the left temporo-parietal region. Together, the specific sentence-processing impairment and the more general verbal-working-memory impairment may imply that the AF/SLF subserves both sentence processing and verbal working memory, possibly pointing to the AF and SLF respectively supporting each. Copyright © 2014 Elsevier Ltd. All rights reserved.
Powell, Joanne L; Kemp, Graham J; Dunbar, Robin I M; Roberts, Neil; Sluming, Vanessa; García-Fiñana, Marta
2014-05-01
Intentionality is the ability to explain and predict the behaviour of others by attributing to them mental states, and is thus important for social cognition. Prefrontal cortex (PFC) including orbital and dorsal regions is implicated in a range of social and metacognitive executive functions (EFs). We investigate, for the first time, in 39 left-handers and 43 right-handers the effect of handedness on the relationship between intentionality and (i) PFC volume using stereology and (ii) grey matter (GM) volume within six a priori regions of interest using voxel-based morphometry (VBM). Although no association was found between degree of handedness and intentionality competence (p = .17), handedness groups differ significantly in the relationship between intentionality and PFC volume. Right-handers with handedness score =+75 (based on a range from -100 to +100) show a significant positive correlation between intentionality and orbital PFC volume (p = .01), while no significant correlation is observed for dorsal PFC volume (p = .82); and left-handers with handedness score =-75 show a significant positive correlation between intentionality and dorsal PFC volume (p = .02) while no significant correlation is observed for orbital PFC volume (p = .44). VBM results showed significantly greater GM volume correlated with intentionality in right-handers compared to left-handers (family-wise error - FWE, p < .05) in right temporo-parietal junction and superior temporal sulcus. Correlations between GM volume and intentionality were found across all subjects (FWE, p < .05) in bilateral middle frontal gyrus, superior temporal sulcus and right inferior frontal gyrus, superior frontal gyrus and precuneus. Overall, the findings suggest that the neuroanatomy underlying intentionality competence is influenced by handedness and that different methodological approaches can and should be considered in conjunction when investigating neuroanatomical correlates of psychological functioning. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA
The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less
Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA; ...
2015-09-15
The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less
Gauthier, Christophe T; Duyme, Michel; Zanca, Michel; Capron, Christiane
2009-02-01
Neuroimaging studies investigating the neural correlates of verbal fluency (VF) focused on sex differences without taking into account behavioural variation. Nevertheless, group differences in this verbal ability might account for neurocognitive differences elicited between men and women. The aim of this study was to test sex and performance level effects and the combination of these on cerebral activation. Four samples of 11 healthy students (N=44) selected on the basis of sex and contrasted VF scores, high fluency (HF) versus low fluency (LF), performed a covert phonological VF task during scans. Within- and between-group analyses were conducted. Consistent with previous studies, for each sample, the whole-group analysis reported activation in the inferior frontal gyrus (IFG), insula, anterior cingulate cortex (ACC), medial frontal gyrus (mFG), superior (SPL) and inferior parietal lobules (IPL), inferior visual areas, cerebellum, thalamus and basal ganglia. Between-group analyses showed an interaction between sexes and performances in the right precuneus, left ACC, right IFG and left dorsolateral prefrontal cortex (dlPFC). HF men showed more activation than LF ones in the right precuneus and left dlPFC. LF men showed more activation in the right IFG than HF ones and LF women elicited more activation in the left ACC than HF ones. A sex main effect was found regardless of performance in the left inferior temporal gyrus (ITG), cerebellum, anterior and posterior cingulate cortexes and in the right superior frontal gyrus (SFG) and dlPFC, lingual gyrus and ACC, with men eliciting significantly greater activations than women. A performance main effect was found for the left ACC and the left cerebellum regardless of sex. LF subjects had stronger activations than HF ones in the ACC whereas HF subjects showed stronger activations in the cerebellum. Activity in three discrete subregions of the ACC is related to sex, performance and their interaction, respectively. Our findings emphasize the need to consider sex and performance level in functional imaging studies of VF.
Anatomy of the left atrium for interventional electrophysiologists.
Ho, Siew Yen; McCarthy, Karen P
2010-05-01
Increasingly, interventional procedures require accessing the left atrium from the inside of the heart as well as from the pericardial space. The right phrenic nerve running along the fibrous pericardium is close to the atrial insertion of the right superior pulmonary vein while the left phrenic nerve passes over the left atrial appendage. Posteriorly, the esophagus descends adjacent to the fibrous pericardium covering the posterior and postero-inferior walls of the left atrium. The component parts of the left atrium are reviewed with emphasis on the structure of the atrial septum, the left atrial ridge, the mitral isthmus, and the left atrial walls. Although the atrial walls are mainly smooth, pits and crevices are common in the region of the mitral isthmus and the vicinity of the os of the atrial appendage. The muscular rim around the valve of the oval fossa delimits the extent of the true atrial septum. Interatrial muscular connections exist at the septum, along Bachmann's bundle and also at the muscular sleeves of the coronary sinus and pulmonary veins. Anatomical features relevant to interventional electrophysiologists are highlighted.
[MRI for brain structure and function in patients with first-episode panic disorder].
Zhang, Yan; Duan, Lian; Liao, Mei; Yang, Fan; Liu, Jun; Shan, Baoci; Li, Lingjiang
2011-12-01
To determine the brain function and structure in patinets with first-episode panic disorder (PD). All subjects (24 PD patients and 24 healthy subjects) received MRI scan and emotional counting Stroop task during the functional magnetic resonance imaging. Blood oxygenation level dependent functional magnetic resonance imaging and voxel-based morphometric technology were used to detect the gray matter volume. Compared with the healthy controls, left thalamus, left medial frontal gyrus, left anterior cingulate gyrus, left inferior frontal gyrus, left insula (panic-related words vs. neutral words) lacked activation in PD patients, but the over-activation were found in right brain stem, right occipital lobe/lingual gyrus in PD patients. Compared with the healthy controls, the gray matter volume in the PD patients significantly decreased in the left superior temporal gyrus, right medial frontal gyrus, left medial occipital gyrus, dorsomedial nucleus of left thalamus and right anterior cingulate gyrus. There was no significantly increased gray matter volume in any brain area in PD patients. PD patients have selective attentional bias in processing threatening information due to the depression and weakening of the frontal cingulated gyrus.
Karns, Christina M; Stevens, Courtney; Dow, Mark W; Schorr, Emily M; Neville, Helen J
2017-01-01
Considerable research documents the cross-modal reorganization of auditory cortices as a consequence of congenital deafness, with remapped functions that include visual and somatosensory processing of both linguistic and nonlinguistic information. Structural changes accompany this cross-modal neuroplasticity, but precisely which specific structural changes accompany congenital and early deafness and whether there are group differences in hemispheric asymmetries remain to be established. Here, we used diffusion tensor imaging (DTI) to examine microstructural white matter changes accompanying cross-modal reorganization in 23 deaf adults who were genetically, profoundly, and congenitally deaf, having learned sign language from infancy with 26 hearing controls who participated in our previous fMRI studies of cross-modal neuroplasticity. In contrast to prior literature using a whole-brain approach, we introduce a semiautomatic method for demarcating auditory regions in which regions of interest (ROIs) are defined on the normalized white matter skeleton for all participants, projected into each participants native space, and manually constrained to anatomical boundaries. White-matter ROIs were left and right Heschl's gyrus (HG), left and right anterior superior temporal gyrus (aSTG), left and right posterior superior temporal gyrus (pSTG), as well as one tractography-defined region in the splenium of the corpus callosum connecting homologous left and right superior temporal regions (pCC). Within these regions, we measured fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and white-matter volume. Congenitally deaf adults had reduced FA and volume in white matter structures underlying bilateral HG, aSTG, pSTG, and reduced FA in pCC. In HG and pCC, this reduction in FA corresponded with increased RD, but differences in aSTG and pSTG could not be localized to alterations in RD or AD. Direct statistical tests of hemispheric asymmetries in these differences indicated the most prominent effects in pSTG, where the largest differences between groups occurred in the right hemisphere. Other regions did not show significant hemispheric asymmetries in group differences. Taken together, these results indicate that atypical white matter microstructure and reduced volume underlies regions of superior temporal primary and association auditory cortex and introduce a robust method for quantifying volumetric and white matter microstructural differences that can be applied to future studies of special populations. Published by Elsevier B.V.
Díez, Álvaro; Ranlund, Siri; Pinotsis, Dimitris; Calafato, Stella; Shaikh, Madiha; Hall, Mei-Hua; Walshe, Muriel; Nevado, Ángel; Friston, Karl J; Adams, Rick A; Bramon, Elvira
2017-06-01
The "dysconnection hypothesis" of psychosis suggests that a disruption of functional integration underlies cognitive deficits and clinical symptoms. Impairments in the P300 potential are well documented in psychosis. Intrinsic (self-)connectivity in a frontoparietal cortical hierarchy during a P300 experiment was investigated. Dynamic Causal Modeling was used to estimate how evoked activity results from the dynamics of coupled neural populations and how neural coupling changes with the experimental factors. Twenty-four patients with psychotic disorder, twenty-four unaffected relatives, and twenty-five controls underwent EEG recordings during an auditory oddball paradigm. Sixteen frontoparietal network models (including primary auditory, superior parietal, and superior frontal sources) were analyzed and an optimal model of neural coupling, explaining diagnosis and genetic risk effects, as well as their interactions with task condition were identified. The winning model included changes in connectivity at all three hierarchical levels. Patients showed decreased self-inhibition-that is, increased cortical excitability-in left superior frontal gyrus across task conditions, compared with unaffected participants. Relatives had similar increases in excitability in left superior frontal and right superior parietal sources, and a reversal of the normal synaptic gain changes in response to targets relative to standard tones. It was confirmed that both subjects with psychotic disorder and their relatives show a context-independent loss of synaptic gain control at the highest hierarchy levels. The relatives also showed abnormal gain modulation responses to task-relevant stimuli. These may be caused by NMDA-receptor and/or GABAergic pathologies that change the excitability of superficial pyramidal cells and may be a potential biological marker for psychosis. Hum Brain Mapp 38:3262-3276, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Hemispheric differentiation and category width.
Huang, M S
1979-12-01
This study concerns the relationship between a cognitive style dimension, category width, and hemispheric differentiation. When lists of word pairs were presented simultaneously in a dichotic listening task to broad and narrow categorisers (all female, right-handed), both groups of subjects recalled more words presented to the right ear than those presented to the left ear; indicating left hemisphere's superiority in verbal processing. Both broad and narrow categorisers recalled a similar number of words in the right ear (left hemisphere), but the former recalled significantly more words in the left ear than did the latter. This finding is interpreted as meaning that narrow categorisers rely predominantly on the left hemisphere in verbal processing, and that in comparison with narrow categories, there is greater right hemispheric involvement in processing in the case of broad categorisers. The implication of this finding in terms of the differential processing strategies adopted by the two groups of individuals is discussed.
Tomasino, Barbara; Marin, Dario; Canderan, Cinzia; Maieron, Marta; Budai, Riccardo; Fabbro, Franco; Skrap, Miran
2014-09-01
We describe involuntary language switching from L2 to L1 evoked by electro-stimulation in the superior temporal gyrus in a 30-year-old right-handed Serbian (L1) speaker who was also a late Italian learner (L2). The patient underwent awake brain surgery. Stimulation of other portions of the exposed cortex did not cause language switching as did not stimulation of the left inferior frontal gyrus, where we evoked a speech arrest. Stimulation effects on language switching were selective, namely, interfered with counting behaviour but not with object naming. The coordinates of the positive site were combined with functional and fibre tracking (DTI) data. Results showed that the language switching site belonged to a significant fMRI cluster in the left superior temporal gyrus/supramarginal gyrus found activated for both L1 and L2, and for both the patient and controls, and did not overlap with the inferior fronto-occipital fasciculus (IFOF), the inferior longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF). This area, also known as Stp, has a role in phonological processing. Language switching phenomenon we observed can be partly explained by transient dysfunction of the feed-forward control mechanism hypothesized by the DIVA (Directions Into Velocities of Articulators) model (Golfinopoulos, E., Tourville, J. A., & Guenther, F. H. (2010). The integration of large-scale neural network modeling and functional brain imaging in speech motor control. Copyright © 2014 Elsevier Ltd. All rights reserved.
Toshima, Takeo; Shirabe, Ken; Takeishi, Kazuki; Motomura, Takashi; Mano, Youhei; Uchiyama, Hideaki; Yoshizumi, Tomoharu; Soejima, Yuji; Taketomi, Akinobu; Maehara, Yoshihiko
2011-05-01
Virtual touch tissue quantification (VTTQ) based on acoustic radiation force impulse (ARFI) imaging has been developed as a noninvasive bedside method for the assessment of liver stiffness. In this study, we examined the diagnostic performance of ARFI imaging in 103 patients, focusing on the difference in VTTQ values between the right and left liver lobes. We evaluated VTTQ values of the right and left lobes in 79 patients with chronic liver disease who underwent histological examination of liver fibrosis and in 24 healthy volunteers. The diagnostic accuracy of VTTQ was compared with several serum markers, including hyaluronic acid, type 4 collagen, and aspartate transaminase to platelet ratio index. The VTTQ values (meters per second) in the right and left lobes were 1.61 ± 0.51 and 1.90 ± 0.68, respectively, and the difference was statistically significant (P < 0.0001). The VTTQ values in both liver lobes were correlated significantly with histological fibrosis grades (P < 0.001). The standard deviations of the VTTQ values in the right lobe were significantly lower than those in the left lobe (P < 0.001). The area under the receiver-operating characteristic curve for the diagnosis of fibrosis (F ≥ 3) using VTTQ values in both liver lobes was superior to serum markers, especially in the right lobe. VTTQ is an accurate and reliable tool for the assessment of liver fibrosis. VTTQ of the right lobe was more accurate for diagnosing liver fibrosis than in the left lobe.
1984-04-01
999949999999 17 * . TABLE 3.Inter- beat interval (131) changes over 14 blocks of 6 tone trials each f’or the 3...Tone3 were presented • .. 4 binaurally through Sennheiser Model HD 400 earphones. Tone duration was 200 msec at 65 dB. A *run* on this task was...canthus and superior ridge of the left eye. Heart rate (actually quantified as inter- beat -interal, or IBI, in msec) leads were placed on the left
Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics 1988
1989-09-01
The II between the neck " anterior point halfway (right trapezius point) I between the top and and the tip of the ’ bottom of the right ,. shoulder...point on the Thumbtip: The tip of head when the head is the right thumb . in the Frankfort plane. Tragion, right and Trapezis point, right left: The...superior and left: The point at point on the juncture which the anterior of the cartilaginous border of the trapezius flap (trag..) of the • muscle crosses
Ou, X; Andres, A; Pivik, R T; Cleves, M A; Snow, J H; Ding, Z; Badger, T M
2016-04-01
Infant diets may have significant impact on brain development in children. The aim of this study was to evaluate brain gray matter structure and function in 8-year-old children who were predominantly breastfed or fed cow's milk formula as infants. Forty-two healthy children (breastfed: n = 22, 10 boys and 12 girls; cow's milk formula: n = 20, 10 boys and 10 girls) were studied by using structural MR imaging (3D T1-weighted imaging) and blood oxygen level-dependent fMRI (while performing tasks involving visual perception and language functions). They were also administered standardized tests evaluating intelligence (Reynolds Intellectual Assessment Scales) and language skills (Clinical Evaluation of Language Fundamentals). Total brain gray matter volume did not differ between the breastfed and cow's milk formula groups. However, breastfed children had significantly higher (P < .05, corrected) regional gray matter volume measured by voxel-based morphometry in the left inferior temporal lobe and left superior parietal lobe compared with cow's milk formula-fed children. Breastfed children showed significantly more brain activation in the right frontal and left/right temporal lobes on fMRI when processing the perception task and in the left temporal/occipital lobe when processing the visual language task than cow's milk formula-fed children. The imaging findings were associated with significantly better performance for breastfed than cow's milk formula-fed children on both tasks. Our findings indicated greater regional gray matter development and better regional gray matter function in breastfed than cow's milk formula-fed children at 8 years of age and suggested that infant diets may have long-term influences on brain development in children. © 2016 by American Journal of Neuroradiology.
Task-specific motor performance and musculoskeletal response in self-classified right handers.
Kumar, Sameer; Mandal, Manas K
2003-11-01
We examined the difference between the left and right hand motor performance (in terms of erg produced) of self-classified right handers (15 men, 15 women) for power (task involving muscle force) and skilled (task involving precision and eye hand coordination) tasks. Musculoskeletal response during task performance was measured by electromyogram to test the hypothesis that performance with the nondominant hand would trigger more generalized muscle tension. The difference between the left and right hand performance of men was nonsignificant for power task; for women, right hand performance was significantly superior than left for such task. Men excelled in power and women excelled in skilled tasks relative to their counterparts. Generalized muscle tension was significantly more during the left than the right hand performance for power but not for skilled tasks.
Spinelli, Edoardo G; Caso, Francesca; Agosta, Federica; Gambina, Giuseppe; Magnani, Giuseppe; Canu, Elisa; Blasi, Valeria; Perani, Daniela; Comi, Giancarlo; Falini, Andrea; Gorno-Tempini, Maria Luisa; Filippi, Massimo
2015-10-01
Crossed aphasia has been reported mainly as post-stroke aphasia resulting from brain damage ipsilateral to the dominant right hand. Here, we described a case of a crossed nonfluent/agrammatic primary progressive aphasia (nfvPPA), who developed a corticobasal syndrome (CBS). We collected clinical, cognitive, and neuroimaging data for four consecutive years from a 55-year-old right-handed lady (JV) presenting with speech disturbances. 18-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) and DaT-scan with (123)I-Ioflupane were obtained. Functional MRI (fMRI) during a verb naming task was acquired to characterize patterns of language lateralization. Diffusion tensor MRI was used to evaluate white matter damage within the language network. At onset, JV presented with prominent speech output impairment and right frontal atrophy. After 3 years, language deficits worsened, with the occurrence of a mild agrammatism. The patient also developed a left-sided mild extrapyramidal bradykinetic-rigid syndrome. The clinical picture was suggestive of nfvPPA with mild left-sided extrapyramidal syndrome. At this time, voxel-wise SPM analyses of (18)F-FDG PET and structural MRI showed right greater than left frontal hypometabolism and damage, which included the Broca's area. DaT-scan showed a reduced uptake in the right striatum. FMRI during naming task demonstrated bilateral language activations, and tractography showed right superior longitudinal fasciculus (SLF) involvement. Over the following year, JV became mute and developed frank left-sided motor signs and symptoms, evolving into a CBS clinical picture. Brain atrophy worsened in frontal areas bilaterally, and extended to temporo-parietal regions, still with a right-sided asymmetry. Tractography showed an extension of damage to the left SLF and right inferior longitudinal fasciculus. We report a case of crossed nfvPPA followed longitudinally and studied with advanced neuroimaging techniques. The results highlight a complex interaction between individual premorbid developmental differences and the clinical phenotype.
Cho, Yang-Je; Han, Sang-Don; Song, Sook Keun; Lee, Byung In; Heo, Kyoung
2009-06-01
Palilalia is a relatively rare pathologic speech behavior and has been reported in various neurologic and psychiatric disorders. We encountered a case of palilalia, echolalia, and echopraxia-palipraxia as ictal phenomena of left frontal lobe epilepsy. A 55-year-old, right-handed man was admitted because of frequent episodes of rapid reiteration of syllables. Video-electroencephalography monitoring revealed stereotypical episodes of palilalia accompanied by rhythmic head nodding and right-arm posturing with ictal discharges over the left frontocentral area. He also displayed echolalia or echopraxia-palipraxia, partially responding to an examiner's stimulus. Magnetic resonance imaging revealed encephalomalacia on the left superior frontal gyrus and ictal single photon emission computed tomography showed hyperperfusion just above the lesion, corresponding to the left supplementary motor area (SMA), and subcortical nuclei. This result suggests that the neuroanatomic substrate involved in the generation of these behaviors as ictal phenomena might exist in the SMA of the left frontal lobe.
Andre, Julia; Picchioni, Marco; Zhang, Ruibin; Toulopoulou, Timothea
2016-01-01
Working memory ability matures through puberty and early adulthood. Deficits in working memory are linked to the risk of onset of neurodevelopmental disorders such as schizophrenia, and there is a significant temporal overlap between the peak of first episode psychosis risk and working memory maturation. In order to characterize the normal working memory functional maturation process through this critical phase of cognitive development we conducted a systematic review and coordinate based meta-analyses of all the available primary functional magnetic resonance imaging studies (n = 382) that mapped WM function in healthy adolescents (10-17 years) and young adults (18-30 years). Activation Likelihood Estimation analyses across all WM tasks revealed increased activation with increasing subject age in the middle frontal gyrus (BA6) bilaterally, the left middle frontal gyrus (BA10), the left precuneus and left inferior parietal gyri (BA7; 40). Decreased activation with increasing age was found in the right superior frontal (BA8), left junction of postcentral and inferior parietal (BA3/40), and left limbic cingulate gyrus (BA31). These results suggest that brain activation during adolescence increased with age principally in higher order cortices, part of the core working memory network, while reductions were detected in more diffuse and potentially more immature neural networks. Understanding the process by which the brain and its cognitive functions mature through healthy adulthood may provide us with new clues to understanding the vulnerability to neurodevelopmental disorders.
Achieving fixation in glenoids with superior wear using reverse shoulder arthroplasty.
Roche, Christopher P; Stroud, Nicholas J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Dipaola, Matthew J
2013-12-01
Superior glenoid wear is a common challenge with reverse shoulder arthroplasty and, if left uncorrected, can result in superior glenoid tilt, which increases the risk of aseptic glenoid loosening. This study evaluates the impact of an E2 superior defect on reverse shoulder glenoid fixation in composite scapulae after correction of glenoid tilt by use of 2 different glenoid reaming techniques: eccentric reaming and off-axis reaming. A superior glenoid defect was created in 14 composite scapulae. The superior defect was corrected by 2 different glenoid reaming techniques: (1) eccentric reaming with implantation of a standard glenoid baseplate and (2) off-axis reaming with implantation of a superior-augment glenoid baseplate. Each corrected superior-defect scapula was then cyclically loaded (along with a control group consisting of 7 non-worn scapulae) for 10,000 cycles at 750 N; glenoid baseplate displacement was measured for each group to quantify fixation before and after cyclic loading. Regardless of the glenoid reaming technique or the glenoid baseplate type, each standard and superior-augment glenoid baseplate remained well fixed in this superior-defect model scenario after cyclic loading. No differences in baseplate displacement were observed either before or after cyclic loading between groups. Our results suggest that either glenoid reaming technique may be used to achieve fixation in the clinically challenging situation of superior wear with reverse shoulder arthroplasty. Basic science, biomechanical study. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
Yang, Chunxia; Zhang, Aixia; Jia, Aixiang; Ma, Jack X; Sun, Ning; Wang, Yanfang; Li, Xinrong; Liu, Zhifen; Liu, Sha; Xu, Yong; Zhang, Kerang
2018-06-15
This study aims to identify and characterize neurobiological markers for major depressive disorder (MDD) from resting-state brain functional MRI. We examined the abnormality in the regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) in first-episode, drug-naive major depressive disorder (fMDD), and remitted major depressive disorder (rMDD) and correlated these fluctuations with clinical markers of MDD. We conducted a retrospective study and reviewed the medical records of 43 patients with fMDD. Overall, 13 of the 43 patients who had at least 3 years of follow-up care and the 17-item Hamilton Depression rating scale less than 7 took no antidepressants for more than half a year at the end of the 3-year follow-up. We further chose a group of 14 healthy controls matched for age, sex and education level with patients with rMDD. Multiple comparison analysis was performed for ALFF and ReHo. The statistical significance level was set at P value of less than 0.05. We examined whether there were differences among the three groups in the whole-brain ALFF and ReHo during resting state. Compared with healthy controls, patients with fMDD showed significant decrease of ReHo in the right anterior lobe of cerebellum and significant increase of ReHo in the right inferior temporal gyrus, and significant decrease of ALFF in the left inferior parietal lobule and right caudate nucleus. Compared with patients with rMDD, those with fMDD showed significant increase of ReHo in the right fusiform gyrus and the left middle temporal gyrus, and significant increase of ALFF in the right superior temporal gyrus. Compared with healthy controls, patients with rMDD showed significant increase of ReHo in the right supramarginal and significant decrease of ReHo in the right precuneus, and significant decrease of ALFF in the right lingual gyrus and in the left superior frontal lobe. Only patients with fMDD showed the relatively robust increase in intrinsic activity of temporal gyrus. The temporal gyrus may play a critical role in depressive symptomatology. Abnormal right fusiform gyrus, left middle temporal gyrus, and right superior temporal gyrus alterations were present only in patients with rMDD but not in patients with fMDD, indicating that these alterations may be a therapeutic target for MDD. Abnormal right supramarginal, right precuneus, right lingual gyrus and left superior frontal lobe alterations were present only in patients with rMDD and not in healthy control, and thus may be used as a state marker of MDD.
Goddard, Marcia N; Swaab, Hanna; Rombouts, Serge A R B; van Rijn, Sophie
2016-09-01
Klinefelter syndrome (47, XXY) is associated with several physical, cognitive, and behavioral consequences. In terms of social development, there is an increased risk of autism symptomatology. However, it remains unclear how social deficits are related to abnormal brain development and to what degree underlying mechanisms of social dysfunction in 47, XXY are similar to, or different from, those in idiopathic autism (ASD). This study was aimed at investigating the neural architecture of brain structures related to social information processing in boys with 47, XXY, also in comparison with boys with idiopathic ASD. MRI scans of 16 boys with 47, XXY, 16 with ASD, and 16 nonclinical, male controls were analyzed using voxel-based morphometry (VBM). A region of interest mask containing the superior temporal cortex, amygdala, orbitofrontal cortex (OFC), insular cortex, and medial frontal cortex was used. The Social Responsiveness Scale (SRS) was used to assess degree of autism spectrum symptoms. The 47, XXY group could not be distinguished from the ASD group on mean SRS scores, and their scores were significantly higher than in controls. VBM showed that boys with 47, XXY have significant gray matter volume reductions in the left and right insula, and the left OFC, compared with controls and boys with ASD. Additionally, boys with 47, XXY had significantly less gray matter in the right superior temporal gyrus than controls. These results imply social challenges associated with 47, XXY may be rooted in neural anatomy, and autism symptoms in boys with 47, XXY and boys with ASD might have, at least partially, different underlying etiologies.
Berteletti, Ilaria; Prado, Jérôme; Booth, James R
2014-08-01
Greater skill in solving single-digit multiplication problems requires a progressive shift from a reliance on numerical to verbal mechanisms over development. Children with mathematical learning disability (MD), however, are thought to suffer from a specific impairment in numerical mechanisms. Here we tested the hypothesis that this impairment might prevent MD children from transitioning toward verbal mechanisms when solving single-digit multiplication problems. Brain activations during multiplication problems were compared in MD and typically developing (TD) children (3rd to 7th graders) in numerical and verbal regions which were individuated by independent localizer tasks. We used small (e.g., 2 × 3) and large (e.g., 7 × 9) problems as these problems likely differ in their reliance on verbal versus numerical mechanisms. Results indicate that MD children have reduced activations in both the verbal (i.e., left inferior frontal gyrus and left middle temporal to superior temporal gyri) and the numerical (i.e., right superior parietal lobule including intra-parietal sulcus) regions suggesting that both mechanisms are impaired. Moreover, the only reliable activation observed for MD children was in the numerical region when solving small problems. This suggests that MD children could effectively engage numerical mechanisms only for the easier problems. Conversely, TD children showed a modulation of activation with problem size in the verbal regions. This suggests that TD children were effectively engaging verbal mechanisms for the easier problems. Moreover, TD children with better language skills were more effective at engaging verbal mechanisms. In conclusion, results suggest that the numerical- and language-related processes involved in solving multiplication problems are impaired in MD children. Published by Elsevier Ltd.
