DOT National Transportation Integrated Search
1984-08-01
Long-term monitoring efforts have been carried on for a number of years at state and national level and have been generally accepted. However, the shape that it takes in the future will depend very largely upon the decisions that are made in this Wor...
Representativeness of shorter measurement sessions in long-term indoor air monitoring.
Maciejewska, M; Szczurek, A
2015-02-01
Indoor air quality (IAQ) considerably influences health, comfort and the overall performance of people who spend most of their lives in confined spaces. For this reason, there is a strong need to develop methods for IAQ assessment. The fundamental issue in the quantitative determination of IAQ is the duration of measurements. Its inadequate choice may result in providing incorrect information and this potentially leads to wrong conclusions. The most complete information may be acquired through long-term monitoring. However it is typically perceived as impractical due to time and cost load. The aim of this study was to determine whether long-term monitoring can be adequately represented by a shorter measurement session. There were considered three measurable quantities: temperature, relative humidity and carbon dioxide concentration. They are commonly recognized as indicatives for IAQ and may be readily monitored. Scaled Kullback-Leibler divergence, also called relative entropy, was applied as a measure of data representativeness. We considered long-term monitoring in a range from 1 to 9 months. Based on our work, the representative data on CO2 concentration may be acquired while performing measurements during 20% of time dedicated to long-term monitoring. In the case of temperature and relative humidity the respective time demand was 50% of long-term monitoring. From our results, in indoor air monitoring strategies, there could be considered shorter measurement sessions, while still collecting data which are representative for long-term monitoring.
PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS
EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...
Long-Term Monitoring Research Needs: A DOE Perspective
NASA Astrophysics Data System (ADS)
Moore, B.; Davis, C. B.
2002-05-01
The U.S. Department of Energy's Office of Environmental Management is responsible for dealing with the nation's legacy of Cold War radioactive and hazardous waste and contamination. Major efforts are underway to deal with this legacy; these are expected to last up to decades and cost up to billions of dollars at some sites. At all sites, however, active remediation must eventually cease; if hazards then remain, the site must enter into a long-term stewardship mode. In this talk we discuss aspects of long-term monitoring pertinent to DOE sites, focusing on challenges to be faced, specific goals or targets to be met, and research needs to be addressed in order to enable DOE to meet its long-term stewardship obligations. DOE LTM research needs fall into three major categories: doing what we can do now much more efficiently; doing things we cannot do now; and proving the validity of our monitoring programs. Given the enormity of the DOE obligations, it will be highly desirable to develop much more efficient monitoring paradigms. Doing so will demand developing autonomous, remote monitoring networks of in situ sensors capable of replacing (or at least supplementing to a large extent) conventional groundwater and soil gas sampling and analysis programs. The challenges involved range from basic science (e.g., inventing in situ sensors for TCE that do not demand routine maintenance) to engineering (attaining superior reliability in data reporting in remote networks) to ergonomics (developing decent ways of selecting and presenting the "right" information from the monitoring network) to regulatory affairs (presenting convincing evidence that the more efficient systems actually provide superior monitoring). We explore these challenges in some detail, focusing on the "long" in long-term monitoring as it applies to DOE sites. Monitoring system performance validation and, ultimately, regulator and stakeholder acceptance of site closure and long-term stewardship plans depend critically on the validity and uncertainty in models used to predict contaminant fate and transport. This is an area of active research at the present time. We survey joint research initiatives in this area involving DOE along with USGS, U.S. EPA, U.S. NRC, and U.S. DOA and non-Federal collaborators, and explore their potential for furthering DOE long-term monitoring needs and objectives.
Lee, Seung Min; Kim, Jeong Hun; Byeon, Hang Jin; Choi, Yoon Young; Park, Kwang Suk; Lee, Sang-Hoon
2013-06-01
Long-term electroencephalogram (EEG) monitoring broadens EEG applications to various areas, but it requires cap-free recording of EEG signals. Our objective here is to develop a capacitive, small-sized, adhesive and biocompatible electrode for the cap-free and long-term EEG monitoring. We have developed an electrode made of polydimethylsiloxane (PDMS) and adhesive PDMS for EEG monitoring. This electrode can be attached to a hairy scalp and be completely hidden by the hair. We tested its electrical and mechanical (adhesive) properties by measuring voltage gain to frequency and adhesive force using 30 repeat cycles of the attachment and detachment test. Electrode performance on EEG was evaluated by alpha rhythm detection and measuring steady state visually evoked potential and N100 auditory evoked potential. We observed the successful recording of alpha rhythm and evoked signals to diverse stimuli with high signal quality. The biocompatibility of the electrode was verified and a survey found that the electrode was comfortable and convenient to wear. These results indicate that the proposed EEG electrode is suitable and convenient for long term EEG monitoring.
Common Calibration Source for Monitoring Long-term Ozone Trends
NASA Technical Reports Server (NTRS)
Kowalewski, Matthew
2004-01-01
Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.
Deng, Yang; Liu, Yang; Chen, Suren
2017-01-01
Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables. PMID:28621743
Deng, Yang; Liu, Yang; Chen, Suren
2017-06-16
Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables.
Monitoring the condition of natural resources in US national parks.
Fancy, S G; Gross, J E; Carter, S L
2009-04-01
The National Park Service has developed a long-term ecological monitoring program for 32 ecoregional networks containing more than 270 parks with significant natural resources. The monitoring program assists park managers in developing a broad-based understanding of the status and trends of park resources as a basis for making decisions and working with other agencies and the public for the long-term protection of park ecosystems. We found that the basic steps involved in planning and designing a long-term ecological monitoring program were the same for a range of ecological systems including coral reefs, deserts, arctic tundra, prairie grasslands, caves, and tropical rainforests. These steps involve (1) clearly defining goals and objectives, (2) compiling and summarizing existing information, (3) developing conceptual models, (4) prioritizing and selecting indicators, (5) developing an overall sampling design, (6) developing monitoring protocols, and (7) establishing data management, analysis, and reporting procedures. The broad-based, scientifically sound information obtained through this systems-based monitoring program will have multiple applications for management decision-making, research, education, and promoting public understanding of park resources. When combined with an effective education program, monitoring results can contribute not only to park issues, but also to larger quality-of-life issues that affect surrounding communities and can contribute significantly to the environmental health of the nation.
Hall, Travis; Nguyen, Tam Q.; Mayeda, Jill C.; Lie, Paul E.; Lopez, Jerry; Banister, Ron E.
2017-01-01
It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is sleeping without hectic movements nearby. PMID:29140281
Hall, Travis; Lie, Donald Y C; Nguyen, Tam Q; Mayeda, Jill C; Lie, Paul E; Lopez, Jerry; Banister, Ron E
2017-11-15
It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients' long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient's vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is sleeping without hectic movements nearby.
Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins
Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa
2017-01-01
In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.
Long-term real-time structural health monitoring using wireless smart sensor
NASA Astrophysics Data System (ADS)
Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil
2013-04-01
Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.
Flood effects on an Alaskan stream restoration project: the value of long-term monitoring
Densmore, Roseann V.; Karle, Kenneth F.
2009-01-01
On a nationwide basis, few stream restoration projects have long-term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long-term and event-based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long-term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross-sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25-year flood on the stream and floodplain geometry and riparian vegetation. The long-term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.
2010-08-01
Long - Term Monitoring (LTM) of Groundwater at Military and...Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long - Term Monitoring (LTM) of Groundwater at Military and Government Sites 5a. CONTRACT NUMBER...Council LTM long - term monitoring LTMO long - term monitoring optimization LWQR locally weighted quadratic regression LZ Lower Zone MCL
NASA Astrophysics Data System (ADS)
Calderone, G. M.
2006-12-01
A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.
A real-time measurement system for long-life flood monitoring and warning applications.
Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta
2012-01-01
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km(2) semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events.
A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications
Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta
2012-01-01
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events. PMID:22666028
Engineering and Design: Structural Deformation Surveying
2002-06-01
loading deformations. Long-term measurements are far more common and somewhat more complex given their external nature . Long-term monitoring of a...fitting of structural elements, environmental protection, and development of mitigative measures in the case of natural disasters (land slides, earthquakes...of additional localized monitoring points (i.e., points not intended for routine observation) to determine the nature and extent of large displacements
Net change in forest density, 1873-2001. Using historical maps to monitor long-term forest trends.
Greg C. Liknes; Mark D. Nelson; Daniel J. Kaisershot
2013-01-01
European settlement of the United States and utilization of forests are inextricably linked. Forest products fueled development, providing the building blocks for railroads, bridges, ships, and homes. Perhaps because of the importance of its forests, the United States has a rich cartographic history documenting its resources. Long-term, broad-scale monitoring efforts...
Bowser John M. Morton; Edward Berg; Dawn Magness; Todd Eskelin
2009-01-01
Kenai National Wildlife Refuge (KENWR) has a legislative mandate "to conserve fish and wildlife populations and habitats in their natural diversity". To improve our understanding of spatial and temporal variation at the landscape level, we are developing the Long Term Ecological Monitoring Program (LTEMP) to assess change in biota on the sample frame used by...
NASA Astrophysics Data System (ADS)
Horikawa, H.; Takaesu, M.; Sueki, K.; Araki, E.; Sonoda, A.; Takahashi, N.; Tsuboi, S.
2015-12-01
The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP).We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real-time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough.We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site (*1). Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor information. In addition, before data download, user can check that data is available or not by data check function.In this presentation, we briefly introduce NanTroSEIZE and then show our web application system. We also discuss our future plans for developments of monitoring data download system.*1 Long-Term Borehole Monitoring Data Site http://join-web.jamstec.go.jp/borehole/borehole_top_e.html
Protocols for long-term monitoring of seabird ecology in the Gulf of Alaska
Piatt, John F.; Byrd, G. Vernon; Harding, Ann M.A.; Kettle, Arthur B.; Kitaysky, Sasha; Litzow, Michael A.; Roseneau, David G.; Shultz, Michael T.; van Pelt, Thomas I.
2003-01-01
Seabird populations will need to be monitored for many years to assess both recovery and ecological conditions affecting recovery. Detailed studies of individual seabird colonies and marine ecosystems in the Gulf of Alaska have been conducted by the U.S. Geological Survey and U.S. Fish and Wildlife Service under the auspices of damage assessment and restoration programs of the Trustee Council. Much has been learned about factors influencing seabird populations and their capacity to recover from the spill in the Gulf of Alaska. As the restoration program moves toward long-term monitoring of populations, however, protocols and long-term monitoring strategies that focus on key parameters of interest and that are inexpensive, practical, and applicable over a large geographic area need to be developed.
Long-term ecosystem monitoring and change detection: the Sonoran initiative
Robert Lozar; Charles Ehlschlaeger
2005-01-01
Ecoregional Systems Heritage and Encroachment Monitoring (ESHEM) examines issues of land management at an ecosystem level using remote sensing. Engineer Research and Development Center (ERDC), in partnership with Western Illinois University, has developed an ecoregional database and monitoring capability covering the Sonoran region. The monitoring time horizon will...
