Sample records for developing lightning prediction

  1. Developing Lightning Prediction Tools for the CCAFS Dual-Polarimetric Radar

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.; Carey, L. D.; Deierling, W.; Johnson, E.; Bateman, M.

    2009-01-01

    NASA Marshall Space Flight Center and the University of Alabama Huntsville are collaborating with the 45th Weather Squadron (45WS) to develop improved lightning prediction capabilities for the new C-band dual-polarimetric weather radar being acquired for use by 45WS and launch weather forecasters at Cape Canaveral Air Force Station (CCAFS). In particular, these algorithms will focus on lightning onset, cessation and combined lightning-radar applications for convective winds assessment. Research using radar reflectivity (Z) data for prediction of lightning onset has been extensively discussed in the literature and subsequently applied by launch weather forecasters as it pertains to lightning nowcasting. Currently the forecasters apply a relatively straight forward but effective temperature-Z threshold algorithm for assessing the likelihood of lightning onset in a given storm. In addition, a layered VIL above the freezing level product is used as automated guidance for the onset of lightning. Only limited research and field work has been conducted on lightning cessation using Z and vertically-integrated Z for determining cessation. Though not used operationally vertically-integrated Z (basis for VIL) has recently shown promise as a tool for use in nowcasting lightning cessation. The work discussed herein leverages and expands upon these and similar reflectivity-threshold approaches via the application/addition of over two decades of polarimetric radar research focused on distinct multi-parameter radar signatures of ice/mixed-phase initiation and ice-crystal orientation in highly electrified convective clouds. Specifically, our approach is based on numerous previous studies that have observed repeatable patterns in the behavior of the vertical hydrometeor column as it relates to the temporal evolution of differential reflectivity and depolarization (manifested in either LDR or p(sub hv)), development of in-situ mixed and ice phase microphysics, electric fields, and

  2. [Lightning-caused fire, its affecting factors and prediction: a review].

    PubMed

    Zhang, Ji-Li; Bi, Wu; Wang, Xiao-Hong; Wang, Zi-Bo; Li, Di-Fei

    2013-09-01

    Lightning-caused fire is the most important natural fire source. Its induced forest fire brings enormous losses to human beings and ecological environment. Many countries have paid great attention to the prediction of lightning-caused fire. From the viewpoint of the main factors affecting the formation of lightning-caused fire, this paper emphatically analyzed the effects and action mechanisms of cloud-to-ground lightning, fuel, meteorology, and terrain on the formation and development process of lightning-caused fire, and, on the basis of this, summarized and reviewed the logistic model, K-function, and other mathematical methods widely used in prediction research of lightning-caused fire. The prediction methods and processes of lightning-caused fire in America and Canada were also introduced. The insufficiencies and their possible solutions for the present researches as well as the directions of further studies were proposed, aimed to provide necessary theoretical basis and literature reference for the prediction of lightning-caused fire in China.

  3. Development of Lightning Observation Network in the Western Pacific Region for the Intensity Prediction of Severe Weather

    NASA Astrophysics Data System (ADS)

    Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.

    2017-12-01

    Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.

  4. Lightning Forecasts and Data Assimilation into Numerical Weather Prediction Models

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.; Mansell, E. R.; Fierro, A.; Ziegler, C.

    2012-12-01

    This presentation reviews two aspects of lightning in numerical weather prediction (NWP) models: forecasting lightning and assimilating lightning data into NWP models to improve weather forecasts. One of the earliest routine forecasts of lightning was developed for fire weather operations. This approach used a multi-parameter regression analysis of archived cloud-to-ground (CG) lightning data and archived NWP data to optimize the combination of model state variables to use in forecast equations for various CG rates. Since then, understanding of how storms produce lightning has improved greatly. As the treatment of ice in microphysics packages used by NWP models has improved and the horizontal resolution of models has begun approaching convection-permitting scales (with convection-resolving scales on the horizon), it is becoming possible to use this improved understanding in NWP models to predict lightning more directly. An important role for data assimilation in NWP models is to depict the location, timing, and spatial extent of thunderstorms during model spin-up so that the effects of prior convection that can strongly influence future thunderstorm activity, such as updrafts and outflow boundaries, can be included in the initial state of a NWP model run. Radar data have traditionally been used, but systems that map lightning activity with varying degrees of coverage, detail, and detection efficiency are now available routinely over large regions and reveal information about storms that is complementary to the information provided by radar. Because data from lightning mapping systems are compact, easily handled, and reliably indicate the location and timing of thunderstorms, even in regions with little or no radar coverage, several groups have investigated techniques for assimilating these data into NWP models. This application will become even more valuable with the launch of the Geostationary Lightning Mapper on the GOES-R satellite, which will extend routine

  5. Comparison between model predictions and observations of ELF radio atmospherics generated by rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Dupree, N. A.; Moore, R. C.

    2011-12-01

    Model predictions of the ELF radio atmospheric generated by rocket-triggered lightning are compared with observations performed at Arrival Heights, Antarctica. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. ELF observations performed at Arrival Heights, Antarctica during rocket-triggered lightning experiments at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida are presented. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with LWPC to predict the sferic waveform observed at Arrival Heights under various ionospheric conditions. This paper critically compares observations with model predictions.

  6. Toward a Time-Domain Fractal Lightning Simulation

    NASA Astrophysics Data System (ADS)

    Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Lauben, D.; Inan, U. S.

    2010-12-01

    Electromagnetic simulations of lightning are useful for prediction of lightning properties and exploration of the underlying physical behavior. Fractal lightning models predict the spatial structure of the discharge, but thus far do not provide much information about discharge behavior in time and therefore cannot predict electromagnetic wave emissions or current characteristics. Here we develop a time-domain fractal lightning simulation from Maxwell's equations, the method of moments with the thin wire approximation, an adaptive time-stepping scheme, and a simplified electrical model of the lightning channel. The model predicts current pulse structure and electromagnetic wave emissions and can be used to simulate the entire duration of a lightning discharge. The model can be used to explore the electrical characteristics of the lightning channel, the temporal development of the discharge, and the effects of these characteristics on observable electromagnetic wave emissions.

  7. NASA Manned Launch Vehicle Lightning Protection Development

    NASA Technical Reports Server (NTRS)

    McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.

    2009-01-01

    Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle

  8. Lightning Prediction using Electric Field Measurements Associated with Convective Events at a Tropical Location

    NASA Astrophysics Data System (ADS)

    Jana, S.; Chakraborty, R.; Maitra, A.

    2017-12-01

    Nowcasting of lightning activities during intense convective events using a single electric field monitor (EFM) has been carried out at a tropical location, Kolkata (22.65oN, 88.45oE). Before and at the onset of heavy lightning, certain changes of electric field (EF) can be related to high liquid water content (LWC) and low cloud base height (CBH). The present study discusses the utility of EF observation to show a few aspects of convective events. Large convective cloud showed by high LWC and low CBH can be detected from EF variation which could be a precursor of upcoming convective events. Suitable values of EF gradient can be used as an indicator of impending lightning events. An EF variation of 0.195 kV/m/min can predict lightning within 17.5 km radius with a probability of detection (POD) of 91% and false alarm rate (FAR) of 8% with a lead time of 45 min. The total number of predicted lightning strikes is nearly 9 times less than that measured by the lightning detector. This prediction technique can, therefore, give an estimate of cloud to ground (CG) and intra cloud (IC) lighting occurrences within the surrounding area. This prediction technique involving POD, FAR and lead time information shows a better prediction capability compared to the techniques reported earlier. Thus an EFM can be effectively used for prediction of lightning events at a tropical location.

  9. An improved method for predicting the lightning performance of high and extra-high-voltage substation shielding

    NASA Astrophysics Data System (ADS)

    Vinh, T.

    1980-08-01

    There is a need for better and more effective lightning protection for transmission and switching substations. In the past, a number of empirical methods were utilized to design systems to protect substations and transmission lines from direct lightning strokes. The need exists for convenient analytical lightning models adequate for engineering usage. In this study, analytical lightning models were developed along with a method for improved analysis of the physical properties of lightning through their use. This method of analysis is based upon the most recent statistical field data. The result is an improved method for predicting the occurrence of sheilding failure and for designing more effective protection for high and extra high voltage substations from direct strokes.

  10. Development of Tactical Lightning Avoidance Product for Terminal Weather Support

    NASA Astrophysics Data System (ADS)

    Yoshikawa, E.; Yoshida, S.; Adachi, T.; Kusunoki, K.; Ushio, T.

    2015-12-01

    Aircraft initiated or intercepted lightning is one of significant issues for civilian flight operation in Japan. It is much less possible than the past that lightning strikes cause fatal aircraft accidents thanks to both of certifications of aircraft design for lightning strikes and many of weather supports for aircraft operation. However, hundreds of lightning strikes to aircrafts have still been reported in each recent year in Japan, and airlines have been forced to delay or cancel most of those flights and to cost several hundred millions of yen for repair. Especially, lightning discharges during winter in the coastal area of the Sea of Japan frequently cause heavy damages on aircrafts due to their large charge transfer. It is important in actual aircraft operation that observed meteorological parameters are converted to decision-making information. Otherwise, pilots, controllers, or operators need to learn meteorology as much as weather experts, and to owe hard work load to interpret observed meteorological data to their risk. Ideally, it is desired to automatically provide them with predicted operation risk, for example, delay time, possibility of flight cancellation, and repair cost caused by lightning.Our research group has just started development of tactical lightning avoidance product, where a risk index of an aircraft operation due to lightning is calculated mainly from three novel observation devices: The phased array weather radar has potential to detect thunderstorms in their early stage due to the high volume scan rate of 10 - 30 sec. A lightning mapping system, such as Broadband Observation network for Lightning and Thunderstorm, indicates electrical structure inside clouds in concert with a co-located radar data. Aircraft sounding and real-time data downlink, especially high-frequency data provided by Secondary Surveillance Radar mode S, gives in-situ measurements of wind and temperature. Especially the in-situ temperature data can indicate

  11. Predicting cloud-to-ground lightning with neural networks

    NASA Technical Reports Server (NTRS)

    Barnes, Arnold A., Jr.; Frankel, Donald; Draper, James Stark

    1991-01-01

    A neural network is being trained to predict lightning at Cape Canaveral for periods up to two hours in advance. Inputs consist of ground based field mill data, meteorological tower data, lightning location data, and radiosonde data. High values of the field mill data and rapid changes in the field mill data, offset in time, provide the forecasts or desired output values used to train the neural network through backpropagation. Examples of input data are shown and an example of data compression using a hidden layer in the neural network is discussed.

  12. Improving Lightning and Precipitation Prediction of Severe Convection Using Lightning Data Assimilation With NCAR WRF-RTFDDA

    NASA Astrophysics Data System (ADS)

    Wang, Haoliang; Liu, Yubao; Cheng, William Y. Y.; Zhao, Tianliang; Xu, Mei; Liu, Yuewei; Shen, Si; Calhoun, Kristin M.; Fierro, Alexandre O.

    2017-11-01

    In this study, a lightning data assimilation (LDA) scheme was developed and implemented in the National Center for Atmospheric Research Weather Research and Forecasting-Real-Time Four-Dimensional Data Assimilation system. In this LDA method, graupel mixing ratio (qg) is retrieved from observed total lightning. To retrieve qg on model grid boxes, column-integrated graupel mass is first calculated using an observation-based linear formula between graupel mass and total lightning rate. Then the graupel mass is distributed vertically according to the empirical qg vertical profiles constructed from model simulations. Finally, a horizontal spread method is utilized to consider the existence of graupel in the adjacent regions of the lightning initiation locations. Based on the retrieved qg fields, latent heat is adjusted to account for the latent heat releases associated with the formation of the retrieved graupel and to promote convection at the observed lightning locations, which is conceptually similar to the method developed by Fierro et al. Three severe convection cases were studied to evaluate the LDA scheme for short-term (0-6 h) lightning and precipitation forecasts. The simulation results demonstrated that the LDA was effective in improving the short-term lightning and precipitation forecasts by improving the model simulation of the qg fields, updrafts, cold pool, and front locations. The improvements were most notable in the first 2 h, indicating a highly desired benefit of the LDA in lightning and convective precipitation nowcasting (0-2 h) applications.

  13. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    NASA Technical Reports Server (NTRS)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey

    2015-01-01

    . 2011) to monitor lightning trends and to anticipate/forecast severe weather (hail > or =2.5 cm, winds > or =25 m/s, tornadoes). The result will be a time-continuous algorithm that uses GOES satellite, radar fields, and HRRR model fields to nowcast first-flash LI and QL, and subsequently monitors lightning trends on a perstorm basis within the LJ algorithm for possible severe weather occurrence out to > or =3 hours. The LI-QL-LJ product will also help prepare the operational forecast community for Geostationary Lightning Mapper (GLM) data expected in late 2015, as these data are monitored for ongoing convective storms. The LI-QL-LJ product will first predict where new lightning is highly probable using GOES imagery of developing cumulus clouds, followed by n analysis of NWS (dual-polarization) radar indicators (reflectivity at the -10 C altitude) of lightning occurrence, to increase confidence that LI is immanent. Once lightning is observed, time-continuous lightning mapping array and Pseudo-GLM observations will be analyzed to assess trends and the severe weather threat as identified by trends in lightning (i.e. LJs). Additionally, 5- and 15-min GOES imagery will then be evaluated on a per-storm basis for overshooting and other cloud-top features known to be associated with severe storms. For the processing framework, the GOES-R 0-1 hour convective initiation algorithm's output will be developed within the Warning Decision Support System - Integrated Information (WDSS-II) tracking tool, and merged with radar and lightning (LMA/Psuedo-GLM) datasets for active storms. The initial focus of system development will be over North Alabama for select lightning-active days in summer 2014, yet will be formed in an expandable manner. The lightning alert tool will also be developed in concert with National Weather Service (NWS) forecasters to meet their needs for real-time, accurate first-flash LI and timing, as well as anticipated lightning trends, amounts, continuation and

  14. Predicting thunderstorm evolution using ground-based lightning detection networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  15. Development and Testing of Operational Dual-Polarimetric Radar Based Lightning Initiation Forecast Techniques

    NASA Technical Reports Server (NTRS)

    Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.

    2011-01-01

    Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.

  16. Lightning Tracking Tool for Assessment of Total Cloud Lightning within AWIPS II

    NASA Technical Reports Server (NTRS)

    Burks, Jason E.; Stano, Geoffrey T.; Sperow, Ken

    2014-01-01

    Total lightning (intra-cloud and cloud-to-ground) has been widely researched and shown to be a valuable tool to aid real-time warning forecasters in the assessment of severe weather potential of convective storms. The trend of total lightning has been related to the strength of a storm's updraft. Therefore a rapid increase in total lightning signifies the strengthening of the parent thunderstorm. The assessment of severe weather potential occurs in a time limited environment and therefore constrains the use of total lightning. A tool has been developed at NASA's Short-term Prediction Research and Transition (SPoRT) Center to assist in quickly analyzing the total lightning signature of multiple storms. The development of this tool comes as a direct result of forecaster feedback from numerous assessments requesting a real-time display of the time series of total lightning. This tool also takes advantage of the new architecture available within the AWIPS II environment. SPoRT's lightning tracking tool has been tested in the Hazardous Weather Testbed (HWT) Spring Program and significant changes have been made based on the feedback. In addition to the updates in response to the HWT assessment, the lightning tracking tool may also be extended to incorporate other requested displays, such as the intra-cloud to cloud-to-ground ratio as well as incorporate the lightning jump algorithm.

  17. Predicting Impacts of Lightning Strikes on Aviation under a Changing Climate Using Regression Kriging

    NASA Astrophysics Data System (ADS)

    Rakas, J.; Ding, C.; Murthi, A.; Lukovic, J.; Bajat, B.

    2016-12-01

    Lightning is a serious hazard that can cause significant impacts on human infrastructure. In the aviation industry, lightning strikes cause damage and outages to air traffic control equipment and facilities at airports that result in major disruptions in commercial air travel, compounding delays during storm events that lead to losses in the millions of dollars. To date poor attention has been given to how lightning might change with the increase of greenhouse gases and temperature. Under some climate change scenarios, the increase in the occurrence and severity of storms in the future with potential for increases in lightning activity has been studied. Recent findings suggest that lighting rates will increase 12 percent per every degree Celsius rise in global temperatures. That will results to a 50 percent increase by the end of the century. Accurate prediction of the intensity and frequency of lightning strikes is therefore required by the air traffic management and control sector in order to develop more robust adaptation and mitigation strategies under the threat of global climate change and increasing lightning rates. In this work, we use the regression kriging method to predict lightning strikes over several regions over the contiguous United Sates using two meteorological variables- namely convective available potential energy (CAPE) and total precipitation rate. These two variables are used as a measure of storm convection, since strong convections are related to more lightning. Specifically, CAPE multiplied by precipitation is used as a proxy for lightning strikes owing to a strong linear relationship between the two. These two meteorological variables are obtained from a subset of models used in phase 5 of the coupled model inter-comparison experiment pertaining to the "high emissions" climate change scenario corresponding to the representative concentration pathway (RCP) 8.5. Precipitation observations from the National Weather Cooperative Network (COOP

  18. Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers

    NASA Astrophysics Data System (ADS)

    Muñoz, Á. G.; Díaz-Lobatón, J.; Chourio, X.; Stock, M. J.

    2016-05-01

    The Lake Maracaibo Basin in North Western Venezuela has the highest annual lightning rate of any place in the world (~ 200 fl km- 2 yr- 1), whose electrical discharges occasionally impact human and animal lives (e.g., cattle) and frequently affect economic activities like oil and natural gas exploitation. Lightning activity is so common in this region that it has a proper name: Catatumbo Lightning (plural). Although short-term lightning forecasts are now common in different parts of the world, to the best of the authors' knowledge, seasonal prediction of lightning activity is still non-existent. This research discusses the relative role of both large-scale and local climate drivers as modulators of lightning activity in the region, and presents a formal predictability study at seasonal scale. Analysis of the Catatumbo Lightning Regional Mode, defined in terms of the second Empirical Orthogonal Function of monthly Lightning Imaging Sensor (LIS-TRMM) and Optical Transient Detector (OTD) satellite data for North Western South America, permits the identification of potential predictors at seasonal scale via a Canonical Correlation Analysis. Lightning activity in North Western Venezuela responds to well defined sea-surface temperature patterns (e.g., El Niño-Southern Oscillation, Atlantic Meridional Mode) and changes in the low-level meridional wind field that are associated with the Inter-Tropical Convergence Zone migrations, the Caribbean Low Level Jet and tropical cyclone activity, but it is also linked to local drivers like convection triggered by the topographic configuration and the effect of the Maracaibo Basin Nocturnal Low Level Jet. The analysis indicates that at seasonal scale the relative contribution of the large-scale drivers is more important than the local (basin-wide) ones, due to the synoptic control imposed by the former. Furthermore, meridional CAPE transport at 925 mb is identified as the best potential predictor for lightning activity in the Lake

  19. Developing an Enhanced Lightning Jump Algorithm for Operational Use

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.

  20. Oceanic Lightning versus Continental Lightning: VLF Peak Current Discrepancies

    NASA Astrophysics Data System (ADS)

    Dupree, N. A., Jr.; Moore, R. C.

    2015-12-01

    Recent analysis of the Vaisala global lightning data set GLD360 suggests that oceanic lightning tends to exhibit larger peak currents than continental lightning (lightning occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the lightning flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic lightning tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic lightning can be significantly stronger than for continental lightning. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.

  1. Lightning Strike Induced Damage Mechanisms of Carbon Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kawakami, Hirohide

    Composite materials have a wide application in aerospace, automotive, and other transportation industries, because of the superior structural and weight performances. Since carbon fiber reinforced polymer composites possess a much lower electrical conductivity as compared to traditional metallic materials utilized for aircraft structures, serious concern about damage resistance/tolerance against lightning has been rising. Main task of this study is to clarify the lightning damage mechanism of carbon fiber reinforced epoxy polymer composites to help further development of lightning strike protection. The research on lightning damage to carbon fiber reinforced polymer composites is quite challenging, and there has been little study available until now. In order to tackle this issue, building block approach was employed. The research was started with the development of supporting technologies such as a current impulse generator to simulate a lightning strike in a laboratory. Then, fundamental electrical properties and fracture behavior of CFRPs exposed to high and low level current impulse were investigated using simple coupon specimens, followed by extensive parametric investigations in terms of different prepreg materials frequently used in aerospace industry, various stacking sequences, different lightning intensity, and lightning current waveforms. It revealed that the thermal resistance capability of polymer matrix was one of the most influential parameters on lightning damage resistance of CFRPs. Based on the experimental findings, the semi-empirical analysis model for predicting the extent of lightning damage was established. The model was fitted through experimental data to determine empirical parameters and, then, showed a good capability to provide reliable predictions for other test conditions and materials. Finally, structural element level lightning tests were performed to explore more practical situations. Specifically, filled-hole CFRP plates and patch

  2. Development of Algorithms and Error Analyses for the Short Baseline Lightning Detection and Ranging System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley O.

    1998-01-01

    NASA, at the John F. Kennedy Space Center (KSC), developed and operates a unique high-precision lightning location system to provide lightning-related weather warnings. These warnings are used to stop lightning- sensitive operations such as space vehicle launches and ground operations where equipment and personnel are at risk. The data is provided to the Range Weather Operations (45th Weather Squadron, U.S. Air Force) where it is used with other meteorological data to issue weather advisories and warnings for Cape Canaveral Air Station and KSC operations. This system, called Lightning Detection and Ranging (LDAR), provides users with a graphical display in three dimensions of 66 megahertz radio frequency events generated by lightning processes. The locations of these events provide a sound basis for the prediction of lightning hazards. This document provides the basis for the design approach and data analysis for a system of radio frequency receivers to provide azimuth and elevation data for lightning pulses detected simultaneously by the LDAR system. The intent is for this direction-finding system to correct and augment the data provided by LDAR and, thereby, increase the rate of valid data and to correct or discard any invalid data. This document develops the necessary equations and algorithms, identifies sources of systematic errors and means to correct them, and analyzes the algorithms for random error. This data analysis approach is not found in the existing literature and was developed to facilitate the operation of this Short Baseline LDAR (SBLDAR). These algorithms may also be useful for other direction-finding systems using radio pulses or ultrasonic pulse data.

  3. Visual Analytics approach for Lightning data analysis and cell nowcasting

    NASA Astrophysics Data System (ADS)

    Peters, Stefan; Meng, Liqiu; Betz, Hans-Dieter

    2013-04-01

    Thunderstorms and their ground effects, such as flash floods, hail, lightning, strong wind and tornadoes, are responsible for most weather damages (Bonelli & Marcacci 2008). Thus to understand, identify, track and predict lightning cells is essential. An important aspect for decision makers is an appropriate visualization of weather analysis results including the representation of dynamic lightning cells. This work focuses on the visual analysis of lightning data and lightning cell nowcasting which aim to detect and understanding spatial-temporal patterns of moving thunderstorms. Lightnings are described by 3D coordinates and the exact occurrence time of lightnings. The three-dimensionally resolved total lightning data used in our experiment are provided by the European lightning detection network LINET (Betz et al. 2009). In all previous works, lightning point data, detected lightning cells and derived cell tracks are visualized in 2D. Lightning cells are either displayed as 2D convex hulls with or without the underlying lightning point data. Due to recent improvements of lightning data detection and accuracy, there is a growing demand on multidimensional and interactive visualization in particular for decision makers. In a first step lightning cells are identified and tracked. Then an interactive graphic user interface (GUI) is developed to investigate the dynamics of the lightning cells: e.g. changes of cell density, location, extension as well as merging and splitting behavior in 3D over time. In particular a space time cube approach is highlighted along with statistical analysis. Furthermore a lightning cell nowcasting is conducted and visualized. The idea thereby is to predict the following cell features for the next 10-60 minutes including location, centre, extension, density, area, volume, lifetime and cell feature probabilities. The main focus will be set to a suitable interactive visualization of the predicted featured within the GUI. The developed visual

  4. An uncertain future for lightning

    NASA Astrophysics Data System (ADS)

    Murray, Lee T.

    2018-03-01

    The most commonly used method for representing lightning in global atmospheric models generally predicts lightning increases in a warmer world. A new scheme finds the opposite result, directly challenging the predictive skill of an old stalwart.

  5. Lightning Jump Algorithm Development for the GOES·R Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    Schultz. E.; Schultz. C.; Chronis, T.; Stough, S.; Carey, L.; Calhoun, K.; Ortega, K.; Stano, G.; Cecil, D.; Bateman, M.; hide

    2014-01-01

    Current work on the lightning jump algorithm to be used in GOES-R Geostationary Lightning Mapper (GLM)'s data stream is multifaceted due to the intricate interplay between the storm tracking, GLM proxy data, and the performance of the lightning jump itself. This work outlines the progress of the last year, where analysis and performance of the lightning jump algorithm with automated storm tracking and GLM proxy data were assessed using over 700 storms from North Alabama. The cases analyzed coincide with previous semi-objective work performed using total lightning mapping array (LMA) measurements in Schultz et al. (2011). Analysis shows that key components of the algorithm (flash rate and sigma thresholds) have the greatest influence on the performance of the algorithm when validating using severe storm reports. Automated objective analysis using the GLM proxy data has shown probability of detection (POD) values around 60% with false alarm rates (FAR) around 73% using similar methodology to Schultz et al. (2011). However, when applying verification methods similar to those employed by the National Weather Service, POD values increase slightly (69%) and FAR values decrease (63%). The relationship between storm tracking and lightning jump has also been tested in a real-time framework at NSSL. This system includes fully automated tracking by radar alone, real-time LMA and radar observations and the lightning jump. Results indicate that the POD is strong at 65%. However, the FAR is significantly higher than in Schultz et al. (2011) (50-80% depending on various tracking/lightning jump parameters) when using storm reports for verification. Given known issues with Storm Data, the performance of the real-time jump algorithm is also being tested with high density radar and surface observations from the NSSL Severe Hazards Analysis & Verification Experiment (SHAVE).

  6. Using Total Lightning Observations to Enhance Lightning Safety

    NASA Technical Reports Server (NTRS)

    Stano, Geoffrey T.

    2012-01-01

    Lightning is often the underrated threat faced by the public when it comes to dangerous weather phenomena. Typically, larger scale events such as floods, hurricanes, and tornadoes receive the vast majority of attention by both the general population and the media. This comes from the fact that these phenomena are large, longer lasting, can impact a large swath of society at one time, and are dangerous events. The threat of lightning is far more isolated on a case by case basis, although millions of cloud-to-ground lightning strikes hit this United States each year. While attention is given to larger meteorological events, lightning is the second leading cause of weather related deaths in the United States. This information raises the question of what steps can be taken to improve lightning safety. Already, the meteorological community s understanding of lightning has increased over the last 20 years. Lightning safety is now better addressed with the National Weather Service s access to the National Lightning Detection Network data and enhanced wording in their severe weather warnings. Also, local groups and organizations are working to improve public awareness of lightning safety with easy phrases to remember, such as "When Thunder Roars, Go Indoors." The impacts can be seen in the greater array of contingency plans, from airports to sports stadiums, addressing the threat of lightning. Improvements can still be made and newer technologies may offer new tools as we look towards the future. One of these tools is a network of sensors called a lightning mapping array (LMA). Several of these networks exist across the United States. NASA s Short-term Prediction Research and Transition Center (SPoRT), part of the Marshall Spaceflight Center, has access to three of these networks from Huntsville, Alabama, the Kennedy Space Center, and Washington D.C. The SPoRT program s mission is to help transition unique products and observations into the operational forecast environment

  7. An Overview of LANL's New Hurricane Lightning Project (Invited)

    NASA Astrophysics Data System (ADS)

    Jeffery, C. A.; Shao, X.; Reisner, J.; Kao, C. J.; Brockwell, M.; Chylek, P.; Fierro, A.; Galassi, M.; Godinez, H. C.; Guimond, S.; Hamlin, T.; Henderson, B. G.; Ho, C.; Holden, D.; Light, T. E.; O'Connor, N.; Suszcynsky, D. M.

    2009-12-01

    For the last two years, Los Alamos National Laboratory has sponsored an internal hurricane lightning project with four main goals: (1) To develop and deploy a new dual VLF/VHF lightning mapping array in the Mississippi River Delta south of New Orleans. (2) To develop a new hurricane forecast capability with fully prognostic cloud electrification and lightning discharge physics, based on a model framework developed at Oklahoma University. (3) To develop a new data assimilation approach for ingesting LANL lightning data into our forecast model that exploits the phenomenological relationship between lightning occurrence and intense convection. (4) To demonstrate that the assimilation of lightning data from the new LANL Gulf array into the hurricane forecast model improves the prediction of rapid intensification (RI), when RI is driven by eyewall adjustment (axisymmetrization) triggered by intense convective events (hot towers). In this talk, I present an overview of LANL's new hurricane lighting project, and the progress we have made to-date in achieving the project's four main goals.

  8. Early Detection of Lightning Caused Wildfires and Prediction of Wildfire Behavior through Energy Distribution, Atmospherics, Geophysics, the Sun's Azimuth, and Topology

    NASA Astrophysics Data System (ADS)

    Giesige, C.; Nava, E.

    2016-12-01

    In the midst of a changing climate we have seen extremes in weather events: lightning, wildfires, hurricanes, tornadoes, and earthquakes. All of these ride on an imbalance of magnetic and electrical distribution about the earth including what goes on from the atmospheric and geophysic levels. There is relevance to the important role the sun plays in developing and feeding of the extreme weather events along with the sun's role helping to create a separation of charges on earth furthering climactic extremes. Focusing attention in North America and on how the sun, atmospheric and geophysic winds come together producing lightning events, there are connections between energy distribution in the environment, lightning caused wildfires, and extreme wildfire behavior. Lightning caused wildfires and extreme fire behavior have become enhanced with the changing climate conditions. Even with strong developments in wildfire science, there remains a lack in full understanding of connections that create a lightning caused wildfire event and lack of monitoring advancements in predicting extreme fire behavior. Several connections have been made in our research allowing us to connect multiple facets of the environment in regards to electric and magnetic influences on wildfires. Among them include: irradiance, winds, pressure systems, humidity, and topology. The connections can be made to develop better detection systems of wildfires, establish with more accuracy areas of highest risk for wildfire and extreme wildfire behavior, and prediction of wildfire behavior. A platform found within the environment can also lead to further understanding and monitoring of other extreme weather events in the future.

  9. Effects of lightning on trees: A predictive model based on in situ electrical resistivity.

    PubMed

    Gora, Evan M; Bitzer, Phillip M; Burchfield, Jeffrey C; Schnitzer, Stefan A; Yanoviak, Stephen P

    2017-10-01

    The effects of lightning on trees range from catastrophic death to the absence of observable damage. Such differences may be predictable among tree species, and more generally among plant life history strategies and growth forms. We used field-collected electrical resistivity data in temperate and tropical forests to model how the distribution of power from a lightning discharge varies with tree size and identity, and with the presence of lianas. Estimated heating density (heat generated per volume of tree tissue) and maximum power (maximum rate of heating) from a standardized lightning discharge differed 300% among tree species. Tree size and morphology also were important; the heating density of a hypothetical 10 m tall Alseis blackiana was 49 times greater than for a 30 m tall conspecific, and 127 times greater than for a 30 m tall Dipteryx panamensis . Lianas may protect trees from lightning by conducting electric current; estimated heating and maximum power were reduced by 60% (±7.1%) for trees with one liana and by 87% (±4.0%) for trees with three lianas. This study provides the first quantitative mechanism describing how differences among trees can influence lightning-tree interactions, and how lianas can serve as natural lightning rods for trees.

  10. Implementation of a lightning data assimilation technique in the Weather Research and Forecasting (WRF) model for improving precipitation prediction

    NASA Astrophysics Data System (ADS)

    Giannaros, Theodore; Kotroni, Vassiliki; Lagouvardos, Kostas

    2015-04-01

    Lightning data assimilation has been recently attracting increasing attention as a technique implemented in numerical weather prediction (NWP) models for improving precipitation forecasts. In the frame of TALOS project, we implemented a robust lightning data assimilation technique in the Weather Research and Forecasting (WRF) model with the aim to improve the precipitation prediction in Greece. The assimilation scheme employs lightning as a proxy for the presence or absence of deep convection. In essence, flash data are ingested in WRF to control the Kain-Fritsch (KF) convective parameterization scheme (CPS). When lightning is observed, indicating the occurrence of convective activity, the CPS is forced to attempt to produce convection, whereas the CPS may be optionally be prevented from producing convection when no lightning is observed. Eight two-day precipitation events were selected for assessing the performance of the lightning data assimilation technique. The ingestion of lightning in WRF was carried out during the first 6 h of each event and the evaluation focused on the consequent 24 h, constituting a realistic setup that could be used in operational weather forecasting applications. Results show that the implemented assimilation scheme can improve model performance in terms of precipitation prediction. Forecasts employing the assimilation of flash data were found to exhibit more skill than control simulations, particularly for the intense (>20 mm) 24 h rain accumulations. Analysis of results also revealed that the option not to suppress the KF scheme in the absence of observed lightning, leads to a generally better performance compared to the experiments employing the full control of the CPS' triggering. Overall, the implementation of the lightning data assimilation technique is found to improve the model's ability to represent convection, especially in situations when past convection has modified the mesoscale environment in ways that affect the

  11. Global Lightning Activity

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.

    2004-01-01

    Our knowledge of the global distribution of lightning has improved dramatically since the advent of spacebased lightning observations. Of major importance was the 1995 launch of the Optical Transient Detector (OTD), followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous eight-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (cloud-to-ground and intra-cloud) has been observed over large regions with high detection efficiency and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (44 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available over large areas of the earth (+/- 72 deg. latitude). Ocean-land contrasts as a function of season are clearly reveled, as are orographic effects and seasonal and interannual variability. The space-based observations indicate that air mass thunderstorms, not large storm system dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated that this capability could lead to significantly improved severe weather warning times and reduced false warning rates. This talk will summarize our space-based lightning measurements, will discuss how lightning observations can be used to monitor severe weather, and

  12. Global Lightning Activity

    NASA Technical Reports Server (NTRS)

    Christian, Hugh

    2003-01-01

    Our knowledge of the global distribution of lightning has improved dramatically since the 1995 launch of the Optical Transient Detector (OTD) followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous seven-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (CG and IC) has been observed over large regions with high detection efficiencies and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (46 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available for large areas of the earth (+/- 72deg latitude) Ocean-land contrasts as a function of season are clearly revealed, as are orographic effects and seasonal and interannual variability. The data set indicates that air mass thunderstorms, not large storm systems dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated hat this capability could lead to significantly improved severe weather warning times and reduced false warning rates.

  13. Lightning Protection

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lightning Technologies, Inc., Pittsfield, MA, - a spinoff company founded by president J. Anderson Plumer, a former NASA contractor employee who developed his expertise with General Electric Company's High Voltage Laboratory - was a key player in Langley Research Center's Storm Hazards Research Program. Lightning Technologies used its NASA acquired experience to develop protective measures for electronic systems and composite structures on aircraft, both of which are particularly susceptible to lightning damage. The company also provides protection design and verification testing services for complete aircraft systems or individual components. Most aircraft component manufacturers are among Lightning Technologies' clients.

  14. Lightning chemistry on Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Ardaseva, Aleksandra; Rimmer, Paul B.; Waldmann, Ingo; Rocchetto, Marco; Yurchenko, Sergey N.; Helling, Christiane; Tennyson, Jonathan

    2017-09-01

    We present a model for lightning shock-induced chemistry that can be applied to atmospheres of arbitrary H/C/N/O chemistry, hence for extrasolar planets and brown dwarfs. The model couples hydrodynamics and the STAND2015 kinetic gas-phase chemistry. For an exoplanet analogue to the contemporary Earth, our model predicts NO and NO2 yields in agreement with observation. We predict height-dependent mixing ratios during a storm soon after a lightning shock of NO ≈10-3 at 40 km and NO2 ≈10-4 below 40 km, with O3 reduced to trace quantities (≪10-10). For an Earth-like exoplanet with a CO2/N2 dominated atmosphere and with an extremely intense lightning storm over its entire surface, we predict significant changes in the amount of NO, NO2, O3, H2O, H2 and predict a significant abundance of C2N. We find that, for the Early Earth, O2 is formed in large quantities by lightning but is rapidly processed by the photochemistry, consistent with previous work on lightning. The chemical effect of persistent global lightning storms are predicted to be significant, primarily due to NO2, with the largest spectral features present at ˜3.4 and ˜6.2 μm. The features within the transmission spectrum are on the order of 1 ppm and therefore are not likely detectable with the James Webb Space Telescope. Depending on its spectral properties, C2N could be a key tracer for lightning on Earth-like exoplanets with a N2/CO2 bulk atmosphere, unless destroyed by yet unknown chemical reactions.

  15. Early prediction of eruption site using lightning location data: Estimates of accuracy during past eruptions

    NASA Astrophysics Data System (ADS)

    Nína Petersen, Guðrún; Arason, Þórður; Bjornsson, Halldór

    2013-04-01

    Eruption of subglacial volcanoes may lead to catastrophic floods and therefore early determination of the exact eruption site may be critical to civil protection evacuation plans. Poor visibility due to weather or darkness often inhibit positive identification of exact eruption location for many hours. However, because of the proximity and abundance of water in powerful subglacial volcanic eruptions, they are probably always accompanied by early lightning activity in the volcanic column. Lightning location systems, designed for weather thunderstorm monitoring, based on remote detection of electromagnetic waves from lightning, can provide valuable real-time information on location of eruption site. Important aspect of such remote detection is its independence of weather, apart from thunderstorms close to the volcano. Individual lightning strikes can be 5-10 km in length and are sometimes tilted and to the side of the volcanic column. This adds to the lightning location uncertainty, which is often a few km. Furthermore, the volcanic column may be swayed by the local wind to one side. Therefore, location of a single lightning can be misleading but by calculating average location of many lightning strikes and applying wind correction a more accurate eruption site location can be obtained. In an effort to assess the expected accuracy, the average lightning locations during the past five volcanic eruptions in Iceland (1998-2011) were compared to the exact site of the eruption vent. Simultaneous weather thunderstorms might have complicated this analysis, but there were no signs of ordinary thunderstorms in Iceland during these eruptions. To identify a suitable wind correction, the vector wind at the 500 hPa pressure level (5-6 km altitude) was compared to mean lightning locations during the eruptions. The essential elements of a system, which predicts the eruption site during the first hour(s) of an eruption, will be described.

  16. Utilizing Four Dimensional Lightning and Dual-Polarization Radar to Develop Lightning Initiation Forecast Guidance

    DTIC Science & Technology

    2015-03-26

    Electrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Lightning Discharge ...charge is caused by falling graupel that is positively charged (Wallace and Hobbs 2006). 2.3 Lightning Discharge Lightning occurs when the electric...emission of positive corona from the surface of precipitation particles, causing the electric field to become locally enhanced and supporting the

  17. The start of lightning: Evidence of bidirectional lightning initiation.

    PubMed

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R

    2015-10-16

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  18. Assessment of Lightning Transients on a De-Iced Rotor Blade with Predictive Tools and Coaxial Return Measurements

    NASA Astrophysics Data System (ADS)

    Guillet, S.; Gosmain, A.; Ducoux, W.; Ponçon, M.; Fontaine, G.; Desseix, P.; Perraud, P.

    2012-05-01

    The increasing use of composite materials in aircrafts primary structures has led to different problematics in the field of safety of flight in lightning conditions. The consequences of this technological mutation, which occurs in a parallel context of extension of electrified critical functions, are addressed by aircraft manufacturers through the enhancement of their available assessment means of lightning transient. On the one hand, simulation tools, provided an accurate description of aircraft design, are today valuable assessment tools, in both predictive and operative terms. On the other hand, in-house test means allow confirmation and consolidation of design office hardening solutions. The combined use of predictive simulation tools and in- house test means offers an efficient and reliable support for all aircraft developments in their various life-time stages. The present paper provides PREFACE research project results that illustrate the above introduced strategy on the de-icing system of the NH90 composite main rotor blade.

  19. Principles of Lightning Physics

    NASA Astrophysics Data System (ADS)

    Mazur, Vladislav

    2016-12-01

    Principles of Lightning Physics presents and discusses the most up-to-date physical concepts that govern many lightning events in nature, including lightning interactions with man-made structures, at a level suitable for researchers, advanced students and well-educated lightning enthusiasts. The author's approach to understanding lightning-to seek out, and show what is common to all lightning flashes-is illustrated by an analysis of each type of lightning and the multitude of lightning-related features. The book examines the work that has gone into the development of new physical concepts, and provides critical evaluations of the existing understanding of the physics of lightning and the lexicon of terms and definitions presently used in lightning research.

  20. ELF Sferics Produced by Rocket-Triggered Lightning and Observed at Great Distances

    NASA Astrophysics Data System (ADS)

    Dupree, N. A.; Moore, R. C.; Fraser-Smith, A. C.

    2013-12-01

    Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics as a function of return stroke. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica, although this work focuses on observations performed in Greenland. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the sferic waveform observed at the receiver locations under various ionospheric conditions. LWPC was developed by the Naval Ocean Systems Center over a period of many years. It is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. This paper critically compares observations with model predictions, and in particular analyzes Earth-ionosphere waveguide excitation as a function of return stroke. The ability to infer source characteristics using observations at great distances may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning.

  1. The North Alabama Lightning Warning Product

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis E.; Blakeslee, R. J.; Stano, G. T.

    2009-01-01

    The North Alabama Lightning Mapping Array NALMA has been collecting total lightning data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current lightning product used by the offices is the lightning source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of lightning activity occurring at 5 min intervals over the next 30 minutes . One of the uses of the current lightning source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total lightning is occurring. This product quantifies that observation. The Lightning Warning Product is derived from total lightning observations from the Washington, D.C. (DCLMA) and North Alabama Lightning Mapping Arrays and cloud-to-ground lightning flashes detected by the National Lightning Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the lightning source density product.

  2. An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability

    NASA Technical Reports Server (NTRS)

    Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis

    2015-01-01

    Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.

  3. The Development of the Puerto Rico Lightning Detection Network for Meteorological Research

    NASA Technical Reports Server (NTRS)

    Legault, Marc D.; Miranda, Carmelo; Medin, J.; Ojeda, L. J.; Blakeslee, Richard J.

    2011-01-01

    A land-based Puerto Rico Lightning Detection Network (PR-LDN) dedicated to the academic research of meteorological phenomena has being developed. Five Boltek StormTracker PCI-Receivers with LTS-2 Timestamp Cards with GPS and lightning detectors were integrated to Pentium III PC-workstations running the CentOS linux operating system. The Boltek detector linux driver was compiled under CentOS, modified, and thoroughly tested. These PC-workstations with integrated lightning detectors were installed at five of the University of Puerto Rico (UPR) campuses distributed around the island of PR. The PC-workstations are left on permanently in order to monitor lightning activity at all times. Each is networked to their campus network-backbone permitting quasi-instantaneous data transfer to a central server at the UPR-Bayam n campus. Information generated by each lightning detector is managed by a C-program developed by us called the LDN-client. The LDN-client maintains an open connection to the central server operating the LDN-server program where data is sent real-time for analysis and archival. The LDN-client also manages the storing of data on the PC-workstation hard disk. The LDN-server software (also an in-house effort) analyses the data from each client and performs event triangulations. Time-of-arrival (TOA) and related hybrid algorithms, lightning-type and event discriminating routines are also implemented in the LDN-server software. We also have developed software to visually monitor lightning events in real-time from all clients and the triangulated events. We are currently monitoring and studying the spatial, temporal, and type distribution of lightning strikes associated with electrical storms and tropical cyclones in the vicinity of Puerto Rico.

  4. Full-wave reflection of lightning long-wave radio pulses from the ionospheric D region: Comparison with midday observations of broadband lightning signals

    NASA Astrophysics Data System (ADS)

    Jacobson, Abram R.; Shao, Xuan-Min; Holzworth, Robert

    2010-05-01

    We are developing and testing a steep-incidence D region sounding method for inferring profile information, principally regarding electron density. The method uses lightning emissions (in the band 5-500 kHz) as the probe signal. The data are interpreted by comparison against a newly developed single-reflection model of the radio wave's encounter with the lower ionosphere. The ultimate application of the method will be to study transient, localized disturbances of the nocturnal D region, including those instigated by lightning itself. Prior to applying the method to study lightning-induced perturbations of the nighttime D region, we have performed a validation test against more stable and predictable daytime observations, where the profile of electron density is largely determined by direct solar X-ray illumination. This article reports on the validation test. Predictions from our recently developed full-wave ionospheric-reflection model are compared to statistical summaries of daytime lightning radiated waveforms, recorded by the Los Alamos Sferic Array. The comparison is used to retrieve best fit parameters for an exponential profile of electron density in the ionospheric D region. The optimum parameter values are compared to those found elsewhere using a narrowband beacon technique, which used totally different measurements, ranges, and modeling approaches from those of the work reported here.

  5. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.

    2012-12-01

    The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after

  6. Modeling Long-Distance ELF Radio Atmospherics Generated by Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Kunduri, B.; Anand, S.; Dupree, N.; Mitchell, M.; Agrawal, D.

    2010-12-01

    This paper addresses the generation and propagation of radio atmospherics (sferics) radiated by lightning in order to assess the ability to infer the electrical properties of lightning from great distances. This ability may prove to greatly enhance the understanding of lightning processes that are associated with the production of transient luminous events (TLEs) as well as other ionospheric effects associated with lightning. The modeling of the sferic waveform is carried out using a modified version of the Long Wavelength Propagation Capability (LWPC) code developed by the Naval Ocean Systems Center over a period of many years. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-ionosphere waveguide to an impulsive lightning flash. Unlike other similar efforts, the modified code presented preserves the ability of LWPC to account for waveguide mode-coupling and to account for changes to the electrical properties of the ground and ionosphere along the propagation path. The effort described is conducted in advance of the deployment of a global extremely low frequency (ELF) magnetic field array, which is presently under construction. The global ELF array is centered on the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. The ICLRT is well-known for conducting rocket-triggered lightning experiments over the last 15-20 years. This paper uses lightning current waveforms directly measured at the base of the lightning channel (observations performed at the ICLRT) as an input to the model to predict the sferic waveform to be observed by the array under various ionospheric conditions. An analysis of the predicted sferic waveforms is presented, and the components of the lightning current waveform that most effectively excite the Earth-ionosphere waveguide are identified.

  7. [Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].

    PubMed

    Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai

    2012-07-01

    Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.

  8. Cosmic rays, solar activity, magnetic coupling, and lightning incidence

    NASA Technical Reports Server (NTRS)

    Ely, J. T. A.

    1984-01-01

    A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.

  9. The GOES-R GeoStationary Lightning Mapper (GLM)

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas

    2011-01-01

    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning

  10. High current lightning test of space shuttle external tank lightning protection system

    NASA Technical Reports Server (NTRS)

    Mumme, E.; Anderson, A.; Schulte, E. H.

    1977-01-01

    During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes.

  11. What Initiates Lightning?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Lightning is an energetic electric discharge, creating a current that flows briefly within a cloud--or between a cloud and the ground--and heating the air to temperatures about five times hotter than the sun’s surface. But there’s a lot about lightning that’s still a mystery. Los Alamos National Laboratory is working to change that. Because lightning produces optical and radio frequency signals similar to those from a nuclear explosion, it’s important to be able to distinguish whether such signals are caused by lightning or a nuclear event. As part of the global security mission at Los Alamos, scientists use lightning tomore » help develop better instruments for nuclear test-ban treaty monitoring and, in the process, have learned a lot about lightning itself.« less

  12. Investigating lightning-to-ionosphere energy coupling based on VLF lightning propagation characterization

    NASA Astrophysics Data System (ADS)

    Lay, Erin Hoffmann

    In this dissertation, the capabilities of the World-Wide Lightning Location Network (WWLLN) are analyzed in order to study the interactions of lightning energy with the lower ionosphere. WWLLN is the first global ground-based lightning location network and the first lightning detection network that continuously monitors lightning around the world in real time. For this reason, a better characterization of the WWLLN could allow many global atmospheric science problems to be addressed, including further investigation into the global electric circuit and global mapping of regions of the lower ionosphere likely to be impacted by strong lightning and transient luminous events. This dissertation characterizes the World-Wide Location Network (WWLLN) in terms of detection efficiency, location and timing accuracy, and lightning type. This investigation finds excellent timing and location accuracy for WWLLN. It provides the first experimentally-determined estimate of relative global detection efficiency that is used to normalize lightning counts based on location. These normalized global lightning data from the WWLLN are used to map intense storm regions around the world with high time and spatial resolution as well as to provide information on energetic emissions known as elves and terrestrial gamma-ray flashes (TGFs). This dissertation also improves WWLLN by developing a procedure to provide the first estimate of relative lightning stroke radiated energy in the 1-24 kHz frequency range by a global lightning detection network. These characterizations and improvements to WWLLN are motivated by the desire to use WWLLN data to address the problem of lightning-to-ionosphere energy coupling. Therefore, WWLLN stroke rates are used as input to a model, developed by Professor Mengu Cho at the Kyushu Institute of Technology in Japan, that describes the non-linear effect of lightning electromagnetic pulses (EMP) on the ionosphere by accumulating electron density changes resulting

  13. Step voltage analysis for the catenoid lightning protection system

    NASA Technical Reports Server (NTRS)

    Chai, J. C.; Briet, R.; Barker, D. L.; Eley, H. E.

    1991-01-01

    The main objective of the proposed overhead Catenoid Lightning Protection System (CLPS) is personnel safety. To ensure working personnel's safety in lightning situations, it is necessary that the potential difference developed across a distance equal to a person's pace (step voltage) does not exceed a separately established safe voltage in order to avoid electrocution (ventricular fibrillation) of humans. Therefore, the first stage of the analytical effort is to calculate the open circuit step voltage. An impedance model is developed for this purpose. It takes into consideration the earth's complex impedance behavior and the transient nature of the lightning phenomenon. In the low frequency limit, this impedance model is shown to reduce to results similar to those predicted by the conventional resistor model in a DC analysis.

  14. Early prediction of eruption site using lightning location data: An operational real-time system in Iceland

    NASA Astrophysics Data System (ADS)

    Arason, Þórður; Bjornsson, Halldór; Nína Petersen, Guðrún

    2013-04-01

    Eruption of subglacial volcanoes may lead to catastrophic floods and thus early determination of the exact eruption site may be critical to civil protection evacuation plans. A system is being developed that automatically monitors and analyses volcanic lightning in Iceland. The system predicts the eruption site location from mean lightning locations, taking into account upper level wind. In estimating mean lightning locations, outliers are automatically omitted. A simple wind correction is performed based on the vector wind at the 500 hPa pressure level in the latest radiosonde from Keflavík airport. The system automatically creates a web page with maps and tables showing individual lightning locations and mean locations with and without wind corrections along with estimates of uncetainty. A dormant automatic monitoring system, waiting for a rare event, potentially for several years, is quite susceptible to degeneration during the waiting period, e.g. due to computer or other IT-system upgrades. However, ordinary weather thunderstorms in Iceland should initiate special monitoring and automatic analysis of this system in the same fashion as during a volcanic eruption. Such ordinary weather thunderstorm events will be used to observe anomalies and malfunctions in the system. The essential elements of this system will be described. An example is presented of how the system would have worked during the first hours of the Grímsvötn 2011 eruption. In that case the exact eruption site, within the Grímsvötn caldera, was first known about 15 hours into the eruption.

  15. Thunderclouds and Lightning Conductors

    ERIC Educational Resources Information Center

    Martin, P. F.

    1973-01-01

    Discusses the historical background of the development of lightning conductors, describes the nature of thunderclouds and the lightning flash, and provides a calculation of the electric field under a thundercloud. Also discussed are point discharge currents and the attraction theory of the lightning conductor. (JR)

  16. The GOES-R Geostationary Lightning Mapper (GLM)

    NASA Astrophysics Data System (ADS)

    Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas; Bailey, Jeffrey; Buechler, Dennis; Carey, Larry; Schultz, Chris; Bateman, Monte; McCaul, Eugene; Stano, Geoffrey

    2013-05-01

    The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total lightning activity continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based lightning networks and intensive prelaunch field campaigns. The GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and

  17. How Lightning Works Inside Thunderstorms: A Half-Century of Lightning Studies

    NASA Astrophysics Data System (ADS)

    Krehbiel, P. R.

    2015-12-01

    Lightning is a fascinating and intriguing natural phenomenon, but the most interesting parts of lightning discharges are inside storms where they are obscured from view by the storm cloud. Although clouds are essentially opaque at optical frequencies, they are fully transparent at radio frequencies (RF). This, coupled with the fact that lightning produces prodigious RF emissions, has allowed us to image and study lightning inside storms using various RF and lower-frequency remote sensing techniques. As in all other scientific disciplines, the technology for conducting the studies has evolved to an incredible extent over the past 50 years. During this time, we have gone from having very little or no knowledge of how lightning operates inside storms, to being able to 'see' its detailed structure and development with an increasing degree of spatial and temporal resolution. In addition to studying the discharge processes themselves, lightning mapping observations provide valuable information on the electrical charge structure of storms, and on the mechanisms by which storms become strongly electrified. In this presentation we briefly review highlights of previous observations, focussing primarily on the long string of remote-sensing studies I have been involved in. We begin with the study of lightning charge centers of cloud-to-ground discharges in central New Mexico in the late 1960s and continue up to the present day with interferometric and 3-dimensional time-of-arrival VHF mapping observations of lightning in normally- and anomalously electrified storms. A particularly important aspect of the investigations has been comparative studies of lightning in different climatological regimes. We conclude with observations being obtained by a high-speed broadband VHF interferometer, which show in unprecedented detail how individual lightning discharges develop inside storms. From combined interferometer and 3-D mapping data, we are beginning to unlock nature's secrets

  18. Lightning Scaling Laws Revisited

    NASA Technical Reports Server (NTRS)

    Boccippio, D. J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Scaling laws relating storm electrical generator power (and hence lightning flash rate) to charge transport velocity and storm geometry were originally posed by Vonnegut (1963). These laws were later simplified to yield simple parameterizations for lightning based upon cloud top height, with separate parameterizations derived over land and ocean. It is demonstrated that the most recent ocean parameterization: (1) yields predictions of storm updraft velocity which appear inconsistent with observation, and (2) is formally inconsistent with the theory from which it purports to derive. Revised formulations consistent with Vonnegut's original framework are presented. These demonstrate that Vonnegut's theory is, to first order, consistent with observation. The implications of assuming that flash rate is set by the electrical generator power, rather than the electrical generator current, are examined. The two approaches yield significantly different predictions about the dependence of charge transfer per flash on storm dimensions, which should be empirically testable. The two approaches also differ significantly in their explanation of regional variability in lightning observations.

  19. Development and Application of a Low Frequency Near-Field Interferometric-TOA 3D Lightning Mapping Array

    NASA Astrophysics Data System (ADS)

    Lyu, F.; Cummer, S. A.; Weinert, J. L.; McTague, L. E.; Solanki, R.; Barrett, J.

    2014-12-01

    Lightning processes radiated extremely wideband electromagnetic signals. Lightning images mapped by VHF interferometry and VHF time of arrival lightning mapping arrays enable us to understand the lightning in-cloud detail development during the extent of flash that can not always be captured by cameras because of the shield of cloud. Lightning processes radiate electromagnetically over an extremely wide bandwidth, offering the possibility of multispectral lightning radio imaging. Low frequency signals are often used for lightning detection, but usually only for ground point location or thunderstorm tracking. Some recent results have demonstrated lightning LF 3D mapping of discrete lightning pulses, but imaging of continuous LF emissions have not been shown. In this work, we report a GPS-synchronized LF near field interferometric-TOA 3D lightning mapping array applied to image the development of lightning flashes on second time scale. Cross-correlation, as used in broadband interferometry, is applied in our system to find windowed arrival time differences with sub-microsecond time resolution. However, because the sources are in the near field of the array, time of arrival processing is used to find the source locations with a typical precision of 100 meters. We show that this system images the complete lightning flash structure with thousands of LF sources for extensive flashes. Importantly, this system is able to map both continuous emissions like dart leaders, and bursty or discrete emissions. Lightning stepped leader and dart leader propagation speeds are estimated to 0.56-2.5x105 m/s and 0.8-2.0x106 m/s respectively, which are consistent with previous reports. In many aspects our LF images are remarkably similar to VHF lightning mapping array images, despite the 1000 times difference in frequency, which may suggest some special links between the LF and VHF emission during lightning processes.

  20. LDAR, A Three-Dimensional Lightning Warning System: Its Development and Use by the Government, and Transition to Public Availability

    NASA Technical Reports Server (NTRS)

    Starr, Stan; Sharp, David; Merceret, Francis; Madura, John; Murphy, Martin

    1998-01-01

    NASA, at the John F. Kennedy Space Center (KSC), developed and operates a unique high precision lightning location system to provide lightning related weather warnings. These warnings are used to stop lightning-sensitive operations such as space vehicle launches and ground operations where equipment and personnel are at risk. The data is provided to the Range Weather Operations [45th Weather Squadron, U. S. Air Force (USAF)] where it is used with other meteorological data to issue weather advisories and warnings for Cape Canaveral Air Station (CCAS) and KSC operations. This system, called Lightning Detection and Ranging (LDAR), provides users with a graphical display in three dimensions of 66 MHz radio frequency events generated by lightning processes. The locations of these events provide a sound basis for the prediction of lightning hazards. NASA and Global Atmospherics, Inc. are developing a new system that will replace the unique LDAR components with commercially available and maintainable components having improved capabilities. These components will be phased in to ensure full continuity and access to this important warning technology. These LDAR systems are expected to eventually be available for installation and use by the public at specialized facilities, such as airports, and for general weather warnings via the National Weather Service (NWS) or television broadcast. The NWS in Melbourne has had access to real-time LDAR data since 1993 on an experimental basis. This use of LDAR has shown promise for the improvement of aviation forecasts and severe weather warnings. More so, it has opened the door to investigate the feasibility of issuing lightning-related public advisories. The success of its early use suggests that this technology may improve safety and potentially save lives, therefore constituting a significant benefit to the public. This paper describes the LDR system, the plans and progress of these upgrades, and the potential benefits of its use.

  1. Global lightning studies

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Wright, Pat; Christian, Hugh; Blakeslee, Richard; Buechler, Dennis; Scharfen, Greg

    1991-01-01

    The global lightning signatures were analyzed from the DMSP Optical Linescan System (OLS) imagery archived at the National Snow and Ice Data Center. Transition to analysis of the digital archive becomes available and compare annual, interannual, and seasonal variations with other global data sets. An initial survey of the quality of the existing film archive was completed and lightning signatures were digitized for the summer months of 1986 to 1987. The relationship is studied between: (1) global and regional lightning activity and rainfall, and (2) storm electrical development and environment. Remote sensing data sets obtained from field programs are used in conjunction with satellite/radar/lightning data to develop and improve precipitation estimation algorithms, and to provide a better understanding of the co-evolving electrical, microphysical, and dynamical structure of storms.

  2. First Cloud-to-Ground Lightning Timing Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2013-01-01

    NASA's LSP, GSDO and other programs use the probability of cloud-to-ground (CG) lightning occurrence issued by the 45th Weather Squadron (45 WS) in their daily and weekly lightning probability forecasts. These organizations use this information when planning potentially hazardous outdoor activities, such as working with fuels, or rolling a vehicle to a launch pad, or whenever personnel will work outside and would be at-risk from lightning. These organizations would benefit greatly if the 45 WS could provide more accurate timing of the first CG lightning strike of the day. The Applied Meteorology Unit (AMU) has made significant improvements in forecasting the probability of lightning for the day, but forecasting the time of the first CG lightning with confidence has remained a challenge. To address this issue, the 45 WS requested the AMU to determine if flow regimes, wind speed categories, or a combination of the two could be used to forecast the timing of the first strike of the day in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) lightning warning circles. The data was stratified by various sea breeze flow regimes and speed categories in the surface to 5,000-ft layer. The surface to 5,000-ft layer was selected since that is the layer the 45 WS uses to predict the behavior of sea breeze fronts, which are the dominant influence on the occurrence of first lightning in Florida during the warm season. Due to small data sample sizes after stratification, the AMU could not determine a statistical relationship between flow regimes or speed categories and the time of the first CG strike.. As expected, although the amount and timing of lightning activity varies by time of day based on the flow regimes and speed categories, there are extended tails of low lightning activity making it difficult to specify times when the threat of the first lightning flash can be avoided. However, the AMU developed a graphical user interface with input from the 45 WS

  3. Exploring a Physically Based Tool for Lightning Cessation: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Schultz, Elsie V.; Petersen, Walter A.; Carey, Lawrence D.; Buechler, Dennis E.; Gatlin, Patrick N.

    2010-01-01

    The University of Alabama in Huntsville (UAHuntsville) and NASA s Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. A summary of preliminary results will be presented.

  4. MSFC shuttle lightning research

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1993-01-01

    The shuttle mesoscale lightning experiment (MLE), flown on earlier shuttle flights, and most recently flown on the following space transportation systems (STS's), STS-31, -32, -35, -37, -38, -40, -41, and -48, has continued to focus on obtaining additional quantitative measurements of lightning characteristics and to create a data base for use in demonstrating observation simulations for future spaceborne lightning mapping systems. These flights are also providing design criteria data for the design of a proposed shuttle MLE-type lightning research instrument called mesoscale lightning observational sensors (MELOS), which are currently under development here at MSFC.

  5. Applications for predicting precipitation and vegetation patterns at landscape scale using lightning strike data

    Treesearch

    Deborah Ulinski Potter

    1999-01-01

    Previous publications discussed the results of my dissertation research on relationships between seasonality in precipitation and vegetation patterns at landscape scale. Summer precipitation at a study site in the Zuni Mountains, NM, was predicted from lightning strike and relative humidity data using multiple regression. Summer precipitation patterns were mapped using...

  6. Advancements in the Development of an Operational Lightning Jump Algorithm for GOES-R GLM

    NASA Technical Reports Server (NTRS)

    Shultz, Chris; Petersen, Walter; Carey, Lawrence

    2011-01-01

    Rapid increases in total lightning have been shown to precede the manifestation of severe weather at the surface. These rapid increases have been termed lightning jumps, and are the current focus of algorithm development for the GOES-R Geostationary Lightning Mapper (GLM). Recent lightning jump algorithm work has focused on evaluation of algorithms in three additional regions of the country, as well as, markedly increasing the number of thunderstorms in order to evaluate the each algorithm s performance on a larger population of storms. Lightning characteristics of just over 600 thunderstorms have been studied over the past four years. The 2 lightning jump algorithm continues to show the most promise for an operational lightning jump algorithm, with a probability of detection of 82%, a false alarm rate of 35%, a critical success index of 57%, and a Heidke Skill Score of 0.73 on the entire population of thunderstorms. Average lead time for the 2 algorithm on all severe weather is 21.15 minutes, with a standard deviation of +/- 14.68 minutes. Looking at tornadoes alone, the average lead time is 18.71 minutes, with a standard deviation of +/-14.88 minutes. Moreover, removing the 2 lightning jumps that occur after a jump has been detected, and before severe weather is detected at the ground, the 2 lightning jump algorithm s false alarm rate drops from 35% to 21%. Cold season, low topped, and tropical environments cause problems for the 2 lightning jump algorithm, due to their relative dearth in lightning as compared to a supercellular or summertime airmass thunderstorm environment.

  7. Lightning Initiation Forecasting: An Operational Dual-Polarimetric Radar Technique

    NASA Technical Reports Server (NTRS)

    Woodard, Crystal J.; Carey, L. D.; Petersen, W. A.; Roeder, W. P.