Emotional processing and brain activity in youth at high risk for alcoholism.
Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J
2014-07-01
Even in the absence of heavy alcohol use, youth with familial alcoholism (family history positive [FHP]) exhibit atypical brain functioning and behavior. Although emotional and cognitive systems are affected in alcohol use disorders (AUDs), little attention has focused on whether brain and behavior phenotypes related to the interplay between affective and executive functioning may be a premorbid risk factor for the development of AUDs in FHP youth. Twenty-four FHP and 22 family history negative (FHN) 12- to 16-year-old adolescents completed study procedures. After exclusion of participants with clinically significant depressive symptoms and those who did not meet performance criteria during an Emotional Go-NoGo task, 19 FHP and 17 FHN youth were included in functional magnetic resonance imaging (fMRI) analyses. Resting state functional connectivity MRI, using amygdalar seed regions, was analyzed in 16 FHP and 18 FHN youth, after exclusion of participants with excessive head movement. fMRI showed that brain activity in FHP youth, compared with FHN peers, was reduced during emotional processing in the superior temporal cortex, as well as during cognitive control within emotional contexts in frontal and striatal regions. Group differences in resting state amygdalar connectivity were seen bilaterally between FHP and FHN youth. In FHP youth, reduced resting state synchrony between the left amygdala and left superior frontal gyrus was related to poorer response inhibition, as measured during the fMRI task. To our knowledge, this is the first study to examine emotion-cognition interactions and resting state functional connectivity in FHP youth. Findings from this research provide insight into neural and behavioral phenotypes associated with emotional processing in familial alcoholism, which may relate to increased risk of developing AUDs. Copyright © 2014 by the Research Society on Alcoholism.
Dural arteriovenous fistula presenting with exophthalmos and seizures.
Feyissa, Anteneh M; Ponce, Lucido L; Patterson, Joel T; Von Ritschl, Rudiger H; Smith, Robert G
2014-03-15
Concomitant seizures and exophthalmos in the context of a temporal dural arteriovenous fistula (dAVF) has not been described before. Here, we report a 55-year-old-male who presented with an 8-month history of progressive painless exophthalmos of his left eye, conjunctival chemosis, reduced vision and new onset complex partial seizures. Cerebral angiography demonstrated Cognard Type IIa left cerebral dAVF fed by branches from the left occipital artery and an accessory meningeal artery, with drainage to the superior ophthalmic vein. Following surgical obliteration of dAVF feeding vessels, our patient had dramatic improvement in visual acuity, proptosis and chemosis along with cessation of clinical seizures. Published by Elsevier B.V.
Pinel, Philippe; Dehaene, Stanislas
2010-01-01
Language and arithmetic are both lateralized to the left hemisphere in the majority of right-handed adults. Yet, does this similar lateralization reflect a single overall constraint of brain organization, such an overall "dominance" of the left hemisphere for all linguistic and symbolic operations? Is it related to the lateralization of specific cerebral subregions? Or is it merely coincidental? To shed light on this issue, we performed a "colateralization analysis" over 209 healthy subjects: We investigated whether normal variations in the degree of left hemispheric asymmetry in areas involved in sentence listening and reading are mirrored in the asymmetry of areas involved in mental arithmetic. Within the language network, a region-of-interest analysis disclosed partially dissociated patterns of lateralization, inconsistent with an overall "dominance" model. Only two of these areas presented a lateralization during sentence listening and reading which correlated strongly with the lateralization of two regions active during calculation. Specifically, the profile of asymmetry in the posterior superior temporal sulcus during sentence processing covaried with the asymmetry of calculation-induced activation in the intraparietal sulcus, and a similar colateralization linked the middle frontal gyrus with the superior posterior parietal lobule. Given recent neuroimaging results suggesting a late emergence of hemispheric asymmetries for symbolic arithmetic during childhood, we speculate that these colateralizations might constitute developmental traces of how the acquisition of linguistic symbols affects the cerebral organization of the arithmetic network.
Li, Junyi; Yuan, Yongsheng; Wang, Min; Zhang, Jiejin; Zhang, Li; Jiang, Siming; Ding, Jian; Zhang, Kezhong
2017-10-01
Fatigue is a common complaint in patients with Parkinson's disease (PD). However, the neural bases of fatigue in PD remain uncertain. In this cross-sectional study, our aim was to study the change of the local brain function in PD patients with fatigue. Among 49 patients with PD, 17 of them had fatigue and the remaining 32 patients without fatigue, and 25 age- and gender-matched healthy controls were enrolled. All subjects were evaluated with Fatigue Severity Scale (FSS) and had a resting-state functional magnetic resonance imaging (rs-fMRI) scan. The fMRI images were analyzed using regional homogeneity (ReHo) to study the change of the local brain function. ReHo analysis controlling for gray matter volume, age, gender, and education showed decreased ReHo in the left anterior cingulate cortex (ACC) and the right superior frontal gyrus (dorsolateral part), and increased ReHo in the left postcentral gyrus and the right inferior frontal gyrus (orbital and triangular part), compared PD-F with PD-NF; In PD patients, the regional activity in the left ACC and the right superior frontal gyrus (dorsolateral part) was negatively correlated with the FSS scores, while that in the left postcentral gyrus, the right inferior frontal gyrus (orbital and triangular part) was positively correlated with the FSS scores. This study demonstrates that brain areas including frontal, postcentral and ACC regions indicative of sensory, motor, and cognitive systems are involved in fatigue in PD patients.
Khaleeli, Z; Cercignani, M; Audoin, B; Ciccarelli, O; Miller, D H; Thompson, A J
2007-08-01
Disability in primary progressive multiple sclerosis (PPMS) has been correlated with damage to the normal appearing brain tissues. Magnetization transfer ratio (MTR) and volume changes indicate that much of this damage occurs in the normal appearing grey matter, but the clinical significance of this remains uncertain. We aimed to localize these changes to distinct grey matter regions, and investigate the clinical impact of the MTR changes. 46 patients with early PPMS and 23 controls underwent MT and high-resolution T1-weighted imaging. Patients were scored on the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite and subtests (Nine-Hole Peg Test, Timed Walk Test, Paced Auditory Serial Addition Test [PASAT]). Grey matter volume and MTR were compared between patients and controls, adjusting for age. Mean MTR for significant regions within the motor network and in areas relevant to PASAT performance were correlated with appropriate clinical scores, adjusting for grey matter volume. Patients showed reduced MTR and atrophy in the right pre- and left post-central gyri, right middle frontal gyrus, left insula, and thalamus bilaterally. Reduced MTR without significant atrophy occurred in the left pre-central gyrus, left superior frontal gyri, bilateral superior temporal gyri, right insula and visual cortex. Higher EDSS correlated with lower MTR in the right primary motor cortex (BA 4). In conclusion, localized grey matter damage occurs in early PPMS, and MTR change is more widespread than atrophy. Damage demonstrated by reduced MTR is clinically eloquent.
2013-01-01
Background Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per second - exceeding by far the maximum performance level of normal-sighted listeners (ca. 8 syl/s). To further elucidate the brain mechanisms underlying this extraordinary skill, functional magnetic resonance imaging (fMRI) was performed in blind subjects of varying ultra-fast speech comprehension capabilities and sighted individuals while listening to sentence utterances of a moderately fast (8 syl/s) or ultra-fast (16 syl/s) syllabic rate. Results Besides left inferior frontal gyrus (IFG), bilateral posterior superior temporal sulcus (pSTS) and left supplementary motor area (SMA), blind people highly proficient in ultra-fast speech perception showed significant hemodynamic activation of right-hemispheric primary visual cortex (V1), contralateral fusiform gyrus (FG), and bilateral pulvinar (Pv). Conclusions Presumably, FG supports the left-hemispheric perisylvian “language network”, i.e., IFG and superior temporal lobe, during the (segmental) sequencing of verbal utterances whereas the collaboration of bilateral pulvinar, right auditory cortex, and ipsilateral V1 implements a signal-driven timing mechanism related to syllabic (suprasegmental) modulation of the speech signal. These data structures, conveyed via left SMA to the perisylvian “language zones”, might facilitate – under time-critical conditions – the consolidation of linguistic information at the level of verbal working memory. PMID:23879896
Price, Gavin R; Yeo, Darren J; Wilkey, Eric D; Cutting, Laurie E
2018-04-01
The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lai, Chien-Han; Wu, Yu-Te; Chen, Cheng-Yu; Hou, Yi-Cheng
2016-01-01
Abstract We investigated the treatment effects of aripiprazole monotherapy in first-episode medication-naïve patients with major depressive disorder (MDD). The accompanying changes in the gray matter volume (GMV) were also explored. Fifteen patients completed the trial and received structural scans by 3-Tesla magnetic resonance imaging at baseline and partially responding state (sixth week). To account for the test–retest bias, 27 healthy controls were scanned twice within 6 weeks. We utilized optimized voxel-based morphometry with different comparisons between groups. The partially responding patients with MDD had greater GMV in left middle frontal gyrus and left superior parietal gyrus when compared with baseline. However, they had decreases in the GMV of right orbitofrontal gyrus and right inferior temporal gyrus after response. The partially responding patients with MDD still had residual GMV deficits in right superior frontal gyrus when compared with controls. However, the lack of second patient group without aripiprazole intervention would be a significant limitation to interpret the aripiprazole-specific effects on GMV. The changes in the GMV of fronto-parieto-temporal regions and residual GMV deficits in the superior frontal gyrus might represent “state-dependent brain changes” and “residual-deficit brain regions,” respectively, for aripiprzole monotherapy in MDD. PMID:27559967
Patterns of cerebral activation during lexical and phonological reading in Portuguese.
Senaha, M L H; Martin, M G M; Amaro, E; Campi, C; Caramelli, P
2005-12-01
According to the concepts of cognitive neuropsychology, there are two principal routes of reading processing: a lexical route, in which global reading of words occurs and a phonological route, responsible for the conversion of the graphemes into their respective phonemes. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the patterns of cerebral activation in lexical and phonological reading by 13 healthy women with a formal educational level greater than 11 years. Participants were submitted to a silent reading task containing three types of stimuli: real words (irregular and foreign words), nonwords and illegitimate graphic stimuli. An increased number of activated voxels were identified by fMRI in the word reading (lexical processing) than in the nonword reading (phonological processing) task. In word reading, activation was greater than for nonwords in the following areas: superior, middle and inferior frontal gyri, and bilateral superior temporal gyrus, right cerebellum and the left precentral gyrus, as indicated by fMRI. In the reading of nonwords, the activation was predominant in the right cerebellum and in the left superior temporal gyrus. The results of the present study suggest the existence of differences in the patterns of cerebral activation during lexical and phonological reading, with greater involvement of the right hemisphere in reading words than nonwords.
Topographical gradients of semantics and phonology revealed by temporal lobe stimulation.
Miozzo, Michele; Williams, Alicia C; McKhann, Guy M; Hamberger, Marla J
2017-02-01
Word retrieval is a fundamental component of oral communication, and it is well established that this function is supported by left temporal cortex. Nevertheless, the specific temporal areas mediating word retrieval and the particular linguistic processes these regions support have not been well delineated. Toward this end, we analyzed over 1000 naming errors induced by left temporal cortical stimulation in epilepsy surgery patients. Errors were primarily semantic (lemon → "pear"), phonological (horn → "corn"), non-responses, and delayed responses (correct responses after a delay), and each error type appeared predominantly in a specific region: semantic errors in mid-middle temporal gyrus (TG), phonological errors and delayed responses in middle and posterior superior TG, and non-responses in anterior inferior TG. To the extent that semantic errors, phonological errors and delayed responses reflect disruptions in different processes, our results imply topographical specialization of semantic and phonological processing. Specifically, results revealed an inferior-to-superior gradient, with more superior regions associated with phonological processing. Further, errors were increasingly semantically related to targets toward posterior temporal cortex. We speculate that detailed semantic input is needed to support phonological retrieval, and thus, the specificity of semantic input increases progressively toward posterior temporal regions implicated in phonological processing. Hum Brain Mapp 38:688-703, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Functional neuroanatomy of arithmetic and word reading and its relationship to age
Evans, Tanya M.; Flowers, D. Lynn; Luetje, Megan M.; Napoliello, Eileen; Eden, Guinevere F.
2016-01-01
Arithmetic and written language are uniquely human skills acquired during early schooling and used daily. While prior studies have independently characterized the neural bases for arithmetic and reading, here we examine both skills in a single study to capture their shared and unique cognitive mechanisms, as well as the role of age/experience in modulating their neural representations. We used functional MRI in 7- to 29-year-olds who performed single-digit subtraction, single-digit addition, and single-word reading. Using a factorial design, we examined the main effects of Task (subtraction, addition, reading) and Age (as a continuous variable), and their interactions. A main effect of Task revealed preferential activation for subtraction in bilateral intraparietal sulci and supramarginal gyri, right insula, inferior frontal gyrus, and cingulate. The right middle temporal gyrus and left superior temporal gyrus were preferentially active for both addition and reading, and left fusiform gyrus was preferentially active for reading. A main effect of Age revealed increased activity in older participants in right angular gyrus, superior temporal sulcus, and putamen, and less activity in left supplementary motor area, suggesting a left frontal to right temporo-parietal shift of activity with increasing age/experience across all tasks. Interactions for Task by Age were found in right hippocampus and left middle frontal gyrus, with older age invoking greater activity for addition and at the same time less activity for subtraction and reading. Together, in a study conducted in the same participants using similar task and acquisition parameters, the results reveal the neural substrates of these educationally relevant cognitive skills in typical participants in the context of age/experience. PMID:27566261
Hyun, Gi Jung; Jung, Tae-Woon; Park, Jeong Ha; Kang, Kyoung Doo; Kim, Sun Mi; Son, Young Don; Cheong, Jae Hoon; Kim, Bung-Nyun; Han, Doug Hyun
2016-04-01
Equine-assisted activity and training (EAAT) is thought to improve body balance and clinical symptoms in children with attention deficit hyperactivity disorder (ADHD). The study hypostheses were that EAAT would improve the clinical symptoms and gait balance in children with ADHD and that these improvements would be associated with increased brain connectivity within the balance circuit. A total of 12 children with ADHD and 12 age- and sex-matched healthy control children were recruited. EAAT consisted of three training sessions, each 70 minutes long, once a week for 4 weeks. Brain functional connectivity was assessed by using functional magnetic resonance imaging. After 4 weeks of EAAT, children with ADHD showed improved scores on the Korean ADHD scale (K-ARS), while the K-ARS scores of healthy children did not change. During the 4 weeks, the plantar pressure difference between the left foot and right foot decreased in both the healthy control group and the ADHD group. After 4 weeks of EAAT, healthy controls showed increased brain connectivity from the cerebellum to the left occipital lingual gyrus, fusiform gyrus, right and left thalami, right caudate, right precentral gyrus, and right superior frontal gyrus. However, children with ADHD showed increased brain connectivity from the cerebellum to the right insular cortex, right middle temporal gyrus, left superior temporal gyrus, and right precentral gyrus. In contrast, children with ADHD exhibited decreased brain connectivity from the cerebellum to the left inferior frontal gyrus. EAAT may improve clinical symptoms, gait balance, and brain connectivity, the last of which controls gait balance, in children with ADHD. However, children with ADHD who have deficits in the fronto-cerebellar tract did not exhibit changes in brain connectivity as extensive as those in healthy children in response to EAAT.
Early sensitivity of left perisylvian cortex to relationality in nouns and verbs.
Williams, Adina; Reddigari, Samir; Pylkkänen, Liina
2017-06-01
The ability to track the relationality of concepts, i.e., their capacity to encode a relationship between entities, is one of the core semantic abilities humans possess. In language processing, we systematically leverage this ability when computing verbal argument structure, in order to link participants to the events they participate in. Previous work has converged on a large region of left posterior perisylvian cortex as a locus for such processing, but the wide range of experimental stimuli and manipulations has yielded an unclear picture of the region's exact role(s). Importantly, there is a tendency for effects of relationality in single-word studies to localize to posterior temporo-parietal cortex, while argument structure effects in sentences appear in left superior temporal cortex. To characterize these sensitivities, we designed two MEG experiments that cross the factors relationality and eventivity. The first used minimal noun phrases and tested for an effect of semantic composition, while the second employed full sentences and a manipulation of grammatical category. The former identified a region of the left inferior parietal lobe sensitive to relationality, but not eventivity or combination, beginning at 170ms. The latter revealed a similarly-timed effect of relationality in left mid-superior temporal cortex, independent of eventivity and category. The results suggest that i) multiple sub-regions of perisylvian cortex are sensitive to the relationality carried by concepts even in the absence of arguments, ii) linguistic context modulates the locus of this sensitivity, consistent with prior studies, and iii) relationality information is accessed early - before 200ms - regardless of the concept's event status or syntactic category. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T
2014-03-01
Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.
Neural circuit of verbal humor comprehension in schizophrenia - an fMRI study.
Adamczyk, Przemysław; Wyczesany, Miroslaw; Domagalik, Aleksandra; Daren, Artur; Cepuch, Kamil; Błądziński, Piotr; Cechnicki, Andrzej; Marek, Tadeusz
2017-01-01
Individuals with schizophrenia exhibit problems with understanding the figurative meaning of language. This study evaluates neural correlates of diminished humor comprehension observed in schizophrenia. The study included chronic schizophrenia (SCH) outpatients (n = 20), and sex, age and education level matched healthy controls (n = 20). The fMRI punchline based humor comprehension task consisted of 60 stories of which 20 had funny, 20 nonsensical and 20 neutral (not funny) punchlines. After the punchlines were presented, the participants were asked to indicate whether the story was comprehensible and how funny it was. Three contrasts were analyzed in both groups reflecting stages of humor processing: abstract vs neutral stories - incongruity detection; funny vs abstract - incongruity resolution and elaboration; and funny vs neutral - complete humor processing. Additionally, parametric modulation analysis was performed using both subjective ratings separately. Between-group comparisons revealed that the SCH subjects had attenuated activation in the right posterior superior temporal gyrus (BA 41) in case of irresolvable incongruity processing of nonsensical puns; in the left dorsomedial middle and superior frontal gyri (BA 8/9) in case of incongruity resolution and elaboration processing of funny puns; and in the interhemispheric dorsal anterior cingulate cortex (BA 24) in case of complete processing of funny puns. Additionally, during comprehensibility ratings the SCH group showed a suppressed activity in the left dorsomedial middle and superior frontal gyri (BA 8/9) and revealed weaker activation during funniness ratings in the left dorsal anterior cingulate cortex (BA 24). Interestingly, these differences in the SCH group were accompanied behaviorally by a protraction of time in both types of rating responses and by indicating funny punchlines less comprehensible. Summarizing, our results indicate neural substrates of humor comprehension processing impairments in schizophrenia, which is accompanied by fronto-temporal hypoactivation.
Therapy-induced brain reorganization patterns in aphasia.
Abel, Stefanie; Weiller, Cornelius; Huber, Walter; Willmes, Klaus; Specht, Karsten
2015-04-01
Both hemispheres are engaged in recovery from word production deficits in aphasia. Lexical therapy has been shown to induce brain reorganization even in patients with chronic aphasia. However, the interplay of factors influencing reorganization patterns still remains unresolved. We were especially interested in the relation between lesion site, therapy-induced recovery, and beneficial reorganization patterns. Thus, we applied intensive lexical therapy, which was evaluated with functional magnetic resonance imaging, to 14 chronic patients with aphasic word retrieval deficits. In a group study, we aimed to illuminate brain reorganization of the naming network in comparison with healthy controls. Moreover, we intended to analyse the data with joint independent component analysis to relate lesion sites to therapy-induced brain reorganization, and to correlate resulting components with therapy gain. As a result, we found peri-lesional and contralateral activations basically overlapping with premorbid naming networks observed in healthy subjects. Reduced activation patterns for patients compared to controls before training comprised damaged left hemisphere language areas, right precentral and superior temporal gyrus, as well as left caudate and anterior cingulate cortex. There were decreasing activations of bilateral visuo-cognitive, articulatory, attention, and language areas due to therapy, with stronger decreases for patients in right middle temporal gyrus/superior temporal sulcus, bilateral precuneus as well as left anterior cingulate cortex and caudate. The joint independent component analysis revealed three components indexing lesion subtypes that were associated with patient-specific recovery patterns. Activation decreases (i) of an extended frontal lesion disconnecting language pathways occurred in left inferior frontal gyrus; (ii) of a small frontal lesion were found in bilateral inferior frontal gyrus; and (iii) of a large temporo-parietal lesion occurred in bilateral inferior frontal gyrus and contralateral superior temporal gyrus. All components revealed increases in prefrontal areas. One component was negatively correlated with therapy gain. Therapy was associated exclusively with activation decreases, which could mainly be attributed to higher processing efficiency within the naming network. In our joint independent component analysis, all three lesion patterns disclosed involved deactivation of left inferior frontal gyrus. Moreover, we found evidence for increased demands on control processes. As expected, we saw partly differential reorganization profiles depending on lesion patterns. There was no compensatory deactivation for the large left inferior frontal lesion, with its less advantageous outcome probably being related to its disconnection from crucial language processing pathways. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Formal thought disorders: from phenomenology to neurobiology.
Kircher, Tilo; Bröhl, Henrike; Meier, Felicitas; Engelen, Jennifer
2018-06-01
Formal thought disorder (FTD) is present in most psychiatric disorders and in some healthy individuals. In this Review, we present a comprehensive, integrative, and multilevel account of what is known about FTD, covering genetic, cellular, and neurotransmitter effects, environmental influences, experimental psychology and neuropsychology, brain imaging, phenomenology, linguistics, and treatment. FTD is a dimensional, phenomenologically defined construct, which can be clinically subdivided into positive versus negative and objective versus subjective symptom clusters. Because FTDs have been traditionally linked to schizophrenia, studies in other diagnoses are scarce. Aetiologically, FTD is the only symptom under genetic influence in schizophrenia as shown in linkage studies, but familial communication patterns (allusive thinking) have also been associated with the condition. Positive FTDs are related to synaptic rarefication in the glutamate system of the superior and middle lateral temporal cortices. Cortical volume of the left superior temporal gyrus is decreased in patients with schizophrenia who have positive FTD in structural MRI studies and shows reversed hemispheric (right more than left) activation in functional MRI experiments during speech production. Semantic network dysfunction in positive FTD has been demonstrated in experiments of indirect semantic hyperpriming (reaction time). In acute positive FTD, antipsychotics are effective, but a subgroup of patients have treatment-resistant, chronic, positive or negative FTD. Specific psychotherapy as treatment for FTD has not yet been developed. With this solid data on the pathogenesis of FTD, we can now implement clinical studies to treat this condition. Copyright © 2018 Elsevier Ltd. All rights reserved.
De Guibert, Clément; Maumet, Camille; Jannin, Pierre; Ferré, Jean-Christophe; Tréguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud
2011-01-01
Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting structural language (n=21), to a matched group of typically-developing children using a panel of four language tasks neither requiring reading nor metalinguistic skills, including two auditory lexico-semantic tasks (category fluency and responsive naming) and two visual phonological tasks based on picture naming. Data processing involved normalizing the data with respect to a matched pairs pediatric template, groups and between-groups analysis, and laterality indexes assessment within regions of interest using single and combined task analysis. Children with specific language impairment exhibited a significant lack of left lateralization in all core language regions (inferior frontal gyrus-opercularis, inferior frontal gyrus-triangularis, supramarginal gyrus, superior temporal gyrus), across single or combined task analysis, but no difference of lateralization for the rest of the brain. Between-group comparisons revealed a left hypoactivation of Wernicke’s area at the posterior superior temporal/supramarginal junction during the responsive naming task, and a right hyperactivation encompassing the anterior insula with adjacent inferior frontal gyrus and the head of the caudate nucleus during the first phonological task. This study thus provides evidence that this specific subtype of specific language impairment is associated with atypical lateralization and functioning of core language areas. PMID:21719430
Congenital left paraduodenal hernia causing chronic abdominal pain and abdominal catastrophe.
Shi, Yan; Felsted, Amy E; Masand, Prakash M; Mothner, Brent A; Nuchtern, Jed G; Rodriguez, J Ruben; Vasudevan, Sanjeev A
2015-04-01
Paraduodenal hernias are the most common type of congenital internal hernia. Because of its overall rare incidence, this entity is often overlooked during initial assessment of the patient. Lack of specific diagnostic criteria also makes diagnosis exceedingly difficult, and the resulting diagnostic delays can lead to tragic outcomes for patients. Despite these perceived barriers to timely diagnosis, there may be specific radiographic findings that, when combined with the appropriate constellation of clinical symptoms, would aid in diagnosis. This patient first presented at 8 years of age with vague symptoms of postprandial emesis, chronic abdominal pain, nausea, and syncope. Over the span of 6 years he was evaluated 2 to 3 times a year with similar complaints, all of which quickly resolved spontaneously. He underwent multiple laboratory, imaging, and endoscopic studies, which were nondiagnostic. It was not until he developed signs of a high-grade obstruction and extremis that he was found to have a large left paraduodenal hernia that had volvulized around the superior mesenteric axis. This resulted in the loss of the entire superior mesenteric axis distribution of the small and large intestine and necrosis of the duodenum. In cases of chronic intermittent obstruction without clear etiology, careful attention and consideration should be given to the constellation of symptoms, imaging studies, and potential use of diagnostic laparoscopy. Increased vigilance by primary care and consulting physicians is necessary to detect this rare but readily correctable condition. Copyright © 2015 by the American Academy of Pediatrics.
Pravatà, Emanuele; Zecca, Chiara; Sestieri, Carlo; Caulo, Massimo; Riccitelli, Gianna Carla; Rocca, Maria Assunta; Filippi, Massimo; Cianfoni, Alessandro; Gobbi, Claudio
2016-11-01
To investigate the dynamic temporal changes of brain resting-state functional connectivity (RS-FC) following mental effort in multiple sclerosis (MS) patients with cognitive fatigue (CF). Twenty-two MS patients, 11 with (F) and 11 without CF, and 12 healthy controls were included. Separate RS-FC scans were acquired on a 3T MR scanner immediately before (t0), immediately after (t1) and 30 minutes after (t2) execution of the paced auditory serial addition test (PASAT), a cognitively demanding task. Subjectively perceived CF after PASAT execution was also assessed. RS-FC changes were investigated by using a data-driven approach (the Intrinsic Connectivity Contrast -power ), complemented by a priori defined regions of interest analyses. The F-group patients experienced stronger RS-FC at t2 between the left superior frontal gyrus (L-SFG) and occipital, frontal and temporal areas, which increased over time after PASAT execution. In the F-group patients, the L-SFG was hyperconnected at t1 with the left caudate nucleus and hypoconnected at t2 with the left anterior thalamus. These variations were correlated with both subjectively perceived and clinically assessed CF, and-for the left thalamus-with PASAT performance. The development of cortico-cortical and cortico-subcortical hyperconnectivity following mental effort is related to CF symptoms in MS patients. © The Author(s), 2016.