NASA Astrophysics Data System (ADS)
Isaacson, Sivan; Blumberg, Dan G.; Ginat, Hanan; Shalmon, Benny
2013-04-01
Vegetation in hyper arid zones is very sparse as is. Monitoring vegetation changes in hyper arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. This study focuses on the impact of climate fluctuations on the acacia population in the southern Arava valley, Israel. The period of this survey includes a sequence of dry years with no flashfloods in most of the plots that ended in two years with vast floods. Arid zone acacia trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, humidity and precipitation. The trees also provide nutrients for the desert dwellers. Therefore, acacia trees in arid zones are considered to be `keystone species', because they have major influence over both plants and animal species, i.e., biodiversity. Long term monitoring of the acacia tree population in this area can provide insights into long term impacts of climate fluctuations on ecosystems in arid zones. Since 2000, a continuous yearly based survey on the three species of acacia population in seven different plots is conducted in the southern Arava (established by Shalmon, ecologist of the Israel nature and parks authority). The seven plots representing different ecosystems and hydrological regimes. A yearly based population monitoring enabled us to determine the mortality and recruitment rate of the acacia populations as well as growing rates of individual trees. This survey provides a unique database of the acacia population dynamics during a sequence of dry years that ended in a vast flood event during the winter of 2010. A lack of quantitative, nondestructive methods to estimate and monitor stress status of the acacia trees, led us to integrate remote sensing tools (ground and air-based) along with conventional field measurements in order to develop a long term monitoring of acacia trees in hyper arid zones. This study includes further work on the development of ground based remote sensing as a new tool to monitor stress indicators as part of long term ecological research. Since acacia trees are long lived, we were able to identify individual trees in satellite images from 1968 (corona) and expand our monitoring "into the past". Remote sensing expands the spatial and temporal database and is thus a powerful tool for long term monitoring in arid zones, where access is limited and long-term ground data are rare.
Long-Term Monitoring of Global Climate Forcings and Feedbacks
NASA Technical Reports Server (NTRS)
Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)
1993-01-01
A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.
NASA Astrophysics Data System (ADS)
Tsuboi, Seiji; Horikawa, Hiroki; Takaesu, Morifumi; Sueki, Kentaro; Araki, Eiichiro; Sonoda, Akira; Takahashi, Narumi
2016-04-01
The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP). We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough. We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site. Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor informations. In addition, before data download, user can check that data is abailable or not by data check function. In this presentation, we show our web application system and discuss our future plans for developments of monitoring data download system.
Monitoring viability of seeds in gene banks: developing software tools to increase efficiency
USDA-ARS?s Scientific Manuscript database
Monitoring the decline of seed viability is essential for effective long term seed storage in ex situ collections. Recent FAO Genebank Standards recommend monitoring intervals at one-third the time predicted for viability to fall to 85% of initial viability. This poster outlines the development of ...
Real-time long term measurement using integrated framework for ubiquitous smart monitoring
NASA Astrophysics Data System (ADS)
Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong
2007-04-01
Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.
“State of the Estuary” - Developing a long term monitoring ...
As the lower Saint Louis River moves closer and closer to delisting as an Area of Concern, it is incumbent that we measure, assess and report on our success. Going forward, It’s equally important that we continue monitoring to protect and sustain the healthy ecosystems we’ve worked so hard to attain. We propose here the development of a long term systematic monitoring, assessment and reporting framework to help highlight and publicize the successful recovery of the lower Saint Louis River. Such a framework should outline methods for regularly measuring, monitoring and assessing the current health of the river and its ecosystems into the future followed with a periodic reporting of the “State of the Estuary”. This framework should be developed by the stakeholder community over a series of meetings, leading to a collaborative, partner-driven approach. To the extent possible, existing sampling and monitoring programs should be incorporated, along with additional metrics needed to tell the complete story on the “State of the Estuary”. These additional metrics might include economic, social science and human health indicators, contaminants of emerging concern, long term restoration effectiveness and other monitoring needs not yet recognized. Examples of other “State of the Ecosystem” efforts will be discussed as possible models to follow. This abstract is for a presentation at the St. Louis River Summit. The talk will discuss the need for a “S
Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology
Zhao, Xuefeng; Liu, Hao; Yu, Yan; Xu, Xiaodong; Hu, Weitong; Li, Mingchu; Ou, Jingping
2015-01-01
Bridge displacement is the most basic evaluation index of the health status of a bridge structure. The existing measurement methods for bridge displacement basically fail to realize long-term and real-time dynamic monitoring of bridge structures, because of the low degree of automation and the insufficient precision, causing bottlenecks and restriction. To solve this problem, we proposed a bridge displacement monitoring system based on laser projection-sensing technology. First, the laser spot recognition method was studied. Second, the software for the displacement monitoring system was developed. Finally, a series of experiments using this system were conducted, and the results show that such a system has high measurement accuracy and speed. We aim to develop a low-cost, high-accuracy and long-term monitoring method for bridge displacement based on these preliminary efforts. PMID:25871716
Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS
NASA Astrophysics Data System (ADS)
Decker, Glenn; Rosenbaum, Gerd; Singh, Om
2006-11-01
Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.
An inventory and monitoring plan for a Sonoran Desert ecosystem; Barry M. Goldwater Range-West
Villarreal, Miguel L.; van Riper, Charles; Lovich, Robert E.; Palmer, Robert L.; Nauman, Travis; Studd, Sarah E.; Drake, Sam; Rosenberg, Abigail S.; Malusa, Jim; Pearce, Ronald L.
2011-01-01
Marine Corps Air Station Yuma manages the Barry M. Goldwater Range-West, which encompasses approximately 2,800 square kilometers of Sonoran Desert habitat in southwestern Arizona. The Barry M. Goldwater Range is a major U.S. military installation designed as an air combat training location for the U.S. Marine Corps and U.S. Air Force, but it also includes some of the most pristine desert habitat in the United States. In an effort to ensure the long-term viability of this unique natural resource, the U.S. Geological Survey (USGS) has developed an Integrated Natural Resources Management Plan and Inventory and Monitoring Plan to guide natural resource management of the Barry M. Goldwater Range-West. This Inventory and Monitoring Plan provides a framework for long-term ecosystem monitoring on Barry M. Goldwater Range-West lands by identifying existing and potential threats to ecosystem function, prioritizing resources for monitoring, and providing information and protocols necessary to initiate a long-term ecosystem monitoring program. The Inventory and Monitoring Plan and related protocols were developed through extensive review of existing Sonoran Desert monitoring programs and monitoring literature and through a 2-day workshop with resource managers, monitoring experts, and other stakeholders. The Barry M. Goldwater Range-West Inventory and Monitoring Plan stresses the importance of regional monitoring partnerships and protocol standardization for understanding landscape-scale ecosystem changes in the Sonoran Desert; information and protocols contained within the plan may also be of interest to land managers engaged in large-scale ecosystem monitoring and adaptive management of other arid regions.
NASA Astrophysics Data System (ADS)
Nguyen, Theanh; Chan, Tommy H. T.; Thambiratnam, David P.; King, Les
2015-12-01
In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental-numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.
Two Decades in the Life of EXO 2030+375
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Jenke, Pete; Finger, Mark; Camero-Arranz, Ascension; Fabregat, Juan; Reig, Pablo; Steele, Iain
2011-01-01
EXO 2030+375, a 42-s accreting pulsar in a 46-day orbit around a Be star, has undergone a detected outburst at nearly every periastron passage since 1991. It has been monitored with BATSE, RXTE, and Fermi/GBM. We will present preliminary results of long-term monitoring, including a long-term frequency history, long-term pulsed flux measurements, and available long ]term optical/ir monitoring results.
DEVELOPING A MULTI-AGENCY 305(B) MONITORING PROGRAM FOR THE COASTAL WATERS OF ALABAMA
Proceedings of the National Water Quality Monitoring Conference "Monitoring Critical Foundations to Protect Our Waters," 7-9 July 1998, Reno, NV.
With the ability of many federal agencies to maintain long-term coastal monitoring in jeopardy due to shrinking budgets, many s...
BIRD COMMUNITIES AND HABITAT AS ECOLOGICAL INDICATORS OF FOREST CONDITION IN REGIONAL MONITORING
Ecological indicators for long-term monitoring programs are needed to detect and assess changing environmental conditions, We developed and tested community-level environmental indicators for monitoring forest bird populations and associated habitat. We surveyed 197 sampling plo...
Long-term monitoring of high-elevation white pine communities in Pacific West Region National Parks
Shawn T. McKinney; Tom Rodhouse; Les Chow; Penelope Latham; Daniel Sarr; Lisa Garrett; Linda Mutch
2011-01-01
National Park Service Inventory and Monitoring (I&M) networks conduct long-term monitoring to provide park managers information on the status and trends in key biological and environmental attributes (Vital Signs). Here we present an overview of a collaborative approach to long-term monitoring of high-elevation white pine forest dynamics among three Pacific West...
Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.
2015-01-01
Riverine nitrate (NO3) is a well-documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long-term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long-term data availability and to represent a range of climate and land-use conditions. We examined NO3 at the monitoring stations, using a flow-weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945-1980 at most of the stations and have remained elevated, but stopped increasing during 1981-2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century-scale dataset adds to our understanding of long-term NO3 patterns in the U.S.
NASA Astrophysics Data System (ADS)
Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.
2013-01-01
With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.
Long-Term Ecological Monitoring Field Sampling Plan for 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Haney
2007-07-31
This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007more » investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.« less
Limbrick, David D; Lake, Stephen; Talcott, Michael; Alexander, Benjamin; Wight, Samuel; Willie, Jon T; Richard, William D; Genin, Guy M; Leuthardt, Eric C
2012-12-01
Prompt diagnosis of shunt malfunction is critical in preventing neurological morbidity and death in individuals with hydrocephalus; however, diagnostic methods for this condition remain limited. For several decades, investigators have sought a long-term, implantable intracranial pressure (ICP) monitor to assist in the diagnosis of shunt malfunction, but efforts have been impeded by device complexity, marked measurement drift, and limited instrumentation lifespan. In the current report, the authors introduce an entirely novel, simple, compressible gas design that addresses each of these problems. The device described herein, termed the "baric probe," consists of a subdural fluid bladder and multichannel indicator that monitors the position of an air-fluid interface (AFI). A handheld ultrasound probe is used to interrogate the baric probe in vivo, permitting noninvasive ICP determination. To assess the function of device prototypes, ex vivo experiments were conducted using a water column, and short- and long-term in vivo experiments were performed using a porcine model with concurrent measurements of ICP via a fiberoptic monitor. Following a toe region of approximately 2 cm H(2)O, the baric probe's AFI demonstrated a predictable linear relationship to ICP in both ex vivo and in vivo models. After a 2-week implantation of the device, this linear relationship remained robust and reproducible. Further, changes in ICP were observed with the baric probe, on average, 3 seconds in advance of the fiberoptic ICP monitor reading. The authors demonstrate "proof-of-concept" and feasibility for the baric probe, a long-term implantable ICP monitor designed to facilitate the prompt and accurate diagnosis of shunt malfunction. The baric probe showed a consistent linear relationship between ICP and the device's AFI in ex vivo and short- and long-term in vivo models. With a low per-unit cost, a reduced need for radiography or CT, and an indicator that can be read with a handheld ultrasound probe that interfaces with any smart phone, the baric probe promises to simplify the care of patients with shunt-treated hydrocephalus throughout both the developed and the developing world.