    2011-01-01

    The objective of this NASA MSFC and NOAA CSTAR funded study is to develop and test operational forecast algorithms for the prediction of lightning initiation utilizing the C-band dual-polarimetric radar, UAHuntsville's Advanced Radar for Meteorological and Operational Research (ARMOR). Although there is a rich research history of radar signatures associated with lightning initiation, few studies have utilized dual-polarimetric radar signatures (e.g., Z(sub dr) columns) and capabilities (e.g., fuzzy-logic particle identification [PID] of precipitation ice) in an operational algorithm for first flash forecasting. The specific goal of this study is to develop and test polarimetric techniques that enhance the performance of current operational radar reflectivity based first flash algorithms. Improving lightning watch and warning performance will positively impact personnel safety in both work and leisure environments. Advanced warnings can provide space shuttle launch managers time to respond appropriately to secure equipment and personnel, while they can also provide appropriate warnings for spectators and players of leisure sporting events to seek safe shelter. Through the analysis of eight case dates, consisting of 35 pulse-type thunderstorms and 20 non-thunderstorm case studies, lightning initiation forecast techniques were developed and tested. The hypothesis is that the additional dual-polarimetric information could potentially reduce false alarms while maintaining high probability of detection and increasing lead-time for the prediction of the first lightning flash relative to reflectivity-only based techniques. To test the hypothesis, various physically-based techniques using polarimetric variables and/or PID categories, which are strongly correlated to initial storm electrification (e.g., large precipitation ice production via drop freezing), were benchmarked against the operational reflectivity-only based approaches to find the best compromise between

  8. Summary report of the Lightning and Static Electricity Committee

    NASA Technical Reports Server (NTRS)

    Plumer, J. A.

    1979-01-01

    Lightning protection technology as applied to aviation and identifying these technology needs are presented. The flight areas of technical needs include; (1) the need for In-Flight data on lightning electrical parameters; (2) technology base and guidelines for protection of advanced systems and structures; (3) improved laboratory test techniques; (4) analysis techniques for predicting induced effects; (5) lightning strike incident data from General Aviation; (6) lightning detection systems; (7) obtain pilot reports of lightning strikes; and (8) better training in lightning awareness. The nature of each problem, timeliness, impact of solutions, degree of effort required, and the roles of government and industry in achieving solutions are discussed.

  9. LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision

    NASA Astrophysics Data System (ADS)

    Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.

    2018-03-01

    Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.

  10. Exploring a Physically Based Tool for Lightning Cessation: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter a.; Carey, Lawrence D.; Deierling, Wiebke

    2010-01-01

    The University of Alabama in Huntsville (UA Huntsville) and NASA's Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UA Huntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. A summary of preliminary results will be presented.

  11. Development of concepts for the protection of space launchers against lightning

    NASA Astrophysics Data System (ADS)

    Taillet, Joseph

    1988-12-01

    Following a review of the characteristics of lightning and the effects of lightning on space launchers, various strategies for protection against lightning are discussed. Special attention is given to the damage inflicted on the Apollo 12 and Atlas/Centaur vehicles by lightning. It is demonstrated that the protection of space launchers is best performed by the real-time observation of atmospheric discharges at high altitude by such systems as the interferometric lightning alert system, SAFIR.

  12. On the Relationship between Observed NLDN Lightning ...

    EPA Pesticide Factsheets

    Lightning-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling lightning NOX during the past decade, considerable uncertainties still exist with the quantification of lightning NOX production and distribution in the troposphere. It is even more challenging for regional chemistry and transport models to accurately parameterize lightning NOX production and distribution in time and space. The Community Multiscale Air Quality Model (CMAQ) parameterizes the lightning NO emissions using local scaling factors adjusted by the convective precipitation rate that is predicted by the upstream meteorological model; the adjustment is based on the observed lightning strikes from the National Lightning Detection Network (NLDN). For this parameterization to be valid, the existence of an a priori reasonable relationship between the observed lightning strikes and the modeled convective precipitation rates is needed. In this study, we will present an analysis leveraged on the observed NLDN lightning strikes and CMAQ model simulations over the continental United States for a time period spanning over a decade. Based on the analysis, new parameterization scheme for lightning NOX will be proposed and the results will be evaluated. The proposed scheme will be beneficial to modeling exercises where the obs

  13. An Evaluation of Lightning Flash Rate Parameterizations Based on Observations of Colorado Storms during DC3

    NASA Astrophysics Data System (ADS)

    Basarab, B.; Fuchs, B.; Rutledge, S. A.

    2013-12-01

    Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare

  14. Total lightning characteristics of recent hazardous weather events in Japan

    NASA Astrophysics Data System (ADS)

    Hobara, Y.; Kono, S.; Ogawa, T.; Heckman, S.; Stock, M.; Liu, C.

    2017-12-01

    In recent years, the total lightning (IC + CG) activity have attracted a lot of attention to improve the quality of prediction of hazardous weather phenomena (hail, wind gusts, tornadoes, heavy precipitation). Sudden increases of the total lightning flash rate so-called lightning jump (LJ) preceding the hazardous weather, reported in several studies, are one of the promising precursors. Although, increases in the frequency and intensity of these extreme weather events were reported in Japan, relationship with these events with total lightning have not studied intensively yet. In this paper, we will demonstrate the recent results from Japanese total lightning detection network (JTLN) in relation with hazardous weather events occurred in Japan in the period of 2014-2016. Automatic thunderstorm cell tracking was carried out based on the very high spatial and temporal resolution X-band MP radar echo data (1 min and 250 m) to correlate with total lightning activity. Results obtained reveal promising because the flash rate of total lightning tends to increase about 10 40 minutes before the onset of the extreme weather events. We also present the differences in lightning characteristics of thunderstorm cells between hazardous weather events and non-hazardous weather events, which is a vital information to improve the prediction efficiency.

  15. [Neurological diseases after lightning strike : Lightning strikes twice].

    PubMed

    Gruhn, K M; Knossalla, Frauke; Schwenkreis, Peter; Hamsen, Uwe; Schildhauer, Thomas A; Tegenthoff, Martin; Sczesny-Kaiser, Matthias

    2016-06-01

    Lightning strikes rarely occur but 85 % of patients have lightning-related neurological complications. This report provides an overview about different modes of energy transfer and neurological conditions related to lightning strikes. Moreover, two case reports demonstrate the importance of interdisciplinary treatment and the spectrum of neurological complications after lightning strikes.

  16. Nowcasting and forecasting of lightning activity: the Talos project.

    NASA Astrophysics Data System (ADS)

    Lagouvardos, Kostas; Kotroni, Vassiliki; Kazadzis, Stelios; Giannaros, Theodore; Karagiannidis, Athanassios; Galanaki, Elissavet; Proestakis, Emmanouil

    2015-04-01

    Thunder And Lightning Observing System (TALOS) is a research program funded by the Greek Ministry of Education with the aim to promote excellence in the field of lightning meteorology. The study focuses on exploring the real-time observations provided by the ZEUS lightning detection system, operated by the National Observatory of Athens since 2005, as well as the 10-year long database of the same system. More precisely the main research issues explored are: - lightning climatology over the Mediterranean focusing on lightning spatial and temporal distribution, on the relation of lightning with topographical features and instability and on the importance of aerosols in lightning initiation and enhancement. - nowcasting of lightning activity over Greece, with emphasis on the operational aspects of this endeavour. The nowcasting tool is based on the use of lightning data complemented by high-time resolution METEOSAT imagery. - forecasting of lightning activity over Greece based on the use of WRF numerical weather prediction model. - assimilation of lightning with the aim to improve the model precipitation forecast skill. In the frame of this presentation the main findings of each of the aforementioned issues are highlighted.

  17. Monitoring the development of volcanic eruptions through volcanic lightning - Using a lightning mapping array, seismic and infrasound array, and visual plume analysis

    NASA Astrophysics Data System (ADS)

    Smith, C. M.; Thompson, G.; McNutt, S. R.; Behnke, S. A.; Edens, H. E.; Van Eaton, A. R.; Gaudin, D.; Thomas, R. J.

    2017-12-01

    . Seismic and infrasound are two of the most common volcanic monitoring methods. By developing the relationships between plume electrification and these geophysical methods we hope to expand the use of lightning for active volcano monitoring.

  18. Radar Differential Phase Signatures of Ice Orientation for the Prediction of Lightning Initiation and Cessation

    NASA Technical Reports Server (NTRS)

    Carey, L.D.; Petersen, W.A.; Deierling, W.

    2009-01-01

    The majority of lightning-related casualties typically occur during thunderstorm initiation (e.g., first flash) or dissipation (e.g., last flash). The physics of electrification and lightning production during thunderstorm initiation is fairly well understood. As such, the literature includes a number of studies presenting various radar techniques (using reflectivity and, if available, other dual-polarimetric parameters) for the anticipation of initial electrification and first lightning flash. These radar techniques have shown considerable skill at forecasting first flash. On the other hand, electrical processes and lightning production during thunderstorm dissipation are not nearly as well understood and few, if any, successful techniques have been developed to anticipate the last flash and subsequent cessation of lightning. One promising approach involves the use of dual-polarimetric radar variables to infer the presence of oriented ice crystals in lightning producing storms. In the absence of strong vertical electric fields, ice crystals fall with their largest (semi-major) axis in the horizontal associated with gravitational and aerodynamic forces. In thunderstorms, strong vertical electric fields (100-200 kV m(sup -1)) have been shown to orient small (less than 2 mm) ice crystals such that their semi-major axis is vertical (or nearly vertical). After a lightning flash, the electric field is typically relaxed and prior radar research suggests that ice crystals rapidly resume their preferred horizontal orientation. In active thunderstorms, the vertical electric field quickly recovers and the ice crystals repeat this cycle of orientation for each nearby flash. This change in ice crystal orientation from primarily horizontal to vertical during the development of strong vertical electric fields prior to a lightning flash forms the physical basis for anticipating lightning initiation and, potentially, cessation. Research has shown that radar reflectivity (Z) and

  19. Acoustic localization of triggered lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, Rene O.; Johnson, Jeffrey B.; Edens, Harald E.; Thomas, Ronald J.; Rison, William

    2011-05-01

    We use acoustic (3.3-500 Hz) arrays to locate local (<20 km) thunder produced by triggered lightning in the Magdalena Mountains of central New Mexico. The locations of the thunder sources are determined by the array back azimuth and the elapsed time since discharge of the lightning flash. We compare the acoustic source locations with those obtained by the Lightning Mapping Array (LMA) from Langmuir Laboratory, which is capable of accurately locating the lightning channels. To estimate the location accuracy of the acoustic array we performed Monte Carlo simulations and measured the distance (nearest neighbors) between acoustic and LMA sources. For close sources (<5 km) the mean nearest-neighbors distance was 185 m compared to 100 m predicted by the Monte Carlo analysis. For far distances (>6 km) the error increases to 800 m for the nearest neighbors and 650 m for the Monte Carlo analysis. This work shows that thunder sources can be accurately located using acoustic signals.

  20. The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.; hide

    2014-01-01

    for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.

  1. Geostationary Lightning Mapper for GOES-R

    NASA Technical Reports Server (NTRS)

    Goodman, Steven; Blakeslee, Richard; Koshak, William

    2007-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 11 year data record of global lightning activity. Instrument formulation studies begun in January 2006 will be completed in March 2007, with implementation expected to begin in September 2007. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite, airborne science missions (e.g., African Monsoon Multi-disciplinary Analysis, AMMA), and regional test beds (e.g, Lightning Mapping Arrays) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data now being provided to selected forecast offices will lead to improved understanding of the application of these data in the severe storm warning process and accelerate the development of the pre-launch algorithms and Nowcasting applications. Proxy data combined with MODIS and Meteosat Second Generation SEVERI observations will also lead to new

  2. Lightning Protection and Instrumentation at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Colon, Jose L.

    2005-01-01

    Lightning is a natural phenomenon, but can be dangerous. Prevention of lightning is a physical impossibility and total protection requires compromises on costs and effects, therefore prediction and measurements of the effects that might be produced by iightn:ing is a most at locat:ions where people or sensitive systems and equipment are exposed. This is the case of the launching pads for the Space Shuttle at Kennedy Space Center (KSC) of the National Aeronautics and Space Administration. This report summarizes lightring phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at the launching pads for measurements of lightning effects with alternatives to improve the protection system and up-grade the actual instrumentation system is indicated.

  3. A shielding theory for upward lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shindo, Takatoshi; Aihara, Yoshinori

    1993-01-01

    A new shielding theory is proposed based on the assumption that the occurrence of lightning strokes on the Japan Sea coast in winter is due to the inception of upward leaders from tall structures. Ratios of the numbers of lightning strokes to high structures observed there in winter show reasonable agreement with values calculated by this theory. Shielding characteristics of a high structure in various conditions are predicted.

  4. Lightning NOx Estimates from Space-Based Lightning Imagers

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2017-01-01

    The intense heating of air by a lightning channel, and subsequent rapid cooling, leads to the production of lightning nitrogen oxides (NOx = NO + NO2) as discussed in Chameides [1979]. In turn, the lightning nitrogen oxides (or "LNOx" for brevity) indirectly influences the Earth's climate because the LNOx molecules are important in controlling the concentration of ozone (O3) and hydroxyl radicals (OH) in the atmosphere. Climate is most sensitive to O3 in the upper troposphere, and LNOx is the most important source of NOx in the upper troposphere at tropical and subtropical latitudes; hence, lightning is a useful parameter to monitor for climate assessments. The National Climate Assessment (NCA) program was created in response to the Congressionally-mandated Global Change Research Act (GCRA) of 1990. Thirteen US government organizations participate in the NCA program which examines the effects of global change on the natural environment, human health and welfare, energy production and use, land and water resources, human social systems, transportation, agriculture, and biological diversity. The NCA focuses on natural and human-induced trends in global change, and projects major trends 25 to 100 years out. In support of the NCA, the NASA Marshall Space Flight Center (MSFC) continues to assess lightning-climate inter-relationships. This activity applies a variety of NASA assets to monitor in detail the changes in both the characteristics of ground- and space- based lightning observations as they pertain to changes in climate. In particular, changes in lightning characteristics over the conterminous US (CONUS) continue to be examined by this author using data from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor. In this study, preliminary estimates of LNOx trends derived from TRMM/LIS lightning optical energy observations in the 17 yr period 1998-2014 are provided. This represents an important first step in testing the ability to make remote retrievals

  5. Number of lightning discharges causing damage to lightning arrester cables for aerial transmission lines in power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikiforov, E. P.

    2009-07-15

    Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces themore » number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less

  6. Global Positioning System (GPS) Precipitable Water in Forecasting Lightning at Spaceport Canaveral

    NASA Technical Reports Server (NTRS)

    Kehrer, Kristen; Graf, Brian G.; Roeder, William

    2005-01-01

    Using meteorology data, focusing on precipitable water (PW), obtained during the 2000-2003 thunderstorm seasons in Central Florida, this paper will, one, assess the skill and accuracy measurements of the current Mazany forecasting tool and, two, provide additional forecasting tools that can be used in predicting lightning. Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are located in east Central Florida. KSC and CCAFS process and launch manned (NASA Space Shuttle) and unmanned (NASA and Air Force Expendable Launch Vehicles) space vehicles. One of the biggest cost impacts is unplanned launch scrubs due to inclement weather conditions such as thunderstorms. Each launch delay/scrub costs over a quarter million dollars, and the need to land the Shuttle at another landing site and return to KSC costs approximately $ 1M. Given the amount of time lost and costs incurred, the ability to accurately forecast (predict) when lightning will occur can result in significant cost and time savings. All lightning prediction models were developed using binary logistic regression. Lightning is the dependent variable and is binary. The independent variables are the Precipitable Water (PW) value for a given time of the day, the change in PW up to 12 hours, the electric field mill value, and the K-index value. In comparing the Mazany model results for the 1999 period B against actual observations for the 2000-2003 thunderstorm seasons, differences were found in the False Alarm Rate (FAR), Probability of Detection (POD) and Hit Rate (H). On average, the False Alarm Rate (FAR) increased by 58%, the Probability of Detection (POD) decreased by 31% and the Hit Rate decreased by 20%. In comparing the performance of the 6 hour forecast period to the performance of the 1.5 hour forecast period for the Mazany model, the FAR was lower by 15% and the Hit Rate was higher by 7%. However, the POD for the 6 hour forecast period was lower by 16% as compared to the POD of the 1

  7. Lightning protection of distribution systems

    NASA Astrophysics Data System (ADS)

    Darveniza, M.; Uman, M. A.

    1982-09-01

    Research work on the lightning protection of distribution systems is described. The rationale behind the planning of the first major phase of the work - the field experiments conducted in the Tampa Bay area during August 1978 and July to September 1979 is explained. The aims of the field work were to characterize lightning in the Tampa Bay area, and to identify the lightning parameters associated with the occurrence of line outages and equipment damage on the distribution systems of the participating utilities. The equipment developed for these studies is fully described. The field work provided: general data on lightning - e.g., electric and magnetic fields of cloud and ground flashes; data from automated monitoring of lightning activity; stroke current waveshapes and peak currents measured at distribution arresters; and line outage and equipment damage on 13 kV networks in the Tampa Bay area. Computer aided analyses were required to collate and to process the accumulated data. The computer programs developed for this work are described.

  8. Terrestrial gamma-ray flash production by lightning

    NASA Astrophysics Data System (ADS)

    Carlson, Brant E.

    Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared

  9. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    NASA Technical Reports Server (NTRS)

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.

    2017-01-01

    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  10. The GOES-R Lightning Mapper Sensor

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Christian, Hugh; Goodman, Steve

    2004-01-01

    The Lightning Mapper Sensor on GOES-R builds on previous measurements of lightning from low earth orbit by the OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) sensors. Unlike observations from low earth orbit, the GOES-R platform will allow continuous monitoring of lightning activity over the Continental United States and southern Canada, Central and South America, and portions of the Atlantic and Pacific Oceans. The LMS will detect total (cloud-to-ground and intracloud) lightning at storm scale resolution (approx. 8 km) using a highly sensitive Charge Coupled Device (CCD) detector array. Discrimination between lightning optical transients and a bright sunlit background scene is accomplished by employing spectral, spatial, and temporal filtering along with a background subtraction technique. The result is 24 hour detection capability of total lightning. These total lightning observations can be made available to users within about 20 seconds. Research indicates a number of ways that total lightning observations from LMS could benefit operational activities, including 1) potential increases in lead times and reduced false alarms for severe thunderstorm and tornado Warnings, 2) improved routing of &rail around thunderstorms, 3) support for spacecraft launches and landings, 4) improved ability to monitor tropical cyclone intensity, 5) ability to monitor thunderstorm intensification/weakening during radar outages or where radar coverage is poor, 6) better identification of deep convection for the initialization of numerical prediction models, 7) improved forest fire forecasts, 8) identification of convective initiation, 9) identification of heavy convective snowfall, and 10) enhanced temporal resolution of storm evolution (1 minute) than is available from radar observations. Total lightning data has been used in an operational environment since July 2003 at the Huntsville, Alabama National Weather Service office. Total lightning measurements are

  11. Planetary lightning

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Clayton, R. N.; Buseck, P. R.; Hua, X.; Holsapple, K. A.; Esposito, L. W.; Aherns, T. J.; Hecht, J.

    The present state of knowledge concerning lightning on the planets is reviewed. Voyager data have clearly established the presence of lightning discharges at each of the four Jovian planets. In situ data for lightning on Venus are discussed in some detail, including reported quantitative occurrence rates and hypotheses concerning the relationship of Venusian lightning to VLF bursts observed in the Venus atmosphere.

  12. A study on the influence of corona on currents and electromagnetic fields predicted by a nonlinear lightning return-stroke model

    NASA Astrophysics Data System (ADS)

    De Conti, Alberto; Silveira, Fernando H.; Visacro, Silvério

    2014-05-01

    This paper investigates the influence of corona on currents and electromagnetic fields predicted by a return-stroke model that represents the lightning channel as a nonuniform transmission line with time-varying (nonlinear) resistance. The corona model used in this paper allows the calculation of corona currents as a function of the radial electric field in the vicinity of the channel. A parametric study is presented to investigate the influence of corona parameters, such as the breakdown electric field and the critical electric field for the stable propagation of streamers, on predicted currents and electromagnetic fields. The results show that, regardless of the assumed corona parameters, the incorporation of corona into the nonuniform and nonlinear transmission line model under investigation modifies the model predictions so that they consistently reproduce most of the typical features of experimentally observed lightning electromagnetic fields and return-stroke speed profiles. In particular, it is shown that the proposed model leads to close vertical electric fields presenting waveforms, amplitudes, and decay with distance in good agreement with dart leader electric field changes measured in triggered lightning experiments. A comparison with popular engineering return-stroke models further confirms the model's ability to predict consistent electric field waveforms in the close vicinity of the channel. Some differences observed in the field amplitudes calculated with the different models can be related to the fact that current distortion, while present in the proposed model, is ultimately neglected in the considered engineering return-stroke models.

  13. Industrial accidents triggered by lightning.

    PubMed

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Characteristics of the Lightning Activities in Southwest China from Low-Earth Orbiting and Geostationary Satellites-, and Ground-based Lightning Observations

    NASA Astrophysics Data System (ADS)

    Hui, W.; Huang, F.; Guo, Q.; Li, D.; Yao, Z.; Zou, W.

    2017-12-01

    The development of lightning detection technology accumulates a large amount of long-term data for investigating the lightning activities. Ground-based lightning networks provide continuous lightning location but offer limited spatial coverage because of the complex underlying surface conditions. Space-based optical sensors can detect lightning with global homogeneity. However, observing from satellites in low-earth orbit has fixed locations at the ground very shortly during its overpasses. The latest launched geostationary satellite-based lightning imagers can detect lightning in real time, and provide complete life-cycle coverage of each observed thunderstorm. In this study, based on multi-source lightning data, the lightning activities in southwest China, which with complex terrain and prone to appear lightning, are researched. Firstly, the climatological characteristics of lightning activities in this region from 1998 to 2013 are analyzed by using very-high resolution (0.1°) Lightning Imaging Sensor (LIS)-derived data. The results indicate that the lightning activity is more intense in eastern and southern regions of southwest China than in western and northern regions; the monthly and hourly flash densities also show its obvious seasonal and diurnal variation respectively, which is consistent with the development of the convective systems in the region. The results show that the spatial and temporal distribution of lightning activities in southwest China is related to its topography, water vapor, and atmospheric conditions. Meanwhile, by comparing with the analysis derived data from Chinese Ground-based Lightning Location System, the LIS-based detection results are confirmed. Furthermore, the process of a thunderstorm in southwest China from 29 to 30 March 2017 is investigated by using the new-generation monitoring data of Chinese Fengyun-4 geostationary satellite-based Lightning Mapping Imager (LMI) and the rainfall data. The results tell us more about the

  15. Exploring the Use of Radar for Physically-Based Nowcasting of Lightning Cessation

    NASA Technical Reports Server (NTRS)

    Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.

    2011-01-01

    NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms driven primarily by trending in the actual total lightning flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature was

  16. Climate Change and Tropical Total Lightning

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  17. Geostationary Lightning Mapper for GOES-R and Beyond

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.

    2008-01-01

    The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch readiness in December 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models will be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS

  18. Exploring radar and lightning variables associated with the Lightning Jump. Can we predict the size of the hail?

    NASA Astrophysics Data System (ADS)

    Farnell, C.; Rigo, T.; Pineda, N.

    2018-04-01

    Severe weather regularly hits the Lleida Plain (western part of Catalonia, NE of Iberian Peninsula), causing important damage to the local agriculture. In order to help severe weather surveillance tasks, the Meteorological Service of Catalonia (SMC) implemented in 2016 the Lightning Jump (LJ) algorithm as operative warning tool after an exhaustive validation phase of several months. The present study delves into the analysis of the relationship between Lightning Jump alerts and hail occurrence, through the analysis of lightning and radar variables in the moment when the warning is issued. Overall, the study has consisted of the analysis of 149 cases, grouping them into two categories according to hail size: small and large hail, with a threshold of 2 cm of diameter. The thunderstorms related to big sized hail presented remarkable differences in some of the variables analysed that could help forecast the size of hail when the LJ alert is triggered. Moreover, other variables have been allowed to observe and to corroborate how the LJ algorithm works during the 13 min before the warning is triggered.

  19. Analysis of ELF Radio Atmospherics Radiated by Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Dupree, N. A.; Moore, R. C.; Pilkey, J. T.; Uman, M. A.; Jordan, D. M.; Caicedo, J. A.; Hare, B.; Ngin, T. K.

    2014-12-01

    Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) along with pertinent Lightning Mapping Array (LMA) data are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the radio atmospheric (sferic) waveform observed at the receiver locations under various ionospheric conditions. We identify fitted exponential electron density profiles that accurately describe the observed propagation delays, phase delays, and signal amplitudes. The ability to infer ionospheric characteristics using distant ELF observations greatly enhances ionospheric remote sensing capabilities, especially in regard to interpreting observations of transient luminous events (TLEs) and other ionospheric effects associated with lightning.

  20. Lightning and Climate

    NASA Astrophysics Data System (ADS)

    Williams, E.

    2012-12-01

    Lightning is of interest in the domain of climate change for several reasons: (1) thunderstorms are extreme forms of moist convection, and lightning flash rate is a sensitive measure of that extremity, (2) thunderstorms are deep conduits for delivering water substance from the boundary layer to the upper troposphere and stratosphere, and (3) global lightning can be monitored continuously and inexpensively within a natural framework (the Earth-ionosphere waveguide and Schumann resonances). Lightning and temperature, and lightning and upper tropospheric water vapor, are positively correlated on weather-related time scales (diurnal, semiannual, and annual) with a lightning temperature sensitivity of order 10% per oC. Lightning also follows temperature variations on the ENSO time scale, both locally and globally. The response of lightning in some of its extreme forms (exceptional flash rates and the prevalence of sprite-producing mesoscale lightning, for example) to temperature variations will be addressed. Consistently obtained records of lightning activity on longer time scales are scarce as stable detection networks are uncommon. As a consequence, thunder day data have been used to extend the lightning record for climate studies, with evidence for increases over decades in urban areas. Global records of lightning following Schumann resonance intensity and from space-based optical sensors (OTD and LIS) are consistent with the record of ionospheric potential representing the global electrical circuit in showing flat behavior over the few decades. This flatness is not well understood, though the majority of all lightning flashes are found in the tropics, the most closely regulated portion of the atmosphere. Other analysis of frequency variations of Schumann resonances in recent decades shows increased lightning in the northern hemisphere, where the global warming is most pronounced. The quantity more fundamental than temperature for lightning control is cloud buoyancy

  1. Developing empirical lightning cessation forecast guidance for the Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Stano, Geoffrey T.

    comprising a storm. Our average is 12-14 km, while the greatest flash extends 26 km. Comparisons between the starting altitude of the median and last flashes of a storm are analyzed, with only 37% of the storms having a higher last flash initiating altitude. Additional observations are made of the total lightning flash rate, percentage of CG to IC lightning, trends of individual flash initiation altitudes versus the average initiation altitude, the average inter-flash time distribution, and time series of inter-flash times. Five schemes to forecast lightning cessation are developed and evaluated. 100 of the 116 storms were randomly selected as the dependent sample, while the remaining 16 storms were used for verification. The schemes included a correlation and regression tree analysis, multiple linear regression, trends of storm duration, trend of the altitude of the greatest reflectivity to the time of the final flash, and a percentile scheme. Surprisingly, the percentile method was found to be the most effective technique and the simplest. The inclusion of real time storm parameters is found to have little effect on the results, suggesting that different forecast predictors, such as microphysical data from polarimetric radar, will be necessary to produce improved skill. When the percentile method used a confidence level of 99.5%, it successfully maintained lightning advisories for all 16 independent storms on which the schemes were tested. Since the computed wait time was 25 min, compared to the 45WS' most conservative and accurate wait time of 30 min, the percentile method saves 5 min for each advisory. This 5 min of savings safely shortens the Weather Squadron's advisories and saves money. Additionally, these results are the first to evaluate the 30/30 rule that is used commonly. The success of the percentile method is surprising since it out performs more complex procedures involving correlation and regression tree analysis and regression schemes. These more

  2. Objective Lightning Probability Forecasting for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred; Wheeler, Mark

    2005-01-01

    Five logistic regression equations were created that predict the probability of cloud-to-ground lightning occurrence for the day in the KSC/CCAFS area for each month in the warm season. These equations integrated the results from several studies over recent years to improve thunderstorm forecasting at KSC/CCAFS. All of the equations outperform persistence, which is known to outperform NPTI, the current objective tool used in 45 WS lightning forecasting operations. The equations also performed well in other tests. As a result, the new equations will be added to the current set of tools used by the 45 WS to determine the probability of lightning for their daily planning forecast. The results from these equations are meant to be used as first-guess guidance when developing the lightning probability forecast for the day. They provide an objective base from which forecasters can use other observations, model data, consultation with other forecasters, and their own experience to create the final lightning probability for the 1100 UTC briefing.

  3. Ten years of Lightning Imaging Sensor (LIS) data: Preparing the way for geostationary lightning imaging

    NASA Astrophysics Data System (ADS)

    Grandell, J.; Stuhlmann, R.

    2010-09-01

    The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measurement Mission (TRMM) platform has provided a continuous source of lightning observations in the +/- 35 deg latitude region since 1998. LIS, together with its predecessor Optical Transient Detector (OTD) have established an unprecedented database of optical observations of lightning from a low-earth orbit, allowing a more consistent and uniform view of lightning that has been available from any ground-based system so far. The main disadvantage of LIS is that, since it operates on a low-earth orbit with a low inclination, only a small part of the globe is viewed at a time and only for a duration of ~2 minutes, and for a rapidly changing phenomenon like convection and the lightning related thereto this is far from optimal. This temporal sampling deficiency can, however, be overcome with observations from a geostationary orbit. One such mission in preparation is the Lightning Imager on-board the Meteosat Third Generation (MTG) satellite, which will provide service continuation to the Meteosat Second Generation (MSG) system from 2018 onwards. The current MSG system has become the primary European source of geostationary observations over Europe and Africa with the start of nominal operations in January 2004, and will be delivering observations and services at least until 2017. However, considering the typical development cycle for a new complex space system, it was already for a longer time necessary to plan for and define the MTG system. MTG needs to be available around 2016, before the end of the nominal lifetime of MSG-3. One of the new missions selected for MTG is the previously mentioned Lightning Imager (LI) mission, detecting continuously over almost the full disc the lightning discharges taking place in clouds or between cloud and ground with a resolution around 10 km. The LI mission is intended to provide a real time lightning detection (cloud-to-cloud and cloud-to-ground strokes) and

  4. Lightning attachment process to common buildings

    NASA Astrophysics Data System (ADS)

    Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.