Altered cerebral blood flow and neurocognitive correlates in adolescent cannabis users
Jacobus, Joanna; Goldenberg, Diane; Wierenga, Christina E.; Tolentino, Neil J.; Liu, Thomas T.
2012-01-01
Rationale The effects of adolescent marijuana use on the developing brain remain unclear, despite its prevalence. Arterial spin labeling (ASL) is a noninvasive imaging technique that characterizes neurovascular status and cerebral blood flow (CBF), potentially revealing contributors to neuropathological alterations. No studies to date have looked at CBF in adolescent marijuana users. Objectives This study examined CBF in adolescent marijuana users and matched healthy controls at baseline and after 4 weeks of monitored abstinence. Methods Heavy adolescent marijuana users (n=23, >200 lifetime marijuana use days) and demographically matched controls (n=23) with limited substance exposure underwent an ASL brain scan at an initial session and after 4 weeks of sequential urine toxicology to confirm abstinence. Results Marijuana users showed reduced CBF in four cortical regions including the left superior and middle temporal gyri, left insula, left and right medial frontal gyrus, and left supramarginal gyrus at baseline; users showed increased CBF in the right precuneus at baseline, as compared to controls (corrected p values<0.05). No between group differences were found at follow-up. Conclusions Marijuana use may influence CBF in otherwise healthy adolescents acutely; however, group differences were not observed after several weeks of abstinence. Neurovascular alterations may contribute to or underlie changes in brain activation, neuropsychological performance, and mood observed in young cannabis users with less than a month of abstinence. PMID:22395430
Tagawa, Yoshiaki; Suzuki, Yasuo; Sakaguchi, Takatoshi; Endoh, Hiroki; Yokoi, Masahiko; Kase, Manabu
2014-01-01
A 29-year-old fisherman exhibited optic disc oedema and peripapillary retinal detachment in the right eye, whereas in the left eye, optic atrophy and intraretinal exudates were already observed on first examination. About 6 months earlier, he noticed blurred vision of the left eye but took no medication. Visual acuity was 0.4 OD and 0.01 OS. Perimetry showed a large lower-half field defect with sparing 10° central field in the right eye and a large central scotoma in the left eye. Fluorescein angiography showed existence of arteriole or capillary nonperfusion and hyperpermeability of surrounding capillaries. Since serological examinations showed positive Bartonella immunoglobulin G (IgG) and other causes of neuroretinitis (NR) were excluded, NR in the present case was caused by cat scratch disease (CSD). Optic atrophy appeared 2 weeks after onset. Optical coherence tomography 13 weeks after onset revealed severe loss of retinal nerve fibre layer (RNFL) superior and nasal to the optic disc in both eyes and temporal in the left eye. Visual acuity of the right eye improved to 1.2 by the treatment, whereas visual field defects were persistent. CSD-NR in the present case developed abrupt appearance of optic atrophy with severe RNFL loss in the right eye, which was elicited by exudative, obliterative vasculitis in the superficial layer of the optic disc.
Gray matter abnormalities in patients with social anxiety disorder: A voxel-based morphometry study.
Tükel, Raşit; Aydın, Kubilay; Yüksel, Çağrı; Ertekin, Erhan; Koyuncu, Ahmet; Taş, Cumhur
2015-10-30
The main objective of this study was to investigate the gray matter volume (GMV) differences between the patients with social anxiety disorder (SAD) and healthy controls, using VBM analysis. A total of 27 consecutive patients (15 women and 12 men) with SAD and 27 age and sex-matched healthy control subjects were included in this study. With magnetic resonance imaging, we examined GMV differences between SAD and healthy control groups. We found that GMV in the right middle and inferior temporal, left superior parietal, left precuneus and right fusiform areas were significantly greater in patients with SAD than in healthy controls. In addition, GMV in the right inferior and middle temporal regions were positively correlated with the social avoidance and total social anxiety scores of the participants in the SAD group. Lastly, greater GMV in the left superior parietal and precuneal regions were correlated with the higher disability in the social life of the patients with SAD. Our results suggest that the regions that showed significant GMV differences between the two groups play an important role in the pathophysiology of SAD and increased GMV in these regions might reflect a pathological process of neural abnormalities in this disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Structural and functional cerebral correlates of hypnotic suggestibility.
Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo
2014-01-01
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity.
The phonatory deviation diagram: a novel objective measurement of vocal function.
Madazio, Glaucya; Leão, Sylvia; Behlau, Mara
2011-01-01
To identify the discriminative characteristics of the phonatory deviation diagram (PDD) in rough, breathy and tense voices. One hundred and ninety-six samples of normal and dysphonic voices from adults were submitted to perceptual auditory evaluation, focusing on the predominant vocal quality and the degree of deviation. Acoustic analysis was performed with the VoxMetria (CTS Informatica). Significant differences were observed between the dysphonic and normal groups (p < 0.001), and also between the breathy and rough samples (p = 0.044) and the breathy and tense samples (p < 0.001). All normal voices were positioned in the inferior left quadrant, 45% of the rough voices in the inferior right quadrant, 52.6% of the breathy voices in the superior right quadrant and 54.3% of the tense voices in the inferior left quadrant of the PDD. In the inferior left quadrant, 93.8% of voices with no deviation were located and 72.7% of voices with mild deviation; voices with moderate deviation were distributed in the inferior and superior right quadrants, the latter ones containing the most deviant voices and 80% of voices with severe deviation. The PDD was able to discriminate normal from dysphonic voices, and the distribution was related to the type and degree of voice alteration. Copyright © 2011 S. Karger AG, Basel.
15. Photocopied August 1978. LOCOMOTIVE CRANE IN THE ROCK CUT, ...
15. Photocopied August 1978. LOCOMOTIVE CRANE IN THE ROCK CUT, AUGUST 21, 1900. LOADING DUMP CARS. A STEAM SHOVEL LOADING DUMP CARS IS VISIBLE IN THE LEFT BACKGROUND. (61) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Fahmy, Rania M; Bhat, Ramesa S; Al-Mutairi, Manar; Aljaser, Feda S; El-Ansary, Afaf
2018-01-01
Objective To evaluate the effect of diabetes mellitus (DM), diabetic retinopathy, and degree of glycemic control (glycosylated hemoglobin [HbA1c]) on peripapillary retinal nerve fiber layer thickness (RNFLT) using optical coherence tomography. Methods The study included 126 eyes of healthy controls (n=32) and diabetics patients (n=31), whose ages ranged from 40 to 70 years. The diabetic group was divided into: Subgroup 1: with HbA1c <7% and Subgroup 2: with HbA1c ≥7%. All patients underwent full ophthalmic examination. HbA1c level was obtained with the A1cNow+ system and the peripapillary RNFLT was measured using 3D-OCT 2000 Topcon (360-degree circular scan with 3.4 mm diameter centered on optic disc). Results The obtained data demonstrates significant decrease in peripapillary RNFLT in superior and inferior quadrants of the right eye (p=0.000 and p=0.039, respectively), and in superior quadrant of the left eye (p=0.002) with impairment of glycemic control. Pearson’s correlation test showed significant negative correlation of RNFLT with HbA1c in the superior quadrant in both eyes. Conclusion Impairment of glycemic control affects the peripapillary RNFLT mainly in the superior quadrant. This thickness also tends to decrease with long-standing DM, use of DM medications, and development of diabetic retinopathy. The measurement of peripapillary RNFLT may become a useful method to monitor early retinal changes in diabetic patients. PMID:29535499
Predicting reading and mathematics from neural activity for feedback learning.
Peters, Sabine; Van der Meulen, Mara; Zanolie, Kiki; Crone, Eveline A
2017-01-01
Although many studies use feedback learning paradigms to study the process of learning in laboratory settings, little is known about their relevance for real-world learning settings such as school. In a large developmental sample (N = 228, 8-25 years), we investigated whether performance and neural activity during a feedback learning task predicted reading and mathematics performance 2 years later. The results indicated that feedback learning performance predicted both reading and mathematics performance. Activity during feedback learning in left superior dorsolateral prefrontal cortex (DLPFC) predicted reading performance, whereas activity in presupplementary motor area/anterior cingulate cortex (pre-SMA/ACC) predicted mathematical performance. Moreover, left superior DLPFC and pre-SMA/ACC activity predicted unique variance in reading and mathematics ability over behavioral testing of feedback learning performance alone. These results provide valuable insights into the relationship between laboratory-based learning tasks and learning in school settings, and the value of neural assessments for prediction of school performance over behavioral testing alone. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Auditory Attentional Control and Selection during Cocktail Party Listening
Hill, Kevin T.
2010-01-01
In realistic auditory environments, people rely on both attentional control and attentional selection to extract intelligible signals from a cluttered background. We used functional magnetic resonance imaging to examine auditory attention to natural speech under such high processing-load conditions. Participants attended to a single talker in a group of 3, identified by the target talker's pitch or spatial location. A catch-trial design allowed us to distinguish activity due to top-down control of attention versus attentional selection of bottom-up information in both the spatial and spectral (pitch) feature domains. For attentional control, we found a left-dominant fronto-parietal network with a bias toward spatial processing in dorsal precentral sulcus and superior parietal lobule, and a bias toward pitch in inferior frontal gyrus. During selection of the talker, attention modulated activity in left intraparietal sulcus when using talker location and in bilateral but right-dominant superior temporal sulcus when using talker pitch. We argue that these networks represent the sources and targets of selective attention in rich auditory environments. PMID:19574393
Co-localisation of abnormal brain structure and function in specific language impairment.
Badcock, Nicholas A; Bishop, Dorothy V M; Hardiman, Mervyn J; Barry, Johanna G; Watkins, Kate E
2012-03-01
We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. Copyright © 2011 Elsevier Inc. All rights reserved.
Reading direction and the central perceptual span in Urdu and English.
Paterson, Kevin B; McGowan, Victoria A; White, Sarah J; Malik, Sameen; Abedipour, Lily; Jordan, Timothy R
2014-01-01
Normal reading relies on the reader making a series of saccadic eye movements along lines of text, separated by brief fixational pauses during which visual information is acquired from a region of text. In English and other alphabetic languages read from left to right, the region from which useful information is acquired during each fixational pause is generally reported to extend further to the right of each fixation than to the left. However, the asymmetry of the perceptual span for alphabetic languages read in the opposite direction (i.e., from right to left) has received much less attention. Accordingly, in order to more fully investigate the asymmetry in the perceptual span for these languages, the present research assessed the influence of reading direction on the perceptual span for bilingual readers of Urdu and English. Text in Urdu and English was presented either entirely as normal or in a gaze-contingent moving-window paradigm in which a region of text was displayed as normal at the reader's point of fixation and text outside this region was obscured. The windows of normal text extended symmetrically 0.5° of visual angle to the left and right of fixation, or asymmetrically by increasing the size of each window to 1.5° or 2.5° to either the left or right of fixation. When participants read English, performance for the window conditions was superior when windows extended to the right. However, when reading Urdu, performance was superior when windows extended to the left, and was essentially the reverse of that observed for English. These findings provide a novel indication that the perceptual span is modified by the language being read to produce an asymmetry in the direction of reading and show for the first time that such an asymmetry occurs for reading Urdu.
The influence of gender on auditory and language cortical activation patterns: preliminary data.
Kocak, Mehmet; Ulmer, John L; Biswal, Bharat B; Aralasmak, Ayse; Daniels, David L; Mark, Leighton P
2005-10-01
Intersex cortical and functional asymmetry is an ongoing topic of investigation. In this pilot study, we sought to determine the influence of acoustic scanner noise and sex on auditory and language cortical activation patterns of the dominant hemisphere. Echoplanar functional MR imaging (fMRI; 1.5T) was performed on 12 healthy right-handed subjects (6 men and 6 women). Passive text listening tasks were employed in 2 different background acoustic scanner noise conditions (12 sections/2 seconds TR [6 Hz] and 4 sections/2 seconds TR [2 Hz]), with the first 4 sections in identical locations in the left hemisphere. Cross-correlation analysis was used to construct activation maps in subregions of auditory and language relevant cortex of the dominant (left) hemisphere, and activation areas were calculated by using coefficient thresholds of 0.5, 0.6, and 0.7. Text listening caused robust activation in anatomically defined auditory cortex, and weaker activation in language relevant cortex of all 12 individuals. As a whole, there was no significant difference in regional cortical activation between the 2 background acoustic scanner noise conditions. When sex was considered, men showed a significantly (P < .01) greater change in left hemisphere activation during the high scanner noise rate condition than did women. This effect was significant (P < .05) in the left superior temporal gyrus, the posterior aspect of the left middle temporal gyrus and superior temporal sulcus, and the left inferior frontal gyrus. Increase in the rate of background acoustic scanner noise caused increased activation in auditory and language relevant cortex of the dominant hemisphere in men compared with women where no such change in activation was observed. Our preliminary data suggest possible methodologic confounds of fMRI research and calls for larger investigations to substantiate our findings and further characterize sex-based influences on hemispheric activation patterns.
Asymmetric severity of diabetic retinopathy in Waardenburg syndrome.
Kashima, Tomoyuki; Akiyama, Hideo; Kishi, Shoji
2011-01-01
A 30-year-old female patient was referred to our institution due to vitreous hemorrhage. Best corrected visual acuity of her right and left eyes at her initial visit was 10/20 and 20/20, respectively. Although hypochromic iris was observed in the superior iris between the 10 and 2 o'clock positions in her right eye, her entire left eye exhibited hypochromic iris. Hypopigmentation of the fundus was seen in the superior part of her right eye. This eye also had a huge neovascularization on the optic disc that was 7 discs in diameter. Conversely, her left fundi showed hypopigmentation of the fundus in the entire region of the left eye, and dot hemorrhages were observed all over the left fundi, although no neovascularization could be seen microscopically. Fluorescein angiography showed a huge neovascularization in the right eye and a tiny neovascularization in the left eye. Gene analysis revealed the presence of the PAX3 gene homeobox domain mutation, which led to her being diagnosed as Waardenburg syndrome type 1. Magnetic resonance angiography showed there was no obstructive region at either of the internal carotid arteries and ophthalmic arteries. The severity of the diabetic retinopathy appeared to be correlated with the degree of hypopigmentation in the posterior fundus. We speculate that hypopigmentation of the fundus in Waardenburg syndrome may be responsible for the reduction in retinal metabolism, which led to a reduction in oxygen consumption and prevented further aggravation of the diabetic retinopathy. Only laser treatments using short wavelengths was effective in this case. While the extinction coefficient for hemoglobin when using green light is higher than when using yellow light, the differences between these wavelengths tend to disappear when oxygenated hemoglobin is present. To the best of the authors' knowledge, this is the first case report of a patient with Waardenburg syndrome and diabetic retinopathy.
Chandraratna, P Anthony N; Mohar, Dilbahar S; Sidarous, Peter F; Brar, Prabhjyot; Miller, Jeffrey; Shah, Nissar; Kadis, John; Ali, Ashgar; Mohar, Prabhsimran
2012-09-01
This investigation was designed to test the hypothesis that continuous cardiac imaging using an ultrasound transducer developed in our laboratory (ContiScan) is superior to electrocardiogram (ECG) monitoring in the diagnosis of coronary artery disease (CAD) in patients with acute non-ST segment elevation chest pain syndromes. Seventy patients with intermediate to high probability of CAD who presented with typical anginal chest pain and no evidence of ST segment elevation on the ECG were studied. The 2.5-MHz transducer is spherical in its distal part mounted in an external housing to permit steering in 360 degrees. The transducer was placed at the left sternal border to image the left ventricular short-axis view and recorded on video tape at baseline, during and after episodes of chest pain. Two ECG leads were continuously monitored. The presence of CAD was confirmed by coronary arteriography or nuclear or echocardiographic stress testing. Twenty-four patients had regional wall motion abnormalities (RWMA) on their initial echo which were unchanged during the period of monitoring. All had evidence of CAD. Twenty-eight patients had transient RWMA. All had evidence of CAD. Eighteen patients had normal wall motion throughout the monitoring period, 14 of these had no evidence of CAD, and four had evidence of CAD. These four patients did not have chest pain during monitoring. The sensitivity, specificity, and accuracy of echocardiographic monitoring for diagnosing non-ST elevation myocardial infarction was 88%, 100%, and 91% respectively. The sensitivity, specificity, and accuracy of the ECG for diagnosis of CAD were 31%, 100%, and 52%, respectively. Echocardiography was superior to ECG (P < 0.001). The data indicate that continuous cardiac imaging is superior to ECG monitoring for the diagnosis of CAD in patients presenting with acute non-ST segment elevation chest pain syndromes. This technique could be a useful adjunct to ECG monitoring for myocardial ischemia in the acute care setting. © 2012, Wiley Periodicals, Inc.
Peyrin, C; Démonet, J F; N'Guyen-Morel, M A; Le Bas, J F; Valdois, S
2011-09-01
A visual attention (VA) span disorder has been reported in dyslexic children as potentially responsible for their poor reading outcome. The purpose of the current paper was to identify the cerebral correlates of this VA span disorder. For this purpose, 12 French dyslexic children with severe reading and VA span disorders and 12 age-matched control children were engaged in a categorisation task under fMRI. Two flanked and isolated conditions were designed which both involved multiple-element simultaneous visual processing but taxed visual attention differently. For skilled readers, flanked stimuli processing activated a large bilateral cortical network comprising the superior and inferior parietal cortex, the inferior temporal cortex, the striate and extrastriate visual cortex, the middle frontal cortex and the anterior cingulate cortex while the less attention-demanding task of isolated stimuli only activated the inferior occipito-temporal cortex bilaterally. With respect to controls, the dyslexic children showed significantly reduced activation within bilateral parietal and temporal areas during flanked processing, but no difference during the isolated condition. The neural correlates of the processes involved in attention-demanding multi-element processing tasks were more specifically addressed by contrasting the flanked and the isolated conditions. This contrast elicited activation of the left precuneus/superior parietal lobule in the controls, but not in the dyslexic children. These findings provide new insights on the role of parietal regions, in particular the left superior parietal lobule, in the visual attention span and in developmental dyslexia. Copyright © 2010 Elsevier Inc. All rights reserved.
Cortical thickness and surface area in neonates at high risk for schizophrenia.
Li, Gang; Wang, Li; Shi, Feng; Lyall, Amanda E; Ahn, Mihye; Peng, Ziwen; Zhu, Hongtu; Lin, Weili; Gilmore, John H; Shen, Dinggang
2016-01-01
Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness and cortical surface area. However, it is unclear whether these abnormalities exist in neonates associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex was computed as the shortest distance between the inner and outer surfaces. Comparisons were made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had significantly thinner cortical thickness in the right lateral occipital cortex than the female control neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital cortex, compared with the control neonates. Before FDR correction, in comparison with control neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also had significantly smaller cortical surface area in the right pars triangularis (before FDR correction), compared with control neonates. This preliminary study provides the first evidence that early development of cortical thickness and surface area might be abnormal in the neonates at genetic risk for schizophrenia.
Agematsu, Kouta; Naito, Yuji; Aoki, Mitsuru; Fujiwara, Tadashi
2008-04-01
The presented case was a 3-year-old boy diagnosed with asplenia (SLL), double outlet right ventricle, pulmonary stenosis, atrioventricular septal defect, hypoplastic left ventricle and partial anomalous pulmonary venous connection to the superior vena cava. Partial anomalous pulmonary venous connection was repaired by translocation of pulmonary artery to avoid pulmonary venous obstruction when Glenn anastomosis was performed. Total cavo-pulmonary connection was established by re-routing the inferior vena cava to pulmonary artery using the atrial septal remnant and the left atrium free wall flap.
Cerebral laterality and verbal processes.
Sherman, J L; Kulhavy, R W; Burns, K
1976-11-01
Research suggests that we process information by way of two distinct and functionallly separate coding systems. The localization of these two processing systems appears to be somewhat dependent on cerebral laterality, which has been shown to vary in right-handed and left-handed persons. To test the dual coding model, right-handed and left-handed subjects learned lists of abstract and concrete words under various conditions of visual and tactile interference. Right-handed subjects showed a significant superiority in the remembering of highly concrete items, while total recall did not differ reliably between groups.
Surgical treatment for medically refractory focal epilepsy in a patient with fragile X syndrome.
Kenmuir, Cynthia; Richardson, Mark; Ghearing, Gena
2015-10-01
Medication resistant temporal lobe epilepsy occurs in a small population of patients with fragile X syndrome. We present the case of a 24-year-old man with medically refractory temporal lobe epilepsy and fragile X syndrome who underwent left anterior temporal lobectomy resulting in cessation of seizures. Our patient was diagnosed with fragile X syndrome with a fully mutated, fully methylated FMR1 gene resulting in 572 CGG repeats. He developed seizures initially controlled with Depakote monotherapy, but progressed to become medically refractive to combination treatment with Depakote, lamotrigine and zonisamide. Prolonged video EEG monitoring revealed interictal left temporal sharp waves and slowing as well as subclinical and clinical seizures, each with left temporal onset. 3T MRI was consistent with left mesial temporal sclerosis. After discussing the case in our multidisciplinary surgical epilepsy conference, he was referred for presurgical evaluation including neuropsychological testing and Wada testing. He underwent an asleep left anterior temporal lobectomy, sparing the superior temporal gyrus. Pathology showed neuronal loss and gliosis in the hippocampus and amygdala. Twelve months after surgery, the patient has not experienced a seizure. He is described by his parents as less perseverative and less restless. We have presented the case of a 24 year-old-man with fragile X syndrome who underwent successful left anterior temporal lobectomy for the treatment of medically refractory epilepsy who is now seizure free without further functional impairment. This case report demonstrates the feasibility of surgical treatment for a patient with comorbid fragile X syndrome and mesial temporal sclerosis. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Satoh, Masayuki; Kato, Natsuko; Tabei, Ken-Ichi; Nakano, Chizuru; Abe, Makiko; Fujita, Risa; Kida, Hirotaka; Tomimoto, Hidekazu; Kondo, Kiyohiko
2016-12-01
A 63-year-old, right-handed professional chorus conductor developed right putaminal hemorrhage, and became unable to experience emotion while listening to music. Two years later, neurological examination revealed slight left hemiparesis. Neuromusicological assessments revealed impaired judgment of "musical sense," and the inability to discriminate the sound of chords in pure intervals from those in equal temperament. Brain MRI and tractography identified the old hemorrhagic lesion in the right putamen and impaired fiber connectivity between the right insula and superior temporal lobe. These findings suggest that musical anhedonia might be caused by a disconnection between the insula and auditory cortex.
The brain’s conversation with itself: neural substrates of dialogic inner speech
Weis, Susanne; McCarthy-Jones, Simon; Moseley, Peter; Smailes, David; Fernyhough, Charles
2016-01-01
Inner speech has been implicated in important aspects of normal and atypical cognition, including the development of auditory hallucinations. Studies to date have focused on covert speech elicited by simple word or sentence repetition, while ignoring richer and arguably more psychologically significant varieties of inner speech. This study compared neural activation for inner speech involving conversations (‘dialogic inner speech’) with single-speaker scenarios (‘monologic inner speech’). Inner speech-related activation differences were then compared with activations relating to Theory-of-Mind (ToM) reasoning and visual perspective-taking in a conjunction design. Generation of dialogic (compared with monologic) scenarios was associated with a widespread bilateral network including left and right superior temporal gyri, precuneus, posterior cingulate and left inferior and medial frontal gyri. Activation associated with dialogic scenarios and ToM reasoning overlapped in areas of right posterior temporal cortex previously linked to mental state representation. Implications for understanding verbal cognition in typical and atypical populations are discussed. PMID:26197805
APOLLO-SOYUZ TEST PROJECT (ASTP) - EQUIPMENT (SEEDS)
1975-06-06
S75-27445 (6 June 1975) --- American ASTP crewmen Vance D. Brand (left), Thomas P. Stafford (second from left) and Donald K. Slayton (right) receive a special box of genetically superior white spruce seeds from Glenn A. Kovar (second from right), USDA Forest Service project coordinator. The seeds, enough to plant an acre of trees, will be presented to the Soviet ASTP crewmen during the U.S.-USSR Apollo-Soyuz Test Project docking-in-Earth-orbit mission in July 1975. The seeds will produce faster-growing trees of exceptional height and shape. The trees will thrive in Moscow-like climate, and were developed by Forest Service?s Institute of Forest Genetics in Rhinelander, Wisconsin. The seed container box was made from recycled fibers and stabilized walnut. These seeds are an outstanding example of the U.S. Forest Service research to help produce new improved forests for the world. The four men are standing in the Building 2 briefing room at NASA's Johnson Space Center.
Sex differences in adolescent white matter architecture.
Bava, Sunita; Boucquey, Veronique; Goldenberg, Diane; Thayer, Rachel E; Ward, Megan; Jacobus, Joanna; Tapert, Susan F
2011-02-23
Sex-specific trajectories in white matter development during adolescence may help explain cognitive and behavioral divergences between males and females. Knowledge of sex differences in typically developing adolescents can provide a basis for interpreting sexual dimorphisms in abilities and actions. We examined 58 healthy adolescents (12-14years of age) with diffusion tensor imaging (DTI). Diffusion parameters fractional anisotropy (FA), and mean (MD), radial (RD), and axial diffusivities (AD) were subjected to whole-brain voxel-wise group comparisons using tract-based spatial statistics. Sex differences in white matter microstructure were examined in relation to pubertal development. Early adolescent females (n=29) evidenced higher FA in the right superior corona radiata, higher FA and AD in bilateral corticospinal tracts (≥164μl, p<.01), and lower MD in the right inferior longitudinal fasciculus (ILF) and left forceps major (≥164μl, p<.01) than age-matched males (n=29). Males did not show any areas of higher FA or lower MD than females, but had higher AD in the right superior longitudinal fasciculus, ILF, and forceps minor (≥ 164μl, p<.01). Pubertal stage did not account for sex disparities. In early adolescence, females' motor tracts may reflect widespread changes, while males may undergo relatively more microstructural change in projection and association fibers. Copyright © 2010 Elsevier B.V. All rights reserved.
Left cytoarchitectonic BA 44 processes syntactic gender violations in determiner phrases.
Heim, Stefan; van Ermingen, Muna; Huber, Walter; Amunts, Katrin
2010-10-01
Recent neuroimaging studies make contradictory predictions about the involvement of left Brodmann's area (BA) 44 in processing local syntactic violations in determiner phrases (DPs). Some studies suggest a role for BA 44 in detecting local syntactic violations, whereas others attribute this function to the left premotor cortex. Therefore, the present event-related functional magnetic resonance imaging (fMRI) study investigated whether left-cytoarchitectonic BA 44 was activated when German DPs involving syntactic gender violations were compared with correct DPs (correct: 'der Baum'-the[masculine] tree[masculine]; violated: 'das Baum'--the[neuter] tree[masculine]). Grammaticality judgements were made for both visual and auditory DPs to be able to generalize the results across modalities. Grammaticality judgements involved, among others, left BA 44 and left BA 6 in the premotor cortex for visual and auditory stimuli. Most importantly, activation in left BA 44 was consistently higher for violated than for correct DPs. This finding was behaviourally corroborated by longer reaction times for violated versus correct DPs. Additional brain regions, showing the same effect, included left premotor cortex, supplementary motor area, right middle and superior frontal cortex, and left cerebellum. Based on earlier findings from the literature, the results indicate the involvement of left BA 44 in processing local syntactic violations when these include morphological features, whereas left premotor cortex seems crucial for the detection of local word category violations. © 2010 Wiley-Liss, Inc.