Using Fish Tissue Data to Monitor Remedy Effectiveness
Chapter 8 of the Contaminated Sediment Remediation Guidance for Hazardous Waste Sites (OSWER Directive 9355.0-85, December 2005), presents an approach for developing an effective monitoring plan. As stated in the Guidance, one of the goals of monitoring is to “evaluate long-term ...
3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila
NASA Astrophysics Data System (ADS)
Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong
2016-09-01
Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.
DOT National Transportation Integrated Search
2014-08-01
This report describes the instrumentation and data acquisition for a multi-girder, composite steel bridge in Connecticut. The : computer-based remote monitoring system was developed to collect information on the girder bending strains. The monitoring...
Dry electrode bio-potential recordings.
Gargiulo, Gaetano; Bifulco, Paolo; McEwan, Alistair; Nasehi Tehrani, Joubin; Calvo, Rafael A; Romano, Maria; Ruffo, Mariano; Shephard, Richard; Cesarelli, Mario; Jin, Craig; Mohamed, Armin; van Schaik, André
2010-01-01
As wireless bio-medical long term monitoring moves towards personal monitoring it demands very high input impedance systems capable to extend the reading of bio-signal during the daily activities offering a kind of "stress free", convenient connection, with no need for skin preparation. In particular we highlight the development and broad applications of our own circuits for wearable bio-potential sensor systems enabled by the use of an FET based amplifier circuit with sufficiently high impedance to allow the use of passive dry electrodes which overcome the significant barrier of gel based contacts. In this paper we present the ability of dry electrodes in long term monitoring of ECG, EEG and fetal ECG.
Focal cutaneous squamous cell carcinoma following radium-223 extravasation.
Benjegerdes, Katie E; Brown, Shannon C; Housewright, Chad D
2017-01-01
Long-term sequelae due to extravasation of intravenous radioisotopes resulting in radiation injuries are rarely reported. As the use of radioactive isotopes for the treatment of osteoblastic metastases increases, information regarding the prevention, treatment, and long-term monitoring of suspected extravasation injury will become increasingly important. We present a patient with no previous history of skin cancer who developed an aggressive cutaneous squamous cell carcinoma at the site of prior radium-223 extravasation. We recommend that patients who experience extravasation of therapeutic radioisotopes be monitored by dermatologists for long-term sequelae. Cutaneous squamous cell carcinoma should be recognized as a rare but potential adverse event following cutaneous extravasation of radium-223 and is likely a side effect that is severely underreported.
Oakley, Karen L.; Debevec, Edward M.; Rexstad, Eric A.; Aguirre-Bravo, Celedonio; Franco, Carlos Rodriguez
1999-01-01
A Long-term Ecological Monitoring (LTEM) program began at Denali National Park and Preserve, Alaska (USA) in 1992, as a prototype for subarctic parks. The early history of the Denali LTEM program provides insight into the challenges that can arise during monitoring program development. The Denali program has thus far taken a watershed approach, involving collocation of study effort for a mix of abiotic and biotic attributes within a small, headwater stream (Rock Creek) which crosses the tundra-taiga boundary. An initial effort at integration and synthesis of meteorological, vegetation, small mammal and passerine bird data for the first 7 years of the program found few correlations, but power was low. We will now attempt to balance the intensive work in Rock Creek by developing a cost-effective sampling design that includes more of the park. We are also working to improve linkages between the monitoring program and park management decision-making and to strengthen data management and reporting mechanisms.
NASA Astrophysics Data System (ADS)
Li, Kai; Qin, Wei; Ding, Dan; Tomczak, Nikodem; Geng, Junlong; Liu, Rongrong; Liu, Jianzhao; Zhang, Xinhai; Liu, Hongwei; Liu, Bin; Tang, Ben Zhong
2013-01-01
Long-term noninvasive cell tracing by fluorescent probes is of great importance to life science and biomedical engineering. For example, understanding genesis, development, invasion and metastasis of cancerous cells and monitoring tissue regeneration after stem cell transplantation require continual tracing of the biological processes by cytocompatible fluorescent probes over a long period of time. In this work, we successfully developed organic far-red/near-infrared dots with aggregation-induced emission (AIE dots) and demonstrated their utilities as long-term cell trackers. The high emission efficiency, large absorptivity, excellent biocompatibility, and strong photobleaching resistance of the AIE dots functionalized by cell penetrating peptides derived from transactivator of transcription proteins ensured outstanding long-term noninvasive in vitro and in vivo cell tracing. The organic AIE dots outperform their counterparts of inorganic quantum dots, opening a new avenue in the development of fluorescent probes for following biological processes such as carcinogenesis.
Long-Term Environmental Research Programs - Evolving Capacity for Discovery
NASA Astrophysics Data System (ADS)
Swanson, F. J.
2008-12-01
Long-term forestry, watershed, and ecological research sites have become critical, productive nodes for environmental science research and in some cases for work in the social sciences and humanities. The Forest Service's century-old Experimental Forests and Ranges and the National Science Foundation's 28- year-old Long-Term Ecological Research program have been remarkably productive in both basic and applied sciences, including characterization of acid rain and old-growth ecosystems and development of forest, watershed, and range management systems for commercial and other land use objectives. A review of recent developments suggests steps to enhance the function of collections of long-term research sites as interactive science networks. The programs at these sites have evolved greatly, especially over the past few decades, as the questions addressed, disciplines engaged, and degree of science integration have grown. This is well displayed by small, experimental watershed studies, which first were used for applied hydrology studies then more fundamental biogeochemical studies and now examination of complex ecosystem processes; all capitalizing on the legacy of intensive studies and environmental monitoring spanning decades. In very modest ways these collections of initially independent sites have functioned increasingly as integrated research networks addressing inter-site questions by using common experimental designs, being part of a single experiment, and examining long-term data in a common analytical framework. The network aspects include data sharing via publicly-accessible data-harvester systems for climate and streamflow data. The layering of one research or environmental monitoring network upon another facilitates synergies. Changing climate and atmospheric chemistry highlight a need to use these networks as continental-scale observatory systems for assessing the impacts of environmental change on ecological services. To better capitalize on long-term research sites and networks, agencies and universities 1) need to encourage collaboration among sites and between science and land manager communities while 2) maintaining long- term studies and monitoring efforts, and staffing the collaboration in each partner organization, including positions specifically designated as liaisons among the participating communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, J.
The U. S. Department of Energy's (DOE) Office of Environmental Management (EM) has the responsibility for cleaning up 60 sites in 22 states that were associated with the legacy of the nation's nuclear weapons program and other research and development activities. These sites are unique and many of the technologies needed to successfully disposition the associated wastes have yet to be developed or would require significant re-engineering to be adapted for future EM cleanup efforts. In 2008, the DOE-EM Engineering and Technology Program (EM-22) released the Engineering and Technology Roadmap in response to Congressional direction and the need to focusmore » on longer term activities required for the completion of the aforementioned cleanup program. One of the strategic initiatives included in the Roadmap was to enhance long term performance monitoring as defined by 'Develop and deploy cost effective long-term strategies and technologies to monitor closure sites (including soil, groundwater, and surface water) with multiple contaminants (organics, metals and radionuclides) to verify integrated long-term cleanup performance'. To support this long-term monitoring (LTM) strategic initiative, EM 22 and the Savannah River National Laboratory (SRNL) organized and held an interactive symposia, known as the 2009 DOE-EM Long-Term Monitoring Technical Forum, to define and prioritize LTM improvement strategies and products that could be realized within a 3 to 5 year investment time frame. This near-term focus on fundamental research would then be used as a foundation for development of applied programs to improve the closure and long-term performance of EM's legacy waste sites. The Technical Forum was held in Atlanta, GA on February 11-12, 2009, and attended by 57 professionals with a focus on identifying those areas of opportunity that would most effectively advance the transition of the current practices to a more effective strategy for the LTM paradigm. The meeting format encompassed three break-out sessions, which focused on needs and opportunities associated with the following LTM technical areas: (1) Performance Monitoring Tools, (2) Systems, and (3) Information Management. The specific objectives of the Technical Forum were to identify: (1) technical targets for reducing EM costs for life-cycle monitoring; (2) cost-effective approaches and tools to support the transition from active to passive remedies at EM waste sites; and (3) specific goals and objectives associated with the lifecycle monitoring initiatives outlined within the Roadmap. The first Breakout Session on LTM performance measurement tools focused on the integration and improvement of LTM performance measurement and monitoring tools that deal with parameters such as ecosystems, boundary conditions, geophysics, remote sensing, biomarkers, ecological indicators and other types of data used in LTM configurations. Although specific tools were discussed, it was recognized that the Breakout Session could not comprehensively discuss all monitoring technologies in the time provided. Attendees provided key references where other organizations have assessed monitoring tools. Three investment sectors were developed in this Breakout Session. The second Breakout Session was on LTM systems. The focus of this session was to identify new and inventive LTM systems addressing the framework for interactive parameters such as infrastructure, sensors, diagnostic features, field screening tools, state of the art characterization monitoring systems/concepts, and ecosystem approaches to site conditions and evolution. LTM systems consist of the combination of data acquisition and management efforts, data processing and analysis efforts and reporting tools. The objective of the LTM systems workgroup was to provide a vision and path towards novel and innovative LTM systems, which should be able to provide relevant, actionable information on system performance in a cost-effective manner. Two investment sectors were developed in this Breakout Session. The last Breakout Session of the Technical Forum was on LTM information management. The session focus was on the development and implementation of novel information management systems for LTM including techniques to address data issues such as: efficient management of large and diverse datasets; consistency and comparability in data management and incorporation of accurate historical information; data interpretation and information synthesis including statistical methods, modeling, and visualization; and linage of data to site management objectives and leveraging information to forge consensus among stakeholders. One investment sector was developed in this Breakout Session.« less
DOT National Transportation Integrated Search
2014-08-01
This report describes the instrumentation and data acquisition system for monitoring of a continuous span steel plate : girder bridge with a composite concrete deck located on a limited access highway. The monitoring system was : developed and instal...
Nonnative Fishes in the Upper Mississippi River System
Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.
2009-01-01
The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for nonnative species expansion between the Mississippi River and the Great Lakes Basin. This report presents a synthesis of data on nonnative fish species observed during Long Term Resource Monitoring Program monitoring activities.
New experimental sites for borehole geophysics, hydrodynamics and long-term monitoringITORING
NASA Astrophysics Data System (ADS)
Pezard, P.; Aliance/Saltrans Team
2003-04-01
In order to provide platforms for the development of new downhole geophysical and hydrodynamic sensors, 4 sites are being developped with a series of nearby 100 m deep boreholes located with a few meters to 100 meters, at the most. The objective is to set-up a cluster of extremely well characterized in-situ laboratories at scales where experiments cannot be conducted in traditionnal labs. At least one borehole is continuously cored at each of the sites, and the core is fully characterized in petrological, petrophysical and geochemical terms. An emphasis is placed on fundamental and environmental applications such as hydrogeology, waste storage or the study of seismogenic faults, whether for characterization purposes or the development of long-term monitoring sensors and methods. These sites are developped with the support of CNRS, the University of Montpellier and the ALIANCE program financed by the European Commission. The 4 sites span different lithologies with granite at Ploemeur (Brittany, France), Miocene carbonates from a reefal platform in south Mallorca (Baleares, Spain), Valanginian marly limestone at Lavalette, near Montpellier (Languedoc, France), and unconsolidated sands in a coastal setting also near Montpellier. In the context of ALIANCE, the goal is to improve the investigation, characterisation and monitoring of coastal aquifers for vulnerability assessment. For this, a set of geophysical approaches for the quantitative evaluation of brine intrusion will be developped. This includes the design of 5 new geophysical and hydrodynamical logging/testing sensors. Two end-member sites in terms of hydrogeological behavior will be set up for long-term experimentation, the testing of the new tools, and the validation of site-specific experimental and modelling protocols from µm- to 100 m-scale. Active in-situ testing from short and longer-term injections with variable salinity fluids will simulate overdrafting or saline water intrusion.