    2017-05-01

    The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.Plain Language SummarySince the time of Benjamin Franklin, no one has ever recorded high-speed video images of a <span class="hlt">lightning</span> connection to a common building. It is very difficult to do it. Cameras need to be very close to the structure chosen to be observed, and long observation time is required to register one <span class="hlt">lightning</span> strike to that particular structure. Models and theories used to determine the zone of protection of a <span class="hlt">lightning</span> rod have been <span class="hlt">developed</span>, but they all suffer from the lack of field data. The submitted manuscript provides results from high-speed video observations of <span class="hlt">lightning</span> attachment to low buildings that are commonly found in almost every populated area around the world. The proximity of the camera and the high frame rate allowed us to see interesting details that will improve the understanding of the attachment process and, consequently, the models and theories used by <span class="hlt">lightning</span> protection standards. This paper also presents spectacular images and videos of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE31B0430S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE31B0430S"><span>Scientific <span class="hlt">Lightning</span> Detection Network for Kazakhstan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.</p> <p>2015-12-01</p> <p>In the frame of grant financing of the scientific research in 2015-2017 the project "To <span class="hlt">Develop</span> Electromagnetic System for <span class="hlt">lightning</span> location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for <span class="hlt">lightning</span> location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to <span class="hlt">develop</span> equipment for these points, to <span class="hlt">develop</span> the techniques and software for <span class="hlt">lightning</span> location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a <span class="hlt">lightning</span> activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use <span class="hlt">lightning</span> data for Global Electric Circuit (GEC) investigation. Currently, there are <span class="hlt">lightning</span> detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full <span class="hlt">lightning</span> information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field <span class="hlt">lightning</span> antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.2347S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.2347S"><span>Characteristics of <span class="hlt">Lightning</span> Within Electrified Snowfall Events Using <span class="hlt">Lightning</span> Mapping Arrays</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Christopher J.; Lang, Timothy J.; Bruning, Eric C.; Calhoun, Kristin M.; Harkema, Sebastian; Curtis, Nathan</p> <p>2018-02-01</p> <p>This study examined 34 <span class="hlt">lightning</span> flashes within four separate thundersnow events derived from <span class="hlt">lightning</span> mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each <span class="hlt">lightning</span> flash, as well as the correspondence between the LMA observations and <span class="hlt">lightning</span> data taken from national <span class="hlt">lightning</span> networks like the National <span class="hlt">Lightning</span> Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the data set. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km2, with a maximum flash extent of 2,300 km2, a minimum of 3 km2, and a median of 128 km2. An average of 2.29 NLDN flashes were recorded per LMA-derived <span class="hlt">lightning</span> flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN-identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six <span class="hlt">lightning</span> flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses <span class="hlt">lightning</span>'s interaction with the human-built environment and provides an example of <span class="hlt">lightning</span> within heavy snowfall observed by Geostationary Operational Environmental Satellite-16's Geostationary <span class="hlt">Lightning</span> Mapper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29910996','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29910996"><span>Characteristics of <span class="hlt">Lightning</span> within Electrified Snowfall Events using <span class="hlt">Lightning</span> Mapping Arrays.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schultz, Christopher J; Lang, Timothy J; Bruning, Eric C; Calhoun, Kristin M; Harkema, Sebastian; Curtis, Nathan</p> <p>2018-02-27</p> <p>This study examined 34 <span class="hlt">lightning</span> flashes within four separate thundersnow events derived from <span class="hlt">lightning</span> mapping arrays (LMAs) in northern Alabama, central Oklahoma, and Washington DC. The goals were to characterize the in-cloud component of each <span class="hlt">lightning</span> flash, as well as the correspondence between the LMA observations and <span class="hlt">lightning</span> data taken from national <span class="hlt">lightning</span> networks like the National <span class="hlt">Lightning</span> Detection Network (NLDN). Individual flashes were examined in detail to highlight several observations within the dataset. The study results demonstrated that the structures of these flashes were primarily normal polarity. The mean area encompassed by this set of flashes is 375 km 2 , with a maximum flash extent of 2300 km 2 , a minimum of 3 km 2 , and a median of 128 km 2 . An average of 2.29 NLDN flashes were recorded per LMA-derived <span class="hlt">lightning</span> flash. A maximum of 11 NLDN flashes were recorded in association with a single LMA-derived flash on 10 January 2011. Additionally, seven of the 34 flashes in the study contain zero NLDN identified flashes. Eleven of the 34 flashes initiated from tall human-made objects (e.g., communication towers). In at least six <span class="hlt">lightning</span> flashes, the NLDN detected a return stroke from the cloud back to the tower and not the initial upward leader. This study also discusses <span class="hlt">lightning</span>'s interaction with the human built environment and provides an example of <span class="hlt">lightning</span> within heavy snowfall observed by GOES-16's Geostationary <span class="hlt">Lightning</span> Mapper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.2628V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.2628V"><span>Optimizing Precipitation Thresholds for Best Correlation Between Dry <span class="hlt">Lightning</span> and Wildfires</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vant-Hull, Brian; Thompson, Tollisha; Koshak, William</p> <p>2018-03-01</p> <p>This work examines how to adjust the definition of "dry <span class="hlt">lightning</span>" in order to optimize the correlation between dry <span class="hlt">lightning</span> flash count and the climatology of large (>400 km2) <span class="hlt">lightning</span>-ignited wildfires over the contiguous United States (CONUS). The National <span class="hlt">Lightning</span> Detection Network™ and National Centers for Environmental <span class="hlt">Prediction</span> Stage IV radar-based, gauge-adjusted precipitation data are used to form climatic data sets. For a 13 year analysis period over CONUS, a correlation of 0.88 is found between annual totals of wildfires and dry <span class="hlt">lightning</span>. This optimal correlation is found by defining dry <span class="hlt">lightning</span> as follows: on a 0.1° hourly grid, a precipitation threshold of no more than 0.3 mm may accumulate during any hour over a period of 3-4 days preceding the flash. Regional optimized definitions vary. When annual totals are analyzed as done here, no clear advantage is found by weighting positive polarity cloud-to-ground (+CG) <span class="hlt">lightning</span> differently than -CG <span class="hlt">lightning</span>. The high variability of dry <span class="hlt">lightning</span> relative to the precipitation and <span class="hlt">lightning</span> from which it is derived suggests it would be an independent and useful climate indicator.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090025955&hterms=cloud+cost+effective&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcloud%2Bcost%2Beffective%26Nf%3DPublication-Date%257CBTWN%2B20080101%2B20180619','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090025955&hterms=cloud+cost+effective&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcloud%2Bcost%2Beffective%26Nf%3DPublication-Date%257CBTWN%2B20080101%2B20180619"><span>Forecasting <span class="hlt">Lightning</span> Threat using Cloud-resolving Model Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.</p> <p>2009-01-01</p> <p>As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of <span class="hlt">lightning</span> flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed <span class="hlt">lightning</span> flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for <span class="hlt">lightning</span> flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of <span class="hlt">predicted</span> <span class="hlt">lightning</span> flash rate density, judging from a series of diverse simulation case study events in North Alabama for which <span class="hlt">Lightning</span> Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total <span class="hlt">lightning</span> flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the <span class="hlt">lightning</span> threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMAE12A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMAE12A..06B"><span>Trends in <span class="hlt">Lightning</span> Electrical Energy Derived from the <span class="hlt">Lightning</span> Imaging Sensor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bitzer, P. M.; Koshak, W. J.</p> <p>2016-12-01</p> <p>We present results detailing an emerging application of space-based measurement of <span class="hlt">lightning</span>: the electrical energy. This is a little-used attribute of <span class="hlt">lightning</span> data which can have applications for severe weather, <span class="hlt">lightning</span> physics, and wildfires. In particular, we use data from the Tropical Rainfall Measuring Mission <span class="hlt">Lightning</span> Imaging Sensor (TRMM/LIS) to find the temporal and spatial variations in the detected spectral energy density. This is used to estimate the total <span class="hlt">lightning</span> electrical energy, following established methodologies. Results showing the trend in time of the electrical energy, as well as the distribution around the globe, will be highlighted. While flashes have been typically used in most studies, the basic scientifically-relevant measured unit by LIS is the optical group data product. This generally corresponds to a return stroke or IC pulse. We explore how the electrical energy varies per LIS group, providing an extension and comparison with previous investigations. The result is an initial climatology of this new and important application of space-based optical measurements of <span class="hlt">lightning</span>, which can provide a baseline for future applications using the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), the European <span class="hlt">Lightning</span> Imager (LI), and the International Space Station <span class="hlt">Lightning</span> Imaging Sensor (ISS/LIS) instruments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMAE31A0267Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMAE31A0267Z"><span>Statistical Patterns in Natural <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.</p> <p>2011-12-01</p> <p>Every day millions of <span class="hlt">lightning</span> flashes occur around the globe but the understanding of this natural phenomenon is still lacking. Fundamentally, <span class="hlt">lightning</span> is nature's way of destroying charge separation in clouds and restoring electric neutrality. Thus, statistical patterns of <span class="hlt">lightning</span> activity indicate the scope of these electric discharges and offer a surrogate measure of timescales for charge buildup in thunderclouds. We present a statistical method to investigate spatio-temporal correlations among <span class="hlt">lightning</span> flashes using National <span class="hlt">Lightning</span> Detection Network (NLDN) stroke data. By monitoring the distribution of <span class="hlt">lightning</span> activity, we can observe the charging and discharging processes in a given thunderstorm. In particular, within a given storm, the flashes do not occur as a memoryless random process. We introduce the No Flash Zone (NFZ) which results from the suppressed probability of two consecutive neighboring flashes. This effect lasts for tens of seconds and can extend up to 15 km around the location of the initial flash, decaying with time. This suppression effect may be a function of variables such as storm location, storm phase, and stroke peak current. We <span class="hlt">develop</span> a clustering algorithm, Storm-Locator, which groups strokes into flashes, storm cells, and thunderstorms, and enables us to study <span class="hlt">lightning</span> and the NFZ in different geographical regions, and for different storms. The recursive algorithm also helps monitor the interaction among spatially displaced storm cells, and can provide more insight into the spatial and temporal impacts of <span class="hlt">lightning</span> discharges.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8848654','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8848654"><span><span class="hlt">Lightning</span> and transportation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cherington, M</p> <p>1995-12-01</p> <p>It is a little-known fact that <span class="hlt">lightning</span> casualties often involve travel or transportation. López and colleagues, in their studies on the epidemiology of <span class="hlt">lightning</span> injuries, have reported that 10% of <span class="hlt">lightning</span> injuries are categorized under transportation. In the majority of their cases, victims were struck while standing outside or near their vehicles during a thunderstorm. During my review of the neurologic complications of <span class="hlt">lightning</span> injuries, I was impressed by the number of case reports in which the victim was struck while either in or near a vehicle, airplane or vessel. In this article, I shall put forth information on four aspects of <span class="hlt">lightning</span> that relate to the danger to people traveling in vehicles, boats, and airplanes. First, I shall deal with <span class="hlt">lightning</span> safety on ships and boats. People who enjoy recreational sailing, including the "weekend sailor" and those who enjoy fishing from a boat, should be fortified with knowledge about <span class="hlt">lightning</span> protection. Second, I shall consider the matter of <span class="hlt">lightning</span> strikes to aircraft. In the third section, I shall discuss the question of <span class="hlt">lightning</span> safety in automobiles. Fourth, I shall review those cases found in my literature review in which the victim was struck while in or near a vehicle, boat, or airplane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080037560','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080037560"><span>GOES-R Geostationary <span class="hlt">Lightning</span> Mapper Performance Specifications and Algorithms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.</p> <p>2008-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total <span class="hlt">lightning</span> activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span>. The mission objectives for the GLM are to: (1) Provide continuous, full-disk <span class="hlt">lightning</span> measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were <span class="hlt">developed</span> for the Earth Observing System and have produced a combined 13 year data record of global <span class="hlt">lightning</span> activity. GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> the Level 2 algorithms and applications. The science data will consist of <span class="hlt">lightning</span> "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., <span class="hlt">Lightning</span> Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to <span class="hlt">develop</span> the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001448','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001448"><span>Exploring the Use of Radar for a Physically Based <span class="hlt">Lightning</span> Cessation Nowcasting Tool</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.</p> <p>2011-01-01</p> <p>NASA s Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of <span class="hlt">lightning</span> cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the <span class="hlt">development</span> of a physically based operational algorithm to <span class="hlt">predict</span> <span class="hlt">lightning</span> cessation. While previous studies have <span class="hlt">developed</span> statistically based <span class="hlt">lightning</span> cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and hydrometeors. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with <span class="hlt">lightning</span>. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of <span class="hlt">lightning</span> activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama <span class="hlt">Lightning</span> Mapping Array are used in this study to investigate the radar signatures present before and after <span class="hlt">lightning</span> cessation. Thus far, our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased <span class="hlt">lightning</span> production (i.e., after the last <span class="hlt">lightning</span> flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the <span class="hlt">lightning</span> cessation signature encompassed the period of the polarimetric negative phase shift signature. To the extent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001583','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001583"><span>Rationales for the <span class="hlt">Lightning</span> Launch Commit Criteria</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Willett, John C. (Editor); Merceret, Francis J. (Editor); Krider, E. Philip; O'Brien, T. Paul; Dye, James E.; Walterscheid, Richard L.; Stolzenburg, Maribeth; Cummins, Kenneth; Christian, Hugh J.; Madura, John T.</p> <p>2016-01-01</p> <p>Since natural and triggered <span class="hlt">lightning</span> are demonstrated hazards to launch vehicles, payloads, and spacecraft, NASA and the Department of Defense (DoD) follow the <span class="hlt">Lightning</span> Launch Commit Criteria (LLCC) for launches from Federal Ranges. The LLCC were <span class="hlt">developed</span> to prevent future instances of a rocket intercepting natural <span class="hlt">lightning</span> or triggering a <span class="hlt">lightning</span> flash during launch from a Federal Range. NASA and DoD utilize the <span class="hlt">Lightning</span> Advisory Panel (LAP) to establish and <span class="hlt">develop</span> robust rationale from which the criteria originate. The rationale document also contains appendices that provide additional scientific background, including detailed descriptions of the theory and observations behind the rationales. The LLCC in whole or part are used across the globe due to the rigor of the documented criteria and associated rationale. The Federal Aviation Administration (FAA) adopted the LLCC in 2006 for commercial space transportation and the criteria were codified in the FAA's Code of Federal Regulations (CFR) for Safety of an Expendable Launch Vehicle (Appendix G to 14 CFR Part 417, (G417)) and renamed <span class="hlt">Lightning</span> Flight Commit Criteria in G417.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE12A..05A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE12A..05A"><span>Where are the <span class="hlt">lightning</span> hotspots on Earth?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.</p> <p>2015-12-01</p> <p>The first <span class="hlt">lightning</span> observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded <span class="hlt">lightning</span> signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) <span class="hlt">lightning</span> data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total <span class="hlt">lightning</span> climatology. This detailed very high resolution climatology is used to identify the Earth's <span class="hlt">lightning</span> hotspots and other regional features. Earlier studies located the <span class="hlt">lightning</span> hotspot within the Congo Basin in Africa, but our very high resolution <span class="hlt">lightning</span> climatology found that the highest <span class="hlt">lightning</span> flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top <span class="hlt">lightning</span> hotspot, it comes in a close second and it is the continent with the highest number of <span class="hlt">lightning</span> hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of <span class="hlt">lightning</span> maxima, along with a ranking of the highest five hundred <span class="hlt">lightning</span> maxima, focusing discussion on each continent's 10 highest <span class="hlt">lightning</span> maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm <span class="hlt">development</span>. These results are especially relevant in anticipation of the upcoming availability of continuous total <span class="hlt">lightning</span> observations from the Geostationary <span class="hlt">Lightning</span> Mapping (GLM</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990008509','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990008509"><span>Optical Detection of <span class="hlt">Lightning</span> from Space</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boccippio, Dennis J.; Christian, Hugh J.</p> <p>1998-01-01</p> <p>Optical sensors have been <span class="hlt">developed</span> to detect <span class="hlt">lightning</span> from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based <span class="hlt">lightning</span> detection offers three unique capabilities: (1) the ability to reliably detect <span class="hlt">lightning</span> over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) <span class="hlt">lightning</span>, and (3) the ability to detect <span class="hlt">lightning</span> with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite <span class="hlt">lightning</span> research program which includes three phases: proof-of-concept/climatology, science algorithm <span class="hlt">development</span>, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global <span class="hlt">lightning</span> climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000720','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000720"><span>Challenges in Modelling of <span class="hlt">Lightning</span>-Induced Delamination; Effect of Temperature-Dependent Interfacial Properties</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Naghipour, P.; Pineda, E. J.; Arnold, S.</p> <p>2014-01-01</p> <p><span class="hlt">Lightning</span> is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the high energy induced by <span class="hlt">lightning</span> strike transforms into extreme, localized surface temperature accompanied with a high-pressure shockwave resulting in extensive damage. It is crucial to <span class="hlt">develop</span> a numerical tool capable of <span class="hlt">predicting</span> the damage induced from a <span class="hlt">lightning</span> strike to supplement extremely expensive <span class="hlt">lightning</span> experiments. Delamination is one of the most significant failure modes resulting from a <span class="hlt">lightning</span> strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a <span class="hlt">lightning</span> strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to <span class="hlt">lightning</span> (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28269072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28269072"><span><span class="hlt">Development</span> of a head-phantom and measurement setup for <span class="hlt">lightning</span> effects.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Machts, Rene; Hunold, Alexander; Leu, Carsten; Haueisen, Jens; Rock, Michael</p> <p>2016-08-01</p> <p>Direct <span class="hlt">lightning</span> strikes to human heads lead to various effects ranging from Lichtenberg figures, over loss of consciousness to death. The evolution of the induced current distribution in the head is of great interest to understand the effect mechanisms. This work describes a technique to model a simplified head-phantom to investigate effects during direct <span class="hlt">lightning</span> strike. The head-phantom geometry, conductive and dielectric parameters were chosen similar to that of a human head. Three layers (brain, skull, and scalp) were created for the phantom using agarose hydrogel doped with sodium chloride and carbon. The head-phantom was tested on two different impulse generators, which reproduce approximate <span class="hlt">lightning</span> impulses. The effective current and the current distribution in each layer were analyzed. The biggest part of the current flowed through the brain layer, approx. 70 % in cases without external flashover. Approx. 23 % of the current flowed through skull layer and 6 % through the scalp layer. However, the current decreased within the head-phantom to almost zero after a complete flashover on the phantom occurred. The flashover formed faster with a higher impulse current level. Exposition time of current through the head decreases with a higher current level of the <span class="hlt">lightning</span> impulse. This mechanism might explain the fact that people can survive a <span class="hlt">lightning</span> strike. The experiments help to understand <span class="hlt">lightning</span> effects on humans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130011295','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130011295"><span>Objective <span class="hlt">Lightning</span> Forecasting at Kennedy Space Center/Cape Canaveral Air Force Station using Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winifred; Wheeler, Mark</p> <p>2004-01-01</p> <p>The 45th Weather Squadron (45 WS) forecasters at Cape Canaveral Air Force Station (CCAFS) in Florida include a probability of thunderstorm occurrence in their daily morning briefings. This information is used by personnel involved in determining the possibility of violating Launch Commit Criteria, evaluating Flight Rules for the Space Shuttle, and daily planning for ground operation activities on Kennedy Space Center (KSC)/CCAFS. Much of the current <span class="hlt">lightning</span> probability forecast is based on a subjective analysis of model and observational data. The forecasters requested that a <span class="hlt">lightning</span> probability forecast tool based on statistical analysis of historical warm-season (May - September) data be <span class="hlt">developed</span> in order to increase the objectivity of the daily thunderstorm probability forecast. The tool is a set of statistical <span class="hlt">lightning</span> forecast equations that provide a <span class="hlt">lightning</span> occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season. This study used 15 years (1989-2003) of warm season data to <span class="hlt">develop</span> the objective forecast equations. The local CCAFS 1000 UTC sounding was used to calculate stability parameters for equation predictors. The Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System (CGLSS) data were used to determine <span class="hlt">lightning</span> occurrence for each day. The CGLSS data have been found to be more reliable indicators of <span class="hlt">lightning</span> in the area than surface observations through local informal analyses. This work was based on the results from two earlier research projects. Everitt (1999) used surface observations and rawinsonde data to <span class="hlt">develop</span> logistic regression equations that forecast the daily thunderstorm probability at CCAFS. The Everitt (1999) equations showed an improvement in skill over the Neumann-Pfeffer thunderstorm index (Neumann 1971), which uses multiple linear regression, and also persistence and climatology forecasts. Lericos et al. (2002) <span class="hlt">developed</span> <span class="hlt">lightning</span> distributions over the Florida peninsula based on specific flow regimes. The</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130009921','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130009921"><span>Objective <span class="hlt">Lightning</span> Forecasting at Kennedy Space Center and Cape Canaveral Air Force Station using Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winfred; Wheeler, Mark; Roeder, William</p> <p>2005-01-01</p> <p>The 45th Weather Squadron (45 WS) at Cape Canaveral Air-Force Station (CCAFS)ln Florida issues a probability of <span class="hlt">lightning</span> occurrence in their daily 24-hour and weekly planning forecasts. This information is used for general planning of operations at CCAFS and Kennedy Space Center (KSC). These facilities are located in east-central Florida at the east end of a corridor known as '<span class="hlt">Lightning</span> Alley', an indication that <span class="hlt">lightning</span> has a large impact on space-lift operations. Much of the current <span class="hlt">lightning</span> probability forecast is based on a subjective analysis of model and observational data and an objective forecast tool <span class="hlt">developed</span> over 30 years ago. The 45 WS requested that a new <span class="hlt">lightning</span> probability forecast tool based on statistical analysis of more recent historical warm season (May-September) data be <span class="hlt">developed</span> in order to increase the objectivity of the daily thunderstorm probability forecast. The resulting tool is a set of statistical <span class="hlt">lightning</span> forecast equations, one for each month of the warm season, that provide a <span class="hlt">lightning</span> occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090033091','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090033091"><span>Preliminary <span class="hlt">Development</span> and Evaluation of <span class="hlt">Lightning</span> Jump Algorithms for the Real-Time Detection of Severe Weather</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.</p> <p>2009-01-01</p> <p>Previous studies have demonstrated that rapid increases in total <span class="hlt">lightning</span> activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in <span class="hlt">lightning</span> activity have been termed "<span class="hlt">lightning</span> jumps." Herein, we document a positive correlation between <span class="hlt">lightning</span> jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 <span class="hlt">lightning</span> jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) <span class="hlt">lightning</span> jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic <span class="hlt">lightning</span> jump algorithm named the Threshold 8 <span class="hlt">lightning</span> jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the <span class="hlt">development</span> of an operationally-applicable jump algorithm that can be used with either total <span class="hlt">lightning</span> observations made from the ground, or in the near future from space using the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6457370-modeling-transmission-line-exposure-direct-lightning-strokes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6457370-modeling-transmission-line-exposure-direct-lightning-strokes"><span>Modeling of transmission line exposure to direct <span class="hlt">lightning</span> strokes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rizk, F.A.M.</p> <p>1990-10-01</p> <p>The paper introduces a new model for assessing the exposure of free-standing structures and horizontal conductors above flat ground to direct <span class="hlt">lightning</span> strokes. The starting point of this work is a recently <span class="hlt">developed</span> criterion for positive leader inception, modified to account for positive leaders initiated under the influence of a negative descending <span class="hlt">lightning</span> stroke. Subsequent propagation of the positive leader is analyzed to define the point of encounter of the two leaders which determines the attractive radius of a structure or the attractive lateral distance of a conductor. These parameters are investigated for a wide range of heights and return-strokemore » currents. A method for analyzing shielding failure and determining the critical shielding angle is also described. The <span class="hlt">predictions</span> of the model are compared with field observations and previously <span class="hlt">developed</span> models.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70039773','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70039773"><span>Combining satellite-based fire observations and ground-based <span class="hlt">lightning</span> detections to identify <span class="hlt">lightning</span> fires across the conterminous USA</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.</p> <p>2012-01-01</p> <p><span class="hlt">Lightning</span> fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of <span class="hlt">lightning</span> fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to <span class="hlt">develop</span> and test an algorithm that combined MODIS fire detections with <span class="hlt">lightning</span> detections from the National <span class="hlt">Lightning</span> Detection Network to identify <span class="hlt">lightning</span> fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected <span class="hlt">lightning</span> strikes, given a spatiotemporal lag between <span class="hlt">lightning</span> strike and fire ignition. The algorithm revealed distinctive spatial patterns of <span class="hlt">lightning</span> fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of <span class="hlt">lightning</span> fire occurrence, and especially <span class="hlt">lightning</span> fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of <span class="hlt">lightning</span> fire activity, and can be used to identify the broad scale factors controlling fire occurrence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090019654','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090019654"><span>Satellite Proving Ground for the GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Gurka, James; Bruning, E. C.; Blakeslee, J. R.; Rabin, Robert; Buechler, D.</p> <p>2009-01-01</p> <p>The key mission of the Satellite Proving Ground is to demonstrate new satellite observing data, products and capabilities in the operational environment to be ready on Day 1 to use the GOES-R suite of measurements. Algorithms, tools, and techniques must be tested, validated, and assessed by end users for their utility before they are finalized and incorporated into forecast operations. The GOES-R Proving Ground for the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) focuses on evaluating how the infusion of the new technology, algorithms, decision aids, or tailored products integrate with other available tools (weather radar and ground strike networks; nowcasting systems, mesoscale analysis, and numerical weather <span class="hlt">prediction</span> models) in the hands of the forecaster responsible for issuing forecasts and warning products. Additionally, the testing concept fosters operation and <span class="hlt">development</span> staff interactions which will improve training materials and support documentation <span class="hlt">development</span>. Real-time proxy total <span class="hlt">lightning</span> data from regional VHF <span class="hlt">lightning</span> mapping arrays (LMA) in Northern Alabama, Central Oklahoma, Cape Canaveral Florida, and the Washington, DC Greater Metropolitan Area are the cornerstone for the GLM Proving Ground. The proxy data will simulate the 8 km Event, Group and Flash data that will be generated by GLM. Tailored products such as total flash density at 1-2 minute intervals will be provided for display in AWIPS-2 to select NWS forecast offices and national centers such as the Storm <span class="hlt">Prediction</span> Center. Additional temporal / spatial combinations are being investigated in coordination with operational needs and case-study proxy data and prototype visualizations may also be generated from the NASA heritage <span class="hlt">Lightning</span> Imaging Sensor and Optical Transient Detector data. End users will provide feedback on the utility of products in their operational environment, identify use cases and spatial/temporal scales of interest, and provide feedback to the <span class="hlt">developers</span> for adjusted or</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA557155','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA557155"><span>Assimilation of Long-Range <span class="hlt">Lightning</span> Data over the Pacific</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-09-30</p> <p>convective rainfall analyses over the Pacific, and (iii) to improve marine <span class="hlt">prediction</span> of cyclogenesis of both tropical and extratropical cyclones through...data over the North Pacific Ocean, refine the relationships between <span class="hlt">lightning</span> and storm hydrometeor characteristics, and assimilate <span class="hlt">lightning</span>...unresolved storm -scale areas of deep convection over the data-sparse open oceans. Diabatic heating sources, especially latent heat release in deep</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080048200','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080048200"><span>Monte Carlo Simulation to Estimate Likelihood of Direct <span class="hlt">Lightning</span> Strikes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mata, Carlos; Medelius, Pedro</p> <p>2008-01-01</p> <p>A software tool has been designed to quantify the <span class="hlt">lightning</span> exposure at launch sites of the stack at the pads under different configurations. In order to <span class="hlt">predict</span> <span class="hlt">lightning</span> strikes to generic structures, this model uses leaders whose origins (in the x-y plane) are obtained from a 2D random, normal distribution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MAP...128..303B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MAP...128..303B"><span><span class="hlt">Lightning</span> characteristics of derecho producing mesoscale convective systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.</p> <p>2016-06-01</p> <p>Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground <span class="hlt">lightning</span> with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their <span class="hlt">lightning</span> characteristics. Data used in the study included cloud-to-ground flash data derived from the National <span class="hlt">Lightning</span> Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm <span class="hlt">Prediction</span> Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and <span class="hlt">lightning</span> characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the <span class="hlt">lightning</span> activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of <span class="hlt">lightning</span> flashes; (3) locating areas of highest <span class="hlt">lightning</span> flash density; and (4) to provide a <span class="hlt">lightning</span> spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160014743','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160014743"><span>Preparations for Integrating Space-Based Total <span class="hlt">Lightning</span> Observations into Forecast Operations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.; Fuell, Kevin K.; Molthan, Andrew L.</p> <p>2016-01-01</p> <p>NASA's Short-term <span class="hlt">Prediction</span> Research and Transition (SPoRT) Center has been a leader in collaborating with the United States National Weather Service (NWS) offices to integrate ground-based total <span class="hlt">lightning</span> (intra-cloud and cloud-to-ground) observations into the real-time operational environment. For much of these collaborations, the emphasis has been on training, dissemination of data to the NWS AWIPS system, and focusing on the utility of these data in the warning decision support process. A shift away from this paradigm has occurred more recently for several reasons. For one, SPoRT's collaborations have expanded to new partners, including emergency managers and the aviation community. Additionally, and most importantly, is the impending launch of the GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM). This has led to collaborative efforts to focus on additional forecast needs, new data displays, <span class="hlt">develop</span> training for GLM uses based on the lessons learned from ground-based <span class="hlt">lightning</span> mapping arrays, and ways to better relate total <span class="hlt">lightning</span> data to other meteorological parameters. This presentation will focus on these efforts to prepare the operational end user community for GLM with an eye towards sharing lessons learned as EUMETSAT prepares for the Meteosat Third Generation <span class="hlt">Lightning</span> Imager. This will focus on both software and training needs. In particular, SPoRT has worked closely with the Meteorological <span class="hlt">Development</span> Laboratory to create the total <span class="hlt">lightning</span> tracking tool. This software allows for NWS forecasters to manually track storms of interest and display a time series trend of observations. This tool also has been expanded to work on any gridded data set allowing for easy visual comparisons of multiple parameters in addition to total <span class="hlt">lightning</span>. A new web display has been <span class="hlt">developed</span> for the ground-based observations that can be easily extended to satellite observations. This paves the way for new collaborations outside of the NWS, both domestically and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28770051','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28770051"><span>Quantification and identification of <span class="hlt">lightning</span> damage in tropical forests.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo</p> <p>2017-07-01</p> <p>Accurate estimates of tree mortality are essential for the <span class="hlt">development</span> of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although <span class="hlt">lightning</span> kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of <span class="hlt">lightning</span>-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of <span class="hlt">lightning</span> on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of <span class="hlt">lightning</span> are impossible. We <span class="hlt">developed</span> a combined electronic sensor/camera-based system for the location and characterization of <span class="hlt">lightning</span> strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of <span class="hlt">lightning</span> strikes. We used a preliminary version of this system to record and locate 18 <span class="hlt">lightning</span> strikes to the forest over a 3-year period. Data from field surveys of known <span class="hlt">lightning</span> strike locations (obtained from the camera system) enabled us to <span class="hlt">develop</span> a protocol for reliable, ground-based identification of suspected <span class="hlt">lightning</span> damage to tropical trees. In all cases, <span class="hlt">lightning</span> damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify <span class="hlt">lightning</span> strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of <span class="hlt">lightning</span>-damaged temperate trees were never observed in this study. Given the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRE..119.2167P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRE..119.2167P"><span><span class="hlt">Predicting</span> the characteristics of thunder on Titan: A framework to assess the detectability of <span class="hlt">lightning</span> by acoustic sensing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petculescu, Andi; Kruse, Roland</p> <p>2014-10-01</p> <p>The search for <span class="hlt">lightning</span> is an important item on the agenda for the future exploration of Titan. Thunder, as a direct <span class="hlt">lightning</span> signature, can be used, together with electromagnetic signals, to corroborate and quantify <span class="hlt">lightning</span>. Using Cassini-Huygens data and model <span class="hlt">predictions</span>, the main characteristics of thunder produced by a potential 20 km cloud-to-ground tortuous discharge are obtained and discussed. The acoustic power released right after the discharge decreases with increasing altitude, owing to the ambient pressure and temperature gradients. Ray tracing is used to propagate sound waves to the far field. Simulated thunder waveforms are characterized by fairly long codas—on the order of tens of seconds—arising from the small acoustic absorption (˜10-4dB/km). In the low-loss environment, the principal thunder arrival will likely have a large signal-to-noise ratio ensuring a high detection selectivity. The spectral content depends on the amount of energy released during the discharge. For an energy density of 5 kJ/m, the dominant contribution lies between 50 and 80 Hz; for 500 kJ/m, it shifts to lower frequencies between 10 and 30 Hz.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989sbl..conf.....O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989sbl..conf.....O"><span>Science of Ball <span class="hlt">Lightning</span> (Fire Ball)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ohtsuki, Yoshi-Hiko</p> <p>1989-08-01</p> <p>The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball <span class="hlt">Lightning</span> -- The Continuing Challenge * Hungarian Ball <span class="hlt">Lightning</span> Observations in 1987 * Nature of Ball <span class="hlt">Lightning</span> in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball <span class="hlt">Lightning</span> Reports * Physical Problems and Physical Properties of Ball <span class="hlt">Lightning</span> * Statistical Analysis of the Ball <span class="hlt">Lightning</span> Properties * A Fluid-Dynamical Model for Ball <span class="hlt">Lightning</span> and Bead <span class="hlt">Lightning</span> * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball <span class="hlt">Lightning</span> * The Candle Flame as a Model of Ball <span class="hlt">Lightning</span> * A Model for Ball <span class="hlt">Lightning</span> * The High-Temperature Physico-Chemical Processes in the <span class="hlt">Lightning</span> Storm Atmosphere (A Physico-Chemical Model of Ball <span class="hlt">Lightning</span>) * New Approach to Ball <span class="hlt">Lightning</span> * A Calculation of Electric Field of Ball <span class="hlt">Lightning</span> * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball <span class="hlt">Lightning</span> * The PLASMAK™ Configuration and Ball <span class="hlt">Lightning</span> * Experimental Research on Ball <span class="hlt">Lightning</span> * Performance of High-Voltage Test Facility Designed for Investigation of Ball <span class="hlt">Lightning</span> * List of Participants</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010LPI....41.1215R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010LPI....41.1215R"><span>Venus <span class="hlt">Lightning</span>: What We Have Learned from the Venus Express Fluxgate Magnetometer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Russell, C. T.; Strangeway, R. J.; Wei, H. Y.; Zhang, T. L.</p> <p>2010-03-01</p> <p>The Venus Express magnetometer sees short (tens of milliseconds) pulses of EM waves in the Venus ionosphere as <span class="hlt">predicted</span> by the <span class="hlt">lightning</span> model for the PVO electric pulses. These waves are stronger than similar terrestrial signals produced by <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004EOSTr..85..110O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004EOSTr..85..110O"><span><span class="hlt">Lightning</span> Physics and Effects</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Orville, Richard E.</p> <p>2004-03-01</p> <p><span class="hlt">Lightning</span> Physics and Effects is not a <span class="hlt">lightning</span> book; it is a <span class="hlt">lightning</span> encyclopedia. Rarely in the history of science has one contribution covered a subject with such depth and thoroughness as to set the enduring standard for years, perhaps even decades, to come. This contribution covers all aspects of <span class="hlt">lightning</span>, including <span class="hlt">lightning</span> physics, <span class="hlt">lightning</span> protection, and the interaction of <span class="hlt">lightning</span> with a variety of objects and systems as well as the environment. The style of writing is well within the ability of the technical non-expert and anyone interested in <span class="hlt">lightning</span> and its effects. Potential readers will include physicists; engineers working in the power industry, communications, computer, and aviation industries; atmospheric scientists; geophysicists; meteorologists; atmospheric chemists; foresters; ecologists; physicians working in the area of electrical trauma; and, lastly, architects. This comprehensive reference volume contains over 300 illustrations, 70 tables with quantitative information, and over 6000 reference and bibliography entries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23761114','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23761114"><span>Central hyperadrenergic state after <span class="hlt">lightning</span> strike.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Parsaik, Ajay K; Ahlskog, J Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H; Seime, Richard J; Craft, Jennifer M; Staab, Jeffrey P; Kantor, Birgit; Low, Phillip A</p> <p>2013-08-01</p> <p>To describe and review autonomic complications of <span class="hlt">lightning</span> strike. Case report and laboratory data including autonomic function tests in a subject who was struck by <span class="hlt">lightning</span>. A 24-year-old man was struck by <span class="hlt">lightning</span>. Following that, he <span class="hlt">developed</span> dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation was highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the <span class="hlt">lightning</span> strike on the central nervous system or a secondary response is open to speculation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120001434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120001434"><span>The Goes-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas</p> <p>2011-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total <span class="hlt">lightning</span> activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument <span class="hlt">development</span>, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to <span class="hlt">develop</span> the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being <span class="hlt">developed</span> and evaluated at various NOAA Testbeds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGC33D0547C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGC33D0547C"><span>Using High Resolution Model Data to Improve <span class="hlt">Lightning</span> Forecasts across Southern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capps, S. B.; Rolinski, T.</p> <p>2014-12-01</p> <p>Dry <span class="hlt">lightning</span> often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service <span class="hlt">Predictive</span> Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were <span class="hlt">developed</span> by these meteorologists several years ago, which forecast probabilities of <span class="hlt">lightning</span> as well as <span class="hlt">lightning</span> amounts, out to seven days across southern California. These regression equations were <span class="hlt">developed</span> using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical <span class="hlt">lightning</span> strike data. These equations do a reasonably good job of capturing a <span class="hlt">lightning</span> episode (3-5 consecutive days or greater of <span class="hlt">lightning</span>), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic <span class="hlt">lightning</span> events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Sci...346..851R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Sci...346..851R"><span>Projected increase in <span class="hlt">lightning</span> strikes in the United States due to global warming</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romps, David M.; Seeley, Jacob T.; Vollaro, David; Molinari, John</p> <p>2014-11-01</p> <p><span class="hlt">Lightning</span> plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on <span class="hlt">lightning</span> rates is poorly constrained. Here we propose that the <span class="hlt">lightning</span> flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground <span class="hlt">lightning</span> flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged <span class="hlt">lightning</span> energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS <span class="hlt">lightning</span> strikes are <span class="hlt">predicted</span> to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10466E..5BM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10466E..5BM"><span><span class="hlt">Development</span> of a monitoring network for <span class="hlt">lightning</span> stokes accompanying the eruptions of the Northern group of volcanoes on Kamchatka peninsula</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mochalov, V. A.; Firstov, P. P.; Cherneva, N. V.; Sannikov, D. V.; Akbashev, R. R.; Uvarov, V. N.; Shevtsov, B. M.; Druzhin, G. I.; Mochalova, A. V.</p> <p>2017-11-01</p> <p>In the region of the Northern group of volcanoes in Kamchatka peninsula, a distributed network is being planned to monitor the VLF range electromagnetic radiation and to locate the <span class="hlt">lightning</span> strokes. It will allow the researchers to register weaker electromagnetic pulses from <span class="hlt">lightning</span> strokes in comparison to the World Wide <span class="hlt">Lightning</span> Location Network. The hardware-software complex of the network under construction is presented. The capabilities of the available and the <span class="hlt">developing</span> hardware and software to investigate natural phenomena associated with <span class="hlt">lightning</span> activity are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE42A..01C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE42A..01C"><span>Fifty Years of <span class="hlt">Lightning</span> Observations from Space</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christian, H. J., Jr.</p> <p>2017-12-01</p> <p>Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected <span class="hlt">lightning</span> using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect <span class="hlt">lightning</span> was the PBE (1977). The use of space to study <span class="hlt">lightning</span> activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to <span class="hlt">develop</span> high performance optical <span class="hlt">lightning</span> sensors. Prior to the use of charged-coupled devices (CCD), most space-based <span class="hlt">lightning</span> sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the <span class="hlt">lightning</span> produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first <span class="hlt">lightning</span> sensors to utilize focal-plane arrays. Together they detected global <span class="hlt">lightning</span> activity for more than twenty years, providing the first detailed information on the distribution of global <span class="hlt">lightning</span> and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical <span class="hlt">lightning</span> emissions. It too used a CCD focal plane to detect and locate <span class="hlt">lightning</span>. In November 2016, the GLM became the first <span class="hlt">lightning</span> instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. <span class="hlt">Lightning</span> sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, <span class="hlt">lightning</span> activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard <span class="hlt">lightning</span>, a number of sensors have been placed in orbit to detect transient luminous events and</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5965181','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5965181"><span><span class="hlt">Lightning</span> Burns and Electrical Trauma in a Couple Simultaneously Struck by <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Eyerly-Webb, Stephanie A.; Solomon, Rachele; Lee, Seong K.; Sanchez, Rafael; Carrillo, Eddy H.; Davare, Dafney L.; Kiffin, Chauniqua; Rosenthal, Andrew</p> <p>2017-01-01</p> <p>More people are struck and killed by <span class="hlt">lightning</span> each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by <span class="hlt">lightning</span> while walking arm-in-arm. Both patients presented with characteristic <span class="hlt">lightning</span> burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of <span class="hlt">lightning</span> burns, serious internal electrical injuries are common. Therefore, <span class="hlt">lightning</span> strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29303164','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29303164"><span>Automated Storm Tracking and the <span class="hlt">Lightning</span> Jump Algorithm Using GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy Data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schultz, Elise V; Schultz, Christopher J; Carey, Lawrence D; Cecil, Daniel J; Bateman, Monte</p> <p>2016-01-01</p> <p>This study <span class="hlt">develops</span> a fully automated <span class="hlt">lightning</span> jump system encompassing objective storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper proxy data, and the <span class="hlt">lightning</span> jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and <span class="hlt">lightning</span> information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the <span class="hlt">lightning</span> jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of <span class="hlt">lightning</span> jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the <span class="hlt">lightning</span> jump system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160009780','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160009780"><span>Automated Storm Tracking and the <span class="hlt">Lightning</span> Jump Algorithm Using GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Elise; Schultz, Christopher Joseph; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte</p> <p>2016-01-01</p> <p>This study <span class="hlt">develops</span> a fully automated <span class="hlt">lightning</span> jump system encompassing objective storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper proxy data, and the <span class="hlt">lightning</span> jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and <span class="hlt">lightning</span> information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the <span class="hlt">lightning</span> jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system's performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system's performance is evaluated with adjustments to parameter sensitivity. The system's performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of <span class="hlt">lightning</span> jump strength) and flash rate threshold influenced the system's performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the <span class="hlt">lightning</span> jump system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5749929','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5749929"><span>Automated Storm Tracking and the <span class="hlt">Lightning</span> Jump Algorithm Using GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy Data</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>SCHULTZ, ELISE V.; SCHULTZ, CHRISTOPHER J.; CAREY, LAWRENCE D.; CECIL, DANIEL J.; BATEMAN, MONTE</p> <p>2017-01-01</p> <p>This study <span class="hlt">develops</span> a fully automated <span class="hlt">lightning</span> jump system encompassing objective storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper proxy data, and the <span class="hlt">lightning</span> jump algorithm (LJA), which are important elements in the transition of the LJA concept from a research to an operational based algorithm. Storm cluster tracking is based on a product created from the combination of a radar parameter (vertically integrated liquid, VIL), and <span class="hlt">lightning</span> information (flash rate density). Evaluations showed that the spatial scale of tracked features or storm clusters had a large impact on the <span class="hlt">lightning</span> jump system performance, where increasing spatial scale size resulted in decreased dynamic range of the system’s performance. This framework will also serve as a means to refine the LJA itself to enhance its operational applicability. Parameters within the system are isolated and the system’s performance is evaluated with adjustments to parameter sensitivity. The system’s performance is evaluated using the probability of detection (POD) and false alarm ratio (FAR) statistics. Of the algorithm parameters tested, sigma-level (metric of <span class="hlt">lightning</span> jump strength) and flash rate threshold influenced the system’s performance the most. Finally, verification methodologies are investigated. It is discovered that minor changes in verification methodology can dramatically impact the evaluation of the <span class="hlt">lightning</span> jump system. PMID:29303164</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6487I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6487I"><span>Nowcasting of <span class="hlt">Lightning</span>-Related Accidents in Africa</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ihrlich, Laura; Price, Colin</p> <p>2016-04-01</p> <p>Tropical Africa is the world capital of thunderstorm activity with the highest density of strikes per square kilometer per year. As a result it is also the continent with perhaps the highest casualties and injuries from direct <span class="hlt">lightning</span> strikes. This region of the globe also has little <span class="hlt">lightning</span> protection of rural homes and schools, while many casualties occur during outdoor activities (e.g. farming, fishing, sports, etc.) In this study we investigated two <span class="hlt">lightning</span>-caused accidents that got wide press coverage: A <span class="hlt">lightning</span> strike to a Cheetah Center in Namibia which caused a huge fire and great destruction (16 October 2013), and a plane crash in Mali where 116 people died (24 July 2014). Using data from the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) we show that the <span class="hlt">lightning</span> data alone can provide important early warning information that can be used to reduce risks and damages and loss of life from <span class="hlt">lightning</span> strikes. We have <span class="hlt">developed</span> a now-casting scheme that allows for early warnings across Africa with a relatively low false alarm rate. To verify the accuracy of our now-cast, we have performed some statistical analysis showing relatively high skill at providing early warnings (lead time of a few hours) based on <span class="hlt">lightning</span> alone. Furthermore, our analysis can be used in forensic meteorology for determining if such accidents are caused by <span class="hlt">lightning</span> strikes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26069388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26069388"><span>Charge structure in volcanic plumes: a comparison of plume properties <span class="hlt">predicted</span> by an integral plume model to observations of volcanic <span class="hlt">lightning</span> during the 2010 eruption of Eyjafjallajökull, Iceland.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Woodhouse, Mark J; Behnke, Sonja A</p> <p></p> <p>Observations of volcanic <span class="hlt">lightning</span> made using a <span class="hlt">lightning</span> mapping array during the 2010 eruption of Eyjafjallajökull allow the trajectory and growth of the volcanic plume to be determined. The <span class="hlt">lightning</span> observations are compared with <span class="hlt">predictions</span> of an integral model of volcanic plumes that includes descriptions of the interaction with wind and the effects of moisture. We show that the trajectory <span class="hlt">predicted</span> by the integral model closely matches the observational data and the model well describes the growth of the plume downwind of the vent. Analysis of the <span class="hlt">lightning</span> signals reveals information on the dominant charge structure within the volcanic plume. During the Eyjafjallajökull eruption both monopole and dipole charge structures were observed in the plume. By using the integral plume model, we propose the varying charge structure is connected to the availability of condensed water and low temperatures at high altitudes in the plume, suggesting ice formation may have contributed to the generation of a dipole charge structure via thunderstorm-style ice-based charging mechanisms, though overall this charging mechanism is believed to have had only a weak influence on the production of <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040121107','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040121107"><span><span class="hlt">Lightning</span> Instrumentation at KSC</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colon, Jose L.; Eng, D.</p> <p>2003-01-01</p> <p>This report summarizes <span class="hlt">lightning</span> phenomena with a brief explanation of <span class="hlt">lightning</span> generation and <span class="hlt">lightning</span> activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of <span class="hlt">lightning</span> effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain <span class="hlt">lightning</span> current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual <span class="hlt">lightning</span> current recorders and a novel device for the protection system are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/380319','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/380319"><span>New mechanism for <span class="hlt">lightning</span> initiation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roussel-Dupre, R.; Buchwald, M.; Gurevich, A.</p> <p>1996-10-01</p> <p>This is the final report of a three-year, Laboratory-Directed Research and <span class="hlt">Development</span> (LDRD) project at the Los Alamos National Laboratory (LANL). To distinguish radio-frequency (rf) signals generated by <span class="hlt">lightning</span> from the electromagnetic pulse produced by a nuclear explosion, it is necessary to understand the fundamental nature of thunderstorm discharges. The recent debate surrounding the origin of transionospheric pulse pairs (TIPPs) detected by the BLACKBEARD experiment aboard the ALEXIS satellite illustrates this point. We have argued that TIPP events could originate from the upward propagating discharges recently identified by optical images taken from the ground, from airplanes, and from the spacemore » shuttle. In addition, the Gamma Ray Observatory (GRO) measurements of x-ray bursts originating from thunderstorms are almost certainly associated with these upward propagating discharges. When taken together, these three measurements point directly to the runaway electron mechanism as the source of the upward discharges. The primary goal of this research effort was to identify the specific role played by the runaway-air-breakdown mechanism in the general area of thunderstorm electricity and in so doing <span class="hlt">develop</span> <span class="hlt">lightning</span> models that <span class="hlt">predict</span> the optical, rf, and x-ray emissions that are observable from space.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023379','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023379"><span>The 1991 International Aerospace and Ground Conference on <span class="hlt">Lightning</span> and Static Electricity, volume 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>The proceedings of the conference are reported. The conference focussed on <span class="hlt">lightning</span> protection, detection, and forecasting. The conference was divided into 26 sessions based on research in <span class="hlt">lightning</span>, static electricity, modeling, and mapping. These sessions spanned the spectrum from basic science to engineering, concentrating on <span class="hlt">lightning</span> <span class="hlt">prediction</span> and detection and on safety for ground facilities, aircraft, and aerospace vehicles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013627&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbateman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013627&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dbateman"><span>A Comparison of <span class="hlt">Lightning</span> Flashes as Observed by the <span class="hlt">Lightning</span> Imaging Sensor and the North Alabama <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bateman, M. G.; Mach, D. M.; McCaul, M. G.; Bailey, J. C.; Christian, H. J.</p> <p>2008-01-01</p> <p>The <span class="hlt">Lightning</span> Imaging Sensor (LIS) aboard the TRMM satellite has been collecting optical <span class="hlt">lightning</span> data since November 1997. A <span class="hlt">Lightning</span> Mapping Array (LMA) that senses VHF impulses from <span class="hlt">lightning</span> was installed in North Alabama in the Fall of 2001. A dataset has been compiled to compare data from both instruments for all times when the LIS was passing over the domain of our LMA. We have algorithms for both instruments to group pixels or point sources into <span class="hlt">lightning</span> flashes. This study presents the comparison statistics of the flash data output (flash duration, size, and amplitude) from both algorithms. We will present the results of this comparison study and show "point-level" data to explain the differences. AS we head closer to realizing a Global <span class="hlt">Lightning</span> Mapper (GLM) on GOES-R, better understanding and ground truth of each of these instruments and their respective flash algorithms is needed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC33E1125K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC33E1125K"><span><span class="hlt">Lightning</span>-Related Indicators for National Climate Assessment (NCA) Studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koshak, W. J.</p> <p>2017-12-01</p> <p>With the recent advent of space-based <span class="hlt">lightning</span> mappers [i.e., the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) on GOES-16, and the <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between <span class="hlt">lightning</span> and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. <span class="hlt">Lightning</span> nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of <span class="hlt">lightning</span> (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in <span class="hlt">lightning</span>-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA <span class="hlt">Lightning</span> Analysis Tool (LAT). It includes key findings on the <span class="hlt">development</span> of different types of <span class="hlt">lightning</span> flash energy indicators derived from space-based <span class="hlt">lightning</span> observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhR...534..147D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhR...534..147D"><span>The physics of <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dwyer, Joseph R.; Uman, Martin A.</p> <p>2014-01-01</p> <p>Despite being one of the most familiar and widely recognized natural phenomena, <span class="hlt">lightning</span> remains relatively poorly understood. Even the most basic questions of how <span class="hlt">lightning</span> is initiated inside thunderclouds and how it then propagates for many tens of kilometers have only begun to be addressed. In the past, progress was hampered by the unpredictable and transient nature of <span class="hlt">lightning</span> and the difficulties in making direct measurements inside thunderstorms, but advances in instrumentation, remote sensing methods, and rocket-triggered <span class="hlt">lightning</span> experiments are now providing new insights into the physics of <span class="hlt">lightning</span>. Furthermore, the recent discoveries of intense bursts of X-rays and gamma-rays associated with thunderstorms and <span class="hlt">lightning</span> illustrate that new and interesting physics is still being discovered in our atmosphere. The study of <span class="hlt">lightning</span> and related phenomena involves the synthesis of many branches of physics, from atmospheric physics to plasma physics to quantum electrodynamics, and provides a plethora of challenging unsolved problems. In this review, we provide an introduction to the physics of <span class="hlt">lightning</span> with the goal of providing interested researchers a useful resource for starting work in this fascinating field. By what physical mechanism or mechanisms is <span class="hlt">lightning</span> initiated in the thundercloud? What is the maximum cloud electric field magnitude and over what volume of the cloud? What, if any, high energy processes (runaway electrons, X-rays, gamma rays) are involved in <span class="hlt">lightning</span> initiation and how? What is the role of various forms of ice and water in <span class="hlt">lightning</span> initiation? What physical mechanisms govern the propagation of the different types of <span class="hlt">lightning</span> leaders (negative stepped, first positive, negative dart, negative dart-stepped, negative dart-chaotic) between cloud and ground and the leaders inside the cloud? What is the physical mechanism of leader attachment to elevated objects on the ground and to the flat ground? What are the characteristics</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMAE53A..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMAE53A..01B"><span><span class="hlt">Lightning</span> Location Using Acoustic Signals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badillo, E.; Arechiga, R. O.; Thomas, R. J.</p> <p>2013-05-01</p> <p>In the summer of 2011 and 2012 a network of acoustic arrays was deployed in the Magdalena mountains of central New Mexico to locate <span class="hlt">lightning</span> flashes. A Times-Correlation (TC) ray-tracing-based-technique was <span class="hlt">developed</span> in order to obtain the location of <span class="hlt">lightning</span> flashes near the network. The TC technique, locates acoustic sources from <span class="hlt">lightning</span>. It was <span class="hlt">developed</span> to complement the <span class="hlt">lightning</span> location of RF sources detected by the <span class="hlt">Lightning</span> Mapping Array (LMA) <span class="hlt">developed</span> at Langmuir Laboratory, in New Mexico Tech. The network consisted of four arrays with four microphones each. The microphones on each array were placed in a triangular configuration with one of the microphones in the center of the array. The distance between the central microphone and the rest of them was about 30 m. The distance between centers of the arrays ranged from 500 m to 1500 m. The TC technique uses times of arrival (TOA) of acoustic waves to trace back the location of thunder sources. In order to obtain the times of arrival, the signals were filtered in a frequency band of 2 to 20 hertz and cross-correlated. Once the times of arrival were obtained, the Levenberg-Marquardt algorithm was applied to locate the spatial coordinates (x,y, and z) of thunder sources. Two techniques were used and contrasted to compute the accuracy of the TC method: Nearest-Neighbors (NN), between acoustic and LMA located sources, and standard deviation from the curvature matrix of the system as a measure of dispersion of the results. For the best case scenario, a triggered <span class="hlt">lightning</span> event, the TC method applied with four microphones, located sources with a median error of 152 m and 142.9 m using nearest-neighbors and standard deviation respectively.; Results of the TC method in the <span class="hlt">lightning</span> event recorded at 18:47:35 UTC, August 6, 2012. Black dots represent the results computed. Light color dots represent the LMA data for the same event. The results were obtained with the MGTM station (four channels). This figure</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT..........4E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT..........4E"><span>Evaluation of <span class="hlt">Lightning</span> Jumps as a Predictor of Severe Weather in the Northeastern United States</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eck, Pamela</p> <p></p> <p>Severe weather events in the northeastern United States can be challenging to forecast, given how the evolution of deep convection can be influenced by complex terrain and the lack of quality observations in complex terrain. To supplement existing observations, this study explores using <span class="hlt">lightning</span> to forecast severe convection in areas of complex terrain in the northeastern United States. A sudden increase in <span class="hlt">lightning</span> flash rate by two standard deviations (2sigma), also known as a <span class="hlt">lightning</span> jump, may be indicative of a strengthening updraft and an increased probability of severe weather. This study assesses the value of using <span class="hlt">lightning</span> jumps to forecast severe weather during July 2015 in the northeastern United States. Total <span class="hlt">lightning</span> data from the National <span class="hlt">Lightning</span> Detection Network (NLDN) is used to calculate <span class="hlt">lightning</span> jumps using a 2sigma <span class="hlt">lightning</span> jump algorithm with a minimum threshold of 5 flashes min-1. <span class="hlt">Lightning</span> jumps are used to <span class="hlt">predict</span> the occurrence of severe weather, as given by whether a Storm <span class="hlt">Prediction</span> Center (SPC) severe weather report occurred 45 min after a <span class="hlt">lightning</span> jump in the same cell. Results indicate a high probability of detection (POD; 85%) and a high false alarm rate (FAR; 89%), suggesting that <span class="hlt">lightning</span> jumps occur in sub-severe storms. The interaction between convection and complex terrain results in a locally enhanced updraft and an increased probability of severe weather. Thus, it is hypothesized that conditioning on an upslope variable may reduce the FAR. A random forest is introduced to objectively combine upslope flow, calculated using data from the High Resolution Rapid Refresh (HRRR), flash rate (FR), and flash rate changes with time (DFRDT). The random forest, a machine-learning algorithm, uses pattern recognition to <span class="hlt">predict</span> a severe or non-severe classification based on the predictors. In addition to upslope flow, FR, and DFRDT, Next-Generation Radar (NEXRAD) Level III radar data was also included as a predictor to compare its</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmRe.169..523P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmRe.169..523P"><span>Numerical modeling of an intense precipitation event and its associated <span class="hlt">lightning</span> activity over northern Greece</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pytharoulis, I.; Kotsopoulos, S.; Tegoulias, I.; Kartsios, S.; Bampzelis, D.; Karacostas, T.</p> <p>2016-03-01</p> <p>This study investigates an intense precipitation event and its <span class="hlt">lightning</span> activity that affected northern Greece and primarily Thessaloniki on 15 July 2014. The precipitation measurement of 98.5 mm in 15 h at the Aristotle University of Thessaloniki set a new absolute record maximum. The thermodynamic analysis indicated that the event took place in an environment that could support deep thunderstorm activity. The <span class="hlt">development</span> of this intense event was associated with significant low-level convergence and upper-level divergence even before its triggering and a positive vertical gradient of relative vorticity advection. The high resolution (1.667 km × 1.667 km) non-hydrostatic WRF-ARW numerical weather <span class="hlt">prediction</span> model was used to simulate this intense precipitation event, while the <span class="hlt">Lightning</span> Potential Index was utilized to calculate the potential for <span class="hlt">lightning</span> activity. Sensitivity experiments suggested that although the strong synoptic forcing assumed primary role in the occurrence of intense precipitation and <span class="hlt">lightning</span> activity, their spatiotemporal variability was affected by topography. The application of the very fine resolution topography of NASA Shuttle Radar Topographic Mission improved the simulated precipitation and the calculated <span class="hlt">lightning</span> potential.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3737249','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3737249"><span>Central Hyperadrenergic State After <span class="hlt">Lightning</span> Strike</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Parsaik, Ajay K.; Ahlskog, J. Eric; Singer, Wolfgang; Gelfman, Russell; Sheldon, Seth H.; Seime, Richard J.; Craft, Jennifer M.; Staab, Jeffrey P.; Kantor, Birgit; Low, Phillip A.</p> <p>2013-01-01</p> <p>Objective To describe and review autonomic complications of <span class="hlt">lightning</span> strike. Methods Case report and laboratory data including autonomic function tests in a subject who was struck by <span class="hlt">lightning</span>. Results A 24-year-old man was struck by <span class="hlt">lightning</span>. Following that, he <span class="hlt">developed</span> dysautonomia, with persistent inappropriate sinus tachycardia and autonomic storms, as well as posttraumatic stress disorder (PTSD) and functional neurologic problems. Interpretation The combination of persistent sinus tachycardia and episodic exacerbations associated with hypertension, diaphoresis, and agitation were highly suggestive of a central hyperadrenergic state with superimposed autonomic storms. Whether the additional PTSD and functional neurologic deficits were due to a direct effect of the <span class="hlt">lightning</span> strike on the CNS or a secondary response is open to speculation. PMID:23761114</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26865431','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26865431"><span>Seasonal forecasting of <span class="hlt">lightning</span> and thunderstorm activity in tropical and temperate regions of the world.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dowdy, Andrew J</p> <p>2016-02-11</p> <p>Thunderstorms are convective systems characterised by the occurrence of <span class="hlt">lightning</span>. <span class="hlt">Lightning</span> and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be <span class="hlt">predictable</span> several months in advance, suggesting potential for seasonal forecasting of <span class="hlt">lightning</span> and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal <span class="hlt">lightning</span> activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with <span class="hlt">lightning</span> activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local <span class="hlt">lightning</span> activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in <span class="hlt">lightning</span> activity associated with ENSO. It is demonstrated that there is potential for accurately <span class="hlt">predicting</span> <span class="hlt">lightning</span> and thunderstorm activity several months in advance in various regions throughout the world.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4750006','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4750006"><span>Seasonal forecasting of <span class="hlt">lightning</span> and thunderstorm activity in tropical and temperate regions of the world</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dowdy, Andrew J.</p> <p>2016-01-01</p> <p>Thunderstorms are convective systems characterised by the occurrence of <span class="hlt">lightning</span>. <span class="hlt">Lightning</span> and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be <span class="hlt">predictable</span> several months in advance, suggesting potential for seasonal forecasting of <span class="hlt">lightning</span> and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal <span class="hlt">lightning</span> activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with <span class="hlt">lightning</span> activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local <span class="hlt">lightning</span> activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in <span class="hlt">lightning</span> activity associated with ENSO. It is demonstrated that there is potential for accurately <span class="hlt">predicting</span> <span class="hlt">lightning</span> and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMAE43B0273H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMAE43B0273H"><span>Combined VLF and VHF <span class="hlt">lightning</span> observations of Hurricane Rita landfall</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.</p> <p>2009-12-01</p> <p>Hurricane Rita displayed abundant <span class="hlt">lightning</span> in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF <span class="hlt">lightning</span> data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane <span class="hlt">lightning</span> monitoring. <span class="hlt">Lightning</span> is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm <span class="hlt">development</span>. As Rita approached the Gulf coast, the VHF <span class="hlt">lightning</span> emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF <span class="hlt">lightning</span> emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in <span class="hlt">lightning</span> emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF <span class="hlt">lightning</span> source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm <span class="hlt">development</span>, followed by an increase in CG activity at the storm’s peak. The periodic VHF <span class="hlt">lightning</span> events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between <span class="hlt">lightning</span> types, and in the LASA data, Rita landfall <span class="hlt">lightning</span> activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE <span class="hlt">lightning</span> sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective <span class="hlt">development</span> and in possibly deducing vertical charge distributions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.197..255L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.197..255L"><span>Spatio-temporal dimension of <span class="hlt">lightning</span> flashes based on three-dimensional <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>López, Jesús A.; Pineda, Nicolau; Montanyà, Joan; Velde, Oscar van der; Fabró, Ferran; Romero, David</p> <p>2017-11-01</p> <p>3D mapping system like the LMA - <span class="hlt">Lightning</span> Mapping Array - are a leap forward in <span class="hlt">lightning</span> observation. LMA measurements has lead to an improvement on the analysis of the fine structure of <span class="hlt">lightning</span>, allowing to characterize the duration and maximum extension of the cloud fraction of a <span class="hlt">lightning</span> flash. During several years of operation, the first LMA deployed in Europe has been providing a large amount of data which now allows a statistical approach to compute the full duration and horizontal extension of the in-cloud phase of a <span class="hlt">lightning</span> flash. The "Ebro <span class="hlt">Lightning</span> Mapping Array" (ELMA) is used in the present study. Summer and winter lighting were analyzed for seasonal periods (Dec-Feb and Jun-Aug). A simple method based on an ellipse fitting technique (EFT) has been used to characterize the spatio-temporal dimensions from a set of about 29,000 <span class="hlt">lightning</span> flashes including both summer and winter events. Results show an average <span class="hlt">lightning</span> flash duration of 440 ms (450 ms in winter) and a horizontal maximum length of 15.0 km (18.4 km in winter). The uncertainties for summer <span class="hlt">lightning</span> lengths were about ± 1.2 km and ± 0.7 km for the mean and median values respectively. In case of winter <span class="hlt">lightning</span>, the level of uncertainty reaches up to 1 km and 0.7 km of mean and median value. The results of the successful correlation of CG discharges with the EFT method, represent 6.9% and 35.5% of the total LMA flashes detected in summer and winter respectively. Additionally, the median value of <span class="hlt">lightning</span> lengths calculated through this correlative method was approximately 17 km for both seasons. On the other hand, the highest median ratios of <span class="hlt">lightning</span> length to CG discharges in both summer and winter were reported for positive CG discharges.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090017685&hterms=information+technology+trend&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dinformation%2Btechnology%2Btrend','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090017685&hterms=information+technology+trend&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dinformation%2Btechnology%2Btrend"><span>An Operational Perspective of Total <span class="hlt">Lightning</span> Information</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nadler, David J.; Darden, Christopher B.; Stano, Geoffrey; Buechler, Dennis E.</p> <p>2009-01-01</p> <p>The close and productive collaborations between the NWS Warning and Forecast Office, the Short Term <span class="hlt">Prediction</span> and Research Transition Center at NASA Marshall Space Flight Center and the University of Alabama in Huntsville have provided a unique opportunity for science sharing and technology transfer. One significant technology transfer that has provided immediate benefits to NWS forecast and warning operations is the use of data from the North Alabama <span class="hlt">Lightning</span> Mapping Array. This network consists of ten VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center. Preliminary investigations done at WFO Huntsville, along with other similar total <span class="hlt">lightning</span> networks across the country, have shown distinct correlations between the time rate-of-change of total <span class="hlt">lightning</span> and trends in intensity/severity of the parent convective cell. Since May 2003 when WFO HUN began receiving these data - in conjunction with other more traditional remotely sensed data (radar, satellite, and surface observations) -- have improved the situational awareness of the WFO staff. The use of total <span class="hlt">lightning</span> information, either from current ground based systems or future space borne instrumentation, may substantially contribute to the NWS mission, by enhancing severe weather warning and decision-making processes. Operational use of the data has been maximized at WFO Huntsville through a process that includes forecaster training, product implementation, and post event analysis and assessments. Since receiving these data, over 50 surveys have been completed highlighting the use of total <span class="hlt">lightning</span> information during significant events across the Tennessee Valley. In addition, around 150 specific cases of interest have been archived for collaborative post storm analysis. From these datasets, detailed trending information from radar and total <span class="hlt">lightning</span> can be compared to corresponding damage reports. This presentation will emphasize</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100033571','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100033571"><span>Situational <span class="hlt">Lightning</span> Climatologies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William; Crawford, Winifred</p> <p>2010-01-01</p> <p>Research has revealed distinct spatial and temporal distributions of <span class="hlt">lightning</span> occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the <span class="hlt">lightning</span> climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual <span class="hlt">lightning</span> strike data to improve the accuracy of the climatologies. The software determines the location of each CG <span class="hlt">lightning</span> strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG <span class="hlt">lightning</span> strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG <span class="hlt">lightning</span> strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23799482','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23799482"><span><span class="hlt">Lightning</span> burns.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C</p> <p>2014-01-01</p> <p>We present the case of a <span class="hlt">lightning</span>-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of <span class="hlt">lightning</span> burns to progress to full-thickness injury.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120014476','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120014476"><span>Using the VAHIRR Radar Algorithm to Investigate <span class="hlt">Lightning</span> Cessation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.</p> <p>2012-01-01</p> <p>Accurately determining the threat posed by <span class="hlt">lightning</span> is a major area for improved operational forecasts. Most efforts have focused on the initiation of <span class="hlt">lightning</span> within a storm, with far less effort spent investigating <span class="hlt">lightning</span> cessation. Understanding both components, initiation and cessation, are vital to improving <span class="hlt">lightning</span> safety. Few organizations actively forecast <span class="hlt">lightning</span> onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued <span class="hlt">lightning</span> and can greatly extend the window of a potential <span class="hlt">lightning</span> strike. Furthermore, no discernable trend of total <span class="hlt">lightning</span> activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing <span class="hlt">lightning</span>. Previous <span class="hlt">lightning</span> cessation work has primarily focused on forecasting the cessation of cloud-to -ground <span class="hlt">lightning</span> only. A more recent, statistical study involved total <span class="hlt">lightning</span> (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer <span class="hlt">lightning</span> cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually <span class="hlt">lightning</span> cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total <span class="hlt">lightning</span> to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally <span class="hlt">developed</span> during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820006841','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820006841"><span>Measurement of characteristics of <span class="hlt">lightning</span> at high altitudes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coquelet, M.; Gall, D.