Klaver, Peter; Latal, Beatrice; Martin, Ernst
2015-01-01
Very low birth weight (VLBW) premature born infants have a high risk to develop visual perceptual and learning deficits as well as widespread functional and structural brain abnormalities during infancy and childhood. Whether and how prematurity alters neural specialization within visual neural networks is still unknown. We used functional and structural brain imaging to examine the visual semantic system of VLBW born (<1250 g, gestational age 25-32 weeks) adolescents (13-15 years, n = 11, 3 males) and matched term born control participants (13-15 years, n = 11, 3 males). Neurocognitive assessment revealed no group differences except for lower scores on an adaptive visuomotor integration test. All adolescents were scanned while viewing pictures of animals and tools and scrambled versions of these pictures. Both groups demonstrated animal and tool category related neural networks. Term born adolescents showed tool category related neural activity, i.e. tool pictures elicited more activity than animal pictures, in temporal and parietal brain areas. Animal category related activity was found in the occipital, temporal and frontal cortex. VLBW born adolescents showed reduced tool category related activity in the dorsal visual stream compared with controls, specifically the left anterior intraparietal sulcus, and enhanced animal category related activity in the left middle occipital gyrus and right lingual gyrus. Lower birth weight of VLBW adolescents correlated with larger thickness of the pericalcarine gyrus in the occipital cortex and smaller surface area of the superior temporal gyrus in the lateral temporal cortex. Moreover, larger thickness of the pericalcarine gyrus and smaller surface area of the superior temporal gyrus correlated with reduced tool category related activity in the parietal cortex. Together, our data suggest that very low birth weight predicts alterations of higher order visual semantic networks, particularly in the dorsal stream. The differences in neural specialization may be associated with aberrant cortical development of areas in the visual system that develop early in childhood. Copyright © 2014 Elsevier Ltd. All rights reserved.
Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.
Vander Ghinst, Marc; Bourguignon, Mathieu; Op de Beeck, Marc; Wens, Vincent; Marty, Brice; Hassid, Sergio; Choufani, Georges; Jousmäki, Veikko; Hari, Riitta; Van Bogaert, Patrick; Goldman, Serge; De Tiège, Xavier
2016-02-03
Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.5 Hz to the activity of both superior temporal gyri, whereas the modulations at 4-8 Hz were coupled to the activity of the right supratemporal auditory cortex. In cocktail party conditions, with the multitalker background noise, the coupling was at both frequencies stronger for the attended speech stream than for the unattended Multitalker background. The coupling strengths decreased as the Multitalker background increased. During the cocktail party conditions, the ∼0.5 Hz coupling became left-hemisphere dominant, compared with bilateral coupling without the multitalker background, whereas the 4-8 Hz coupling remained right-hemisphere lateralized in both conditions. The brain activity was not coupled to the multitalker background or to its individual talkers. The results highlight the key role of listener's left superior temporal gyri in extracting the slow ∼0.5 Hz modulations, likely reflecting the attended speech stream within a multitalker auditory scene. When people listen to one person in a "cocktail party," their auditory cortex mainly follows the attended speech stream rather than the entire auditory scene. However, how the brain extracts the attended speech stream from the whole auditory scene and how increasing background noise corrupts this process is still debated. In this magnetoencephalography study, subjects had to attend a speech stream with or without multitalker background noise. Results argue for frequency-dependent cortical tracking mechanisms for the attended speech stream. The left superior temporal gyrus tracked the ∼0.5 Hz modulations of the attended speech stream only when the speech was embedded in multitalker background, whereas the right supratemporal auditory cortex tracked 4-8 Hz modulations during both noiseless and cocktail-party conditions. Copyright © 2016 the authors 0270-6474/16/361597-11$15.00/0.
The Neural Basis of Typewriting: A Functional MRI Study.
Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki
2015-01-01
To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner's area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting.
The Neural Basis of Typewriting: A Functional MRI Study
Higashiyama, Yuichi; Takeda, Katsuhiko; Someya, Yoshiaki; Kuroiwa, Yoshiyuki; Tanaka, Fumiaki
2015-01-01
To investigate the neural substrate of typewriting Japanese words and to detect the difference between the neural substrate of typewriting and handwriting, we conducted a functional magnetic resonance imaging (fMRI) study in 16 healthy volunteers. All subjects were skillful touch typists and performed five tasks: a typing task, a writing task, a reading task, and two control tasks. Three brain regions were activated during both the typing and the writing tasks: the left superior parietal lobule, the left supramarginal gyrus, and the left premotor cortex close to Exner’s area. Although typing and writing involved common brain regions, direct comparison between the typing and the writing task revealed greater left posteromedial intraparietal cortex activation in the typing task. In addition, activity in the left premotor cortex was more rostral in the typing task than in the writing task. These findings suggest that, although the brain circuits involved in Japanese typewriting are almost the same as those involved in handwriting, there are brain regions that are specific for typewriting. PMID:26218431
Oi, Misato; Saito, Hirofumi; Li, Zongfeng; Zhao, Wenjun
2013-04-01
To examine the neural mechanism of co-speech gesture production, we measured brain activity of bilinguals during an animation-narration task using near-infrared spectroscopy. The task of the participants was to watch two stories via an animated cartoon, and then narrate the contents in their first language (Ll) and second language (L2), respectively. The participants showed significantly more gestures in L2 than in L1. The number of gestures lowered at the ending part of the narration in L1, but not in L2. Analyses of concentration changes of oxygenated hemoglobin revealed that activation of the left inferior frontal gyrus (IFG) significantly increased during gesture production, while activation of the left posterior superior temporal sulcus (pSTS) significantly decreased in line with an increase in the left IFG. These brain activation patterns suggest that the left IFG is involved in the gesture production, and the left pSTS is modulated by the speech load. Copyright © 2013 Elsevier Inc. All rights reserved.
The distributed neural system for top-down letter processing: an fMRI study
NASA Astrophysics Data System (ADS)
Liu, Jiangang; Feng, Lu; Li, Ling; Tian, Jie
2011-03-01
This fMRI study used Psychophysiological interaction (PPI) to investigate top-down letter processing with an illusory letter detection task. After an initial training that became increasingly difficult, participant was instructed to detect a letter from pure noise images where there was actually no letter. Such experimental paradigm allowed for isolating top-down components of letter processing and minimizing the influence of bottom-up perceptual input. A distributed cortical network of top-down letter processing was identified by analyzing the functional connectivity patterns of letter-preferential area (LA) within the left fusiform gyrus. Such network extends from the visual cortex to high level cognitive cortexes, including the left middle frontal gyrus, left medial frontal gyrus, left superior parietal gyrus, bilateral precuneus, and left inferior occipital gyrus. These findings suggest that top-down letter processing contains not only regions for processing of letter phonology and appearance, but also those involved in internal information generation and maintenance, and attention and memory processing.
Morton, J Bruce; Bosma, Rachael; Ansari, Daniel
2009-05-15
Brain activation associated with dimensional shifts of attention was measured in 14 children and 13 adults using 4 T fMRI. Across all participants, dimensional shifting was associated with activity in a distributed frontoparietal network, including superior parietal cortex, dorsolateral prefrontal cortex, inferior frontal junction, and the pre-supplementary motor region. There were also age-related differences in brain activity, with children but not adults showing an effect of dimension shifting in the right superior frontal sulcus, and adults but not children showing an effect of dimension shifting in the left superior parietal cortex and the right thalamus. These differences were likely not attributable to behavioral differences as children and adults performed comparably. Implications for neurodevelopmental accounts of shifting are discussed.
Implicit and explicit processing of kanji and kana words and non-words studied with fMRI.
Thuy, Dinh Ha Duy; Matsuo, Kayako; Nakamura, Kimihiro; Toma, Keiichiro; Oga, Tatsuhide; Nakai, Toshiharu; Shibasaki, Hiroshi; Fukuyama, Hidenao
2004-11-01
Using functional magnetic resonance imaging (fMRI), we investigated the implicit language processing of kanji and kana words (i.e., hiragana transcriptions of normally written kanji words) and non-words. Twelve right-handed native Japanese speakers performed size judgments for character stimuli (implicit language task for linguistic stimuli), size judgments for scrambled-character stimuli (implicit language task for non-linguistic stimuli), and lexical decisions (explicit language task). The size judgments for scrambled-kanji stimuli and scrambled-kana stimuli produced activations on the bilateral lingual gyri (BA 18), the bilateral occipitotemporal regions (BA 19/37), and the bilateral superior and inferior parietal cortices (BA 7/40). Interestingly, besides these areas, activations of the left inferior frontal region (Broca's area, BA 44/45) and the left posterior inferior temporal cortex (PITC, BA 37), which have been considered as language areas, were additionally activated during size judgment for kanji character stimuli. Size judgment for kana character stimuli also activated Broca's area, the left PITC, and the left supramarginal gyrus (SMG, BA 40). The activations of these language areas were replicated in the lexical decisions for both kanji and kana. These findings suggest that language processing of both kanji and kana scripts is obligatory to literate Japanese subjects. Moreover, comparison between the scrambled kanji and the scrambled kana showed no activation in the language areas, while greater activation in the bilateral fusiform gyri (left-side predominant) was found in kanji vs. kana comparison during the size judgment and the lexical decision. Kana minus kanji activated the left SMG during the size judgment, and Broca's area and the left middle/superior temporal junction during the lexical decision. These results probably reflect that in implicit or explicit reading of kanji words and kana words (i.e., hiragana transcriptions of kanji words), although using largely overlapping cortical regions, there are still some differences. Kanji reading may involve more heavily visual orthographic retrieval and lexical-semantic system through the ventral route, while kana transcriptions of kanji words require phonological recoding to gain semantic access through the dorsal route.
Sabzi, Feridoun
2016-01-01
Atrial septal defect (ASD) is a common congenital anomaly that has low surgical mortality and morbidity. We report a very rare case of a low-lying ASD, combined with the drainage of the inferior vena cava and the left superior vena cava into the left atrium. This combination was associated with an unroofed coronary sinus. We also describe an iatrogenic surgical diversion of the inferior vena cava into the left atrium with its complication. The patient presented with moderate cyanosis and was referred for elective ASD repair. He underwent surgical repair of the ASD after transthoracic echocardiography. Early postoperative right-to-left shunting with cyanosis and hypoxia was associated with abdominal complications. Surgical re-exploration revealed the diversion of the inferior vena cava into the left atrium, which was repaired with a pericardial patch. Peptic ulcer perforation was repaired after abdominal laparotomy. The patient had an uneventful recovery and was discharged home on the 17th postoperative day. One-year follow-up revealed no recurrence of cyanosis or residual ASD on echocardiography. PMID:27928261
Prefrontal activity and impaired memory encoding strategies in schizophrenia.
Guimond, Synthia; Hawco, Colin; Lepage, Martin
2017-08-01
Schizophrenia patients have significant memory difficulties that have far-reaching implications in their daily life. These impairments are partly attributed to an inability to self-initiate effective memory encoding strategies, but its core neurobiological correlates remain unknown. The current study addresses this critical gap in our knowledge of episodic memory impairments in schizophrenia. Schizophrenia patients (n = 35) and healthy controls (n = 23) underwent a Semantic Encoding Memory Task (SEMT) during an fMRI scan. Brain activity was examined for conditions where participants were a) prompted to use semantic encoding strategies, or b) not prompted but required to self-initiate such strategies. When prompted to use semantic encoding strategies, schizophrenia patients exhibited similar recognition performance and brain activity as healthy controls. However, when required to self-initiate these strategies, patients had significant reduced recognition performance and brain activity in the left dorsolateral prefrontal cortex, as well as in the left temporal gyrus, left superior parietal lobule, and cerebellum. When patients were divided based on performance on the SEMT, the subgroup with more severe deficits in self-initiation also showed greater reduction in left dorsolateral prefrontal activity. These results suggest that impaired self-initiation of elaborative encoding strategies is a driving feature of memory deficits in schizophrenia. We also identified the neural correlates of impaired self-initiation of semantic encoding strategies, in which a failure to activate the left dorsolateral prefrontal cortex plays a key role. These findings provide important new targets in the development of novel treatments aiming to improve memory and ultimately patients' outcome. Copyright © 2017. Published by Elsevier Ltd.
Wooden Foreign Body in the Skull Base: How Did We Miss It?
Jusué-Torres, Ignacio; Burks, S Shelby; Levine, Corinna G; Bhatia, Rita G; Casiano, Roy; Bullock, Ross
2016-08-01
Timely detection of intraorbital and skull base wooden foreign bodies is crucial. Wooden foreign bodies are difficult to detect on imaging. The radiologist may fail to identify wooden foreign bodies on two thirds of initial scans and can miss them in almost one third of total cases. A 66-year-old woman sustained a penetrating injury through the left upper eyelid with a small tree branch. The branch was immediately removed in the field, and she was provided with prompt medical care at a local hospital. Initial computed tomography (CT) scan diagnosis was "posttraumatic sinusitis," and this was treated empirically with vancomycin and piperacillin/tazobactam. On the eighth day after injury, she developed progressive swelling and pain of her eyelid with left trigeminal/supraorbital numbness and complete left ophthalmoplegia. A new CT scan showed an open "track" from the region of the left upper orbit/superior rectus to the contralateral sphenoid sinus, which raised suspicion for a retained foreign body. Further imaging confirmed the suspicion. Endoscopic sinus surgery was performed with extraction of the wooden object and evacuation of the left orbital infection. This case indicates that intraorbital and skull base wooden foreign bodies are elusive, demanding a high index of suspicion from both clinicians and radiologists to identify retained material in the setting of ocular or sinus trauma. For better identification of wooden foreign bodies, bone windows on CT should have a width of -1000 Hounsfield units with a soft tissue window level of -500 Hounsfield units. Published by Elsevier Inc.
Li, Huaizhou; Zhou, Haiyan; Yang, Yang; Wang, Haiyuan; Zhong, Ning
2017-10-01
Previous studies have reported the enhanced randomization of functional brain networks in patients with major depressive disorder (MDD). However, little is known about the changes of key nodal attributes for randomization, the resilience of network, and the clinical significance of the alterations. In this study, we collected the resting-state functional MRI data from 19 MDD patients and 19 healthy control (HC) individuals. Graph theory analysis showed that decreases were found in the small-worldness, clustering coefficient, local efficiency, and characteristic path length (i.e., increase of global efficiency) in the network of MDD group compared with HC group, which was consistent with previous findings and suggested the development toward randomization in the brain network in MDD. In addition, the greater resilience under the targeted attacks was also found in the network of patients with MDD. Furthermore, the abnormal nodal properties were found, including clustering coefficients and nodal efficiencies in the left orbital superior frontal gyrus, bilateral insula, left amygdala, right supramarginal gyrus, left putamen, left posterior cingulate cortex, left angular gyrus. Meanwhile, the correlation analysis showed that most of these abnormal areas were associated with the clinical status. The observed increased randomization and resilience in MDD might be related to the abnormal hub nodes in the brain networks, which were attacked by the disease pathology. Our findings provide new evidence to indicate that the weakening of specialized regions and the enhancement of whole brain integrity could be the potential endophenotype of the depressive pathology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Sadato, Norihiro; Watanabe, Yasuyoshi
2012-07-01
The kana pick-out test has been widely used in Japan to evaluate the ability to divide attention in both adult and pediatric patients. However, the neural substrates underlying the ability to divide attention using the kana pick-out test, which requires participants to pick out individual letters (vowels) in a story while also reading for comprehension, thus requiring simultaneous allocation of attention to both activities, are still unclear. Moreover, outside of the clinical area, neuroimaging studies focused on the mechanisms of divided attention during complex story comprehension are rare. Thus, the purpose of the present study, to clarify the neural substrates of kana pick-out test, improves our current understanding of the basic neural mechanisms of dual task performance in verbal memory function. We compared patterns of activation in the brain obtained during performance of the individual tasks of vowel identification and story comprehension, to levels of activation when participants performed the two tasks simultaneously during the kana pick-out test. We found that activations of the left dorsal inferior frontal gyrus and superior parietal lobule increase in functional connectivity to a greater extent during the dual task condition compared to the two single task conditions. In contrast, activations of the left fusiform gyrus and middle temporal gyrus, which are significantly involved in picking out letters and complex sentences during story comprehension, respectively, were reduced in the dual task condition compared to during the two single task conditions. These results suggest that increased activations of the dorsal inferior frontal gyrus and superior parietal lobule during dual task performance may be associated with the capacity for attentional resources, and reduced activations of the left fusiform gyrus and middle temporal gyrus may reflect the difficulty of concurrent processing of the two tasks. In addition, the increase in synchronization between the left dorsal inferior frontal gyrus and superior parietal lobule in the dual task condition may induce effective communication between these brain regions and contribute to more attentional processing than in the single task condition, due to greater and more complex demands on voluntary attentional resources. Copyright © 2012 Elsevier Ltd. All rights reserved.
Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Sandim, Gabriel Barbosa; Assunção Leme, Idaiane Batista; Carrete, Henrique; Centeno, Ricardo Silva; Sato, João Ricardo; Yacubian, Elza Márcia Targas
2017-05-01
Corticoamygdalohippocampectomy (CAH) improves seizure control, quality of life, and decreases mortality for refractory mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). One-third of patients continue having seizures, and it is pivotal to determine structural abnormalities that might influence the postoperative outcome. Studies indicate that nonhippocampal regions may play a role in the epileptogenic network in MTLE-HS and could generate seizures postoperatively. The aim of this study is to analyze areas of atrophy, not always detected on routine MRI, comparing patients who became seizure free (SF) with those non seizure free (NSF) after CAH, in an attempt to establish possible predictors of surgical outcome. 105 patients with refractory MTLE-HS submitted to CAH (59 left MTLE; 46 males) and 47 controls were enrolled. FreeSurfer was performed for cortical thickness and volume estimation comparing patients to controls and SF versus NSF patients. The final sample after post processing procedures resulted in 99 patients. Cortical thickness analyses showed reductions in left insula in NSF patients compared to those SF. Significant volume reductions in SF patients were present in bilateral thalami, hippocampi and pars opercularis, left parahippocampal gyrus and right temporal pole. In NSF patients reductions were present bilaterally in thalami, hippocampi, entorhinal cortices, superior frontal and supramarginal gyri; on the left: superior and middle temporal gyri, temporal pole, parahippocampal gyrus, pars opercularis and middle frontal gyrus; and on the right: precentral, superior, middle and inferior temporal gyri. Comparison between SF and NSF patients showed ipsilateral gray matter reductions in the right entorhinal cortex (p=0.003) and contralateral parahippocampal gyrus (p=0.05) in right MTLE-HS. Patients NSF had a longer duration of epilepsy than those SF (p=0.028). NSF patients exhibited more extensive areas of atrophy than SF ones. As entorhinal cortex and parahippocampal gyrus are reduced in NSF patients compared to those SF these structures might be implicated in the network responsible for the maintenance of postoperative seizures. Duration of epilepsy is a predictor of seizure outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Autopsy Features of Fatal Donkey Attack.
Fogel, Lajos; Varga, Gyula; Hubay, Marta; Felszeghy, Endre; Varga, Peter; Byard, Roger W
2018-05-02
Lethal donkey attacks have very rarely been described. The case of a 65-year-old man who was found deceased on a country road with 2 domestic donkeys nearby is, therefore, reported. Examination of the body revealed contusions and lacerations of the face and scalp, a comminuted fracture of the left maxilla, comminuted fracturing of the right radius and ulna and of the left anterior superior iliac spine, a flail chest, and pulmonary contusions. In addition, there were bite marks on the left thigh, right buttock, right axilla/upper arm, and left cheek which corresponded to the dental arcades of the donkeys. Death had resulted from blunt chest trauma due to an attack by 1 or 2 donkeys. Deaths and serious injuries are much more commonly caused by horses; however, this case shows that even domesticated donkeys may also rarely be capable of inflicting significant trauma and so should be approached with circumspection.
Platas-Moreno, I; Antón-Benito, A; Pérez-Cid-Rebolleda, M T; Rosado Sierra, M B
2016-01-01
A 46 year old patient presented with visual loss in the left eye during the previous months. Ophthalmoscopic examination and magnetic resonance angiography found the presence of papilledema due to thrombosis in superior sagittal sinus. The examination findings revealed a mantle cell lymphoma. Cerebral venous thrombosis is an unusual cause of papilledema. This type of thrombosis may be secondary to hyper-viscosity within a context of a paraneoplastic syndrome. Copyright © 2015 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
Lang, J; Brückner, B
1981-01-01
At 102 skulls from adults and 67 skulls from children we have investigated 1) The postnatal changes of the thickness from basal parts of the Fossae craniales ant., med. et post. 2) The postnatal thickening and lateral shifting of the Processus clinoideus anterior. 3) The postnatal development at the superior side of the Canalis opticus. 4) Between the Os sphenoidale Clivus angle from newborn age to 17 years of life at 67 skulls. 5) The postnatal changes of the lateral angle at the Pars petrosa and its right-left-differences. 6) The postnatal thickening of the Calvaria (Squama frontalis - Tuber frontale, Os parietale - Tuber parietale). 7) The development, size and position of the Foramina parietalia. 8) The postnatal development of the Protuberantiae gyrorum and Sulci meningei.
Wang, Li; Nie, Kun; Zhao, Xin; Feng, Shujun; Xie, Sifen; He, Xuetao; Ma, Guixian; Wang, Limin; Huang, Zhiheng; Huang, Biao; Zhang, Yuhu; Wang, Lijuan
2018-04-23
Semantic abstract reasoning(SAR) is an important executive domain that is involved in semantic information processing and enables one to make sense of the attributes of objects, facts and concepts in the world. We sought to investigate whether Parkinson's disease subjects(PDs) have difficulty in SAR and to examine the associated pattern of gray matter morphological changes. Eighty-six PDs and 30 healthy controls were enrolled. PDs were grouped into PD subjects with Similarities preservation(PDSP, n = 62) and PD subjects with Similarities impairment(PDSI, n = 24)according to their performance on the Similarities subtest of the Wechsler Adult Intelligence Scale. Brain structural images were captured with a 3T MRI scanner. Surface-based investigation of cortical thickness and automated segmentation of deep gray matter were conducted using FreeSurfer software. PDs performed notably worse on the Similarities test than controls(F = 13.56, P < 0.001).In the PDSI group, cortical thinning associated with Similarities scores was found in the left superior frontal, left superior parietal and left rostral middle frontal regions. Notable atrophy of the bilateral hippocampi was observed, but only the right hippocampus volume was positively correlated with the Similarities scores of the PDSI group. PDs have difficulty in SAR, and this limitation may be associated with impaired conceptual abstraction and generalization along with semantic memory deficits. Cortical thinning in the left frontal and parietal regions and atrophy in the right hippocampus may explain these impairments among Chinese PDs. Copyright © 2017 Elsevier B.V. All rights reserved.
Superficial Temporal Artery-Superior Cerebellar Artery Bypass with Anterior Petrosectomy.
Hokari, Masaaki; Asaoka, Katsuyuki; Shimbo, Daisuke; Uchida, Kazuki; Itamoto, Koji
2018-06-01
Superficial temporal artery (STA) to superior cerebellar artery (SCA) bypass is associated with a relatively high risk of surgical complications, such as hematoma and/or edema caused by temporal lobe retraction. Therefore, the right side is typically used to avoid retraction of the left temporal lobe. In this report, we present a case of left STA-SCA bypass with anterior petrosectomy to avoid retraction of dominant-side temporal lobe and describe the surgical technique in detail. A 69-year-old man presented with gradual worsening of dysarthria and gait disturbance. Magnetic resonance imaging showed no signs of acute infarction, but digital subtraction angiography showed severe stenosis of basilar artery and faint flow in the distal basilar artery. On 3-dimensional computed tomography angiography, posterior communicating arteries were not visualized; we could identify the left SCA, but not the right SCA. Despite dual antiplatelet therapy, a small fresh brainstem infarct was detected 10 days after admission. To avert fatal brainstem infarction and further enlargement of the infarct, we performed left STA-SCA bypass with anterior petrosectomy to avoid retraction of the dominant-side temporal lobe. Postoperative imaging revealed no new lesions, such as infarction or temporal lobe contusional hematoma, and confirmed the patency of the bypass. Postoperative single-photon emission computed tomography demonstrated improved cerebral blood flow in the posterior circulation. The patient was transferred to another hospital for rehabilitation. This method helps minimize the risk of injury to the temporal lobe, especially that of the dominant side. Copyright © 2018. Published by Elsevier Inc.
Chyl, Katarzyna; Kossowski, Bartosz; Dębska, Agnieszka; Łuniewska, Magdalena; Banaszkiewicz, Anna; Żelechowska, Agata; Frost, Stephen J; Mencl, William Einar; Wypych, Marek; Marchewka, Artur; Pugh, Kenneth R; Jednoróg, Katarzyna
2018-01-01
Literacy acquisition is a demanding process that induces significant changes in the brain, especially in the spoken and written language networks. Nevertheless, large-scale paediatric fMRI studies are still limited. We analyzed fMRI data to show how individual differences in reading performance correlate with brain activation for speech and print in 111 children attending kindergarten or first grade and examined group differences between a matched subset of emergent-readers and prereaders. Across the entire cohort, individual differences analysis revealed that reading skill was positively correlated with the magnitude of activation difference between words and symbol strings in left superior temporal, inferior frontal and fusiform gyri. Group comparisons of the matched subset of pre- and emergent-readers showed higher activity for emergent-readers in left inferior frontal, precentral, and postcentral gyri. Individual differences in activation for natural versus vocoded speech were also positively correlated with reading skill, primarily in the left temporal cortex. However, in contrast to studies on adult illiterates, group comparisons revealed higher activity in prereaders compared to readers in the frontal lobes. Print-speech coactivation was observed only in readers and individual differences analyses revealed a positive correlation between convergence and reading skill in the left superior temporal sulcus. These results emphasise that a child's brain undergoes several modifications to both visual and oral language systems in the process of learning to read. They also suggest that print-speech convergence is a hallmark of acquiring literacy. © 2017 Association for Child and Adolescent Mental Health.
Hu, Hao; Sun, Yawen; Su, Shanshan; Wang, Yao; Qiu, Yongming; Yang, Xi; Zhou, Yan; Xiao, Zeping; Wang, Zhen
2018-01-01
Victims of motor vehicle accidents often develop post-traumatic stress disorder, which causes significant social function loss. For the difficulty in treating post-traumatic stress disorder, identification of subjects at high risk for post-traumatic stress disorder is essential for providing possible intervention. This paper aims to examine the cortical structural traits related to susceptibility to post-traumatic stress disorder. To address this issue, we performed structural magnetic resonance imaging study in motor vehicle accident victims within 48 hours from the accidents. A total of 70 victims, available for both clinical and magnetic resonance imaging data, enrolled in our study. Upon completion of 6-month follow-up, 29 of them developed post-traumatic stress disorder, while 41 of them didn't. At baseline, voxelwise comparisons of cortical thickness, cortical area and cortical volume were conducted between post-traumatic stress disorder group and trauma control group. As expected, several reduced cortical volume within frontal-temporal loop were observed in post-traumatic stress disorder. For cortical thickness, no between-group differences were observed. There were three clusters in left hemisphere and one cluster in right hemisphere showing decreased cortical area in post-traumatic stress disorder patients, compared with trauma controls. Peak voxels of the three clusters in left hemisphere were separately located in superior parietal cortex, insula and rostral anterior cingulate cortex. The finding of reduced surface area of left insula and left rostral anterior cingulate cortex suggests that shrinked surface area in motor vehicle accident victims could act as potential biomarker of subjects at high risk for post-traumatic stress disorder.