[Wearable Devices for Movement Monitoring of Patients with Parkinson’s Disease].
Li, Liang; Yu, Qian; Xu, Baoteng; Bai, Qifan; Zhang, Yunpeng; Zhang, Huijun; Mao, Chengjie; Liu, Chunfeng; Wang, Shouyan
2016-12-01
Quantitative assessment of the symptoms of Parkinson’s disease is the key for precise diagnosis and treatment and essential for long term management over years.The challenges of quantitative assessment on Parkinson’s disease are rich information,ultra-low load,long term and large range monitoring in free-moving condition.In this paper,we developed wearable devices with multiple sensors to monitor and quantify the movement symptoms of Parkinson’s disease.Five wearable sensors were used to record motion signals from bilateral forearms,legs and waist.A local area network based on low power Wi-Fi technology was built for long distance wireless data transmission.A software was developed for signal recording and analyzing.The size of each sensor was 39mm×33mm×16mm and the weight was 18 g.The sensors were rechargeable and able to run 12 hours.The wireless transmission radius is about 45 m.The wearable devices were tested in patients and normal subjects.The devices were reliable and accurate for movement monitoring in hospital.
Long-Term Forest Hydrologic Monitoring in Coastal Carolinas
Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs
2003-01-01
Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...
Kathryn L. Purcell
2011-01-01
Experimental forests and ranges are living laboratories that provide opportunities for conducting scientific research and transferring research results to partners and stakeholders. They are invaluable for their long-term data and capacity to foster collaborative, interdisciplinary research. The San Joaquin Experimental Range (SJER) was established to develop...
Roadmap to Long-Term Monitoring Optimization
This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...
Fang, Li-Jun; Xu, Hai-Gen; Guan, Jian-Ling
2013-09-01
Butterfly is an important bio-indicator for biodiversity monitoring and ecological environment assessment. In Europe, the species composition, population dynamics, and distribution pattern of butterfly have been monitored for decades, and many long-term monitoring schemes with international effects have been implemented. These schemes are aimed to assess the regional and national variation trends of butterfly species abundance, and to analyze the relationships of this species abundance with habitat, climate change, and other environmental factors, providing basic data for researching, protecting, and utilizing butterfly resources and predicting environmental changes, and playing important roles in the division of butterfly' s threatened level, the formulation of related protection measures, and the protection and management of ecological environment. This paper reviewed the history and present status of butterfly monitoring in Europe, with the focus on the well-known long-term monitoring programs, e. g. , the UK Butterfly Monitoring Scheme and the Germany and European Union Butterfly Monitoring Scheme. Some specific proposals for conducting butterflies monitoring in China were suggested.
DOT National Transportation Integrated Search
2014-08-01
This report proposes a set of specifications for bridge structural health monitoring that has resulted from the : experiences gained during the installation and monitoring of six permanent long-term bridge monitoring systems in : Connecticut. As expe...
van Tussenbroek, Brigitta I; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C; Gayle, Peter M H; Guzmán, Hector M; Jácome, Gabriel E; Juman, Rahanna; Koltes, Karen H; Oxenford, Hazel A; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R; Tschirky, John J; Weil, Ernesto
2014-01-01
The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m(-2)) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m(-2)) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration.
A field protocol to monitor cavity-nesting birds
J. Dudley; V. Saab
2003-01-01
We developed a field protocol to monitor populations of cavity-nesting birds in burned and unburned coniferous forests of western North America. Standardized field methods are described for implementing long-term monitoring strategies and for conducting field research to evaluate the effects of habitat change on cavity-nesting birds. Key references (but not...
Monitoring nekton as a bioindicator in shallow estuarine habitats
Raposa, K.B.; Roman, C.T.; Heltshe, J.F.
2003-01-01
Long-term monitoring of estuarine nekton has many practical and ecological benefits but efforts are hampered by a lack of standardized sampling procedures. This study provides a rationale for monitoring nekton in shallow (< 1 m), temperate, estuarine habitats and addresses some important issues that arise when developing monitoring protocols. Sampling in seagrass and salt marsh habitats is emphasized due to the susceptibility of each habitat to anthropogenic stress and to the abundant and rich nekton assemblages that each habitat supports. Extensive sampling with quantitative enclosure traps that estimate nekton density is suggested. These gears have a high capture efficiency in most habitats and are small enough (e.g., 1 m(2)) to permit sampling in specific microhabitats. Other aspects of nekton monitoring are discussed, including spatial and temporal sampling considerations, station selection, sample size estimation, and data collection and analysis. Developing and initiating long-term nekton monitoring programs will help evaluate natural and human-induced changes in estuarine nekton over time and advance our understanding of the interactions between nekton and the dynamic estuarine environment.
NASA Astrophysics Data System (ADS)
Vache, K. B.
2015-12-01
This study outlines the development and use of an integrated catchment model that has been developed as part of a long-term project focused on impacts of short-rotation loblolly pine production as a biofuel feedstock. The field-related aspects of the project were initiated in 2009 and focused on the development of a baseline dataset developed from hydrometric, isotopic, and water quality monitoring of a set of small paired catchments. In the winter of 2013 a series of treatments, representing typical forest management strategies in the southeastern US were implemented, and monitoring will continue through 2018. We have used the available long-term measurements to outline a conceptual model of catchment hydrology in this region which is characterized by low gradient slopes and deep sandy soils. The conceptual model has been translated into an object-oriented landscape modeling framework, allowing for the development of a set of long term landuse scenarios which serve as temporally-varying boundaries conditions for the catchment model. The presentation focuses primarily on these modeling results, with particular emphasis on the influence of short rotation harvest on groundwater recharge and stream water quantity over decadal scales.
Lindenmayer DB and Likens GE (eds): Effective ecological monitoring [book review
Charles T. Scott
2011-01-01
Long-term ecological monitoring is becoming increasingly important but more challenging to fund. Lindenmayer and Likens describe the common characteristics of successful monitoring programs and of those that fail. They draw upon their monitoring experiences together, independently, and from a variety of other long-term monitoring programs around the world. They then...
Recommended features of protocols for long-term ecological monitoring
Oakley, Karen L.; Boudreau, Susan L.; Humphrey, Sioux-Z
2001-01-01
In 1991, the National Park Service (NPS) selected seven parks to serve as prototypes for development of a long-term ecological monitoring program. Denali National Park and Preserve was one of the prototype parks selected. The principal focus of this national program was to detect and document resource changes and to understand the forces driving those changes. One of the major tasks of each prototype park was to develop monitoring protocols. In this paper, we discuss some lessons learned and what we believe to be the most important features of protocols.One of the many lessons we have learned is that monitoring protocols vary greatly in content and format. This variation leads to confusion about what information protocols should contain and how they should be formatted. Problems we have observed in existing protocols include (1) not providing enough detail, (2) omitting critical topics (such as data management), and (3) mixing explanation with instructions. Once written, protocols often sit on the shelf to collect dust, allowing methods changes to occur without being adequately considered, tested, or documented. Because a lengthy and costly research effort is often needed to develop protocols, a vision of what the final product should look like is helpful. Based on our involvement with the prototype monitoring program for Denali (Oakley and Boudreau 2000), we recommend key features of protocols, including a scheme for linking protocols to data in the data management system and for tracking protocol revisions. A protocol system is crucial for producing long-term data sets of known quality that meet program objectives.
New developments in ecological hydrology expand research opportunities
D.A. Post; G. E. Grant; J. A. Jones
1998-01-01
Interdisciplinary research efforts to integrate the ecological aspects of water with its physical and societal roles have a long history as well as some interesting new developments. Small, paired, experimental watersheds, with their long-term monitoring systems for data collection and their integrated ecosystem approach to analysis, have been at the center of recent...
NASA Astrophysics Data System (ADS)
Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen
2005-01-01
The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.
COLLABORATIVE RESEARCH, MONITORING AND ASSESSMENT IN THE MID-ATLANTIC REGION
EPA Region 3 to implement a long-term research, monitoring, and assessment program in the Mid-Atlantic region - the Mid-Atlantic Integrated Assessment (MAIA). The MAIA mission is to develop a broad-based partnership to integrate scientific knowledge into the decision-making proc...
Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives
Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao
2014-01-01
Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885
DOT National Transportation Integrated Search
2014-08-01
This report describes the instrumentation and data acquisition for a three-span continuous, curved post-tensioned box-girder : bridge in Connecticut. The computer-based remote monitoring system was developed to collect information on the deformations...
DOT National Transportation Integrated Search
2014-08-01
This report describes the instrumentation and data acquisition for an eleven span segmental, post-tensioned : box-girder bridge in Connecticut. Based on a request from the designers, the computer-based remote : monitoring system was developed to coll...
Steven C. Latta; C. John Ralph; Geoffrey R. Geupel
2005-01-01
Many international, regional, and local partner organizations have agreed in the need to establish long-term bird monitoring and research programs in the Americas. However, the challenge of developing national or international monitoring programs is difficult often because of the lack of qualified biologists or other resources in key regions. More fundamentally,...
Amplitude-integrated EEG and the newborn infant.
Shah, Divyen K; Mathur, Amit
2014-01-01
There is emerging recognition of the need for continuous long term electrographic monitoring of the encephalopathic neonate. While full-montage EEG with video remains the gold standard for monitoring, it is limited in application due to the complexity of lead application and specialized interpretation of results. Amplitude integrated EEG (aEEG) is derived from limited channels (usually C3-P3, C4-P4) and is filtered, rectified and time-compressed to serve as a bedside electrographic trend monitor. Its simple application and interpretation has resulted in increasing use in neonatal units across the world. Validation studies with full montage EEG have shown reliable results in interpretation of EEG background and electrographic seizures, especially when used with the simultaneously displayed raw EEG trace. Several aEEG monitors are commercially available and seizure algorithms are being developed for use on these monitors. These aEEG monitors, complement conventional EEG and offer a significant advance in the feasibility of long term electrographic monitoring of the encephalopathic neonate.
NASA Astrophysics Data System (ADS)
Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.
2003-08-01
An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.
Assessment of long-term gas sampling design at two commercial manure-belt layer barns.