</p> <p>1981-01-01</p> <p>New <span class="hlt">development</span> in aeronautical technology -- the use of composite materials, new electronic components, electric flight controls -- have made aircraft potentially more and more vulnerable to the effects of <span class="hlt">lightning</span>. In-flight tests were conducted to evaluate the current in a bolt of <span class="hlt">lightning</span>, to measure voltage surge in the onboard circuitry and in certain pieces of equipment, and to document the relationship <span class="hlt">lightning</span> bolt current and the voltage surge so as to <span class="hlt">develop</span> a theoretical model and thuds to become acquainted with the significant</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002157','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002157"><span>Expanding the Operational Use of Total <span class="hlt">Lightning</span> Ahead of GOES-R</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.; Wood, Lance; Garner, Tim; Nunez, Roland; Kann, Deirdre; Reynolds, James; Rydell, Nezette; Cox, Rob; Bobb, William R.</p> <p>2015-01-01</p> <p>NASA's Short-term <span class="hlt">Prediction</span> Research and Transition Center (SPoRT) has been transitioning real-time total <span class="hlt">lightning</span> observations from ground-based <span class="hlt">lightning</span> mapping arrays since 2003. This initial effort was with the local Weather Forecast Offices (WFO) that could use the North Alabama <span class="hlt">Lightning</span> Mapping Array (NALMA). These early collaborations established a strong interest in the use of total <span class="hlt">lightning</span> for WFO operations. In particular the focus started with warning decision support, but has since expanded to include impact-based decision support and <span class="hlt">lightning</span> safety. SPoRT has used its experience to establish connections with new <span class="hlt">lightning</span> mapping arrays as they become available. The GOES-R / JPSS Visiting Scientist Program has enabled SPoRT to conduct visits to new partners and expand the number of operational users with access to total <span class="hlt">lightning</span> observations. In early 2014, SPoRT conducted the most recent visiting scientist trips to meet with forecast offices that will used the Colorado, Houston, and Langmuir Lab (New Mexico) <span class="hlt">lightning</span> mapping arrays. In addition, SPoRT met with the corresponding Center Weather Service Units (CWSUs) to expand collaborations with the aviation community. These visits were an opportunity to learn about the forecast needs of each office visited as well as to provide on-site training for the use of total <span class="hlt">lightning</span>, setting the stage for a real-time assessment during May-July 2014. With five <span class="hlt">lightning</span> mapping arrays covering multiple geographic locations, the 2014 assessment has demonstrated numerous uses of total <span class="hlt">lightning</span> in varying situations. Several highlights include a much broader use of total <span class="hlt">lightning</span> for impact-based decision support ranging from airport weather warnings, supporting fire crews, and protecting large outdoor events. The inclusion of the CWSUs has broadened the operational scope of total <span class="hlt">lightning</span>, demonstrating how these data can support air traffic management, particularly in the Terminal Radar Approach</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A33O..05R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A33O..05R"><span>Projected Increase in <span class="hlt">Lightning</span> Strikes in the United States Due to Global Warming</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romps, D. M.; Seeley, J.; Vollaro, D.; Molinari, J.</p> <p>2014-12-01</p> <p><span class="hlt">Lightning</span> plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on <span class="hlt">lightning</span> rates is poorly constrained. The <span class="hlt">lightning</span> flash rate is proposed here to be proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation is found to explain the majority of variance in the time series of total cloud-to-ground <span class="hlt">lightning</span> flashes over the contiguous United States (CONUS) on timescales ranging from diurnal to seasonal. The observations reveal that storms convert the CAPE of water mass to discharged <span class="hlt">lightning</span> energy with an efficiency of about 1%. This proxy can be applied to global climate models, which provide <span class="hlt">predictions</span> for the increase in <span class="hlt">lightning</span> due to global warming. Results from 11 GCMs will be shown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.weather.gov/safety/lightning','NIH-MEDLINEPLUS'); return false;" href="https://www.weather.gov/safety/lightning"><span><span class="hlt">Lightning</span> Safety Tips and Resources</span></a></p> <p><a target="_blank" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... Safety Brochure U.S. <span class="hlt">Lightning</span> Deaths in 2018 : 5 Youtube: <span class="hlt">Lightning</span> Safety for the Deaf and Hard of ... for Hard of Hearing: jpg , high res png YouTube: <span class="hlt">Lightning</span> Safety Tips <span class="hlt">Lightning</span> Safety When Working Outdoors : ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910046035&hterms=Gold+detector&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGold%2Bdetector','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910046035&hterms=Gold+detector&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DGold%2Bdetector"><span>Ground Optical <span class="hlt">Lightning</span> Detector (GOLD)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, John, Jr.; Simmons, David</p> <p>1990-01-01</p> <p>A photometer <span class="hlt">developed</span> to characterize <span class="hlt">lightning</span> from the ground is discussed. The detector and the electronic signal processing and data storage systems are presented along with field data measured by the system. The discussion will include improvements that will be incorporated to enhance the measurement of <span class="hlt">lightning</span> and the data storage capability to record for many days without human involvement. Finally, the calibration of the GOLD system is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008697','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008697"><span>The GOES-R Series Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.</p> <p>2011-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument <span class="hlt">development</span>. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument <span class="hlt">development</span> (an engineering <span class="hlt">development</span> unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based <span class="hlt">lightning</span> networks are being used to <span class="hlt">develop</span> the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810016745','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810016745"><span>Noise and interference study for satellite <span class="hlt">lightning</span> sensor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Herman, J. R.</p> <p>1981-01-01</p> <p>The use of radio frequency techniques for the detection and monitoring of terrestrial thunderstorms from space are discussed. Three major points are assessed: (1) <span class="hlt">lightning</span> and noise source characteristics; (2) propagation effects imposed by the atmosphere and ionosphere; and (3) the electromagnetic environment in near space within which <span class="hlt">lightning</span> RF signatures must be detected. A composite frequency spectrum of the peak of amplitude from <span class="hlt">lightning</span> flashes is <span class="hlt">developed</span>. Propagation effects (ionospheric cutoff, refraction, absorption, dispersion and scintillation) are considered to modify the <span class="hlt">lightning</span> spectrum to the geosynchronous case. It is suggested that in comparing the modified spectrum with interfering noise source spectra RF <span class="hlt">lightning</span> pulses on frequencies up to a few GHz are detectable above the natural noise environment in near space.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770011155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770011155"><span>Status of research into <span class="hlt">lightning</span> effects on aircraft</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumer, J. A.</p> <p>1976-01-01</p> <p><span class="hlt">Developments</span> in aircraft <span class="hlt">lightning</span> protection since 1938 are reviewed. Potential <span class="hlt">lightning</span> problems resulting from present trends toward the use of electronic controls and composite structures are discussed, along with presently available <span class="hlt">lightning</span> test procedures for problem assessment. The validity of some procedures is being questioned because of pessimistic results and design implications. An in-flight measurement program is needed to provide statistics on <span class="hlt">lightning</span> severity at flight altitudes and to enable more realistic tests, and operators are urged to supply researchers with more details on electronic components damaged by <span class="hlt">lightning</span> strikes. A need for review of certain aspects of fuel system vulnerability is indicated by several recent accidents, and specific areas for examination are identified. New educational materials and standardization activities are also noted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850000462&hterms=stroke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstroke','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850000462&hterms=stroke&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dstroke"><span>Plotting <span class="hlt">Lightning</span>-Stroke Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tatom, F. B.; Garst, R. A.</p> <p>1986-01-01</p> <p>Data on <span class="hlt">lightning</span>-stroke locations become easier to correlate with cloudcover maps with aid of new graphical treatment. Geographic region divided by grid into array of cells. Number of <span class="hlt">lightning</span> strokes in each cell tabulated, and value representing density of <span class="hlt">lightning</span> strokes assigned to each cell. With contour-plotting routine, computer draws contours of <span class="hlt">lightning</span>-stroke density for region. Shapes of contours compared directly with shapes of storm cells.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APh....82...21C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APh....82...21C"><span>Extensive air showers, <span class="hlt">lightning</span>, and thunderstorm ground enhancements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chilingarian, A.; Hovsepyan, G.; Kozliner, L.</p> <p>2016-09-01</p> <p>For <span class="hlt">lightning</span> research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and <span class="hlt">lightning</span> events in the spring of 2015. Using 1-s time series, we investigated the relationship between <span class="hlt">lightning</span> and particle fluxes. <span class="hlt">Lightning</span> flashes often terminated the particle flux; in particular, during some TGEs, <span class="hlt">lightning</span> events would terminate the particle flux thrice after successive recovery. It was postulated that a <span class="hlt">lightning</span> terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its <span class="hlt">development</span>. We discuss the possibility of a huge EAS facilitating <span class="hlt">lightning</span> leader to find its path to the ground.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A21C0193L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A21C0193L"><span>Is there a quantifiable relationship between <span class="hlt">lightning</span> and nitrate deposition in the subtropics?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langenbrunner, B.; Hastings, M. G.; Spak, S.; Petersen, W. A.</p> <p>2009-12-01</p> <p><span class="hlt">Lightning</span> is a significant natural source of nitrogen oxides (NOx). The high temperatures that occur in a <span class="hlt">lightning</span> channel fix atmospheric N2, producing nitrogen monoxide (NO) that quickly forms NO2 (NOx = NO + NO2). <span class="hlt">Lightning</span>-produced NOx (LNOx) dominates NOx concentrations in the upper troposphere, which affect tropospheric ozone and OH concentrations and in turn the oxidizing capacity of the atmosphere. The main sink for NOx in the atmosphere is formation of nitric acid (HNO3) and subsequent deposition of nitrate (NO3-). A widely accepted estimate for the global LNOx production rate is ~5±3 TgN/yr (uncertainty of 1-20 TgN/yr). The global source term for NOx is an estimated 50 TgN/yr. Global chemical transport model studies have found that LNOx contributes to NO3- deposition (wet+dry) that is nearly equal over both land and ocean, with the greatest deposition between 30°N and 30°S. Models also <span class="hlt">predict</span> that <span class="hlt">lightning</span> can be the dominant source of NO3- deposition in areas where industrial sources are limited. Is it possible that an empirical relationship exists between NO3- deposition and <span class="hlt">lightning</span>? Using 10 years of deposition, <span class="hlt">lightning</span>, and meteorological data, we investigate the relationship between <span class="hlt">lightning</span> and NO3- in the subtropics and assess meteorological variables that contribute significantly to the distribution of LNOx and NO3-. For NO3- deposition, we use weekly, monthly, and event-based wet deposition data from 8 coastal sites in Florida, the US Virgin Islands, and Puerto Rico (NADP); satellite and ground-based <span class="hlt">lightning</span> data in the same region is from TRMM and Unidata; meteorology is obtained from the NCEP/NCAR Reanalysis. We use multiple linear regression in an attempt to explain variance among historical NO3- data, <span class="hlt">lightning</span> and meteorology. We expect certain meteorological variables—particularly those related to transport and deposition—to help illuminate a relation between <span class="hlt">lightning</span> and NO3-. The relation between NOx emissions and NO3</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20717491-effect-corona-discharge-lightning-attachment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20717491-effect-corona-discharge-lightning-attachment"><span>The Effect of a Corona Discharge on a <span class="hlt">Lightning</span> Attachment</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.</p> <p>2005-01-15</p> <p>The interaction between the <span class="hlt">lightning</span> leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models <span class="hlt">developed</span> earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that <span class="hlt">develops</span> in the electric field of a thundercloud and a downward <span class="hlt">lightning</span> leader are analyzed. Conditions for the <span class="hlt">development</span> of an upward <span class="hlt">lightning</span> discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward <span class="hlt">lightning</span> leader (the process determining the point of strikemore » to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward <span class="hlt">lightning</span> discharges are analyzed.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16210171','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16210171"><span>Ball <span class="hlt">lightning</span> from atmospheric discharges via metal nanosphere oxidation: from soils, wood or metals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abrahamson, John</p> <p>2002-01-15</p> <p>The slow (diffusion-limited) oxidation of metal nanoparticles has previously been proposed as the mechanism for ball <span class="hlt">lightning</span> energy release, and argued to be the result of a normal <span class="hlt">lightning</span> strike on soil. Here this basic model of networked nanoparticles is detailed further, and extended to <span class="hlt">lightning</span> strikes on metal structures, and also to the action of other storm-related discharges or man-made discharges. The basic model <span class="hlt">predicted</span> the important properties of "average" observed ball <span class="hlt">lightning</span>, and the extension in this paper also covers high-energy examples of ball <span class="hlt">lightning</span>. Laboratory checks of the theory are described, and <span class="hlt">predictions</span> given of what conditions are necessary for observing ball <span class="hlt">lightning</span> in the laboratory. Key requirements of the model are a sheltered region near the strike foot and starting materials which can generate a metal vapour under intensive heating, including soil, wood or a metal structure. The evolution of hydrocarbons (often plastics) along with metal vapour can ensure the local survival of the metal vapour even in an oxidizing atmosphere. Subsequent condensation of this vapour to metallic nanoparticles in networks provides the coherence of a ball structure, which also releases light over an extended time. Also discussed is the passage of ball <span class="hlt">lightning</span> through a sheet of building material, including glass, and its occasional charring of flesh on close contact.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMAE31A0273A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMAE31A0273A"><span>Infrasound Observations from <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Thomas, R. J.; Jones, K. R.</p> <p>2008-12-01</p> <p>To provide additional insight into the nature of <span class="hlt">lightning</span>, we have investigated its infrasound manifestations. An array of three stations in a triangular configuration, with three sensors each, was deployed during the Summer of 2008 (July 24 to July 28) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) sources due to <span class="hlt">lightning</span>. Hyperbolic formulations of time of arrival (TOA) measurements and interferometric techniques were used to locate <span class="hlt">lightning</span> sources occurring over and outside the network. A comparative analysis of simultaneous <span class="hlt">Lightning</span> Mapping Array (LMA) data and infrasound measurements operating in the same area was made. The LMA locates the sources of impulsive RF radiation produced by <span class="hlt">lightning</span> flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. The comparison showed strong evidence that <span class="hlt">lightning</span> does produce infrasound. This work is a continuation of the study of the frequency spectrum of thunder conducted by Holmes et al., who reported measurements of infrasound frequencies. The integration of infrasound measurements with RF source localization by the LMA shows great potential for improved understanding of <span class="hlt">lightning</span> processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015499','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015499"><span>Aircraft <span class="hlt">Lightning</span> Electromagnetic Environment Measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.</p> <p>2011-01-01</p> <p>This paper outlines a NASA project plan for demonstrating a prototype <span class="hlt">lightning</span> strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being <span class="hlt">developed</span> for this system, including a fiber-optic Faraday polarization sensor that measures <span class="hlt">lightning</span> current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of <span class="hlt">lightning</span> (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the <span class="hlt">development</span> of other new <span class="hlt">lightning</span> environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33A2524B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33A2524B"><span>A first look at <span class="hlt">lightning</span> energy determined from GLM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bitzer, P. M.; Burchfield, J. C.; Brunner, K. N.</p> <p>2017-12-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) was launched in November 2016 onboard GOES-16 has been undergoing post launch and product post launch testing. While these have typically focused on <span class="hlt">lightning</span> metrics such as detection efficiency, false alarm rate, and location accuracy, there are other attributes of the <span class="hlt">lightning</span> discharge that are provided by GLM data. Namely, the optical energy radiated by <span class="hlt">lightning</span> may provide information useful for <span class="hlt">lightning</span> physics and the relationship of <span class="hlt">lightning</span> energy to severe weather <span class="hlt">development</span>. This work presents initial estimates of the <span class="hlt">lightning</span> optical energy detected by GLM during this initial testing, with a focus on observations during field campaign during spring 2017 in Huntsville. This region is advantageous for the comparison due to the proliferation of ground-based <span class="hlt">lightning</span> instrumentation, including a <span class="hlt">lightning</span> mapping array, interferometer, HAMMA (an array of electric field change meters), high speed video cameras, and several long range VLF networks. In addition, the field campaign included airborne observations of the optical emission and electric field changes. The initial estimates will be compared with previous observations using TRMM-LIS. In addition, a comparison between the operational and scientific GLM data sets will also be discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007287','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007287"><span>Assessment of the Pseudo Geostationary <span class="hlt">Lightning</span> Mapper Products at the Spring Program and Summer Experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.; Calhoun, Kristin K.; Terborg, Amanda M.</p> <p>2014-01-01</p> <p>Since 2010, the de facto Geostationary <span class="hlt">Lightning</span> Mapper (GLM) demonstration product has been the Pseudo-Geostationary <span class="hlt">Lightning</span> Mapper (PGLM) product suite. Originally prepared for the Hazardous Weather Testbed's Spring Program (specifically the Experimental Warning Program) when only four ground-based <span class="hlt">lightning</span> mapping arrays were available, the effort now spans collaborations with several institutions and eight collaborative networks. For 2013, NASA's Short-term <span class="hlt">Prediction</span> Research and Transition (SPoRT) Center and NOAA's National Severe Storms Laboratory have worked to collaborate with each network to obtain data in real-time. This has gone into producing the SPoRT variant of the PGLM that was demonstrated in AWIPS II for the 2013 Spring Program. Alongside the PGLM products, the SPoRT / Meteorological <span class="hlt">Development</span> Laboratory's total <span class="hlt">lightning</span> tracking tool also was evaluated to assess not just another visualization of future GLM data but how to best extract more information while in the operational environment. Specifically, this tool addressed the leading request by forecasters during evaluations; provide a time series trend of total <span class="hlt">lightning</span> in real-time. In addition to the Spring Program, SPoRT is providing the PGLM "mosaic" to the Aviation Weather Center (AWC) and Storm <span class="hlt">Prediction</span> Center. This is the same as what is used at the Hazardous Weather Testbed, but combines all available networks into one display for use at the national centers. This year, the mosaic was evaluated during the AWC's Summer Experiment. An important distinction between this and the Spring Program is that the Summer Experiment focuses on the national center perspective and not at the local forecast office level. Specifically, the Summer Experiment focuses on aviation needs and concerns and brings together operational forecaster, <span class="hlt">developers</span>, and FAA representatives. This presentation will focus on the evaluation of SPoRT's pseudo-GLM products in these separate test beds. The emphasis</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ464567','ERIC'); return false;" href="https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ464567"><span>A <span class="hlt">Lightning</span> Safety Primer for Camps.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Attarian, Aram</p> <p>1992-01-01</p> <p>Provides the following information about <span class="hlt">lightning</span>, which is necessary for camp administrators and staff: (1) warning signs of <span class="hlt">lightning</span>; (2) dangers of <span class="hlt">lightning</span>; (3) types of <span class="hlt">lightning</span> injuries; (4) prevention of <span class="hlt">lightning</span> injury; and (5) helpful training tips. (KS)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040085918&hterms=probability+statistical+inference&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dprobability%2Bstatistical%2Binference','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040085918&hterms=probability+statistical+inference&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dprobability%2Bstatistical%2Binference"><span>Multivariate Statistical Inference of <span class="hlt">Lightning</span> Occurrence, and Using <span class="hlt">Lightning</span> Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Boccippio, Dennis</p> <p>2004-01-01</p> <p>Two classes of multivariate statistical inference using TRMM <span class="hlt">Lightning</span> Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple <span class="hlt">lightning/no-lightning</span> classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and <span class="hlt">lightning</span> observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by <span class="hlt">lightning</span> observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005198','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005198"><span>Evidence for <span class="hlt">lightning</span> on Venus</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strangeway, R. J.</p> <p>1992-01-01</p> <p><span class="hlt">Lightning</span> is an interesting phenomenon both for atmospheric and ionospheric science. At the Earth <span class="hlt">lightning</span> is generated in regions where there is strong convection. <span class="hlt">Lightning</span> also requires the generation of large charge-separation electric fields. The energy dissipated in a <span class="hlt">lightning</span> discharge can, for example, result in chemical reactions that would not normally occur. From an ionospheric point of view, <span class="hlt">lightning</span> generates a broad spectrum of electromagnetic radiation. This radiation can propagate through the ionosphere as whistler mode waves, and at the Earth the waves propagate to high altitudes in the plasmasphere where they can cause energetic particle precipitation. The atmosphere and ionosphere of Venus are quite different from those on the Earth, and the presence of <span class="hlt">lightning</span> at Venus has important consequences for our knowledge of why <span class="hlt">lightning</span> occurs and how the energy is dissipated in the atmosphere and ionosphere. As discussed here, it now appears that <span class="hlt">lightning</span> occurs in the dusk local time sector at Venus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.2067Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.2067Z"><span>A statistical study of whistler waves observed by Van Allen Probes (RBSP) and <span class="hlt">lightning</span> detected by WWLLN</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Hao; Holzworth, Robert H.; Brundell, James B.; Jacobson, Abram R.; Wygant, John R.; Hospodarsky, George B.; Mozer, Forrest S.; Bonnell, John</p> <p>2016-03-01</p> <p><span class="hlt">Lightning</span>-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global <span class="hlt">lightning</span> data from the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we <span class="hlt">predicted</span> the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to <span class="hlt">lightning</span> producing regions. The <span class="hlt">prediction</span> method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these <span class="hlt">predicted</span> times for magnetic conjugacy to <span class="hlt">lightning</span> activity regions, we recorded high time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source <span class="hlt">lightning</span> strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with <span class="hlt">lightning</span> if source regions are extended out 2000 km from the satellites footpoints. <span class="hlt">Lightning</span> strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and <span class="hlt">lightning</span> strokes detected by WWLLN are clearly shown in the L shell range of L = 1-3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100021055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100021055"><span>Estimates of the <span class="hlt">Lightning</span> NOx Profile in the Vicinity of the North Alabama <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo</p> <p>2010-01-01</p> <p>The NASA Marshall Space Flight Center <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama <span class="hlt">Lightning</span> Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of <span class="hlt">lightning</span> nitrogen oxides, NOx = NO + NO2. Data from the National <span class="hlt">Lightning</span> Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic <span class="hlt">lightning</span> NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important <span class="hlt">lightning</span> variables including: the frequency and geographical distribution of <span class="hlt">lightning</span> in the vicinity of the NALMA network, <span class="hlt">lightning</span> type (ground or cloud flash), <span class="hlt">lightning</span> channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting <span class="hlt">lightning</span> NOx source profiles are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950011759','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950011759"><span><span class="hlt">Lightning</span> studies using LDAR and companion data sets</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forbes, Gregory S.</p> <p>1994-01-01</p> <p>Research was conducted to use the KSC <span class="hlt">Lightning</span> Detection and Ranging (LDAR) system, together with companion data, in four subprojects: weather forecasting and advisory applications of LDAR, LDAR in relation to field mill readings, <span class="hlt">lightning</span> flash and stroke detection using LDAR, and LDAR in relation to radar reflectivity patterns and KSC wind profiler vertical velocities. The research is aimed at <span class="hlt">developing</span> rules, algorithms, and training materials that can be used by the operational weather forecasters who issue weather advisories for daily ground operations and launches by NASA and the United States Air Force. During the summer of 1993, LDAR data was examined on an hourly basis from 14 thunderstorm days and compared to ground strike data measured by the <span class="hlt">Lightning</span> Location and Protection (LLP) system. These data were re-examined during 1994 to identify, number, and track LDAR-detected storms continually throughout the day and avoid certain interpretation problems arising from the use of hourly files. An areal storm growth factor was incorporated into a scheme to use current mappings of LDAR-defined thunderstorms to <span class="hlt">predict</span> future ground strikes. During the summer of 1994, extensive sets of LDAR and companion data have been collected for 16 thunderstorm days, including a variety of meteorological situations. Detailed case studies are being conducted to relate the occurence of LDAR to the radar structure and evolution of thunderstorms. Field mill (LPWS) data are being examined to evaluate the complementary nature of LDAR and LPLWS data in determining the time of beginning and ending of the ground strike threat at critical sites. A computerized <span class="hlt">lightning</span> flash and stroke discrimination algorithm has been written that can be used to help locate the points of origin of the electrical discharges, help distinguish in-cloud, cloud-ground, and upward flashes, and perhaps determine when the threat of ground strikes has ceased. Surface wind tower (mesonet), radar, sounding</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22215021','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22215021"><span><span class="hlt">Lightning</span> safety of animals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gomes, Chandima</p> <p>2012-11-01</p> <p>This paper addresses a concurrent multidisciplinary problem: animal safety against <span class="hlt">lightning</span> hazards. In regions where <span class="hlt">lightning</span> is prevalent, either seasonally or throughout the year, a considerable number of wild, captive and tame animals are injured due to <span class="hlt">lightning</span> generated effects. The paper discusses all possible injury mechanisms, focusing mainly on animals with commercial value. A large number of cases from several countries have been analyzed. Economically and practically viable engineering solutions are proposed to address the issues related to the <span class="hlt">lightning</span> threats discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMAE53A..05G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMAE53A..05G"><span>Artificial Neural Network applied to <span class="hlt">lightning</span> flashes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gin, R. B.; Guedes, D.; Bianchi, R.</p> <p>2013-05-01</p> <p>The <span class="hlt">development</span> of video cameras enabled cientists to study <span class="hlt">lightning</span> discharges comportment with more precision. The main goal of this project is to create a system able to detect images of <span class="hlt">lightning</span> discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The <span class="hlt">developed</span> system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical <span class="hlt">lightning</span>, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 <span class="hlt">lightning</span> events (one image can have more than one <span class="hlt">lightning</span>). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the <span class="hlt">developed</span> system to analyze 20 video files, containing 63 <span class="hlt">lightning</span> discharges previously manually detected. Results showed that all the <span class="hlt">lightning</span> discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21909737','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21909737"><span>[<span class="hlt">Lightning</span> strikes and <span class="hlt">lightning</span> injuries in prehospital emergency medicine. Relevance, results, and practical implications].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hinkelbein, J; Spelten, O; Wetsch, W A</p> <p>2013-01-01</p> <p>Up to 32.2% of patients in a burn center suffer from electrical injuries. Of these patients, 2-4% present with <span class="hlt">lightning</span> injuries. In Germany, approximately 50 people per year are injured by a <span class="hlt">lightning</span> strike and 3-7 fatally. Typically, people involved in outdoor activities are endangered and affected. A <span class="hlt">lightning</span> strike usually produces significantly higher energy doses as compared to those in common electrical injuries. Therefore, injury patterns vary significantly. Especially in high voltage injuries and <span class="hlt">lightning</span> injuries, internal injuries are of special importance. Mortality ranges between 10 and 30% after a <span class="hlt">lightning</span> strike. Emergency medical treatment is similar to common electrical injuries. Patients with <span class="hlt">lightning</span> injuries should be transported to a regional or supraregional trauma center. In 15% of all cases multiple people may be injured. Therefore, it is of outstanding importance to create emergency plans and evacuation plans in good time for mass gatherings endangered by possible <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830003391','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830003391"><span>Interpretation methodology and analysis of in-flight <span class="hlt">lightning</span> data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rudolph, T.; Perala, R. A.</p> <p>1982-01-01</p> <p>A methodology is presented whereby electromagnetic measurements of inflight <span class="hlt">lightning</span> stroke data can be understood and extended to other aircraft. Recent measurements made on the NASA F106B aircraft indicate that sophisticated numerical techniques and new <span class="hlt">developments</span> in corona modeling are required to fully understand the data. Thus the problem is nontrivial and successful interpretation can lead to a significant understanding of the <span class="hlt">lightning</span>/aircraft interaction event. This is of particular importance because of the problem of <span class="hlt">lightning</span> induced transient upset of new technology low level microcircuitry which is being used in increasing quantities in modern and future avionics. Inflight <span class="hlt">lightning</span> data is analyzed and <span class="hlt">lightning</span> environments incident upon the F106B are determined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21532036-study-transport-parameters-cloud-lightning-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21532036-study-transport-parameters-cloud-lightning-plasmas"><span>Study of the transport parameters of cloud <span class="hlt">lightning</span> plasmas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chang, Z. S.; Yuan, P.; Zhao, N.</p> <p>2010-11-15</p> <p>Three spectra of cloud <span class="hlt">lightning</span> have been acquired in Tibet (China) using a slitless grating spectrograph. The electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity of the cloud <span class="hlt">lightning</span>, for the first time, are calculated by applying the transport theory of air plasma. In addition, we investigate the change behaviors of parameters (the temperature, the electron density, the electrical conductivity, the electron thermal conductivity, and the electron thermal diffusivity) in one of the cloud <span class="hlt">lightning</span> channels. The result shows that these parameters decrease slightly along <span class="hlt">developing</span> direction of the cloud <span class="hlt">lightning</span> channel. Moreover, they represent similar suddenmore » change behavior in tortuous positions and the branch of the cloud <span class="hlt">lightning</span> channel.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5953C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5953C"><span>The Statistic Results of the ISUAL <span class="hlt">Lightning</span> Survey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chuang, Chia-Wen; Bing-Chih Chen, Alfred; Liu, Tie-Yue; Lin, Shin-Fa; Su, Han-Tzong; Hsu, Rue-Ron</p> <p>2017-04-01</p> <p>The ISUAL (Imager for Sprites and Upper Atmospheric <span class="hlt">Lightning</span>) onboard FORMOSAT-2 is the first science payload dedicated to the study of the <span class="hlt">lightning</span>-induced transient luminous events (TLEs). Transient events, including TLEs and <span class="hlt">lightning</span>, were recorded by the intensified imager, spectrophotometer (SP), and array photometer (AP) simultaneously while their light variation observed by SP exceeds a programmed threshold. Therefore, ISUAL surveys not only TLEs but also <span class="hlt">lightning</span> globally with a good spatial, temporal and spectral resolution. In the past 12 years (2004-2016), approximately 300,000 transient events were registered, and only 42,000 are classified as TLEs. Since the main mission objective is to explore the distribution and characteristics of TLEs, the remaining transient events, mainly <span class="hlt">lightning</span>, can act as a long-term global <span class="hlt">lightning</span> survey. These huge amount of events cannot be processed manually as TLEs do, therefore, a data pipeline is <span class="hlt">developed</span> to scan <span class="hlt">lightning</span> patterns and to derive their geolocation with an efficient algorithm. The 12-year statistic results including occurrence rate, global distribution, seasonal variation, and the comparison with the LIS/OTD survey are presented in this report.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ERL.....9e5004S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ERL.....9e5004S"><span>Evidence for solar wind modulation of <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scott, C. J.; Harrison, R. G.; Owens, M. J.; Lockwood, M.; Barnard, L.</p> <p>2014-05-01</p> <p> months (June to August). Though this reduced the number of solar wind triggers to 32, the response in both <span class="hlt">lightning</span> and thunder day data remained statistically significant. This modulation of <span class="hlt">lightning</span> by regular and <span class="hlt">predictable</span> solar wind events may be beneficial to medium range forecasting of hazardous weather.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080048096','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080048096"><span>Forecasting <span class="hlt">Lightning</span> Threat using Cloud-Resolving Model Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.</p> <p>2008-01-01</p> <p>Two new approaches are proposed and <span class="hlt">developed</span> for making time and space dependent, quantitative short-term forecasts of <span class="hlt">lightning</span> threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total <span class="hlt">lightning</span> flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the <span class="hlt">lightning</span> threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of <span class="hlt">lightning</span> threat. However, because the models tend to have more difficulty in <span class="hlt">predicting</span> the instantaneous placement of storms, forecasts of the detailed location of the <span class="hlt">lightning</span> threat based on single</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013298','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013298"><span>Three Dimensional <span class="hlt">Lightning</span> Launch Commit Criteria Visualization Tool</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III</p> <p>2014-01-01</p> <p><span class="hlt">Lightning</span> occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) <span class="hlt">Lightning</span> Launch Commit Criteria (LLCC), a vehicle cannot launch if <span class="hlt">lightning</span> is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between <span class="hlt">lightning</span> and the flight path using data from different display systems. A 3-D display in which the <span class="hlt">lightning</span> data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When <span class="hlt">lightning</span> appears close to the path, the LWOs likely err on the side of conservatism and deem the <span class="hlt">lightning</span> to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the <span class="hlt">lightning</span> is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D <span class="hlt">lightning</span> data from the KSC <span class="hlt">Lightning</span> Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software <span class="hlt">developers</span>.None of the available off-the-shelf software had a 3-D capability that could</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950007857','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950007857"><span>Produce documents and media information. [on <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alzmann, Melanie A.; Miller, G.A.</p> <p>1994-01-01</p> <p><span class="hlt">Lightning</span> data and information were collected from the United States, Germany, France, Brazil, China, and Australia for the dual purposes of compiling a global <span class="hlt">lightning</span> data base and producing publications on the Marshall Space Flight Center's <span class="hlt">lightning</span> program. Research covers the history of <span class="hlt">lightning</span>, the characteristics of a storm, types of lightningdischarges, observations from airplanes and spacecraft, the future fole of planes and spacecraft in <span class="hlt">lightning</span> studies, <span class="hlt">lightning</span> detection networks, and the relationships between <span class="hlt">lightning</span> and rainfall. Descriptions of the Optical Transient Dectector, the <span class="hlt">Lightning</span> Imaging Sensor, and the <span class="hlt">Lightning</span> Mapper Sensor are included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25395536','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25395536"><span>Climate change. Projected increase in <span class="hlt">lightning</span> strikes in the United States due to global warming.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Romps, David M; Seeley, Jacob T; Vollaro, David; Molinari, John</p> <p>2014-11-14</p> <p><span class="hlt">Lightning</span> plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on <span class="hlt">lightning</span> rates is poorly constrained. Here we propose that the <span class="hlt">lightning</span> flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground <span class="hlt">lightning</span> flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged <span class="hlt">lightning</span> energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS <span class="hlt">lightning</span> strikes are <span class="hlt">predicted</span> to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century. Copyright © 2014, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006IJTFM.126...61K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006IJTFM.126...61K"><span><span class="hlt">Lightning</span> Phenomenology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kawasaki, Zen</p> <p></p> <p>This paper presents a phenomenological idea about <span class="hlt">lightning</span> flash to share the back ground understanding for this special issue. <span class="hlt">Lightning</span> discharges are one of the terrible phenomena, and Benjamin Franklin has led this natural phenomenon to the stage of scientific investigation. Technical aspects like monitoring and location are also summarized in this article.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25466573','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25466573"><span><span class="hlt">Lightning</span> related fatalities in livestock: veterinary expertise and the added value of <span class="hlt">lightning</span> location data.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vanneste, E; Weyens, P; Poelman, D R; Chiers, K; Deprez, P; Pardon, B</p> <p>2015-01-01</p> <p>Although <span class="hlt">lightning</span> strike is an important cause of sudden death in livestock on pasture and among the main reasons why insurance companies consult an expert veterinarian, scientific information on this subject is limited. The aim of the present study was to provide objective information on the circumstantial evidence and pathological findings in <span class="hlt">lightning</span> related fatalities (LRF), based on a retrospective analysis of 410 declarations, examined by a single expert veterinarian in Flanders, Belgium, from 1998 to 2012. <span class="hlt">Predictive</span> logistic models for compatibility with LRF were constructed based on anamnestic, environmental and pathological factors. In addition, the added value of <span class="hlt">lightning</span> location data (LLD) was evaluated. Pathognomonic singe lesions were present in 84/194 (43%) confirmed reports. Factors which remained significantly associated with LRF in the multivariable model were age, presence of a tree or open water in the near surroundings, tympany and presence of feed in the oral cavity at the time of investigation. This basic model had a sensitivity (Se) of 53.8% and a specificity (Sp) of 88.2%. Relying only on LLD to confirm LRF in livestock resulted in a high Se (91.3%), but a low Sp (41.2%), leading to a high probability that a negative case would be wrongly accepted as an LRF. The best results were obtained when combining the model based on the veterinary expert investigation (circumstantial evidence and pathological findings), together with the detection of cloud-to-ground (CG) <span class="hlt">lightning</span> at the time and location of death (Se 89.1%; Sp 66.7%). Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100020940&hterms=lightning+protection+system+buildings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlightning%2Bprotection%2Bsystem%2Bbuildings','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100020940&hterms=lightning+protection+system+buildings&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dlightning%2Bprotection%2Bsystem%2Bbuildings"><span>Estimates of the <span class="hlt">Lightning</span> NOx Profile in the Vicinity of the North Alabama <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.; Peterson, Harold</p> <p>2010-01-01</p> <p>The NASA Marshall Space Flight Center <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama <span class="hlt">Lightning</span> Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of <span class="hlt">lightning</span> nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic <span class="hlt">lightning</span> NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National <span class="hlt">Lightning</span> Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important <span class="hlt">lightning</span> variables including: the frequency and geographical distribution of <span class="hlt">lightning</span> in the vicinity of the LMA network, <span class="hlt">lightning</span> type (ground or cloud flash), <span class="hlt">lightning</span> channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988JAP....63.3191G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988JAP....63.3191G"><span>Magnetic field generated by <span class="hlt">lightning</span> protection system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geri, A.; Veca, G. M.</p> <p>1988-04-01</p> <p>A <span class="hlt">lightning</span> protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the <span class="hlt">lightning</span> protection system is. This model is <span class="hlt">developed</span> by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm <span class="hlt">developed</span> using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the <span class="hlt">lightning</span> stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE11A..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE11A..08C"><span>Storm-based Cloud-to-Ground <span class="hlt">Lightning</span> Probabilities and Warnings</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calhoun, K. M.; Meyer, T.; Kingfield, D.</p> <p>2017-12-01</p> <p>A new cloud-to-ground (CG) <span class="hlt">lightning</span> probability algorithm has been <span class="hlt">developed</span> using machine-learning methods. With storm-based inputs of Earth Networks' in-cloud <span class="hlt">lightning</span>, Vaisala's CG <span class="hlt">lightning</span>, multi-radar/multi-sensor (MRMS) radar derived products including the Maximum Expected Size of Hail (MESH) and Vertically Integrated Liquid (VIL), and near storm environmental data including lapse rate and CAPE, a random forest algorithm was trained to produce probabilities of CG <span class="hlt">lightning</span> up to one-hour in advance. As part of the Prototype Probabilistic Hazard Information experiment in the Hazardous Weather Testbed in 2016 and 2017, National Weather Service forecasters were asked to use this CG <span class="hlt">lightning</span> probability guidance to create rapidly updating probability grids and warnings for the threat of CG <span class="hlt">lightning</span> for 0-60 minutes. The output from forecasters was shared with end-users, including emergency managers and broadcast meteorologists, as part of an integrated warning team.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT........74T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT........74T"><span><span class="hlt">Lightning</span>-driven electric and magnetic fields measured in the stratosphere: Implications for sprites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, Jeremy Norman</p> <p></p> <p>A well accepted model for sprite production involves quasi-electrostatic fields (QSF) driven by large positive cloud-to-ground (+CG) strokes that can cause electrical breakdown in the middle atmosphere. A new high voltage, high impedance, double Langmuir probe instrument is designed specifically for measuring these large <span class="hlt">lightning</span>-driven electric field changes at altitudes above 30 km. This High Voltage (HV) Electric Field Detector measured 200 nearby (<75 km) <span class="hlt">lightning</span>-driven electric field changes, up to 140 V/m in magnitude, during the Brazil Sprite Balloon Campaign 2002--03. A numerical QSF model is <span class="hlt">developed</span> and compared to the in situ measurements. It is found that the amplitudes and relaxation times of the electric fields driven by these nearby <span class="hlt">lightning</span> events generally agree with the numerical QSF model, which suggests that the QSF approach is valid for modeling <span class="hlt">lightning</span>-driven fields. Using the best fit parameters of this comparison, it is <span class="hlt">predicted</span> that the electric fields at sprite altitudes (60--90 km) never surpass conventional breakdown in the mesosphere for each of these 200 nearby <span class="hlt">lightning</span> events. <span class="hlt">Lightning</span>-driven ELF to VLF (25 Hz--8 kHz) electric field changes were measured for each of the 2467 cloud-to-ground <span class="hlt">lightning</span> (CGs) detected by the Brazilian Integrated <span class="hlt">Lightning</span> Network (BIN) at distances of 75--600 km, and magnetic field changes (300 Hz--8 kHz) above the background noise were measured for about 35% (858) of these CGs. ELF pulses that occur 4--12 ms after the retarded time of the <span class="hlt">lightning</span> sferic, which have been previously attributed to sprites, were found for 1.4% of 934 CGs examined with a strong bias towards +CGs (4.9% or 9/184) compared to -CGs (0.5% or 4/750). These results disagree with results from the Sprites99 Balloon Campaign [Bering et al., 2004b], in which the <span class="hlt">lightning</span>-driven electric and magnetic field changes were rare, while the CG delayed ELF pulses were frequent. The Brazil Campaign results thus suggest that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27665937','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27665937"><span>Measuring Method for <span class="hlt">Lightning</span> Channel Temperature.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R</p> <p>2016-09-26</p> <p>In this paper, we demonstrate the temperature of <span class="hlt">lightning</span> channel utilizing the theory of <span class="hlt">lightning</span> spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the <span class="hlt">lightning</span> discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated <span class="hlt">lightning</span> has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the <span class="hlt">lightning</span> current intensity in range of 5-50 kA. Based on the results, the temperature of the <span class="hlt">lightning</span> channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the <span class="hlt">lightning</span> current intensity, which shows good agreement with that of the natural <span class="hlt">lightning</span> cases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...633906L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...633906L"><span>Measuring Method for <span class="hlt">Lightning</span> Channel Temperature</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.</p> <p>2016-09-01</p> <p>In this paper, we demonstrate the temperature of <span class="hlt">lightning</span> channel utilizing the theory of <span class="hlt">lightning</span> spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the <span class="hlt">lightning</span> discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated <span class="hlt">lightning</span> has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the <span class="hlt">lightning</span> current intensity in range of 5-50 kA. Based on the results, the temperature of the <span class="hlt">lightning</span> channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the <span class="hlt">lightning</span> current intensity, which shows good agreement with that of the natural <span class="hlt">lightning</span> cases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002889','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002889"><span>Total <span class="hlt">Lightning</span> Characteristics with Respect to Radar-Derived Mesocyclone Strength</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.</p> <p>2015-01-01</p> <p>Recent work investigating the microphysical and kinematic relationship between a storm's updraft, its total <span class="hlt">lightning</span> production, and manifestations of severe weather has resulted in <span class="hlt">development</span> of tools for improved nowcasting of storm intensity. The total <span class="hlt">lightning</span> jump algorithm, which identifies rapid increases in total <span class="hlt">lightning</span> flash rate that often precede severe events, has shown particular potential to benefit warning operations. Maximizing this capability of total <span class="hlt">lightning</span> and its operational implementation via the <span class="hlt">lightning</span> jump may best be done through its fusion with radar and radar-derived intensity metrics. Identification of a mesocyclone, or quasi-steady rotating updraft, in Doppler velocity is the predominant radar-inferred early indicator of severe potential in a convective storm. Fused <span class="hlt">lightning</span>-radar tools that capitalize on the most robust intensity indicators would allow enhanced situational awareness for increased warning confidence. A foundational step toward such tools comes from a better understanding of the updraft-centric relationship between intensification of total <span class="hlt">lightning</span> production and mesocyclone <span class="hlt">development</span> and strength. The work presented here utilizes a sample of supercell case studies representing a spectrum of severity. These storms are analyzed with respect to total <span class="hlt">lightning</span> flash rate and the <span class="hlt">lightning</span> jump alongside mesocyclone strength derived objectively from the National Severe Storms Laboratory (NSSL) Mesocyclone Detection Algorithm (MDA) and maximum azimuthal shear through a layer. Early results indicate that temporal similarities exist in the trends between total <span class="hlt">lightning</span> flash rate and low- to mid-level rotation in supercells. Other characteristics such as polarimetric signatures of rotation, flash size, and cloud-to-ground flash ratio are explored for added insight into the significance of these trends with respect to the updraft and related processes of severe weather production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE22A..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE22A..03W"><span>Why does negative CG <span class="hlt">lightning</span> have subsequent return strokes?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wilkes, R. A.; Kotovsky, D. A.; Uman, M. A.; Carvalho, F. L.; Jordan, D.</p> <p>2017-12-01</p> <p>It is not understood why cloud-to-ground (CG) <span class="hlt">lightning</span> flashes lowering negative charge often produce discrete dart-leader/return-stroke sequences rather than having the first stroke drain the available cloud charge, as is almost always the case for CG <span class="hlt">lightning</span> lowering positive charge. Triggered <span class="hlt">lightning</span> data obtained at the International Center for <span class="hlt">Lightning</span> Research and Testing (ICLRT) in north-central Florida have been analyzed to clarify the subsequent return-stroke process. In summers 2013 through 2016 at the ICLRT, 53% of the rocket launches did not initiate any part of a <span class="hlt">lightning</span> flash, 13% of the rocket launches created an initial stage only (ISO) and failed to produce a following dart-leader/return-stroke sequences, and 34% of rocket launches produced an initial stage (IS) followed by return strokes. The IS of the triggered <span class="hlt">lightning</span> consists of the upward positive leader and a following initial continuing current, both being responsible for transporting negative charge from the cloud to ground. Our ISO events may well have some commonality with the roughly 20 percent of natural CG flashes that fail to produce a dart-leader/return-stroke. We have analyzed the IS of 41 triggered <span class="hlt">lightning</span> flashes with (19 cases) and without (22 cases) following return strokes and compared areas and heights of the flash using data collected by a <span class="hlt">Lightning</span> Mapping Array (LMA). In our preliminary analysis, we can find no geometrical feature of the <span class="hlt">lightning</span> channel during the IS that will <span class="hlt">predict</span> the occurrence or lack of occurrence of following return strokes. We also have compared the triggered-<span class="hlt">lightning</span> electrical current and charge transfer observed at the ground. We found that the average current, duration, and charge transfer during the IS for ISO events is each about half that of ISs analyzed which are followed by dart-leader/return-stroke sequences, contrary to the results presented from the GCOELD in China. Summarizing, there appear to be no differences in the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ130237','ERIC'); return false;" href="https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ130237"><span>The <span class="hlt">Lightning</span> Discharge</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Orville, Richard E.</p> <p>1976-01-01</p> <p>Correspondence of Benjamin Franklin provides authenticity to a historical account of early work in the field of <span class="hlt">lightning</span>. Present-day theories concerning the formation and propagation of <span class="hlt">lightning</span> are expressed and photographic evidence provided. (CP)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011691','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011691"><span>Physical and Dynamical Linkages Between <span class="hlt">Lightning</span> Jumps and Storm Conceptual Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.</p> <p>2014-01-01</p> <p>The presence and rates of total <span class="hlt">lightning</span> are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the <span class="hlt">development</span> of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of <span class="hlt">lightning</span> rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total <span class="hlt">lightning</span> jump algorithm that has been <span class="hlt">developed</span> in recent years. Currently, the <span class="hlt">lightning</span> jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy data and the <span class="hlt">lightning</span> jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using <span class="hlt">lightning</span> mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total <span class="hlt">lightning</span> flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the <span class="hlt">lightning</span> jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the <span class="hlt">lightning</span> jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to <span class="hlt">lightning</span> jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011607','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011607"><span>Physical and Dynamical Linkages between <span class="hlt">Lightning</span> Jumps and Storm Conceptual Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.</p> <p>2014-01-01</p> <p>The presence and rates of total <span class="hlt">lightning</span> are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the <span class="hlt">development</span> of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of <span class="hlt">lightning</span> rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total <span class="hlt">lightning</span> jump algorithm that has been <span class="hlt">developed</span> in recent years. Currently, the <span class="hlt">lightning</span> jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy data and the <span class="hlt">lightning</span> jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using <span class="hlt">lightning</span> mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total <span class="hlt">lightning</span> flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the <span class="hlt">lightning</span> jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the <span class="hlt">lightning</span> jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to <span class="hlt">lightning</span> jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2607583','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2607583"><span>Air traffic controller <span class="hlt">lightning</span> strike.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spieth, M. E.; Kimura, R. L.; Schryer, T. D.</p> <p>1994-01-01</p> <p>Andersen Air Force Base in Guam boasts the tallest control tower in the Air Force. In 1986, an air traffic controller was struck by <span class="hlt">lightning</span> as the bolt proceeded through the tower. Although he received only a backache, the <span class="hlt">lightning</span> left a hole with surrounding scorch marks on his fatigue shirt and his undershirt. The <span class="hlt">lightning</span> strike also ignited a portion of the field lighting panel, which caused the runway lights to go out immediately. Lack of a <span class="hlt">lightning</span> rod is the most likely reason the controller was struck. Proper precautions against <span class="hlt">lightning</span> strikes can prevent such occupational safety hazards. PMID:7966436</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5036177','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5036177"><span>Measuring Method for <span class="hlt">Lightning</span> Channel Temperature</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.</p> <p>2016-01-01</p> <p>In this paper, we demonstrate the temperature of <span class="hlt">lightning</span> channel utilizing the theory of <span class="hlt">lightning</span> spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the <span class="hlt">lightning</span> discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated <span class="hlt">lightning</span> has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the <span class="hlt">lightning</span> current intensity in range of 5–50 kA. Based on the results, the temperature of the <span class="hlt">lightning</span> channel is derived to be 6140.8–10424 K. Moreover, the temperature of the channel is approximately exponential to the <span class="hlt">lightning</span> current intensity, which shows good agreement with that of the natural <span class="hlt">lightning</span> cases. PMID:27665937</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12575.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12575.html"><span>First <span class="hlt">Lightning</span> Flashes on Saturn</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2010-04-14</p> <p>NASA Cassini spacecraft captured the first <span class="hlt">lightning</span> flashes on Saturn. The storm that generated the <span class="hlt">lightning</span> lasted from January to October 2009, making it the longest-lasting <span class="hlt">lightning</span> storm known in the solar system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110004347','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110004347"><span>The Goes-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM): Algorithm and Instrument Status</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas</p> <p>2010-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total <span class="hlt">lightning</span> activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument <span class="hlt">development</span> (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to <span class="hlt">develop</span> the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF <span class="hlt">lightning</span> mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS) overpasses, and related ground and in-situ <span class="hlt">lightning</span> and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001922','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001922"><span>ENSO Related Interannual <span class="hlt">Lightning</span> Variability from the Full TRMM LIS <span class="hlt">Lightning</span> Climatology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, Austin; Cecil, Daniel J.</p> <p>2018-01-01</p> <p>It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of <span class="hlt">lightning</span> production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects <span class="hlt">lightning</span> production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, <span class="hlt">lightning</span> data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed <span class="hlt">lightning</span> deviations from year to year at each location.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042559','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042559"><span>Evaluation of <span class="hlt">Lightning</span> Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.</p> <p>2011-01-01</p> <p>Defining the electromagnetic environment inside a graphite composite fairing due to <span class="hlt">lightning</span> is of interest to spacecraft <span class="hlt">developers</span>. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is <span class="hlt">developed</span> and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately <span class="hlt">predict</span> the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the <span class="hlt">development</span> of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is <span class="hlt">developed</span> in the time domain to study how the composite fairing affects <span class="hlt">lightning</span> induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately <span class="hlt">predict</span> the test and industry results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950057365&hterms=paper+airplanes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dpaper%2Bairplanes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950057365&hterms=paper+airplanes&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dpaper%2Bairplanes"><span><span class="hlt">Lightning</span> protection technology for small general aviation composite material aircraft</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumer, J. A.; Setzer, T. E.; Siddiqi, S.</p> <p>1993-01-01</p> <p>An on going NASA (Small Business Innovative Research) SBIR Phase II design and <span class="hlt">development</span> program will produce the first <span class="hlt">lightning</span> protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in <span class="hlt">development</span> testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the <span class="hlt">lightning</span> protection design methodology and materials chosen are capable of protecting such small composite airframes from <span class="hlt">lightning</span> puncture and structural damage associated with severe threat <span class="hlt">lightning</span> strikes. The primary objective of the program has been to <span class="hlt">develop</span> a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, <span class="hlt">lightning</span>-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide <span class="hlt">lightning</span> protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and <span class="hlt">development</span> testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023388','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023388"><span>Three-dimensional time domain model of <span class="hlt">lightning</span> including corona effects</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Podgorski, Andrew S.</p> <p>1991-01-01</p> <p>A new 3-D <span class="hlt">lightning</span> model that incorporates the effect of corona is described for the first time. The new model is based on a Thin Wire Time Domain <span class="hlt">Lightning</span> (TWTDL) Code <span class="hlt">developed</span> previously. The TWTDL Code was verified during the 1985 and 1986 <span class="hlt">lightning</span> seasons by the measurements conducted at the 553 m CN Tower in Toronto, Ontario. The inclusion of corona in the TWTDL code allowed study of the corona effects on the <span class="hlt">lightning</span> current parameters and the associated electric field parameters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMAE13A0414L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMAE13A0414L"><span>High Speed Video Observations of Natural <span class="hlt">Lightning</span> and Their Implications to Fractal Description of <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, N.; Tilles, J.; Boggs, L.; Bozarth, A.; Rassoul, H.; Riousset, J. A.</p> <p>2016-12-01</p> <p>Recent high speed video observations of triggered and natural <span class="hlt">lightning</span> flashes have significantly advanced our understanding of <span class="hlt">lightning</span> initiation and propagation. For example, they have helped resolve the initiation of <span class="hlt">lightning</span> leaders [Stolzenburg et al., JGR, 119, 12198, 2014; Montanyà et al, Sci. Rep., 5, 15180, 2015], the stepping of negative leaders [Hill et al., JGR, 116, D16117, 2011], the structure of streamer zone around the leader [Gamerota et al., GRL, 42, 1977, 2015], and transient rebrightening processes occurring during the leader propagation [Stolzenburg et al., JGR, 120, 3408, 2015]. We started an observational campaign in the summer of 2016 to study <span class="hlt">lightning</span> by using a Phantom high-speed camera on the campus of Florida Institute of Technology, Melbourne, FL. A few interesting natural cloud-to-ground and intracloud <span class="hlt">lightning</span> discharges have been recorded, including a couple of 8-9 stroke flashes, high peak current flashes, and upward propagating return stroke waves from ground to cloud. The videos show that the propagation of the downward leaders of cloud-to-ground <span class="hlt">lightning</span> discharges is very complex, particularly for the high-peak current flashes. They tend to <span class="hlt">develop</span> as multiple branches, and each of them splits repeatedly. For some cases, the propagation characteristics of the leader, such as speed, are subject to sudden changes. In this talk, we present several selected cases to show the complexity of the leader propagation. One of the effective approaches to characterize the structure and propagation of <span class="hlt">lightning</span> leaders is the fractal description [Mansell et al., JGR, 107, 4075, 2002; Riousset et al., JGR, 112, D15203, 2007; Riousset et al., JGR, 115, A00E10, 2010]. We also present a detailed analysis of the high-speed images of our observations and formulate useful constraints to the fractal description. Finally, we compare the obtained results with fractal simulations conducted by using the model reported in [Riousset et al., 2007</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..119.1455M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..119.1455M"><span><span class="hlt">Lightning</span> discharges produced by wind turbines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Montanyà, Joan; van der Velde, Oscar; Williams, Earle R.</p> <p>2014-02-01</p> <p>New observations with a 3-D <span class="hlt">Lightning</span> Mapping Array and high-speed video are presented and discussed. The first set of observations shows that under certain thunderstorm conditions, wind turbine blades can produce electric discharges at regular intervals of 3 s in relation to its rotation, over periods of time that range from a few minutes up to hours. This periodic effect has not been observed in static towers indicating that the effect of rotation is playing a critical role. The repeated discharges can occur tens of kilometers away from electrically active thunderstorm areas and may or may not precede a fully <span class="hlt">developed</span> upward <span class="hlt">lightning</span> discharge from the turbine. Similar to rockets used for triggering <span class="hlt">lightning</span>, the fast movement of the blade tip plays an important role on the initiation of the discharge. The movement of the rotor blades allows the tip to "runaway" from the generated corona charge. The second observation is an uncommon upward/downward flash triggered by a wind turbine. In that flash, a negative upward leader was initiated from a wind turbine without preceding <span class="hlt">lightning</span> activity. The flash produced a negative cloud-to-ground stroke several kilometers from the initiation point. The third observation corresponds to a high-speed video record showing simultaneous upward positive leaders from a group of wind turbines triggered by a preceding intracloud flash. The fact that multiple leaders <span class="hlt">develop</span> simultaneously indicates a poor shielding effect among them. All these observations provide some special features on the initiation of <span class="hlt">lightning</span> by nonstatic and complex tall structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790010065','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790010065"><span>Space Shuttle <span class="hlt">Lightning</span> Protection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Suiter, D. L.; Gadbois, R. D.; Blount, R. L.</p> <p>1979-01-01</p> <p>The technology for <span class="hlt">lightning</span> protection of even the most advanced spacecraft is available and can be applied through cost-effective hardware designs and design-verification techniques. In this paper, the evolution of the Space Shuttle <span class="hlt">Lightning</span> Protection Program is discussed, including the general types of protection, testing, and anlayses being performed to assess the <span class="hlt">lightning</span>-transient-damage susceptibility of solid-state electronics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020068017&hterms=channels+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dchannels%2Bdistribution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020068017&hterms=channels+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dchannels%2Bdistribution"><span>A <span class="hlt">Lightning</span> Channel Retrieval Algorithm for the North Alabama <span class="hlt">Lightning</span> Mapping Array (LMA)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William; Arnold, James E. (Technical Monitor)</p> <p>2002-01-01</p> <p>A new multi-station VHF time-of-arrival (TOA) antenna network is, at the time of this writing, coming on-line in Northern Alabama. The network, called the <span class="hlt">Lightning</span> Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of <span class="hlt">lightning</span> strokes within cloud and ground flashes. The network will support on-going ground validation activities of the low Earth orbiting <span class="hlt">Lightning</span> Imaging Sensor (LIS) satellite <span class="hlt">developed</span> at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. It will also provide for many interesting and detailed studies of the distribution and evolution of thunderstorms and <span class="hlt">lightning</span> in the Tennessee Valley, and will offer many interesting comparisons with other meteorological/geophysical wets associated with <span class="hlt">lightning</span> and thunderstorms. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. In this study, a new revised channel mapping retrieval algorithm is introduced. The algorithm is an extension of earlier work provided in Koshak and Solakiewicz (1996) in the analysis of the NASA Kennedy Space Center (KSC) <span class="hlt">Lightning</span> Detection and Ranging (LDAR) system. As in the 1996 study, direct algebraic solutions are obtained by inverting a simple linear system of equations, thereby making computer searches through a multi-dimensional parameter domain of a Chi-Squared function unnecessary. However, the new algorithm is <span class="hlt">developed</span> completely in spherical Earth-centered coordinates (longitude, latitude, altitude), rather than in the (x, y, z) cartesian coordinates employed in the 1996 study. Hence, no mathematical transformations from (x, y, z) into spherical coordinates are required (such transformations involve more numerical error propagation, more computer program coding, and slightly more CPU computing time). The new algorithm also has a more realistic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830043058&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830043058&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust"><span><span class="hlt">Lightning</span> propagation and flash density in squall lines as determined with radar</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mazur, V.; Rust, W. D.</p> <p>1983-01-01</p> <p><span class="hlt">Lightning</span> echo rise times and range-time variations due to discharge propagation are determined using S and L band radars, and the evolution of precipitation reflectivity and the associated <span class="hlt">lightning</span> activity in squall lines is investigated using VHF and L band radars. The rise time of radar echoes can be explained by ionized channel propagation through the radar beams. Speeds of at least 250,000 m/s are found from measurements of the radial velocity of streamer propagation along the antenna beam. The range-time variations in <span class="hlt">lightning</span> echoes indicate that either new ionization occurs as streamers <span class="hlt">develop</span> into different parts of the cloud, channel delay occurs during which adequate ionization exists for radar detection, or continuing current occurs. Determinations of the <span class="hlt">lightning</span> flash density for a squall line in the U.S. show that the maximum <span class="hlt">lightning</span> density tends to be near the leading edge of the precipitation cores in <span class="hlt">developing</span> cells. Long discharges are produced as a cell in the squall line <span class="hlt">develops</span> and the total <span class="hlt">lightning</span> density increases, although short discharges predominate. As the cell dissipates, short flashes diminish or cease and the long flashes dominate the <span class="hlt">lightning</span> activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-581.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a) The airplane must be protected against catastrophic effects from <span class="hlt">lightning</span>. (b) For metallic... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec25-581.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol1/pdf/CFR-2014-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a) The airplane must be protected against catastrophic effects from <span class="hlt">lightning</span>. (b) For metallic... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec25-581.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a) The airplane must be protected against catastrophic effects from <span class="hlt">lightning</span>. (b) For metallic... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec25-581.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a) The airplane must be protected against catastrophic effects from <span class="hlt">lightning</span>. (b) For metallic... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JASTP.134...78S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JASTP.134...78S"><span><span class="hlt">Lightning</span> and middle atmospheric discharges in the atmosphere</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha</p> <p>2015-11-01</p> <p>Recent <span class="hlt">development</span> in <span class="hlt">lightning</span> discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during <span class="hlt">lightning</span> discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during <span class="hlt">lightning</span> discharges. The present understanding of global electric circuit is also reviewed. Relation between <span class="hlt">lightning</span> activity/global electric circuit and climate is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014258"><span><span class="hlt">Lightning</span> NOx Statistics Derived by NASA <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) Data Analyses</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William; Peterson, Harold</p> <p>2013-01-01</p> <p>What is the LNOM? The NASA Marshall Space Flight Center (MSFC) <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) [Koshak et al., 2009, 2010, 2011; Koshak and Peterson 2011, 2013] analyzes VHF <span class="hlt">Lightning</span> Mapping Array (LMA) and National <span class="hlt">Lightning</span> Detection Network(TradeMark) (NLDN) data to estimate the <span class="hlt">lightning</span> nitrogen oxides (LNOx) produced by individual flashes. Figure 1 provides an overview of LNOM functionality. Benefits of LNOM: (1) Does away with unrealistic "vertical stick" <span class="hlt">lightning</span> channel models for estimating LNOx; (2) Uses ground-based VHF data that maps out the true channel in space and time to < 100 m accuracy; (3) Therefore, true channel segment height (ambient air density) is used to compute LNOx; (4) True channel length is used! (typically tens of kilometers since channel has many branches and "wiggles"); (5) Distinction between ground and cloud flashes are made; (6) For ground flashes, actual peak current from NLDN used to compute NOx from <span class="hlt">lightning</span> return stroke; (7) NOx computed for several other <span class="hlt">lightning</span> discharge processes (based on Cooray et al., 2009 theory): (a) Hot core of stepped leaders and dart leaders, (b) Corona sheath of stepped leader, (c) K-change, (d) Continuing Currents, and (e) M-components; and (8) LNOM statistics (see later) can be used to parameterize LNOx production for regional air quality models (like CMAQ), and for global chemical transport models (like GEOS-Chem).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820000305&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthunderstorm%2Bprotection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820000305&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthunderstorm%2Bprotection"><span>The Design of <span class="hlt">Lightning</span> Protection</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1983-01-01</p> <p>Engineering study guides design and monitoring of <span class="hlt">lightning</span> protection. Design studies for project are collected in 150-page report, containing wealth of information on design of <span class="hlt">lightning</span> protection systems and on instrumentation for monitoring current waveforms of <span class="hlt">lightning</span> strokes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820019046','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820019046"><span>Correlation of satellite <span class="hlt">lightning</span> observations with ground-based <span class="hlt">lightning</span> experiments in Florida, Texas and Oklahoma</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Edgar, B. C.; Turman, B. N.</p> <p>1982-01-01</p> <p>Satellite observations of <span class="hlt">lightning</span> were correlated with ground-based measurements of <span class="hlt">lightning</span> from data bases obtained at three separate sites. The percentage of ground-based observations of <span class="hlt">lightning</span> that would be seen by an orbiting satellite was determined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13A2224P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13A2224P"><span>Electric Field Sensor for <span class="hlt">Lightning</span> Early Warning System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.</p> <p>2017-12-01</p> <p>Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for <span class="hlt">Lightning</span> Early Warning systems. There is a characteristic change in the atmospheric electric field before <span class="hlt">lightning</span> during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is <span class="hlt">developed</span>, to detect any change in the atmospheric electric field and to issue <span class="hlt">lightning</span> early warning system. Since this is a low-cost device, this can be used for <span class="hlt">developing</span> countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in <span class="hlt">developing</span> countries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE31B0435H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE31B0435H"><span>Performance Study of Earth Networks Total <span class="hlt">Lightning</span> Network using Rocket-Triggered <span class="hlt">Lightning</span> Data in 2014</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heckman, S.</p> <p>2015-12-01</p> <p>Modern <span class="hlt">lightning</span> locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in <span class="hlt">lightning</span> research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total <span class="hlt">Lightning</span> Network (ENTLN) is studied using rocket-triggered <span class="hlt">lightning</span> data acquired atthe International Center for <span class="hlt">Lightning</span> Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground <span class="hlt">lightning</span>.Earth Networks has <span class="hlt">developed</span> a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002740','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002740"><span>Common Practice <span class="hlt">Lightning</span> Strike Protection Characterization Technique to Quantify Damage Mechanisms on Composite Substrates</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Szatkowski, George N.; Dudley, Kenneth L.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Ticatch, Larry A.; Mielnik, John J.; Mcneill, Patrick A.</p> <p>2013-01-01</p> <p>To support FAA certification airworthiness standards, composite substrates are subjected to <span class="hlt">lightning</span> direct-effect electrical waveforms to determine performance characteristics of the <span class="hlt">lightning</span> strike protection (LSP) conductive layers used to protect composite substrates. Test results collected from independent LSP studies are often incomparable due to variability in test procedures & applied practices at different organizations, which impairs performance correlations between different LSP data sets. Under a NASA supported contract, The Boeing Company <span class="hlt">developed</span> technical procedures and documentation as guidance in order to facilitate a test method for conducting universal common practice <span class="hlt">lightning</span> strike protection test procedures. The procedures obtain conformity in future <span class="hlt">lightning</span> strike protection evaluations to allow meaningful performance correlations across data sets. This universal common practice guidance provides the manufacturing specifications to fabricate carbon fiber reinforced plastic (CFRP) test panels, including finish, grounding configuration, and acceptable methods for pretest nondestructive inspection (NDI) and posttest destructive inspection. The test operations guidance elaborates on the provisions contained in SAE ARP5416 to address inconsistencies in the generation of damage protection performance data, so as to provide for maximum achievable correlation across capable lab facilities. In addition, the guidance details a direct effects test bed design to aid in quantification of the multi-physical phenomena surrounding a <span class="hlt">lightning</span> direct attachment supporting validation data requirements for the <span class="hlt">development</span> of <span class="hlt">predictive</span> computational modeling. The <span class="hlt">lightning</span> test bed is designed to accommodate a repeatable installation procedure to secure the test panel and eliminate test installation uncertainty. It also facilitates a means to capture the electrical waveform parameters in 2 dimensions, along with the mechanical displacement and thermal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820052684&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820052684&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Drust"><span>Radar research on thunderstorms and <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rust, W. D.; Doviak, R. J.</p> <p>1982-01-01</p> <p>Applications of Doppler radar to detection of storm hazards are reviewed. Normal radar sweeps reveal data on reflectivity fields of rain drops, ionized <span class="hlt">lightning</span> paths, and irregularities in humidity and temperature. Doppler radar permits identification of the targets' speed toward or away from the transmitter through interpretation of the shifts in the microwave frequency. Wind velocity fields can be characterized in three dimensions by the use of two radar units, with a Nyquist limit on the highest wind speeds that may be recorded. Comparisons with models numerically derived from Doppler radar data show substantial agreement in storm formation <span class="hlt">predictions</span> based on information gathered before the storm. Examples are provided of tornado observations with expanded Nyquist limits, gust fronts, turbulence, <span class="hlt">lightning</span> and storm structures. Obtaining vertical velocities from reflectivity spectra is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990009077','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990009077"><span><span class="hlt">Lightning</span> Characteristics and <span class="hlt">Lightning</span> Strike Peak Current Probabilities as Related to Aerospace Vehicle Operations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, Dale L.; Vaughan, William W.