Schadl, Kornél; Vassar, Rachel; Cahill-Rowley, Katelyn; Yeom, Kristin W; Stevenson, David K; Rose, Jessica
2018-01-01
Advanced neuroimaging and computational methods offer opportunities for more accurate prognosis. We hypothesized that near-term regional white matter (WM) microstructure, assessed on diffusion tensor imaging (DTI), using exhaustive feature selection with cross-validation would predict neurodevelopment in preterm children. Near-term MRI and DTI obtained at 36.6 ± 1.8 weeks postmenstrual age in 66 very-low-birth-weight preterm neonates were assessed. 60/66 had follow-up neurodevelopmental evaluation with Bayley Scales of Infant-Toddler Development, 3rd-edition (BSID-III) at 18-22 months. Linear models with exhaustive feature selection and leave-one-out cross-validation computed based on DTI identified sets of three brain regions most predictive of cognitive and motor function; logistic regression models were computed to classify high-risk infants scoring one standard deviation below mean. Cognitive impairment was predicted (100% sensitivity, 100% specificity; AUC = 1) by near-term right middle-temporal gyrus MD, right cingulate-cingulum MD, left caudate MD. Motor impairment was predicted (90% sensitivity, 86% specificity; AUC = 0.912) by left precuneus FA, right superior occipital gyrus MD, right hippocampus FA. Cognitive score variance was explained (29.6%, cross-validated Rˆ2 = 0.296) by left posterior-limb-of-internal-capsule MD, Genu RD, right fusiform gyrus AD. Motor score variance was explained (31.7%, cross-validated Rˆ2 = 0.317) by left posterior-limb-of-internal-capsule MD, right parahippocampal gyrus AD, right middle-temporal gyrus AD. Search in large DTI feature space more accurately identified neonatal neuroimaging correlates of neurodevelopment.
Anomaly Detection in the Right Hemisphere: The Influence of Visuospatial Factors
ERIC Educational Resources Information Center
Smith, Stephen D.; Dixon, Michael J.; Tays, William J.; Bulman-Fleming, M. Barbara
2004-01-01
Previous research with both brain-damaged and neurologically intact populations has demonstrated that the right cerebral hemisphere (RH) is superior to the left cerebral hemisphere (LH) at detecting anomalies (or incongruities) in objects (Ramachandran, 1995; Smith, Tays, Dixon, & Bulman-Fleming, 2002). The current research assesses whether the RH…
Reversing Spoken Items--Mind Twisting Not Tongue Twisting
ERIC Educational Resources Information Center
Rudner, Mary; Ronnberg, Jerker; Hugdahl, Kenneth
2005-01-01
Using 12 participants we conducted an fMRI study involving two tasks, word reversal and rhyme judgment, based on pairs of natural speech stimuli, to study the neural correlates of manipulating auditory imagery under taxing conditions. Both tasks engaged the left anterior superior temporal gyrus, reflecting previously established perceptual…
Tracking speech comprehension in space and time.
Pulvermüller, Friedemann; Shtyrov, Yury; Ilmoniemi, Risto J; Marslen-Wilson, William D
2006-07-01
A fundamental challenge for the cognitive neuroscience of language is to capture the spatio-temporal patterns of brain activity that underlie critical functional components of the language comprehension process. We combine here psycholinguistic analysis, whole-head magnetoencephalography (MEG), the Mismatch Negativity (MMN) paradigm, and state-of-the-art source localization techniques (Equivalent Current Dipole and L1 Minimum-Norm Current Estimates) to locate the process of spoken word recognition at a specific moment in space and time. The magnetic MMN to words presented as rare "deviant stimuli" in an oddball paradigm among repetitive "standard" speech stimuli, peaked 100-150 ms after the information in the acoustic input, was sufficient for word recognition. The latency with which words were recognized corresponded to that of an MMN source in the left superior temporal cortex. There was a significant correlation (r = 0.7) of latency measures of word recognition in individual study participants with the latency of the activity peak of the superior temporal source. These results demonstrate a correspondence between the behaviorally determined recognition point for spoken words and the cortical activation in left posterior superior temporal areas. Both the MMN calculated in the classic manner, obtained by subtracting standard from deviant stimulus response recorded in the same experiment, and the identity MMN (iMMN), defined as the difference between the neuromagnetic responses to the same stimulus presented as standard and deviant stimulus, showed the same significant correlation with word recognition processes.
McGettigan, Carolyn; Eisner, Frank; Agnew, Zarinah K; Manly, Tom; Wisbey, Duncan; Scott, Sophie K
2014-01-01
Historically, the study of human identity perception has focused on faces, but the voice is also central to our expressions and experiences of identity (P. Belin, Fecteau, & Bedard, 2004). Our voices are highly flexible and dynamic; talkers speak differently depending on their health, emotional state, and the social setting, as well as extrinsic factors such as background noise. However, to date, there have been no studies of the neural correlates of identity modulation in speech production. In the current fMRI experiment, we measured the neural activity supporting controlled voice change in adult participants performing spoken impressions. We reveal that deliberate modulation of vocal identity recruits the left anterior insula and inferior frontal gyrus, supporting the planning of novel articulations. Bilateral sites in posterior superior temporal/inferior parietal cortex and a region in right mid/anterior superior temporal sulcus showed greater responses during the emulation of specific vocal identities than for impressions of generic accents. Using functional connectivity analyses, we describe roles for these three sites in their interactions with the brain regions supporting speech planning and production. Our findings mark a significant step toward understanding the neural control of vocal identity, with wider implications for the cognitive control of voluntary motor acts. PMID:23691984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Alexander; Triller, Juergen; Schmidt, Felix
Thrombosis of the inferior vena cava is a life-threatening complication in cancer patients leading to pulmonary embolism. These patients can also be affected by superior vena cava syndrome causing dyspnea followed by trunk or extremity swelling. We report the case of a 61-year-old female suffering from an extended colorectal tumor who became affected by both of the mentioned complications. Due to thrombus formation within the right vena jugularis interna, thrombosis of the inferior vena cava, and superior vena cava syndrome, a combined interventional procedure via a left jugular access with stenting of the superior vena cava and filter placement intomore » the inferior vena cava was performed As a consequence, relief of the patient's symptoms, prevention of pulmonary embolism, and paving of the way for further venous chemotherapy were achieved.« less
Postnatal development of retinal projections in the brushtailed possum, Trichosurus vulpecula.
Sanderson, K J; Dixon, P G; Pearson, L J
1982-10-01
The postnatal development of retinal projections was studied in the brushtailed possum, Trichosurus vulpecula. [3H]proline was injected into one eye of 13 young possums aged 24-84 days in order to trace retinal pathways. The dorsal lateral geniculate nucleus (LGNd) can be identified in Nissl material at 19 days but not at 9-10 days. By 40 days some cytoarchitectural lamination of the LGNd is apparent and by 71 days the adult pattern of cell layers is present. At 24 days retinal fibers occupy by lateral part of the LGNd on both sides of the brain. By 38-40 days the retinal fibers fill be contralateral LGNd and the binocular part of the ipsilateral LGNd and there is a beginning of the segregation of retinal fibers into left and right eye territories. By 49-50 days a partial segregation is achieved, and complete segregation by 71 days. At 9-10 days the superior colliculus is not differentiated into layers and there is a thick zone of cell proliferation around the ventricle. By 23 days the superior colliculus has well-defined cell layers and there is still some indication of cell proliferation around the ventricle. By 40 days, the superior colliculus shows little evidence of cell proliferation. At 24 days retinal fibers fill the superficial layers of the contralateral optic tectum and are lightly distributed through the superficial layers of the rostral half of the ipsilateral tectum. By 38 days the ipsilateral retinal input is restricted to the deeper layers of the tectum. These results show that the adult pattern of retinal projections to the LGNd and optic tectum develops a number of weeks before eye opening occurs (at 90-120 days).
[Surgical treatment of partial anomalous pulmonary venous drainage].
Cabrera, A; Idígoras, G; Sarrionandía, M J; Martínez, P; Rumoroso, J R; Alcíbar, J
1996-02-01
We studied all patients operated for partial anomalous pulmonary venous drainage and half-time follow-up. Twenty-eight patients with a mean age of 5 +/- 5 years (5 patients were less than 1 year old). There were sixteen male and twelve female patients. Thirteen patients were symptomatic (47%). The drainage was to the superior vena cava in thirteen cases, to the inferior vena cava in eight cases, to the right atrium in five cases, mixed (to the superior vena cava and to the inferior vena cava) in one case and to the innominate vein in one patient. The diagnosis was made through echocardiography and catheterization in 25 patients, whereas nuclear magnetic resonance was performed in the last five patients. All cases were corrected through medium thoracotomy, except for the single case in which the drainage was to the innominate vein). In 27 patients, the pulmonary veins were guided to the left atrium through an enlarged present atrial septal defect or through a created atrial septal defect. In one case a direct connection was performed from the veins to the left atrium. After the surgical correction, all patients underwent a color-coded Doppler echocardiography study and a nuclear magnetic resonance study was performed in five patients. Twenty-seven patients survived after surgical correction. The patient with a mixed drainage developed an obstruction of the superior vena cava, the pressure gradient was 9 mmHg. He required a second surgical procedure followed with angioplasty on two occasions during a six month period. Two patients showed an ectopic atrial rhythm at some late time. The patient who died was one month old and had an associated pulmonary parenchymal sequestration. Partial anomalous venous connection is a congenital heart disease which has an easy surgical correction. Complications may arise after the surgical correction, among them obstruction of the superior vena cava and arrythmias are most frequently found. Obstruction is present when 50% of the caval area is occupied by the patch. The arrythmias occur following all surgical techniques. In order to decrease the arrythmias it is necessary to perform a good hemosthasis at the site of the patch, to leave the sinus node free of compression and to perform the atrial incision at the posterior wall. The diagnosis and the follow-up can be performed with non-invasive procedures.
ANATOMIC VARIATIONS OF HEPATIC ARTERY: A STUDY IN 479 LIVER TRANSPLANTATIONS.
Fonseca-Neto, Olival Cirilo Lucena da; Lima, Heloise Caroline de Souza; Rabelo, Priscylla; Melo, Paulo Sérgio Vieira de; Amorim, Américo Gusmão; Lacerda, Cláudio Moura
2017-01-01
The incidence of anatomic variations of hepatic artery ranges from 20-50% in different series. Variations are especially important in the context of liver orthotopic transplantation, since, besides being an ideal opportunity for surgical anatomical study, their precise identification is crucial to the success of the procedure. To identify the anatomical variations in the hepatic arterial system in hepatic transplantation. 479 medical records of transplanted adult patients in the 13-year period were retrospectively analyzed, and collected data on hepatic arterial anatomy of the deceased donor. It was identified normal hepatic arterial anatomy in 416 donors (86.84%). The other 63 patients (13.15%) showed some variation. According to the Michels classification, the most frequently observed abnormalities were: right hepatic artery branch of superior mesenteric artery (Type III, n=27, 5.63%); left hepatic artery branch of the left gastric artery (Type II, n=13, 2.71%); right hepatic artery arising from the superior mesenteric artery associated with the left hepatic artery arising from the left gastric artery (Type IV, n=4, 0.83%). Similarly, in relation to Hiatt classification, the most prevalent changes were: right hepatic accessory artery or substitute of the superior mesenteric artery (Type III, n=28, 6.05%)), followed by liver ancillary left artery or replacement of gastric artery left (Type II, n=16, 3.34. Fourteen donors (2.92%) showed no anatomical abnormalities defined in classifications, the highest frequency being hepatomesenteric trunk identified in five (01.04%). Detailed knowledge of the variations of hepatic arterial anatomy is of utmost importance to surgeons who perform approaches in this area, particularly in liver transplantation, since their identification and proper management are critical to the success of the procedure. A incidência das variações anatômicas da artéria hepática varia de 20-50% em diferentes casuísticas. Elas são especialmente importantes no contexto do transplante ortotópico hepático, visto que, além de representar oportunidade ideal para seu estudo anatômico cirúrgico, a sua precisa identificação é determinante para o sucesso do procedimento. Identificar as variações anatômicas no sistema arterial hepático em transplantes hepáticos. Foram analisados retrospectivamente, no período de 13 anos, 479 prontuários de pacientes adultos transplantados, sendo coletados dados referentes à anatomia arterial hepática do doador falecido. Identificou-se anatomia arterial hepática normal em 416 doadores (86,84%). Os outros 63 indivíduos (13,15%) apresentaram alguma variação. De acordo com a classificação de Michels, as anomalias mais frequentes foram: artéria hepática direita ramo da artéria mesentérica superior (Tipo III, n=27, 5,63%); artéria hepática esquerda ramo da artéria gástrica esquerda (Tipo II, n=13, 2,71%); artéria hepática direita ramo da artéria mesentérica superior associada à artéria hepática esquerda ramo da artéria gástrica esquerda (Tipo IV, n=4, 0,83%). Do mesmo modo, em relação à Classificação de Hiatt, as variações mais prevalentes foram: artéria hepática direita acessória ou substituta da artéria mesentérica superior (Tipo III, n=28, 6,05%), seguida da artéria hepática esquerda acessória ou substituta da artéria gástrica esquerda (Tipo II, n=16, 3,34%). Quatorze pessoas (2,92%) apresentaram alterações anatômicas sem classificação definida, sendo a de maior frequência o tronco hepatomesentérico, identificado em cinco (1,04%). O conhecimento detalhado das variações da anatomia arterial hepática é de grande importância aos cirurgiões que realizam abordagens nessa região, em especial no transplante hepático, visto que sua identificação e correto manejo são fundamentais para o êxito do procedimento.
Paholpak, Pongsatorn; Carr, Andrew R; Barsuglia, Joseph P; Barrows, Robin J; Jimenez, Elvira; Lee, Grace J; Mendez, Mario F
2016-09-19
While much disinhibition in dementia results from generalized impulsivity, in behavioral variant frontotemporal dementia (bvFTD) disinhibition may also result from impaired social cognition. To deconstruct disinhibition and its neural correlates in bvFTD vs. early-onset Alzheimer's disease (eAD). Caregivers of 16 bvFTD and 21 matched-eAD patients completed the Frontal Systems Behavior Scale disinhibition items. The disinhibition items were further categorized into (1) "person-based" subscale which predominantly associated with violating social propriety and personal boundary and (2) "generalized-impulsivity" subscale which included nonspecific impulsive acts. Subscale scores were correlated with grey matter volumes from tensor-based morphometry on magnetic resonance images. In comparison to the eAD patients, the bvFTD patients developed greater person-based disinhibition (P < 0.001) but comparable generalized impulsivity. Severity of person-based disinhibition significantly correlated with the left anterior superior temporal sulcus (STS), and generalized-impulsivity correlated with the right orbitofrontal cortex (OFC) and the left anterior temporal lobe (aTL). Person-based disinhibition was predominant in bvFTD and correlated with the left STS. In both dementia, violations of social propriety and personal boundaries involved fronto-parieto-temporal network of Theory of Mind, whereas nonspecific disinhibition involved the OFC and aTL. © The Author(s) 2016.
Episodic Future Thinking in Semantic Dementia: A Cognitive and fMRI Study
Viard, Armelle; Piolino, Pascale; Belliard, Serge; de La Sayette, Vincent; Desgranges, Béatrice; Eustache, Francis
2014-01-01
Semantic dementia (SD) is characterized by gradual loss of semantic memory. While episodic autobiographical memory seems relatively preserved, behavioral studies suggest that episodic future thinking is impaired. We used fMRI to measure brain activity in four SD patients (JPL, EP, LL, EG) while they envisioned future events and remembered personal past events. Twelve healthy elders served as controls. Episodic quality, emotion, mental imagery and level of consciousness (via remember/know judgements) were checked at debriefing. We analyzed the future compared to the past for each patient. All patients presented lateral temporal atrophy, but varied in terms of frontal and anterior hippocampal atrophy. Patient JPL presented atrophy in bilateral superior medial frontal gyri and left anterior hippocampus and was unable to engage in episodic future thinking, despite hyperactivations in frontal and occipital regions. Patient EP presented no atrophy in the anterior hippocampus, but atrophy in bilateral superior medial frontal gyrus and had difficulties to engage in episodic future thinking. Patient LL presented atrophy in left anterior hippocampus, but hyperactivated its right counterpart for future compared to past thinking, permitting her to project efficiently in the future in an episodic way. Patient EG presented no atrophy in the superior medial frontal gyri or anterior hippocampi and was able to engage in episodic future thinking. Altogether, patients' future projections differed depending on the severity and localization of their atrophy. The functional integrity of bilateral superior medial frontal gyri and anterior hippocampus appear crucial for episodic future thinking: atrophy of both structures strongly impairs future projection, while integrity of these structures or hyperactivation of residual tissue normalizes episodic future projection. PMID:25333997
An architecture for encoding sentence meaning in left mid-superior temporal cortex
Frankland, Steven M.; Greene, Joshua D.
2015-01-01
Human brains flexibly combine the meanings of words to compose structured thoughts. For example, by combining the meanings of “bite,” “dog,” and “man,” we can think about a dog biting a man, or a man biting a dog. Here, in two functional magnetic resonance imaging (fMRI) experiments using multivoxel pattern analysis (MVPA), we identify a region of left mid-superior temporal cortex (lmSTC) that flexibly encodes “who did what to whom” in visually presented sentences. We find that lmSTC represents the current values of abstract semantic variables (“Who did it?” and “To whom was it done?”) in distinct subregions. Experiment 1 first identifies a broad region of lmSTC whose activity patterns (i) facilitate decoding of structure-dependent sentence meaning (“Who did what to whom?”) and (ii) predict affect-related amygdala responses that depend on this information (e.g., “the baby kicked the grandfather” vs. “the grandfather kicked the baby”). Experiment 2 then identifies distinct, but neighboring, subregions of lmSTC whose activity patterns carry information about the identity of the current “agent” (“Who did it?”) and the current “patient” (“To whom was it done?”). These neighboring subregions lie along the upper bank of the superior temporal sulcus and the lateral bank of the superior temporal gyrus, respectively. At a high level, these regions may function like topographically defined data registers, encoding the fluctuating values of abstract semantic variables. This functional architecture, which in key respects resembles that of a classical computer, may play a critical role in enabling humans to flexibly generate complex thoughts. PMID:26305927
Pleuroparenchymal fibroelastosis: report of two cases in Brazil.
Gomes, Paula Silva; Shiang, Christina; Szarf, Gilberto; Coletta, Ester Nei Aparecida Martins; Pereira, Carlos Alberto de Castro
2017-01-01
Pleuroparenchymal fibroelastosis (PPFE) is a rare lung disease. It can be idiopathic or associated with any one of various conditions. To our knowledge, this is the first report of two cases of PPFE in Brazil. Our first patient presented with pleural and subpleural fibrosis in the upper lobes; a spiculated nodule in the left upper lobe; and a mild reticular pattern in the lower lobes. Surgical lung biopsy revealed PPFE in the upper lobes, including the nodule, and unclassified interstitial pneumonia in the left lower lobe. Our second patient had a history of exposure to domestic birds, indicating a risk of hypersensitivity pneumonitis, and presented with advanced lung disease, predominantly in the upper lobes, together with subpleural fibrosis.That patient underwent lung transplantation. In the explant specimen, PPFE and granulomas were identified, suggesting hypersensitivity pneumonitis as an associated cause. RESUMO A fibroelastose pleuroparenquimatosa (FEPP) é uma doença pulmonar rara, podendo ser idiopática ou associada a diversas condições. Pelo que sabemos, este é o primeiro relato de dois casos de FEPP no Brasil. Nosso primeiro paciente apresentava fibrose pleural e subpleural nos lobos superiores, um nódulo espiculado no lobo superior esquerdo e um padrão reticular discreto nos lobos inferiores. A biópsia pulmonar cirúrgica demonstrou FEPP nos lobos superiores, incluindo no nódulo, e pneumonia intersticial não classificada no lobo inferior esquerdo. Nosso segundo paciente tinha história de exposição a aves domésticas, indicando um risco de pneumonite de hipersensibilidade, e doença pulmonar avançada predominando em lobos superiores, com fibrose subpleural. Esse paciente foi submetido a transplante pulmonar. No espécime do explante, FEPP e granulomas foram identificados, sugerindo pneumonite de hipersensibilidade como causa associada.
Han, Dongdong; Tang, Rui; Wang, Liang; Li, Ang; Huang, Xin; Shen, Shan; Dong, Jiahong
2017-06-01
Portal vein thrombosis is a complication after liver transplantation and cavernous transformation of the portal vein (CTPV) is a result of portal vein thrombosis, with symptoms of portal hypertension revealed by an enhanced CT scan. Meso-Rex bypass is an artificial shunt connecting the left portal vein to the superior mesenteric vein and is mainly used for idiopathic cavernomas. This technique is also used for post-transplant portal vein thrombosis in pediatric patients thereby bypassing obstructed sites of the extrahepatic portal vein. Here we report about an adult patient who was treated by connecting the cystic part of the portal vein to the splenic vein instead of the superior mesenteric vein. An adult male patient with post-liver transplantation portal vein cavernous transformation suffered from hypersplenism and elevated hepatic enzymes. The last follow up revealed irregular and obvious hypersplenism, and splenomegaly had occurred, while an enhanced CT scan revealed serious esophagogastric varices and CTPV in addition to occluded right and common PV trunks. The patient was treated by connecting the cystic part of the portal vein to the splenic vein instead of the superior mesenteric vein. After the operation, a satisfactory velocity was confirmed 1 month postoperatively and the shunt still remained patent at the 6-month postoperation follow-up. A Meso-Rex bypass intervention connecting the left portal vein to the splenic vein instead of the superior mesenteric vein after liver transplantation in an adult patient with right and common portal vein occlusions has been successfully performed as an alternative approach.
Early signs that predict later haemodynamically significant patent ductus arteriosus.
Engür, Defne; Deveci, Murat; Türkmen, Münevver K
2016-03-01
Our aim was to determine the optimal cut-off values, sensitivity, specificity, and diagnostic power of 12 echocardiographic parameters on the second day of life to predict subsequent ductal patency. We evaluated preterm infants, born at ⩽32 weeks of gestation, starting on their second day of life, and they were evaluated every other day until ductal closure or until there were clinical signs of re-opening. We measured transductal diameter; pulmonary arterial diastolic flow; retrograde aortic diastolic flow; pulsatility index of the left pulmonary artery and descending aorta; left atrium and ventricle/aortic root ratio; left ventricular output; left ventricular flow velocity time integral; mitral early/late diastolic flow; and superior caval vein diameter and flow as well as performed receiver operating curve analysis. Transductal diameter (>1.5 mm); pulmonary arterial diastolic flow (>25.6 cm/second); presence of retrograde aortic diastolic flow; ductal diameter by body weight (>1.07 mm/kg); left pulmonary arterial pulsatility index (⩽0.71); and left ventricle to aortic root ratio (>2.2) displayed high sensitivity and specificity (p0.9). Parameters with moderate sensitivity and specificity were as follows: left atrial to aortic root ratio; left ventricular output; left ventricular flow velocity time integral; and mitral early/late diastolic flow ratio (p0.05) had low diagnostic value. Left pulmonary arterial pulsatility index, left ventricle/aortic root ratio, and ductal diameter by body weight are useful adjuncts offering a broader outlook for predicting ductal patency.
DTI-based response-driven modeling of mTLE laterality.
Nazem-Zadeh, Mohammad-Reza; Elisevich, Kost; Air, Ellen L; Schwalb, Jason M; Divine, George; Kaur, Manpreet; Wasade, Vibhangini S; Mahmoudi, Fariborz; Shokri, Saeed; Bagher-Ebadian, Hassan; Soltanian-Zadeh, Hamid
2016-01-01
To develop lateralization models for distinguishing between unilateral and bilateral mesial temporal lobe epilepsy (mTLE) and determining laterality in cases of unilateral mTLE. mTLE is the most common form of medically refractory focal epilepsy. Many mTLE patients fail to demonstrate an unambiguous unilateral ictal onset. Intracranial EEG (icEEG) monitoring can be performed to establish whether the ictal origin is unilateral or truly bilateral with independent bitemporal ictal origin. However, because of the expense and risk of intracranial electrode placement, much research has been done to determine if the need for icEEG can be obviated with noninvasive neuroimaging methods, such as diffusion tensor imaging (DTI). Fractional anisotropy (FA) was used to quantify microstructural changes reflected in the diffusivity properties of the corpus callosum, cingulum, and fornix, in a retrospective cohort of 31 patients confirmed to have unilateral (n = 24) or bilateral (n = 7) mTLE. All unilateral mTLE patients underwent resection with an Engel class I outcome. Eleven were reported to have hippocampal sclerosis on pathological analysis; nine had undergone prior icEEG. The bilateral mTLE patients had undergone icEEG demonstrating independent epileptiform activity in both right and left hemispheres. Twenty-three nonepileptic subjects were included as controls. In cases of right mTLE, FA showed significant differences from control in all callosal subregions, in both left and right superior cingulate subregions, and in forniceal crura. Comparison of right and left mTLE cases showed significant differences in FA of callosal genu, rostral body, and splenium and the right posteroinferior and superior cingulate subregions. In cases of left mTLE, FA showed significant differences from control only in the callosal isthmus. Significant differences in FA were identified when cases of right mTLE were compared with bilateral mTLE cases in the rostral and midbody callosal subregions and isthmus. Based on 11 FA measurements in the cingulate, callosal and forniceal subregions, a response-driven lateralization model successfully differentiated all cases (n = 54) into groups of unilateral right (n = 12), unilateral left (n = 12), and bilateral mTLE (n = 7), and nonepileptic control (23). The proposed response-driven DTI biomarker is intended to lessen diagnostic ambiguity of laterality in cases of mTLE and help optimize selection of surgical candidates. Application of this model shows promise in reducing the need for invasive icEEG in prospective cases.
Wilde, Elisabeth A.; Merkley, Tricia L.; Bigler, Erin D.; Max, Jeffrey E.; Schmidt, Adam T.; Ayoub, Kareem W.; McCauley, Stephen R.; Hunter, Jill V.; Hanten, Gerri; Li, Xiaoqi; Chu, Zili D.; Levin, Harvey S.