Chai, Li-Long; Ni, Ji-Qin; Chen, Yan; Diehl, Claude A; Heber, Albert J; Lim, Teng T
2010-06-01
Understanding temporal and spatial variations of aerial pollutant concentrations is important for designing air quality monitoring systems. In long-term and continuous air quality monitoring in large livestock and poultry barns, these systems usually use location-shared analyzers and sensors and can only sample air at limited number of locations. To assess the validity of the gas sampling design at a commercial layer farm, a new methodology was developed to map pollutant gas concentrations using portable sensors under steady-state or quasi-steady-state barn conditions. Three assessment tests were conducted from December 2008 to February 2009 in two manure-belt layer barns. Each barn was 140.2 m long and 19.5 m wide and had 250,000 birds. Each test included four measurements of ammonia and carbon dioxide concentrations at 20 locations that covered all operating fans, including six of the fans used in the long-term sampling that represented three zones along the lengths of the barns, to generate data for complete-barn monitoring. To simulate the long-term monitoring, gas concentrations from the six long-term sampling locations were extracted from the 20 assessment locations. Statistical analyses were performed to test the variances (F-test) and sample means (t test) between the 6- and 20-sample data. The study clearly demonstrated ammonia and carbon dioxide concentration gradients that were characterized by increasing concentrations from the west to east ends of the barns following the under-cage manure-belt travel direction. Mean concentrations increased from 7.1 to 47.7 parts per million (ppm) for ammonia and from 2303 to 3454 ppm for carbon dioxide from the west to east of the barns. Variations of mean gas concentrations were much less apparent between the south and north sides of the barns, because they were 21.2 and 20.9 ppm for ammonia and 2979 and 2951 ppm for carbon dioxide, respectively. The null hypotheses that the variances and means between the 6- and 20-sample data were equal at alpha = 0.05 (P > 0.05) were accepted for both gases. The results proved that the long-term gas sampling design was valid in this instance and suggested that the gas sampling design in these two barns was one of the best on the basis of available long-term monitoring instrumentation at reasonable cost.
Zeng, Zhi; Pan, Xingyu; Ma, Hao; He, Jianhua; Cang, Jirong; Zeng, Ming; Mi, Yuhao; Cheng, Jianping
2017-03-01
An underwater in-situ gamma-ray spectrometer based on LaBr 3 :Ce was developed and optimized to monitor marine radioactivity. The intrinsic background mainly from 138 La and 227 Ac of LaBr 3 :Ce was well determined by low background measurement and pulse shape discrimination method. A method of self-calibration using three internal contaminant peaks was proposed to eliminate the peak shift during long-term monitoring. With experiments under different temperatures, the method was proved to be helpful for maintaining long-term stability. To monitor the marine radioactivity, the spectrometer's efficiency was calculated via water tank experiment as well as Monte Carlo simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Montavont, A; Kaminska, A; Soufflet, C; Taussig, D
2015-03-01
Long-term video-EEG corresponds to a recording ranging from 1 to 24 h or even longer. It is indicated in the following situations: diagnosis of epileptic syndromes or unclassified epilepsy, pre-surgical evaluation for drug-resistant epilepsy, follow-up of epilepsy or in cases of paroxysmal symptoms whose etiology remains uncertain. There are some specificities related to paediatric care: a dedicated pediatric unit; continuous monitoring covering at least a full 24-hour period, especially in the context of pre-surgical evaluation; the requirement of presence by the parents, technician or nurse; and stronger attachment of electrodes (cup electrodes), the number of which is adapted to the age of the child. The chosen duration of the monitoring also depends on the frequency of seizures or paroxysmal events. The polygraphy must be adapted to the type and topography of movements. It is essential to have at least an electrocardiography (ECG) channel, respiratory sensor and electromyography (EMG) on both deltoids. There is no age limit for performing long-term video-EEG even in newborns and infants; nevertheless because of scalp fragility, strict surveillance of the baby's skin condition is required. In the specific context of pre-surgical evaluation, long-term video-EEG must record all types of seizures observed in the child. This monitoring is essential in order to develop hypotheses regarding the seizure onset zone, based on electroclinical correlations, which should be adapted to the child's age and the psychomotor development. Copyright © 2015. Published by Elsevier SAS.
NCCN Mountain Lakes Monitoring Strategy: Guidelines to Resolution
Hoffman, Robert L.; Huff, Mark H.
2008-01-01
The North Coast and Cascades Network (NCCN) Inventory and Monitoring Program provides funds to its Network Parks to plan and implement the goals and objectives of the National Park Services? (NPS) Inventory and Monitoring (I&M) Program. The primary purpose of the I&M program is to develop and implement a long-term monitoring program in each network. The purpose of this document is to describe the outcome of a meeting held to find solutions to obstacles inhibiting development of a unified core design and methodology for mountain lake monitoring.
Minimal hardware Bluetooth tracking for long-term at-home elder supervision.
Kelly, Damian; McLoone, Sean; Farrell, Ronan
2010-01-01
The ability to automatically detect the location of an elder within their own home is a significant enabler of remote elder supervision and interaction applications. This location information is typically generated via a myriad of sensors throughout the home environment. Even with high sensor redundancy, there are still situations where traditional elder monitoring systems are unable to resolve the location of the elder. This work develops a minimal infrastructure radio-frequency localisation system for long-term elder location tracking. An RFID room-labelling technique is employed and with it, the localisation system developed in this work is shown to exhibit superior performance to more traditional localisation systems in realistic long-term deployments.
DOT National Transportation Integrated Search
2011-06-01
In this project a description of the maintenance of the sensor monitoring systems installed on three California : highway bridges is presented. The monitoring systems consist of accelerometers, strain gauges, pressure sensors, : and displacement sens...
DOT National Transportation Integrated Search
2011-06-01
In this project a description of the maintenance of the sensor monitoring systems installed on three California : highway bridges is presented. The monitoring systems consist of accelerometers, strain gauges, pressure sensors, : and displacement sens...
Developments in seismic monitoring for risk reduction
Celebi, M.
2007-01-01
This paper presents recent state-of-the-art developments to obtain displacements and drift ratios for seismic monitoring and damage assessment of buildings. In most cases, decisions on safety of buildings following seismic events are based on visual inspections of the structures. Real-time instrumental measurements using GPS or double integration of accelerations, however, offer a viable alternative. Relevant parameters, such as the type of connections and structural characteristics (including storey geometry), can be estimated to compute drifts corresponding to several pre-selected threshold stages of damage. Drift ratios determined from real-time monitoring can then be compared to these thresholds in order to estimate damage conditions drift ratios. This approach is demonstrated in three steel frame buildings in San Francisco, California. Recently recorded data of strong shaking from these buildings indicate that the monitoring system can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can also be used for risk monitoring, as a method to assess performance-based design and analysis procedures, for long-term assessment of structural characteristics of a building, and as a possible long-term damage detection tool.
In vivo wireless biodiagnosis system for long-term bioactivity monitoring network
NASA Astrophysics Data System (ADS)
Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung
2004-07-01
Attempts to develop a
Parr, T W; Sier, A R J; Battarbee, R W; Mackay, A; Burgess, J
2003-07-01
Widespread concern over the state of the environment and the impacts of anthropogenic activities on ecosystem services and functions has highlighted the need for high-quality, long-term datasets for detecting and understanding environmental change. In July 2001, an international conference reviewed progress in the field of long-term ecosystem research and monitoring (LTERM). Examples are given which demonstrate the need for long-term environmental monitoring and research, for palaeoecological reconstructions of past environments and for applied use of historical records that inform us of past environmental conditions. LTERM approaches are needed to provide measures of baseline conditions and for informing decisions on ecosystem management and environmental policy formulation. They are also valuable in aiding the understanding of the processes of environmental change, including the integrated effects of natural and anthropogenic drivers and pressures, recovery from stress and resilience of species, populations, communities and ecosystems. The authors argue that, in order to realise the full potential of LTERM approaches, progress must be made in four key areas: (i) increase the number, variety and scope of LTERM activities to help define the operational range of ecosystems; (ii) greater integration of research, monitoring, modelling, palaeoecological reconstruction and remote sensing to create a broad-scale early warning system of environmental change; (iii) development of inter-disciplinary approaches which draw upon social and environmental science expertise to understand the factors determining the vulnerability and resilience of the nature-society system to change; and (iv) more and better use of LTERM data and information to inform the public and policymakers and to provide guidance on sustainable development.
Climate Change and Water Working Group - User Needs to Manage Hydrclimatic Risk from Days to Decades
NASA Astrophysics Data System (ADS)
Raff, D. A.; Brekke, L. D.; Werner, K.; Wood, A.; White, K. D.
2012-12-01
The Federal Climate Change Water Working Group (CCAWWG) provides engineering and scientific collaborations in support of water management. CCAWWG objectives include building working relationships across federal science and water management agencies, provide a forum to share expertise and leverage resources, develop education and training forums, to work with water managers to understand scientific needs and to foster collaborative efforts across the Federal and non-Federal water management and science communities to address those needs. Identifying and addressing water management needs has been categorized across two major time scales: days to a decade and multi-decadal, respectively. These two time periods are termed "Short-Term" and "Long-Term" in terms of the types of water management decisions they support where Short-Term roughly correlates to water management operations and Long-Term roughly correlates to planning activities. This presentation will focus on portraying the identified water management user needs across these two time periods. User Needs for Long-Term planning were identified in the 2011 Reclamation and USACE "Addressing Climate Change in Long-Term Water Resources Planning and Management: User Needs for Improving Tools and Information." User needs for Long-Term planning are identified across eight major categories: Summarize Relevant Literature, Obtain Climate Change Information, Make Decisions About How to Use the Climate Change Information, Assess Natural Systems Response, Assess Socioeconomic and Institutional Response, Assess System Risks and Evaluate Alternatives, Assess and Characterize Uncertainties, and Communicating Results and Uncertainties to Decisionmakers. User Needs for Short-Term operations are focused on needs relative to available or desired monitoring and forecast products from the hydroclimatic community. These needs are presenting in the 2012 USACE, Reclamation, and NOAA - NWS "Short-Term Water Management Decisions: User Needs for Improved Climate, Weather, and Hydrologic Information." Identified needs are presented in four categories: Monitoring, Forecasting, Understanding on Product Relationships and Utilization in Water Management, and Information Services Enterprise. These needs represent everything from continuation and enhancement of in situ monitoring products such as USGS water gages and precipitation networks to supporting product maintenance and evolution to accommodate newly developed technologies.
Simultaneous long-term monitoring of LS I +61°303 by OVRO and Fermi-LAT
NASA Astrophysics Data System (ADS)
Jaron, Frédéric; Massi, Maria; Kiehlmann, Sebastian; Hovatta, Talvikki
2018-07-01
Previous long-term monitorings of the γ-ray-loud X-ray binary LS I +61°303 have revealed the presence of a long-term modulation of ˜4.5 yr. After 9 yr of simultaneous monitoring of LS I +61°303 by the Owens Valley Radio Observatory and the Fermi-LAT, two cycles of the long-term period are now available. Here we perform timing analysis on the radio and the γ-ray light curves. We confirm the presence of previously detected periodicities at both radio and GeV γ-ray wavelengths. Moreover, we discover an offset of the long-term modulation between radio and γ-ray data which could imply different locations of the radio (15 GHz) and GeV emission along the precessing jet.
ADVANCING THE FIELD EVALUATIONS AND APPLICATIONS OF LANDFILL BIOREACTORS
The US Environmental Protection Agency (EPA) is undertaking a long-term program to conduct field evaluations of landfill bioreactors. The near-term effort is focused on the development of appropriate monitoring strategies to ensure adequate control of the landfill bioreactors an...
Long-Term Stream Monitoring Programs in U.S. Secondary Schools
ERIC Educational Resources Information Center
Overholt, Erin; MacKenzie, Ann Haley
2005-01-01
The authors surveyed 15 secondary school teachers in 5 states about how they designed and implemented long-term stream monitoring in their classrooms and the problems and benefits they encountered. The authors surveyed students involved in the stream monitoring projects to obtain their perspective. Teachers reported that stream monitoring provided…
Cost considerations for long-term ecological monitoring
Caughlan, L.; Oakley, K.L.