</p> <p>1998-01-01</p> <p>A summary is presented of basic <span class="hlt">lightning</span> characteristics/criteria for current and future NASA aerospace vehicles. The paper estimates the probability of occurrence of a 200 kA peak <span class="hlt">lightning</span> return current, should <span class="hlt">lightning</span> strike an aerospace vehicle in various operational phases, i.e., roll-out, on-pad, launch, reenter/land, and return-to-launch site. A literature search was conducted for previous work concerning occurrence and measurement of peak lighting currents, modeling, and estimating probabilities of launch vehicles/objects being struck by <span class="hlt">lightning</span>. This paper presents these results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001961','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001961"><span>ENSO Related Inter-Annual <span class="hlt">Lightning</span> Variability from the Full TRMM LIS <span class="hlt">Lightning</span> Climatology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clark, Austin; Cecil, Daniel</p> <p>2018-01-01</p> <p>The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of <span class="hlt">lightning</span> production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects <span class="hlt">lightning</span> production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) <span class="hlt">Lightning</span> Imaging Sensor (LIS). <span class="hlt">Lightning</span> data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JPhCS.301a2063B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JPhCS.301a2063B"><span><span class="hlt">Lightning</span> protection: challenges, solutions and questionable steps in the 21st century</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berta, István</p> <p>2011-06-01</p> <p>Besides the special primary <span class="hlt">lightning</span> protection of extremely high towers, huge office and governmental buildings, large industrial plants and resident parks most of the challenges were connected to the secondary <span class="hlt">lightning</span> protection of sensitive devices in Information and Communication Technology. The 70 year history of Budapest School of <span class="hlt">Lightning</span> Protection plays an important role in the research and education of <span class="hlt">lightning</span> and <span class="hlt">development</span> of <span class="hlt">lightning</span> protection. Among results and solutions the Rolling Sphere designing method (RS) and the Probability Modulated Attraction Space (PMAS) theory are detailed. As a new field Preventive <span class="hlt">Lightning</span> Protection (PLP) has been introduced. The PLP method means the use of special preventive actions only for the duration of the thunderstorm. Recently several non-conventional <span class="hlt">lightning</span> protection techniques have appeared as competitors of the air termination systems formed of conventional Franklin rods. The questionable steps, non-conventional <span class="hlt">lightning</span> protection systems reported in the literature are the radioactive <span class="hlt">lightning</span> rods, Early Streamer Emission (ESE) rods and Dissipation Arrays (sometimes called Charge Transfer Systems).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023322','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023322"><span>The Sandia transportable triggered <span class="hlt">lightning</span> instrumentation facility</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schnetzer, George H.; Fisher, Richard J.</p> <p>1991-01-01</p> <p><span class="hlt">Development</span> of the Sandia Transportable Triggered <span class="hlt">Lightning</span> Instrumentation Facility (SATTLIF) was motivated by a requirement for the in situ testing of a munitions storage bunker. Transfer functions relating the incident flash currents to voltages, currents, and electromagnetic field values throughout the structure will be obtained for use in refining and validating a <span class="hlt">lightning</span> response computer model of this type of structure. A preliminary shakedown trial of the facility under actual operational conditions was performed during summer of 1990 at the Kennedy Space Center's (KSC) rocket-triggered <span class="hlt">lightning</span> test site. A description is given of the SATTLIF, which is readily transportable on a single flatbed truck of by aircraft, and its instrumentation for measuring incident <span class="hlt">lightning</span> channel currents and the responses of the systems under test. Measurements of return-stroke current peaks obtained with the SATTLIF are presented. Agreement with data acquired on the same flashes with existing KSC instrumentation is, on average, to within approximately 7 percent. Continuing currents were measured with a resolution of approximately 2.5 A. This field trial demonstrated the practicality of using a transportable triggered <span class="hlt">lightning</span> facility for specialized test applications.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030062245&hterms=inversion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dinversion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030062245&hterms=inversion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dinversion"><span>Mathematical Inversion of <span class="hlt">Lightning</span> Data: Techniques and Applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William</p> <p>2003-01-01</p> <p>A survey of some interesting mathematical inversion studies dealing with radio, optical, and electrostatic measurements of <span class="hlt">lightning</span> are presented. A discussion of why NASA is interested in <span class="hlt">lightning</span>, what specific physical properties of <span class="hlt">lightning</span> are retrieved, and what mathematical techniques are used to perform the retrievals are discussed. In particular, a relatively new multi-station VHF time-of-arrival (TOA) antenna network is now on-line in Northern Alabama and will be discussed. The network, called the <span class="hlt">Lightning</span> Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of <span class="hlt">lightning</span> strokes within cloud and ground flashes. The LMA supports on-going ground-validation activities of the low Earth orbiting <span class="hlt">Lightning</span> Imaging Sensor (LIS) satellite <span class="hlt">developed</span> at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The LMA also provides detailed studies of the distribution and evolution of thunderstorms and <span class="hlt">lightning</span> in the Tennessee Valley, and offers interesting comparisons with other meteorological/geophysical datasets. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. A new channel mapping retrieval algorithm is introduced for this purpose. To characterize the spatial distribution of retrieval errors, the algorithm has been applied to analyze literally tens of millions of computer-simulated <span class="hlt">lightning</span> VHF point sources that have been placed at various ranges, azimuths, and altitudes relative to the LMA network. Statistical results are conveniently summarized in high-resolution, color-coded, error maps.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29073666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29073666"><span>Trigeminal Neuralgia Following <span class="hlt">Lightning</span> Injury.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>López Chiriboga, Alfonso S; Cheshire, William P</p> <p>2017-01-01</p> <p><span class="hlt">Lightning</span> and other electrical incidents are responsible for more than 300 injuries and 100 deaths per year in the United States alone. <span class="hlt">Lightning</span> strikes can cause a wide spectrum of neurologic manifestations affecting any part of the neuraxis through direct strikes, side flashes, touch voltage, connecting leaders, or acoustic shock waves. This article describes the first case of trigeminal neuralgia induced by <span class="hlt">lightning</span> injury to the trigeminal nerve, thereby adding a new syndrome to the list of possible <span class="hlt">lightning</span>-mediated neurologic injuries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13B..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13B..03P"><span>COMSOL based Simulation on the Effect of Electric Field changes due to <span class="hlt">Lightning</span> on Ground</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Premlet, B.; Joby, N. E.; Sabu, S.</p> <p>2017-12-01</p> <p>The phenomenon of <span class="hlt">lightning</span> is accompanied by localised changes in atmospheric electric fields. In cloud-to-ground strike locations, changes in atmospheric electric fields can even be observed at the ground a few minutes prior to a strike. A lot of research has been done already on the electrostatic changes prior to <span class="hlt">lightning</span> in the region above ground. Through this work, we investigate into the effects of <span class="hlt">lightning</span> electric fields on/under ground with the aid of simulations done in COMSOL Multiphysics. Horizontal and vertical profiles of voltage gradient, electric field, polarisation etc. are investigated. Simulation experiments were conducted using a general model of <span class="hlt">lightning</span> electric fields formed using data recorded by the Electric Field Mills(EFMs) from three diverse parts of the world- Kennedy Space Centre (KSC),Florida (Using GHRC datasets),Sonnblick Observatory, Austria and National Centre for Earth Science Studies Trivandrum (NCESS),India. COMSOL models of the global electric circuit were <span class="hlt">developed</span> using Sandstone as the base model for ground. Similar works in literature have only dealt with <span class="hlt">lightning</span> electric fields above the ground. This work is the first step towards a high-level simulation on the effects of atmospheric electric field on/below ground. The results of this simulation work can aid <span class="hlt">lightning</span> forecasting and preparedness by opening new doors for voltage based <span class="hlt">prediction</span> methods at ground. It is also a tool to understand phenomena such as fulgurites, corona effect etc. It also helps in the design of buried cables and improved grounding systems. This work can also be a first step towards understanding localised potential variations at the ground during <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815451H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815451H"><span>Structural and erosive Effects of <span class="hlt">Lightning</span> on Sandstone: An Experimental Investigation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haddad, Houssam; Ebert, Matthias; Kenkmann, Thomas; Thoma, Klaus; Nau, Siegfried; Schäfer, Frank</p> <p>2016-04-01</p> <p>Recent prognoses <span class="hlt">predict</span> an average temperature increase of the world's climate of about 1.5 to 2 °C until the end of 21st century. This change leads not only to a rise of the sea level but also to an increase of thunderstorms and therefore to a ~25 percent increase of cloud-to-ground <span class="hlt">lightning</span> events (Romps et al., 2014). It is known that (i) <span class="hlt">lightning</span> strikes are able to fragment surface rocks, which probably influences the erosion rates at exposed mountain areas (Knight and Grab, 2014), and (ii) the efficiency of the process increases due to the <span class="hlt">predicted</span> climate change. However, our knowledge about the electro-mechanical destruction of rocks caused by high energetic <span class="hlt">lightning</span> is incomplete. In this study, laboratory experiments of <span class="hlt">lightning</span> strikes were performed in order to understand the fragmentation of rocks and changes to landforms by <span class="hlt">lightning</span>. The artificial <span class="hlt">lightning</span> with known electric current was simulated by a high-current generator in the laboratories of the Fraunhofer Ernst-Mach Institute for High-Speed Dynamics (Freiburg, Germany). Different currents were transferred over a distance of ~2mm onto water-saturated sandstones by using a copper cathode (3 experiments; U, I, E, Δt: 6 kV, 200 kA, 0.1 MJ, 0.7 ms; 9 kV, 300 kA, 0.19 MJ, 0.9 ms; 12 kV, 400 kA, 0.35 MJ, 0.5 ms). The damaged sandstones were investigated by means of optical and electron-optical methods as well as by X-ray computed tomography to determine the modes and dimensions of melting and fragmentation. Digital elevation models of craters formed by ejection were obtained by white-light interferometry. The <span class="hlt">lightning</span> experiments produced small craters (~1 cm in diameter, ~0.5 cm depth) which surfaces and sub-surfaces consist of silicate melts (molten quartz and phyllosilicates). The silicate melts reach several hundred micrometers into the sub-surface and resemble the appearance of natural fulgurites. Melting of quartz indicate temperatures of at least 1650 °C. In addition, the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983RvGSP..21..892W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983RvGSP..21..892W"><span>Planetary <span class="hlt">lightning</span> - Earth, Jupiter, and Venus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, M. A.; Krider, E. P.; Hunten, D. M.</p> <p>1983-05-01</p> <p>The principal characteristics of <span class="hlt">lightning</span> on earth are reviewed, and the evidence for <span class="hlt">lightning</span> on Venus and Jupiter is examined. The mechanisms believed to be important to the electrification of terrestrial clouds are reviewed, with attention given to the applicability of some of these mechanisms to the atmospheres of Venus and Jupiter. The consequences of the existence of <span class="hlt">lightning</span> on Venus and Jupiter for their atmospheres and for theories of cloud electrification on earth are also considered. Since spacecraft observations do not conclusively show that <span class="hlt">lightning</span> does occur on Venus, it is suggested that alternative explanations for the experimental results be explored. Since Jupiter has no true surface, the Jovian <span class="hlt">lightning</span> flashes are cloud dischargaes. Observations suggest that Jovian <span class="hlt">lightning</span> emits, on average, 10 to the 10 J of optical energy per flash, whereas on earth <span class="hlt">lightning</span> radiates only about 10 to the 6th J per flash. Estimates of the average planetary <span class="hlt">lightning</span> rate on Jupiter range from 0.003 per sq km per yr to 40 per sq km per yr.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE41A..06S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE41A..06S"><span>Combining GOES-16 Geostationary <span class="hlt">Lightning</span> Mapper with the ground based Earth Networks Total <span class="hlt">Lightning</span> Network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stock, M.; Lapierre, J. L.; Zhu, Y.</p> <p>2017-12-01</p> <p>Recently, the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) began collecting optical data to locate <span class="hlt">lightning</span> events and flashes over the North and South American continents. This new instrument promises uniformly high detection efficiency (DE) over its entire field of view, with location accuracy on the order of 10 km. In comparison, Earth Networks Total <span class="hlt">Lightning</span> Networks (ENTLN) has a less uniform coverage, with higher DE in regions with dense sensor coverage, and lower DE with sparse sensor coverage. ENTLN also offers better location accuracy, <span class="hlt">lightning</span> classification, and peak current estimation for their <span class="hlt">lightning</span> locations. It is desirable to produce an integrated dataset, combining the strong points of GLM and ENTLN. The easiest way to achieve this is to simply match located <span class="hlt">lightning</span> processes from each system using time and distance criteria. This simple method will be limited in scope by the uneven coverage of the ground based network. Instead, we will use GLM group locations to look up the electric field change data recorded by ground sensors near each GLM group, vastly increasing the coverage of the ground network. The ground waveforms can then be used for: improvements to differentiation between glint and <span class="hlt">lightning</span> for GLM, higher precision lighting location, current estimation, and <span class="hlt">lightning</span> process classification. Presented is an initial implementation of this type of integration using preliminary GLM data, and waveforms from ENTLN.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE11A..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE11A..06D"><span>Electrical and Hydrometeor Structure of Thunderstorms that produce Upward <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>dos Santos Souza, J. C.; Albrecht, R. I.; Lang, T. J.; Saba, M. M.; Warner, T. A.; Schumann, C.</p> <p>2017-12-01</p> <p>Upward <span class="hlt">lightning</span> (UL) flashes at tall structures have been reported to be initiated by in-cloud branching of a parent positive cloud-to-ground (CG) or intracloud (IC) <span class="hlt">lightning</span> during the decaying stages of thunderstorms, and associated with stratiform precipitation. This in-cloud branching of the parent CG <span class="hlt">lightning</span> into lower layers of the stratiform precipitation, as well as other situational modes of UL triggering, are indicative of a lower charge center. The objective of this study is to determine the hydrometeor characteristics of thunderstorms that produce UL, especially at the lower layers of the stratiform region where the bidirectional leader of the parent CG or IC <span class="hlt">lightning</span> propagates through. We investigated 17 thunderstorms that produced 56 UL flashes in São Paulo, SP, Brazil and 10 thunderstorms (27 UL) from the UPLIGHTS field experiment in Rapid City, SD, USA. We used polarimetric radar data and 3D lighting mapping or the combination of total (i.e., intracloud and cloud-to-ground) and cloud-to-ground <span class="hlt">lightning</span> strokes data. The Hydrometeor Identification for the thunderstorms of this study consider the information from polarimetric variables ZH, ZDR, KDP and RHOHV to infer radar echoes into rain (light, medium, heavy), hail, dry snow, wet snow, ice crystals, graupel and rain-hail mixtures. Charge structure is inferred by the 3D very-high-frequency (VHF) <span class="hlt">Lightning</span> Mapping Array by monitoring <span class="hlt">lightning</span> propagation closely in time and space and constructing vertical histograms of VHF source density. The results of this research project are important to increase the understanding of the phenomenon, the storm evolution and the <span class="hlt">predictability</span> of UL.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920000497&hterms=faraday&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfaraday','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920000497&hterms=faraday&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfaraday"><span>Faraday Cage Protects Against <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jafferis, W.; Hasbrouck, R. T.; Johnson, J. P.</p> <p>1992-01-01</p> <p>Faraday cage protects electronic and electronically actuated equipment from <span class="hlt">lightning</span>. Follows standard <span class="hlt">lightning</span>-protection principles. Whether <span class="hlt">lightning</span> strikes cage or cables running to equipment, current canceled or minimized in equipment and discharged into ground. Applicable to protection of scientific instruments, computers, radio transmitters and receivers, and power-switching equipment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE13B..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE13B..02S"><span>The Interferometric View of <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stock, M.; Lapierre, J. L.</p> <p>2017-12-01</p> <p> pulse trains tend to be observed. Not all flashes fit this fairly simplistic structure, in particular some flashes seem to lack a vertically <span class="hlt">developing</span> negative leader, and others seem to lack activity after the negative leader stops propagating. Still, this basic anatomy of an in-cloud flash proves useful in describing the overall structure of a <span class="hlt">lightning</span> flash.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850008037&hterms=cookbook&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcookbook','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850008037&hterms=cookbook&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dcookbook"><span><span class="hlt">Lightning</span> research: A user's lament</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Golub, C. N.</p> <p>1984-01-01</p> <p>As a user of devices and procedures for <span class="hlt">lightning</span> protection, the author is asking the <span class="hlt">lightning</span> research community for cookbook recipes to help him solve his problems. He is lamenting that realistic devices are scarce and that his mission does not allow him the time nor the wherewithal to bridge the gap between research and applications. A few case histories are presented. In return for their help he is offering researchers a key to <span class="hlt">lightning</span> technology--the use of the Eastern Test Range and its extensive resources as a proving ground for their experiment in the <span class="hlt">lightning</span> capital of the United States. A current example is given--a joint <span class="hlt">lightning</span> characterization project to take place there. Typical resources are listed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011IJTPE.131..481M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011IJTPE.131..481M"><span><span class="hlt">Lightning</span> Overvoltage on Low-Voltage Distribution System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michishita, Koji</p> <p></p> <p>The portion of the faults of a medium-voltage line, cause by <span class="hlt">lightning</span>, tends to increase with often reaching beyond 30%. However, due to the recent progress of the <span class="hlt">lightning</span> protection design, the number of faults has decreased to 1/3 of that at 30 years ago. As for the low-voltage distribution line, the fault rate has been estimated primarily, although the details of the overvoltages have not been studied yet. For the further <span class="hlt">development</span> of highly information-oriented society, improvement of reliability of electric power supply to the appliance in a low-voltage customer will be socially expected. Therefore, it is important to establish effective <span class="hlt">lightning</span> protection design of the low-voltage distribution system, defined to be composed of lines having mutual interaction on the customers' electric circuits, such as a low-voltage distribution line, an antenna line and a telecommunication line. In this report, the author interprets the recent research on the <span class="hlt">lightning</span> overvoltage on a low-voltage distribution system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890038205&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drust','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890038205&hterms=rust&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Drust"><span>A solid state <span class="hlt">lightning</span> propagation speed sensor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mach, Douglas M.; Rust, W. David</p> <p>1989-01-01</p> <p>A device to measure the propagation speeds of cloud-to-ground <span class="hlt">lightning</span> has been <span class="hlt">developed</span>. The <span class="hlt">lightning</span> propagation speed (LPS) device consists of eight solid state silicon photodetectors mounted behind precision horizontal slits in the focal plane of a 50-mm lens on a 35-mm camera. Although the LPS device produces results similar to those obtained from a streaking camera, the LPS device has the advantages of smaller size, lower cost, mobile use, and easier data collection and analysis. The maximum accuracy for the LPS is 0.2 microsec, compared with about 0.8 microsecs for the streaking camera. It is found that the return stroke propagation speed for triggered <span class="hlt">lightning</span> is different than that for natural <span class="hlt">lightning</span> if measurements are taken over channel segments less than 500 m. It is suggested that there are no significant differences between the propagation speeds of positive and negative flashes. Also, differences between natural and triggered dart leaders are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21143289-approach-lightning-overvoltage-protection-medium-voltage-lines-severe-lightning-areas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21143289-approach-lightning-overvoltage-protection-medium-voltage-lines-severe-lightning-areas"><span>An Approach to the <span class="hlt">Lightning</span> Overvoltage Protection of Medium Voltage Lines in Severe <span class="hlt">Lightning</span> Areas</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Omidiora, M. A.; Lehtonen, M.</p> <p>2008-05-08</p> <p>This paper deals with the effect of shield wires on <span class="hlt">lightning</span> overvoltage reduction and the energy relief of MOV (Metal Oxide Varistor) arresters from direct strokes to distribution lines. The subject of discussion is the enhancement of <span class="hlt">lightning</span> protection in Finnish distribution networks where <span class="hlt">lightning</span> is most severe. The true index of <span class="hlt">lightning</span> severity in these areas is based on the ground flash densities and return stroke data collected from the Finnish meteorological institute. The presented test case is the IEEE 34-node test feeder injected with multiple <span class="hlt">lightning</span> strokes and simulated with the Alternative Transients Program/Electromagnetic Transients program (ATP/EMTP). Themore » response of the distribution line to <span class="hlt">lightning</span> strokes was modeled with three different cases: no protection, protection with surge arresters and protection with a combination of shield wire and arresters. Simulations were made to compare the resulting overvoltages on the line for all the analyzed cases.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/53395-observations-lightning-convective-supercells-within-tropical-storms-hurricanes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/53395-observations-lightning-convective-supercells-within-tropical-storms-hurricanes"><span>Observations of <span class="hlt">lightning</span> in convective supercells within tropical storms and hurricanes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lyons, W.A.; Keen, C.S.</p> <p>1994-08-01</p> <p>Cloud-to-ground (CG) <span class="hlt">lightning</span> observations from land-based <span class="hlt">lightning</span> detection networks now allow monitoring this component of the electrical structure of tropical storms and hurricanes within a few hundred kilometers of the United States coastline. Several case studies confirm the long-held opinion that <span class="hlt">lightning</span> is rather common within the outer rainbands. The general absence of CG <span class="hlt">lightning</span> within the interior of mature tropical cyclones is also apparent. On the other hand, bursts of CG <span class="hlt">lightning</span> near the circulation center of <span class="hlt">developing</span> storms appear to precede periods of further deepening. The CG events are associated with convective supercells, whose anvil canopies can oftenmore » obscure much of the underlying storm. Near-eyewall CG bursts preceding periods of intensification were noted in Hurricanes Diana (1984) and Florence (1988). A detailed case study of the 1987 unnamed tropical storm that struck the Texas-Louisiana coastline reveals that <span class="hlt">lightning</span> was associated with two large supercells. These supercells appeared to be the trigger for the <span class="hlt">development</span> of a closed circulation that formed several hours after the apparent low pressure center made landfall. Further studies of <span class="hlt">lightning</span> may provide additional insight into the role of convective supercells in tropical storm intensification. It may also provide a useful diagnostic of impending deepening.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29527425','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29527425"><span>The Evolution and Structure of Extreme Optical <span class="hlt">Lightning</span> Flashes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peterson, Michael; Rudlosky, Scott; Deierling, Wiebke</p> <p>2017-12-27</p> <p>This study documents the composition, morphology, and motion of extreme optical <span class="hlt">lightning</span> flashes observed by the <span class="hlt">Lightning</span> Imaging Sensor (LIS). The furthest separation of LIS events (groups) in any flash is 135 km (89 km), the flash with the largest footprint had an illuminated area of 10,604 km 2 , and the most dendritic flash has 234 visible branches. The longest-duration convective LIS flash lasted 28 s and is overgrouped and not physical. The longest-duration convective-to-stratiform propagating flash lasted 7.4 s, while the longest-duration entirely stratiform flash lasted 4.3 s. The longest series of nearly consecutive groups in time lasted 242 ms. The most radiant recorded LIS group (i.e., "superbolt") is 735 times more radiant than the average group. Factors that impact these optical measures of flash morphology and evolution are discussed. While it is apparent that LIS can record the horizontal <span class="hlt">development</span> of the <span class="hlt">lightning</span> channel in some cases, radiative transfer within the cloud limits the flash extent and level of detail measured from orbit. These analyses nonetheless suggest that <span class="hlt">lightning</span> imagers such as LIS and Geostationary <span class="hlt">Lightning</span> Mapper can complement ground-based <span class="hlt">lightning</span> locating systems for studying physical <span class="hlt">lightning</span> phenomena across large geospatial domains.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5843378','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5843378"><span>The Evolution and Structure of Extreme Optical <span class="hlt">Lightning</span> Flashes</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Peterson, Michael; Rudlosky, Scott; Deierling, Wiebke</p> <p>2018-01-01</p> <p>This study documents the composition, morphology, and motion of extreme optical <span class="hlt">lightning</span> flashes observed by the <span class="hlt">Lightning</span> Imaging Sensor (LIS). The furthest separation of LIS events (groups) in any flash is 135 km (89 km), the flash with the largest footprint had an illuminated area of 10,604 km2, and the most dendritic flash has 234 visible branches. The longest-duration convective LIS flash lasted 28 s and is overgrouped and not physical. The longest-duration convective-to-stratiform propagating flash lasted 7.4 s, while the longest-duration entirely stratiform flash lasted 4.3 s. The longest series of nearly consecutive groups in time lasted 242 ms. The most radiant recorded LIS group (i.e., “superbolt”) is 735 times more radiant than the average group. Factors that impact these optical measures of flash morphology and evolution are discussed. While it is apparent that LIS can record the horizontal <span class="hlt">development</span> of the <span class="hlt">lightning</span> channel in some cases, radiative transfer within the cloud limits the flash extent and level of detail measured from orbit. These analyses nonetheless suggest that <span class="hlt">lightning</span> imagers such as LIS and Geostationary <span class="hlt">Lightning</span> Mapper can complement ground-based <span class="hlt">lightning</span> locating systems for studying physical <span class="hlt">lightning</span> phenomena across large geospatial domains. PMID:29527425</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJTP...57..388A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJTP...57..388A"><span>New Physical Mechanism for <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Artekha, Sergey N.; Belyan, Andrey V.</p> <p>2018-02-01</p> <p>The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of <span class="hlt">lightning</span> flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in <span class="hlt">lightning</span> channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and <span class="hlt">development</span> of the <span class="hlt">lightning</span> channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800013441','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800013441"><span><span class="hlt">Lightning</span> Technology: Proceedings of a Technical Symposium</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1980-01-01</p> <p>Several facets of <span class="hlt">lightning</span> technology are considered including phenomenology, measurement, detection, protection, interaction, and testing. <span class="hlt">Lightning</span> electromagnetics, protection of ground systems, and simulated <span class="hlt">lightning</span> testing are emphasized. The <span class="hlt">lightning</span>-instrumented F-106 aircraft is described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110024190','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110024190"><span>Forecasting <span class="hlt">Lightning</span> at Kennedy Space Center/Cape Canaveral Air Force Station, Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winfred; Wheeler, Mark; Roeder, William</p> <p>2005-01-01</p> <p>The Applied Meteorology Unit (AMU) <span class="hlt">developed</span> a set of statistical forecast equations that provide a probability of <span class="hlt">lightning</span> occurrence on Kennedy Space Center (KSC) I Cape Canaveral Air Force Station (CCAFS) for the day during the warm season (May September). The 45th Weather Squadron (45 WS) forecasters at CCAFS in Florida include a probability of <span class="hlt">lightning</span> occurrence in their daily 24-hour and weekly planning forecasts, which are briefed at 1100 UTC (0700 EDT). This information is used for general scheduling of operations at CCAFS and KSC. Forecasters at the Spaceflight Meteorology Group also make thunderstorm forecasts for the KSC/CCAFS area during Shuttle flight operations. Much of the current <span class="hlt">lightning</span> probability forecast at both groups is based on a subjective analysis of model and observational data. The objective tool currently available is the Neumann-Pfeffer Thunderstorm Index (NPTI, Neumann 1971), <span class="hlt">developed</span> specifically for the KSCICCAFS area over 30 years ago. However, recent studies have shown that 1-day persistence provides a better forecast than the NPTI, indicating that the NPTI needed to be upgraded or replaced. Because they require a tool that provides a reliable estimate of the daily thunderstorm probability forecast, the 45 WS forecasters requested that the AMU <span class="hlt">develop</span> a new <span class="hlt">lightning</span> probability forecast tool using recent data and more sophisticated techniques now possible through more computing power than that available over 30 years ago. The equation <span class="hlt">development</span> incorporated results from two research projects that investigated causes of <span class="hlt">lightning</span> occurrence near KSCICCAFS and over the Florida peninsula. One proved that logistic regression outperformed the linear regression method used in NPTI, even when the same predictors were used. The other study found relationships between large scale flow regimes and spatial <span class="hlt">lightning</span> distributions over Florida. <span class="hlt">Lightning</span>, probabilities based on these flow regimes were used as candidate predictors in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7236988-lightning-protection-distribution-lines','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7236988-lightning-protection-distribution-lines"><span><span class="hlt">Lightning</span> protection of distribution lines</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McDermott, T.E.; Short, T.A.; Anderson, J.G.</p> <p>1994-01-01</p> <p>This paper reports a study of distribution line <span class="hlt">lightning</span> performance, using computer simulations of <span class="hlt">lightning</span> overvoltages. The results of previous investigations are extended with a detailed model of induced voltages from nearby strokes, coupled into a realistic power system model. The paper also considers the energy duty of distribution-class surge arresters exposed to direct strokes. The principal result is that widely separated pole-top arresters can effectively protect a distribution line from induced-voltage flashovers. This means that nearby <span class="hlt">lightning</span> strokes need not be a significant <span class="hlt">lightning</span> performance problem for most distribution lines.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790006134','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790006134"><span><span class="hlt">Lightning</span> current detector</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Livermore, S. F. (Inventor)</p> <p>1978-01-01</p> <p>An apparatus for measuring the intensity of current produced in an elongated electrical conductive member by a <span class="hlt">lightning</span> strike for determining the intensity of the <span class="hlt">lightning</span> strike is presented. The apparatus includes an elongated strip of magnetic material that is carried within an elongated tubular housing. A predetermined electrical signal is recorded along the length of said elongated strip of magnetic material. One end of the magnetic material is positioned closely adjacent to the electrically conductive member so that the magnetic field produced by current flowing through said electrically conductive member disturbs a portion of the recorded electrical signal directly proportional to the intensity of the <span class="hlt">lightning</span> strike.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ610411','ERIC'); return false;" href="https://eric.ed.gov/?q=The+AND+lightning&pg=2&id=EJ610411"><span>Updated <span class="hlt">Lightning</span> Safety Recommendations.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Vavrek, R. James; Holle, Ronald L.; Lopez, Raul E.</p> <p>1999-01-01</p> <p>Summarizes the recommendations of the <span class="hlt">Lightning</span> Safety Group (LSG), which was first convened during the 1998 American Meteorological Society Conference. Findings outline appropriate actions under various circumstances when <span class="hlt">lightning</span> threatens. (WRM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100002097&hterms=fractions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfractions','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100002097&hterms=fractions&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfractions"><span>A Method for Retrieving Ground Flash Fraction from Satellite <span class="hlt">Lightning</span> Imager Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.</p> <p>2009-01-01</p> <p>A general theory for retrieving the fraction of ground flashes in N <span class="hlt">lightning</span> observed by a satellite-based <span class="hlt">lightning</span> imager is provided. An "exponential model" is applied as a physically reasonable constraint to describe the measured optical parameter distributions, and population statistics (i.e., mean, variance) are invoked to add additional constraints to the retrieval process. The retrieval itself is expressed in terms of a Bayesian inference, and the Maximum A Posteriori (MAP) solution is obtained. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The ability to retrieve ground flash fraction has important benefits to the atmospheric chemistry community. For example, using the method to partition the existing satellite global <span class="hlt">lightning</span> climatology into separate ground and cloud flash climatologies will improve estimates of <span class="hlt">lightning</span> nitrogen oxides (NOx) production; this in turn will improve both regional air quality and global chemistry/climate model <span class="hlt">predictions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10466E..5FB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10466E..5FB"><span>Methods to estimate <span class="hlt">lightning</span> activity using WWLLN and RS data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baranovskiy, Nikolay V.; Belikova, Marina Yu.; Karanina, Svetlana Yu.; Karanin, Andrey V.; Glebova, Alena V.</p> <p>2017-11-01</p> <p>The aim of the work is to <span class="hlt">develop</span> a comprehensive method for assessing thunderstorm activity using WWLLN and RS data. It is necessary to group <span class="hlt">lightning</span> discharges to solve practical problems of <span class="hlt">lightning</span> protection and lightningcaused forest fire danger, as well as climatology problems using information on the spatial and temporal characteristics of thunderstorms. For grouping <span class="hlt">lightning</span> discharges, it is proposed to use clustering algorithms. The region covering Timiryazevskiy forestry (Tomsk region, borders (55.93 - 56.86)x(83.94 - 85.07)) was selected for the computational experiment. We used the data on <span class="hlt">lightning</span> discharges registered by the WWLLN network in this region on July 23, 2014. 273 <span class="hlt">lightning</span> discharges were sampling. A relatively small number of discharges allowed us a visual analysis of solutions obtained during clustering.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110000675','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110000675"><span>A History of the <span class="hlt">Lightning</span> Launch Commit Criteria and the <span class="hlt">Lightning</span> Advisory Panel for America's Space Program</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Merceret, Francis J. (Editor); Willett, John C.; Christian, Hugh J.; Dye, James E.; Krider, E. Phillip; Madura, John T.; OBrien, T. Paul; Rust, W. David; Walterscheid, Richard L.</p> <p>2010-01-01</p> <p>The history of the <span class="hlt">Lightning</span> Launch Commit Criteria (LLCC) used at all spaceports under the jurisdiction of the United States is provided. The formation and history of the <span class="hlt">Lightning</span> Advisory Panel (LAP) that now advises NASA, the Air Force and the Federal Aviation Administration on LLCC <span class="hlt">development</span> and improvement is emphasized. The period covered extends from the early days of space flight through 2010. Extensive appendices provide significant detail about important aspects that are only summarized in the main text.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SGeo...34..731R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SGeo...34..731R"><span>Electromagnetic Methods of <span class="hlt">Lightning</span> Detection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rakov, V. A.</p> <p>2013-11-01</p> <p>Both cloud-to-ground and cloud <span class="hlt">lightning</span> discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various <span class="hlt">lightning</span> processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various <span class="hlt">lightning</span> locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. <span class="hlt">Lightning</span> location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. <span class="hlt">Lightning</span> locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern <span class="hlt">lightning</span> locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33A2527B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33A2527B"><span><span class="hlt">Lightning</span> Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.</p> <p>2017-12-01</p> <p>Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners <span class="hlt">developed</span> and demonstrated the effectiveness and value of space-based <span class="hlt">lightning</span> observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global <span class="hlt">lightning</span> climatology. The <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical <span class="hlt">lightning</span> for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical <span class="hlt">lightning</span> measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy <span class="hlt">lightning</span> within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause <span class="hlt">lightning</span>, as well as the connections between <span class="hlt">lightning</span> and subsequent severe weather events. This understanding is a key to improving weather <span class="hlt">predictions</span> and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary <span class="hlt">Lightning</span> Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time <span class="hlt">lightning</span> data, especially valuable for operational forecasting and warning applications over data sparse regions such</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100021010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100021010"><span>Assessing Operational Total <span class="hlt">Lightning</span> Visualization Products</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.; Darden, Christopher B.; Nadler, David J.</p> <p>2010-01-01</p> <p>In May 2003, NASA's Short-term <span class="hlt">Prediction</span> Research and Transition (SPoRT) program successfully provided total <span class="hlt">lightning</span> data from the North Alabama <span class="hlt">Lightning</span> Mapping Array (NALMA) to the National Weather Service (NWS) office in Huntsville, Alabama. The major accomplishment was providing the observations in real-time to the NWS in the native Advanced Weather Interactive Processing System (AWIPS) decision support system. Within days, the NALMA data were used to issue a tornado warning initiating seven years of ongoing support to the NWS' severe weather and situational awareness operations. With this success, SPoRT now provides real-time NALMA data to five forecast offices as well as working to transition data from total <span class="hlt">lightning</span> networks at Kennedy Space Center and the White Sands Missile Range to the surrounding NWS offices. The only NALMA product that has been transitioned to SPoRT's partner NWS offices is the source density product, available at a 2 km resolution in 2 min intervals. However, discussions with users of total <span class="hlt">lightning</span> data from other networks have shown that other products are available, ranging from spatial and temporal variations of the source density product to the creation of a flash extent density. SPoRT and the Huntsville, Alabama NWS are evaluating the utility of these variations as this has not been addressed since the initial transition in 2003. This preliminary analysis will focus on what products will best support the operational warning decision process. Data from 19 April 2009 are analyzed. On this day, severe thunderstorms formed ahead of an approaching cold front. Widespread severe weather was observed, primarily south of the Tennessee River with multiple, weak tornadoes, numerous severe hail reports, and wind. This preliminary analysis is the first step in evaluation which product(s) are best suited for operations. The ultimate goal is selecting a single product for use with all total <span class="hlt">lightning</span> networks to streamline training and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090033796','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090033796"><span><span class="hlt">Lightning</span> Pin Injection Testing on MOSFETS</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita</p> <p>2009-01-01</p> <p><span class="hlt">Lightning</span> transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent <span class="hlt">lightning</span> tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to <span class="hlt">develop</span> validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from <span class="hlt">lightning</span> transients; and to understand the interplay between <span class="hlt">lightning</span>-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/978220-regulatory-guidance-lightning-protection-nuclear-power-plants','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/978220-regulatory-guidance-lightning-protection-nuclear-power-plants"><span>Regulatory Guidance for <span class="hlt">Lightning</span> Protection in Nuclear Power Plants</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kisner, Roger A; Wilgen, John B; Ewing, Paul D</p> <p>2006-01-01</p> <p>Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to <span class="hlt">develop</span> the technical basis for regulatory guidance to address design and implementation practices for <span class="hlt">lightning</span> protection systems in nuclear power plants (NPPs). <span class="hlt">Lightning</span> protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when <span class="hlt">lightning</span> strikes facilities or power lines. This paper discusses the technical basis for guidance tomore » licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for <span class="hlt">Lightning</span> Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct <span class="hlt">lightning</span> strikes and the resulting secondary effects.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22030075-regulatory-guidance-lightning-protection-nuclear-power-plants','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22030075-regulatory-guidance-lightning-protection-nuclear-power-plants"><span>Regulatory guidance for <span class="hlt">lightning</span> protection in nuclear power plants</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.</p> <p>2006-07-01</p> <p>Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to <span class="hlt">develop</span> the technical basis for regulatory guidance to address design and implementation practices for <span class="hlt">lightning</span> protection systems in nuclear power plants (NPPs). <span class="hlt">Lightning</span> protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when <span class="hlt">lightning</span> strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees andmore » applicants covered in Regulatory Guide (RG) 1.204, Guidelines for <span class="hlt">Lightning</span> Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct <span class="hlt">lightning</span> strikes and the resulting secondary effects. (authors)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005664','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005664"><span><span class="hlt">Lightning</span> mapper sensor design study</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eaton, L. R.; Poon, C. W.; Shelton, J. C.; Laverty, N. P.; Cook, R. D.</p> <p>1983-01-01</p> <p>World-wide continuous measurement of <span class="hlt">lightning</span> location, intensity, and time during both day and night is to be provided by the <span class="hlt">Lightning</span> Mapper (LITMAP) instrument. A technology assessment to determine if the LITMAP requirements can be met using existing sensor and electronic technologies is presented. The baseline concept discussed in this report is a compromise among a number of opposing requirements (e.g., ground resolution versus array size; large field of view versus narrow bandpass filter). The concept provides coverage for more than 80 percent of the <span class="hlt">lightning</span> events as based on recent above-cloud NASA/U2 <span class="hlt">lightning</span> measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20764570-bead-lightning-formation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20764570-bead-lightning-formation"><span>Bead <span class="hlt">lightning</span> formation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ludwig, G.O.; Saba, M.M.F.; Division of Space Geophysics, National Space Research Institute, 12227-010, Sao Jose dos Campos, SP</p> <p>2005-09-15</p> <p>Formation of beaded structures in triggered <span class="hlt">lightning</span> discharges is considered in the framework of both magnetohydrodynamic (MHD) and hydrodynamic instabilities. It is shown that the space periodicity of the structures can be explained in terms of the kink and sausage type instabilities in a cylindrical discharge with anomalous viscosity. In particular, the fast growth rate of the hydrodynamic Rayleigh-Taylor instability, which is driven by the backflow of air into the channel of the decaying return stroke, dominates the initial evolution of perturbations during the decay of the return current. This instability is responsible for a significant enhancement of the anomalousmore » viscosity above the classical level. Eventually, the damping introduced at the current channel edge by the high level of anomalous viscous stresses defines the final length scale of bead <span class="hlt">lightning</span>. Later, during the continuing current stage of the <span class="hlt">lightning</span> flash, the MHD pinch instability persists, although with a much smaller growth rate that can be enhanced in a M-component event. The combined effect of these instabilities may explain various aspects of bead <span class="hlt">lightning</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15777170','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15777170"><span>Modern concepts of treatment and prevention of <span class="hlt">lightning</span> injuries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B</p> <p>2005-01-01</p> <p><span class="hlt">Lightning</span> is the second most common cause of weather-related death in the United States. <span class="hlt">Lightning</span> is a natural atmospheric discharge that occurs between regions of net positive and net negative electric charges. There are several types of <span class="hlt">lightning</span>, including streak <span class="hlt">lightning</span>, sheet <span class="hlt">lightning</span>, ribbon <span class="hlt">lightning</span>, bead <span class="hlt">lightning</span>, and ball <span class="hlt">lightning</span>. <span class="hlt">Lightning</span> causes injury through five basic mechanisms: direct strike, flash discharge (splash), contact, ground current (step voltage), and blunt trauma. While persons struck by <span class="hlt">lightning</span> show evidence of multisystem derangement, the most dramatic effects involve the cardiovascular and central nervous systems. Cardiopulmonary arrest is the most common cause of death in <span class="hlt">lightning</span> victims. Immediate resuscitation of people struck by <span class="hlt">lightning</span> greatly affects the prognosis. Electrocardiographic changes observed following <span class="hlt">lightning</span> accidents are probably from primary electric injury or burns of the myocardium without coronary artery occlusion. <span class="hlt">Lightning</span> induces vasomotor spasm from direct sympathetic stimulation resulting in severe loss of pulses in the extremities. This vasoconstriction may be associated with transient paralysis. Damage to the central nervous system accounts for the second most debilitating group of injuries. Central nervous system injuries from <span class="hlt">lightning</span> include amnesia and confusion, immediate loss of consciousness, weakness, intracranial injuries, and even brief aphasia. Other organ systems injured by <span class="hlt">lightning</span> include the eye, ear, gastrointestinal system, skin, and musculoskeletal system. The best treatment of <span class="hlt">lightning</span> injuries is prevention. The <span class="hlt">Lightning</span> Safety Guidelines devised by the <span class="hlt">Lightning</span> Safety Group should be instituted in the United States and other nations to prevent these devastating injuries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006epsc.conf..446K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006epsc.conf..446K"><span>Electromagnetic emission from terrestrial <span class="hlt">lightning</span> in the 0.1-30 MHz frequency range</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karashtin, A. N.; Gurevich, A. V.</p> <p></p> <p>Results of measurements carried out at SURA facility of Radiophisical Research Institute and at Tien-Shan Mountain Scientific Station of Lebedev Physical Institute using specially designed installations for short electromagnetic pulse observation in the frequency range from 0.1 to 30 MHz are presented. Specific attention is paid to initial stage of the <span class="hlt">lightning</span> discharge. It is shown that <span class="hlt">lightning</span> can be initiated by extensive atmospheric showers caused by high energy cosmic ray particles. Analysis of emission of few thousand <span class="hlt">lightning</span> discharges showed that • Short wave radio emission of <span class="hlt">lightning</span> consists of a series of short pulses with duration from less than 100 nanoseconds to several microseconds separated well longer gaps. • Background noise between <span class="hlt">lightning</span> discharges is not differ from one observed without thunderstorm activity (at given sensitivity). Usually it is the same between <span class="hlt">lightning</span> pulses at least at the initial stage. • Each <span class="hlt">lightning</span> discharge radio emission starts with a number of very short (less than 100 nanoseconds at 0.7 level) bi-polar pulses. Gaps between initial pulses vary from several microseconds to few hundreds of microseconds. No radio emission was observed before the first pulse during at least 500 milliseconds. Both positive and negative polarity of the first pulses occur in approximately equal proportion in different <span class="hlt">lightning</span> discharges while the polarity was the same in any individual <span class="hlt">lightning</span>. • First pulse amplitude, width and waveform are consistent with <span class="hlt">predicted</span> by the theory of combined action of runaway breakdown and extensive atmospheric shower caused by cosmic ray particle of 1016 eV energy. <span class="hlt">Lightning</span> discharges at other planets can be initiated by cosmic ray particles as well. This work was partly supported by ISTC grant # 2236p. The work of one of the authors (A. N. Karashtin) was also partly supported by INTAS grant # 03-51-5727.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970028806','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970028806"><span><span class="hlt">Lightning</span> Threat Analysis for the Space Shuttle Launch Pad and the Payload Changeout Room Using Finite Difference Methods</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Richard S.</p> <p>1997-01-01</p> <p>This report describes finite difference computer calculations for the Space Shuttle Launch Pad which <span class="hlt">predict</span> <span class="hlt">lightning</span> induced electric currents and electric and magnetic fields caused by a <span class="hlt">lightning</span> strike to the <span class="hlt">Lightning</span> Protection System caternary wire. Description of possible <span class="hlt">lightning</span> threats to Shuttle Payload components together with specifications for protection of these components, result from the calculation of <span class="hlt">lightning</span> induced electric and magnetic fields inside and outside the during a <span class="hlt">lightning</span> event. These fields also induce currents and voltages on cables and circuits which may be connected to, or a part of, shuttle payload components. These currents and voltages are also calculated. These threat levels are intended as a guide for designers of payload equipment to specify any shielding and/or <span class="hlt">lightning</span> protection mitigation which may be required for payload components which are in the process of preparation or being transferred into the Shuttle Orbiter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48025','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48025"><span><span class="hlt">Lightning</span> fires in southwestern forests</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jack S. Barrows</p> <p>1978-01-01</p> <p><span class="hlt">Lightning</span> is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by <span class="hlt">lightning</span>. The Southwestern region leads all other regions of the United States both in total number of <span class="hlt">lightning</span> fires and in the area burned by these fires...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22253708','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22253708"><span>Remarkable rates of <span class="hlt">lightning</span> strike mortality in Malawi.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mulder, Monique Borgerhoff; Msalu, Lameck; Caro, Tim; Salerno, Jonathan</p> <p>2012-01-01</p> <p>Livingstone's second mission site on the shore of Lake Malawi suffers very high rates of consequential <span class="hlt">lightning</span> strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other <span class="hlt">developing</span> countries; the rate of deaths from <span class="hlt">lightning</span> was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that <span class="hlt">lightning</span> constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800013446&hterms=emp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Demp','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800013446&hterms=emp&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Demp"><span>Electromagnetic sensors for general <span class="hlt">lightning</span> application</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baum, C. E.; Breen, E. L.; Onell, J. P.; Moore, C. B.; Sower, G. D.</p> <p>1980-01-01</p> <p>Electromagnetic sensors for general <span class="hlt">lightning</span> applications in measuring environment are discussed as well as system response to the environment. This includes electric and magnetic fields, surface current and charge densities, and currents on conductors. Many EMP sensors are directly applicable to <span class="hlt">lightning</span> measurements, but there are some special cases of <span class="hlt">lightning</span> measurements involving direct strikes which require special design considerations for the sensors. The sensors and instrumentation used by NMIMT in collecting data on <span class="hlt">lightning</span> at South Baldy peak in central New Mexico during the 1978 and 1979 <span class="hlt">lightning</span> seasons are also discussed. The Langmuir Laboratory facilities and details of the underground shielded instrumentation room and recording equipment are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160006716&hterms=air+quality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dair%2Bquality','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160006716&hterms=air+quality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dair%2Bquality"><span><span class="hlt">Lightning</span> NOx and Impacts on Air Quality</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murray, Lee T.</p> <p>2016-01-01</p> <p><span class="hlt">Lightning</span> generates relatively large but uncertain quantities of nitrogen oxides, critical precursors for ozone and hydroxyl radical (OH), the primary tropospheric oxidants. <span class="hlt">Lightning</span> nitrogen oxide strongly influences background ozone and OH due to high ozone production efficiencies in the free troposphere, effecting small but non-negligible contributions to surface pollutant concentrations. <span class="hlt">Lightning</span> globally contributes 3-4 ppbv of simulated annual-mean policy-relevant background (PRB) surface ozone, comprised of local, regional, and hemispheric components, and up to 18 ppbv during individual events. Feedbacks via methane may counter some of these effects on decadal time scales. <span class="hlt">Lightning</span> contributes approximately 1 percent to annual-mean surface particulate matter, as a direct precursor and by promoting faster oxidation of other precursors. <span class="hlt">Lightning</span> also ignites wildfires and contributes to nitrogen deposition. Urban pollution influences <span class="hlt">lightning</span> itself, with implications for regional <span class="hlt">lightning</span>-nitrogen oxide production and feedbacks on downwind surface pollution. How <span class="hlt">lightning</span> emissions will change in a warming world remains uncertain.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100002096&hterms=four+seasons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfour%2Bseasons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100002096&hterms=four+seasons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfour%2Bseasons"><span>An Algorithm for Obtaining the Distribution of 1-Meter <span class="hlt">Lightning</span> Channel Segment Altitudes for Application in <span class="hlt">Lightning</span> NOx Production Estimation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peterson, Harold; Koshak, William J.</p> <p>2009-01-01</p> <p>An algorithm has been <span class="hlt">developed</span> to estimate the altitude distribution of one-meter <span class="hlt">lightning</span> channel segments. The algorithm is required as part of a broader objective that involves improving the <span class="hlt">lightning</span> NOx emission inventories of both regional air quality and global chemistry/climate models. The algorithm was tested and applied to VHF signals detected by the North Alabama <span class="hlt">Lightning</span> Mapping Array (NALMA). The accuracy of the algorithm was characterized by comparing algorithm output to the plots of individual discharges whose lengths were computed by hand; VHF source amplitude thresholding and smoothing were applied to optimize results. Several thousands of <span class="hlt">lightning</span> flashes within 120 km of the NALMA network centroid were gathered from all four seasons, and were analyzed by the algorithm. The mean, standard deviation, and median statistics were obtained for all the flashes, the ground flashes, and the cloud flashes. One-meter channel segment altitude distributions were also obtained for the different seasons.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE33B2552D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE33B2552D"><span><span class="hlt">Lightning</span> leader models of terrestrial gamma-ray flashes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dwyer, J. R.; Liu, N.; Ihaddadene, K. M. A.</p> <p>2017-12-01</p> <p>Terrestrial gamma-ray flashes (TGFs) are bright sub-millisecond bursts of gamma rays that originate from thunderstorms. Because <span class="hlt">lightning</span> leaders near the ground have been observed to emit x-rays, presumably due to runaway electron production in the high-field regions near the leader tips, models of TGFs have been <span class="hlt">developed</span> by several groups that assume a similar production mechanism of runaway electrons from <span class="hlt">lightning</span> leaders propagating through thunderclouds. However, it remains unclear exactly how and where these runaway electrons are produced, since <span class="hlt">lightning</span> propagation at thunderstorm altitudes remains poorly understood. In addition, it is not obvious how to connect the observed behavior of the x-ray production from <span class="hlt">lightning</span> near the ground with the properties of TGFs. For example, it is not clear how to relate the time structure of the x-ray emission near the ground to that of TGFs, since x-rays from stepped leaders near the ground are usually produced in a series of sub-microsecond bursts, but TGFs are usually observed as much longer pulses without clear substructures, at sub-microsecond timescales or otherwise. In this presentation, spacecraft observations of TGFs, ground-based observations of x-rays from <span class="hlt">lightning</span> and laboratory sparks, and Monte Carlo and PIC simulations of runaway electron and gamma ray production and propagation will be used to constrain the <span class="hlt">lightning</span> leader models of TGFs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE22A..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE22A..06H"><span><span class="hlt">Lightning</span> Mapping and Leader Propagation Reconstruction using LOFAR-LIM</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hare, B.; Ebert, U.; Rutjes, C.; Scholten, O.; Trinh, G. T. N.</p> <p>2017-12-01</p> <p>LOFAR (LOw Frequency ARray) is a radio telescope that consists of a large number of dual-polarized antennas spread over the northern Netherlands and beyond. The LOFAR for <span class="hlt">Lightning</span> Imaging project (LOFAR-LIM) has successfully used LOFAR to map out <span class="hlt">lightning</span> in the Netherlands. Since LOFAR covers a large frequency range (10-90 MHz), has antennas spread over a large area, and saves the raw trace data from the antennas, LOFAR-LIM can combine all the strongest aspects of both <span class="hlt">lightning</span> mapping arrays and <span class="hlt">lightning</span> interferometers. These aspects include a nanosecond resolution between pulses, nanosecond timing accuracy, and an ability to map <span class="hlt">lightning</span> in all 3 spatial dimensions and time. LOFAR should be able to map out overhead <span class="hlt">lightning</span> with a spatial accuracy on the order of meters. The large amount of complex data provide by LOFAR has presented new data processing challenges, such as handling the time offsets between stations with large baselines and locating as many sources as possible. New algorithms to handle these challenges have been <span class="hlt">developed</span> and will be discussed. Since the antennas are dual-polarized, all three components of the electric field can be extracted and the structure of the R.F. pulses can be investigated at a large number of distances and angles relative to the <span class="hlt">lightning</span> source, potentially allowing for modeling of <span class="hlt">lightning</span> current distributions relevant to the 10 to 90 MHz frequency range. R.F. pulses due to leader propagation will be presented, which show a complex sub-structure, indicating intricate physics that could potentially be reconstructed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SGeo...34..755P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SGeo...34..755P"><span><span class="hlt">Lightning</span> Applications in Weather and Climate Research</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Price, Colin G.</p> <p>2013-11-01</p> <p>Thunderstorms, and <span class="hlt">lightning</span> in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. <span class="hlt">Lightning</span> causes great damage and death every year but also tells us about the inner working of storms. Since <span class="hlt">lightning</span> can be monitored from great distances from the storms themselves, <span class="hlt">lightning</span> may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. <span class="hlt">Lightning</span> itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in <span class="hlt">lightning</span> and thunderstorm activity? Many studies show that higher surface temperatures produce more <span class="hlt">lightning</span>, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, <span class="hlt">lightning</span> itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between <span class="hlt">lightning</span>, temperature, upper tropospheric water vapor, and cloud cover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PlST...20g5301F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PlST...20g5301F"><span>Evolution simulation of <span class="hlt">lightning</span> discharge based on a magnetohydrodynamics method</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fusheng, WANG; Xiangteng, MA; Han, CHEN; Yao, ZHANG</p> <p>2018-07-01</p> <p>In order to solve the load problem for aircraft <span class="hlt">lightning</span> strikes, <span class="hlt">lightning</span> channel evolution is simulated under the key physical parameters for aircraft <span class="hlt">lightning</span> current component C. A numerical model of the discharge channel is established, based on magnetohydrodynamics (MHD) and performed by FLUENT software. With the aid of user-defined functions and a user-defined scalar, the Lorentz force, Joule heating and material parameters of an air thermal plasma are added. A three-dimensional <span class="hlt">lightning</span> arc channel is simulated and the arc evolution in space is obtained. The results show that the temperature distribution of the <span class="hlt">lightning</span> channel is symmetrical and that the hottest region occurs at the center of the <span class="hlt">lightning</span> channel. The distributions of potential and current density are obtained, showing that the difference in electric potential or energy between two points tends to make the arc channel <span class="hlt">develop</span> downwards. The arc channel comes into expansion on the anode surface due to stagnation of the thermal plasma and there exists impingement on the copper plate when the arc channel comes into contact with the anode plate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.2850A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.2850A"><span>The response of thunderstorms and <span class="hlt">lightning</span> to smoke from Amazonian fires</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Altaratz, Orit; Koren, Ilan; Yair, Yoav; Price, Colin</p> <p>2010-05-01</p> <p>The effects of man-made aerosols on clouds are long believed to be a key component for model <span class="hlt">predictions</span> of climate change, yet are one of the least understood. High aerosol concentrations can change the convection intensity and hence the electrical activity of thunderclouds. Focusing on the Amazon dry season in Brazil, where thousands of man-made forest fires inject smoke into the atmosphere, we studied the aerosol effects on thunderclouds and <span class="hlt">lightning</span>. We used the ground-based World-Wide <span class="hlt">Lightning</span> Location Network (WWLLN) measurements together with Aqua-MODIS remotely-sensed aerosol and cloud data to study the relationship between aerosol loading and <span class="hlt">lightning</span> flash occurrence. We present evidence for the transition between two regimes, representing opposing effects of aerosols on clouds. The first is the microphysical effect which is manifested in an increase in convective intensity (and therefore in electrical activity), followed by the radiative effect that becomes dominant with the increase in aerosol loading leading to a decrease in convective intensity, manifested in lower <span class="hlt">lightning</span> activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-581.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-581.pdf"><span>14 CFR 25.581 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false <span class="hlt">Lightning</span> protection. 25.581 Section 25.581 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure <span class="hlt">Lightning</span> Protection § 25.581 <span class="hlt">Lightning</span> protection. (a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC32C..07C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC32C..07C"><span>The Geostationary <span class="hlt">Lightning</span> Mapper: Its Performance and Calibration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Christian, H. J., Jr.</p> <p>2015-12-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) has been <span class="hlt">developed</span> to be an operational instrument on the GOES-R series of spacecraft. The GLM is a unique instrument, unlike other meteorological instruments, both in how it operates and in the information content that it provides. Instrumentally, it is an event detector, rather than an imager. While processing almost a billion pixels per second with 14 bits of resolution, the event detection process reduces the required telemetry bandwidth by almost 105, thus keeping the telemetry requirements modest and enabling efficient ground processing that leads to rapid data distribution to operational users. The GLM was designed to detect about 90 percent of the total <span class="hlt">lightning</span> flashes within its almost hemispherical field of view. Based on laboratory calibration, we expect the on-orbit detection efficiency to be closer to 85%, making it the highest performing, large area coverage total <span class="hlt">lightning</span> detector. It has a number of unique design features that will enable it have near uniform special resolution over most of its field of view and to operate with minimal impact on performance during solar eclipses. The GLM has no dedicated on-orbit calibration system, thus the ground-based calibration provides the bases for the <span class="hlt">predicted</span> radiometric performance. A number of problems were encountered during the calibration of Flight Model 1. The issues arouse from GLM design features including its wide field of view, fast lens, the narrow-band interference filters located in both object and collimated space and the fact that the GLM is inherently a event detector yet the calibration procedures required both calibration of images and events. The GLM calibration techniques were based on those <span class="hlt">developed</span> for the <span class="hlt">Lightning</span> Imaging Sensor calibration, but there are enough differences between the sensors that the initial GLM calibration suggested that it is significantly more sensitive than its design parameters. The calibration discrepancies have</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090034169','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090034169"><span>Electrical Characterizations of <span class="hlt">Lightning</span> Strike Protection Techniques for Composite Materials</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Szatkowski, George N.; Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Mielnik, John J.</p> <p>2009-01-01</p> <p>The growing application of composite materials in commercial aircraft manufacturing has significantly increased the risk of aircraft damage from <span class="hlt">lightning</span> strikes. Composite aircraft designs require new mitigation strategies and engineering practices to maintain the same level of safety and protection as achieved by conductive aluminum skinned aircraft. Researchers working under the NASA Aviation Safety Program s Integrated Vehicle Health Management (IVHM) Project are investigating <span class="hlt">lightning</span> damage on composite materials to support the <span class="hlt">development</span> of new mitigation, diagnosis & prognosis techniques to overcome the increased challenges associated with <span class="hlt">lightning</span> protection on composite aircraft. This paper provides an overview of the electrical characterizations being performed to support IVHM <span class="hlt">lightning</span> damage diagnosis research on composite materials at the NASA Langley Research Center.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023305','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023305"><span>Thunderstorm monitoring and <span class="hlt">lightning</span> warning, operational applications of the Safir system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Richard, Philippe</p> <p>1991-01-01</p> <p>During the past years a new range of studies have been opened by the application of electromagnetic localization techniques to the field of thunderstorm remote sensing. VHF localization techniques were used in particular for the analysis of <span class="hlt">lightning</span> discharges and gave access to time resolved 3-D images of <span class="hlt">lightning</span> discharges within thunderclouds. Detection and localization techniques <span class="hlt">developed</span> have been applied to the design of the SAFIR system. This <span class="hlt">development</span>'s main objective was the design of an operational system capable of assessing and warning in real time for <span class="hlt">lightning</span> hazards and potential thunderstorm hazards. The SAFIR system main detection technique is the long range interferometric localization of thunderstorm electromagnetic activity; the system performs the localization of intracloud and cloud to ground <span class="hlt">lightning</span> discharges and the analysis of the characteristics of the activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990079433&hterms=rain+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drain%2Bstorm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990079433&hterms=rain+storm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Drain%2Bstorm"><span>Characterizing the Relationships Among <span class="hlt">Lightning</span> and Storm Parameters: <span class="hlt">Lightning</span> as a Proxy Variable</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, S. J.; Raghavan, R.; William, E.; Weber, M.; Boldi, B.; Matlin, A.; Wolfson, M.; Hodanish, S.; Sharp. D.</p> <p>1997-01-01</p> <p>We have gained important insights from prior studies that have suggested relationships between <span class="hlt">lightning</span> and storm growth, decay, convective rain flux, vertical distribution of storm mass and echo volume in the region, and storm energetics. A study was initiated in the Summer of 1996 to determine how total (in-cloud plus ground) <span class="hlt">lightning</span> observations might provide added knowledge to the forecaster in the determination and identification of severe thunderstorms and weather hazards in real-time. The Melbourne Weather Office was selected as a primary site to conduct this study because Melbourne is the only site in the world with continuous and open access to total <span class="hlt">lightning</span> (LDAR) data and a Doppler (WSR-88D) radar. A <span class="hlt">Lightning</span> Imaging Sensor Data Applications Demonstration (LISDAD) system was integrated into the forecaster's workstation during the Summer 1996 to allow the forecaster to interact in real-time with the multi-sensor data being displayed. LISDAD currently ingests LDAR data, the cloud-to-ground National <span class="hlt">Lightning</span> Detection Network (NLDN) data, and the Melbourne radar data in f real-time. The interactive features provide the duty forecaster the ability to perform quick diagnostics on storm cells of interest. Upon selection of a storm cell, a pop-up box appears displaying the time-history of various storm parameters (e.g., maximum radar reflectivity, height of maximum reflectivity, echo-top height, NLDN and LDAR <span class="hlt">lightning</span> flash rates, storm-based vertically integrated liquid water content). This product is archived to aid on detailed post-analysis.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850067258&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DATLA','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850067258&hterms=ATLA&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DATLA"><span><span class="hlt">Lightning</span> on Venus</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scarf, F. L.</p> <p>1985-01-01</p> <p>On the night side of Venus, the plasma wave instrument on the Pioneer-Venus Orbiter frequently detects strong and impulsive low-frequency noise bursts when the local magnetic field is strong and steady and when the field is oriented to point down to the ionosphere. The signals have characteristics of <span class="hlt">lightning</span> whistlers, and an attempt was made to identify the sources by tracing rays along the B-field from the Orbiter down toward the surface. An extensive data set strongly indicates a clustering of <span class="hlt">lightning</span> sources near the Beta and Phoebe Regios, with additional significant clustering near the Atla Regio at the eastern edge of Aphrodite Terra. These results suggest that there are localized <span class="hlt">lightning</span> sources at or near the planetary surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GeoRL..41.7777L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GeoRL..41.7777L"><span>A low-frequency near-field interferometric-TOA 3-D <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyu, Fanchao; Cummer, Steven A.; Solanki, Rahulkumar; Weinert, Joel; McTague, Lindsay; Katko, Alex; Barrett, John; Zigoneanu, Lucian; Xie, Yangbo; Wang, Wenqi</p> <p>2014-11-01</p> <p>We report on the <span class="hlt">development</span> of an easily deployable LF near-field interferometric-time of arrival (TOA) 3-D <span class="hlt">Lightning</span> Mapping Array applied to imaging of entire <span class="hlt">lightning</span> flashes. An interferometric cross-correlation technique is applied in our system to compute windowed two-sensor time differences with submicrosecond time resolution before TOA is used for source location. Compared to previously reported LF <span class="hlt">lightning</span> location systems, our system captures many more LF sources. This is due mainly to the improved mapping of continuous <span class="hlt">lightning</span> processes by using this type of hybrid interferometry/TOA processing method. We show with five station measurements that the array detects and maps different <span class="hlt">lightning</span> processes, such as stepped and dart leaders, during both in-cloud and cloud-to-ground flashes. <span class="hlt">Lightning</span> images mapped by our LF system are remarkably similar to those created by VHF mapping systems, which may suggest some special links between LF and VHF emission during <span class="hlt">lightning</span> processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008860','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008860"><span>Simulating Damage Due to a <span class="hlt">Lightning</span> Strike Event: Effects of Temperature Dependent Properties on Interlaminar Damage</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ghezeljeh, Paria Naghipour; Pineda, Evan Jorge</p> <p>2014-01-01</p> <p>A multidirectional, carbon fiber-epoxy, composite panel is subjected to a simulated <span class="hlt">lightning</span> strike, within a finite element method framework, and the effect of material properties on the failure (delamination) response is investigated through a detailed numerical study. The numerical model of the composite panel consists of individual homogenized plies with user-defined, cohesive interface elements between them. <span class="hlt">Lightning</span> strikes are simulated as an assumed combination of excessive heat and high pressure loadings. It is observed that the initiation and propagation of <span class="hlt">lightning</span>-induced delamination is a significant function of the temperature dependency of interfacial fracture toughness. This dependency must be defined properly in order to achieve reliable <span class="hlt">predictions</span> of the present <span class="hlt">lightning</span>-induced delamination in the composite panel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120014977','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120014977"><span>Relationships Between Long-Range <span class="hlt">Lightning</span> Networks and TRMM/LIS Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.</p> <p>2012-01-01</p> <p>Recent advances in long-range <span class="hlt">lightning</span> detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range <span class="hlt">lightning</span> datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range <span class="hlt">lightning</span> data with observations from the <span class="hlt">Lightning</span> Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm <span class="hlt">developers</span>, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140008786','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140008786"><span>Total <span class="hlt">Lightning</span> as an Indicator of Mesocyclone Behavior</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.</p> <p>2014-01-01</p> <p>Apparent relationship between total <span class="hlt">lightning</span> (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total <span class="hlt">lightning</span> with proven tools (i.e., radar <span class="hlt">lightning</span> algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total <span class="hlt">lightning</span> data from <span class="hlt">Lightning</span> Mapping Arrays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMAE21A..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMAE21A..06K"><span><span class="hlt">Lightning</span> Mapping Observations: What we are learning.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krehbiel, P.</p> <p>2001-12-01</p> <p>The use of radio frequency time-of-arrival techniques for accurately mapping <span class="hlt">lightning</span> discharges is revolutionizing our ability to study <span class="hlt">lightning</span> discharge processes and to investigate thunderstorms. Different types of discharges are being observed that we have not been able to study before or knew existed. Included are a variety of inverted and normal polarity intracloud and cloud-to-ground discharges, frequent short-duration discharges at high altitude in storms and in overshooting convective tops, highly energetic impulsive discharge events, and horizontally extensive `spider' <span class="hlt">lightning</span> discharges in large mesoscale convective systems. High time resolution measurements valuably complement interferometric observations and are starting to exceed the ability of interferometers to provide detailed pictures of flash <span class="hlt">development</span>. Mapping observations can be used to infer the polarity of the breakdown channels and hence the location and sign of charge regions in the storm. The <span class="hlt">lightning</span> activity in large, severe storms is found to be essentially continuous and volume-filling, with substantially more <span class="hlt">lightning</span> inside the storm than between the cloud and ground. Spectacular dendritic structures are observed in many flashes. The <span class="hlt">lightning</span> observations can be used to infer the electrical structure of a storm and therefore to study the electrification processes. The results are raising fundamental questions about how storms become electrified and how the electrification evolves with time. Supercell storms are commonly observed to electrify in an inverted or anomalous manner, raising questions about how these storms are different from normal storms, and even what is `normal'. The high <span class="hlt">lightning</span> rates in severe storms raises the distinct possibility that the discharges themselves might be sustaining or enhancing the electrification. Correlated observations with radar, instrumented balloons and aircraft, and ground-based measurements are leading to greatly improved</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9614008','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9614008"><span><span class="hlt">Lightning</span>-associated deaths--United States, 1980-1995.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p></p> <p>1998-05-22</p> <p>A <span class="hlt">lightning</span> strike can cause death or various injuries to one or several persons. The mechanism of injury is unique, and the manifestations differ from those of other electrical injuries. In the United States, <span class="hlt">lightning</span> causes more deaths than do most other natural hazards (e.g., hurricanes and tornadoes), although the incidence of <span class="hlt">lightning</span>-related deaths has decreased since the 1950s. The cases described in this report illustrate diverse circumstances in which deaths attributable to <span class="hlt">lightning</span> can occur. This report also summarizes data from the Compressed Mortality File of CDC's National Center for Health Statistics on <span class="hlt">lightning</span> fatalities in the United States from 1980 through 1995, when 1318 deaths were attributed to <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25478304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25478304"><span>Tropic <span class="hlt">lightning</span>: myth or menace?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCarthy, John</p> <p>2014-11-01</p> <p><span class="hlt">Lightning</span> is one of the leading causes of death related to environmental disaster. Of all <span class="hlt">lightning</span> fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented <span class="hlt">lightning</span> fatalities since weather data tracking was initiated in 1959. There is a common misconception that <span class="hlt">lightning</span> does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. <span class="hlt">Lightning</span> damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4244891','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4244891"><span>Tropic <span class="hlt">Lightning</span>: Myth or Menace?</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2014-01-01</p> <p><span class="hlt">Lightning</span> is one of the leading causes of death related to environmental disaster. Of all <span class="hlt">lightning</span> fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai‘i has had zero documented <span class="hlt">lightning</span> fatalities since weather data tracking was initiated in 1959. There is a common misconception that <span class="hlt">lightning</span> does not strike the ground in Hawai‘i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. <span class="hlt">Lightning</span> damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on “reverse triage” and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications. PMID:25478304</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140002373','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140002373"><span>Objective <span class="hlt">Lightning</span> Probability Forecasts for East-Central Florida Airports</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Crawford, Winfred C.</p> <p>2013-01-01</p> <p>The forecasters at the National Weather Service in Melbourne, FL, (NWS MLB) identified a need to make more accurate <span class="hlt">lightning</span> forecasts to help alleviate delays due to thunderstorms in the vicinity of several commercial airports in central Florida at which they are responsible for issuing terminal aerodrome forecasts. Such forecasts would also provide safer ground operations around terminals, and would be of value to Center Weather Service Units serving air traffic controllers in Florida. To improve the forecast, the AMU was tasked to <span class="hlt">develop</span> an objective <span class="hlt">lightning</span> probability forecast tool for the airports using data from the National <span class="hlt">Lightning</span> Detection Network (NLDN). The resulting forecast tool is similar to that <span class="hlt">developed</span> by the AMU to support space launch operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) for use by the 45th Weather Squadron (45 WS) in previous tasks (Lambert and Wheeler 2005, Lambert 2007). The <span class="hlt">lightning</span> probability forecasts are valid for the time periods and areas needed by the NWS MLB forecasters in the warm season months, defined in this task as May-September.