2012-01-01
The purpose of this study was to assess patterns of cortical development over time in children who had sustained traumatic brain injury (TBI) as compared to children with orthopedic injury (OI), and to examine how these patterns related to emotional control and behavioral dysregulation, two common post-TBI symptoms. Cortical thickness was measured at approximately 3 and 18 months post-injury in 20 children aged 8.2 to 17.5 years who had sustained moderate-to-severe closed head injury and 21 children aged 7.4 to 16.7 years who had sustained OI. At approximately 3 months post-injury, the TBI group evidenced decreased cortical thickness bilaterally in aspects of the superior frontal, dorsolateral frontal, orbital frontal, and anterior cingulate regions compared to the control cohort, areas of anticipated vulnerability to TBI-induced change. At 18 months post-injury, some of the regions previously evident at 3 months post-injury remained significantly decreased in the TBI group, including bilateral frontal, fusiform, and lingual regions. Additional regions of significant cortical thinning emerged at this time interval (bilateral frontal regions and fusiform gyrus and left parietal regions). However, differences in other regions appeared attenuated (no longer areas of significant cortical thinning) by 18 months post-injury including large bilateral regions of the medial aspects of the frontal lobes and anterior cingulate. Cortical thinning within the OI group was evident over time in dorsolateral frontal and temporal regions bilaterally and aspects of the left medial frontal and precuneus, and right inferior parietal regions. Longitudinal analyses within the TBI group revealed decreases in cortical thickness over time in numerous aspects throughout the right and left cortical surface, but with notable “sparing” of the right and left frontal and temporal poles, the medial aspects of both the frontal lobes, the left fusiform gyrus, and the cingulate bilaterally. An analysis of longitudinal changes in cortical thickness over time (18 months – 3 months) in the TBI versus OI group demonstrated regions of relative cortical thinning in the TBI group in bilateral superior parietal and right paracentral regions, but relative cortical thickness increases in aspects of the medial orbital frontal lobes and bilateral cingulate and in the right lateral orbital frontal lobe. Finally, findings from analyses correlating the longitudinal cortical thickness changes in TBI with symptom report on the Emotional Control subscale of the Behavior Rating Inventory of Executive Function (BRIEF) demonstrated a region of significant correlation in the right medial frontal and right anterior cingulate gyrus. A region of significant correlation between the longitudinal cortical thickness changes in the TBI group and symptom report on the Behavioral Regulation Index was also seen in the medial aspect of the left frontal lobe. Longitudinal analyses of cortical thickness highlight an important deviation from the expected pattern of developmental change in children and adolescents with TBI, particularly in the medial frontal lobes, where typical patterns of thinning fail to occur over time. Regions which fail to undergo expected cortical thinning in the medial aspects of the frontal lobes correlate with difficulties in emotional control and behavioral regulation, common problems for youth with TBI. Examination of post-TBI brain development in children may be critical to identification of children that may be at risk for persistent problems with executive functioning deficits and the development of interventions to address these issues. PMID:22266409
Neural systems for guilt from actions affecting self versus others
Morey, Rajendra A.; McCarthy, Gregory; Selgrade, Elizabeth S.; Seth, Srishti; Nasser, Jessica D.; LaBar, Kevin S.
2012-01-01
Guilt is a core emotion governing social behavior by promoting compliance with social norms or self-imposed standards. The goal of this study was to contrast guilty responses to actions that affect self versus others, since actions with social consequences are hypothesized to yield greater guilty feelings due to adopting the perspective and subjective emotional experience of others. Sixteen participants were presented with brief hypothetical scenarios in which the participant’s actions resulted in harmful consequences to self (guilt-self) or to others (guilt-other) during functional MRI. Participants felt more intense guilt for guilt-other than guilt-self and guilt-neutral scenarios. Guilt scenarios revealed distinct regions of activity correlated with intensity of guilt, social consequences of actions, and the interaction of guilt by social consequence. Guilt intensity was associated with activation of the dorsomedial PFC, superior frontal gyrus, supramarginal gyrus, and anterior inferior frontal gyrus. Guilt accompanied by social consequences was associated with greater activation than without social consequences in the ventromedial and dorsomedial PFC, precuneus, posterior cingulate, and posterior superior temporal sulcus. Finally, the interaction analysis highlighted select regions that were more strongly correlated with guilt intensity as a function of social consequence, including the left anterior inferior frontal gyrus, left ventromedial PFC, and left anterior inferior parietal cortex. Our results suggest these regions intensify guilt where harm to others may incur a greater social cost. PMID:22230947
Lickteig, Rita; Lotze, Martin; Lucas, Christian; Domin, Martin; Kordass, Bernd
2012-03-20
There is some controversial discussion within the therapy of craniomandibular disorders (CMDs) about the mode of action of occlusal splints. Here we present a case report on one CMD-patient measuring cerebral activation changes with functional magnetic resonance imaging (fMRI) before and after therapy with a stabilization splint. Wearing the Michigan splint for 11 nights and partially days resulted in substantial pain relief and changes in occlusal movement performance. Cerebral activation during occlusion was decreased after therapy (PRE-POST) in bilateral sensorimotor regions but also additional areas such as left posterior insula, right superior temporal cortex and bilateral occipital lobe. During the first usage of the splint in the scanner (PRE) increased activation in the left dorsolateral prefrontal lobe (BA 9) was observed. After splint training occlusion with the splint compared to without a splint increasingly involved the left superior parietal lobe (BA 7, POST). Whereas BA 9 might be associated with increasing working memory load due to the manipulation with an unusual object, the BA 7 activation in the POST session might document increased sensorimotor interaction after getting used to the splint. Our findings indicate that wearing an occlusion splint triggers activation in parietal sensorimotor integration areas, also observed after long periods of sensorimotor training. These additional recourses might improve coordination and physiological handling of the masticatory system. Copyright © 2011. Published by Elsevier GmbH.
Structural and Functional Cerebral Correlates of Hypnotic Suggestibility
Huber, Alexa; Lui, Fausta; Duzzi, Davide; Pagnoni, Giuseppe; Porro, Carlo Adolfo
2014-01-01
Little is known about the neural bases of hypnotic suggestibility, a cognitive trait referring to the tendency to respond to hypnotic suggestions. In the present magnetic resonance imaging study, we performed regression analyses to assess hypnotic suggestibility-related differences in local gray matter volume, using voxel-based morphometry, and in waking resting state functional connectivity of 10 resting state networks, in 37 healthy women. Hypnotic suggestibility was positively correlated with gray matter volume in portions of the left superior and medial frontal gyri, roughly overlapping with the supplementary and pre-supplementary motor area, and negatively correlated with gray matter volume in the left superior temporal gyrus and insula. In the functional connectivity analysis, hypnotic suggestibility was positively correlated with functional connectivity between medial posterior areas, including bilateral posterior cingulate cortex and precuneus, and both the lateral visual network and the left fronto-parietal network; a positive correlation was also found with functional connectivity between the executive-control network and a right postcentral/parietal area. In contrast, hypnotic suggestibility was negatively correlated with functional connectivity between the right fronto-parietal network and the right lateral thalamus. These findings demonstrate for the first time a correlation between hypnotic suggestibility, the structural features of specific cortical regions, and the functional connectivity during the normal resting state of brain structures involved in imagery and self-monitoring activity. PMID:24671130
Kann, Sarah; Zhang, Sheng; Manza, Peter; Leung, Hoi-Chung
2016-01-01
Abstract Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The imaging literature has described lateralization of insula activations during cognitive and affective processing. Evidence appears to support a role of the right-hemispheric insula in attentional orientation to salient stimulus, interoception, and physiological arousal, and a role of the left-hemispheric insula in cognitive and affective control, as well as perspective taking. In this study, in a large data set of healthy adults, we examined lateralization of the rsFC of the anterior insula (AI) by computing a laterality index (LI) of connectivity with 54 regions from the Automated Anatomic Labeling atlas. At a corrected threshold (p < 0.001), the AI is left lateralized in connectivity with the dorsomedial prefrontal cortex, superior frontal gyrus, inferior frontal cortex, and posterior orbital gyrus and right lateralized in connectivity with the postcentral gyrus, supramarginal gyrus, and superior parietal lobule. In gender differences, women, but not men, showed right-lateralized connectivity to the thalamus. Furthermore, in a subgroup of participants assessed by the tridimensional personality questionnaire, novelty seeking is correlated with the extent of left lateralization of AI connectivity to the pallidum and putamen in men and with the extent of right lateralization of AI connectivity to the parahippocampal gyrus in women. These findings support hemispheric functional differentiation of the AI. PMID:27604154
The effect of anatomic differences on the relationship between renal artery and diaphragmatic crus.
Esen, K; Tok, S; Balci, Yuksel; Apaydin, F D; Kara, E; Uzmansel, D
2018-01-01
The aim of this study is to investigate the effect of anatomic differences on the relationship between renal artery and diaphragmatic crus via the touch of two structures. The study included dynamic computed tomography (CT) scans of 308 patients performed mainly for characterisation of liver and renal masses. Anatomic differences including the thickness of the diaphragmatic crus, the localisation of renal artery ostium at the wall of aorta, the level of renal artery origin with respect to superior mesenteric artery were evaluated. Statistical relationships between renal artery-diaphragmatic crus contact and the anatomic differences were assessed. Thickness of the diaphragmatic crus at the level of renal artery origin exhibited a statistically significant relationship to renal artery-diaphragmatic crus contact at the left (p < 0.001) and right side (p < 0.001). There was a statistically significant relationship between high renal artery origin and renal artery- -diaphragmatic crus contact at the left (p < 0.001) and right side (p = 0.01). The localisation of renal artery ostium at the wall of aorta (right side, p = 0.436, left side, p = 0.681) did not demonstrate a relationship to renal artery-diaphragmatic crus contact. Thickness of the diaphragmatic crus and high renal artery origin with respect to superior mesenteric artery are crucial anatomic differences determining the relationship of renal artery and diaphragmatic crus. (Folia Morphol 2018; 77, 1: 22-28).
Zhang, Xin Yuan; Wang, Yun Fei; Liu, Ya; Zheng, Gang; Lu, Guang Ming; Zhang, Long Jiang; Han, Ying
2017-01-01
Neuroimaging studies have demonstrated that the major depression disorder would increase the risk of dementia in the older with amnestic cognitive impairment. We used granger causality analysis algorithm to explore the amygdala- and hippocampus-based directional connectivity patterns in 12 patients with major depression disorder and amnestic cognitive impairment (mean age: 69.5 ± 10.3 years), 13 amnestic cognitive impairment patients (mean age: 72.7 ± 8.5 years) and 14 healthy controls (mean age: 64.7 ± 7.0 years). Compared with amnestic cognitive impairment patients and control groups respectively, the patients with both major depression disorder and amnestic cognitive impairment displayed increased effective connectivity from the right amygdala to the right lingual and calcarine gyrus, as well as to the bilateral supplementary motor areas. Meanwhile, the patients with both major depression disorder and amnestic cognitive impairment had enhanced effective connectivity from the left superior parietal gyrus, superior and middle occipital gyrus to the left hippocampus, the z values of which was also correlated with the scores of mini-mental state examination and auditory verbal learning test-immediate recall. Our findings indicated that the directional effective connectivity of right amygdala - occipital-parietal lobe – left hippocampus might be the pathway by which major depression disorder inhibited the brain activity in patients with amnestic cognitive impairment. PMID:28212570
Ikeda, Yumiko; Yahata, Noriaki; Takahashi, Hidehiko; Koeda, Michihiko; Asai, Kunihiko; Okubo, Yoshiro; Suzuki, Hidenori
2010-05-01
Comprehending conversation in a crowd requires appropriate orienting and sustainment of auditory attention to and discrimination of the target speaker. While a multitude of cognitive functions such as voice perception and language processing work in concert to subserve this ability, it is still unclear which cognitive components critically determine successful discrimination of speech sounds under constantly changing auditory conditions. To investigate this, we present a functional magnetic resonance imaging (fMRI) study of changes in cerebral activities associated with varying challenge levels of speech discrimination. Subjects participated in a diotic listening paradigm that presented them with two news stories read simultaneously but independently by a target speaker and a distracting speaker of incongruent or congruent sex. We found that the voice of distracter of congruent rather than incongruent sex made the listening more challenging, resulting in enhanced activities mainly in the left temporal and frontal gyri. Further, the activities at the left inferior, left anterior superior and right superior loci in the temporal gyrus were shown to be significantly correlated with accuracy of the discrimination performance. The present results suggest that the subregions of bilateral temporal gyri play a key role in the successful discrimination of speech under constantly changing auditory conditions as encountered in daily life. 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Barquero, Laura A.; Davis, Nicole; Cutting, Laurie E.
2014-01-01
A growing number of studies examine instructional training and brain activity. The purpose of this paper is to review the literature regarding neuroimaging of reading intervention, with a particular focus on reading difficulties (RD). To locate relevant studies, searches of peer-reviewed literature were conducted using electronic databases to search for studies from the imaging modalities of fMRI and MEG (including MSI) that explored reading intervention. Of the 96 identified studies, 22 met the inclusion criteria for descriptive analysis. A subset of these (8 fMRI experiments with post-intervention data) was subjected to activation likelihood estimate (ALE) meta-analysis to investigate differences in functional activation following reading intervention. Findings from the literature review suggest differences in functional activation of numerous brain regions associated with reading intervention, including bilateral inferior frontal, superior temporal, middle temporal, middle frontal, superior frontal, and postcentral gyri, as well as bilateral occipital cortex, inferior parietal lobules, thalami, and insulae. Findings from the meta-analysis indicate change in functional activation following reading intervention in the left thalamus, right insula/inferior frontal, left inferior frontal, right posterior cingulate, and left middle occipital gyri. Though these findings should be interpreted with caution due to the small number of studies and the disparate methodologies used, this paper is an effort to synthesize across studies and to guide future exploration of neuroimaging and reading intervention. PMID:24427278
Kann, Sarah; Zhang, Sheng; Manza, Peter; Leung, Hoi-Chung; Li, Chiang-Shan R
2016-11-01
Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The imaging literature has described lateralization of insula activations during cognitive and affective processing. Evidence appears to support a role of the right-hemispheric insula in attentional orientation to salient stimulus, interoception, and physiological arousal, and a role of the left-hemispheric insula in cognitive and affective control, as well as perspective taking. In this study, in a large data set of healthy adults, we examined lateralization of the rsFC of the anterior insula (AI) by computing a laterality index (LI) of connectivity with 54 regions from the Automated Anatomic Labeling atlas. At a corrected threshold (p < 0.001), the AI is left lateralized in connectivity with the dorsomedial prefrontal cortex, superior frontal gyrus, inferior frontal cortex, and posterior orbital gyrus and right lateralized in connectivity with the postcentral gyrus, supramarginal gyrus, and superior parietal lobule. In gender differences, women, but not men, showed right-lateralized connectivity to the thalamus. Furthermore, in a subgroup of participants assessed by the tridimensional personality questionnaire, novelty seeking is correlated with the extent of left lateralization of AI connectivity to the pallidum and putamen in men and with the extent of right lateralization of AI connectivity to the parahippocampal gyrus in women. These findings support hemispheric functional differentiation of the AI.
Zheng, Li Juan; Yang, Gui Fen; Zhang, Xin Yuan; Wang, Yun Fei; Liu, Ya; Zheng, Gang; Lu, Guang Ming; Zhang, Long Jiang; Han, Ying
2017-04-11
Neuroimaging studies have demonstrated that the major depression disorder would increase the risk of dementia in the older with amnestic cognitive impairment. We used granger causality analysis algorithm to explore the amygdala- and hippocampus-based directional connectivity patterns in 12 patients with major depression disorder and amnestic cognitive impairment (mean age: 69.5 ± 10.3 years), 13 amnestic cognitive impairment patients (mean age: 72.7 ± 8.5 years) and 14 healthy controls (mean age: 64.7 ± 7.0 years). Compared with amnestic cognitive impairment patients and control groups respectively, the patients with both major depression disorder and amnestic cognitive impairment displayed increased effective connectivity from the right amygdala to the right lingual and calcarine gyrus, as well as to the bilateral supplementary motor areas. Meanwhile, the patients with both major depression disorder and amnestic cognitive impairment had enhanced effective connectivity from the left superior parietal gyrus, superior and middle occipital gyrus to the left hippocampus, the z values of which was also correlated with the scores of mini-mental state examination and auditory verbal learning test-immediate recall. Our findings indicated that the directional effective connectivity of right amygdala - occipital-parietal lobe - left hippocampus might be the pathway by which major depression disorder inhibited the brain activity in patients with amnestic cognitive impairment.
Kim, Sang Eun; Jin, Dong-Kyu; Cho, Sang Soo; Kim, Ji-Hae; Hong, Sungdo David; Paik, Kyung Hoon; Oh, Yoo Joung; Kim, An Hee; Kwon, Eun Kyung; Choe, Yon Ho
2006-07-01
Prader-Willi syndrome (PWS) is a genetic disorder caused by the nonexpression of paternal genes in the PWS region of chromosome 15q11-13 and is the most common cause of human syndromic obesity. We investigated regional brain metabolic impairment in children with PWS by 18F-FDG PET. Sixteen children with PWS (9 males, 7 females; mean age +/- SD, 4.2 +/- 1.1 y) and 7 healthy children (4 males, 3 females; mean age +/- SD, 4.0 +/- 1.7 y) underwent brain 18F-FDG PET in the resting state. The images of PWS children were compared using statistical parametric mapping analysis with those of healthy children in a voxelwise manner. Group comparison showed that children with PWS had decreased glucose metabolism in the right superior temporal gyrus and left cerebellar vermis, regions that are associated with taste perception/food reward and cognitive and emotional function, respectively. Metabolism was increased in the right orbitofrontal, bilateral middle frontal, right inferior frontal, left superior frontal, and bilateral anterior cingulate gyri, right temporal pole, and left uncus, regions that are involved in cognitive functions related to eating or obsessive-compulsive behavior. Interestingly, no significant metabolic abnormality was found in the hypothalamus, the brain region believed to be most involved in energy intake and expenditure. This study describes the neural substrate underlying the abnormal eating behavior and psychobehavioral problems of PWS.
Regenbogen, Christina; Herrmann, Manfred; Fehr, Thorsten
2010-01-01
Studies investigating the effects of violent computer and video game playing have resulted in heterogeneous outcomes. It has been assumed that there is a decreased ability to differentiate between virtuality and reality in people that play these games intensively. FMRI data of a group of young males with (gamers) and without (controls) a history of long-term violent computer game playing experience were obtained during the presentation of computer game and realistic video sequences. In gamers the processing of real violence in contrast to nonviolence produced activation clusters in right inferior frontal, left lingual and superior temporal brain regions. Virtual violence activated a network comprising bilateral inferior frontal, occipital, postcentral, right middle temporal, and left fusiform regions. Control participants showed extended left frontal, insula and superior frontal activations during the processing of real, and posterior activations during the processing of virtual violent scenarios. The data suggest that the ability to differentiate automatically between real and virtual violence has not been diminished by a long-term history of violent video game play, nor have gamers' neural responses to real violence in particular been subject to desensitization processes. However, analyses of individual data indicated that group-related analyses reflect only a small part of actual individual different neural network involvement, suggesting that the consideration of individual learning history is sufficient for the present discussion.
Kim, Ji-Woong; Kim, Jae-Jin; Jeong, Bumseok; Kim, Sung-Eun; Ki, Seon Wan
2010-03-01
The goal of the present study was to identify the brain mechanism involved in the attribution of person's attitude toward another person, using facial affective pictures and pictures displaying an affectively-loaded situation. Twenty four right-handed healthy subjects volunteered for our study. We used functional magnetic resonance imaging (MRI) to examine brain activation during attitude attribution task as compared to gender matching tasks. We identified activation in the left inferior frontal cortex, left superior temporal sulcus, and left inferior parietal lobule during the attitude attribution task, compared to the gender matching task. This study suggests that mirror neuron system and ventrolateral inferior frontal cortex play a critical role in the attribution of a person's inner attitude towards another person in an emotional situation.
Identification of a pathway for intelligible speech in the left temporal lobe
Scott, Sophie K.; Blank, C. Catrin; Rosen, Stuart; Wise, Richard J. S.
2017-01-01
Summary It has been proposed that the identification of sounds, including species-specific vocalizations, by primates depends on anterior projections from the primary auditory cortex, an auditory pathway analogous to the ventral route proposed for the visual identification of objects. We have identified a similar route in the human for understanding intelligible speech. Using PET imaging to identify separable neural subsystems within the human auditory cortex, we used a variety of speech and speech-like stimuli with equivalent acoustic complexity but varying intelligibility. We have demonstrated that the left superior temporal sulcus responds to the presence of phonetic information, but its anterior part only responds if the stimulus is also intelligible. This novel observation demonstrates a left anterior temporal pathway for speech comprehension. PMID:11099443
Cerebral correlates of visuospatial neglect: a direct cerebral stimulation study.
Vallar, Giuseppe; Bello, Lorenzo; Bricolo, Emanuela; Castellano, Antonella; Casarotti, Alessandra; Falini, Andrea; Riva, Marco; Fava, Enrica; Papagno, Costanza
2014-04-01
To assess the role of the superior longitudinal fascicle, the inferior fronto-occipital fascicle, and the posterior parietal lobe in visuospatial attention in humans during awake brain surgery. Seven patients with hemispheric gliomas (six in the right hemisphere) entered the study. During surgery in asleep/awake anesthesia, guided by Diffusion Tensor Imaging Fiber Tractography, visuospatial neglect was assessed during direct electrical stimulation by computerized line bisection. A rightward deviation, indicating left visuospatial neglect, was induced in six of seven patients by stimulation of the parietofrontal connections, in a location consistent with the trajectory of the second branch of the superior longitudinal fascicle. Stimulation of the medial and dorsal white matter of the superior parietal lobule (corresponding to the first branch of the superior longitudinal fascicle), of the ventral and lateral white matter of the supramarginal gyrus (corresponding to the third branch of the superior longitudinal fascicle), and of the inferior occipitofrontal fasciculus, was largely ineffective. Stimulation of the superior parietal lobule (Brodmann's area 7) caused a marked rightward deviation in all of the six assessed patients, while stimulation of Brodmann's areas 5 and 19 was ineffective. The parietofrontal connections of the dorso-lateral fibers of the superior longitudinal fascicle (i.e., the second branch of the fascicle), and the posterior superior parietal lobe (Brodmann's area 7) are involved in the orientation of spatial attention. Spatial neglect should be assessed systematically during awake brain surgery, particularly when the right parietal lobe may be involved by the neurosurgical procedure. Copyright © 2013 Wiley Periodicals, Inc.
A tilt and roll device for automated correction of rotational setup errors.
Hornick, D C; Litzenberg, D W; Lam, K L; Balter, J M; Hetrick, J; Ten Haken, R K
1998-09-01
A tilt and roll device has been developed to add two additional degrees of freedom to an existing treatment table. This device allows computer-controlled rotational motion about the inferior-superior and left-right patient axes. The tilt and roll device comprises three supports between the tabletop and base. An automotive type universal joint welded to the end of a steel pipe supports the center of the table. Two computer-controlled linear electric actuators utilizing high accuracy stepping motors support the foot of table and control the tilt and roll of the tabletop. The current system meets or exceeds all pre-design specifications for precision, weight capacity, rigidity, and range of motion.
Longitudinal changes in cortical thickness in autism and typical development
Prigge, Molly B. D.; Nielsen, Jared A.; Froehlich, Alyson L.; Abildskov, Tracy J.; Anderson, Jeffrey S.; Fletcher, P. Thomas; Zygmunt, Kristen M.; Travers, Brittany G.; Lange, Nicholas; Alexander, Andrew L.; Bigler, Erin D.; Lainhart, Janet E.
2014-01-01
The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3–36 years) and 60 males with typical development (mean age = 18 years; range 4–39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and paracentral, lateral orbitofrontal, and lateral occipital regions. We suggest that abnormal cortical development in autism spectrum disorders undergoes three distinct phases: accelerated expansion in early childhood, accelerated thinning in later childhood and adolescence, and decelerated thinning in early adulthood. Moreover, cortical thickness abnormalities in autism spectrum disorders are region-specific, vary with age, and may remain dynamic well into adulthood. PMID:24755274
Coiling of a vulvar arterio-venous malformation.
Van der Woude, Daisy Adriana Annejan; Stegeman, Marjan; Seelen, Jan L
2011-12-01
The authors report the case of a 13-year-old girl with a painful vulvar swelling and abnormal vaginal bleeding, increasing in size after trauma. With MRI (GE Signa HDx 1.5 Tesla), it is diagnosed as an arterio-venous malformation arising from the left superior femoral artery. It is treated by embolisation using a coil.
The Symmetry of Visual Fields in Chromatic Discrimination
ERIC Educational Resources Information Center
Danilova, M. V.; Mollon, J. D.
2009-01-01
Both classical and recent reports suggest a right-hemisphere superiority for color discrimination. Testing highly-trained normal subjects and taking care to eliminate asymmetries from the testing situation, we found no significant differences between left and right hemifields or between upper and lower hemifields. This was the case for both of the…
Astarcıoğlu, Mehmet Ali; Yaymacı, Mehmet; Şen, Taner; Kilit, Celal; Amasyalı, Basri
2015-10-01
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiomyopathy characterized histologically by fibro-fatty replacement of heart muscle, and clinically by ventricular arrhythmias and right ventricular dysfunction. This report presents monozygotic twins with ARVC, suggesting a genetic abnormality as the most probable cause.
117. Photocopied August 1978. VIEW OF EAST FOREBAY SHOWING COMPLETED ...
117. Photocopied August 1978. VIEW OF EAST FOREBAY SHOWING COMPLETED APRON. NOVEMBER 24, 1926. CLAY LEFT OVER FROM REFILLING THE AREA BETWEEN FOREBAY FLOOR SILLS IS SHOWN HEAPED AGAINST THE FOREBAY WALL TO PROVIDE AN EXTRA MEASURE OF PROTECTION. (1051) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Neural dichotomy of word concreteness: a view from functional neuroimaging.
Kumar, Uttam
2016-02-01
Our perception about the representation and processing of concrete and abstract concepts is based on the fact that concrete words are highly imagined and remembered faster than abstract words. In order to explain the processing differences between abstract and concrete concepts, various theories have been proposed, yet there is no unanimous consensus about its neural implication. The present study investigated the processing of concrete and abstract words during an orthography judgment task (implicit semantic processing) using functional magnetic resonance imaging to validate the involvement of the neural regions. Relative to non-words, both abstract and concrete words show activation in the regions of bilateral hemisphere previously associated with semantic processing. The common areas (conjunction analyses) observed for abstract and concrete words are bilateral inferior frontal gyrus (BA 44/45), left superior parietal (BA 7), left fusiform gyrus and bilateral middle occipital. The additional areas for abstract words were noticed in bilateral superior temporal and bilateral middle temporal region, whereas no distinct region was noticed for concrete words. This suggests that words with abstract concepts recruit additional language regions in the brain.
Altered resting brain function and structure in professional badminton players.
Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi
2012-01-01
Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.
Grandin, Cécile B.; Dricot, Laurence; Plaza, Paula; Lerens, Elodie; Rombaux, Philippe; De Volder, Anne G.
2013-01-01
Using functional magnetic resonance imaging (fMRI) in ten early blind humans, we found robust occipital activation during two odor-processing tasks (discrimination or categorization of fruit and flower odors), as well as during control auditory-verbal conditions (discrimination or categorization of fruit and flower names). We also found evidence for reorganization and specialization of the ventral part of the occipital cortex, with dissociation according to stimulus modality: the right fusiform gyrus was most activated during olfactory conditions while part of the left ventral lateral occipital complex showed a preference for auditory-verbal processing. Only little occipital activation was found in sighted subjects, but the same right-olfactory/left-auditory-verbal hemispheric lateralization was found overall in their brain. This difference between the groups was mirrored by superior performance of the blind in various odor-processing tasks. Moreover, the level of right fusiform gyrus activation during the olfactory conditions was highly correlated with individual scores in a variety of odor recognition tests, indicating that the additional occipital activation may play a functional role in odor processing. PMID:23967263
Wendt, D; Schmidt, D; Wasserfuhr, D; Osswald, B; Thielmann, M; Tossios, P; Kühl, H; Jakob, H; Massoudy, P
2010-09-01
The superiority of left internal thoracic artery (LITA) grafting to the left anterior descending artery (LAD) is well established. Patency rates of 80%-90% have been reported at 10-year follow-up. However, the superiority of sequential LITA grafting has not been proven. Our aim was to compare patency rates after sequential LITA grafting to a diagonal branch and the LAD with patency rates of LITA grafting to the LAD and separate vein grafting to a diagonal branch. A total of 58 coronary artery bypass graft (CABG) patients, operated on between 01/2000 and 12/2002, underwent multi-slice computed tomography (MSCT) between 2006 and 2008. Of these patients, 29 had undergone sequential LITA grafting to a diagonal branch and to the LAD ("Sequential" Group), while in 29 the LAD and a diagonal branch were separately grafted with LITA and vein ("Separate" Group). Patencies of all anastomoses were investigated. Mean follow-up was 1958±208 days. The patency rate of the LAD anastomosis was 100% in the Sequential Group and 93% in the Separate Group (p=0.04). The patency rate of the diagonal branch anastomosis was 100% in the Sequential Group and 89% in the Separate Group (p=0.04). Mean intraoperative flow on LITA graft was not different between groups (69±8ml/min in the Sequential Group and 68±9ml/min in the Separate Group, p=n.s.). Patency rates of both the LAD and the diagonal branch anastomoses were higher after sequential arterial grafting compared with separate arterial and venous grafting at 5-year follow-up. This indicates that, with regard to the antero-lateral wall of the left ventricle, there is an advantage to sequential arterial grafting compared with separate arterial and venous grafting.