2001-01-01
For an ecological monitoring program to be successful over the long-term, the perceived benefits of the information must justify the cost. Financial limitations will always restrict the scope of a monitoring program, hence the program's focus must be carefully prioritized. Clearly identifying the costs and benefits of a program will assist in this prioritization process, but this is easier said than done. Frequently, the true costs of monitoring are not recognized and are, therefore, underestimated. Benefits are rarely evaluated, because they are difficult to quantify. The intent of this review is to assist the designers and managers of long-term ecological monitoring programs by providing a general framework for building and operating a cost-effective program. Previous considerations of monitoring costs have focused on sampling design optimization. We present cost considerations of monitoring in a broader context. We explore monitoring costs, including both budgetary costs--what dollars are spent on--and economic costs, which include opportunity costs. Often, the largest portion of a monitoring program budget is spent on data collection, and other, critical aspects of the program, such as scientific oversight, training, data management, quality assurance, and reporting, are neglected. Recognizing and budgeting for all program costs is therefore a key factor in a program's longevity. The close relationship between statistical issues and cost is discussed, highlighting the importance of sampling design, replication and power, and comparing the costs of alternative designs through pilot studies and simulation modeling. A monitoring program development process that includes explicit checkpoints for considering costs is presented. The first checkpoint occur during the setting of objectives and during sampling design optimization. The last checkpoint occurs once the basic shape of the program is known, and the costs and benefits, or alternatively the cost-effectiveness, of each program element can be evaluated. Moving into the implementation phase without careful evaluation of costs and benefits is risky because if costs are later found to exceed benefits, the program will fail. The costs of development, which can be quite high, will have been largely wasted. Realistic expectations of costs and benefits will help ensure that monitoring programs survive the early, turbulent stages of development and the challenges posed by fluctuating budgets during implementation.
Fedy, B.C.; Aldridge, Cameron L.
2011-01-01
Long-term population monitoring is the cornerstone of animal conservation and management. The accuracy and precision of models developed using monitoring data can be influenced by the protocols guiding data collection. The greater sage-grouse (Centrocercus urophasianus) is a species of concern that has been monitored over decades, primarily, by counting the number of males that attend lek (breeding) sites. These lek count data have been used to assess long-term population trends and for multiple mechanistic studies. However, some studies have questioned the efficacy of lek counts to accurately identify population trends. In response, monitoring protocols were changed to have a goal of counting lek sites multiple times within a season. We assessed the influence of this change in monitoring protocols on model accuracy and precision applying generalized additive models to describe trends over time. We found that at large spatial scales including >50 leks, the absence of repeated counts within a year did not significantly alter population trend estimates or interpretation. Increasing sample size decreased the model confidence intervals. We developed a population trend model for Wyoming greater sage-grouse from 1965 to 2008, identifying significant changes in the population indices and capturing the cyclic nature of this species. Most sage-grouse declines in Wyoming occurred between 1965 and the 1990s and lek count numbers generally increased from the mid-1990s to 2008. Our results validate the combination of monitoring data collected under different protocols in past and future studies-provided those studies are addressing large-scale questions. We suggest that a larger sample of individual leks is preferable to multiple counts of a smaller sample of leks. ?? 2011 The Wildlife Society.
van Tussenbroek, Brigitta I.; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C.; Gayle, Peter M. H.; Guzmán, Hector M.; Jácome, Gabriel E.; Juman, Rahanna; Koltes, Karen H.; Oxenford, Hazel A.; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R.; Tschirky, John J.; Weil, Ernesto
2014-01-01
The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m−2) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m−2) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration. PMID:24594732
DOT National Transportation Integrated Search
2014-08-01
This report describes the instrumentation and data acquisition for the center hung segment in the largest : truss bridge in Connecticut, located on the interstate system. The monitoring system was developed as a : joint effort between researchers at ...
U.S. Forest Service Region 1 Lake Chemistry, NADP, and IMPROVE air quality data analysis
Jill Grenon; Mark Story
2009-01-01
This report was developed to address the need for comprehensive analysis of U.S. Forest Service (USFS) Region 1 air quality monitoring data. The monitoring data includes Phase 3 (long-term data) lakes, National Atmospheric Deposition Program (NADP), and Interagency Monitoring of Protected Visual Environments (IMPROVE). Annual and seasonal data for the periods of record...
Kim, Sun-Young; Olives, Casey; Sheppard, Lianne; Sampson, Paul D; Larson, Timothy V; Keller, Joshua P; Kaufman, Joel D
2017-01-01
Recent cohort studies have used exposure prediction models to estimate the association between long-term residential concentrations of fine particulate matter (PM2.5) and health. Because these prediction models rely on PM2.5 monitoring data, predictions for times before extensive spatial monitoring present a challenge to understanding long-term exposure effects. The U.S. Environmental Protection Agency (EPA) Federal Reference Method (FRM) network for PM2.5 was established in 1999. We evaluated a novel statistical approach to produce high-quality exposure predictions from 1980 through 2010 in the continental United States for epidemiological applications. We developed spatio-temporal prediction models using geographic predictors and annual average PM2.5 data from 1999 through 2010 from the FRM and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks. Temporal trends before 1999 were estimated by using a) extrapolation based on PM2.5 data in FRM/IMPROVE, b) PM2.5 sulfate data in the Clean Air Status and Trends Network, and c) visibility data across the Weather Bureau Army Navy network. We validated the models using PM2.5 data collected before 1999 from IMPROVE, California Air Resources Board dichotomous sampler monitoring (CARB dichot), the Children's Health Study (CHS), and the Inhalable Particulate Network (IPN). In our validation using pre-1999 data, the prediction model performed well across three trend estimation approaches when validated using IMPROVE and CHS data (R2 = 0.84-0.91) with lower R2 values in early years. Model performance using CARB dichot and IPN data was worse (R2 = 0.00-0.85) most likely because of fewer monitoring sites and inconsistent sampling methods. Our prediction modeling approach will allow health effects estimation associated with long-term exposures to PM2.5 over extended time periods ≤ 30 years. Citation: Kim SY, Olives C, Sheppard L, Sampson PD, Larson TV, Keller JP, Kaufman JD. 2017. Historical prediction modeling approach for estimating long-term concentrations of PM2.5 in cohort studies before the 1999 implementation of widespread monitoring. Environ Health Perspect 125:38-46; http://dx.doi.org/10.1289/EHP131.
A bio-inspired memory model for structural health monitoring
NASA Astrophysics Data System (ADS)
Zheng, Wei; Zhu, Yong
2009-04-01
Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.
This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...
A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...
Long-term Blood Pressure Measurement in Freely Moving Mice Using Telemetry.
Alam, Mohammad Afaque; Parks, Cory; Mancarella, Salvatore
2016-05-17
During the development of new vasoactive agents, arterial blood pressure monitoring is crucial for evaluating the efficacy of the new proposed drugs. Indeed, research focusing on the discovery of new potential therapeutic targets using genetically altered mice requires a reliable, long-term assessment of the systemic arterial pressure variation. Currently, the gold standard for obtaining long-term measurements of blood pressure in ambulatory mice uses implantable radio-transmitters, which require artery cannulation. This technique eliminates the need for tethering, restraining, or anesthetizing the animals which introduce stress and artifacts during data sampling. However, arterial blood pressure monitoring in mice via catheterization can be rather challenging due to the small size of the arteries. Here we present a step-by-step guide to illustrate the crucial key passages for a successful subcutaneous implantation of radio-transmitters and carotid artery cannulation in mice. We also include examples of long-term blood pressure activity taken from freely moving mice after a period of post-surgery recovery. Following this procedure will allow reliable direct blood pressure recordings from multiple animals simultaneously.
NASA Astrophysics Data System (ADS)
Braban, Christine; Tang, Sim; Bealey, Bill; Roberts, Elin; Stephens, Amy; Galloway, Megan; Greenwood, Sarah; Sutton, Mark; Nemitz, Eiko; Leaver, David
2017-04-01
Ambient ammonia measurements have been undertaken both in the atmosphere to understand sources, concentrations at background and vulnerable ecosystems and for long term monitoring of concentrations. As a pollutant which is projected to increase concentration in the coming decades with significant policy challenges to implementing mitigation strategies it is useful to assess what has been measured, where and why. In this study a review of the literature, has shown that ammonia measurements are frequently not publically reported and in general not reposited in the open data centres, available for research. The specific sectors where measurements have been undertaken are: agricultural point source assessments, agricultural surface exchange measurements, sensitive ecosystem monitoring, landscape/regional studies and governmental long term monitoring. Less frequently ammonia is measured as part of an intensive atmospheric chemistry field campaign. Technology is developing which means a shift from chemical denuder methods to spectroscopic techniques may be possible, however chemical denuding techniques with off-line laboratory analysis will likely be an economical approach for some time to come. This paper reviews existing datasets from the different sectors of research and integrates them for a global picture to allow both a long term understanding and facilitate comparison with future measurements.
NASA Astrophysics Data System (ADS)
Ferrigno, Federica; Gigli, Giovanni; Fanti, Riccardo; Intrieri, Emanuele; Casagli, Nicola
2017-06-01
On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy) reactivated, affecting both state road 90 Delle Puglie
and the Rome-Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC) started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar) system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM) approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.
Space Propulsion Synergy Group ETO technology assessments
NASA Astrophysics Data System (ADS)
Bray, James
The Space Propulsion Synergy Group (SPSG), which was chartered to support long-range strategic planning, has, using a broad industry/government team, evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long-term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a priori. The SPSG invented a dual prioritization approach that balances long-term strategic thrusts with current programmatic constraints. This enables individual program managers to make decisions based on both individual project needs and long-term strategic needs. Results indicate that an SSTO using an integrated modular engine has the best long-term potential for a 20 Klb class vehicle, and that health monitoring and control technologies are among the highest dual priority liquid rocket technologies.
Susan Will-Wolf; Peter Neitlich
2010-01-01
Development of a regional lichen gradient model from community data is a powerful tool to derive lichen indexes of response to environmental factors for large-scale and long-term monitoring of forest ecosystems. The Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture Forest Service includes lichens in its national inventory of forests of...
NASA Technical Reports Server (NTRS)
1984-01-01
In the mid 70's, NASA saw a need for a long term electrocardiographic electrode suitable for use on astronauts. Heart Rate Inc.'s insulated capacitive electrode is constructed of thin dielectric film applied to stainless steel surface, originally developed under a grant by Texas Technical University. HRI, Inc. was awarded NASA license and continued development of heart rate monitor for use on exercise machines for physical fitness and medical markets.
A Benchmark Study of Large Contract Supplier Monitoring Within DOD and Private Industry
1994-03-01
83 2. Long Term Supplier Relationships ...... .. 84 3. Global Sourcing . . . . . . . . . . . . .. 85 4. Refocusing on Customer Quality...monitoring and recognition, reduced number of suppliers, global sourcing, and long term contractor relationships . These initiatives were then compared to DCMC...on customer quality. 14. suBJE.C TERMS Benchmark Study of Large Contract Supplier Monitoring. 15. NUMBER OF PAGES108 16. PRICE CODE 17. SECURITY
NASA Astrophysics Data System (ADS)
Simeonov, V.; van den Bergh, H.; Parlange, M. B.