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19704405','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19704405"><span>Fatal <span class="hlt">lightning</span> strikes in Malaysia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Murty, O P; Kian, Chong Kah; Ari Husin, Mohammed Husrul; Nanta Kumar, Ranjeev Kumar; Mohammed Yusuf, Wan Yuhana W</p> <p>2009-09-01</p> <p><span class="hlt">Lightning</span> strike is a natural phenomenon with potentially devastating effects and represents one of the important causes of deaths from environmental phenomena. Almost every organ system may be affected as <span class="hlt">lightning</span> current passes through the human body taking the shortest pathways between the contact points. A 10 years retrospective study (1996-2005) was conducted at University Hospital Kuala Lumpur (20 cases) also including cases during last 3 years from Hospital Tengku Ampuan Rahimah, Klang (7 cases) from the autopsy reports at Forensic Pathology Units of these 2 hospitals. Both these hospitals are attached to University of Malaya. There were 27 fatal cases of <span class="hlt">lightning</span> strike with male preponderance(92.59%) and male to female ratio of 12.5:1. Majority of victims of <span class="hlt">lightning</span> strike were from the age group between 30 and 39 years old. Most of the victims were foreign workers. Indonesians workers contributed to 59.26% of overall cases. Majority of them were construction workers who attributed i.e.11 of 27 cases (40.74%). Most of the victims were brought in dead (37.04%). In majority of the cases the <span class="hlt">lightning</span> incidence occurred in the evenings, with the frequency of 15 of 27 cases (62.5%). The month of December represented with the highest number of cases (5 cases of 23 cases); 2004 had the highest incidence of <span class="hlt">lightning</span> strike which was 5 (19.23%). <span class="hlt">Lightning</span> strike incidence occurred when victims had taken shelter (25.9%) under trees or shades. <span class="hlt">Lightning</span> strike in open areas occurred in 10 of 27 cases (37.0%). Head and neck were the most commonly affected sites with the incidence of 77.78% and 74% respectively in all the victims. Only 29.63% of the cases presented with ear bleeding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940018765','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940018765"><span><span class="hlt">Lightning</span> studies using LDAR and LLP data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Forbes, Gregory S.</p> <p>1993-01-01</p> <p>This study intercompared <span class="hlt">lightning</span> data from LDAR and LLP systems in order to learn more about the spatial relationships between thunderstorm electrical discharges aloft and <span class="hlt">lightning</span> strikes to the surface. The ultimate goal of the study is to provide information that can be used to improve the process of real-time detection and warning of <span class="hlt">lightning</span> by weather forecasters who issue <span class="hlt">lightning</span> advisories. The <span class="hlt">Lightning</span> Detection and Ranging (LDAR) System provides data on electrical discharges from thunderstorms that includes cloud-ground flashes as well as <span class="hlt">lightning</span> aloft (within cloud, cloud-to-cloud, and sometimes emanating from cloud to clear air outside or above cloud). The <span class="hlt">Lightning</span> Location and Protection (LLP) system detects primarily ground strikes from <span class="hlt">lightning</span>. Thunderstorms typically produce LDAR signals aloft prior to the first ground strike, so that knowledge of preferred positions of ground strikes relative to the LDAR data pattern from a thunderstorm could allow advance estimates of enhanced ground strike threat. Studies described in the report examine the position of LLP-detected ground strikes relative to the LDAR data pattern from the thunderstorms. The report also describes other potential approaches to the use of LDAR data in the detection and forecasting of <span class="hlt">lightning</span> ground strikes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27328835','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27328835"><span>Relativistic-microwave theory of ball <span class="hlt">lightning</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, H-C</p> <p>2016-06-22</p> <p>Ball <span class="hlt">lightning</span>, a fireball sometimes observed during <span class="hlt">lightnings</span>, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a <span class="hlt">lightning</span> stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball <span class="hlt">lightning</span>, such as the occurrence site, relation to the <span class="hlt">lightning</span> channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for <span class="hlt">lightning</span> protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...628263W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...628263W"><span>Relativistic-microwave theory of ball <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, H.-C.</p> <p>2016-06-01</p> <p>Ball <span class="hlt">lightning</span>, a fireball sometimes observed during <span class="hlt">lightnings</span>, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a <span class="hlt">lightning</span> stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball <span class="hlt">lightning</span>, such as the occurrence site, relation to the <span class="hlt">lightning</span> channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for <span class="hlt">lightning</span> protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4916449','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4916449"><span>Relativistic-microwave theory of ball <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wu, H.-C.</p> <p>2016-01-01</p> <p>Ball <span class="hlt">lightning</span>, a fireball sometimes observed during <span class="hlt">lightnings</span>, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a <span class="hlt">lightning</span> stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball <span class="hlt">lightning</span>, such as the occurrence site, relation to the <span class="hlt">lightning</span> channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for <span class="hlt">lightning</span> protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics. PMID:27328835</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT........98H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT........98H"><span>Models for electromagnetic coupling of <span class="hlt">lightning</span> onto multiconductor cables in underground cavities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Higgins, Matthew Benjamin</p> <p></p> <p>This dissertation documents the measurements, analytical modeling, and numerical modeling of electromagnetic transfer functions to quantify the ability of cloud-to-ground <span class="hlt">lightning</span> strokes (including horizontal arc-channel components) to couple electromagnetic energy onto multiconductor cables in an underground cavity. Measurements were performed at the Sago coal mine located near Buckhannon, WV. These transfer functions, coupled with mathematical representations of <span class="hlt">lightning</span> strokes, are then used to <span class="hlt">predict</span> electric fields within the mine and induced voltages on a cable that was left abandoned in the sealed area of the Sago mine. If voltages reached high enough levels, electrical arcing could have occurred from the abandoned cable. Electrical arcing is known to be an effective ignition source for explosive gas mixtures. Two coupling mechanisms were measured: direct and indirect drive. Direct coupling results from the injection or induction of <span class="hlt">lightning</span> current onto metallic conductors such as the conveyors, rails, trolley communications cable, and AC power shields that connect from the outside of the mine to locations deep within the mine. Indirect coupling results from electromagnetic field propagation through the earth as a result of a cloud-to-ground <span class="hlt">lightning</span> stroke or a long, low-altitude horizontal current channel from a cloud-to-ground stroke. Unlike direct coupling, indirect coupling does not require metallic conductors in a continuous path from the surface to areas internal to the mine. Results from the indirect coupling measurements and analysis are of great concern. The field measurements, modeling, and analysis indicate that significant energy can be coupled directly into the sealed area of the mine. Due to the relatively low frequency content of <span class="hlt">lightning</span> (< 100 kHz), electromagnetic energy can readily propagate through hundreds of feet of earth. Indirect transfer function measurements compare extremely well with analytical and computational models</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090009350&hterms=chemistry+chemicals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dchemistry%2Bchemicals','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090009350&hterms=chemistry+chemicals&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dchemistry%2Bchemicals"><span>Production of NOx by <span class="hlt">Lightning</span> and its Effects on Atmospheric Chemistry</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pickering, Kenneth E.</p> <p>2009-01-01</p> <p>Production of NO(x) by <span class="hlt">lightning</span> remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the <span class="hlt">lightning</span> source in global or regional chemical transport models requires three types of information: the distribution of <span class="hlt">lightning</span> flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the <span class="hlt">lightning</span>-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in <span class="hlt">developing</span> algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per <span class="hlt">lightning</span> flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in <span class="hlt">developing</span> vertical profiles of <span class="hlt">lightning</span> NO(x) for use in global models. Effects of <span class="hlt">lightning</span> NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016612','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016612"><span>Camp Blanding <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blakeslee,Richard; Christian, Hugh; Bailey, Jeffrey; Hall, John; Uman, Martin; Jordan, Doug; Krehbiel, Paul; Rison, William; Edens, Harald</p> <p>2011-01-01</p> <p>A seven station, short base-line <span class="hlt">Lightning</span> Mapping Array was installed at the Camp Blanding International Center for <span class="hlt">Lightning</span> Research and Testing (ICLRT) during April 2011. This network will support science investigations of Terrestrial Gamma-Ray Flashes (TGFs) and <span class="hlt">lightning</span> initiation using rocket triggered <span class="hlt">lightning</span> at the ICLRT. The network operations and data processing will be carried out through a close collaboration between several organizations, including the NASA Marshall Space Flight Center, University of Alabama in Huntsville, University of Florida, and New Mexico Tech. The deployment was sponsored by the Defense Advanced Research Projects Agency (DARPA). The network does not have real-time data dissemination. Description, status and plans will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910001235','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910001235"><span><span class="hlt">Development</span> and application of linear and nonlinear methods for interpretation of <span class="hlt">lightning</span> strikes to in-flight aircraft</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rudolph, Terence; Perala, Rodney A.; Easterbrook, Calvin C.; Parker, Steven L.</p> <p>1986-01-01</p> <p>Since 1980, NASA has been collecting direct strike <span class="hlt">lightning</span> data by flying an instrumented F-106B aircraft into thunderstorms. The continuing effort to interpret the measured data is reported here. Both linear and nonlinear finite difference modeling techniques are applied to the problem of <span class="hlt">lightning</span> triggered by an aircraft in a thunderstorm. Five different aircraft are analyzed to determine the effect of aircraft size and shape on <span class="hlt">lightning</span> triggering. The effect of <span class="hlt">lightning</span> channel impedance on aircraft response is investigated. The particle environment in thunderstorms and electric field enhancements by typical ice particles is also investigated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3253777','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3253777"><span>Remarkable Rates of <span class="hlt">Lightning</span> Strike Mortality in Malawi</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Borgerhoff Mulder, Monique; Msalu, Lameck; Caro, Tim; Salerno, Jonathan</p> <p>2012-01-01</p> <p>Livingstone's second mission site on the shore of Lake Malawi suffers very high rates of consequential <span class="hlt">lightning</span> strikes. Comprehensive interviewing of victims and their relatives in seven Traditional Authorities in Nkhata Bay District, Malawi revealed that the annual rate of consequential strikes was 419/million, more than six times higher than that in other <span class="hlt">developing</span> countries; the rate of deaths from <span class="hlt">lightning</span> was 84/million/year, 5.4 times greater than the highest ever recorded. These remarkable figures reveal that <span class="hlt">lightning</span> constitutes a significant stochastic source of mortality with potential life history consequences, but it should not deflect attention away from the more prominent causes of mortality in this rural area. PMID:22253708</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........48T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........48T"><span>A comparison of two ground-based <span class="hlt">lightning</span> detection networks against the satellite-based <span class="hlt">lightning</span> imaging sensor (LIS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, Kelsey B.</p> <p></p> <p>We compared <span class="hlt">lightning</span> stroke data from the ground-based World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) and <span class="hlt">lightning</span> stroke data from the ground-based Earth Networks Total <span class="hlt">Lightning</span> Network (ENTLN) to <span class="hlt">lightning</span> group data from the satellite-based <span class="hlt">Lightning</span> Imaging Sensor (LIS) from 1 January 2010 through 30 June 2011. The region of study, about 39°S to 39°N latitude, 164°E to 17°W longitude, chosen to approximate the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) field of view, was considered in its entirety and then divided into four geographical sub-regions. We found the highest 18-mon WWLLN coincidence percent (CP) value in the Pacific Ocean at 18.9% and the highest 18-mon ENTLN CP value in North America at 63.3%. We found the lowest 18-mon CP value for both WWLLN and ENTLN in South America at 6.2% and 2.2% respectively. Daily CP values and how often large radiance LIS groups had a coincident stroke varied. Coincidences between LIS groups and ENTLN strokes often resulted in more cloud than ground coincidences in North America and more ground than cloud coincidences in the other three sub-regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol4/pdf/CFR-2011-title14-vol4-sec420-71.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol4/pdf/CFR-2011-title14-vol4-sec420-71.pdf"><span>14 CFR 420.71 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by <span class="hlt">lightning</span>. (1) Elements of a lighting protection system. Unless an... facilities shall have a <span class="hlt">lightning</span> protection system to ensure explosives are not initiated by <span class="hlt">lightning</span>. A...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol4/pdf/CFR-2012-title14-vol4-sec420-71.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol4/pdf/CFR-2012-title14-vol4-sec420-71.pdf"><span>14 CFR 420.71 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by <span class="hlt">lightning</span>. (1) Elements of a lighting protection system. Unless an... facilities shall have a <span class="hlt">lightning</span> protection system to ensure explosives are not initiated by <span class="hlt">lightning</span>. A...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol4/pdf/CFR-2014-title14-vol4-sec420-71.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title14-vol4/pdf/CFR-2014-title14-vol4-sec420-71.pdf"><span>14 CFR 420.71 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-01-01</p> <p>... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by <span class="hlt">lightning</span>. (1) Elements of a lighting protection system. Unless an... facilities shall have a <span class="hlt">lightning</span> protection system to ensure explosives are not initiated by <span class="hlt">lightning</span>. A...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol4/pdf/CFR-2013-title14-vol4-sec420-71.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol4/pdf/CFR-2013-title14-vol4-sec420-71.pdf"><span>14 CFR 420.71 - <span class="hlt">Lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... path connecting an air terminal to an earth electrode system. (iii) Earth electrode system. An earth... to the initiation of explosives by <span class="hlt">lightning</span>. (1) Elements of a lighting protection system. Unless an... facilities shall have a <span class="hlt">lightning</span> protection system to ensure explosives are not initiated by <span class="hlt">lightning</span>. A...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18395987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18395987"><span><span class="hlt">Lightning</span> injury: a review.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ritenour, Amber E; Morton, Melinda J; McManus, John G; Barillo, David J; Cancio, Leopoldo C</p> <p>2008-08-01</p> <p><span class="hlt">Lightning</span> is an uncommon but potentially devastating cause of injury in patients presenting to burn centers. These injuries feature unusual symptoms, high mortality, and significant long-term morbidity. This paper will review the epidemiology, physics, clinical presentation, management principles, and prevention of <span class="hlt">lightning</span> injuries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22104330','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22104330"><span>Secondary missile injury from <span class="hlt">lightning</span> strike.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blumenthal, Ryan</p> <p>2012-03-01</p> <p>A 48-year-old-woman was struck dead by <span class="hlt">lightning</span> on October 24, 2010, in Pretoria, South Africa. The cause of death was due to direct <span class="hlt">lightning</span> strike. Examination showed secondary missile injury on her legs. This secondary missile (shrapnel) injury was caused by the <span class="hlt">lightning</span> striking the concrete pavement next to her. Small pieces of concrete were located embedded within the shrapnel wounds. This case report represents the first documented case of secondary missile formation (shrapnel injury) due to <span class="hlt">lightning</span> strike in the literature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486500-note-lightning-temperature','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486500-note-lightning-temperature"><span>Note on <span class="hlt">lightning</span> temperature</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alanakyan, Yu. R., E-mail: yralanak@mail.ru</p> <p>2015-10-15</p> <p>In this paper, some features of the dynamics of a <span class="hlt">lightning</span> channel that emerges after the leader-streamer process, are theoretically studied. It is shown that the dynamic pinch effect in the channel becomes possible if a discharge current before the main (quasi-steady) stage of a <span class="hlt">lightning</span> discharge increases rapidly. The ensuing magnetic compression of the channel increases plasma temperature to several million degrees leading to a soft x-ray flash within the highly ionized plasma. The relation between the plasma temperature and the channel radius during the main stage of a <span class="hlt">lightning</span> discharge is derived.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17520964','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17520964"><span>Filigree burn of <span class="hlt">lightning</span>: two case reports.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Virendra</p> <p>2007-04-01</p> <p><span class="hlt">Lightning</span> is a powerful natural electrostatic discharge produced during a thunderstorm. The electric current passing through the discharge channels is direct with a potential of 1000 million volts or more. <span class="hlt">Lightning</span> can kill or injure a person by a direct strike, a side-flash, or conduction through another object. <span class="hlt">Lightning</span> can cause a variety of injuries in the skin and the cardiovascular, neurological and ophthalmic systems. Filigree burn of <span class="hlt">lightning</span> is a superficial burn and very rare. Two cases of death from <span class="hlt">lightning</span> which have this rare finding are reported and discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMAE24A..05F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMAE24A..05F"><span>Monitoring <span class="hlt">lightning</span> from space with TARANIS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farges, T.; Blanc, E.; Pinçon, J.</p> <p>2010-12-01</p> <p>Some recent space experiments, e.g. OTD, LIS, show the large interest of <span class="hlt">lightning</span> monitoring from space and the efficiency of optical measurement. Future instrumentations are now defined for the next generation of geostationary meteorology satellites. Calibration of these instruments requires ground truth events provided by <span class="hlt">lightning</span> location networks, as NLDN in US, and EUCLID or LINET in Europe, using electromagnetic observations at a regional scale. One of the most challenging objectives is the continuous monitoring of the <span class="hlt">lightning</span> activity over the tropical zone (Africa, America, and Indonesia). However, one difficulty is the lack of <span class="hlt">lightning</span> location networks at regional scale in these areas to validate the data quality. TARANIS (Tool for the Analysis of Radiations from <span class="hlt">lightNings</span> and Sprites) is a CNES micro satellite project. It is dedicated to the study of impulsive transfers of energy, between the Earth atmosphere and the space environment, from nadir observations of Transient Luminous Events (TLEs), Terrestrial Gamma ray Flashes (TGFs) and other possible associated emissions. Its orbit will be sun-synchronous at 10:30 local time; its altitude will be 700 km. Its lifetime will be nominally 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths: X and gamma-ray detectors, optical cameras and photometers, electromagnetic wave sensors from DC to 30 MHz completed by high energy electron detectors. The optical instrument includes 2 cameras and 4 photometers. All sensors are equipped with filters for sprite and <span class="hlt">lightning</span> differentiation. The filters of cameras are designed for sprite and <span class="hlt">lightning</span> observations at 762 nm and 777 nm respectively. However, differently from OTD or LIS instruments, the filter bandwidth and the exposure time (respectively 10 nm and 91 ms) prevent <span class="hlt">lightning</span> optical observations during daytime. The camera field of view is a square of 500 km at ground level with a spatial sampling frequency of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003532','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003532"><span>Using Cloud-to-Ground <span class="hlt">Lightning</span> Climatologies to Initialize Gridded <span class="hlt">Lightning</span> Threat Forecasts for East Central Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew</p> <p>2005-01-01</p> <p>Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) <span class="hlt">lightning</span> threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/<span class="hlt">lightning</span>.shtml) . Given the hazardous nature of <span class="hlt">lightning</span> in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of <span class="hlt">lightning</span>, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of <span class="hlt">lightning</span> occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative <span class="hlt">lightning</span> threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The <span class="hlt">lightning</span> threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season <span class="hlt">lightning</span> climatologies that could be used as first-guess inputs to initialize <span class="hlt">lightning</span> threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70...88T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70...88T"><span>Initiation of a <span class="hlt">lightning</span> search using the <span class="hlt">lightning</span> and airglow camera onboard the Venus orbiter Akatsuki</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Yukihiro; Sato, Mitsuteru; Imai, Masataka; Lorenz, Ralph; Yair, Yoav; Aplin, Karen; Fischer, Georg; Nakamura, Masato; Ishii, Nobuaki; Abe, Takumi; Satoh, Takehiko; Imamura, Takeshi; Hirose, Chikako; Suzuki, Makoto; Hashimoto, George L.; Hirata, Naru; Yamazaki, Atsushi; Sato, Takao M.; Yamada, Manabu; Murakami, Shin-ya; Yamamoto, Yukio; Fukuhara, Tetsuya; Ogohara, Kazunori; Ando, Hiroki; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Ohtsuki, Shoko</p> <p>2018-05-01</p> <p>The existence of <span class="hlt">lightning</span> discharges in the Venus atmosphere has been controversial for more than 30 years, with many positive and negative reports published. The <span class="hlt">lightning</span> and airglow camera (LAC) onboard the Venus orbiter, Akatsuki, was designed to observe the light curve of possible flashes at a sufficiently high sampling rate to discriminate <span class="hlt">lightning</span> from other sources and can thereby perform a more definitive search for optical emissions. Akatsuki arrived at Venus during December 2016, 5 years following its launch. The initial operations of LAC through November 2016 have included a progressive increase in the high voltage applied to the avalanche photodiode detector. LAC began <span class="hlt">lightning</span> survey observations in December 2016. It was confirmed that the operational high voltage was achieved and that the triggering system functions correctly. LAC <span class="hlt">lightning</span> search observations are planned to continue for several years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100040471','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100040471"><span>Triggered-<span class="hlt">Lightning</span> Interaction with a <span class="hlt">Lightning</span> Protective System: Current Distribution and Electromagnetic Environment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mata, C. T.; Rakov, V. A.; Mata, A. G.</p> <p>2010-01-01</p> <p>A new comprehensive <span class="hlt">lightning</span> instrumentation system has been designed for Launch Complex 39B (LC3913) at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras; currents through the nine downconductors of the new <span class="hlt">lightning</span> protection system for LC3913; four dH/dt, 3-axis measurement stations; and five dE/dt stations composed of two antennas each. A 20:1 scaled down model of the new <span class="hlt">Lightning</span> Protection System (LPS) of LC39B was built at the International Center for <span class="hlt">Lightning</span> Research and Testing, Camp Blanding, FL. This scaled down <span class="hlt">lightning</span> protection system was instrumented with the transient recorders, digitizers, and sensors to be used in the final instrumentation installation at LC3913. The instrumentation used at the ICLRT is also a scaled-down instrumentation of the LC39B instrumentation. The scaled-down LPS was subjected to seven direct <span class="hlt">lightning</span> strikes and six (four triggered and two natural nearby flashes) in 2010. The following measurements were acquired at the ICLRT: currents through the nine downconductors; two dl-/dt, 3-axis stations, one at the center of the LPS (underneath the catenary wires), and another 40 meters south from the center of the LPS; ten dE/dt stations, nine of them on the perimeter of the LPS and one at the center of the LPS (underneath the catenary wire system); and the incident current. Data from representative events are presented and analyzed in this paper.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatCC...8..210F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatCC...8..210F"><span>A projected decrease in <span class="hlt">lightning</span> under climate change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finney, Declan L.; Doherty, Ruth M.; Wild, Oliver; Stevenson, David S.; MacKenzie, Ian A.; Blyth, Alan M.</p> <p>2018-03-01</p> <p><span class="hlt">Lightning</span> strongly influences atmospheric chemistry1-3, and impacts the frequency of natural wildfires4. Most previous studies project an increase in global <span class="hlt">lightning</span> with climate change over the coming century1,5-7, but these typically use parameterizations of <span class="hlt">lightning</span> that neglect cloud ice fluxes, a component generally considered to be fundamental to thunderstorm charging8. As such, the response of <span class="hlt">lightning</span> to climate change is uncertain. Here, we compare <span class="hlt">lightning</span> projections for 2100 using two parameterizations: the widely used cloud-top height (CTH) approach9, and a new upward cloud ice flux (IFLUX) approach10 that overcomes previous limitations. In contrast to the previously reported global increase in <span class="hlt">lightning</span> based on CTH, we find a 15% decrease in total <span class="hlt">lightning</span> flash rate with IFLUX in 2100 under a strong global warming scenario. Differences are largest in the tropics, where most <span class="hlt">lightning</span> occurs, with implications for the estimation of future changes in tropospheric ozone and methane, as well as differences in their radiative forcings. These results suggest that <span class="hlt">lightning</span> schemes more closely related to cloud ice and microphysical processes are needed to robustly estimate future changes in <span class="hlt">lightning</span> and atmospheric composition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/977796','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/977796"><span>Global <span class="hlt">lightning</span> and severe storm monitoring from GPS orbit</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Suszcynsky, D. M.; Jacobson, A. R.; Linford, J</p> <p></p> <p>Over the last few decades, there has been a growing interest to <span class="hlt">develop</span> and deploy an automated and continuously operating satellite-based global <span class="hlt">lightning</span> mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. <span class="hlt">Lightning</span> is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm <span class="hlt">development</span>. Satellite-based <span class="hlt">lightning</span> mappers are designed to exploit this relationship by using <span class="hlt">lightning</span> detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global <span class="hlt">lightning</span> and convection mapping promises to provide users with (1) an enhancedmore » global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of <span class="hlt">lightning</span> detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and <span class="hlt">lightning</span> discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18814638','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18814638"><span>Beyond the basics: <span class="hlt">lightning</span>-strike injuries.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mistovich, Joseph J; Krost, William S; Limmer, Daniel D</p> <p>2008-03-01</p> <p>It is estimated that a <span class="hlt">lightning</span> flash occurs approximately 8 million times per day throughout the world. Most strikes are benign and cause little damage to property and physical structures; however, when <span class="hlt">lightning</span> strikes a person or group of people, it is a significant medical and potentially traumatic event that could lead to immediate death or permanent disability. By understanding some basic physics of <span class="hlt">lightning</span> and pathophysiology of injuries associated with <span class="hlt">lightning</span> strikes, EMS providers will be better prepared to identify assessment findings, anticipate complications and provide effective emergency care.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....9910679G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....9910679G"><span>Laboratory-produced ball <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Golka, Robert K., Jr.</p> <p>1994-05-01</p> <p>For 25 years I have actively been searching for the true nature of ball <span class="hlt">lightning</span> and attempting to reproduce it at will in the laboratory. As one might expect, many unidentified lights in the atmosphere have been called ball <span class="hlt">lightning</span>, including Texas Maffa lights (automobile headlights), flying saucers (UFOs), swamp gas in Ann Arbor, Michigan, etc. For 15 years I thought ball <span class="hlt">lightning</span> was strictly a high-voltage phenomenon. It was not until 1984 when I was short-circuiting the electrical output of a diesel electric railroad locomotive that I realized that the phenomenon was related more to a high current. Although I am hoping for some other types of ball <span class="hlt">lightning</span> to emerge such as strictly electrostatic-electromagnetic manifestations, I have been unlucky in finding laboratory provable evidence. Cavity-formed plasmodes can be made by putting a 2-inch burning candle in a home kitchen microwave oven. The plasmodes float around for as long as the microwave energy is present.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237715','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237715"><span><span class="hlt">Lightning</span> Radio Source Retrieval Using Advanced <span class="hlt">Lightning</span> Direction Finder (ALDF) Networks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.</p> <p>1998-01-01</p> <p>A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of <span class="hlt">lightning</span> ground strikes from an Advanced <span class="hlt">Lightning</span> Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of <span class="hlt">lightning</span> radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the <span class="hlt">lightning</span> source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National <span class="hlt">Lightning</span> Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMAE24A..03Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMAE24A..03Z"><span>Analysis and Modeling of Intense Oceanic <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.</p> <p>2014-12-01</p> <p>Recent studies using <span class="hlt">lightning</span> data from geo-location networks such as GLD360 suggest that <span class="hlt">lightning</span> strokes are more intense over the ocean than over land, even though they are less common [Said et al. 2013]. We present an investigation of the physical differences between oceanic and land <span class="hlt">lightning</span>. We have deployed a sensitive Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel and have collected thousands of <span class="hlt">lightning</span> waveforms close to deep oceanic <span class="hlt">lightning</span>. We analyze the captured waveforms, describe our modeling efforts, and summarize our findings. We model the ground wave (gw) portion of the <span class="hlt">lightning</span> sferics using a numerical method built on top of the Stanford Full Wave Method (FWM) [Lehtinen and Inan 2008]. The gwFWM technique accounts for propagation over a curved Earth with finite conductivity, and is used to simulate an arbitrary current profile along the <span class="hlt">lightning</span> channel. We conduct a sensitivity analysis and study the current profiles for land and for oceanic <span class="hlt">lightning</span>. We find that the effect of ground conductivity is minimal, and that stronger oceanic radio intensity does not result from shorter current rise-time or from faster return stroke propagation speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED21B0276S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED21B0276S"><span>Using Satellite <span class="hlt">Lightning</span> Data as a Hands-On Activity for a Broad Audience</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinclair, L.; Smith, T.; Smith, D. K.; Weigel, A. M.; Bugbee, K.; Leach, C.</p> <p>2017-12-01</p> <p>Satellite <span class="hlt">lightning</span> data archived at the NASA Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC) captures the number of <span class="hlt">lightning</span> flashes occurring within four by four kilometer pixels around the world from January 1998 through October 2014. These data were measured by the <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. As an outreach effort to educate other on the use <span class="hlt">lightning</span> measurements, the GHRC DAAC <span class="hlt">developed</span> an interactive color-by-number poster showing accumulated <span class="hlt">lightning</span> flashes around the world. As participants color the poster it reveals regions of maximum <span class="hlt">lightning</span> flash counts across the Earth, including Lake Maracaibo in Catatumbo, Venezuela and a region in Congo, Africa. This hands-on activity is a bright, colorful, and inviting way to bring <span class="hlt">lightning</span> data to a broad audience and can be used for people of many ages, including elementary-aged audiences up to adults.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006918','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006918"><span>Integration of the Total <span class="hlt">Lightning</span> Jump Algorithm into Current Operational Warning Environment Conceptual Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Stano, Geoffrey T.; Blakeslee, Richard J.; Goodman, Steven J.</p> <p>2014-01-01</p> <p>The presence and rates of total <span class="hlt">lightning</span> are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the <span class="hlt">development</span> of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of <span class="hlt">lightning</span> rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total <span class="hlt">lightning</span> jump algorithm that has been <span class="hlt">developed</span> in recent years. Currently, the <span class="hlt">lightning</span> jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; AMS 10th Satellite Symposium) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary <span class="hlt">Lightning</span> Mapper (GLM) Proxy data and the <span class="hlt">lightning</span> jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using <span class="hlt">lightning</span> mapping array based products. However, what remains is an end to end physical and dynamical basis for relating <span class="hlt">lightning</span> rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the <span class="hlt">lightning</span> jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the <span class="hlt">lightning</span> jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, relation specifically to <span class="hlt">lightning</span> jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler techniques to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AIPC..694..419K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AIPC..694..419K"><span>PSpice Model of <span class="hlt">Lightning</span> Strike to a Steel Reinforced Structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koone, Neil; Condren, Brian</p> <p>2003-12-01</p> <p>Surges and arcs from <span class="hlt">lightning</span> can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating <span class="hlt">lightning</span> effects. Knowing a structure's response to a <span class="hlt">lightning</span> strike allows hazards associated with <span class="hlt">lightning</span> to be analyzed. A model of <span class="hlt">lightning</span>'s response in a steel reinforced structure has been <span class="hlt">developed</span> using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile <span class="hlt">lightning</span> strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.6604N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.6604N"><span>Spatio-temporal activity of <span class="hlt">lightnings</span> over Greece</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nastos, P. T.; Matsangouras, I. T.; Chronis, T. G.</p> <p>2012-04-01</p> <p>Extreme precipitation events are always associated with convective weather conditions driving to intense <span class="hlt">lightning</span> activity: Cloud to Ground (CG), Ground to Cloud (GC) and Cloud to Cloud (CC). Thus, the study of <span class="hlt">lightnings</span>, which typically occur during thunderstorms, gives evidence of the spatio-temporal variability of intense precipitation. <span class="hlt">Lightning</span> is a natural phenomenon in the atmosphere, being a major cause of storm related with deaths and main trigger of forest fires during dry season. <span class="hlt">Lightning</span> affects the many electrochemical systems of the body causing nerve damage, memory loss, personality change, and emotional problems. Besides, among the various nitrogen oxides sources, the contribution from <span class="hlt">lightning</span> likely represents the largest uncertainty. An operational <span class="hlt">lightning</span> detection network (LDN) has been established since 2007 by HNMS, consisting of eight time-of-arrival sensors (TOA), spatially distributed across Greek territory. In this study, the spatial and temporal variability of recorded <span class="hlt">lightnings</span> (CG, GC and CC) are analyzed over Greece, during the period from January 14, 2008 to December 31, 2009, for the first time. The data for retrieving the location and time-of-occurrence of <span class="hlt">lightning</span> were acquired from Hellenic National Meteorological Service (HNMS). In addition to the analysis of spatio-temporal activity over Greece, the HNMS-LDN characteristics are also presented. The results of the performed analysis reveal the specific geographical sub-regions associated with <span class="hlt">lightnings</span> incidence. <span class="hlt">Lightning</span> activity occurs mainly during the autumn season, followed by summer and spring. Higher frequencies of flashes appear over Ionian and Aegean Sea than over land during winter period against continental mountainous regions during summer period.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMAE33A0266A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMAE33A0266A"><span>Acoustic Manifestations of Natural versus Triggered <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.</p> <p>2010-12-01</p> <p>Positive leaders are rarely detected by VHF <span class="hlt">lightning</span> detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered <span class="hlt">lightning</span> and to assess which types of thunder signals have electromagnetic activity detected by the <span class="hlt">lightning</span> mapping array (LMA). Towards this end we are investigating the <span class="hlt">lightning</span> detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with <span class="hlt">lightning</span>. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from <span class="hlt">lightning</span>, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered <span class="hlt">lightning</span>. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of <span class="hlt">lightning</span> data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, <span class="hlt">lightning</span> activity around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting <span class="hlt">lightning</span> flashes including a comparison between a natural and a triggered one.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48980','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48980"><span><span class="hlt">Lightning</span> fire research in the Rocky Mountains</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>J. S. Barrows</p> <p>1954-01-01</p> <p><span class="hlt">Lightning</span> is the major cause of fires in Rocky Mountain forests. The <span class="hlt">lightning</span> fire problem is the prime target of a broad research program now known as Project Skyfire. KEYWORDS: <span class="hlt">lightning</span>, fire research</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMAE33A0256B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMAE33A0256B"><span>Long-Range <span class="hlt">Lightning</span> Products for Short Term Forecasting of Tropical Cyclogenesis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Businger, S.; Pessi, A.; Robinson, T.; Stolz, D.</p> <p>2010-12-01</p> <p>This paper will describe innovative graphical products derived in real time from long-range <span class="hlt">lightning</span> data. The products have been designed to aid in short-term forecasting of tropical cyclone <span class="hlt">development</span> for the Tropical Cyclone Structure Experiment 2010 (TCS10) held over the western Pacific Ocean from 17 August to 17 October 2010 and are available online at http://www.soest.hawaii.edu/cgi-bin/pacnet/tcs10.pl. The long-range <span class="hlt">lightning</span> data are from Vaisala’s Global <span class="hlt">Lightning</span> Data 360 (GLD360) network and include time, location, current strength, polarity, and data quality indication. The products currently provided in real time include i. Infrared satellite imagery overlaid with lighting flash locations, with color indication of current strength and polarity (shades of blue for negative to ground and red for positive to ground). ii. A 15x15 degree storm-centered tile of IR imagery overlaid with <span class="hlt">lightning</span> data as in i). iii. A pseudo reflectivity product showing estimates of radar reflectivity based on <span class="hlt">lightning</span> rate - rain rate conversion derived from TRMM and PacNet data. iv. A <span class="hlt">lightning</span> history product that plots each hour of <span class="hlt">lightning</span> flash locations in a different color for a 12-hour period. v. Graphs of <span class="hlt">lightning</span> counts within 50 or 300 km radius, respectively, of the storm center vs storm central sea-level pressure. vi. A 2-D graphic showing storm core <span class="hlt">lightning</span> density along the storm track. The first three products above can be looped to gain a better understanding of the evolution of the <span class="hlt">lightning</span> and storm structure. Examples of the graphics and their utility will be demonstrated and discussed. Histogram of <span class="hlt">lightning</span> counts within 50 km of the storm center and graph of storm central pressure as a function of time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PrAeS..64....1G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PrAeS..64....1G"><span><span class="hlt">Lightning</span> strike protection of composites</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gagné, Martin; Therriault, Daniel</p> <p>2014-01-01</p> <p>Aircraft structures are being redesigned to use fiber-reinforced composites mainly due to their high specific stiffness and strength. One of the main drawbacks from changing from electrically conductive metals to insulating or semi-conducting composites is the higher vulnerability of the aircraft to <span class="hlt">lightning</span> strike damage. The current protection approach consists of bonding a metal mesh to the surface of the composite structure, but this weight increase negatively impact the fuel efficiency. This review paper presents an overview of the <span class="hlt">lightning</span> strike problematic, the regulations, the <span class="hlt">lightning</span> damage to composite, the current protection solutions and other material or technology alternatives. Advanced materials such as polymer-based nanocomposites and carbon nanotube buckypapers are promising candidates for lightweight <span class="hlt">lightning</span> strike protection technology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMAE12A..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMAE12A..02F"><span>Infrasound from <span class="hlt">lightning</span> measured in Ivory Coast</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farges, T.; Matoza, R. S.</p> <p>2011-12-01</p> <p>It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 <span class="hlt">lightning</span> flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including <span class="hlt">lightning</span> flashes, ...). Some of the IMS stations are located where worldwide <span class="hlt">lightning</span> detection networks (e.g. WWLLN) have a weak detection capability but <span class="hlt">lightning</span> activity is high (e.g. Africa, South America). These infrasound stations are well localised to study <span class="hlt">lightning</span> flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such <span class="hlt">lightning</span> studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure <span class="hlt">lightning</span> infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from <span class="hlt">lightning</span> can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of <span class="hlt">lightning</span> flashes can be detected with this technique, giving better results locally than worldwide <span class="hlt">lightning</span> detection networks. An IMS infrasound station has been installed in Ivory Coast for 8 years. The optical space-based instrument OTD measured a rate of 10-20 flashes/km^2/year in that country and showed strong seasonal variations (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with <span class="hlt">lightning</span> activity and its temporal variation. First statistical results will be presented in this paper based on 3 years of data (2005-2008).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA099590','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA099590"><span><span class="hlt">Lightning</span> Technology (Supplement)</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-01-01</p> <p>material presented in this report was taken from a variety of sources; therefore, various units of measure are used. Use of trade names or names of...Clifford, and W. G. Butters 3. IMPLEMENTATION AND EXPERIENCE WITH <span class="hlt">LIGHTNING</span> HARDENING MEASURES ON THE NAVY/AIR FORCE COMBAT MANEUVERING RANGES...overall <span class="hlt">lightning</span> event taken from an appropriate base of wideband measurements . In 1979, the Air Force Wright Aeronautical Laboratories began a joint</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.1285F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.1285F"><span>Infrasound from <span class="hlt">lightning</span> measured in Ivory Coast</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farges, T.; Millet, C.; Matoza, R. S.</p> <p>2012-04-01</p> <p>It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 <span class="hlt">lightning</span> flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including <span class="hlt">lightning</span> flashes, …). Some of the IMS stations are located where worldwide <span class="hlt">lightning</span> detection networks (e.g. WWLLN) have a weak detection capability but <span class="hlt">lightning</span> activity is high (e.g. Africa, South America). These infrasound stations are well localised to study <span class="hlt">lightning</span> flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such <span class="hlt">lightning</span> studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure <span class="hlt">lightning</span> infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from <span class="hlt">lightning</span> can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of <span class="hlt">lightning</span> flashes can be detected with this technique, giving better results locally than worldwide <span class="hlt">lightning</span> detection networks. An IMS infrasound station has been installed in Ivory Coast for 9 years. The <span class="hlt">lightning</span> rate of this region is 10-20 flashes/km2/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with <span class="hlt">lightning</span> activity and its temporal variation. First statistical results will be presented in this paper based on 4 years of data (2005-2009). For short <span class="hlt">lightning</span> distances (less than 20 km), up to 60 % of <span class="hlt">lightning</span> detected by WWLLN has been one-to-one correlated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27466230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27466230"><span>A Fossilized Energy Distribution of <span class="hlt">Lightning</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pasek, Matthew A; Hurst, Marc</p> <p>2016-07-28</p> <p>When <span class="hlt">lightning</span> strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the <span class="hlt">lightning</span> strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground <span class="hlt">lightning</span>. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of <span class="hlt">lightning</span> strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of <span class="hlt">lightning</span> parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating <span class="hlt">lightning</span> energy and damage potential of strikes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4964350','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4964350"><span>A Fossilized Energy Distribution of <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pasek, Matthew A.; Hurst, Marc</p> <p>2016-01-01</p> <p>When <span class="hlt">lightning</span> strikes soil, it may generate a cylindrical tube of glass known as a fulgurite. The morphology of a fulgurite is ultimately a consequence of the energy of the <span class="hlt">lightning</span> strike that formed it, and hence fulgurites may be useful in elucidating the energy distribution frequency of cloud-to-ground <span class="hlt">lightning</span>. Fulgurites from sand mines in Polk County, Florida, USA were collected and analyzed to determine morphologic properties. Here we show that the energy per unit length of <span class="hlt">lightning</span> strikes within quartz sand has a geometric mean of ~1.0 MJ/m, and that the distribution is lognormal with respect to energy per length and frequency. Energy per length is determined from fulgurites as a function of diameter, and frequency is determined both by cumulative number and by cumulative length. This distribution parallels those determined for a number of <span class="hlt">lightning</span> parameters measured in actual atmospheric discharge events, such as charge transferred, voltage, and action integral. This methodology suggests a potential useful pathway for elucidating <span class="hlt">lightning</span> energy and damage potential of strikes. PMID:27466230</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29138444','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29138444"><span>The Elusive Evidence of Volcanic <span class="hlt">Lightning</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M</p> <p>2017-11-14</p> <p><span class="hlt">Lightning</span> strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic <span class="hlt">lightning</span> discharge, when airborne volcanic ash is transformed into <span class="hlt">lightning</span>-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of <span class="hlt">lightning</span>-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the <span class="hlt">lightning</span> discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of <span class="hlt">lightning</span> during explosive eruptions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA.....3339P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA.....3339P"><span>Positive <span class="hlt">lightning</span> and severe weather</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Price, C.; Murphy, B.</p> <p>2003-04-01</p> <p>In recent years researchers have noticed that severe weather (tornados, hail and damaging winds) are closely related to the amount of positive <span class="hlt">lightning</span> occurring in thunderstorms. On 4 July 1999, a severe derecho (wind storm) caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) <span class="hlt">lightning</span> occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) <span class="hlt">lightning</span> measured by the Canadian <span class="hlt">Lightning</span> Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG <span class="hlt">lightning</span>. Such high ratios of +CG are rare, and may be useful indicators for short-term forecasts of severe weather.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMAE11A..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMAE11A..03M"><span>Modern Protection Against <span class="hlt">Lightning</span> Strikes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, C.</p> <p>2005-05-01</p> <p>The application of science to provide protection against <span class="hlt">lightning</span> strikes began around 1750 when Benjamin Franklin who invented the <span class="hlt">lightning</span> rod in an effort to discharge thunderclouds. Instead of preventing <span class="hlt">lightning</span> as he expected, his rods have been quite successful as strike receptors, intercepting cloud-to ground discharges and conducting them to Earth without damage to the structures on which they are mounted. In the years since Franklin's invention there has been little attention paid to the rod configuration that best serves as a strike receptor but Franklin's original ideas continue to be rediscovered and promoted. Recent measurements of the responses of variously configured rods to nearby strikes indicate that sharp-tipped rods are not the optimum configuration to serve as strike receptors since the ionization of the air around their tips limits the strength of the local electric fields created by an approaching <span class="hlt">lightning</span> leader. In these experiments, fourteen blunt-tipped rods exposed in strike-reception competitions with nearby sharp-tipped rods were struck by <span class="hlt">lightning</span> but none of the sharp-tipped rods were struck.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmRe.172....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmRe.172....1M"><span>The verification of <span class="hlt">lightning</span> location accuracy in Finland deduced from <span class="hlt">lightning</span> strikes to trees</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mäkelä, Antti; Mäkelä, Jakke; Haapalainen, Jussi; Porjo, Niko</p> <p>2016-05-01</p> <p>We present a new method to determine the ground truth and accuracy of <span class="hlt">lightning</span> location systems (LLS), using natural <span class="hlt">lightning</span> strikes to trees. Observations of strikes to trees are being collected with a Web-based survey tool at the Finnish Meteorological Institute. Since the Finnish thunderstorms tend to have on average a low flash rate, it is often possible to identify from the LLS data unambiguously the stroke that caused damage to a given tree. The coordinates of the tree are then the ground truth for that stroke. The technique has clear advantages over other methods used to determine the ground truth. Instrumented towers and rocket launches measure upward-propagating <span class="hlt">lightning</span>. Video and audio records, even with triangulation, are rarely capable of high accuracy. We present data for 36 quality-controlled tree strikes in the years 2007-2008. We show that the average inaccuracy of the <span class="hlt">lightning</span> location network for that period was 600 m. In addition, we show that the 50% confidence ellipse calculated by the <span class="hlt">lightning</span> location network and used operationally for describing the location accuracy is physically meaningful: half of all the strikes were located within the uncertainty ellipse of the nearest recorded stroke. Using tree strike data thus allows not only the accuracy of the LLS to be estimated but also the reliability of the uncertainty ellipse. To our knowledge, this method has not been attempted before for natural <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMAE23A0412S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMAE23A0412S"><span>First ever Evaluation of Atmospheric <span class="hlt">Lightning</span> Activity in Pakistan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shahzad, M. I.; Qaiser, S.; Campbell, J. R.; Mahmud, S.</p> <p>2016-12-01</p> <p>In Pakistan, most of the atmospheric <span class="hlt">lightning</span> occurs in monsoon and pre-monsoon seasons. To prevent or at least minimize the unforeseen property damages and human casuality, we need to identify the vulnerable locations to <span class="hlt">lightning</span> in Pakistan. However, unfortunately, there has not been any study regarding the <span class="hlt">lightning</span> hazards to date for Pakistan. In this study satellite based datasets of location and Time of Occurrence (TOA) along with ground data for subset of thunderstorms are used to identify <span class="hlt">lightning</span>-prone locations in Pakistan for the years 2001-2014. This is the first study to compute climatologies for lighting activity, identifying locations that are susceptible to high, moderate and low <span class="hlt">lightning</span> activities regionally. Results of the study indicate that <span class="hlt">lightning</span> activity is comparatively higher over the mountain and sub-mountain regions in the Punjab, Federally Administered Tribal Areas (FATA) and Khyber Pakhtoon Khwa (KPK) provinces. Overall, there is a significant increase in lighting activity in Pakistan from 2001-2014 with more than a 138 % increase near Islamabad and Karachi, indicating the <span class="hlt">development</span> a lightening dipole. Interestingly, <span class="hlt">lightning</span> data shows a strong correlation between flashes-per-year and El Niño and La Niña conditions. Atmospheric <span class="hlt">lightning</span> in Pakistan shows a seasonal pattern, with significant dependencies on Convective Available Potential Energy (CAPE), Aerosol Optical Depth (AOD), Total Cloud Cover, Convective Precipitation, Soil Temperature and Total Column Ozone. Extreme lighting events are found significantly dependant on high surface temperatures, high CAPE and AOD values between 0-0.4 in pre monsoon and monsoon seasons that contribute to overall staggering high mean intra-seasonal value of 66832 flashes. The results surely demand urgent attention of the stakeholders and policy makers for proposing mitigation and adaptation strategies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003035','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003035"><span>A Probabilistic, Facility-Centric Approach to <span class="hlt">Lightning</span> Strike Location</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.</p> <p>2012-01-01</p> <p>A new probabilistic facility-centric approach to <span class="hlt">lightning</span> strike location has been <span class="hlt">developed</span>. This process uses the bivariate Gaussian distribution of probability density provided by the current <span class="hlt">lightning</span> location error ellipse for the most likely location of a <span class="hlt">lightning</span> stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby <span class="hlt">lightning</span> strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17595993','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17595993"><span><span class="hlt">Lightning</span> burns and traditional medical treatment: a case report.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ikpeme, I A; Udosen, A M; Asuquo, M E; Ngim, N E</p> <p>2007-01-01</p> <p><span class="hlt">Lightning</span> strikes are relatively uncommon. In our culture where superstitions are strong and natural events often linked to evil forces, the traditional bonesetter/healer is often consulted first. Patients then seek orthodox care when complications <span class="hlt">develop</span>. Patients also have difficulty accepting ablative treatment when indicated. To present an usual case of bilateral upper limb burns caused by <span class="hlt">lightning</span> and complicated by refusal to receive orthodox treatment. A 22 year old woman was struck by <span class="hlt">lightning</span> while asleep. Instead of going to hospital, she was taken to a traditional healer where she spent two months before presenting with gangrenous upper limbs to hospital. Patient refused amputation and abandoned hospital against medical advice. This case report of bilateral upper limb burns resulting from <span class="hlt">lightning</span> is rare. Importantly, the case highlights the role of ignorance, superstition and the disastrous results of traditional medical practice in our healthcare delivery.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140003896','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140003896"><span>An Intrinsic Fiber-Optic Sensor for Structure <span class="hlt">Lightning</span> Current Measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel. G.; Snyder, Gary P.</p> <p>2014-01-01</p> <p>An intrinsic optical-fiber sensor based on Faraday Effect is <span class="hlt">developed</span> that is highly suitable for measuring <span class="hlt">lightning</span> current on aircraft, towers and complex structures. Originally <span class="hlt">developed</span> specifically for aircraft installations, it is light-weight, non-conducting, structure conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can measure total current down to DC. When used on <span class="hlt">lightning</span> towers, the sensor can help validate other sensors and <span class="hlt">lightning</span> detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. A broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with a 60 dB dynamic range. Two systems were built that are similar in design but with slightly different sensitivities. The 1310nm laser system can measure 300 A - 300 kA, and has a 15m long sensing fiber. It was used in laboratory testing, including measuring current on an aluminum structure simulating an aircraft fuselage or a <span class="hlt">lightning</span> tower. High current capabilities were demonstrated up to 200 kA at a <span class="hlt">lightning</span> test facility. The 1550nm laser system can measure 400 A - 400 kA and has a 25m fiber length. Used in field measurements, excellent results were achieved in the summer of 2012 measuring rocket-triggered <span class="hlt">lightning</span> at the International Center for <span class="hlt">Lightning</span> Research and Testing (ICLRT), Camp Blanding, Florida. In both systems increased sensitivity can be achieved with multiple fiber loops. The fiber optic sensor provides many unique capabilities not currently possible with traditional sensors. It represents an important new tool for <span class="hlt">lightning</span> current measurement where low weight</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130009918','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130009918"><span>Flow Regime Based Climatologies of <span class="hlt">Lightning</span> Probabilities for Spaceports and Airports</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III; Sharp, David; Spratt, Scott; Lafosse, Richard A.</p> <p>2008-01-01</p> <p>The objective of this work was to provide forecasters with a tool to indicate the warm season climatological probability of one or more <span class="hlt">lightning</span> strikes within a circle at a site within a specified time interval. This paper described the AMU work conducted in <span class="hlt">developing</span> flow regime based climatologies of <span class="hlt">lightning</span> probabilities for the SLF and seven airports in the NWS MLB CWA in east-central Florida. The paper also described the GUI <span class="hlt">developed</span> by the AMU that is used to display the data for the operational forecasters. There were challenges working with gridded <span class="hlt">lightning</span> data as well as the code that accompanied the gridded data. The AMU modified the provided code to be able to produce the climatologies of <span class="hlt">lightning</span> probabilities based on eight flow regimes for 5-, 10-, 20-, and 30-n mi circles centered on eight sites in 1-, 3-, and 6-hour increments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007288','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007288"><span>Colorado <span class="hlt">Lightning</span> Mapping Array Collaborations through the GOES-R Visiting Scientist Program</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.; Szoke, Edward; Rydell, Nezette; Cox, Robert; Mazur, Rebecca</p> <p>2014-01-01</p> <p>For the past two years, the GOES-R Proving Ground has solicited proposals for its Visiting Scientist Program. NASA's Short-term <span class="hlt">Prediction</span> Research and Transition (SPoRT) Center has used this opportunity to support the GOES-R Proving Ground by expanding SPoRT's total <span class="hlt">lightning</span> collaborations. In 2012, this expanded the evaluation of SPoRT's pseudo-geostationary <span class="hlt">lightning</span> mapper product to the Aviation Weather Center and Storm <span class="hlt">Prediction</span> Center. This year, SPoRT has collaborated with the Colorado <span class="hlt">Lightning</span> Mapping Array (COLMA) and potential end users. In particular, SPoRT is collaborating with the Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University (CSU) to obtain these data in real-time. From there, SPoRT is supporting the transition of these data to the local forecast offices in Boulder, Colorado and Cheyenne, Wyoming as well as to Proving Ground projects (e.g., the Hazardous Weather Testbed's Spring Program and Aviation Weather Center's Summer Experiment). This presentation will focus on the results of this particular Visiting Scientist Program trip. In particular, the COLMA data are being provided to both forecast offices for initial familiarization. Additionally, several forecast issues have been highlighted as important uses for COLMA data in the operational environment. These include the utility of these data for fire weather situations, situational awareness for both severe weather and <span class="hlt">lightning</span> safety, and formal evaluations to take place in the spring of 2014.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713577H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713577H"><span>Severe weather detection by using Japanese Total <span class="hlt">Lightning</span> Network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hobara, Yasuhide; Ishii, Hayato; Kumagai, Yuri; Liu, Charlie; Heckman, Stan; Price, Colin</p> <p>2015-04-01</p> <p>In this paper we demonstrate the preliminary results from the first Japanese Total <span class="hlt">Lightning</span> Network. The University of Electro-Communications (UEC) recently deployed Earth Networks Total <span class="hlt">Lightning</span> System over Japan to conduct various <span class="hlt">lightning</span> research projects. Here we analyzed the total <span class="hlt">lightning</span> data in relation with 10 severe events such as gust fronts and tornadoes occurred in 2014 in mainland Japan. For the analysis of these events, <span class="hlt">lightning</span> jump algorithm was used to identify the increase of the flash rate in prior to the severe weather events. We found that <span class="hlt">lightning</span> jumps associated with significant increasing <span class="hlt">lightning</span> activities for total <span class="hlt">lightning</span> and IC clearly indicate the severe weather occurrence than those for CGs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23478564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23478564"><span><span class="hlt">Lightning</span> injuries in sports and recreation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thomson, Eric M; Howard, Thomas M</p> <p>2013-01-01</p> <p>The powers of <span class="hlt">lightning</span> have been worshiped and feared by all known human cultures. While the chance of being struck by <span class="hlt">lightning</span> is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 <span class="hlt">lightning</span>-related deaths reported within the United States, with a majority of them associated with outdoor recreational activities. Recent publications primarily have been case studies, review articles, and a discussion of a sixth method of injury. The challenge in reducing <span class="hlt">lightning</span>-related injuries in organized sports has been addressed well by both the National Athletic Trainers' Association and the National Collegiate Athletic Association in their guidelines on <span class="hlt">lightning</span> safety. Challenges remain in educating the general population involved in recreational outdoor activities that do not fall under the guidelines of organized sports.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050215341','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050215341"><span><span class="hlt">Lightning</span> Detection Efficiency Analysis Process: Modeling Based on Empirical Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rompala, John T.</p> <p>2005-01-01</p> <p>A ground based <span class="hlt">lightning</span> detection system employs a grid of sensors, which record and evaluate the electromagnetic signal produced by a <span class="hlt">lightning</span> strike. Several detectors gather information on that signal s strength, time of arrival, and behavior over time. By coordinating the information from several detectors, an event solution can be generated. That solution includes the signal s point of origin, strength and polarity. Determination of the location of the <span class="hlt">lightning</span> strike uses algorithms based on long used techniques of triangulation. Determination of the event s original signal strength relies on the behavior of the generated magnetic field over distance and time. In general the signal from the event undergoes geometric dispersion and environmental attenuation as it progresses. Our knowledge of that radial behavior together with the strength of the signal received by detecting sites permits an extrapolation and evaluation of the original strength of the <span class="hlt">lightning</span> strike. It also limits the detection efficiency (DE) of the network. For expansive grids and with a sparse density of detectors, the DE varies widely over the area served. This limits the utility of the network in gathering information on regional <span class="hlt">lightning</span> strike density and applying it to meteorological studies. A network of this type is a grid of four detectors in the Rondonian region of Brazil. The service area extends over a million square kilometers. Much of that area is covered by rain forests. Thus knowledge of <span class="hlt">lightning</span> strike characteristics over the expanse is of particular value. I have been <span class="hlt">developing</span> a process that determines the DE over the region [3]. In turn, this provides a way to produce <span class="hlt">lightning</span> strike density maps, corrected for DE, over the entire region of interest. This report offers a survey of that <span class="hlt">development</span> to date and a record of present activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100042581','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100042581"><span>Rationales for the <span class="hlt">Lightning</span> Flight-Commit Criteria</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Willett, John C. (Editor); Merceret, Francis J.; Krider, E. Philip; Dye, James E.; OBrien, T. Paul; Rust, W. David; Walterscheid, Richard L.; Madura, John T.; Christian, Hugh J.</p> <p>2010-01-01</p> <p>Since natural and artificially-initiated (or "triggered") <span class="hlt">lightning</span> are demonstrated hazards to the launch of space vehicles, the American space program has responded by establishing a set of <span class="hlt">Lightning</span> Flight Commit Criteria (LFCC), also known as <span class="hlt">Lightning</span> Launch Commit Criteria (LLCC), and associated Definitions to mitigate the risk. The LLCC apply to all Federal Government ranges and similar LFCC have been adopted by the Federal Aviation Administration for application at state-operated and private spaceports. The LLCC and Definitions have been <span class="hlt">developed</span>, reviewed, and approved over the years of the American space program, progressing from relatively simple rules in the mid-twentieth century (that were inadequate) to a complex suite for launch operations in the early 21st century. During this evolutionary process, a "<span class="hlt">Lightning</span> Advisory Panel (LAP)" of top American scientists in the field of atmospheric electricity was established to guide it. Details of this process are provided in a companion document entitled "A History of the <span class="hlt">Lightning</span> Launch Commit Criteria and the <span class="hlt">Lightning</span> Advisory Panel for America s Space program" which is available as NASA Special Publication 2010-216283. As new knowledge and additional operational experience have been gained, the LFCC/LLCC have been updated to preserve or increase their safety and to increase launch availability. All launches of both manned and unmanned vehicles at all Federal Government ranges now use the same rules. This simplifies their application and minimizes the cost of the weather infrastructure to support them. Vehicle operators and Range safety personnel have requested that the LAP provide a detailed written rationale for each of the LFCC so that they may better understand and appreciate the scientific and operational justifications for them. This document provides the requested rationales</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008GeoRL..3515802A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008GeoRL..3515802A"><span>Characterization of infrasound from <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Assink, J. D.; Evers, L. G.; Holleman, I.; Paulssen, H.</p> <p>2008-08-01</p> <p>During thunderstorm activity in the Netherlands, electromagnetic and infrasonic signals are emitted due to the process of <span class="hlt">lightning</span> and thunder. It is shown that correlating infrasound detections with results from a electromagnetic <span class="hlt">lightning</span> detection network is successful up to distances of 50 km from the infrasound array. Infrasound recordings clearly show blastwave characteristics which can be related to cloud-ground discharges, with a dominant frequency between 1-5 Hz. Amplitude measurements of CG discharges can partly be explained by the beam pattern of a line source with a dominant frequency of 3.9 Hz, up to a distance of 20 km. The ability to measure <span class="hlt">lightning</span> activity with infrasound arrays has both positive and negative implications for CTBT verification purposes. As a scientific application, <span class="hlt">lightning</span> studies can benefit from the worldwide infrasound verification system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970024904','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970024904"><span><span class="hlt">Lightning</span> Effects in the Payload Changeout Room</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, Garland L.; Fisher, Franklin A.; Collier, Richard S.; Medelius, Pedro J.</p> <p>1997-01-01</p> <p>Analytical and empirical studies have been performed to provide better understanding of the electromagnetic environment inside the Payload Changeout Room and Orbiter payload bay resulting from <span class="hlt">lightning</span> strikes to the launch pad <span class="hlt">lightning</span> protection system. The analytical studies consisted of physical and mathematical modeling of the pad structure and the Payload Changeout Room. Empirical testing was performed using a <span class="hlt">lightning</span> simulator to simulate controlled (8 kA) <span class="hlt">lightning</span> strikes to the catenary wire <span class="hlt">lightning</span> protection system. In addition to the analyses and testing listed above, an analysis of the configuration with the vehicle present was conducted, in lieu of testing, by the Finite Difference, Time Domain method.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/362646-grounding-lightning-protection-volume','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/362646-grounding-lightning-protection-volume"><span>Grounding and <span class="hlt">lightning</span> protection. Volume 5</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Robinson, M.D.</p> <p>1987-12-31</p> <p>Grounding systems protect personnel and equipment by isolating faulted systems and dissipating transient currents. <span class="hlt">Lightning</span> protection systems minimize the possible consequences of a direct strike by <span class="hlt">lightning</span>. This volume focuses on design requirements of the grounding system and on present-day concepts used in the design of <span class="hlt">lightning</span> protection systems. Various types of grounding designs are presented, and their advantages and disadvantages discussed. Safety, of course, is the primary concern of any grounding system. Methods are shown for grounding the non-current-carrying parts of electrical equipment to reduce shock hazards to personnel. <span class="hlt">Lightning</span> protection systems are installed on tall structures (such asmore » chimneys and cooling towers) to minimize the possibility of structural damage caused by direct <span class="hlt">lightning</span> strokes. These strokes may carry currents of 200,000 A or more. The volume examines the formation and characteristics of <span class="hlt">lightning</span> strokes and the way stroke characteristics influence the design of <span class="hlt">lightning</span> protection systems. Because a large portion of the grounding system is buried in soil or concrete, it is not readily accessible for inspection or repair after its installation. The volume details the careful selection and sizing of materials needed to ensure a long, maintenance-free life for the system. Industry standards and procedures for testing the adequacy of the grounding system are also discussed.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000963','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000963"><span>WRF-Chem Simulations of <span class="hlt">Lightning</span>-NOx Production and Transport in Oklahoma and Colorado Thunderstorms Observed During DC3</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cummings, Kristin A.; Pickering, Kenneth E.; Barth, M.; Bela, M.; Li, Y.; Allen, D.; Bruning, E.; MacGorman, D.; Rutledge, S.; Basarab, B.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160000963'); toggleEditAbsImage('author_20160000963_show'); toggleEditAbsImage('author_20160000963_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160000963_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160000963_hide"></p> <p>2016-01-01</p> <p>The focus of this analysis is on <span class="hlt">lightning</span>-generated nitrogen oxides (LNOx) and their distribution for two thunderstorms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign in May-June 2012. The Weather Research and Forecasting Chemistry (WRF-Chem) model is used to perform cloud-resolved simulations for the May 29-30 Oklahoma severe convection, which contained one supercell, and the June 6-7 Colorado squall line. Aircraft and ground-based observations (e.g., trace gases, <span class="hlt">lightning</span> and radar) collected during DC3 are used in comparisons against the model-simulated <span class="hlt">lightning</span> flashes generated by the flash rate parameterization schemes (FRPSs) incorporated into the model, as well as the model-simulated LNOx <span class="hlt">predicted</span> in the anvil outflow. Newly generated FRPSs based on DC3 radar observations and <span class="hlt">Lightning</span> Mapping Array data are implemented in the model, along with previously <span class="hlt">developed</span> schemes from the literature. The results of these analyses will also be compared between storms to investigate which FRPSs were most appropriate for the two types of convection and to examine the variation in the LNOx production. The simulated LNOx results from WRF-Chem will also be compared against other previously studied mid-latitude thunderstorms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-88_DarkLightning.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-88_DarkLightning.html"><span>ScienceCast 88: Dark <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-01-07</p> <p>Researchers studying thunderstorms have made a surprising discovery: The <span class="hlt">lightning</span> we see with our eyes has a dark competitor that discharges storm clouds and flings antimatter into space. Scientists are scrambling to understand "dark <span class="hlt">lightning</span>."</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.203..164H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.203..164H"><span>Cloud-to-ground <span class="hlt">lightning</span> activity in Colombia: A 14-year study using <span class="hlt">lightning</span> location system data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrera, J.; Younes, C.; Porras, L.</p> <p>2018-05-01</p> <p>This paper presents the analysis of 14 years of cloud-to-ground <span class="hlt">lightning</span> activity observation in Colombia using <span class="hlt">lightning</span> location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain <span class="hlt">lightning</span> parameters used in designing <span class="hlt">lightning</span> protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. <span class="hlt">Lightning</span> flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The <span class="hlt">lightning</span> flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global <span class="hlt">lightning</span> activity hotspots was performed showing good correlation. Besides, the <span class="hlt">lightning</span> flash density variation with altitude shows an inverse relation between these two variables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/cmaq/users-guide-wrf-lightning-assimilation','PESTICIDES'); return false;" href="https://www.epa.gov/cmaq/users-guide-wrf-lightning-assimilation"><span>User's Guide - WRF <span class="hlt">Lightning</span> Assimilation</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This document describes how to run WRF with the <span class="hlt">lightning</span> assimilation technique described in Heath et al. (2016). The assimilation method uses gridded <span class="hlt">lightning</span> data to trigger and suppress sub-grid deep convection in Kain-Fritsch.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090017890&hterms=epa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Depa','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090017890&hterms=epa&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Depa"><span>A NASA <span class="hlt">Lightning</span> Parameterization for CMAQ</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William; Khan, Maudood; Biazar, Arastoo; Newchurch, Mike; McNider, Richard</p> <p>2009-01-01</p> <p>Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, <span class="hlt">lightning</span> modeling for CMAQ is highly oversimplified. This leads to very poor estimates of <span class="hlt">lightning</span>-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that <span class="hlt">lightning</span> is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA <span class="hlt">lightning</span> model, called the <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) that combines state-of-the-art <span class="hlt">lightning</span> measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of <span class="hlt">lightning</span> NOx production for CMAQ. NASA satellite <span class="hlt">lightning</span> data is used in conjunction with ground-based <span class="hlt">lightning</span> detection systems to assure that the best representation of <span class="hlt">lightning</span> frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-1316.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec25-1316.pdf"><span>14 CFR 25.1316 - System <span class="hlt">lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... airplane; (5) Establishing the susceptibility of the systems to the internal and external <span class="hlt">lightning</span>...) Determining the <span class="hlt">lightning</span> strike zones for the airplane; (2) Establishing the external <span class="hlt">lightning</span> environment for the zones; (3) Establishing the internal environment; (4) Identifying all the electrical and...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870012438','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870012438"><span>New methods and results for quantification of <span class="hlt">lightning</span>-aircraft electrodynamics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pitts, Felix L.; Lee, Larry D.; Perala, Rodney A.; Rudolph, Terence H.</p> <p>1987-01-01</p> <p>The NASA F-106 collected data on the rates of change of electromagnetic parameters on the aircraft surface during over 700 direct <span class="hlt">lightning</span> strikes while penetrating thunderstorms at altitudes from 15,000 t0 40,000 ft (4,570 to 12,190 m). These in situ measurements provided the basis for the first statistical quantification of the <span class="hlt">lightning</span> electromagnetic threat to aircraft appropriate for determining indirect <span class="hlt">lightning</span> effects on aircraft. These data are used to update previous <span class="hlt">lightning</span> criteria and standards <span class="hlt">developed</span> over the years from ground-based measurements. The proposed standards will be the first which reflect actual aircraft responses measured at flight altitudes. Nonparametric maximum likelihood estimates of the distribution of the peak electromagnetic rates of change for consideration in the new standards are obtained based on peak recorder data for multiple-strike flights. The linear and nonlinear modeling techniques <span class="hlt">developed</span> provide means to interpret and understand the direct-strike electromagnetic data acquired on the F-106. The reasonable results obtained with the models, compared with measured responses, provide increased confidence that the models may be credibly applied to other aircraft.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023316','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023316"><span><span class="hlt">Lightning</span> protection for shuttle propulsion elements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodloe, Carolyn C.; Giudici, Robert J.</p> <p>1991-01-01</p> <p>The results of <span class="hlt">lightning</span> protection analyses and tests are weighed against the present set of waivers to the NASA <span class="hlt">lightning</span> protection specification. The significant analyses and tests are contrasted with the release of a new and more realistic <span class="hlt">lightning</span> protection specification, in September 1990, that resulted in an inordinate number of waivers. A variety of <span class="hlt">lightning</span> protection analyses and tests of the Shuttle propulsion elements, the Solid Rocket Booster, the External Tank, and the Space Shuttle Main Engine, were conducted. These tests range from the sensitivity of solid propellant during shipping to penetration of cryogenic tanks during flight. The Shuttle propulsion elements have the capability to survive certain levels of <span class="hlt">lightning</span> strikes at certain times during transportation, launch site operations, and flight. Changes are being evaluated that may improve the odds of withstanding a major <span class="hlt">lightning</span> strike. The Solid Rocket Booster is the most likely propulsion element to survive if systems tunnel bond straps are improved. Wiring improvements were already incorporated and major protection tests were conducted. The External Tank remains vulnerable to burn-through penetration of its skin. Proposed design improvements include the use of a composite nose cone and conductive or laminated thermal protection system coatings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE22A..02T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE22A..02T"><span><span class="hlt">Lightning</span> Enhancement Over Major Shipping Lanes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thornton, J. A.; Holzworth, R. H., II; Virts, K.; Mitchell, T. P.</p> <p>2017-12-01</p> <p>Using twelve years of high resolution global <span class="hlt">lightning</span> stroke data from the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN), we show that <span class="hlt">lightning</span> density is enhanced by up to a factor of two directly over shipping lanes in the northeastern Indian Ocean and the South China Sea as compared to adjacent areas with similar climatological characteristics. The <span class="hlt">lightning</span> enhancement is most prominent during the convectively active season, November-April for the Indian Ocean and April - December in the South China Sea, and has been detectable from at least 2005 to the present. We hypothesize that emissions of aerosol particles and precursors by maritime vessel traffic leads to a microphysical enhancement of convection and storm electrification in the region of the shipping lanes. These persistent localized anthropogenic perturbations to otherwise clean regions are a unique opportunity to more thoroughly understand the sensitivity of maritime deep convection and <span class="hlt">lightning</span> to aerosol particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730018655','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730018655"><span>A three-station <span class="hlt">lightning</span> detection system</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ruhnke, L. H.</p> <p>1972-01-01</p> <p>A three-station network is described which senses magnetic and electric fields of <span class="hlt">lightning</span>. Directional and distance information derived from the data are used to redundantly determine <span class="hlt">lightning</span> position. This redundancy is used to correct consistent propagation errors. A comparison is made of the relative accuracy of VLF direction finders with a newer method to determine distance to and location of <span class="hlt">lightning</span> by the ratio of magnetic-to-electric field as observed at 400 Hz. It was found that VLF direction finders can determine <span class="hlt">lightning</span> positions with only one-half the accuracy of the method that uses the ratio of magnetic-to-electric field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000004589','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000004589"><span><span class="hlt">Lightning</span> Protection Guidelines for Aerospace Vehicles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodloe, C. C.</p> <p>1999-01-01</p> <p>This technical memorandum provides <span class="hlt">lightning</span> protection engineering guidelines and technical procedures used by the George C. Marshall Space Flight Center (MSFC) Electromagnetics and Aerospace Environments Branch for aerospace vehicles. The overviews illustrate the technical support available to project managers, chief engineers, and design engineers to ensure that aerospace vehicles managed by MSFC are adequately protected from direct and indirect effects of <span class="hlt">lightning</span>. Generic descriptions of the <span class="hlt">lightning</span> environment and vehicle protection technical processes are presented. More specific aerospace vehicle requirements for <span class="hlt">lightning</span> protection design, performance, and interface characteristics are available upon request to the MSFC Electromagnetics and Aerospace Environments Branch, mail code EL23.