Mak, Henry K F; Chan, Queenie; Zhang, Zhipeng; Petersen, Esben T; Qiu, Deqiang; Zhang, Linda; Yau, Kelvin K W; Chu, Leung-Wing; Golay, Xavier
2012-01-01
QUASAR arterial spin labeling (ASL) was used to investigate the role of vascular impairment in Alzheimer's disease (AD). We hypothesized that the hemodynamic parameters monitoring cerebrovascular integrity, i.e., cerebral blood flow (CBF), arterial blood volume (aBV), and arterial transit time (aTT), would be affected. 13 AD patients and 15 healthy control (HC) subjects underwent 3T MRI scanning. Two separate blood flow acquisitions were obtained with 1 slice overlap for whole brain coverage. CBF, aBV, and aTT maps were calculated using in-house software. Preprocessing and statistical analyses were performed on SPM5. Region-of-interest (ROI) studies of ten selected cerebral regions were also conducted. There were significant differences in mini mental status exam (MMSE) (AD: 16.3 ± 4.55, HC: 28.5 ± 2.00) and Alzheimer's disease assessment scale-cognitive subscale (ADAS-cog) scores (AD: 25.25 ± 9.64, HC: 5.51 ± 2.62) between the 2 groups (p < 0.001) but none in age (p = 0.068). CBF decreased significantly (p < 0.01) in AD compared to controls in the right middle cingulate, left cuneus, left inferior and middle frontal, right superior frontal, left inferior parietal, and right supramarginal gyri. ROI studies confirmed significant hemodynamic impairments in AD compared to HC (p < 0.05): CBF in middle and posterior cingulate, aBV in left superior temporal, right inferior parietal, and posterior cingulate, and aTT in left inferior frontal and middle cingulate gyri. CBF correlated positively while aTT correlated negatively to MMSE, and vice versa for ADAS-cog. Using QUASAR ASL, we found patterns of regional hemodynamic impairment typical of moderate AD, suggesting underlying vascular abnormality. As potential biomarkers, these hemodynamic parameters could differentiate patients from volunteers, and possibly indicate the conversion from healthy aging to mild cognitive impairment to AD.
Medium-term outcome of Toronto aortic valve replacement: single center experience.
Li, Wei; Price, Susanna; O'Sullivan, Christine A; Kumar, Pankaj; Jin, Xu Y; Henein, Michael Y; Pepper, John R
2008-09-26
Long-term competence of any aortic prosthesis is critical to its clinical durability. Bioprosthetic valves, and in particular the stentless type have been proposed to offer superior haemodynamic profiles with consequent potential for superior left-ventricular mass regression. These benefits however are balanced by the potential longevity of the implanted valve. The aims of this study were to assess medium-term Toronto aortic valve function and its effect on left-ventricular function. Between 1992 and 1996 86 patients underwent Toronto aortic valve replacement for aortic valve disease and were followed up annually. Prospectively collected data was analyzed for all patients where detailed echocardiographic follow-up was available. Echocardiographic studies were analyzed at 2+/-0.6 and 6+/-1.4 years after valve replacement. Data collected included left-ventricular systolic and diastolic dimensions, fractional shortening and left-ventricular mass. In addition, data on aortic valve and root morphology, peak aortic velocities, time velocity integral, stroke volume and the mechanism of valve failure where relevant, were also collected. Complete echocardiographic data were available for eighty-four patients, age 69+/-9 years, 62 male. Additional coronary artery bypass grafting was performed in 38% of patients. Twelve (14%) valves had failed during follow-up, 7 (8%) requiring re-operation. Valve failure was associated with morphologically bicuspid native aortic valve (9/12), and progressive dilatation of the aortic sinuses, sino-tubular junction and ascending aorta (11/12). Left-ventricular mass index remained high (184+/-75 g/m(2)) and did not continue to regress between early and medium-term follow-up (175.8+/-77 g/m(2)). Although more than 90% of implanted Toronto aortic valves remained haemodynamically stable with low gradient at medium-term follow-up, young age and larger aortic dimensions in patients with valve failure suggest better outcome if used in the elderly with normal aortic root geometry.
Congenital absence of the portal vein in a middle-aged man.
Barchetti, Flavio; Pellegrino, Luigi; Al-Ansari, Najwa; De Marco, Valentina; Scarpato, Paolo; Ialongo, Pasquale
2011-05-01
Congenital absence of the portal vein with systemic diversion of mesenteric blood is extremely rare. We report a case of a congenital absence of the portal vein, accidentally discovered in a 59-year-old man, completely asymptomatic and not associated with other malformations or biochemical disorders. Ultrasonography imaging showed the absence of the portal vein and the distal tract of superior mesenteric and splenic veins draining together into a dilated left renal vein. Computed tomography and magnetic resonance confirmed the presence of a congenital portosystemic venous shunt and also revealed two hepatic arteries: one arising from the celiac trunk and the other from the superior mesenteric artery.
Ruptured Intrasellar Superior Hypophyseal Artery Aneurysm Presenting with Pure Subdural Haematoma
Hornyak, M.; Hillard, V.; Nwagwu, C.; Zablow, B. C.; Murali, R.
2004-01-01
Summary Subdural haemorrhage from a ruptured intracranial aneurysm is a well-known entity when associated with subarachnoid haemorrhage. However, haemorrhage confined only to the subdural space is rare because there are limited anatomical sites where extravasation can be purely subdural. We report the rare case of a patient who suffered pure subdural haematoma after the rupture of a left superior hypophyseal artery aneurysm located within the sella turcica. The patient was treated with endovascular coil embolization of the aneurysm. Angiography immediately after treatment and one month later revealed complete obliteration of the aneurysm. Six months after treatment, the patient remained symptom free. PMID:20587264
Perri, Gianluigi; Filippelli, Sergio; Kirk, Richard; Hasan, Asif; Griselli, Massimo
2012-05-01
Anomalies of the pulmonary venous drainage vary widely in their anatomic spectrum and clinical presentation. We describe an unusual case of supra-cardiac total anomalous pulmonary venous connection (TAPVC), where the pulmonary veins drained directly in the posterior aspect of proximal right superior vena cava (SVC) through separate ostia. The veins were re-routed with a patch to the left atrium via the secundum atrial septal defect (ASD). The continuity between distal SVC and right atrium was re-established by re-implanting the SVC to the right atrial appendage (Warden Procedure). © 2012 Wiley Periodicals, Inc.
Isolated upper eyelid retraction: a sign of idiopathic inflammatory orbital disease.
Shome, Debraj; Toshniwal, Svetlana; Jain, Vandana; Natarajan, Sundaram; Vemuganti, Geeta K
2008-01-01
A 41-year-old woman was examined for left upper eyelid retraction. Remaining ocular and systemic examination was unremarkable. Orbital CT demonstrated an ill-defined, extraconal, superior orbital soft-tissue mass involving the levator palpebrae superioris muscle. Incisional biopsy with histopathology demonstrated idiopathic orbital inflammation. The patient was started on a gradually tapering dose of oral steroids, for 6 weeks. On follow-up, the eyelid retraction had resolved. We report this case to demonstrate that idiopathic inflammatory orbital disease, localized to the superior orbit, may cause isolated upper eyelid retraction without associated proptosis. This condition resolves with medical therapy, leading to symmetrical palpebral apertures.
Cortical thickness and prosocial behavior in school-age children: A population-based MRI study.
Thijssen, Sandra; Wildeboer, Andrea; Muetzel, Ryan L; Bakermans-Kranenburg, Marian J; El Marroun, Hanan; Hofman, Albert; Jaddoe, Vincent W V; van der Lugt, Aad; Verhulst, Frank C; Tiemeier, Henning; van IJzendoorn, Marinus H; White, Tonya
2015-01-01
Prosocial behavior plays an important role in establishing and maintaining relationships with others and thus may have important developmental implications. This study examines the association between cortical thickness and prosocial behavior in a population-based sample of 6- to 9-year-old children. The present study was embedded within the Generation R Study. Magnetic resonance scans were acquired from 464 children whose parents had completed the prosocial scale of the Strengths and Difficulties Questionnaire. To study the association between cortical thickness and prosocial behavior, we performed whole-brain surface-based analyses. Prosocial behavior was related to a thicker cortex in a cluster that covers part of the left superior frontal and rostral middle frontal cortex (p < .001). Gender moderated the association between prosocial behavior and cortical thickness in a cluster including the right rostral middle frontal and superior frontal cortex (p < .001) as well as in a cluster covering the right superior parietal cortex, cuneus, and precuneus (p < .001). Our results suggest that prosocial behavior is associated with cortical thickness in regions related to theory of mind (superior frontal cortex, rostral middle frontal cortex cuneus, and precuneus) and inhibitory control (superior frontal and rostral middle frontal cortex).
Brain mechanisms underlying the impact of attachment-related stress on social cognition
Nolte, Tobias; Bolling, Danielle Z.; Hudac, Caitlin M.; Fonagy, Peter; Mayes, Linda; Pelphrey, Kevin A.
2013-01-01
Mentalizing, in particular the successful attribution of complex mental states to others, is crucial for navigating social interactions. This ability is highly influenced by external factors within one's daily life, such as stress. We investigated the impact of stress on the brain basis of mentalization in adults. Using a novel modification of the Reading the Mind in the Eyes Test (RMET-R) we compared the differential effects of two personalized stress induction procedures: a general stress induction (GSI) and an attachment-related stress induction (ASI). Participants performed the RMET-R at baseline and after each of the two inductions. Baseline results replicated and extended previous findings regarding the neural correlates of the RMET-R. Additionally, we identified brain regions associated with making complex age judgments from the same stimuli. Results after stress exposure showed that the ASI condition resulted in reduced mentalization-related activation in the left posterior superior temporal sulcus (STS), left inferior frontal gyrus and left temporoparietal junction (TPJ). Moreover, the left middle frontal gyrus and left anterior insula showed greater functional connectivity to the left posterior STS after the ASI. Our findings indicate that attachment-related stress has a unique effect on the neural correlates of mentalization. PMID:24348364
Rossi, Sandrine; Lubin, Amélie; Simon, Grégory; Lanoë, Céline; Poirel, Nicolas; Cachia, Arnaud; Pineau, Arlette; Houdé, Olivier
2013-06-01
Although the development of executive functions has been extensively investigated at a neurofunctional level, studies of the structural relationships between executive functions and brain anatomy are still scarce. Based on our previous meta-analysis of functional neuroimaging studies examining executive functions in children (Houdé, Rossi, Lubin, and Joliot, (2010). Developmental Science, 13, 876-885), we investigated six a priori regions of interest: the left anterior insular cortex (AIC), the left and the right supplementary motor areas, the right middle and superior frontal gyri, and the left precentral gyrus. Structural magnetic resonance imaging scans were acquired from 22 to 10-year-old children. Local gray matter volumes, assessed automatically using a standard voxel-based morphometry approach, were correlated with executive and storage working memory capacities evaluated using backward and forward digit span tasks, respectively. We found an association between smaller gray matter volume--i.e., an index of neural maturation--in the left AIC and high backward memory span while gray matter volumes in the a priori selected regions of interest were not linked with forward memory span. These results were corroborated by a whole-brain a priori free analysis that revealed a significant negative correlation in the frontal and prefrontal regions, including the left AIC, with the backward memory span, and in the right inferior parietal lobe, with the forward memory span. Taken together, these results suggest a distinct and specific association between regional gray matter volume and the executive component vs. the storage component of working memory. Moreover, they support a key role for the AIC in the executive network of children. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lake Superior as seen from Skylab
1974-01-06
SL4-139-3953 (7 Jan. 1974) --- An oblique view of a portion of the Middle West looking northeastward toward Lake Superior and Ontario, Canada, as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen with a hand-held 70mm Hasselblad camera using a 100mm lens. Most of the land mass in the foreground is Wisconsin. Iowa is in the lower left corner. Minnesota is at left and upper left. Ontario is in the far right background. Michigan is at right center. Note the circular-shaped feature at center left which was first observed by the Skylab 4 crewmen. The feature is 85 kilometers (55 miles) in diameter, and it is centered near 91.5 degrees west longitude and 44.5 degrees north latitude. The Mississippi River Valley forms the southwest side of the circular feature. The City of La Crosse, Wisconsin, is just south of the near side of the circle, and the Black River completes the southern and eastern part. The City of Eau Claire is at the north edge of the circle. The most likely origin of circular features of this magnitude are (1) volcanic, (2) structural, or (3) meteorite impact. The feature is not volcanic -- the rocks are the wrong type. Possibly it is structural, formed by slight warping of layered rocks into a basin or dome, followed by erosion of all but the most subtle trace of the structure. The feature could be a severely eroded meteorite impact crater. If so, a thorough study of the area may yield evidence of the extreme pressure and temperature the rocks were subjected to by the shock of an impacting meteorite. Photo credit: NASA
Robert, Gabriel; Le Jeune, Florence; Dondaine, Thibault; Drapier, Sophie; Péron, Julie; Lozachmeur, Clément; Sauleau, Paul; Houvenaghel, Jean-François; Travers, David; Millet, Bruno; Vérin, Marc; Drapier, Dominique
2014-10-01
Apathy is a disabling non-motor symptom that is frequently observed in Parkinson's disease (PD). Its description and physiopathology suggest that it is partially mediated by emotional impairment, but this research issue has never been addressed at a clinical and metabolic level. We therefore conducted a metabolic study using (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in 36 PD patients without depression and dementia. Apathy was assessed on the Apathy Evaluation Scale (AES), and emotional facial recognition (EFR) performances (ie, percentage of correct responses) were calculated for each patient. Confounding factors such as age, antiparkinsonian and antidepressant medication, global cognitive functions and depressive symptoms were controlled for. We found a significant negative correlation between AES scores and performances on the EFR task. The apathy network was characterised by increased metabolism within the left posterior cingulate (PC) cortex (Brodmann area (BA) 31). The impaired EFR network was characterised by decreased metabolism within the bilateral PC gyrus (BA 31), right superior frontal gyrus (BAs 10, 9 and 6) and left superior frontal gyrus (BA 10 and 11). By applying conjunction analyses to both networks, we identified the right premotor cortex (BA 6), right orbitofrontal cortex (BA 10), left middle frontal gyrus (BA 8) and left posterior cingulate gyrus (BA 31) as the structures supporting the association between apathy and impaired EFR. These results confirm that apathy in PD is partially mediated by impaired EFR, opening up new prospects for alleviating apathy in PD, such as emotional rehabilitation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Van Vugt, Dean A; Krzemien, Alicja; Alsaadi, Hanin; Frank, Tamar C; Reid, Robert L
2014-04-16
We postulate that insulin regulation of food intake is compromised when insulin resistance is present. In order to investigate the effect of insulin sensitivity on appetitive brain responses, we conducted functional magnetic resonance imaging studies in a group of women diagnosed with polycystic ovary syndrome (PCOS) in which insulin sensitivity ranged from normal to resistant. Subjects (n=19) were imaged while viewing pictures of high calorie (HC) foods and low calorie (LC) foods after ingesting either 75 g glucose or an equivalent volume of water. The insulin sensitive group showed reduced blood oxygen level dependent (BOLD) signal in response to food pictures following glucose ingestion in numerous corticolimbic brain regions, whereas the insulin resistant group did not. There was a significant interaction between insulin sensitivity (sensitive vs resistant) and condition (water vs glucose). The largest clusters identified included the left insula, bilateral limbic/parahippocampal gyrus/culmen/midbrain, bilateral limbic lobe/precuneus, and left superior/mid temporal gyrus/parietal for HC and LC stimuli combined, the left parahippocampal gyrus/fusiform/pulvinar/midbrain for HC pictures, and the left superior/mid temporal gyrus/parietal and middle/inferior frontal gyrus/orbitofrontal cortex for LC pictures. Furthermore, BOLD signal in the anterior cingulate, medial frontal gyrus, posterior cingulate/precuneus, and parietal cortex during a glucose challenge correlated negatively with insulin sensitivity. We conclude the PCOS women with insulin resistance have an impaired brain response to a glucose challenge. The inability of postprandial hyperinsulinemia to inhibit brain responsiveness to food cues in insulin resistant subjects may lead to greater non-homeostatic eating. Copyright © 2014 Elsevier B.V. All rights reserved.
Chang, Edward F; Wang, Doris D; Perry, David W; Barbaro, Nicholas M; Berger, Mitchel S
2011-04-01
Language dominance in the right hemisphere is rare. Therefore, the organization of essential language sites in the dominant right hemisphere is unclear, especially compared with cases involving the more prevalent left dominant hemisphere. The authors reviewed the medical records of 15 patients who underwent awake craniotomy for tumor or epilepsy surgery and speech mapping of right hemisphere perisylvian language areas at the University of California, San Francisco. All patients were determined to have either complete right-sided or bilateral language dominance by preoperative Wada testing. All patients but one were left-handed. Of more than 331 total stimulation sites, 27 total sites were identified as essential for language function (14 sites for speech arrest/anarthria; 12 for anomia; and 1 for alexia). While significant interindividual variability was observed, the general pattern of language organization was similar to classic descriptions of frontal language production and posterior temporal language integration for the left hemisphere. Speech arrest sites were clustered in the ventral precentral gyrus and pars opercularis. Anomia sites were more widely distributed, but were focused in the posterior superior and middle temporal gyri as well as the inferior parietal gyrus. One alexia site was found over the superior temporal gyrus. Face sensory and motor cortical sites were also identified along the ventral sensorimotor strip. The prevalence and specificity of essential language sites were greater in unilateral right hemisphere-dominant patients, compared with those with bilateral dominance by Wada testing. The authors' results suggest that the organization of language in right hemisphere dominance mirrors that of left hemisphere dominance. Awake speech mapping is a safe and reliable surgical adjunct in these rare clinical cases and should be done in the setting of right hemisphere dominance to avoid preventable postoperative aphasia.
Petitto, L. A.; Berens, M. S.; Kovelman, I.; Dubins, M. H.; Jasinska, K.; Shalinsky, M.
2011-01-01
In a neuroimaging study focusing on young bilinguals, we explored the brains of bilingual and monolingual babies across two age groups (younger 4–6 months, older 10–12 months), using fNIRS in a new event-related design, as babies processed linguistic phonetic (Native English, Non-Native Hindi) and nonlinguistic Tone stimuli. We found that phonetic processing in bilingual and monolingual babies is accomplished with the same language-specific brain areas classically observed in adults, including the left superior temporal gyrus (associated with phonetic processing) and the left inferior frontal cortex (associated with the search and retrieval of information about meanings, and syntactic and phonological patterning), with intriguing developmental timing differences: left superior temporal gyrus activation was observed early and remained stably active over time, while left inferior frontal cortex showed greater increase in neural activation in older babies notably at the precise age when babies’ enter the universal first-word milestone, thus revealing a first-time focal brain correlate that may mediate a universal behavioral milestone in early human language acquisition. A difference was observed in the older bilingual babies’ resilient neural and behavioral sensitivity to Non-Native phonetic contrasts at a time when monolingual babies can no longer make such discriminations. We advance the “Perceptual Wedge Hypothesis”as one possible explanation for how exposure to greater than one language may alter neural and language processing in ways that we suggest are advantageous to language users. The brains of bilinguals and multilinguals may provide the most powerful window into the full neural “extent and variability” that our human species’ language processing brain areas could potentially achieve. PMID:21724244
Who is who: areas of the brain associated with recognizing and naming famous faces.
Giussani, Carlo; Roux, Franck-Emmanuel; Bello, Lorenzo; Lauwers-Cances, Valérie; Papagno, Costanza; Gaini, Sergio M; Puel, Michelle; Démonet, Jean-François
2009-02-01
It has been hypothesized that specific brain regions involved in face naming may exist in the brain. To spare these areas and to gain a better understanding of their organization, the authors studied patients who underwent surgery by using direct electrical stimulation mapping for brain tumors, and they compared an object-naming task to a famous face-naming task. Fifty-six patients with brain tumors (39 and 17 in the left and right hemispheres, respectively) and with no significant preoperative overall language deficit were prospectively studied over a 2-year period. Four patients who had a partially selective famous face anomia and 2 with prosopagnosia were not included in the final analysis. Face-naming interferences were exclusively localized in small cortical areas (< 1 cm2). Among 35 patients whose dominant left hemisphere was studied, 26 face-naming specific areas (that is, sites of interference in face naming only and not in object naming) were found. These face naming-specific sites were significantly detected in 2 regions: in the left frontal areas of the superior, middle, and inferior frontal gyri (p < 0.001) and in the anterior part of the superior and middle temporal gyri (p < 0.01). Variable patterns of interference were observed (speech arrest, anomia, phonemic, or semantic paraphasia) probably related to the different stages in famous face processing. Only 4 famous face-naming interferences were found in the right hemisphere. Relative anatomical segregation of naming categories within language areas was detected. This study showed that famous face naming was preferentially processed in the left frontal and anterior temporal gyri. The authors think it is necessary to adapt naming tasks in neurosurgical patients to the brain region studied.
Variations of pulmonary arteries and other associated defects in Tetralogy of Fallot.
Sheikh, Abdul Malik; Kazmi, Uzma; Syed, Najam Hyder
2014-01-01
The objective of study was to determine pulmonary artery variations and other associated cardiac defects in patients with Tetralogy of Fallot. This cross-sectional, descriptive study was carried out at The Children's Hospital and the Institute of Child Health, Lahore, from January 2006 to December 2012. All patients with Tetralogy of Fallot, who underwent cardiac catheterization during this period, were included. Standard cine-angiograms were done to record the pulmonary artery sizes and associated cardiac defects. A total of 576 patients with Tetralogy of Fallot were catheterized. Pulmonary Artery abnormalities were present in 109 (18.92%) patients. The commonest abnormality was isolated Left Pulmonary Artery stenosis (n = 60, 10.4%) followed by supra-valvular stenosis (n = 9, 1.6%). Left Pulmonary Artery was absent in seven patients(1.2%), while 1 patient (0.2%) had both absent right and left Pulmonary Arteries with segmental branch pulmonary arteries originating directly from Main Pulmonary Artery. Associated cardiac lesions included right aortic arch in 72 (12.5%), additional muscular Ventricular Septal Defect in 31 (5.4%), Patent Ductus Arteriosus in 31 (5.4%), bilateral Superior Vena Cava 36(6.2%), Atrial Septal Defect 4(0.7%) and Major Aortopulmonary Collateral Arteries in 75(13%) patients. Significant coronary artery abnormalities were present in 28(4.9%) children. Pulmonary artery abnormalities were present in 18.92% of patients with Tetralogy of Fallot. Isolated Left Pulmonary Artery origin stenosis was the most common abnormality. Significant associated cardiac lesions including Patent Ductus Arteriosus , additional muscular Ventricular Septal Defect, coronary artery abnormalities, bilateral Superior Vena Cava, Atrial Septal Defect and Major Aortopulmonary Collateral Arteries were present in one-third of the patients.
The white matter structural network underlying human tool use and tool understanding.
Bi, Yanchao; Han, Zaizhu; Zhong, Suyu; Ma, Yujun; Gong, Gaolang; Huang, Ruiwang; Song, Luping; Fang, Yuxing; He, Yong; Caramazza, Alfonso
2015-04-29
The ability to recognize, create, and use complex tools is a milestone in human evolution. Widely distributed brain regions in parietal, frontal, and temporal cortices have been implicated in using and understanding tools, but the roles of their anatomical connections in supporting tool use and tool conceptual behaviors are unclear. Using deterministic fiber tracking in healthy participants, we first examined how 14 cortical regions that are consistently activated by tool processing are connected by white matter (WM) tracts. The relationship between the integrity of each of the 33 obtained tracts and tool processing deficits across 86 brain-damaged patients was investigated. WM tract integrity was measured with both lesion percentage (structural imaging) and mean fractional anisotropy (FA) values (diffusion imaging). Behavioral abilities were assessed by a tool use task, a range of conceptual tasks, and control tasks. We found that three left hemisphere tracts connecting frontoparietal and intrafrontal areas overlapping with left superior longitudinal fasciculus are crucial for tool use such that larger lesion and lower mean FA values on these tracts were associated with more severe tool use deficits. These tracts and five additional left hemisphere tracts connecting frontal and temporal/parietal regions, mainly overlapping with left superior longitudinal fasciculus, inferior frontooccipital fasciculus, uncinate fasciculus, and anterior thalamic radiation, are crucial for tool concept processing. Largely consistent results were also obtained using voxel-based symptom mapping analyses. Our results revealed the WM structural networks that support the use and conceptual understanding of tools, providing evidence for the anatomical skeleton of the tool knowledge network. Copyright © 2015 the authors 0270-6474/15/356822-14$15.00/0.
Fan, Jie; Zhong, Mingtian; Gan, Jun; Liu, Wanting; Niu, Chaoyang; Liao, Haiyan; Zhang, Hongchun; Tan, Changlian; Yi, Jinyao; Zhu, Xiongzhao
2017-01-01
Insight into illness is an important issue for psychiatry disorder. Although the existence of a poor insight subtype of obsessive-compulsive disorder (OCD) was recognized in the DSM-IV, and the insight level in OCD was specified further in DSM-V, the neural underpinnings of insight in OCD have been rarely explored. The present study was designed to bridge this research gap by using resting-state functional magnetic resonance imaging (fMRI). Spontaneous neural activity were examined in 19 OCD patients with good insight (OCD-GI), 18 OCD patients with poor insight (OCD-PI), and 25 healthy controls (HC) by analyzing the amplitude of low-frequency fluctuation (ALFF) in the resting state. Pearson correlation analysis was performed between regional ALFFs and insight levels among OCD patients. OCD-GI and OCD-PI demonstrated overlapping and distinct brain alterations. Notably, compared with OCD-GI, tOCD-PI had reduced ALFF in left middle temporal gyrus (MTG) and right superior temporal gyrus (STG), as well as increased ALFF in right middle occipital gyrus. Further analysis revealed that ALFF values for the left MTG and right STG were correlated negatively with insight level in patients with OCD. Relatively small sample size and not all patients were un-medicated are our major limitations. Spontaneous brain activity in left MTG and right STG may be neural underpinnings of insight in OCD. Our results suggest the great role of human temporal brain regions in understanding insight, and further underscore the importance of considering insight presentation in understanding the clinical heterogeneity of OCD. Copyright © 2016 Elsevier B.V. All rights reserved.