2009-12-01
A new long-open-path instrument developed at EPFL for methane and water vapor observation will be presented. The instrument is developed and will be used within the GAW+ CH program and aims at long-term monitoring of background methane concentration at the High Altitude Research Station Jungfraujoch (3580 mASL). The instrument is built on the monostatic scheme (transceiver -distant retroreflector) using a 1.65 nm tunable diode laser (TDL) and a retroreflector at 1200 m from the transceiver. The data will be compared with in-situ measurements to evaluate the effect of the station on the in-situ data.
Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions
NASA Technical Reports Server (NTRS)
Jan, Darrell L.
2010-01-01
Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.
Jack Lewis; Jim Baldwin
1997-01-01
The State of California has embarked upon a Long-Term Monitoring Program whose primary goal is to assess the effectiveness of the Forest Practice Rules and Review Process in protecting the beneficial uses of waters from the impacts of timber operations on private timberlands. The Board of Forestry's Monitoring Study Group concluded that hillslope monitoring should...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuracko, K. L.; Parang, M.; Landguth, D. C.
2004-09-13
TOADS (Total On-line Access Data System) is a new generation of real-time monitoring and information management system developed to support unattended environmental monitoring and long-term stewardship of U.S. Department of Energy facilities and sites. TOADS enables project managers, regulators, and stakeholders to view environmental monitoring information in realtime over the Internet. Deployment of TOADS at government facilities and sites will reduce the cost of monitoring while increasing confidence and trust in cleanup and long term stewardship activities. TOADS: Reliably interfaces with and acquires data from a wide variety of external databases, remote systems, and sensors such as contaminant monitors, areamore » monitors, atmospheric condition monitors, visual surveillance systems, intrusion devices, motion detectors, fire/heat detection devices, and gas/vapor detectors; Provides notification and triggers alarms as appropriate; Performs QA/QC on data inputs and logs the status of instruments/devices; Provides a fully functional data management system capable of storing, analyzing, and reporting on data; Provides an easy-to-use Internet-based user interface that provides visualization of the site, data, and events; and Enables the community to monitor local environmental conditions in real time. During this Phase II STTR project, TOADS has been developed and successfully deployed for unattended facility, environmental, and radiological monitoring at a Department of Energy facility.« less
OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS
The Optimal Well Locator ( OWL) program was designed and developed by USEPA to be a screening tool to evaluate and optimize the placement of wells in long term monitoring networks at small sites. The first objective of the OWL program is to allow the user to visualize the change ...
Monitoring and modeling terrestrial arthropod diversity on the Kenai National Wildlife Refuge
Matthew L. Bowser; John M. Morton
2009-01-01
The primary purpose of the Kenai National Wildlife Refuge (KENWR) is to "conserve fish and wildlife populations in their natural diversity," where "fish and wildlife" explicitly includes arthropods. To this end, we developed a Long Term Ecological Monitoring Program (LTEMP), a collaborative effort with the USDA Forest Inventory and Analysis (FIA)...
Norman, J C; McGee, M G; Fuqua, J M; Igo, S R; Turner, S A; Sterling, R; Urrutia, C O; Frazier, O H; Clay, W C; Chambers, J A
1983-02-01
A long-term, implantable, electrically actuated left ventricular assist system (THI/Gould LVAS) is being developed and characterized in vitro and in vivo for utilization in patients with end-stage heart disease. This system consists of five major components: a long-term, implantable blood pump (THI E-type ALVAD); an electrical-mechanical energy converter (Gould Model V); a control unit with batteries; a volume compensation system; and an external power supply and monitoring unit. Two of these components (blood pump and electrical-mechanical energy converter) have been integrated, and are undergoing chronic in vivo evaluations in calves. Thus far, 44 pneumatically and electrically actuated THI/Gould LVAS evaluations have been performed. This experience has resulted in greater than 6.5 years of actuation in vivo, with durations exceeding 1 year. System in vivo performance in terms of durability, mechanical reliability, hemodynamic effectiveness, and biocompatibility has been satisfactory. Demonstration of long-term (2-year) effectiveness in supporting the circulation is the ultimate goal.
Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman
2015-01-01
Long-term survival and growth of urban forests are critical to achieve the targeted benefits of urban tree planting programs, such as building energy savings from tree shade. However, little is known about how trees perform in the long-term, especially in residential areas. Given this gap in the literature, we monitored 22-years of post-planting survival, growth, and...
Fault tree analysis for data-loss in long-term monitoring networks.
Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S
2009-01-01
Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention.
Vivas, Esther X; Carlson, Matthew L; Neff, Brian A; Shepard, Neil T; McCracken, D Jay; Sweeney, Alex D; Olson, Jeffrey J
2018-02-01
Does intraoperative facial nerve monitoring during vestibular schwannoma surgery lead to better long-term facial nerve function? This recommendation applies to adult patients undergoing vestibular schwannoma surgery regardless of tumor characteristics. Level 3: It is recommended that intraoperative facial nerve monitoring be routinely utilized during vestibular schwannoma surgery to improve long-term facial nerve function. Can intraoperative facial nerve monitoring be used to accurately predict favorable long-term facial nerve function after vestibular schwannoma surgery? This recommendation applies to adult patients undergoing vestibular schwannoma surgery. Level 3: Intraoperative facial nerve can be used to accurately predict favorable long-term facial nerve function after vestibular schwannoma surgery. Specifically, the presence of favorable testing reliably portends a good long-term facial nerve outcome. However, the absence of favorable testing in the setting of an anatomically intact facial nerve does not reliably predict poor long-term function and therefore cannot be used to direct decision-making regarding the need for early reinnervation procedures. Does an anatomically intact facial nerve with poor electromyogram (EMG) electrical responses during intraoperative testing reliably predict poor long-term facial nerve function? This recommendation applies to adult patients undergoing vestibular schwannoma surgery. Level 3: Poor intraoperative EMG electrical response of the facial nerve should not be used as a reliable predictor of poor long-term facial nerve function. Should intraoperative eighth cranial nerve monitoring be used during vestibular schwannoma surgery? This recommendation applies to adult patients undergoing vestibular schwannoma surgery with measurable preoperative hearing levels and tumors smaller than 1.5 cm. Level 3: Intraoperative eighth cranial nerve monitoring should be used during vestibular schwannoma surgery when hearing preservation is attempted. Is direct monitoring of the eighth cranial nerve superior to the use of far-field auditory brain stem responses? This recommendation applies to adult patients undergoing vestibular schwannoma surgery with measurable preoperative hearing levels and tumors smaller than 1.5 cm. Level 3: There is insufficient evidence to make a definitive recommendation. The full guideline can be found at: https://www.cns.org/guidelines/guidelines-manage-ment-patients-vestibular-schwannoma/chapter_4. Copyright © 2017 by the Congress of Neurological Surgeons
Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control
Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi
2017-01-01
Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at −700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m. PMID:28475168
Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control.
Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi
2017-05-05
Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at -700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m.
Perry, Simona L
2013-01-01
The ethnographer's toolbox has within it a variety of methods for describing and analyzing the everyday lives of human beings that can be useful to public health practitioners and policymakers. These methods can be employed to uncover information on some of the harder-to-monitor psychological, sociocultural, and environmental factors that may lead to chronic stress in individuals and communities. In addition, because most ethnographic research studies involve deep and long-term engagement with local communities, the information collected by ethnographic researchers can be useful in tracking long- and short-term changes in overall well-being and health. Set within an environmental justice framework, this article uses examples from ongoing ethnographic fieldwork in the Marcellus Shale gas fields of Pennsylvania to describe and justify using an ethnographic approach to monitor the psychological and sociocultural determinants of community health as they relate to unconventional oil and gas development projects in the United States.
Commercialization of Measurement Technologies
DOT National Transportation Integrated Search
2012-10-20
Miniaturized, wireless instrumentation is now a reality and this thesis describes : development of such a system to monitor crack response. Comparison of environmental : (long-term) and blast-induced (dynamic) crack width changes in residential struc...
Busciolano, Ronald J.
2005-01-01
Ground water is the sole source of water supply for more than 3 million people on Long Island, New York. Large-scale ground-water pumpage, sewering systems, and prolonged periods of below-normal precipitation have lowered ground-water levels and decreased stream-discharge in western and central Long Island. No method is currently (2004) available on Long Island that can assess data from the ground-water-monitoring network to enable water managers and suppliers with the ability to give timely warning of severe water-level declines.This report (1) quantifies past drought- and human-induced changes in the ground-water system underlying Long Island by applying statistical and graphical methods to precipitation, stream-discharge, and ground-water-level data from selected monitoring sites; (2) evaluates the relation between water levels in the upper glacial aquifer and those in the underlying Magothy aquifer; (3) defines trends in stream discharge and ground-water levels that might indicate the onset of drought conditions or the effects of excessive pumping; and (4) discusses the long-term records that were used to select sites for a Long Island drought-monitoring network.Long Island’s long-term hydrologic records indicated that the available data provide a basis for development of a drought-monitoring network. The data from 36 stations that were selected as possible drought-monitoring sites—8 precipitation-monitoring stations, 8 streamflow-gaging (discharge) stations, 15 monitoring wells screened in the upper glacial aquifer under water-table (unconfined) conditions, and 5 monitoring wells screened in the underlying Magothy aquifer under semi-confined conditions—indicate that water levels in western parts of Long Island have fallen and risen markedly (more than 15 ft) in response to fluctuations in pumpage, and have declined from the increased use of sanitary- and storm-sewer systems. Water levels in the central and eastern parts, in contrast, remain relatively unaffected compared to the western parts, although the effects of human activity are discernible in the records.The value of each site as a drought-monitoring indicator was assessed through an analysis of trends in the records. Fifty-year annual and monthly data sets were created and combined into three composite-average hydrographs—precipitation, stream discharge, and ground-water levels. Three zones representing the range of human effect on ground-water levels were delineated to help evaluate islandwide hydrologic conditions and to quantify the indices. Data from the three indices can be used to assess current conditions in the ground-water system underlying Long Island and evaluate water-level declines during periods of drought.
History of ozone injury monitoring methods and the development of a recommended protocol
Daniel Duriscoe; Kenneth Stolte; John Pronos
1996-01-01
The minimum requirement for longâterm monitoring of air pollution effects on forest stands is to develop methods for observers to locate, evaluate, and reâevaluate individual trees at intervals of one or more years. Studies of this nature have used permanent quadrats or "plots" in which individual plants are tagged or mapped. Multiple levels of information...
NASA Astrophysics Data System (ADS)
Weltzin, J. F.; Scully, R. A.; Bayer, J.