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012038','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012038"><span>Structural Analysis of <span class="hlt">Lightning</span> Protection System for New Launch Vehicle</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cope, Anne; Moore, Steve; Pruss, Richard</p> <p>2008-01-01</p> <p>This project includes the design and specification of a <span class="hlt">lightning</span> protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the <span class="hlt">lightning</span> protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct <span class="hlt">lightning</span> strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct <span class="hlt">Lightning</span> Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the <span class="hlt">lightning</span> protection system and RS&H was responsible for the <span class="hlt">development</span> of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the <span class="hlt">lightning</span> protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of <span class="hlt">lightning</span> protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100038320','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100038320"><span><span class="hlt">Lightning</span> Reporting at 45th Weather Squadron: Recent Improvements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Finn, Frank C.; Roeder, William P.; Buchanan, Michael D.; McNamara, Todd M.; McAllenan, Michael; Winters, Katherine A.; Fitzpatrick, Michael E.; Huddleston, Lisa L.</p> <p>2010-01-01</p> <p>The 45th Weather Squadron (45 WS) provides daily <span class="hlt">lightning</span> reports to space launch customers at CCAFS/KSC. These reports are provided to assess the need to inspect the electronics of satellite payloads, space launch vehicles, and ground support equipment for induced current damage from nearby <span class="hlt">lightning</span> strokes. The 45 WS has made several improvements to the <span class="hlt">lightning</span> reports during 2008-2009. The 4DLSS, implemented in April 2008, provides all <span class="hlt">lightning</span> strokes as opposed to just one stroke per flash as done by the previous system. The 45 WS discovered that the peak current was being truncated to the nearest kilo amp in the database used to generate the daily <span class="hlt">lightning</span> reports, which led to an up to 4% underestimate in the peak current for average <span class="hlt">lightning</span>. This error was corrected and led to elimination of this underestimate. The 45 WS and their mission partners <span class="hlt">developed</span> <span class="hlt">lightning</span> location error ellipses for 99% and 95% location accuracies tailored to each individual stroke and began providing them in the spring of 2009. The new procedure provides the distance from the point of interest to the best location of the stroke (the center of the error ellipse) and the distance to the closest edge of the ellipse. This information is now included in the <span class="hlt">lightning</span> reports, along with the peak current of the stroke. The initial method of calculating the error ellipses could only be used during normal duty hours, i.e. not during nights, weekends, or holidays. This method was improved later to provide <span class="hlt">lightning</span> reports in near real-time, 24/7. The calculation of the distance to the closest point on the ellipse was also significantly improved later. Other improvements were also implemented. A new method to calculate the probability of any nearby <span class="hlt">lightning</span> stroke. being within any radius of any point of interest was <span class="hlt">developed</span> and is being implemented. This may supersede the use of location error ellipses. The 45 WS is pursuing adding data from nine NLDN sensors into 4DLSS in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/5236','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/5236"><span>Electromagnetic Effects Harmonization Working Group (EEHWG) - <span class="hlt">Lightning</span> Task Group : report on aircraft <span class="hlt">lightning</span> strike data</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-07-01</p> <p>In 1995, in response to the <span class="hlt">lightning</span> community's desire to revise the zoning criteria on aircraft, the Electromagnetic Effects Harmonization Working Group (EEHWG) decided that <span class="hlt">lightning</span> attachments to aircraft causing damage should be studied and co...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820050176&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthunderstorm%2Bprotection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820050176&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dthunderstorm%2Bprotection"><span><span class="hlt">Lightning</span> protection of wind turbines</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dodd, C. W.</p> <p>1982-01-01</p> <p>Possible damages to wind turbine components due to <span class="hlt">lightning</span> strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against <span class="hlt">lightning</span> damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a <span class="hlt">lightning</span> waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and <span class="hlt">lightning</span>-resistant components be chosen early in the design phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982ATJSE.104..121D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982ATJSE.104..121D"><span><span class="hlt">Lightning</span> protection of wind turbines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dodd, C. W.</p> <p>1982-05-01</p> <p>Possible damages to wind turbine components due to <span class="hlt">lightning</span> strikes are discussed and means to prevent the damage are presented. A low resistance path to the ground is noted to be essential for any turbine system, including metal paths on nonmetal blades to conduct the strike. Surge arrestors are necessary to protect against overvoltages both from utility lines in normal operation and against <span class="hlt">lightning</span> damage to control equipment and contactors in the generator. MOS structures are susceptible to static discharge injury, as are other semiconductor devices, and must be protected by the presence of static protection circuitry. It is recommended that the electronics be analyzed for the circuit transient response to a <span class="hlt">lightning</span> waveform, to induced and dc current injection, that input/output leads be shielded, everything be grounded, and <span class="hlt">lightning</span>-resistant components be chosen early in the design phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1022790','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1022790"><span>Neurologic complications of <span class="hlt">lightning</span> injuries.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cherington, M; Yarnell, P R; London, S F</p> <p>1995-01-01</p> <p>Over the past ten years, we have cared for 13 patients who suffered serious neurologic complications after being struck by <span class="hlt">lightning</span>. The spectrum of neurologic lesions includes the entire neuraxis from the cerebral hemispheres to the peripheral nerves. We describe these various neurologic disorders with regard to the site of the lesion, severity of the deficit, and the outcome. Damage to the nervous system can be a serious problem for patients struck by <span class="hlt">lightning</span>. Fatalities are associated with hypoxic encephalopathy in patients who suffered cardiac arrests. Patients with spinal cord lesions are likely to have permanent sequelae and paralysis. New technology for detecting <span class="hlt">lightning</span> with wideband magnetic direction finders is useful in establishing <span class="hlt">lightning</span>-flash densities in each state. Florida and the Gulf Coast states have the highest densities. Colorado and the Rocky Mountain states have the next highest. Images PMID:7785254</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920045362&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGlobal%2Bwarming','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920045362&hterms=Global+warming&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGlobal%2Bwarming"><span>The effect of global warming on <span class="hlt">lightning</span> frequencies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Price, Colin; Rind, David</p> <p>1990-01-01</p> <p>The first attempt to model global <span class="hlt">lightning</span> distributions by using the Goddard Institute for Space Studies (GISS) GCM is reported. Three sets of observations showing the relationship between <span class="hlt">lightning</span> frequency and cloud top height are shown. Zonally averaged <span class="hlt">lightning</span> frequency observed by satellite are compared with those calculated using the GISS GCM, and fair agreement is found. The change in <span class="hlt">lightning</span> frequency for a double CO2 climate is calculated and found to be nearly 2.23 x 10 exp 6 extra <span class="hlt">lightning</span> flashes per day.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002890','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002890"><span>Kinematic and Microphysical Control of <span class="hlt">Lightning</span> Flash Rate over Northern Alabama</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carey, Lawrence D.; Bain, Anthony L.; Matthee, Retha; Schultz, Christopher J.; Schultz, Elise V.; Deierling, Wiebke; Petersen, Walter A.</p> <p>2015-01-01</p> <p>The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep convection and the production of nitrogen oxides (NO (sub x)) via <span class="hlt">lightning</span> (LNO (sub x)). A critical step in estimating LNO (sub x) production in a cloud-resolving model (CRM) without explicit <span class="hlt">lightning</span> is to estimate the flash rate from available model parameters that are statistically and physically correlated. As such, the objective of this study is to <span class="hlt">develop</span>, improve and evaluate <span class="hlt">lightning</span> flash rate parameterizations in a variety of meteorological environments and storm types using radar and <span class="hlt">lightning</span> mapping array (LMA) observations taken over Northern Alabama from 2005-2012, including during DC3. UAH's Advanced Radar for Meteorological and Operational Research (ARMOR) and the Weather Surveillance Radar - 1988 Doppler (WSR 88D) located at Hytop (KHTX) comprises the dual-Doppler and polarimetric radar network, which has been in operation since 2004. The northern Alabama LMA (NA LMA) in conjunction with Vaisala's National <span class="hlt">Lightning</span> Detection Network (NLDN) allow for a detailed depiction of total <span class="hlt">lightning</span> during this period. This study will integrate ARMOR-KHTX dual Doppler/polarimetric radar and NA LMA <span class="hlt">lightning</span> observations from past and ongoing studies, including the more recent DC3 results, over northern Alabama to form a large data set of 15-20 case days and over 20 individual storms, including both ordinary multicell and supercell convection. Several flash rate parameterizations will be <span class="hlt">developed</span> and tested, including those based on 1) graupel/small hail volume; 2) graupel/small hail mass, and 3) convective updraft volume. Sensitivity of the flash rate parameterizations to storm intensity, storm morphology and environmental conditions will be explored.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013556&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013556&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary"><span>Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary <span class="hlt">Lightning</span> Mapper for GOES-R and Beyond</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven; Blakeslee, Richard; Koshak, William</p> <p>2008-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total <span class="hlt">lightning</span> activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span> from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous,full-disk <span class="hlt">lightning</span> measurements for storm warning and Nowcasting, 2) provide early warning of tornado activity, and 3) accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were <span class="hlt">developed</span> for the Earth Observing System and have produced a combined 13 year data record of global <span class="hlt">lightning</span> activity. Instrument formulation studies were completed in March 2007 and the implementation phase to <span class="hlt">develop</span> a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument <span class="hlt">development</span>, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> the Level 2B algorithms and applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., <span class="hlt">Lightning</span> Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to <span class="hlt">develop</span> the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time <span class="hlt">lightning</span> mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1320247','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1320247"><span>A Model <span class="hlt">Lightning</span> Safety Policy for Athletics</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bennett, Brian L.</p> <p>1997-01-01</p> <p>Objective: The purpose of this paper is to present a model policy on <span class="hlt">lightning</span> safety for athletic trainers. Background: Among college athletic programs in the United States there is a serious lack of written policy on <span class="hlt">lightning</span> safety. Available evidence shows that most National Collegiate Athletic Association (NCAA) Division I institutions, even though they are located in high <span class="hlt">lightning</span> activity areas of the country, do not have formal, written <span class="hlt">lightning</span> safety policies. Clinical Advantages/ Recommendations: The policy presented herein, which is at the forefront of such policies, is the <span class="hlt">lightning</span> safety policy written as part of a policies and procedures manual for the division of sports medicine at a public NCAA Division I university. This is a policy based on practicality that utilizes the “flash-to- bang” method for determining the distance of <span class="hlt">lightning</span> activity from the observer. The policy begins with the importance of prevention, including the daily monitoring of weather reports. The policy defines a “safe shelter” and specifies the chain of command for determining who removes a team or individuals from an athletic site in the event of dangerous <span class="hlt">lightning</span> activity. PMID:16558459</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/587206-sub-from-lightning-global-distribution-based-lightning-physics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/587206-sub-from-lightning-global-distribution-based-lightning-physics"><span>NO{sub x} from <span class="hlt">lightning</span> 1. Global distribution based on <span class="hlt">lightning</span> physics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Price, C.; Penner, J.; Prather, M.</p> <p>1997-03-01</p> <p>This paper begins a study on the role of <span class="hlt">lightning</span> in maintaining the global distribution of nitrogen oxides (NO{sub x}) in the troposphere. It presents the first global and seasonal distributions of <span class="hlt">lightning</span>-produced NO{sub x} (LNO{sub x}) based on the observed distribution of electrical storms and the physical properties of <span class="hlt">lightning</span> strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20{endash}30 flashes/s with a mean energy per flash of 6.7{times}10{sup 9}J. Intracloud (IC) flashes are more frequent, 50{endash}70 flashes/s but have 10{percent} of the energy of CG strokes and, consequently, produce significantly less NO{sub x}. It appears tomore » us that the majority of previous studies have mistakenly assumed that all <span class="hlt">lightning</span> flashes produce the same amount of NO{sub x}, thus overestimating the NO{sub x} production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10{times}10{sup 16} molecules NO/J based on the current literature. Using a method to simulate global <span class="hlt">lightning</span> frequencies from satellite-observed cloud data, we have calculated the LNO{sub x} on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNO{sub x} is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNO{sub x} is produced in the lowest 5 km by CG <span class="hlt">lightning</span>, convective mixing in the thunderstorms is likely to deposit large amounts of NO{sub x} in the upper troposphere where it is important in ozone production. (Abstract Truncated)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001382','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001382"><span>Exploring <span class="hlt">Lightning</span> Jump Characteristics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.</p> <p>2014-01-01</p> <p>This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total <span class="hlt">lightning</span> flash rate (i.e., <span class="hlt">lightning</span> jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total <span class="hlt">lightning</span> activity from three different <span class="hlt">lightning</span> detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and <span class="hlt">lightning</span> flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980236669','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980236669"><span>The Behavior of Total <span class="hlt">Lightning</span> Activity in Severe Florida Thunderstorms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark; Hodanish, Steve; Sharp, Dave; Goodman, Steve; Raghavan, Ravi; Buechler, Dennis</p> <p>1998-01-01</p> <p>The <span class="hlt">development</span> of a new observational system called LISDAD (<span class="hlt">Lightning</span> Imaging Sensor Demonstration and Display) has enabled a study of severe weather in central Florida. The total flash rates for storms verified to be severe are found to exceed 60 flashes/min, with some values reaching 500 flashes/min. Similar to earlier results for thunderstorm microbursts, the peak flash rate precedes the severe weather at the ground by 5-20 minutes. A distinguishing feature of severe storms is the presence of <span class="hlt">lightning</span> "jumps"-abrupt increases in flash rate in advance of the maximum rate for the storm. ne systematic total <span class="hlt">lightning</span> precursor to severe weather of all kinds-wind, hail, tornadoes-is interpreted in terms of the updraft that sows the seeds aloft for severe weather at the surface and simultaneously stimulates the ice microphysics that drives the <span class="hlt">lightning</span> activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022939','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022939"><span>The Intra-Cloud <span class="hlt">Lightning</span> Fraction in the Contiguous United States</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Medici, Gina; Cummins, Kenneth L.; Koshak, William J.; Rudlosky, Scott D.; Blakeslee, Richard J.; Goodman, Steven J.; Cecil, Daniel J.; Bright, David R.</p> <p>2015-01-01</p> <p><span class="hlt">Lightning</span> is dangerous and destructive; cloud-to-ground (CG) <span class="hlt">lightning</span> flashes can start fires, interrupt power delivery, destroy property and cause fatalities. Its rate-of-occurrence reflects storm kinematics and microphysics. For decades <span class="hlt">lightning</span> research has been an important focus, and advances in <span class="hlt">lightning</span> detection technology have been essential contributors to our increasing knowledge of <span class="hlt">lightning</span>. A significant step in detection technology is the Geostationary <span class="hlt">Lightning</span> Mapper (GLM) to be onboard the Geostationary Operational Environment Satellite R-Series (GOES-R) to be launched in early 2016. GLM will provide continuous "Total <span class="hlt">Lightning</span>" observations [CG and intra-cloud <span class="hlt">lightning</span> (IC)] with near-uniform spatial resolution over the Americas by measuring radiance at the cloud tops from the different types of <span class="hlt">lightning</span>. These Total <span class="hlt">Lightning</span> observations are expected to significantly improve our ability to nowcast severe weather. It may be important to understand the long-term regional differences in the relative occurrence of IC and CG <span class="hlt">lightning</span> in order to understand and properly use the short-term changes in Total <span class="hlt">Lightning</span> flash rate for evaluating individual storms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335488&Lab=NERL&keyword=forensics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335488&Lab=NERL&keyword=forensics&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">Lightning</span> NOx Production in CMAQ Part I – Using Hourly NLDN <span class="hlt">Lightning</span> Strike Data</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><span class="hlt">Lightning</span>-produced nitrogen oxides (NOX=NO+NO2) in the middle and upper troposphere play an essential role in the production of ozone (O3) and influence the oxidizing capacity of the troposphere. Despite much effort in both observing and modeling <span class="hlt">lightning</span> NOX during the past dec...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003022','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003022"><span>Evaluation of Long-Range <span class="hlt">Lightning</span> Detection Networks Using TRMM/LIS Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.</p> <p>2011-01-01</p> <p>Recent advances in long-range <span class="hlt">lightning</span> detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range <span class="hlt">lightning</span> datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) using observations from the <span class="hlt">Lightning</span> Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm <span class="hlt">developers</span>, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740006641','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740006641"><span>Analysis and calculation of <span class="hlt">lightning</span>-induced voltages in aircraft electrical circuits</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Plumer, J. A.</p> <p>1974-01-01</p> <p>Techniques to calculate the transfer functions relating <span class="hlt">lightning</span>-induced voltages in aircraft electrical circuits to aircraft physical characteristics and <span class="hlt">lightning</span> current parameters are discussed. The analytical work was carried out concurrently with an experimental program of measurements of <span class="hlt">lightning</span>-induced voltages in the electrical circuits of an F89-J aircraft. A computer program, ETCAL, <span class="hlt">developed</span> earlier to calculate resistive and inductive transfer functions is refined to account for skin effect, providing results more valid over a wider range of <span class="hlt">lightning</span> waveshapes than formerly possible. A computer program, WING, is derived to calculate the resistive and inductive transfer functions between a basic aircraft wing and a circuit conductor inside it. Good agreement is obtained between transfer inductances calculated by WING and those reduced from measured data by ETCAL. This computer program shows promise of expansion to permit eventual calculation of potential <span class="hlt">lightning</span>-induced voltages in electrical circuits of complete aircraft in the design stage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900005749&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dthunderstorm%2Bprotection','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900005749&hterms=thunderstorm+protection&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dthunderstorm%2Bprotection"><span>Effects of <span class="hlt">lightning</span> on operations of aerospace vehicles</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fisher, Bruce D.</p> <p>1989-01-01</p> <p>Traditionally, aircraft <span class="hlt">lightning</span> strikes were a major aviation safety issue. However, the increasing use of composite materials and the use of digital avionics for flight critical systems will require that more specific <span class="hlt">lightning</span> protection measures be incorporated in the design of such aircraft in order to maintain the excellent <span class="hlt">lightning</span> safety record presently enjoyed by transport aircraft. In addition, several recent <span class="hlt">lightning</span> mishaps, most notably the loss of the Atlas/Centaur-67 vehicle at Cape Canaveral Air Force Station, Florida in March 1987, have shown the susceptibility of aircraft and launch vehicles to the phenomenon of vehicle-triggered <span class="hlt">lightning</span>. The recent findings of the NASA Storm Hazards Program were reviewed as they pertain to the atmospheric conditions conducive to aircraft <span class="hlt">lightning</span> strikes. These data are then compared to recent summaries of <span class="hlt">lightning</span> strikes to operational aircraft fleets. Finally, the new launch commit criteria for triggered <span class="hlt">lightning</span> being used by NASA and the U.S. Defense Department are summarized. The NASA Research data show that the greatest probability of a direct strike in a thunderstorm occurs at ambient temperatures of about -40 C. Relative precipitation and turbulence levels were characterized as negligible to light for these conditions. However, operational fleet data have shown that most aircraft <span class="hlt">lightning</span> strikes in routine operations occur at temperatures near the freezing level in non-cumulonimbus clouds. The non-thunderstorm environment was not the subject of dedicated airborne <span class="hlt">lightning</span> research.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730002931','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730002931"><span><span class="hlt">Lightning</span> criteria relative to space shuttles: Currents and electric field intensity in Florida <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Uman, M. A.; Mclain, D. K.</p> <p>1972-01-01</p> <p>The measured electric field intensities of 161 <span class="hlt">lightning</span> strokes in 39 flashes which occurred between 1 and 35 km from an observation point at Kennedy Space Center, Florida during June and July of 1971 have been analyzed to determine the <span class="hlt">lightning</span> channel currents which produced the fields. In addition, typical channel currents are derived and from these typical electric fields at distances between 0.5 and 100 km are computed and presented. On the basis of the results recommendations are made for changes in the specification of <span class="hlt">lightning</span> properties relative to space vehicle design as given in NASA TMX-64589 (Daniels, 1971). The small sample of <span class="hlt">lightning</span> analyzed yielded several peak currents in the 100 kA range. Several current rise-times from zero to peak of 0.5 microsec or faster were found; and the fastest observed current rate-of-rise was near 200 kA/microsec. The various sources of error are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960020732','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960020732"><span><span class="hlt">Lightning</span> electromagnetics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wahid, Parveen</p> <p>1995-01-01</p> <p>This project involved the determination of the effective radiated power of <span class="hlt">lightning</span> sources and the polarization of the radiating source. This requires the computation of the antenna patterns at all the LDAR site receiving antennas. The known radiation patterns and RF signal levels measured at the antennas will be used to determine the effective radiated power of the <span class="hlt">lightning</span> source. The azimuth and elevation patterns of the antennas in the LDAR system were computed using flight test data that was gathered specifically for this purpose. The results presented in this report deal with the azimuth patterns for all the antennas and the elevation patterns for three of the seven sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090025957','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090025957"><span>Partitioning the LIS/OTD <span class="hlt">Lightning</span> Climatological Dataset into Separate Ground and Cloud Flash Distributions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, W. J.; Solarkiewicz, R. J.</p> <p>2009-01-01</p> <p>Presently, it is not well understood how to best model nitrogen oxides (NOx) emissions from <span class="hlt">lightning</span> because <span class="hlt">lightning</span> is highly variable. Peak current, channel length, channel altitude, stroke multiplicity, and the number of flashes that occur in a particular region (i.e., flash density) all influence the amount of <span class="hlt">lightning</span> NOx produced. Moreover, these 5 variables are not the same for ground and cloud flashes; e.g., cloud flashes normally have lower peak currents, higher altitudes, and higher flash densities than ground flashes [see (Koshak, 2009) for additional details]. Because the existing satellite observations of <span class="hlt">lightning</span> (Fig. 1) from the <span class="hlt">Lightning</span> Imaging Sensor/Optical Transient Detector (LIS/OTD) do not distinguish between ground and cloud fashes, which produce different amounts of NOx, it is very difficult to accurately account for the regional/global production of <span class="hlt">lightning</span> NOx. Hence, the ability to partition the LIS/OTD <span class="hlt">lightning</span> climatology into separate ground and cloud flash distributions would substantially benefit the atmospheric chemistry modeling community. NOx indirectly influences climate because it controls the concentration of ozone and hydroxyl radicals in the atmosphere. The importance of <span class="hlt">lightning</span>-produced NOx is empasized throughout the scientific literature (see for example, Huntrieser et al. 1998). In fact, <span class="hlt">lightning</span> is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2 and 20 Tg (N)yr(sup -1) (Lee et al., 1997), with more recent estimates of about 6 Tg(N)yr(sup -1) (Martin et al., 2007). In order to make accurate <span class="hlt">predictions</span>, global chemistry/climate models (as well as regional air quality modells) must more accurately account for the effects of <span class="hlt">lightning</span> NOx. In particular, the NASA Goddard Institute for Space Studies (GISS) Model E (Schmidt et al., 2005) and the GEOS-CHEM global chemical transport model (Bey et al., 2001) would each benefit from a partitioning of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28465545','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28465545"><span>On the initiation of <span class="hlt">lightning</span> in thunderclouds.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chilingarian, Ashot; Chilingaryan, Suren; Karapetyan, Tigran; Kozliner, Lev; Khanikyants, Yeghia; Hovsepyan, Gagik; Pokhsraryan, David; Soghomonyan, Suren</p> <p>2017-05-02</p> <p>The relationship of <span class="hlt">lightning</span> and elementary particle fluxes in the thunderclouds is not fully understood to date. Using the particle beams (the so-called Thunderstorm Ground Enhancements - TGEs) as a probe we investigate the characteristics of the interrelated atmospheric processes. The well-known effect of the TGE dynamics is the abrupt termination of the particle flux by the <span class="hlt">lightning</span> flash. With new precise electronics, we can see that particle flux decline occurred simultaneously with the rearranging of the charge centers in the cloud. The analysis of the TGE energy spectra before and after the <span class="hlt">lightning</span> demonstrates that the high-energy part of the TGE energy spectra disappeared just after <span class="hlt">lightning</span>. The decline of particle flux coincides on millisecond time scale with first atmospheric discharges and we can conclude that Relativistic Runaway Electron Avalanches (RREA) in the thundercloud assist initiation of the negative cloud to ground <span class="hlt">lightning</span>. Thus, RREA can provide enough ionization to play a significant role in the unleashing of the <span class="hlt">lightning</span> flash.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JGRD..112.5307O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JGRD..112.5307O"><span>Effects of <span class="hlt">lightning</span> NOx production during the 21 July European <span class="hlt">Lightning</span> Nitrogen Oxides Project storm studied with a three-dimensional cloud-scale chemical transport model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich</p> <p>2007-03-01</p> <p>The 21 July 1998 thunderstorm observed during the European <span class="hlt">Lightning</span> Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which <span class="hlt">developed</span> supercell characteristics and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of <span class="hlt">lightning</span> NOx production which uses observed flash rates as input. Estimates of <span class="hlt">lightning</span> NOx production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual <span class="hlt">lightning</span> NOx source of 7 Tg N yr-1. Chemical reactions were included in the model to evaluate the impact of <span class="hlt">lightning</span> NOx on ozone. During the storm, the inclusion of <span class="hlt">lightning</span> NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from <span class="hlt">lightning</span> NOx, maximizing at approximately 5 ppbv day-1 at 5.5 km. Between 8 and 10.5 km, <span class="hlt">lightning</span> NOx causes decreased net ozone production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003APS..TSS3APS02K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003APS..TSS3APS02K"><span>Model of <span class="hlt">lightning</span> strike to a steel reinforce structure using PSpice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koone, Neil; Condren, Brian</p> <p>2003-03-01</p> <p>Surges and arcs from <span class="hlt">lightning</span> can pose hazards to personnel and sensitive equipment and processes. Steel reinforcement in structures can act as a Faraday cage mitigating <span class="hlt">lightning</span> effects. Knowing a structure's response to a <span class="hlt">lightning</span> strike allows hazards associated with <span class="hlt">lightning</span> to be analyzed. A model of <span class="hlt">lightning</span>'s response in a steel reinforced structure has been <span class="hlt">developed</span> using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile <span class="hlt">lightning</span> strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE43A0255L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE43A0255L"><span>Triangulations of sprites relative to parent lighting near the Oklahoma <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, G.; Cummer, S. A.; Li, J.; Lyons, W. A.; Stanley, M. A.; Krehbiel, P. R.; Rison, W.; Thomas, R. J.; Weiss, S. A.; Beasley, W. H.; Bruning, E. C.; MacGorman, D. R.; Palivec, K.; Samaras, T. M.</p> <p>2012-12-01</p> <p>Temporal and spatial <span class="hlt">development</span> of sprite-producing <span class="hlt">lightning</span> flashes is examined with coordinated observations over an asymmetric mesoscale convective system on June 29, 2011 near the Oklahoma <span class="hlt">Lightning</span> Mapping Array (OK-LMA). About 30 sprites were mutually observed from Bennett, Colorado and Hawley, Texas, allowing us to triangulate sprite formation in comparison with spatial/temporal <span class="hlt">development</span> of the parent <span class="hlt">lightning</span>. Complementary measurements of broadband (<1 Hz to ~300 kHz) radio frequency <span class="hlt">lightning</span> signals are available from several magnetic sensors across the United States. Our analyses indicate that although sprite locations can be significantly offset horizontally (up to 70 km) from the parent ground stroke, they are usually laterally within 30 km of the in-cloud <span class="hlt">lightning</span> activity during the 100 ms time interval prior to the sprite production. This is true for short-delayed sprites produced within 20 ms after a causative stroke, and long-delayed sprites appearing up to more than 200 ms after the stroke. Multiple sprites appearing as dancing/jumping events can be produced during one single flash either in a single <span class="hlt">lightning</span> channel, through series of current surges superposed on a long and intense continuing current, or in multiple <span class="hlt">lightning</span> channels through distinct ground strokes of the flash. The burst of continuous very-low-frequency/low-frequency <span class="hlt">lightning</span> sferics commonly observed in association with sprites is linked to the horizontal progression of multiple negative leaders through positive charged regions of the cloud, which are typically centered at altitudes ~1-2 km (or more) above the freezing level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913766L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913766L"><span>The use of a potential <span class="hlt">lightning</span> index in multi-microphysical cloud-resolving simulations of a V-shape convective system.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lagasio, Martina; Parodi, Antonio; Procopio, Renato; Rachidi, Farhad; Fiori, Elisabetta</p> <p>2017-04-01</p> <p><span class="hlt">Lightning</span> activity is a characteristic phenomenon of severe weather as confirmed by many studies on different weather regimes that reveal strong interplay between <span class="hlt">lightning</span> phenomena and extreme rainfall process in thunderstorms. The improvement of the so-called total (i.e. cloud-to-ground and intra-cloud) <span class="hlt">lightning</span> observation systems in the last decades has allowed to investigate the relationship between the <span class="hlt">lightning</span> flash rate and the kinematic and microphysical properties of severe hydro-meteorological events characterized by strong convection. V-shape back-building Mesoscale Convective Systems (MCSs) occurring over short periods of time have hit several times the Liguria region located in north-western Italy in the period between October 2010 and November 2014, generating flash-flood events responsible for hundreds of fatalities and millions of euros of damage. All these events showed an area of intense precipitation sweeping an arc of a few degrees around the warm conveyor belt originating about 50-60 km from the Liguria coastline. A second main ingredient was the presence of a convergence line, which supported the <span class="hlt">development</span> and the maintenance of the aforementioned back-building process. Other common features were the persistence of such geometric configuration for many hours and the associated strong <span class="hlt">lightning</span> activity. A methodological approach for the evaluation of these types of extreme rainfall and <span class="hlt">lightning</span> convective events is presented for a back-building MCS event occurred in Genoa in 2014. A microphysics driven ensemble of WRF simulations at cloud-permitting grid spacing (1 km) with different microphysics parameterizations is used and compared to the available observational radar and <span class="hlt">lightning</span> data. To pursue this aim, the performance of the <span class="hlt">Lightning</span> Potential Index (LPI) as a measure of the potential for charge generation and separation that leads to <span class="hlt">lightning</span> occurrence in clouds, is computed and analyzed to gain further physical insight in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........47M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........47M"><span>Automated Studies of Continuing Current in <span class="hlt">Lightning</span> Flashes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinez-Claros, Jose</p> <p></p> <p>Continuing current (CC) is a continuous luminosity in the <span class="hlt">lightning</span> channel that lasts longer than 10 ms following a <span class="hlt">lightning</span> return stroke to ground. <span class="hlt">Lightning</span> flashes following CC are associated with direct damage to power lines and are thought to be responsible for causing <span class="hlt">lightning</span>-induced forest fires. The <span class="hlt">development</span> of an algorithm that automates continuing current detection by combining NLDN (National <span class="hlt">Lightning</span> Detection Network) and LEFA (Langmuir Electric Field Array) datasets for CG flashes will be discussed. The algorithm was applied to thousands of cloud-to-ground (CG) flashes within 40 km of Langmuir Lab, New Mexico measured during the 2013 monsoon season. It counts the number of flashes in a single minute of data and the number of return strokes of an individual <span class="hlt">lightning</span> flash; records the time and location of each return stroke; performs peak analysis on E-field data, and uses the slope of interstroke interval (ISI) E-field data fits to recognize whether continuing current (CC) exists within the interval. Following CC detection, duration and magnitude are measured. The longest observed C in 5588 flashes was 631 ms. The performance of the algorithm (vs. human judgement) was checked on 100 flashes. At best, the reported algorithm is "correct" 80% of the time, where correct means that multiple stations agree with each other and with a human on both the presence and duration of CC. Of the 100 flashes that were validated against human judgement, 62% were hybrid. Automated analysis detects the first but misses the second return stroke in many cases where the second return stroke is followed by long CC. This problem is also present in human interpretation of field change records.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/36768','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/36768"><span>Relating <span class="hlt">lightning</span> data to fire occurrence data</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Frank H. Koch</p> <p>2009-01-01</p> <p><span class="hlt">Lightning</span> disturbance can affect forest health at various scales. <span class="hlt">Lightning</span> strikes may kill or weaken individual trees. <span class="hlt">Lightning</span>-damaged trees may in turn function as epicenters of pest outbreaks in forest stands, as is the case with the southern pine beetle and other bark beetles (Rykiel and others 1988).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-1316.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title14-vol1/pdf/CFR-2011-title14-vol1-sec25-1316.pdf"><span>14 CFR 25.1316 - System <span class="hlt">lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-01-01</p> <p>... systems to perform these functions are not adversely affected when the airplane is exposed to <span class="hlt">lightning</span>... these functions can be recovered in a timely manner after the airplane is exposed to <span class="hlt">lightning</span>. (c) Compliance with the <span class="hlt">lightning</span> protection criteria prescribed in paragraphs (a) and (b) of this section must...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1643R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1643R"><span><span class="hlt">Lightning</span> and Life on Exoplanets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rimmer, Paul; Ardaseva, Aleksandra; Hodosan, Gabriella; Helling, Christiane</p> <p>2016-07-01</p> <p>Miller and Urey performed a ground-breaking experiment, in which they discovered that electric discharges through a low redox ratio gas of methane, ammonia, water vapor and hydrogen produced a variety of amino acids, the building blocks of proteins. Since this experiment, there has been significant interest on the connection between <span class="hlt">lightning</span> chemistry and the origin of life. Investigation into the atmosphere of the Early Earth has generated a serious challenge for this project, as it has been determined both that Earth's early atmosphere was likely dominated by carbon dioxide and molecular nitrogen with only small amounts of hydrogen, having a very high redox ratio, and that discharges in gases with high redox ratios fail to yield more than trace amounts of biologically relevant products. This challenge has motivated several origin of life researchers to abandon <span class="hlt">lightning</span> chemistry, and to concentrate on other pathways for prebiotic synthesis. The discovery of over 2000 exoplanets includes a handful of rocky planets within the habitable zones around their host stars. These planets can be viewed as remote laboratories in which efficient <span class="hlt">lightning</span> driven prebiotic synthesis may take place. This is because many of these rocky exoplanets, called super-Earths, have masses significantly greater than that of Earth. This higher mass would allow them to more retain greater amounts hydrogen within their atmosphere, reducing the redox ratio. Discharges in super-Earth atmospheres can therefore result in a significant yield of amino acids. In this talk, I will discuss new work on what <span class="hlt">lightning</span> might look like on exoplanets, and on <span class="hlt">lightning</span> driven chemistry on super-Earths. Using a chemical kinetics model for a super-Earth atmosphere with smaller redox ratios, I will show that in the presence of <span class="hlt">lightning</span>, the production of the amino acid glycine is enhanced up to a certain point, but with very low redox ratios, the production of glycine is again inhibited. I will conclude</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990036563','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990036563"><span>Electro-optic <span class="hlt">Lightning</span> Detector</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William J.; Solakiewicz, Richard J.</p> <p>1996-01-01</p> <p>The design, alignment, calibration, and field deployment of a solid-state <span class="hlt">lightning</span> detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. <span class="hlt">Lightning</span>-caused electric field changes are related to small changes in the transmission of laser light through the optical cell. Several hundred <span class="hlt">lightning</span> electric field change excursions were recorded during five thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in northern Alabama.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMSA21B0084H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMSA21B0084H"><span>Ionospheric signatures of <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsu, M.; Liu, J.</p> <p>2003-12-01</p> <p>The geostationary metrology satellite (GMS) monitors motions of thunderstorm cloud, while the <span class="hlt">lightning</span> detection network (LDN) in Taiwan and the very high Frequency (VHF) radar in Chung-Li (25.0›XN, 121.2›XE) observed occurrences of <span class="hlt">lightning</span> during May and July, 1997. Measurements from the digisonde portable sounder (DPS) at National Central University shows that <span class="hlt">lightning</span> results in occurrence of the sporadic E-layer (Es), as well as increase and decrease of plasma density at the F2-peak and E-peak in the ionosphere, respectively. A network of ground-based GPS receivers is further used to monitor the spatial distribution of the ionospheric TEC. To explain the plasma density variations, a model is proposed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990106243&hterms=applied+optics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dapplied%2Boptics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990106243&hterms=applied+optics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dapplied%2Boptics"><span>Electro-Optic <span class="hlt">Lightning</span> Detector</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, Willliam; Solakiewicz, Richard</p> <p>1998-01-01</p> <p>The design, alignment, calibration, and field deployment of a solid-state <span class="hlt">lightning</span> detector is described. The primary sensing component of the detector is a potassium dihydrogen phosphate (KDP) electro-optic crystal that is attached in series to a flat plate aluminum antenna; the antenna is exposed to the ambient thundercloud electric field. A semiconductor laser diode (lambda = 685 nm), polarizing optics, and the crystal are arranged in a Pockels cell configuration. <span class="hlt">Lightning</span>-caused electric field changes are then related to small changes in the transmission of laser light through the optical cell. Several hundred <span class="hlt">lightning</span> electric field change excursions were recorded during 4 thunderstorms that occurred in the summer of 1998 at the NASA Marshall Space Flight Center (MSFC) in Northern Alabama.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=thunder&pg=3&id=EJ027314','ERIC'); return false;" href="https://eric.ed.gov/?q=thunder&pg=3&id=EJ027314"><span><span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Pampe, William R.</p> <p>1970-01-01</p> <p>Presents basic physical theory for movement of electric charges in clouds, earth, and air during production of <span class="hlt">lightning</span> and thunder. Amount of electrical energy produced and heating effects during typical thunderstorms is described. Generalized safety practices are given. (JM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013544&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013544&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary"><span>Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary <span class="hlt">Lightning</span> Mapper for GOES-R and Beyond</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Petersen, W.; Buechler, D. E.; Krehbiel, P. R.; Gatlin, P.; Zubrick, S.</p> <p>2008-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total <span class="hlt">lightning</span> activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span> from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk <span class="hlt">lightning</span> measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were <span class="hlt">developed</span> for the Earth Observing System and have produced a combined 13 year data record of global <span class="hlt">lightning</span> activity. Instrument formulation studies were completed in March 2007 and the implementation phase to <span class="hlt">develop</span> a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument <span class="hlt">development</span>, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> the Level 2 ground processing algorithms and applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., <span class="hlt">Lightning</span> Mapping Arrays in North Alabama and the Washington DC Metropolitan area)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApPhL.109i3502M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApPhL.109i3502M"><span>Technique for the comparison of light spectra from natural and laboratory generated <span class="hlt">lightning</span> current arcs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchard, D.; Clark, D.; Carr, D.; Haddad, A.</p> <p>2016-08-01</p> <p>A technique was <span class="hlt">developed</span> for the comparison of observed emission spectra from <span class="hlt">lightning</span> current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural <span class="hlt">lightning</span> events. A spectrograph system was used in which the wavelength of light emitted by the <span class="hlt">lightning</span> arc was analyzed to derive elemental interactions. A <span class="hlt">lightning</span> impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the <span class="hlt">lightning</span> current and <span class="hlt">lightning</span> arc length to be investigated. A natural <span class="hlt">lightning</span> reference spectrum was reconstructed from literature, and generated <span class="hlt">lightning</span> spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated <span class="hlt">lightning</span> arc induced via self-breakdown produced a very similar spectrum to that of natural <span class="hlt">lightning</span>, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of <span class="hlt">lightning</span> interactions with surrounding media and materials, and in natural phenomena such as recently observed ball <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970012901&hterms=nasa+shuttle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dnasa%2Bshuttle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970012901&hterms=nasa+shuttle&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dnasa%2Bshuttle"><span>NASA Shuttle <span class="hlt">Lightning</span> Research: Observations of Nocturnal Thunderstorms and <span class="hlt">Lightning</span> Displays as Seen During Recent Space Shuttle Missions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vaughan, Otha H., Jr.</p> <p>1994-01-01</p> <p>A number of interesting <span class="hlt">lightning</span> events have been observed using the low light level TV camera of the space shuttle during nighttime observations of thunderstorms near the limb of the Earth. Some of the vertical type <span class="hlt">lightning</span> events that have been observed will be presented. Using TV cameras for observing <span class="hlt">lightning</span> near the Earth's limb allows one to determine the location of the <span class="hlt">lightning</span> and other characteristics by using the star field data and the shuttle's orbital position to reconstruct the geometry of the scene being viewed by the shuttle's TV cameras which are located in the payload bay of the shuttle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023303','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023303"><span><span class="hlt">Lightning</span> location system supervising Swedish power transmission network</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Melin, Stefan A.</p> <p>1991-01-01</p> <p>For electric utilities, the ability to prevent or minimize <span class="hlt">lightning</span> damage on personnel and power systems is of great importance. Therefore, the Swedish State Power Board, has been using data since 1983 from a nationwide <span class="hlt">lightning</span> location system (LLS) for accurately locating <span class="hlt">lightning</span> ground strikes. <span class="hlt">Lightning</span> data is distributed and presented on color graphic displays at regional power network control centers as well as at the national power system control center for optimal data use. The main objectives for use of LLS data are: supervising the power system for optimal and safe use of the transmission and generating capacity during periods of thunderstorms; warning service to maintenance and service crews at power line and substations to end operations hazardous when <span class="hlt">lightning</span>; rapid positioning of emergency crews to locate network damage at areas of detected <span class="hlt">lightning</span>; and post analysis of power outages and transmission faults in relation to <span class="hlt">lightning</span>, using archived <span class="hlt">lightning</span> data for determination of appropriate design and insulation levels of equipment. Staff have found LLS data useful and economically justified since the availability of power system has increased as well as level of personnel safety.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007286','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007286"><span>A Total <span class="hlt">Lightning</span> Perspective of the 20 May 2013 Moore, Oklahoma Supercell</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stano, Geoffrey T.; Schultz, Christopher J.; Carey, Lawrence D.; MacGorman, Don R.; Calhoun, Kristin M.</p> <p>2014-01-01</p> <p>In the early afternoon of 20 May 2013, a storm initiated to the west-southwest of Newcastle, Oklahoma. This storm would rapidly intensify into the parent supercell of the tornado that struck the city of Moore, Oklahoma. This article describes what contributions total <span class="hlt">lightning</span> observations from the Oklahoma <span class="hlt">Lightning</span> Mapping Array could provide to operational forecasters had these observations been available in real-time. This effort includes a focus on the GOES-R pseudo-geostationary <span class="hlt">lightning</span> mapper demonstration product as well as the NASA SPoRT / Meteorological <span class="hlt">Development</span> Laboratory's total <span class="hlt">lightning</span> tracking tool. These observations and tools identified several contributions. Two distinct <span class="hlt">lightning</span> jumps at 1908 and 1928 UTC provided a lead time of 19 minutes ahead of severe hail and 26 minutes ahead of the Moore, Oklahoma tornado's touchdown. These observations provide strong situational awareness to forecasters, as the <span class="hlt">lightning</span> jumps are related to the rapid strengthening of the storm's updraft and mesocyclone and serve as a precursor to the stretching of the storm vortex ahead severe weather.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22474.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22474.html"><span>Artist's Concept of Jupiter <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-06-06</p> <p>This artist's concept of <span class="hlt">lightning</span> distribution in Jupiter's northern hemisphere incorporates a JunoCam image with artistic embellishments. Data from NASA's Juno mission indicates that most of the <span class="hlt">lightning</span> activity on Jupiter is near its poles. https://photojournal.jpl.nasa.gov/catalog/PIA22474</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/949855-lightning-vulnerability-fiber-optic-cables','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/949855-lightning-vulnerability-fiber-optic-cables"><span><span class="hlt">Lightning</span> vulnerability of fiber-optic cables.</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Martinez, Leonard E.; Caldwell, Michele</p> <p>2008-06-01</p> <p>One reason to use optical fibers to transmit data is for isolation from unintended electrical energy. Using fiber optics in an application where the fiber cable/system penetrates the aperture of a grounded enclosure serves two purposes: first, it allows for control signals to be transmitted where they are required, and second, the insulating properties of the fiber system help to electrically isolate the fiber terminations on the inside of the grounded enclosure. A fundamental question is whether fiber optic cables can allow electrical energy to pass through a grounded enclosure, with a <span class="hlt">lightning</span> strike representing an extreme but very importantmore » case. A DC test bed capable of producing voltages up to 200 kV was used to characterize electrical properties of a variety of fiber optic cable samples. Leakage current in the samples were measured with a micro-Ammeter. In addition to the leakage current measurements, samples were also tested to DC voltage breakdown. After the fiber optic cables samples were tested with DC methods, they were tested under representative <span class="hlt">lightning</span> conditions at the Sandia <span class="hlt">Lightning</span> Simulator (SLS). Simulated <span class="hlt">lightning</span> currents of 30 kA and 200 kA were selected for this test series. This paper documents measurement methods and test results for DC high voltage and simulated <span class="hlt">lightning</span> tests performed at the Sandia <span class="hlt">Lightning</span> Simulator on fiber optic cables. The tests performed at the SLS evaluated whether electrical energy can be conducted inside or along the surface of a fiber optic cable into a grounded enclosure under representative <span class="hlt">lightning</span> conditions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336118&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=09/03/2012&dateendpublishedpresented=09/03/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=336118&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=09/03/2012&dateendpublishedpresented=09/03/2017&sortby=pubdateyear"><span>A simple <span class="hlt">lightning</span> assimilation technique for improving ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, <span class="hlt">lightning</span> assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: force KF deep convection where <span class="hlt">lightning</span> is observed and, optionally, suppress deep convection where <span class="hlt">lightning</span> is absent. WRF simulations were made with and without <span class="hlt">lightning</span> assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of <span class="hlt">lightning</span> assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly averaged bias of 6 h accumulated rainfall is reduced from 0.54 to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when <span class="hlt">lightning</span> assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this <span class="hlt">lightning</span> assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF applications. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=325491&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=02/27/2012&dateendpublishedpresented=02/27/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=325491&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=02/27/2012&dateendpublishedpresented=02/27/2017&sortby=pubdateyear"><span>A Simple <span class="hlt">Lightning</span> Assimilation Technique For Improving ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Convective rainfall is often a large source of error in retrospective modeling applications. In particular, positive rainfall biases commonly exist during summer months due to overactive convective parameterizations. In this study, <span class="hlt">lightning</span> assimilation was applied in the Kain-Fritsch (KF) convective scheme to improve retrospective simulations using the Weather Research and Forecasting (WRF) model. The assimilation method has a straightforward approach: Force KF deep convection where <span class="hlt">lightning</span> is observed and, optionally, suppress deep convection where <span class="hlt">lightning</span> is absent. WRF simulations were made with and without <span class="hlt">lightning</span> assimilation over the continental United States for July 2012, July 2013, and January 2013. The simulations were evaluated against NCEP stage-IV precipitation data and MADIS near-surface meteorological observations. In general, the use of <span class="hlt">lightning</span> assimilation considerably improves the simulation of summertime rainfall. For example, the July 2012 monthly-averaged bias of 6-h accumulated rainfall is reduced from 0.54 mm to 0.07 mm and the spatial correlation is increased from 0.21 to 0.43 when <span class="hlt">lightning</span> assimilation is used. Statistical measures of near-surface meteorological variables also are improved. Consistent improvements also are seen for the July 2013 case. These results suggest that this <span class="hlt">lightning</span> assimilation technique has the potential to substantially improve simulation of warm-season rainfall in retrospective WRF appli</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009pcms.confE..98P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009pcms.confE..98P"><span>Relationship between convective precipitation and <span class="hlt">lightning</span> activity using radar quantitative precipitation estimates and total <span class="hlt">lightning</span> data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.</p> <p>2009-09-01</p> <p>Thunderstorms can be characterized by both rainfall and <span class="hlt">lightning</span>. The relationship between convective precipitation and <span class="hlt">lightning</span> activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and <span class="hlt">lightning</span> activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and <span class="hlt">lightning</span> in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and <span class="hlt">lightning</span> is usually quantified as the Rainfall-<span class="hlt">Lightning</span> ratio (RLR). This ratio estimates the convective rainfall volume per <span class="hlt">lightning</span> flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of <span class="hlt">lightning</span> flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and <span class="hlt">lightning</span> in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total <span class="hlt">lightning</span> data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5677374','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5677374"><span>Assessing <span class="hlt">Lightning</span> and Wildfire Hazard by Land Properties and Cloud to Ground <span class="hlt">Lightning</span> Data with Association Rule Mining in Alberta, Canada</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cha, DongHwan; Wang, Xin; Kim, Jeong Woo</p> <p>2017-01-01</p> <p>Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with high frequency Cloud to Ground (CG) <span class="hlt">lightning</span> strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual <span class="hlt">lightning</span> occurred during warm months (June to August) and the daily <span class="hlt">lightning</span> frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG <span class="hlt">lightning</span> patterns, which were verified by similarity measurement to check the patterns’ consistency. The similarity coefficient values indicated that there were high correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that <span class="hlt">lightning</span> and wildfires occur in two distinct areas: frequent wildfire regions with a high frequency of <span class="hlt">lightning</span>, and frequent wild-fire regions with a low frequency of <span class="hlt">lightning</span>. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG <span class="hlt">lightning</span> hazard map and specific land use types. PMID:29065564</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29065564','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29065564"><span>Assessing <span class="hlt">Lightning</span> and Wildfire Hazard by Land Properties and Cloud to Ground <span class="hlt">Lightning</span> Data with Association Rule Mining in Alberta, Canada.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cha, DongHwan; Wang, Xin; Kim, Jeong Woo</p> <p>2017-10-23</p> <p>Hotspot analysis was implemented to find regions in the province of Alberta (Canada) with high frequency Cloud to Ground (CG) <span class="hlt">lightning</span> strikes clustered together. Generally, hotspot regions are located in the central, central east, and south central regions of the study region. About 94% of annual <span class="hlt">lightning</span> occurred during warm months (June to August) and the daily <span class="hlt">lightning</span> frequency was influenced by the diurnal heating cycle. The association rule mining technique was used to investigate frequent CG <span class="hlt">lightning</span> patterns, which were verified by similarity measurement to check the patterns' consistency. The similarity coefficient values indicated that there were high correlations throughout the entire study period. Most wildfires (about 93%) in Alberta occurred in forests, wetland forests, and wetland shrub areas. It was also found that <span class="hlt">lightning</span> and wildfires occur in two distinct areas: frequent wildfire regions with a high frequency of <span class="hlt">lightning</span>, and frequent wild-fire regions with a low frequency of <span class="hlt">lightning</span>. Further, the preference index (PI) revealed locations where the wildfires occurred more frequently than in other class regions. The wildfire hazard area was estimated with the CG <span class="hlt">lightning</span> hazard map and specific land use types.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120014299','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120014299"><span>Fiber-Optic Sensor for Aircraft <span class="hlt">Lightning</span> Current Measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.</p> <p>2012-01-01</p> <p>An electric current sensor based on Faraday rotation effect in optical fiber was <span class="hlt">developed</span> for measuring aircraft <span class="hlt">lightning</span> current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of <span class="hlt">lightning</span> current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered <span class="hlt">lightning</span> over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a <span class="hlt">lightning</span> environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011935','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011935"><span>Fiber-Optic Sensor for Aircraft <span class="hlt">Lightning</span> Current Measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.</p> <p>2012-01-01</p> <p>An electric current sensor based on Faraday rotation effect in optical fiber was <span class="hlt">developed</span> for measuring aircraft <span class="hlt">lightning</span> current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of <span class="hlt">lightning</span> current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered <span class="hlt">lightning</span> over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a <span class="hlt">lightning</span> environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.3698W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.3698W"><span><span class="hlt">Lightning</span> Mapping With an Array of Fast Antennas</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Ting; Wang, Daohong; Takagi, Nobuyuki</p> <p>2018-04-01</p> <p>Fast Antenna <span class="hlt">Lightning</span> Mapping Array (FALMA), a low-frequency <span class="hlt">lightning</span> mapping system comprising an array of fast antennas, was <span class="hlt">developed</span> and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 107 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of <span class="hlt">lightning</span> flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally high location accuracy of FALMA.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011EOSTr..92Q.264S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011EOSTr..92Q.264S"><span>High-detail snapshots of rare gigantic jet <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Colin</p> <p>2011-08-01</p> <p>In the ionosphere, more than 80 kilometers above Earth's surface, incoming radiation reacts with the thin air to produce highly charged ions, inducing an electric potential between the ionosphere and the surface. This charge difference is dissipated by a slow leak from the ionosphere during calm weather and reinvigorated by a charge built up near the surface during a thunderstorm. In 2001, however, researchers discovered gigantic jets (GJs), powerful <span class="hlt">lightning</span> that arcs from tropospheric clouds up to the ionosphere, suggesting there may be an alternate path by which charge is redistributed. GJs are transient species, and little is known about how much charge they can carry, how they form, or how common they are. In a step toward answering these questions, Lu et al. report on two GJs that occurred near very high frequency (VHF) <span class="hlt">lightning</span> detection systems, which track the <span class="hlt">development</span> of <span class="hlt">lightning</span> in three spatial dimensions, giving an indication of the generation mechanism. The researchers also measured the charge transfer in the two GJs through remote sensing of magnetic fields. They found that both jets originated from the <span class="hlt">development</span> of otherwise normal intracloud <span class="hlt">lightning</span>. The dissipation of the cloud's positively charged upper layer allowed the negative <span class="hlt">lightning</span> channel to break through and travel up out of the top of the cloud to the ionosphere. The first jet, which occurred off the coast of Florida, leapt up to 80 kilometers, depositing 110 coulombs of negative charge in 370 milliseconds. The second jet, observed in Oklahoma, traveled up to 90 kilometers, raising only 10-20 coulombs in 300 milliseconds. Each new observation of gigantic jets such as these can provide valuable information toward understanding this novel atmospheric behavior. (Geophysical Research Letters, doi:10.1029/2011GL047662, 2011)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Natur.558...87B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Natur.558...87B"><span>Prevalent <span class="hlt">lightning</span> sferics at 600 megahertz near Jupiter's poles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John</p> <p>2018-06-01</p> <p><span class="hlt">Lightning</span> has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (<span class="hlt">lightning</span>-generated radio waves) signatures1-6. Jovian <span class="hlt">lightning</span> is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) <span class="hlt">lightning</span>7-9. Unlike terrestrial <span class="hlt">lightning</span>, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, <span class="hlt">lightning</span> on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a <span class="hlt">lightning</span> discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian <span class="hlt">lightning</span> sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian <span class="hlt">lightning</span> discharges are not distinct from terrestrial <span class="hlt">lightning</span>, as previously thought. In the first eight orbits of Juno, we detected 377 <span class="hlt">lightning</span> sferics from pole to pole. We found <span class="hlt">lightning</span> to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of <span class="hlt">lightning</span> is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012450','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012450"><span>Comparison of the KSC-ER Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System (CGLSS) and the U.S. National <span class="hlt">Lightning</span> Detection Network (NLDN)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip</p> <p>2008-01-01</p> <p>The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) are located in a region of Florida that experiences the highest area density of <span class="hlt">lightning</span> strikes to ground in the United States, with values approaching 16 fl/km 2/yr when accumulated in 10x10 km (100 sq km) grids (see Figure 1). Consequently, the KSC-ER use data derived from two cloud-to-ground (CG) <span class="hlt">lightning</span> detection networks to detect hazardous weather, the "Cloud-to-Ground <span class="hlt">Lightning</span> Surveillance System" (CGLSS) that is owned and operated by the Air Force and the U.S. National <span class="hlt">Lightning</span> Detection Network (NLDN) that is owned and operated by Vaisala, Inc. These systems are used to provide <span class="hlt">lightning</span> warnings for ground operations and to insure mission safety during space launches at the KSC-ER. In order to protect the rocket and shuttle fleets, NASA and the Air Force follow a set of <span class="hlt">lightning</span> safety guidelines that are called the <span class="hlt">Lightning</span> Launch Commit Criteria (LLCC). These rules are designed to insure that vehicles are not exposed to the hazards of natural or triggered <span class="hlt">lightning</span> that would in any way jeopardize a mission or cause harm to the shuttle astronauts. Also, if any CG <span class="hlt">lightning</span> strikes too close to a vehicle on a launch pad, it can cause time-consuming mission delays due to the extensive retests that are often required for vehicles and/or payloads when this occurs. If any CG <span class="hlt">lightning</span> strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each <span class="hlt">lightning</span> detection system in considerable detail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100026543','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100026543"><span>Recent Advancements in <span class="hlt">Lightning</span> Jump Algorithm Work</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.</p> <p>2010-01-01</p> <p>In the past year, the primary objectives were to show the usefulness of total <span class="hlt">lightning</span> as compared to traditional cloud-to-ground (CG) networks, test the <span class="hlt">lightning</span> jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any <span class="hlt">lightning</span> jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 <span class="hlt">lightning</span> jump algorithm configuration holds the most promise in terms of prospective operational <span class="hlt">lightning</span> jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational <span class="hlt">lightning</span> jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track <span class="hlt">lightning</span> trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 <span class="hlt">lightning</span> jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in <span class="hlt">lightning</span>). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991agcl....2S....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991agcl....2S....C"><span>Evaluating <span class="hlt">lightning</span> hazards to building environments using explicit numerical solutions of Maxwell's equations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collier, Richard S.; McKenna, Paul M.; Perala, Rodney A.</p> <p>1991-08-01</p> <p>The objective here is to describe the <span class="hlt">lightning</span> hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the <span class="hlt">lightning</span> interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were <span class="hlt">developed</span> for including wire, plumbing, and rebar into the model. Some buildings have provisions for <span class="hlt">lightning</span> protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a <span class="hlt">lightning</span> strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated <span class="hlt">lightning</span> strike.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023419','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023419"><span>Evaluating <span class="hlt">lightning</span> hazards to building environments using explicit numerical solutions of Maxwell's equations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collier, Richard S.; Mckenna, Paul M.; Perala, Rodney A.</p> <p>1991-01-01</p> <p>The objective here is to describe the <span class="hlt">lightning</span> hazards to buildings and their internal environments using advanced formulations of Maxwell's Equations. The method described is the Three Dimensional Finite Difference Time Domain Solution. It can be used to solve for the <span class="hlt">lightning</span> interaction with such structures in three dimensions with the inclusion of a considerable amount of detail. Special techniques were <span class="hlt">developed</span> for including wire, plumbing, and rebar into the model. Some buildings have provisions for <span class="hlt">lightning</span> protection in the form of air terminals connected to a ground counterpoise system. It is shown that fields and currents within these structures can be significantly high during a <span class="hlt">lightning</span> strike. Time lapse video presentations were made showing the electric and magnetic field distributions on selected cross sections of the buildings during a simulated <span class="hlt">lightning</span> strike.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1817550D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1817550D"><span>Learning from concurrent <span class="hlt">Lightning</span> Imaging Sensor and <span class="hlt">Lightning</span> Mapping Array observations in preparation for the MTG-LI mission</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Defer, Eric; Bovalo, Christophe; Coquillat, Sylvain; Pinty, Jean-Pierre; Farges, Thomas; Krehbiel, Paul; Rison, William</p> <p>2016-04-01</p> <p>The upcoming decade will see the deployment and the operation of French, European and American space-based missions dedicated to the detection and the characterization of the <span class="hlt">lightning</span> activity on Earth. For instance the Tool for the Analysis of Radiation from <span class="hlt">lightNIng</span> and Sprites (TARANIS) mission, with an expected launch in 2018, is a CNES mission dedicated to the study of impulsive energy transfers between the atmosphere of the Earth and the space environment. It will carry a package of Micro Cameras and Photometers (MCP) to detect and locate <span class="hlt">lightning</span> flashes and triggered Transient Luminous Events (TLEs). At the European level, the Meteosat Third Generation Imager (MTG-I) satellites will carry in 2019 the <span class="hlt">Lightning</span> Imager (LI) aimed at detecting and locating the <span class="hlt">lightning</span> activity over almost the full disk of Earth as usually observed with Meteosat geostationary infrared/visible imagers. The American community plans to operate a similar instrument on the GOES-R mission for an effective operation in early 2016. In addition NASA will install in 2016 on the International Space Station the spare version of the <span class="hlt">Lightning</span> Imaging Sensor (LIS) that has proved its capability to optically detect the tropical <span class="hlt">lightning</span> activity from the Tropical Rainfall Measuring Mission (TRMM) spacecraft. We will present concurrent observations recorded by the optical space-borne <span class="hlt">Lightning</span> Imaging Sensor (LIS) and the ground-based Very High Frequency (VHF) <span class="hlt">Lightning</span> Mapping Array (LMA) for different types of <span class="hlt">lightning</span> flashes. The properties of the cloud environment will also be considered in the analysis thanks to coincident observations of the different TRMM cloud sensors. The characteristics of the optical signal will be discussed according to the nature of the parent flash components and the cloud properties. This study should provide some insights not only on the expected optical signal that will be recorded by LI, but also on the definition of the validation strategy of LI, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE13A0368Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE13A0368Z"><span>Statistical Evolution of the <span class="hlt">Lightning</span> Flash</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.</p> <p>2012-12-01</p> <p>Natural <span class="hlt">lightning</span> is one of the most fascinating and powerful electrical processes on Earth. To date, the physics behind this natural phenomenon are not fully understood, due primarily to the difficulty of obtaining measurements inside thunderstorms and to the wide range of timescales involved (from nanoseconds to seconds). Our aim is to use accurate <span class="hlt">lightning</span> geo-location data from the National <span class="hlt">Lightning</span> Detection Network (NLDN) to study statistical patterns in <span class="hlt">lightning</span>, taking advantage of the fact that millions of <span class="hlt">lightning</span> flashes occur around the globe every day. We present two sets of results, one involving the patterns of flashes in a storm, and a second involving the patterns of strokes in a flash. These patterns can provide a surrogate measure of the timescales and the spatial extents of the underlying physical processes. First, we study the timescales of charge buildup inside thunderstorms. We find that, following a <span class="hlt">lightning</span> flash, the probability of another neighboring flash decreases and takes tens of seconds to recover. We find that this suppression effect is a function of flash type, stroke peak current, cloud-to-ground (CG) stroke multiplicity, and other <span class="hlt">lightning</span> and geographical parameters. We find that the probabilities of subsequent flashes are more suppressed following oceanic <span class="hlt">lightning</span>, or following flashes with higher peak currents and/or higher multiplicities (for CG flashes). Second, we use NLDN data to study the evolution of the strokes within a CG flash. A CG flash typically includes multiple return strokes, which can occur in the same channel or in multiple channels within a few kilometers. We cluster NLDN stroke data into flashes and produce the probability density function of subsequent strokes as a function of distance and time-delays relative to the previous stroke. Using this technique, we investigate processes which occur during the CG <span class="hlt">lightning</span> flash with nanosecond to millisecond timescales. For instance, our results suggest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmRe.205....2W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmRe.205....2W"><span>A <span class="hlt">lightning</span>-based nowcast-warning approach for short-duration rainfall events: <span class="hlt">Development</span> and testing over Beijing during the warm seasons of 2006-2007</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin</p> <p>2018-06-01</p> <p>Nowcasting short-duration (i.e., <6 h) rainfall (SDR) events is examined using total [i.e., cloud-to-ground (CG) and intra-cloud (IC)] <span class="hlt">lightning</span> observations over the Beijing Metropolitan Region (BMR) during the warm seasons of 2006-2007. A total of 928 moderate and 554 intense SDR events, i.e., with the respective hourly rainfall rates (HRR) of 10-20 and ≥20 mm h-1, are utilized to estimate sharp-increasing rates in rainfall and <span class="hlt">lightning</span> flash, termed as rainfall and <span class="hlt">lightning</span> jumps, respectively. By optimizing the parameters in a <span class="hlt">lightning</span> jump and a rainfall jump algorithm, their different jump intensity grades are verified for the above two categories of SDR events. Then, their corresponding graded nowcast-warning models are <span class="hlt">developed</span> for the moderate and intense SDR events, respectively, with a low-grade warning for hitting more SDR events and a high-grade warning for reducing false alarms. Any issued warning in the nowcast-warning models is designed to last for 2 h after the occurrence of a <span class="hlt">lightning</span> jump. It is demonstrated that the low-grade warnings can have the probability of detection (POD) of 67.8% (87.0%) and the high-grade warnings have the false alarms ratio (FAR) of 27.0% (22.2%) for the moderate (intense) SDR events, with an averaged lead time of 36.7 (52.0) min. The nowcast-warning models are further validated using three typical heavy-rain-producing storms that are independent from those used to <span class="hlt">develop</span> the models. Results show that the nowcast-warning models can provide encouraging early warnings for the associated SDR events from the regional to meso-γ scales, indicating that they have a great potential in being applied to the other regions where high-resolution total <span class="hlt">lightning</span> observations are available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE22B..04W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE22B..04W"><span>a review and an update on the winter <span class="hlt">lightning</span> that occurred on a rotating windmill and its standalone <span class="hlt">lightning</span> protection tower</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, D.; Takagi, N.</p> <p>2012-12-01</p> <p>We have observed the <span class="hlt">lightning</span> occurred on a 100 m high windmill and its 105 m high standalone <span class="hlt">lightning</span>-protection tower about 45 m separated from the windmill in the Hokuriku area of Japan for 7 consecutive winter seasons from 2005 to 2012. Our main observation items include: (1) <span class="hlt">Lightning</span> current at the bottom of both the windmill and the tower. (2) Thunderstorm electric fields and the electric field changes caused by <span class="hlt">lightning</span> at multiple sites. (3) Optical images by both low and high speed imaging systems. During the 7 winter seasons, over 100 <span class="hlt">lightning</span> have hit either the tower or the windmill or both. All the <span class="hlt">lightning</span> but two observed are of upward <span class="hlt">lightning</span>. Those upward <span class="hlt">lightning</span> can be sub-classified into self-initiated types and other-triggered types according to whether there is a discharge activity prior to the upward leaders or not. Self-initiated and other-triggered upward <span class="hlt">lightning</span> tend to have biased percentages in terms of striking locations (windmill versus tower) and thunderstorm types (active versus weak). All the upward <span class="hlt">lightning</span> but one contained only initial continuous current stages. In the presentation, we will first give a review on those results we have reported before [1-3]. As an update, we will report the following results. (1) The electric field change required for triggering a negative upward leader is usually more than twice bigger than that for triggering a positive upward leader. (2) An electric current pulse with an amplitude of several tens of Amperes along a high structure has been observed to occur in response to a rapid electric change generated by either a nearby return stroke or K-change. References [1] D.Wang, N.Takagi, T.Watanebe, H. Sakurano, M. Hashimoto, Observed characteristics of upward leaders that are initiated from a windmill and its <span class="hlt">lightning</span> protection tower, Geophys. Res. Lett., Vol.35, L02803, doi:10.1029/2007GL032136, 2008. [2] W. Lu, D.Wang, Y. Zhang and N. Takagi, Two associated upward <span class="hlt">lightning</span> flashes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRD..120.4989D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRD..120.4989D"><span>Physical mechanism of initial breakdown pulses and narrow bipolar events in <span class="hlt">lightning</span> discharges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Silva, Caitano L.; Pasko, Victor P.</p> <p>2015-05-01</p> <p>To date the true nature of initial breakdown pulses (IBPs) and narrow bipolar events (NBEs) in <span class="hlt">lightning</span> discharges remains a mystery. Recent experimental evidence has correlated IBPs to the initial <span class="hlt">development</span> of <span class="hlt">lightning</span> leaders inside the thundercloud. NBE wideband waveforms resemble classic IBPs in both amplitude and duration. Most NBEs are quite peculiar in the sense that very frequently they occur in isolation from other <span class="hlt">lightning</span> processes. The remaining fraction, 16% of positive polarity NBEs, according to Wu et al. (2014), happens as the first event in an otherwise regular intracloud <span class="hlt">lightning</span> discharge. These authors point out that the initiator type of NBEs has no difference with other NBEs that did not start <span class="hlt">lightning</span>, except for the fact that they occur deeper inside the thunderstorm (i.e., at lower altitudes). In this paper, we propose a new physical mechanism to explain the source of both IBPs and NBEs. We propose that IBPs and NBEs are the electromagnetic transients associated with the sudden (i.e., stepwise) elongation of the initial negative leader extremity in the thunderstorm electric field. To demonstrate our hypothesis a novel computational/numerical model of the bidirectional <span class="hlt">lightning</span> leader tree is <span class="hlt">developed</span>, consisting of a generalization of electrostatic and transmission line approximations found in the literature. Finally, we show how the IBP and NBE waveform characteristics directly reflect the properties of the bidirectional <span class="hlt">lightning</span> leader (such as step length, for example) and amplitude of the thunderstorm electric field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014829','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014829"><span>Evaluation of <span class="hlt">Lightning</span> Induced Effects in a Graphite Composite Fairing Structure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.</p> <p>2011-01-01</p> <p>Defining the electromagnetic environment inside a graphite composite fairing due to near-by <span class="hlt">lightning</span> strikes is of interest to spacecraft <span class="hlt">developers</span>. This effort <span class="hlt">develops</span> a transmission-line-matrix (TLM) model with a CST Microstripes to examine induced voltages. on interior wire loops in a composite fairing due to a simulated near-by <span class="hlt">lightning</span> strike. A physical vehicle-like composite fairing test fixture is constructed to anchor a TLM model in the time domain and a FEKO method of moments model in the frequency domain. Results show that a typical graphite composite fairing provides adequate shielding resulting in a significant reduction in induced voltages on high impedance circuits despite minimal attenuation of peak magnetic fields propagating through space in near-by <span class="hlt">lightning</span> strike conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830041715&hterms=radiofrequency+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dradiofrequency%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830041715&hterms=radiofrequency+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dradiofrequency%2Bmeasurement"><span><span class="hlt">Lightning</span> activity on Jupiter</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.</p> <p>1982-01-01</p> <p>Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive <span class="hlt">lightning</span> activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the <span class="hlt">lightning</span> energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by <span class="hlt">lightning</span> compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130010113','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130010113"><span>Integration of the Total <span class="hlt">Lightning</span> Jump Algorithm into Current Operational Warning Environment Conceptual Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Stano, Geoffrey T.; Gatlin, Patrick N.