Micarelli, Alessandro; Chiaravalloti, Agostino; Viziano, Andrea; Danieli, Roberta; Schillaci, Orazio; Alessandrini, Marco
2017-07-01
Results in studies concerning cortical changes in idiopathic sudden sensorineural hearing loss (ISSNHL) are not homogeneous, in particular due to the different neuroimaging techniques implemented and the diverse stages of ISSNHL studied. Considering the recent advances in state-of-the-art positron emission tomography (PET) cameras, the aim of this study was to gain more insight into the neuroanatomical differences associated with the earliest stages of unilateral ISSNHL and clinical-perceptual performance changes. After an audiological examination including the mean auditory threshold (mean AT), mean speech discrimination score (mean SDS) and Tinnitus Handicap Inventory (THI), 14 right-handed ISSNHL patients underwent brain [ 18 F]fluorodeoxyglucose (FDG)-PET within 72 h of the onset of symptoms. When compared to an homogeneous group of 35 healthy subjects by means of statistical parametric mapping, a relative increase in FDG uptake was found in the right superior and medial frontal gyrus as well as in the right anterior cingulate cortex in ISSNHL patients. Conversely, the same group showed a significant relative decrease in FDG uptake in the right middle temporal, precentral and postcentral gyrus as well as in the left posterior cingulate cortex, left lingual, superior, middle temporal and middle frontal gyrus and in the left insula. Regression analysis showed a positive correlation between mean THI and glucose consumption in the right anterior cingulate cortex and a positive correlation between mean SDS and glucose consumption in the left precentral gyrus. The relative changes in FDG uptake found in these brain regions and the positive correlation with mean SDS and THI scores in ISSNHL could possibly highlight new aspects of cerebral rearrangement, contributing to further explain changes in those functions that support speech recognition during the sudden impairment of unilateral auditory input. Copyright © 2017 Elsevier B.V. All rights reserved.
"Crosstalk" technique: A comparison between two generations of cryoballoon catheter.
Yang, Jian-du; Sun, Qi; Guo, Xiao-Gang; Zhou, Gong-Bu; Liu, Xu; Luo, Bin; Wei, Hui-Qiang; Liang, Jackson J; Ma, Jian
2018-03-30
The "Crosstalk" technique: if pulmonary vein isolation (PVI) of the superior one is not achieved due to a gap in the inferior part, it could be done during inferior vein cryoablation. This maneuver minimizes the total energy delivery time and number of lesions. We aimed to correlate the likelihood of crosstalk phenomenon with certain anatomic characteristics. A total of 676 patients undergoing a first ablation procedure for paroxysmal or persistent atrial fibrillation (470 first-generation cryoballoon [CB] and 206 second-generation CB) between June 2014 and December 2016 were included. "Crosstalk" phenomenon occurred in 32 patients (18 first-generation CB, 14 second-generation CB). Compared to 54 control patients without crosstalk, the angle between left superior pulmonary vein (LSPV) and left atrial (LA) roof-plane, left pulmonary common ostia were significant parameters associated with crosstalk (odds ratio [OR] = 1.20, ±95% confidence interval [CI]: 1.11-1.31, P < 0.001; OR = 5.67, ±95% CI: 1.08-28.69, P = 0.04). As for angle between LSPV and LA roof-plane, the cut-off value was 28.68° with a sensitivity of 72.22%, a specificity of 81.25%, and an area under the receiver operating characteristic curve of 0.87 to predict the possibility of crosstalk technique application to get isolated in LSPV. Among the crosstalk group, there was no statistical difference between first-generation CB and second-generation CB in pulmonary anatomic characteristics. Crosstalk technique can be effective in patients with AF undergoing CB ablation using with both first and second-generation CBs. Anatomic characteristics predictive of crosstalk include a left common ostia and smaller angle between the LSPV and LA roof-plane. © 2018 Wiley Periodicals, Inc.
Mapping the cortical representation of speech sounds in a syllable repetition task.
Markiewicz, Christopher J; Bohland, Jason W
2016-11-01
Speech repetition relies on a series of distributed cortical representations and functional pathways. A speaker must map auditory representations of incoming sounds onto learned speech items, maintain an accurate representation of those items in short-term memory, interface that representation with the motor output system, and fluently articulate the target sequence. A "dorsal stream" consisting of posterior temporal, inferior parietal and premotor regions is thought to mediate auditory-motor representations and transformations, but the nature and activation of these representations for different portions of speech repetition tasks remains unclear. Here we mapped the correlates of phonetic and/or phonological information related to the specific phonemes and syllables that were heard, remembered, and produced using a series of cortical searchlight multi-voxel pattern analyses trained on estimates of BOLD responses from individual trials. Based on responses linked to input events (auditory syllable presentation), predictive vowel-level information was found in the left inferior frontal sulcus, while syllable prediction revealed significant clusters in the left ventral premotor cortex and central sulcus and the left mid superior temporal sulcus. Responses linked to output events (the GO signal cueing overt production) revealed strong clusters of vowel-related information bilaterally in the mid to posterior superior temporal sulcus. For the prediction of onset and coda consonants, input-linked responses yielded distributed clusters in the superior temporal cortices, which were further informative for classifiers trained on output-linked responses. Output-linked responses in the Rolandic cortex made strong predictions for the syllables and consonants produced, but their predictive power was reduced for vowels. The results of this study provide a systematic survey of how cortical response patterns covary with the identity of speech sounds, which will help to constrain and guide theoretical models of speech perception, speech production, and phonological working memory. Copyright © 2016 Elsevier Inc. All rights reserved.
Functional mapping of language networks in the normal brain using a word-association task.
Ghosh, Shantanu; Basu, Amrita; Kumaran, Senthil S; Khushu, Subash
2010-08-01
Language functions are known to be affected in diverse neurological conditions, including ischemic stroke, traumatic brain injury, and brain tumors. Because language networks are extensive, interpretation of functional data depends on the task completed during evaluation. The aim was to map the hemodynamic consequences of word association using functional magnetic resonance imaging (fMRI) in normal human subjects. Ten healthy subjects underwent fMRI scanning with a postlexical access semantic association task vs lexical processing task. The fMRI protocol involved a T2*-weighted gradient-echo echo-planar imaging (GE-EPI) sequence (TR 4523 ms, TE 64 ms, flip angle 90°) with alternate baseline and activation blocks. A total of 78 scans were taken (interscan interval = 3 s) with a total imaging time of 587 s. Functional data were processed in Statistical Parametric Mapping software (SPM2) with 8-mm Gaussian kernel by convolving the blood oxygenation level-dependent (BOLD) signal with an hemodynamic response function estimated by general linear method to generate SPM{t} and SPM{F} maps. Single subject analysis of the functional data (FWE-corrected, P≤0.001) revealed extensive activation in the frontal lobes, with overlaps among middle frontal gyrus (MFG), superior, and inferior frontal gyri. BOLD activity was also found in the medial frontal gyrus, middle occipital gyrus (MOG), anterior fusiform gyrus, superior and inferior parietal lobules, and to a smaller extent, the thalamus and right anterior cerebellum. Group analysis (FWE-corrected, P≤0.001) revealed neural recruitment of bilateral lingual gyri, left MFG, bilateral MOG, left superior occipital gyrus, left fusiform gyrus, bilateral thalami, and right cerebellar areas. Group data analysis revealed a cerebellar-occipital-fusiform-thalamic network centered around bilateral lingual gyri for word association, thereby indicating how these areas facilitate language comprehension by activating a semantic association network of words processed postlexical access. This finding is important when assessing the extent of cognitive damage and/or recovery and can be used for presurgical planning after optimization.
Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth
2014-01-01
Functional hemispheric differences for speech and language processing have been traditionally studied by using verbal dichotic-listening paradigms. The commonly observed right-ear preference for the report of dichotically presented syllables is taken to reflect the left hemispheric dominance for speech processing. However, the results of recent functional imaging studies also show that both hemispheres - not only the left - are engaged by dichotic listening, suggesting a more complex relationship between behavioral laterality and functional hemispheric activation asymmetries. In order to more closely examine the hemispheric differences underlying dichotic-listening performance, we report an analysis of functional magnetic resonance imaging (fMRI) data of 104 right-handed subjects, for the first time combining an interhemispheric difference and conjunction analysis. This approach allowed for a distinction of homotopic brain regions which showed symmetrical (i.e., brain region significantly activated in both hemispheres and no activation difference between the hemispheres), relative asymmetrical (i.e., activated in both hemispheres but significantly stronger in one than the other hemisphere), and absolute asymmetrical activation patterns (i.e., activated only in one hemisphere and this activation is significantly stronger than in the other hemisphere). Symmetrical activation was found in large clusters encompassing temporal, parietal, inferior frontal, and medial superior frontal regions. Relative and absolute left-ward asymmetries were found in the posterior superior temporal gyrus, located adjacent to symmetrically activated areas, and creating a lateral-medial gradient from symmetrical towards absolute asymmetrical activation within the peri-Sylvian region. Absolute leftward asymmetry was also found in the post-central and medial superior frontal gyri, while rightward asymmetries were found in middle temporal and middle frontal gyri. We conclude that dichotic listening engages a bihemispheric cortical network, showing a symmetrical and mostly leftward asymmetrical pattern. The here obtained functional (a)symmetry map might serve as a basis for future studies which - by studying the relevance of the here identified regions - clarify the relationship between behavioral laterality measures and hemispheric asymmetry. © 2013 Elsevier Inc. All rights reserved.
Hatchard, Taylor; Mioduszewski, Ola; Fall, Carley; Byron-Alhassan, Aziza; Fried, Peter; Smith, Andra M
2017-06-30
It is widely known that alcohol consumption adversely affects human health, particularly in the immature developing brains of adolescents and young adults, which may also have a long-lasting impact on executive functioning. The present study investigated the neural activity of 28 young adults from the Ottawa Prenatal Prospective Study (OPPS) using functional magnetic resonance imaging (fMRI). The purpose of this study was to discover the impact of regular low-level alcohol consumption on response inhibition as the participants performed a Go/No-Go task. Results indicated that, despite a lack of performance differences, young adults who use alcohol on a regular basis differ significantly from those who do not use alcohol regularly (if at all) with respect to their neural activity as the circuitry engaged in response inhibition is being challenged. Specifically, areas that showed significantly more activation in users compared to controls included the left hippocampus, parahippocampal gyrus, superior frontal gyrus, precentral gyrus, right superior parietal lobule, and the cerebellum. These results suggest that even in low amounts, regular consumption of alcohol may have a significant impact on neurophysiological functioning during response inhibition in the developing brain of youth. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Mapping the unconscious maintenance of a lost first language.
Pierce, Lara J; Klein, Denise; Chen, Jen-Kai; Delcenserie, Audrey; Genesee, Fred
2014-12-02
Optimal periods during early development facilitate the formation of perceptual representations, laying the framework for future learning. A crucial question is whether such early representations are maintained in the brain over time without continued input. Using functional MRI, we show that internationally adopted (IA) children from China, exposed exclusively to French since adoption (mean age of adoption, 12.8 mo), maintained neural representations of their birth language despite functionally losing that language and having no conscious recollection of it. Their neural patterns during a Chinese lexical tone discrimination task matched those observed in Chinese/French bilinguals who have had continual exposure to Chinese since birth and differed from monolingual French speakers who had never been exposed to Chinese. They processed lexical tone as linguistically relevant, despite having no Chinese exposure for 12.6 y, on average, and no conscious recollection of that language. More specifically, IA participants recruited left superior temporal gyrus/planum temporale, matching the pattern observed in Chinese/French bilinguals. In contrast, French speakers who had never been exposed to Chinese did not recruit this region and instead activated right superior temporal gyrus. We show that neural representations are not overwritten and suggest a special status for language input obtained during the first year of development.
MEG Coherence and DTI Connectivity in mTLE
Nazem-Zadeh, Mohammad-Reza; Bowyer, Susan M.; Moran, John E.; Davoodi-Bojd, Esmaeil; Zillgitt, Andrew; Weiland, Barbara J.; Bagher-Ebadian, Hassan; Mahmoudi, Fariborz; Elisevich, Kost; Soltanian-Zadeh, Hamid
2017-01-01
Purpose Magnetoencephalography (MEG) is a noninvasive imaging method for localization of focal epileptiform activity in patients with epilepsy. Diffusion tensor imaging (DTI) is a noninvasive imaging method for measuring the diffusion properties of the underlying white matter tracts through which epileptiform activity is propagated. This study investigates the relationship between the cerebral functional abnormalities quantified by MEG coherence and structural abnormalities quantified by DTI in mesial temporal lobe epilepsy (mTLE). Methods Resting state MEG data was analyzed using MEG coherence source imaging (MEG-CSI) method to determine the coherence in 54 anatomical sites in 17 adult mTLE patients with surgical resection and Engel class I outcome, and 17 age- and gender- matched controls. DTI tractography identified the fiber tracts passing through these same anatomical sites of the same subjects. Then, DTI nodal degree and laterality index were calculated and compared with the corresponding MEG coherence and laterality index. Results MEG coherence laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in insular cortex and both lateral orbitofrontal and superior temporal gyri (p<0.017). Likewise, DTI nodal degree laterality, after Bonferroni adjustment, showed significant differences for right versus left mTLE in gyrus rectus, insular cortex, precuneus and superior temporal gyrus (p<0.017). In insular cortex, MEG coherence laterality correlated with DTI nodal degree laterality (R2 = 0.46; p = 0.003) in the cases of mTLE. None of these anatomical sites showed statistically significant differences in coherence laterality between right and left sides of the controls. Coherence laterality was in agreement with the declared side of epileptogenicity in insular cortex (in 82% of patients) and both lateral orbitofrontal (88%) and superior temporal gyri (88%). Nodal degree laterality was also in agreement with the declared side of epileptogenicity in gyrus rectus (in 88% of patients), insular cortex (71%), precuneus (82%) and superior temporal gyrus (94%). Combining all significant laterality indices improved the lateralization accuracy to 94% and 100% for the coherence and nodal degree laterality indices, respectively. Conclusion The associated variations in diffusion properties of fiber tracts quantified by DTI and coherence measures quantified by MEG with respect to epileptogenicity possibly reflect the chronic microstructural cerebral changes associated with functional interictal activity. The proposed methodology for using MEG and DTI to investigate diffusion abnormalities related to focal epileptogenicity and propagation may provide a further means of noninvasive lateralization. PMID:27060092
Qian, J; Yu, S S; Liu, J J; Chen, L; Jing, J H
2018-04-03
Objective: To analyze the biomechanics changes of lumbar spine caused by foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy using the finite element method. Methods: Three healthy adult males (aged 35.6 to 42.3 years) without spinal diseases were enrolled in this study and 3D-CT scans were carried out to obtain the parameters of lumbar spine. Mimics software was applied to build a 3D finite element model of lumbar spine. Graded resections (1/4, 2/4, 3/4 and 4/4) of the left superior articular process of L(5) were done via percutaneous transforaminal endoscopic lumbar discectomy. Then, the pressure of the L(4/5) right facets, the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine were recorded after simulating the normal flexion and extension, lateral flexion and rotation of the lumbar spine model during different resections. The data were compared among groups with analysis of variance. Results: Comparing with the normal group, after 1/4 resection of the left superior articular process of L(5), the pressure of the L(4/5) right facets showed significant differences during left lateral flexion and rotation of lumbar spine ( q =8.823, 8.248, both P <0.05); and the pressure of L(4/5) intervertebral disc also changed significantly during extension and right rotation of lumbar spine ( q =6.918, 6.438, both P <0.05); the motion of lumbar spine showed obvious differences during right lateral flexion and rotation ( q =6.845, 7.772, 13.58, all P <0.05). Comparing with the normal group, after 2/4 resection of the left superior articular process of L(5), the pressure of the L(4/5) right facets presented significant differences during all conditions ( q =5.670-17.830, all P <0.05); the pressure of L(4/5) intervertebral disc changed significantly during flexion, extension, lateral flexion and right rotation ( q =5.260, 17.150, 5.727, 8.890, 15.660, all P <0.05); the motion of lumbar spine also existed differences during extension, lateral flexion and rotation ( q =9.106, 5.431, 12.060, 11.160, 17.260, all P <0.05). However, after 3/4 resections, the pressure of the L(4/5) right facets, the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine presented differences during all conditions when compared with those in normal group ( q =6.303-25.48, all P <0.05). After 4/4 resections, the pressure of the L(4/5) right facets and the pressure of the L(4/5) intervertebral disc and the motion of lumbar spine showed significant differences during all conditions when compared with those in normal group ( q =8.065-45.70, all P <0.05). Conclusions: The biomechanics and the stability of lumbar spine changed partly after 1/4 resection of the superior articular process and obviously after more than 2/4 is resected. The superior articular process should be paid more attention during foraminotomy via percutaneous transforaminal endoscopic lumbar discectomy.
Improving language mapping in clinical fMRI through assessment of grammar.
Połczyńska, Monika; Japardi, Kevin; Curtiss, Susan; Moody, Teena; Benjamin, Christopher; Cho, Andrew; Vigil, Celia; Kuhn, Taylor; Jones, Michael; Bookheimer, Susan
2017-01-01
Brain surgery in the language dominant hemisphere remains challenging due to unintended post-surgical language deficits, despite using pre-surgical functional magnetic resonance (fMRI) and intraoperative cortical stimulation. Moreover, patients are often recommended not to undergo surgery if the accompanying risk to language appears to be too high. While standard fMRI language mapping protocols may have relatively good predictive value at the group level, they remain sub-optimal on an individual level. The standard tests used typically assess lexico-semantic aspects of language, and they do not accurately reflect the complexity of language either in comprehension or production at the sentence level. Among patients who had left hemisphere language dominance we assessed which tests are best at activating language areas in the brain. We compared grammar tests (items testing word order in actives and passives, wh -subject and object questions, relativized subject and object clauses and past tense marking) with standard tests (object naming, auditory and visual responsive naming), using pre-operative fMRI. Twenty-five surgical candidates (13 females) participated in this study. Sixteen patients presented with a brain tumor, and nine with epilepsy. All participants underwent two pre-operative fMRI protocols: one including CYCLE-N grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking); and a second one with standard fMRI tests (object naming, auditory and visual responsive naming). fMRI activations during performance in both protocols were compared at the group level, as well as in individual candidates. The grammar tests generated more volume of activation in the left hemisphere (left/right angular gyrus, right anterior/posterior superior temporal gyrus) and identified additional language regions not shown by the standard tests (e.g., left anterior/posterior supramarginal gyrus). The standard tests produced more activation in left BA 47. Ten participants had more robust activations in the left hemisphere in the grammar tests and two in the standard tests. The grammar tests also elicited substantial activations in the right hemisphere and thus turned out to be superior at identifying both right and left hemisphere contribution to language processing. The grammar tests may be an important addition to the standard pre-operative fMRI testing.
Takeuchi, Satoru; Takasato, Yoshio; Masaoka, Hiroyuki; Hayakawa, Takanori; Otani, Naoki; Yoshino, Yoshikazu; Yatsushige, Hiroshi; Sugawara, Takashi; Aoyagi, Chikashi; Suzuki, Go
2009-10-01
A rare case of a traumatic middle meningeal arteriovenous fistula on the side of the head opposite to the injured side was reported. A 21-year-old man was admitted to our hospital after a traffic accident in which the right side of his head was hit. CT scans and MR images on admission showed a right temporal bone fracture, traumatic subarachnoid hemorrhage, and a left frontal lobe contusion. Three months after the head injury, he complained of tinnitus and exophthalmos. One year after the head injury, left external carotid angiograms showed a dural arteriovenous fistula fed by the left dilated middle meningeal artery and draining into the middle meningeal vein. Early filling of the sphenoparietal sinus, cavernous sinus, superior ophthalmic vein, and the cortical vein were also detected. Transarterial embolization of the left middle meningeal fistula was performed, resulting in the disappearance of the lesion. The postoperative course was uneventful.
[Asperger syndrome with highly exceptional calendar memory: a case report].
Sevik, Ali Emre; Cengel Kültür, Ebru; Demirel, Hilal; Karlı Oğuz, Kader; Akça, Onur; Lay Ergün, Eser; Demir, Başaran
2010-01-01
Some patients with pervasive developmental disorders develop unusual talents, which are characterized as savant syndrome. Herein we present neuropsychological examination and brain imaging (fMRI and brain SPECT) findings of an 18-year-old male with Asperger syndrome and highly unusual calendar memory. Neuropsychological evaluation of the case indicated mild attention, memory, and problem solving deficits, and severe executive function deficits that included conceptualization, category formation, and abstraction. Functional MRI findings showed activation above the baseline level (P<0.05) in the bilateral inferior parietal lobule, precuneus, superior and middle frontal gyri, and medial frontal cortex. Brain SPECT findings, in comparison to rest-SPECT findings, showed that there was hypoperfusion in some brain regions, including the right frontal cortex and right parietal cortex. Baseline blood perfusion in the left frontal cortex was also observed, as well as hypoperfusion in the right parietal-occipital cortex and in the right basal ganglion (compared to the left side). The results of the present study and further research will contribute to our understanding of calendar memory and savant syndrome.
Maximov, G K; Maximov, K G; Chokoeva, A A; Lotti, T; Wollina, U; Patterson, J W; Guarneri, C; Tana, C; Fioranelli, M; Roccia, M G; Kanazawa, N; Tchernev, G
2016-01-01
Lyme boreliosis is caused by the spirochete Borrelia burdorferi, which is transmitted by ticks. A 59 year-old woman developed pyrexia, strong headaches, ataxia, dysarthria and tremor of the limbs after a tick bite. She was unable to work and eat on her own. She was hospitalized three times and diagnosed with cerebellar intention tremor, cerebellar ataxia, dysarthria, bilateral horizontal gaze paralysis and a central lesion of the left facial nerve. There were no pyramidal, sensory or psychiatric disturbances. The brain MRI showed multifocal leucoencephalopathy with many hyperintense areas in both hemispheres, as well as in the left superior pedunculus cerebellaris. Diagnosis was confirmed by serologic examination. Treatment with cephtriaxone, doxycycline, methylprednisolone, cephixime and ciprofloxacine was administered without effect on the tremor, ataxia and horizontal gaze paralysis. Treatment was then administered with 5-hydroxytriptamine (5-HT) in increased doses. The result of the three-month treatment with 5-HT was a gradual diminution of the tremor and the ataxia and an increase in the ability to eat, walk and work independently.
Blur spot limitations in distal endoscope sensors
NASA Astrophysics Data System (ADS)
Yaron, Avi; Shechterman, Mark; Horesh, Nadav
2006-02-01
In years past, the picture quality of electronic video systems was limited by the image sensor. In the present, the resolution of miniature image sensors, as in medical endoscopy, is typically superior to the resolution of the optical system. This "excess resolution" is utilized by Visionsense to create stereoscopic vision. Visionsense has developed a single chip stereoscopic camera that multiplexes the horizontal dimension of the image sensor into two (left and right) images, compensates the blur phenomena, and provides additional depth resolution without sacrificing planar resolution. The camera is based on a dual-pupil imaging objective and an image sensor coated by an array of microlenses (a plenoptic camera). The camera has the advantage of being compact, providing simultaneous acquisition of left and right images, and offering resolution comparable to a dual chip stereoscopic camera with low to medium resolution imaging lenses. A stereoscopic vision system provides an improved 3-dimensional perspective of intra-operative sites that is crucial for advanced minimally invasive surgery and contributes to surgeon performance. An additional advantage of single chip stereo sensors is improvement of tolerance to electronic signal noise.
Isolated loss of inferior pubic ramus: a case report.
Saber, Aly
2008-06-12
It has been stated that regulation of the development of the iliac bone is different from that of the ischium and pubis. There are well-known clinical syndromes concerned with hypoplasia of ischiopubic bone, such as small patella syndrome, nail-patella syndrome, ischiopubic-patellar hypoplasia, and ischiopubic hypoplasia. A fit and otherwise healthy 35-year-old woman presented with pain in the left lower limb of 6 months duration. She sought advice from an orthopedic surgeon and was referred for exclusion of a primary soft tissue neoplasm. There was no history of trauma, chronic medical illness or surgical operations. Full systemic examination, laboratory investigations and whole body imaging showed no soft tissue swelling or any other bony defects. Isolated loss of the left inferior pubic ramus and thinning of the superior pubic ramus were detected, raising the question of whether the lesion was a secondary osteolytic lesion, a primary osteolytic lesion or due to endocrine disease. Isolated loss of the inferior pubic ramus with no concomitant bony or soft tissue anomalies is previously unreported. To the best of the author's knowledge, this finding has not been described previously.
Basho, Surina; Palmer, Erica D.; Rubio, Miguel A.; Wulfeck, Beverly; Müller, Ralph-Axel
2007-01-01
Verbal fluency is a widely used neuropsychological paradigm. In fMRI implementations, conventional unpaced (self-paced) versions are suboptimal due to uncontrolled timing of responses, and overt responses carry the risk of motion artifact. We investigated the behavioral and neurofunctional effects of response pacing and overt speech in semantic category-driven word generation. Twelve right-handed adults (8 female) ages 21–37 were scanned in four conditions each: Paced-Overt, Paced-Covert, Unpaced-Overt, and Unpaced-Covert. There was no significant difference in the number of exemplars generated between overt versions of the paced and unpaced conditions. Imaging results for category-driven word generation overall showed left-hemispheric activation in inferior frontal cortex, premotor cortex, cingulate gyrus, thalamus, and basal ganglia. Direct comparison of generation modes revealed significantly greater activation for the paced compared to unpaced conditions in right superior temporal, bilateral middle frontal, and bilateral anterior cingulate cortex, including regions associated with sustained attention, motor planning, and response inhibition. Covert (compared to overt) conditions showed significantly greater effects in right parietal and anterior cingulate, as well as left middle temporal and superior frontal regions. We conclude that paced overt paradigms are useful adaptations of conventional semantic fluency in fMRI, given their superiority with regard to control over and monitoring of behavioral responses. However, response pacing is associated with additional non-linguistic effects related to response inhibition, motor preparation, and sustained attention. PMID:17292926
How does experience modulate auditory spatial processing in individuals with blindness?
Tao, Qian; Chan, Chetwyn C H; Luo, Yue-jia; Li, Jian-jun; Ting, Kin-hung; Wang, Jun; Lee, Tatia M C
2015-05-01
Comparing early- and late-onset blindness in individuals offers a unique model for studying the influence of visual experience on neural processing. This study investigated how prior visual experience would modulate auditory spatial processing among blind individuals. BOLD responses of early- and late-onset blind participants were captured while performing a sound localization task. The task required participants to listen to novel "Bat-ears" sounds, analyze the spatial information embedded in the sounds, and specify out of 15 locations where the sound would have been emitted. In addition to sound localization, participants were assessed on visuospatial working memory and general intellectual abilities. The results revealed common increases in BOLD responses in the middle occipital gyrus, superior frontal gyrus, precuneus, and precentral gyrus during sound localization for both groups. Between-group dissociations, however, were found in the right middle occipital gyrus and left superior frontal gyrus. The BOLD responses in the left superior frontal gyrus were significantly correlated with accuracy on sound localization and visuospatial working memory abilities among the late-onset blind participants. In contrast, the accuracy on sound localization only correlated with BOLD responses in the right middle occipital gyrus among the early-onset counterpart. The findings support the notion that early-onset blind individuals rely more on the occipital areas as a result of cross-modal plasticity for auditory spatial processing, while late-onset blind individuals rely more on the prefrontal areas which subserve visuospatial working memory.