</p> <p>2013-01-01</p> <p>The presence and rates of total <span class="hlt">lightning</span> are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the <span class="hlt">development</span> of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of <span class="hlt">lightning</span> rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total <span class="hlt">lightning</span> jump algorithm that has been <span class="hlt">developed</span> in recent years. In order to become a viable option for operational forecasters to incorporate into their severe storm monitoring process, the total <span class="hlt">lightning</span> jump must be placed into the framework of several severe storm conceptual models (e.g., radar evolution, storm morphology) which forecasters have built through training and experience. Thus, one of the goals of this study is to examine and relate the <span class="hlt">lightning</span> jump concept to often used radar parameters (e.g., dBZ vertical structure, VIL, MESH, MESO/shear) in the warning environment. Tying <span class="hlt">lightning</span> trends and <span class="hlt">lightning</span> jump occurrences to these radar based parameters will provide forecasters with an additional tool that they can use to build an accurate realtime depiction as to what is going on in a given environment. Furthermore, relating the <span class="hlt">lightning</span> jump concept to these parameters could also increase confidence in a warning decision they have already made, help tip the scales on whether or not to warn on a given storm, or to draw the forecaster s attention to a particular storm that is rapidly <span class="hlt">developing</span>. Furthermore the <span class="hlt">lightning</span> information will add vital storm scale information in regions that are not well covered by radar, or when radar failures occur. The physical basis for the <span class="hlt">lightning</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/976585','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/976585"><span>Detection of VHF <span class="hlt">lightning</span> from GPS orbit</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Suszcynsky, D. M.</p> <p>2003-01-01</p> <p>Satellite-based VHF' <span class="hlt">lightning</span> detection is characterized at GPS orbit by using a VHF receiver system recently launched on the GPS SVN 54 satellite. Collected <span class="hlt">lightning</span> triggers consist of Narrow Bipolar Events (80%) and strong negative return strokes (20%). The results are used to evaluate the performance of a future GPS-satellite-based VHF global <span class="hlt">lightning</span> monitor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080013628&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080013628&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DGeostationary"><span>Pre-Launch Algorithms and Risk Reduction in Support of the Geostationary <span class="hlt">Lightning</span> Mapper for GOES-R and Beyond</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven; Blakeslee, Richard; Koshak, William; Petersen, Walt; Buechler, Dennis; Krehbiel, Paul; Gatlin, Patrick; Zubrick, Steven</p> <p>2008-01-01</p> <p>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total <span class="hlt">lightning</span> activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of <span class="hlt">lightning</span> from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational.The mission objectives for the GLM are to 1) provide continuous,full-disk <span class="hlt">lightning</span> measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of <span class="hlt">lightning</span>. The GLM owes its heritage to the NASA <span class="hlt">Lightning</span> Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were <span class="hlt">developed</span> for the Earth Observing System and have produced a combined 13 year data record of global <span class="hlt">lightning</span> activity. Instrument formulation studies were completed in March 2007 and the implementation phase to <span class="hlt">develop</span> a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument <span class="hlt">development</span>, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> the Level 2B algorithms and applications. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) sate]lite and regional test beds (e.g., <span class="hlt">Lightning</span> Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to <span class="hlt">develop</span> the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time <span class="hlt">lightning</span> mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=522088','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=522088"><span>Isolation of <span class="hlt">Lightning</span>-Competent Soil Bacteria</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cérémonie, Hélène; Buret, François; Simonet, Pascal; Vogel, Timothy M.</p> <p>2004-01-01</p> <p>Artificial transformation is typically performed in the laboratory by using either a chemical (CaCl2) or an electrical (electroporation) method. However, laboratory-scale <span class="hlt">lightning</span> has been shown recently to electrotransform Escherichia coli strain DH10B in soil. In this paper, we report on the isolation of two “<span class="hlt">lightning</span>-competent” soil bacteria after direct electroporation of the Nycodenz bacterial ring extracted from prairie soil in the presence of the pBHCRec plasmid (Tcr, Spr, Smr). The electrotransformability of the isolated bacteria was measured both in vitro (by electroporation cuvette) and in situ (by <span class="hlt">lightning</span> in soil microcosm) and then compared to those of E. coli DH10B and Pseudomonas fluorescens C7R12. The electrotransformation frequencies measured reached 10−3 to 10−4 by electroporation and 10−4 to 10−5 by simulated <span class="hlt">lightning</span>, while no transformation was observed in the absence of electrical current. Two of the isolated <span class="hlt">lightning</span>-competent soil bacteria were identified as Pseudomonas sp. strains. PMID:15466589</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590506-technique-comparison-light-spectra-from-natural-laboratory-generated-lightning-current-arcs','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590506-technique-comparison-light-spectra-from-natural-laboratory-generated-lightning-current-arcs"><span>Technique for the comparison of light spectra from natural and laboratory generated <span class="hlt">lightning</span> current arcs</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mitchard, D., E-mail: mitcharddr@cardiff.ac.uk; Clark, D.; Carr, D.</p> <p></p> <p>A technique was <span class="hlt">developed</span> for the comparison of observed emission spectra from <span class="hlt">lightning</span> current arcs generated through self-breakdown in air and the use of two types of initiation wire, aluminum bronze and nichrome, against previously published spectra of natural <span class="hlt">lightning</span> events. A spectrograph system was used in which the wavelength of light emitted by the <span class="hlt">lightning</span> arc was analyzed to derive elemental interactions. A <span class="hlt">lightning</span> impulse of up to 100 kA was applied to a two hemispherical tungsten electrode configuration which allowed the effect of the <span class="hlt">lightning</span> current and <span class="hlt">lightning</span> arc length to be investigated. A natural <span class="hlt">lightning</span> reference spectrum wasmore » reconstructed from literature, and generated <span class="hlt">lightning</span> spectra were obtained from self-breakdown across a 14.0 mm air gap and triggered along initiation wires of length up to 72.4 mm. A comparison of the spectra showed that the generated <span class="hlt">lightning</span> arc induced via self-breakdown produced a very similar spectrum to that of natural <span class="hlt">lightning</span>, with the addition of only a few lines from the tungsten electrodes. A comparison of the results from the aluminum bronze initiation wire showed several more lines, whereas results from the nichrome initiation wire differed greatly across large parts of the spectrum. This work highlights the potential use for spectrographic techniques in the study of <span class="hlt">lightning</span> interactions with surrounding media and materials, and in natural phenomena such as recently observed ball <span class="hlt">lightning</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816829L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816829L"><span>First results of the Colombia <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>López, Jesus; Montanyà, Joan; van der Velde, Oscar; Romero, David; Fabró, Ferran; Taborda, John; Aranguren, Daniel; Torres, Horacio</p> <p>2016-04-01</p> <p>In April 2015 the 3D <span class="hlt">Lightning</span> Mapping Array (COLMA) network was installed on Santa Marta area (north of Colombia). The COLMA maps VHF radio emissions of <span class="hlt">lightning</span> leaders in three dimensions by the time-of-arrival technique (Rison et al., 1999). This array has six sensors with base lines between 5 km to 20 km. The COLMA is the first VHF 3D network operating in the tropics and it has been installed in the frame of ASIM (Atmosphere-Space Interactions Monitor) ESA's mission in order to investigate the electrical characteristics of tropical thunderstorms favorable for the production of Terrestrial Gamma ray Flashes (TGF). In this paper we present COLMA data of several storms. We discuss <span class="hlt">lightning</span> activity, <span class="hlt">lightning</span> leader altitudes and thunderstorm charge structures compared to data form our ELMA (Ebro <span class="hlt">Lightning</span> Mapping Array) at the north-east coast of Spain. The data confirm what we expected, <span class="hlt">lightning</span> leaders can propagate at higher altitudes compared to mid latitude thunderstorms because the higher vertical <span class="hlt">development</span> of tropical thunderstorms. A simple inspection of a ten minute period of the 16th of November of 2015 storm shows a tripolar electric charge structure. In that case, the midlevel negative charge region was located between 7 to 9 km. The structure presented a lower positive charge below the midlevel negative and centred at 6.5 km and an upper positive charge region extending from 9 km to slightly more than 15 km. This vertical extension of the upper positive charge where negative leaders evolve is significantly larger compared to the storms at the ELMA area in Spain. COLMA has shown frequent activity of negative leaders reaching altitudes of more than 15 km.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900005214','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900005214"><span>JPS heater and sensor <span class="hlt">lightning</span> qualification</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cook, M.</p> <p>1989-01-01</p> <p>Simulated <span class="hlt">lightning</span> strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover <span class="hlt">Lightning</span> Facility. Testing consisted of subjecting the <span class="hlt">lightning</span> evaluation test article to simulated <span class="hlt">lightning</span> strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated <span class="hlt">lightning</span> discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case <span class="hlt">lightning</span> discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880019875','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880019875"><span>The 1983 direct strike <span class="hlt">lightning</span> data, part 1</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, Mitchel E.</p> <p>1985-01-01</p> <p>Data waveforms are presented which were obtained during the 1983 direct strike <span class="hlt">lightning</span> tests utilizing the NASA F106-B aircraft specially instrumented for <span class="hlt">lightning</span> electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached <span class="hlt">lightning</span>. Part 1 contains 435 pages of <span class="hlt">lightning</span> strike data in chart form.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880019876','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880019876"><span>The 1983 direct strike <span class="hlt">lightning</span> data, part 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, Mitchel E.</p> <p>1985-01-01</p> <p>Data waveforms are presented which were obtained during the 1983 direct strike <span class="hlt">lightning</span> tests utilizing the NASA F106-B aircraft specially instrumented for <span class="hlt">lightning</span> electromagnetic measurements. The aircraft was operated in the vicinity of the NASA Langley Research Center, Hampton, Virginia, in a thunderstorm environment to elicit strikes. Electromagnetic field data and conduction currents on the aircraft were recorded for attached <span class="hlt">lightning</span>. Part 2 contains 443 pages of <span class="hlt">lightning</span> strike data in chart form.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3681151','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3681151"><span><span class="hlt">Lightning</span> Sensors for Observing, Tracking and Nowcasting Severe Weather</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Price, Colin</p> <p>2008-01-01</p> <p>Severe and extreme weather is a major natural hazard all over the world, often resulting in major natural disasters such as hail storms, tornados, wind storms, flash floods, forest fires and <span class="hlt">lightning</span> damages. While precipitation, wind, hail, tornados, turbulence, etc. can only be observed at close distances, <span class="hlt">lightning</span> activity in these damaging storms can be monitored at all spatial scales, from local (using very high frequency [VHF] sensors), to regional (using very low frequency [VLF] sensors), and even global scales (using extremely low frequency [ELF] sensors). Using sensors that detect the radio waves emitted by each <span class="hlt">lightning</span> discharge, it is now possible to observe and track continuously distant thunderstorms using ground networks of sensors. In addition to the number of <span class="hlt">lightning</span> discharges, these sensors can also provide information on <span class="hlt">lightning</span> characteristics such as the ratio between intra-cloud and cloud-to-ground <span class="hlt">lightning</span>, the polarity of the <span class="hlt">lightning</span> discharge, peak currents, charge removal, etc. It has been shown that changes in some of these <span class="hlt">lightning</span> characteristics during thunderstorms are often related to changes in the severity of the storms. In this paper different <span class="hlt">lightning</span> observing systems are described, and a few examples are provided showing how <span class="hlt">lightning</span> may be used to monitor storm hazards around the globe, while also providing the possibility of supplying short term forecasts, called nowcasting. PMID:27879700</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA505293','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA505293"><span><span class="hlt">Lightning</span> Initiation and Propagation</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-08-22</p> <p>ray (gamma ray ) and multiple-station (>24) cosmic - ray - muon detection network (TERA) pl:esently in place. Upgrade TERA with LaBr3 detectors to...DATES COVERED 4. TITLE AND SUBTITLE <span class="hlt">Lightning</span> Initistion and Propagation Including the Role of X- Rays , Gamma Rays , and Cosmic Rays 5a... rays , gamma rays , and cosmic rays in the initiation and propagation of <span class="hlt">lightning</span> and in the phenomenology of thunderclouds. The experimental</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA627751','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA627751"><span><span class="hlt">Lightning</span> Injury: A Review</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-01-01</p> <p>of <span class="hlt">lightning</span> strike; thus, burn-care providers should be familiar with the character- istics and treatment of these injuries. This paper will review...specific treatment is required [55]. Thermal injury may occur if the patient is wearing metal objects (e.g. zippers), or if clothing ignites [53...Some authors have used intravenous steroids for the treatment of optic-nerve injury in these patients. Other ophthalmologic sequelae of <span class="hlt">lightning</span> injury</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003618','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003618"><span>Using Flow Regime <span class="hlt">Lightning</span> and Sounding Climatologies to Initialize Gridded <span class="hlt">Lightning</span> Threat Forecasts for East Central Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winifred; Short, David; Wolkmer, Matthew; Sharp, David; Spratt, Scott</p> <p>2006-01-01</p> <p>Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) <span class="hlt">lightning</span> threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/<span class="hlt">lightning</span>.shtml) . Given the hazardous nature of <span class="hlt">lightning</span> in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of <span class="hlt">lightning</span>, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of <span class="hlt">lightning</span> occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative <span class="hlt">lightning</span> threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The <span class="hlt">lightning</span> threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season <span class="hlt">lightning</span> climatologies that could be used as first-guess inputs to initialize <span class="hlt">lightning</span> threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to improve consistency between forecasters while allowing them to focus on the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012614','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012614"><span>Using Flow Regime <span class="hlt">Lightning</span> and Sounding Climatologies to Initialize Gridded <span class="hlt">Lightning</span> Threat Forecasts for East Central Florida</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott</p> <p>2007-01-01</p> <p>Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) <span class="hlt">lightning</span> threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/<span class="hlt">lightning</span>.shtml) . Given the hazardous nature of <span class="hlt">lightning</span> in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of <span class="hlt">lightning</span>, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of <span class="hlt">lightning</span> occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative <span class="hlt">lightning</span> threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The <span class="hlt">lightning</span> threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season <span class="hlt">lightning</span> climatologies that could be used as first-guess inputs to initialize <span class="hlt">lightning</span> threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015525','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015525"><span>High Impact Weather Forecasts and Warnings with the GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.</p> <p>2011-01-01</p> <p>The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument <span class="hlt">development</span>, a GOES-R Risk Reduction Science Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based <span class="hlt">lightning</span> networks are being used to <span class="hlt">develop</span> the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130012960','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130012960"><span>Situational <span class="hlt">Lightning</span> Climatologies for Central Florida: Phase IV: Central Florida Flow Regime Based Climatologies of <span class="hlt">Lightning</span> Probabilities</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bauman, William H., III</p> <p>2009-01-01</p> <p>The threat of <span class="hlt">lightning</span> is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of <span class="hlt">lightning</span> occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded <span class="hlt">lightning</span> climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the <span class="hlt">lightning</span> climatologies for using individual <span class="hlt">lightning</span> strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective <span class="hlt">Lightning</span> Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008654','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008654"><span>The <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM): Status and Recent Applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William; Khan, Maudood; Peterson, Harold</p> <p>2011-01-01</p> <p>Improvements to the NASA Marshall Space Flight Center <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM <span class="hlt">lightning</span> NOx (= NO + NO2) estimates are provided. The LNOM analyzes <span class="hlt">Lightning</span> Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of <span class="hlt">lightning</span> NOx. The latest LNOM estimates of (a) <span class="hlt">lightning</span> channel length distributions, (b) <span class="hlt">lightning</span> 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of <span class="hlt">lightning</span> NOx on CMAQ output is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRD..11718213Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRD..11718213Y"><span>Aerosol indirect effect on tropospheric ozone via <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Tianle; Remer, Lorraine A.; Bian, Huisheng; Ziemke, Jerald R.; Albrecht, Rachel; Pickering, Kenneth E.; Oreopoulos, Lazaros; Goodman, Steven J.; Yu, Hongbin; Allen, Dale J.</p> <p>2012-09-01</p> <p>Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. Inadequate understanding of processes related to O3 production, in particular those natural ones such as <span class="hlt">lightning</span>, contributes to this uncertainty. Here we demonstrate a new effect of aerosol particles on O3production by affecting <span class="hlt">lightning</span> activity and <span class="hlt">lightning</span>-generated NOx (LNOx). We find that <span class="hlt">lightning</span> flash rate increases at a remarkable rate of 30 times or more per unit of aerosol optical depth. We provide observational evidence that indicates the observed increase in <span class="hlt">lightning</span> activity is caused by the influx of aerosols from a volcano. Satellite data analyses show O3is increased as a result of aerosol-induced increase in <span class="hlt">lightning</span> and LNOx, which is supported by modle simulations with prescribed <span class="hlt">lightning</span> change. O3production increase from this aerosol-<span class="hlt">lightning</span>-ozone link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. In the face of anthropogenic aerosol increase our findings suggest that <span class="hlt">lightning</span> activity, LNOx and O3, especially in the upper troposphere, have all increased substantially since preindustrial time due to the proposed aerosol-<span class="hlt">lightning</span>-ozone link, which implies a stronger O3 historical radiative forcing. Aerosol forcing therefore has a warming component via its effect on O3 production and this component has mostly been ignored in previous studies of climate forcing related to O3and aerosols. Sensitivity simulations suggest that 4-8% increase of column tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via <span class="hlt">lightning</span>. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMAE23A0411S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMAE23A0411S"><span>Detection performance of three different <span class="hlt">lightning</span> location networks in Beijing area based on accurate fast antenna records</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, A.; Tian, Y.; Wang, D.; Yuan, S.; Chen, Z.; Sun, Z.; Qie, X.</p> <p>2016-12-01</p> <p>Scientists have <span class="hlt">developed</span> the regional and worldwide <span class="hlt">lightning</span> location network to study the <span class="hlt">lightning</span> physics and locating the <span class="hlt">lightning</span> stroke. One of the key issue in all the networks; to recognize the performance of the network. The performance of each network would be different based on the regional geographic conditions and the instrumental limitation. To improve the performance of the network. it is necessary to know the ground truth of the network and to discuss about the detection efficiency (DE) and location accuracy (LA). A comparative study has been discussed among World Wide <span class="hlt">Lightning</span> Location Network (WWLLN), ADvanced TOA and Direction system (ADTD) and Beijing <span class="hlt">Lightning</span> NETwork (BLNET) <span class="hlt">lightning</span> detection network in Beijing area. WWLLN locate the cloud to ground (CG) and strong inter cloud (IC) globally without demonstrating any differences. ADTD locate the CG strokes in the entire China as regional. Both these networks are long range detection system that does not provide the focused details of a thunderstorm. BLNET can locate the CG and IC and is focused on thunderstorm detection. The waveform of fast antenna checked manually and the relative DE among the three networks has been obtained based on the CG strokes. The relative LA has been obtained using the matched flashes among these networks as well as LA obtained using the strike on the tower. The relative DE of BLNET is much higher than the ADTD and WWLLN as these networks has approximately similar relative DE. The relative LA of WWLLN and ADTD location is eastward and northward respectively from the BLNET. The LA based on tower observation is relatively high-quality in favor of BLNET. The ground truth of WWLLN, ADTD and BLNET has been obtained and found the performance of BLNET network is much better. This study is helpful to improve the performance of the networks and to provide a belief of LA that can follow the thunderstorm path with the <span class="hlt">prediction</span> and forecasting of thunderstorm and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030061356&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbateman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030061356&hterms=bateman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dbateman"><span>A Total <span class="hlt">Lightning</span> Climatology for the Tennessee Valley Region</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McCaul, E. W.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hallm, J.; Bateman, M.</p> <p>2003-01-01</p> <p>Total flash counts derived from the North Alabama <span class="hlt">Lightning</span> Mapping Array are being processed for 2002 to form a climatology of total <span class="hlt">lightning</span> for the Tennessee Valley region. The data from this active and interesting period will be compared to data fiom the National <span class="hlt">Lightning</span> Detection Network, space-based <span class="hlt">lightning</span> sensors, and weather radars.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011702','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011702"><span><span class="hlt">Lightning</span>-Related Indicators for National Climate Assessment (NCA) Studies</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, W.</p> <p>2017-01-01</p> <p>Changes in climate can affect the characteristics of <span class="hlt">lightning</span> (e.g., number of flashes that occur in a region, return stroke current and multiplicity, polarity of charge deposited to ground, and the <span class="hlt">lightning</span> cloud-top optical energy emission). The NASA/MSFC <span class="hlt">Lightning</span> Analysis Tool (LAT) monitors these and other quantities in support of the National Climate Assessment (NCA) program. Changes in <span class="hlt">lightning</span> characteristics lead to changes in <span class="hlt">lightning</span>-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29168803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29168803"><span>Photonuclear reactions triggered by <span class="hlt">lightning</span> discharge.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Enoto, Teruaki; Wada, Yuuki; Furuta, Yoshihiro; Nakazawa, Kazuhiro; Yuasa, Takayuki; Okuda, Kazufumi; Makishima, Kazuo; Sato, Mitsuteru; Sato, Yousuke; Nakano, Toshio; Umemoto, Daigo; Tsuchiya, Harufumi</p> <p>2017-11-22</p> <p><span class="hlt">Lightning</span> and thunderclouds are natural particle accelerators. Avalanches of relativistic runaway electrons, which <span class="hlt">develop</span> in electric fields within thunderclouds, emit bremsstrahlung γ-rays. These γ-rays have been detected by ground-based observatories, by airborne detectors and as terrestrial γ-ray flashes from space. The energy of the γ-rays is sufficiently high that they can trigger atmospheric photonuclear reactions that produce neutrons and eventually positrons via β + decay of the unstable radioactive isotopes, most notably 13 N, which is generated via 14 N + γ →  13 N + n, where γ denotes a photon and n a neutron. However, this reaction has hitherto not been observed conclusively, despite increasing observational evidence of neutrons and positrons that are presumably derived from such reactions. Here we report ground-based observations of neutron and positron signals after <span class="hlt">lightning</span>. During a thunderstorm on 6 February 2017 in Japan, a γ-ray flash with a duration of less than one millisecond was detected at our monitoring sites 0.5-1.7 kilometres away from the <span class="hlt">lightning</span>. The subsequent γ-ray afterglow subsided quickly, with an exponential decay constant of 40-60 milliseconds, and was followed by prolonged line emission at about 0.511 megaelectronvolts, which lasted for a minute. The observed decay timescale and spectral cutoff at about 10 megaelectronvolts of the γ-ray afterglow are well explained by de-excitation γ-rays from nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to electron-positron annihilation, providing conclusive evidence of positrons being produced after the <span class="hlt">lightning</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.8173H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.8173H"><span>Do cosmic ray air showers initiate <span class="hlt">lightning</span>?: A statistical analysis of cosmic ray air showers and <span class="hlt">lightning</span> mapping array data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.</p> <p>2017-08-01</p> <p>It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate <span class="hlt">lightning</span> via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow, cause the local atmosphere in a thundercloud to transition to a conducting state. In response to this claim, other researchers have published simulations showing that the electron density produced by RREA is far too small to be able to affect the conductivity in the cloud sufficiently to initiate <span class="hlt">lightning</span>. In this paper, we compare 74 days of cosmic ray air shower data collected in north central Florida during 2013-2015, the recorded CRASs having primary energies on the order of 1016 eV to 1018 eV and zenith angles less than 38°, with <span class="hlt">Lightning</span> Mapping Array (LMA) data, and we show that there is no evidence that the detected cosmic ray air showers initiated <span class="hlt">lightning</span>. Furthermore, we show that the average probability of any of our detected cosmic ray air showers to initiate a <span class="hlt">lightning</span> flash can be no more than 5%. If all <span class="hlt">lightning</span> flashes were initiated by cosmic ray air showers, then about 1.6% of detected CRASs would initiate <span class="hlt">lightning</span>; therefore, we do not have enough data to exclude the possibility that <span class="hlt">lightning</span> flashes could be initiated by cosmic ray air showers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19810029852&hterms=Grounded+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGrounded%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19810029852&hterms=Grounded+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DGrounded%2Btheory"><span><span class="hlt">Lightning</span> protection design external tank /Space Shuttle/</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, A.; Mumme, E.</p> <p>1979-01-01</p> <p>The possibility of <span class="hlt">lightning</span> striking the Space Shuttle during liftoff is considered and the <span class="hlt">lightning</span> protection system designed by the Martin Marietta Corporation for the external tank (ET) portion of the Shuttle is discussed. The protection system is based on diverting and/or directing a <span class="hlt">lightning</span> strike to an area of the spacecraft which can sustain the strike. The ET <span class="hlt">lightning</span> protection theory and some test analyses of the system's design are reviewed including studies of conductivity and thermal/stress properties in materials, belly band feasibility, and burn-through plug grounding and puncture voltage. The ET <span class="hlt">lightning</span> protection system design is shown to be comprised of the following: (1) a <span class="hlt">lightning</span> rod on the forward most point of the ET, (2) a continually grounded, one inch wide conductive strip applied circumferentially at station 371 (belly band), (3) a three inch wide conductive belly band applied over the TPS (i.e. the insulating surface of the ET) and grounded to a structure with eight conductive plugs at station 536, and (4) a two inch thick TPS between the belly bands which are located over the weld lands.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070037461&hterms=Wrf&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWrf','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070037461&hterms=Wrf&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DWrf"><span>High-Resolution WRF Forecasts of <span class="hlt">Lightning</span> Threat</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, S. J.; McCaul, E. W., Jr.; LaCasse, K.</p> <p>2007-01-01</p> <p>Tropical Rainfall Measuring Mission (TRMM)<span class="hlt">lightning</span> and precipitation observations have confirmed the existence of a robust relationship between <span class="hlt">lightning</span> flash rates and the amount of large precipitating ice hydrometeors in storms. This relationship is exploited, in conjunction with the capabilities of the Weather Research and Forecast (WRF) model, to forecast the threat of <span class="hlt">lightning</span> from convective storms using the output fields from the model forecasts. The simulated vertical flux of graupel at -15C is used in this study as a proxy for charge separation processes and their associated <span class="hlt">lightning</span> risk. Initial experiments using 6-h simulations are conducted for a number of case studies for which three-dimensional <span class="hlt">lightning</span> validation data from the North Alabama <span class="hlt">Lightning</span> Mapping Array are available. The WRF has been initialized on a 2 km grid using Eta boundary conditions, Doppler radar radial velocity and reflectivity fields, and METAR and ACARS data. An array of subjective and objective statistical metrics is employed to document the utility of the WRF forecasts. The simulation results are also compared to other more traditional means of forecasting convective storms, such as those based on inspection of the convective available potential energy field.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850009173','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850009173"><span>Mathematical physics approaches to <span class="hlt">lightning</span> discharge problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kyrala, A.</p> <p>1985-01-01</p> <p>Mathematical physics arguments useful for <span class="hlt">lightning</span> discharge and generation problems are pursued. A soliton Ansatz for the <span class="hlt">lightning</span> stroke is treated including a charge generation term which is the ultimate source for the phenomena. Equations are established for a partially ionized plasma inding the effects of pressure, magnetic field, electric field, gravitation, viscosity, and temperature. From these equations is then derived the non-stationary generalized Ohm's Law essential for describing field/current density relationships in the horizon channel of the <span class="hlt">lightning</span> stroke. The discharge initiation problem is discussed. It is argued that the ionization rate drives both the convective current and electric displacement current to increase exponentially. The statistical distributions of charge in the thundercloud preceding a <span class="hlt">lightning</span> dischage are considered. The stability of the pre-<span class="hlt">lightning</span> charge distributions and the use of Boltzmann relaxational equations to determine them are discussed along with a covered impedance path provided by the aircraft.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990108685&hterms=self+harm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dself%2Bharm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990108685&hterms=self+harm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dself%2Bharm"><span><span class="hlt">Lightning</span> Launch Commit Criteria for America's Space Program</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roeder, W. P.; Sardonia, J. E.; Jacobs, S. C.; Hinson, M. S.; Harms, D. E.; Madura, J. T.; DeSordi, S. P.</p> <p>1999-01-01</p> <p>The danger of natural and triggered <span class="hlt">lightning</span> significantly impacts space launch operations supported by the USAF. The <span class="hlt">lightning</span> Launch Commit Criteria (LCC) are used by the USAF to avoid these <span class="hlt">lightning</span> threats to space launches. This paper presents a brief overview of the LCC.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740008603','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740008603"><span>A test technique for measuring <span class="hlt">lightning</span>-induced voltages on aircraft electrical circuits</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walko, L. C.</p> <p>1974-01-01</p> <p>The <span class="hlt">development</span> of a test technique used for the measurement of <span class="hlt">lightning</span>-induced voltages in the electrical circuits of a complete aircraft is described. The resultant technique utilizes a portable device known as a transient analyzer capable of generating unidirectional current impulses similar to <span class="hlt">lightning</span> current surges, but at a lower current level. A linear relationship between the magnitude of <span class="hlt">lightning</span> current and the magnitude of induced voltage permitted the scaling up of measured induced values to full threat levels. The test technique was found to be practical when used on a complete aircraft.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMAE31C0461B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMAE31C0461B"><span>New Mission to Measure Global <span class="hlt">Lightning</span> from the International Space Station (ISS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.</p> <p>2015-12-01</p> <p>Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners <span class="hlt">developed</span> and demonstrated the effectiveness and value of space-based <span class="hlt">lightning</span> observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global <span class="hlt">lightning</span> climatology. The observations included measurements from the <span class="hlt">Lightning</span> Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total <span class="hlt">lightning</span> (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total <span class="hlt">lightning</span> over the Earth. More specifically, LIS measures <span class="hlt">lightning</span> during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. <span class="hlt">Lightning</span> is a direct and most impressive response to intense atmospheric convection. ISS LIS <span class="hlt">lightning</span> observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time <span class="hlt">lightning</span> data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary <span class="hlt">Lightning</span> Mapper (GLM) and the Meteosat</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27116922','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27116922"><span><span class="hlt">Lightning</span> Strike in Pregnancy With Fetal Injury.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Galster, Kellen; Hodnick, Ryan; Berkeley, Ross P</p> <p>2016-06-01</p> <p>Injuries from <span class="hlt">lightning</span> strikes are an infrequent occurrence, and are only rarely noted to involve pregnant victims. Only 13 cases of <span class="hlt">lightning</span> strike in pregnancy have been previously described in the medical literature, along with 7 additional cases discovered within news media reports. This case report presents a novel case of <span class="hlt">lightning</span>-associated injury in a patient in the third trimester of pregnancy, resulting in fetal ischemic brain injury and long-term morbidity, and reviews the mechanics of <span class="hlt">lightning</span> strikes along with common injury patterns of which emergency providers should be aware. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007322','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007322"><span>Correlation of DIAL Ozone Observations with <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peterson, Harold; Kuang, Shi; Koshak, William; Newchurch, Michael</p> <p>2014-01-01</p> <p>The purpose of this project is to see whether ozone maxima measured by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, AL may be traced back to <span class="hlt">lightning</span> events occurring 24-48 hours beforehand. The methodology is to start with lidar measurements of ozone from DIAL. The HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is then used to determine the origin of these ozone maxima 24-48 hours prior. Data from the National <span class="hlt">Lightning</span> Detection Network (NLDN) are used to examine the presence/absence of <span class="hlt">lightning</span> along the trajectory. This type of analysis suggests that <span class="hlt">lightning</span>-produced NOx may be responsible for some of the ozone maxima over Huntsville.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870003628&hterms=thunder+lightning&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthunder%2Blightning','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870003628&hterms=thunder+lightning&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dthunder%2Blightning"><span>Optical characteristics of <span class="hlt">lightning</span> and thunderstorm currents</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krider, E. P.; Blakeslee, R. J.</p> <p>1985-01-01</p> <p>Researchers determined that <span class="hlt">lightning</span> can be used to determine the diurnal variations of thunderstorms, i.e., storms that produce audible thunder, and that these variations are also in good agreement with diurnal variations in rainfall and convective activity. Measurements of the Maxwell current density, J sub m, under active thunderstorms show that this physical quantity is quasi-steady between <span class="hlt">lightning</span> discharges and that <span class="hlt">lightning</span> does not produce large changes in J sub m. Maps of J sub m show contours of iso-current density that are consistent with the locations of radar echos and the locations of where <span class="hlt">lightning</span> has altered the cloud charge distribution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMAE21A..08R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMAE21A..08R"><span>Scaling of Dielectric Breakdown Thresholds in Earth's and CO2-rich atmospheres: Impact for <span class="hlt">Predictions</span> of Extraterrestrial Transient Luminous Events and <span class="hlt">Lightning</span> Discharges</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riousset, J. A.</p> <p>2016-12-01</p> <p>Earth's atmospheric electricity manifests itself in the form of glow, corona, streamer, and leader discharges observed as Saint Elmo's fire, sprites, <span class="hlt">lightning</span> and jets discharges, and other Transient Luminous Events (TLEs). All of these are types of dielectric breakdown, but are governed by different physics. In particular, their initiation is associated with the crossing of specific electric field thresholds: relativistic runaway, streamer propagation, conventional breakdown, or thermal runaway thresholds, some better understood than others. For example, the initiation of a <span class="hlt">lightning</span> discharge is known to occur when the local electric field exceeds a value similar to relativistic runaway field, but the exact threshold, as well as the physical mechanisms at work, remain rather unclear to date. Scaling laws for electric fields (and other quantities) have been established by Pasko et al. [GRL, 25(12), 2123-2126, 1998] and Pasko [NATO Sci. Series, Springer, 253-311, 2006]. In this work, we <span class="hlt">develop</span> profiles for initiation criteria in air and in other atmospheric environments. We further calculate their associated scaling laws to determine the ability to trigger <span class="hlt">lightning</span> flashes and TLEs in our solar system. This lets us <span class="hlt">predict</span> the likelihood of electrical discharges on, e.g., Mars, Venus and Titan, and calculate the expected electric field conditions, under which discharges have been observed on Jupiter, Saturn, Uranus, and Neptune [Leblanc et al., ISSI Spa. Sci. Series, Springer, 2008, Yair, Adv. Space Res., 50(3), 293-310, 2012]. Our results anticipate the arrival of ExoMars 2016's Schiaparelli module, which will provide the first records of electric field at the surface of the planet [Déprez et al., EGU GA, 16, 16613, 2014]. This research is also motived by the increasing probability of manned missions to Mars and the potential electrostatic hazards it may face [Yair, 2012], and by the role of electrical discharges in the creation of active radicals, some of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.197...76S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.197...76S"><span>Performance assessment of Beijing <span class="hlt">Lightning</span> Network (BLNET) and comparison with other <span class="hlt">lightning</span> location networks across Beijing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srivastava, Abhay; Tian, Ye; Qie, Xiushu; Wang, Dongfang; Sun, Zhuling; Yuan, Shanfeng; Wang, Yu; Chen, Zhixiong; Xu, Wenjing; Zhang, Hongbo; Jiang, Rubin; Su, Debin</p> <p>2017-11-01</p> <p>The performances of Beijing <span class="hlt">Lightning</span> Network (BLNET) operated in Beijing-Tianjin-Hebei urban cluster area have been evaluated in terms of detection efficiency and relative location accuracy. A self-reference method has been used to show the detection efficiency of BLNET, for which fast antenna waveforms have been manually examined. Based on the fast antenna verification, the average detection efficiency of BLNET is 97.4% for intracloud (IC) flashes, 73.9% for cloud-to-ground (CG) flashes and 93.2% for the total flashes. Result suggests the CG detection of regional dense network is highly precise when the thunderstorm passes over the network; however it changes day to day when the thunderstorms are outside the network. Further, the CG stroke data from three different <span class="hlt">lightning</span> location networks across Beijing are compared. The relative detection efficiency of World Wide <span class="hlt">Lightning</span> Location Network (WWLLN) and Chinese Meteorology Administration - <span class="hlt">Lightning</span> Detection Network (CMA-LDN, also known as ADTD) are approximately 12.4% (16.8%) and 36.5% (49.4%), respectively, comparing with fast antenna (BLNET). The location of BLNET is in middle, while WWLLN and CMA-LDN average locations are southeast and northwest, respectively. Finally, the IC pulses and CG return stroke pulses have been compared with the S-band Doppler radar. This type of study is useful to know the approximate situation in a region and improve the performance of <span class="hlt">lightning</span> location networks in the absence of ground truth. Two <span class="hlt">lightning</span> flashes occurred on tower in the coverage of BLNET show that the horizontal location error was 52.9 m and 250 m, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmRe.178..304S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmRe.178..304S"><span><span class="hlt">Lightning</span> climatology in the Congo Basin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.</p> <p>2016-09-01</p> <p>The <span class="hlt">lightning</span> climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide <span class="hlt">Lightning</span> Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with <span class="hlt">Lightning</span> Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong activity from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the <span class="hlt">lightning</span> flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very active region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm <span class="hlt">development</span> along the year. The estimation of this local maximum of the <span class="hlt">lightning</span> density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/976609','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/976609"><span>Global optical <span class="hlt">lightning</span> flash rates determined with the Forte satellite</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Light, T.; Davis, S. M.; Boeck, W. L.</p> <p>2003-01-01</p> <p>Using FORTE photodiode detector (PDD) observations of <span class="hlt">lightning</span>, we have determined the geographic distribution of nighttime flash rate density. We estimate the PDD flash detection efficiency to be 62% for total <span class="hlt">lightning</span> through comparison to <span class="hlt">lightning</span> observations by the TRMM satellite's <span class="hlt">Lightning</span> Imaging Sensor (LIS), using cases in which FORTE and TRMM viewed the same storm. We present here both seasonal and l,ot,al flash rate maps. We examine some characteristics of the optical emissions of <span class="hlt">lightning</span> in both high and low flash rate environments, and find that while <span class="hlt">lightning</span> occurs less frequently over ocean, oceanic <span class="hlt">lightning</span> flashes are somewhat moremore » powerful, on average, than those over land.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMAE21A0296W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMAE21A0296W"><span>A comparison between initial continuous currents of different types of upward <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, D.; Sawada, N.; Takagi, N.</p> <p>2009-12-01</p> <p>We have observed the <span class="hlt">lightning</span> to a wind turbine and its <span class="hlt">lightning</span>-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and <span class="hlt">lightning</span>-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its <span class="hlt">lightning</span> protection tower, (3) normal video and high speed image of <span class="hlt">lightning</span> optical channels. Totally, we have obtained the data for 42 <span class="hlt">lightning</span> that hit either on wind turbine or its <span class="hlt">lightning</span> protection tower or both. Among these 42 <span class="hlt">lightning</span>, 38 are upward <span class="hlt">lightning</span> and 2 are downward <span class="hlt">lightning</span>. We found the upward <span class="hlt">lightning</span> can be sub-classified into two types. Type 1 upward <span class="hlt">lightning</span> are self-triggered from a high structure, while type 2 <span class="hlt">lightning</span> are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward <span class="hlt">lightning</span> in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered <span class="hlt">lightning</span> tends to rise significantly faster and to a bigger peak value than the other-triggered <span class="hlt">lightning</span>, although both types of <span class="hlt">lightning</span> transferred similar amount of charge to the ground.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840020226','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840020226"><span>Tortuosity of <span class="hlt">lightning</span> return stroke channels</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Levine, D. M.; Gilson, B.</p> <p>1984-01-01</p> <p>Data obtained from photographs of <span class="hlt">lightning</span> are presented on the tortuosity of return stroke channels. The data were obtained by making piecewise linear fits to the channels, and recording the cartesian coordinates of the ends of each linear segment. The mean change between ends of the segments was nearly zero in the horizontal direction and was about eight meters in the vertical direction. Histograms of these changes are presented. These data were used to create model <span class="hlt">lightning</span> channels and to <span class="hlt">predict</span> the electric fields radiated during return strokes. This was done using a computer generated random walk in which linear segments were placed end-to-end to form a piecewise linear representation of the channel. The computer selected random numbers for the ends of the segments assuming a normal distribution with the measured statistics. Once the channels were simulated, the electric fields radiated during a return stroke were <span class="hlt">predicted</span> using a transmission line model on each segment. It was found that realistic channels are obtained with this procedure, but only if the model includes two scales of tortuosity: fine scale irregularities corresponding to the local channel tortuosity which are superimposed on large scale horizontal drifts. The two scales of tortuosity are also necessary to obtain agreement between the electric fields computed mathematically from the simulated channels and the electric fields radiated from real return strokes. Without large scale drifts, the computed electric fields do not have the undulations characteristics of the data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011687"><span>Large Charge Moment Change <span class="hlt">Lightning</span> in an Oklahoma Mesoscale Convective System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lang, Timothy J.; Cummer, Steven; Petersen, Danyal; Flores-Rivera, Lizxandra; Lyons, Walt; MacGorman, Donald; Beasley, William</p> <p>2014-01-01</p> <p>On 31 May 2013, a line of severe thunderstorms <span class="hlt">developed</span> during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) <span class="hlt">lightning</span> strokes that featured large (> 100 C km) impulse charge moment changes (iCMCs; charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large-CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection. Meanwhile, large-CMC +CGs had switched to occurring mainly within the broad stratiform region that had <span class="hlt">developed</span> during the intervening period. The evolution of the large-CMC <span class="hlt">lightning</span> in this case will be examined using a mix of national mosaics of radar reflectivity, the Oklahoma <span class="hlt">Lightning</span> Mapping Array (OKLMA), the Charge Moment Change Network (CMCN), and the National <span class="hlt">Lightning</span> Detection Network (NLDN). A major goal of this study is understanding how storm structure and evolution affected the production of large-CMC <span class="hlt">lightning</span>. It is anticipated that this will lead to further insight into how and why storms produce the powerful <span class="hlt">lightning</span> that commonly causes sprites in the upper atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011599','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011599"><span>Large Charge Moment Change <span class="hlt">Lightning</span> in an Oklahoma Mesoscale Convective System</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lang, Timothy J.; Cummer, Steven; Beasley, William; Flores-Rivera, Lizxandra; Lyons, Walt; MacGorman, Donald</p> <p>2014-01-01</p> <p>On 31 May 2013, a line of severe thunderstorms <span class="hlt">developed</span> during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) <span class="hlt">lightning</span> strokes that featured large (> 75 C km) impulse charge moment changes (iCMCs - charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large- CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection. Meanwhile, large- CMC +CGs had switched to occurring mainly within the broad stratiform region that had <span class="hlt">developed</span> during the intervening period. The evolution of the large-CMC <span class="hlt">lightning</span> in this case will be examined using a mix of polarimetric data from individual radars, national mosaics of radar reflectivity, the Oklahoma <span class="hlt">Lightning</span> Mapping Array (OKLMA), the Charge Moment Change Network (CMCN), and the National <span class="hlt">Lightning</span> Detection Network (NLDN). A major goal of this study is understanding how storm structure and evolution affected the production of large-CMC <span class="hlt">lightning</span>. It is anticipated that this will lead to further insight into how and why storms produce the powerful <span class="hlt">lightning</span> that commonly causes sprites in the upper atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhD...50M5201M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhD...50M5201M"><span>Ball <span class="hlt">lightning</span> dynamics and stability at moderate ion densities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morrow, R.</p> <p>2017-10-01</p> <p>A general mechanism is presented for the dynamics and structure of ball <span class="hlt">lightning</span> and for the maintenance of the ball <span class="hlt">lightning</span> structure for several seconds. Results are obtained using a spherical geometry for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions and negative ions coupled with Poisson’s equation. A <span class="hlt">lightning</span> strike can generate conditions in the <span class="hlt">lightning</span> channel with a majority of positive nitrogen ions, and a minority of negative oxygen ions and electrons. The calculations are initiated with electrons included; however, at the moderate ion densities chosen the electrons are rapidly lost to form negative ions, and after 1 µs their influence on the ion dynamics is negligible. Further <span class="hlt">development</span> after 1 µs is followed using a simpler set of equations involving only positive ions and negative ions, but including ion diffusion. The space-charge electric field generated by the majority positive ions drives them from the centre of the distribution and drives the minority negative ions and electrons towards the centre of the distribution. In the central region the positive and negative ion distributions eventually overlap exactly and their space-charge fields cancel resulting in zero electric field, and the plasma ball formed is quite stable for a number of seconds. The formation of such plasma balls is not critically dependent on the initial diameter of the ion distributions, or the initial density of minority negative ions. The ion densities decrease relatively slowly due to mutual neutralization of positive and negative ions. The radiation from this neutralization process involving positive nitrogen ions and negative oxygen ions is not sufficient to account for the reported luminosity of ball <span class="hlt">lightning</span> and some other source of luminosity is shown to be required; the plasma ball model used could readily incorporate other ions in order to account for the luminosity and range of colours reported for ball</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/238774','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/238774"><span><span class="hlt">Lightning</span> control system using high power microwave FEL</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shiho, M.; Watanbe, A.; Kawasaki, S.</p> <p></p> <p>A research project for <span class="hlt">developing</span> a thunder <span class="hlt">lightning</span> control system using an induction linac based high power microwave free electron laser (FEL) started at JAERI The system will produce weakly ionized plasma rod in the atmosphere by high power microwaves and control a <span class="hlt">lightning</span> path, away from , e. g., nuclear power stations and rocket launchers. It has been known that about MW/cm{sup 2} power density is enough for the atmospheric breakdown in the microwave region, and which means high power microwave FEL with GW level output power is feasible for atmospheric breakdown, and accordingly is feasible for thunder lightningmore » control tool with making a conductive plasma channel in the atmosphere. From the microwave attenuation consideration in the atmosphere, FEL of 35GHz(0.13dB/km), 90GHz(0.35dB/km), 140GHz(1.7dB/km), and of 270 GHz(4.5dB/km) are the best candidates for the system. Comparing with other proposed <span class="hlt">lightning</span> control system using visible or ultraviolet laser, the system using microwave has an advantage that microwave suffers smaller attenuation by rain or snow which always exist in the real atmospheric circumstances when <span class="hlt">lightning</span> occurs.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023380','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023380"><span><span class="hlt">Lightning</span> induced currents in aircraft wiring using low level injection techniques</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stevens, E. G.; Jordan, D. T.</p> <p>1991-01-01</p> <p>Various techniques were studied to <span class="hlt">predict</span> the transient current induced into aircraft wiring bundles as a result of an aircraft <span class="hlt">lightning</span> strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat <span class="hlt">lightning</span> induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the <span class="hlt">lightning</span> current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840002593','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840002593"><span>How to protect a wind turbine from <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dodd, C. W.; Mccalla, T., Jr.; Smith, J. G.</p> <p>1983-01-01</p> <p>Techniques for reducing the chances of <span class="hlt">lightning</span> damage to wind turbines are discussed. The methods of providing a ground for a <span class="hlt">lightning</span> strike are discussed. Then details are given on ways to protect electronic systems, generating and power equipment, blades, and mechanical components from direct and nearby <span class="hlt">lightning</span> strikes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24054789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24054789"><span>"Thunderstruck": penetrating thoracic injury from <span class="hlt">lightning</span> strike.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Waes, Oscar J F; van de Woestijne, Pieter C; Halm, Jens A</p> <p>2014-04-01</p> <p><span class="hlt">Lightning</span> strike victims are rarely presented at an emergency department. Burns are often the primary focus. This case report describes the improvised explosive device like-injury to the thorax due to <span class="hlt">lightning</span> strike and its treatment, which has not been described prior in (kerauno)medicine. Penetrating injury due to blast from <span class="hlt">lightning</span> strike is extremely rare. These "shrapnel" injuries should however be ruled out in all patients struck by <span class="hlt">lightning</span>. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMAE23B0319R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMAE23B0319R"><span>The Colorado <span class="hlt">Lightning</span> Mapping Array</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.; Fuchs, B.</p> <p>2012-12-01</p> <p>A fifteen station <span class="hlt">Lightning</span> Mapping Array (LMA) was installed in northern Colorado in the spring of 2012. While the driving force for the array was to produce 3-dimensional <span class="hlt">lightning</span> data to support the Deep Convective Clouds and Chemistry (DC3) Experiment (Barth, this conference), data from the array are being used for several other projects. These include: electrification studies in conjunction with the CSU CHILL radar (Lang et al, this conference); observations of the parent <span class="hlt">lightning</span> discharges of sprites (Lyons et al, this conference); trying to detect upward discharges triggered by wind turbines, characterizing conditions in which aircraft flying through clouds produce discharges which can be detected by the LMA, and other opportunities, such as observations of <span class="hlt">lightning</span> in pyrocumulus clouds produced by the High Park Fire west of Fort Collins, CO. All the COLMA stations are solar-powered, and use broadband cellular modems for data communications. This makes the stations completely self-contained and autonomous, allowing a station to be installed anywhere a cellular signal is available. Because most of the stations were installed well away from anthropogenic noise sources, the COLMA is very sensitive. This is evidenced by the numerous plane tracks detected in its the vicinity. The diameter, D, of the COLMA is about 100 km, significantly larger than other LMAs. Because the error in the radial distance r is proportional to (r/D)2, and the error in the altitude z is proportional to (z/D)2, the larger array diameter greatly expands the usable range of the COLMA. The COLMA is able to detect and characterize lighting flashes to a distance of about 350 km from the array center. In addition to a web-based display (<span class="hlt">lightning</span>.nmt.edu/colma), geo-referenced images are produced and updated at one-minute intervals. These geo-referenced images can be used to overlay the real-time <span class="hlt">lightning</span> data on Google Earth and other mapping software. These displays were used by the DC3</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005EOSTr..86..398S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005EOSTr..86..398S"><span>Katrina and Rita were lit up with <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shao, X.-M.; Harlin, J.; Stock, M.; Stanley, M.; Regan, A.; Wiens, K.; Hamlin, T.; Pongratz, M.; Suszcynsky, D.; Light, T.</p> <p></p> <p>Hurricanes generally produce very little <span class="hlt">lightning</span> activity compared to other noncyclonic storms, and <span class="hlt">lightning</span> is especially sparse in the eye wall and inner regions within tens of kilometers surrounding the eye [Molinari et al., 1994, 1999]. (The eye wall is the wall of clouds that encircles the eye of the hurricane.) <span class="hlt">Lightning</span> can sometimes be detected in the outer, spiral rainbands, but the <span class="hlt">lightning</span> occurrence rate varies significantly from hurricane to hurricane as well as within an individual hurricane's lifetime.Hurricanes Katrina and Rita hit the U.S. Gulf coasts of Louisiana, Mississippi, and Texas, and their distinctions were not just limited to their tremendous intensity and damage caused. They also differed from typical hurricanes in their <span class="hlt">lightning</span> production rate.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160009363','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160009363"><span>Investigation on Improvements in <span class="hlt">Lightning</span> Retest Criteria for Spacecraft</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Terseck, Alex; Trout, Dawn</p> <p>2016-01-01</p> <p>Spacecraft are generally protected from a direct strike by launch the vehicle and ground structures, but protocols to evaluate the impact of nearby strikes are not consistent. Often spacecraft rely on the launch vehicle constraints to trigger a retest, but launch vehicles can typically evaluate the impact of a strike within minutes while spacecraft evaluation times can be on the order of hours or even days. For launches at the Kennedy Space Center where <span class="hlt">lightning</span> activity is among the highest in the United States, this evaluation related delay could be costly with the possibility of missing the launch window altogether. This paper evaluated available data from local <span class="hlt">lightning</span> measurements systems and computer simulations to <span class="hlt">predict</span> the coupled effect from various nearby strikes onto a typical payload umbilical. Recommendations are provided to reduce the typical trigger criteria and costly delays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMAE41A..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMAE41A..01E"><span>Geostationary <span class="hlt">Lightning</span> Mapper: Lessons Learned from Post Launch Test</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edgington, S.; Tillier, C. E.; Demroff, H.; VanBezooijen, R.; Christian, H. J., Jr.; Bitzer, P. M.</p> <p>2017-12-01</p> <p>Pre-launch calibration and algorithm design for the GOES Geostationary <span class="hlt">Lightning</span> Mapper resulted in a successful and trouble-free on-orbit activation and post-launch test sequence. Within minutes of opening the GLM aperture door on January 4th, 2017, <span class="hlt">lightning</span> was detected across the entire field of view. During the six-month post-launch test period, numerous processing parameters on board the instrument and in the ground processing algorithms were fine-tuned. Demonstrated on-orbit performance exceeded pre-launch <span class="hlt">predictions</span>. We provide an overview of the ground calibration sequence, on-orbit tuning of the instrument, tuning of the ground processing algorithms (event filtering and navigation). We also touch on new insights obtained from analysis of a large and growing archive of raw GLM data, containing 3e8 flash detections derived from over 1e10 full-disk images of the Earth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015811','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015811"><span>The NASA <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM): Recent Updates and Applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koshak, William; Peterson, Harold; Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yee-Hun</p> <p>2011-01-01</p> <p>Improvements to the NASA Marshall Space Flight Center <span class="hlt">Lightning</span> Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are presented. The LNOM analyzes <span class="hlt">Lightning</span> Mapping Array (LMA) and National <span class="hlt">Lightning</span> Detection Network(tm) (NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of <span class="hlt">lightning</span> NOx (= NO + NO2). <span class="hlt">Lightning</span> channel length distributions and <span class="hlt">lightning</span> 10-m segment altitude distributions are also provided. In addition to NOx production from <span class="hlt">lightning</span> return strokes, the LNOM now includes non-return stroke <span class="hlt">lightning</span> NOx production due to: hot core stepped and dart leaders, stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of <span class="hlt">lightning</span> NOx for an August 2006 run of CMAQ is discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070038367','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070038367"><span>Diurnal <span class="hlt">Lightning</span> Distributions as Observed by the Optical Transient Detector (OTD) and the <span class="hlt">Lightning</span> Imaging Sensor (LIS)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bailey, Jeff C.; Blakeslee, Richard J.; Buechler, Dennis E.; Christian, Hugh J.</p> <p>2007-01-01</p> <p>Data obtained from the Optical Transient Detector (April 1995 to March 2000) and the <span class="hlt">Lightning</span> Imaging Sensor (December 1997 to December 2005) satellites (70 and 35 inclination low earth orbits, respectively) are used to statistically determine the number of flashes in the annual and seasonal diurnal cycle as a function of local and universal time. The data are further subdivided by season, land versus ocean, northern versus southern hemisphere, and other spatial (e.g., continents) and temporal (e.g., time of peak diurnal amplitude) categories. The data include corrections for detection efficiency and instrument view time. Continental results display strong diurnal variation, with a <span class="hlt">lightning</span> peak in the late afternoon and a minimum in late morning. In regions of the world dominated by large mesoscale convective systems the peak in the diurnal curve shifts toward late evening or early morning hours. The maximum diurnal flash rate occurs in June-August, corresponding to the Northern Hemisphere summer, while the minimum occurs in December-February. Summer <span class="hlt">lightning</span> dominates over winter activity and springtime <span class="hlt">lightning</span> dominates over autumn activity at most continental locations. This latter behavior occurs especially strongly over the Amazon region in South America in September-November. Oceanic <span class="hlt">lightning</span> activity in winter and autumn tends to exceed that in summer and spring. Global <span class="hlt">lightning</span> is well correlated in phase but not in amplitude with the Carnegie curve. The diurnal flash rate varies about 4-35 percent about the mean, while the Carnegie curve varies around 4-15 percent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SASS...32..123K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SASS...32..123K"><span>21st Century <span class="hlt">Lightning</span> Protection for High Altitude Observatories</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kithil, Richard</p> <p>2013-05-01</p> <p>One of the first recorded <span class="hlt">lightning</span> insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times <span class="hlt">lightning</span> has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to <span class="hlt">lightning</span> outages to data acquisition computers and connected cabling. The University of Arizona has reported "<span class="hlt">lightning</span> strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where <span class="hlt">lightning</span> protection for personnel, electrical systems, associated electronics and data are critical. Designstage <span class="hlt">lightning</span> protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories <span class="hlt">lightning</span> protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered <span class="hlt">lightning</span> protection subsystems in a carefully planned methodology which is specific to each site.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080002889&hterms=nature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dnature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080002889&hterms=nature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dnature"><span><span class="hlt">Lightning</span>: Nature's Probe of Severe Weather for Research and Operations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blakeslee, R.J.</p> <p>2007-01-01</p> <p><span class="hlt">Lightning</span>, the energetic and broadband electrical discharge produced by thunderstorms, provides a natural remote sensing signal for the study of severe storms and related phenomena on global, regional and local scales. Using this strong signal- one of nature's own probes of severe weather -<span class="hlt">lightning</span> measurements prove to be straightforward and take advantage of a variety of measurement techniques that have advanced considerably in recent years. We briefly review some of the leading <span class="hlt">lightning</span> detection systems including satellite-based optical detectors such as the <span class="hlt">Lightning</span> Imaging Sensor, and ground-based radio frequency systems such as Vaisala's National <span class="hlt">Lightning</span> Detection Network (NLDN), long range <span class="hlt">lightning</span> detection systems, and the <span class="hlt">Lightning</span> Mapping Array (LMA) networks. In addition, we examine some of the exciting new research results and operational capabilities (e.g., shortened tornado warning lead times) derived from these observations. Finally we look forward to the next measurement advance - <span class="hlt">lightning</span> observations from geostationary orbit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.B41A0175Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.B41A0175Z"><span>Identification of <span class="hlt">Lightning</span> Gaps in Mangrove Forests Using Airborne LIDAR Measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, K.</p> <p>2006-12-01</p> <p>Mangrove forests are highly dynamic ecosystems and change frequently due to tropical storms, frost, and <span class="hlt">lightning</span>. These factors can cause gaps in mangrove forests by damaging trees. Compared to gaps generated by storms and frost, gaps caused by <span class="hlt">lightning</span> strikes are small, ranging from 50 to 300 m2. However, these small gaps may play a critical role in mangrove forest dynamics because of the frequent occurrence of <span class="hlt">lightning</span> in tropical areas. It has been hypothesized that the turnover of mangrove forests is mainly due to the death and regeneration of trees in <span class="hlt">lightning</span> gaps. However, there is a lack of data for gap occurrence in mangrove forests to verify this hypothesis. It is impractical to measure gaps through a field survey on a large scale because of the logistic difficulties of muddy mangrove forests. Airborne light detection and ranging (LIDAR) technology is an effective alternative because it provides direct measurements of ground and canopy elevations remotely. This study <span class="hlt">developed</span> a method to identify <span class="hlt">lightning</span> gaps in mangrove forests in terms of LIDAR measurements. First, LIDAR points are classified into vegetation and ground measurements using the progressive morphological filter. Second, a digital canopy model (DCM) is generated by subtracting a digital terrain model (DTM) from a digital surface model (DSM). The DSM is generated by interpolating raw LIDAR measurements, and DTM is produced by interpolating ground measurements. Third, a black top-hat mathematical morphological transformation is used to identify canopy gaps. Comparison of identified gap polygons with raw LIDAR measurements and field surveys shows that the proposed method identifies <span class="hlt">lightning</span> gaps in mangrove forests successfully. The area of <span class="hlt">lightning</span> gaps in mangrove forests in Everglades National Park is about 3% of total forest area, which verifies that <span class="hlt">lightning</span> gaps play a critical role in mangrove forest turnover.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006433','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006433"><span>Correlation of DIAL Ozone Observations with <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Peterson, Harold; Kuang, Shi; Koshak, William; Newchurch, Michael</p> <p>2013-01-01</p> <p>The purpose of this project is to see whether ozone maxima measured by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, AL may be traced back to <span class="hlt">lightning</span> events occurring 24- 48 hours beforehand. The methodology is to start with lidar measurements of ozone from DIAL as well as ozonesonde measurements. The HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is then used to determine the origin of these ozone maxima 24-48 hours prior. Data from the National <span class="hlt">Lightning</span> Detection Network (NLDN) are used to examine the presence/absence of <span class="hlt">lightning</span> along the trajectory. This type of analysis suggests that <span class="hlt">lightning</span>-produced NOx may be responsible for some of the ozone maxima over Huntsville.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/987257','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/987257"><span>X-ray Emission from Thunderstorms and <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dwyer, Joseph</p> <p>2009-07-08</p> <p>How <span class="hlt">lightning</span> is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that <span class="hlt">lightning</span> was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground <span class="hlt">lightning</span> and rocket-triggered <span class="hlt">lightning</span>.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdownmore » plays a role in <span class="hlt">lightning</span> processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and <span class="hlt">lightning</span> discharges is incomplete and needs to be revisited. « less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.osti.gov/sciencecinema/biblio/987257','SCIGOVIMAGE-SCICINEMA'); return false;" href="http://www.osti.gov/sciencecinema/biblio/987257"><span>X-ray Emission from Thunderstorms and <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/sciencecinema/">ScienceCinema</a></p> <p>Dwyer, Joseph [Florida Institute of Technology, Melbourne, Florida, United States</p> <p>2017-12-09</p> <p>How <span class="hlt">lightning</span> is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that <span class="hlt">lightning</span> was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground <span class="hlt">lightning</span> and rocket-triggered <span class="hlt">lightning</span>.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in <span class="hlt">lightning</span> processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and <span class="hlt">lightning</span> discharges is incomplete and needs to be revisited. </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070002528&hterms=tropospheric+ozone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtropospheric%2Bozone','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070002528&hterms=tropospheric+ozone&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dtropospheric%2Bozone"><span>Exploring the Production of NOx by <span class="hlt">Lightning</span> and Its Impact on Tropospheric Ozone</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gillani, Noor; Koshak, William; Biazar, Arastoo; Doty, Kevin; Mahon, Robert; Newchurch, Michael; Byun, Daewon; Emmons, Louisa</p> <p>2006-01-01</p> <p> transport and chemistry. In our approach for LNOx, (a) we utilize continuous observed <span class="hlt">lightning</span> information from the NLDN ground network and from satellite imagers (OTD and LIS) to quantify <span class="hlt">lightning</span> frequency and distribution at the spatial-temporal scales of models such as CMAQ; (b) we <span class="hlt">develop</span> new methodologies to quantify flash-specific <span class="hlt">lightning</span> energy dissipation as heat (epsilon) using data from the research-grade <span class="hlt">lightning</span> measurement facility at NASA-KSC, and to parameterize epsilon based on regional <span class="hlt">lightning</span> monitoring data (ground- and satellite-based); and, (c) we <span class="hlt">develop</span> a new parameterization of NOx production as a function of epsilon and rho. Based on such observation-based information, we are working to <span class="hlt">develop</span> a gridded, episodic LNOx emissions inventory for the USA for use in models like CMAQ. We are also <span class="hlt">developing</span> approaches for global(MOZART)- regional(CMAQ) chemistry coupling to improve intercontinental transport and STE. Finally, we are <span class="hlt">developing</span> new methodologies for assimilation of satellite-observed (GOES) clouds into meteorological modeling (MM5), to improve PFTE and to optimize co-location of cloud convection and observed <span class="hlt">lightning</span>. We will incorporate these improvements in CMAQ simulations over the USA to better understand FT processes and chemistry, and its impact on ground-level ozone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100020902&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DGeostationary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100020902&hterms=Geostationary&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DGeostationary"><span>The Geostationary <span class="hlt">Lightning</span> Mapper (GLM) for the GOES-R Series Next Generation Operational Environmental Satellite Constellation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20100020902'); toggleEditAbsImage('author_20100020902_show'); toggleEditAbsImage('author_20100020902_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20100020902_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20100020902_hide"></p> <p>2010-01-01</p> <p>The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including <span class="hlt">lightning</span>, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total <span class="hlt">lightning</span> detection (cloud and cloud-to-ground flashes) from the Geostationary <span class="hlt">Lightning</span> Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary <span class="hlt">Lightning</span> Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) <span class="hlt">lightning</span> flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument <span class="hlt">development</span>, a GOES-R Risk Reduction Team and Algorithm Working Group <span class="hlt">Lightning</span> Applications Team have begun to <span class="hlt">develop</span> the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total <span class="hlt">lightning</span> data from the NASA <span class="hlt">Lightning</span> Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional <span class="hlt">lightning</span> networks are being used to <span class="hlt">develop</span> the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total <span class="hlt">lightning</span> mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A53D0174Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A53D0174Y"><span>Aerosol indirect effect on tropospheric ozone via <span class="hlt">lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.</p> <p>2012-12-01</p> <p>Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of <span class="hlt">lightning</span> activity to aerosol loading with <span class="hlt">lightning</span> activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in <span class="hlt">lightning</span> activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in <span class="hlt">lightning</span> and <span class="hlt">lightning</span> produced NOx. Model simulations with prescribed <span class="hlt">lightning</span> change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing <span class="hlt">lightning</span> and thus <span class="hlt">lightning</span> produced nitrogen oxides. This aerosol-<span class="hlt">lightning</span>-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via <span class="hlt">lightning</span>. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15957322','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15957322"><span>Struck-by-<span class="hlt">lightning</span> deaths in the United States.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adekoya, Nelson; Nolte, Kurt B</p> <p>2005-05-01</p> <p>The objective of the research reported here was to examine the epidemiologic characteristics of struck-by-<span class="hlt">lightning</span> deaths. Using data from both the National Centers for Health Statistics (NCHS) multiple-cause-of-death tapes and the Census of Fatal Occupational Injuries (CFOI), which is maintained by the Bureau of Labor Statistics, the authors calculated numbers and annualized rates of <span class="hlt">lightning</span>-related deaths for the United States. They used resident estimates from population microdata files maintained by the Census Bureau as the denominators. Work-related fatality rates were calculated with denominators derived from the Current Population Survey of employment data. Four illustrative investigative case reports of <span class="hlt">lightning</span>-related deaths were contributed by the New Mexico Office of the Medical Investigator. It was found that a total of 374 struck-by-<span class="hlt">lightning</span> deaths had occurred during 1995-2000 (an average annualized rate of 0.23 deaths per million persons). The majority of deaths (286 deaths, 75 percent) were from the South and the Midwest. The numbers of <span class="hlt">lightning</span> deaths were highest in Florida (49 deaths) and Texas (32 deaths). A total of 129 work-related <span class="hlt">lightning</span> deaths occurred during 1995-2002 (an average annual rate of 0.12 deaths per million workers). Agriculture and construction industries recorded the most fatalities at 44 and 39 deaths, respectively. Fatal occupational injuries resulting from being struck by <span class="hlt">lightning</span> were highest in Florida (21 deaths) and Texas (11 deaths). In the two national surveillance systems examined, incidence rates were higher for males and people 20-44 years of age. In conclusion, three of every four struck-by-<span class="hlt">lightning</span> deaths were from the South and the Midwest, and during 1995-2002, one of every four struck-by-<span class="hlt">lightning</span> deaths was work-related. Although prevention programs could target the entire nation, interventions might be most effective if directed to regions with the majority of fatalities because they have the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7156499-lightning-prevention-systems-paper-mills','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7156499-lightning-prevention-systems-paper-mills"><span><span class="hlt">Lightning</span> prevention systems for paper mills</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carpenter, R.B. Jr.</p> <p>1989-05-01</p> <p>Paper mills are increasingly relying on sensitive electronic equipment to control their operations. However, the sensitivity of these devices has made mills vulnerable to the effects of <span class="hlt">lightning</span> strokes. An interruption in the power supply or the destruction of delicate microcircuits can have devastating effects on mill productivity. The authors discuss how <span class="hlt">lightning</span> strokes can be prevented by a Dissipation Array system (DAS). During the past 17 years, the concept has been applied to a host of applications in regions with a high incidence of <span class="hlt">lightning</span> activity. With nearly 700 systems now installed, more than 4000 system-years of history havemore » been accumulated. Areas as large as 1 km{sup 2} and towers as high as 2000 ft have been protected and completely isolated from <span class="hlt">lightning</span> strokes. There have been very few failures, and in every case, the cause of the failure was determined and corrected.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1982lse.....2....5J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1982lse.....2....5J"><span><span class="hlt">Lightning</span> protection of a modern wind energy system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jaeger, D.</p> <p></p> <p>Due to their considerable height and frequent location above flat terrain, wind energy systems may be struck by <span class="hlt">lightning</span>, with two types of severe effects: the physical destruction of structurally and/or mechanically important elements, such as a rotor blade, or the damage or interruption of system electrical and electronic equipment. The GROWIAN II DEMO <span class="hlt">lightning</span> protection program has undertaken the <span class="hlt">development</span> of measures which in their sophistication and complexity approximate those for aircraft. These protective measures are applied to the carbon fiber-reinforced plastic composite rotor blades, the rotor bearing, and electrical circuitry installed within the wind turbine's nacelle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH34B..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH34B..05S"><span>Real-time Monitoring of 2017 Hurricanes and Typhoons with <span class="hlt">Lightning</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solorzano, N. N.; Thomas, J. N.; Bracy, C.; Holzworth, R. H., II</p> <p>2017-12-01</p> <p>The 2017 Atlantic season had the highest number of major hurricanes since 2005. To tackle the demand of real-time tropical cyclone (TC) monitoring, our group has <span class="hlt">developed</span> a unique "storm-following" satellite and ground-based <span class="hlt">lightning</span> product known as WWLLN-TC (World Wide <span class="hlt">Lightning</span> Location Network - Tropical Cyclones; http://wwlln.net/storms/). In the present study, we explore this tool and other datasets, combining <span class="hlt">lightning</span> and microwave data to quantify areas of intense convection in 2017 TCs Harvey, Hato, Irma, Maria, Nate, Ophelia and others. For each storm, the temporal distribution of discharges outside and within the inner core is compared to the changes in TC intensity. The intensification processes, monitored in near real-time by WWLLN-TC, are quantified in terms of pressure and/or wind speed changes. A peak in <span class="hlt">lightning</span> activity is often observed in the inner core of TCs before and during rapid weakening, such as in Hurricanes Irma and Maria and Typhoon Hato. The microwave frequencies investigated include the 37 to 183 GHz channels of the satellite sensors DMSP/SSMIS and GPM/GMI. We reconstruct brightness temperatures from <span class="hlt">lightning</span> data, providing more detailed pictures of the evolution of TCs at moments when satellite passes are missing or incomplete. This study also compares <span class="hlt">lightning</span> activity in the inner core with convective and environmental parameters. Examples of environmental parameters discussed are sea surface temperature, wind shear, and sea surface height anomalies. We conclude by considering possible implications of WWLLN-TC on forecasts of rapid intensity change and rainfall.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec23-954.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title14-vol1/pdf/CFR-2013-title14-vol1-sec23-954.pdf"><span>14 CFR 23.954 - Fuel system <span class="hlt">lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-01-01</p> <p>... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system <span class="hlt">lightning</span> protection. 23.954... Fuel System § 23.954 Fuel system <span class="hlt">lightning</span> protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct <span class="hlt">lightning</span> strikes to areas having a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec23-954.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title14-vol1/pdf/CFR-2012-title14-vol1-sec23-954.pdf"><span>14 CFR 23.954 - Fuel system <span class="hlt">lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-01-01</p> <p>... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system <span class="hlt">lightning</span> protection. 23.954... Fuel System § 23.954 Fuel system <span class="hlt">lightning</span> protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct <span class="hlt">lightning</span> strikes to areas having a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec23-954.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title14-vol1/pdf/CFR-2010-title14-vol1-sec23-954.pdf"><span>14 CFR 23.954 - Fuel system <span class="hlt">lightning</span> protection.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-01-01</p> <p>... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system <span class="hlt">lightning</span> protection. 23.954... Fuel System § 23.954 Fuel system <span class="hlt">lightning</span> protection. The fuel system must be designed and arranged to prevent the ignition of fuel vapor within the system by— (a) Direct <span class="hlt">lightning</span> strikes to areas having a...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>