2016-12-01
Individual natural resource monitoring programs have evolved in response to different organizational mandates, jurisdictional needs, issues and questions. We are establishing a collaborative forum for large-scale, long-term monitoring programs to identify opportunities where collaboration could yield efficiency in monitoring design, implementation, analyses, and data sharing. We anticipate these monitoring programs will have similar requirements - e.g. survey design, standardization of protocols and methods, information management and delivery - that could be met by enterprise tools to promote sustainability, efficiency and interoperability of information across geopolitical boundaries or organizational cultures. MonitoringResources.org, a project of the Pacific Northwest Aquatic Monitoring Partnership, provides an on-line suite of enterprise tools focused on aquatic systems in the Pacific Northwest Region of the United States. We will leverage on and expand this existing capacity to support continental-scale monitoring of both aquatic and terrestrial systems. The current stakeholder group is focused on programs led by bureaus with the Department of Interior, but the tools will be readily and freely available to a broad variety of other stakeholders. Here, we report the results of two initial stakeholder workshops focused on (1) establishing a collaborative forum of large scale monitoring programs, (2) identifying and prioritizing shared needs, (3) evaluating existing enterprise resources, (4) defining priorities for development of enhanced capacity for MonitoringResources.org, and (5) identifying a small number of pilot projects that can be used to define and test development requirements for specific monitoring programs.
[Development of a wearable electrocardiogram monitor with recognition of physical activity scene].
Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun
2012-10-01
To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.
The design of Radiation Accident Registry.
Chen, Jing; Seely, Bob; Bergman, Lauren; Moir, Deborah
2011-03-01
In order to provide effective monitoring and follow-up on the health effects of individuals accidentally exposed to ionising radiation, a Radiation Accident Registry (RAR) has been designed and constructed as an extension to the existing National Dose Registry (NDR). The RAR has basic functions of recording, monitoring and reporting. This type of registry is able to assist responders in preparing for and managing situations during radiological events and in providing effective follow-up on the long-term health effects of persons exposed to ionising radiation. It is especially important to register radiation-exposed people in vulnerable population groups, such as children and pregnant women, to ensure proper long-term health care and protection. Even though radiation accidents are rare, a registry prepared for such accidents could involve a large population and, in some cases, require lifetime monitoring for individuals. One of the most challenging tasks associated with RAR is the assessment of radiation dose resulting from accidents. In some cases, the assessment of radiation doses to individuals could be a process requiring the involvement of various methods. The development of fast and accurate dose assessment tools will remain a long-term challenge associated with the RAR. To meet this challenge, further research activities in radiation dosimetry for individual monitoring are needed.
Resistance Management Research Status
Long-term sustainability of genetically modified corn expressing Bt relies on the validity of assumptions underlying IRM models used by the EPA and the ability of EPA to monitor, detect and react to insect resistance when it develops. The EPA is developing a multi-tiered approac...
myBrain: a novel EEG embedded system for epilepsy monitoring.
Pinho, Francisco; Cerqueira, João; Correia, José; Sousa, Nuno; Dias, Nuno
2017-10-01
The World Health Organisation has pointed that a successful health care delivery, requires effective medical devices as tools for prevention, diagnosis, treatment and rehabilitation. Several studies have concluded that longer monitoring periods and outpatient settings might increase diagnosis accuracy and success rate of treatment selection. The long-term monitoring of epileptic patients through electroencephalography (EEG) has been considered a powerful tool to improve the diagnosis, disease classification, and treatment of patients with such condition. This work presents the development of a wireless and wearable EEG acquisition platform suitable for both long-term and short-term monitoring in inpatient and outpatient settings. The developed platform features 32 passive dry electrodes, analogue-to-digital signal conversion with 24-bit resolution and a variable sampling frequency from 250 Hz to 1000 Hz per channel, embedded in a stand-alone module. A computer-on-module embedded system runs a Linux ® operating system that rules the interface between two software frameworks, which interact to satisfy the real-time constraints of signal acquisition as well as parallel recording, processing and wireless data transmission. A textile structure was developed to accommodate all components. Platform performance was evaluated in terms of hardware, software and signal quality. The electrodes were characterised through electrochemical impedance spectroscopy and the operating system performance running an epileptic discrimination algorithm was evaluated. Signal quality was thoroughly assessed in two different approaches: playback of EEG reference signals and benchmarking with a clinical-grade EEG system in alpha-wave replacement and steady-state visual evoked potential paradigms. The proposed platform seems to efficiently monitor epileptic patients in both inpatient and outpatient settings and paves the way to new ambulatory clinical regimens as well as non-clinical EEG applications.
2016 RFA for Great Lakes Long-Term Biology Monitoring Program: Phytoplankton Component
This Request for Applications solicits applications from eligible entities for a cooperative agreement to be awarded for a project to continue the long-term monitoring of phytoplankton in the open waters of the Great Lakes.
This document summarizes the presentations and workshops of a conference on improving long-term monitoring (LTM) and remedial systems performance that was held in St. Louis, Missouri between June 8th to 11th, 1999.
Stiers, Peter; Falbo, Luciana; Goulas, Alexandros; van Gog, Tamara; de Bruin, Anique
2016-05-15
Monitoring of learning is only accurate at some time after learning. It is thought that immediate monitoring is based on working memory, whereas later monitoring requires re-activation of stored items, yielding accurate judgements. Such interpretations are difficult to test because they require reverse inference, which presupposes specificity of brain activity for the hidden cognitive processes. We investigated whether multivariate pattern classification can provide this specificity. We used a word recall task to create single trial examples of immediate and long term retrieval and trained a learning algorithm to discriminate them. Next, participants performed a similar task involving monitoring instead of recall. The recall-trained classifier recognized the retrieval patterns underlying immediate and long term monitoring and classified delayed monitoring examples as long-term retrieval. This result demonstrates the feasibility of decoding cognitive processes, instead of their content. Copyright © 2016 Elsevier Inc. All rights reserved.
Circumpolar Biodiversity Monitoring Programme coastal biodiversity monitoring background paper
McLennan, Donald; Anderson, Rebecca D.; Wegeberg, S.; Pettersvik Arvnes, Maria; Sergienko, Liudmila; Behe, Carolina; Moss-Davies, Pitseolak; Fritz, S.; Markon, Carl J.; Christensen, T.; Barry, T.; Price, C.
2016-01-01
In 2014, the United States (U.S.) and Canada agreed to act as co-lead countries for the initial development of the Coastal Expert Monitoring Group (CEMG) as part of the Circumpolar Biodiversity Monitoring Program (CBMP, www. cbmp.is) under the Arctic Council’s Conservation of Arctic Flora and Fauna (CAFF, www.caff.is) working group. The CAFF Management Board approved Terms of Reference for the CEMG in the spring of 2014. The primary goal of the CEMG is to develop a long term, integrated, multi-disciplinary, circumpolar Arctic Coastal Biodiversity Monitoring Plan (the Coastal Plan) that relies on science and Traditional Knowledge, and has direct and relevant application for communities, industry, government decision makers, and other users. In addition to the monitoring plan, the CAFF working group has asked the CBMP, and thus the CEMG, to develop an implementation plan that identifies timeline, costs, organizational structure and partners. This background paper provides a platform for the guidance for the development of the Coastal Plan and is produced by the CEMG with assistance from a number of experts in multiple countries.
Judah, Gaby; de Witt Huberts, Jessie; Drassal, Allan; Aunger, Robert
2017-01-01
The accurate measurement of behaviour is vitally important to many disciplines and practitioners of various kinds. While different methods have been used (such as observation, diaries, questionnaire), none are able to accurately monitor behaviour over the long term in the natural context of people's own lives. The aim of this work was therefore to develop and test a reliable system for unobtrusively monitoring various behaviours of multiple individuals within the same household over a period of several months. A commercial Real Time Location System was adapted to meet these requirements and subsequently validated in three households by monitoring various bathroom behaviours. The results indicate that the system is robust, can monitor behaviours over the long-term in different households and can reliably distinguish between individuals. Precision rates were high and consistent. Recall rates were less consistent across households and behaviours, although recall rates improved considerably with practice at set-up of the system. The achieved precision and recall rates were comparable to the rates observed in more controlled environments using more valid methods of ground truthing. These initial findings indicate that the system is a valuable, flexible and robust system for monitoring behaviour in its natural environment that would allow new research questions to be addressed.
Monitoring: a vital component of science at USGS WEBB sites
NASA Astrophysics Data System (ADS)
Shanley, J. B.; Peters, N. E.; Campbell, D. H.; Clow, D. W.; Walker, J. F.; Hunt, R. J.
2007-12-01
The U.S. Geological Survey launched its Water, Energy, and Biogeochemical Budgets (WEBB) program in 1991 with the establishment of five long-term research watersheds. Monitoring of climate, hydrology, and chemistry is the cornerstone of WEBB scientific investigations. At Loch Vale, CO, long-term streamflow and climate monitoring indicated an increase rather than the expected decrease in the runoff:precipitation ratio during a drought in the early 2000s, indicating the melting of subsurface and glacial ice in the basin. At Luquillo Experimental Forest in Puerto Rico, monitoring of mercury in precipitation revealed the highest recorded mercury wet deposition rates in the USA, an unexpected finding given the lack of point sources. At Panola Mountain, GA, long-term monitoring of soil- and groundwater revealed step shifts in chemical compositions in response to wet and drought cycles, causing a corresponding shift in stream chemistry. At Sleepers River, VT, WEBB funding has extended a long- term (since 1960) weekly snow water equivalent dataset which is a valuable integrating signal of regional climate trends. At Trout Lake, WI, long-term monitoring of lakes, ground-water levels, streamflow and subsurface water chemistry has generated a rich dataset for calibrating a watershed model, and allowed for efficient design of an automated procedure for sampling mercury during runoff events. The 17-plus years of monitoring at the WEBB watersheds provides a foundation for generating new scientific hypotheses, a basis for trend detection, and context for anomalous observations that often drive new research.
Cost considerations for long-term ecological monitoring
Caughlan, L.; Oakley, K.L.
2001-01-01
For an ecological monitoring program to be successful over the long-term, the perceived benefits of the information must justify the cost. Financial limitations will always restrict the scope of a monitoring program, hence the program’s focus must be carefully prioritized. Clearly identifying the costs and benefits of a program will assist in this prioritization process, but this is easier said than done. Frequently, the true costs of monitoring are not recognized and are, therefore, underestimated. Benefits are rarely evaluated, because they are difficult to quantify. The intent of this review is to assist the designers and managers of long-term ecological monitoring programs by providing a general framework for building and operating a cost-effective program. Previous considerations of monitoring costs have focused on sampling design optimization. We present cost considerations of monitoring in a broader context. We explore monitoring costs, including both budgetary costs, what dollars are spent on, and economic costs, which include opportunity costs. Often, the largest portion of a monitoring program budget is spent on data collection, and other, critical aspects of the program, such as scientific oversight, training, data management, quality assurance, and reporting, are neglected. Recognizing and budgeting for all program costs is therefore a key factor in a program’s longevity. The close relationship between statistical issues and cost is discussed, highlighting the importance of sampling design, replication and power, and comparing the costs of alternative designs through pilot studies and simulation modeling. A monitoring program development process that includes explicit checkpoints for considering costs is presented. The first checkpoint occurs during the setting of objectives and during sampling design optimization. The last checkpoint occurs once the basic shape of the program is known, and the costs and benefits, or alternatively the cost-effectiveness, of each program element can be evaluated. Moving into the implementation phase without careful evaluation of costs and benefits is risky because if costs are later found to exceed benefits, the program will fail. The costs of development, which can be quite high, will have been largely wasted. Realistic expectations of costs and benefits will help ensure that monitoring programs survive the early, turbulent stages of development and the challenges posed by fluctuating budgets during implementation.
William D. Smith; Barbara L. Conkling
2004-01-01
This report focuses on the Forest Health Monitoring Programâs development and use of analytical procedures for monitoring changes in forest health and for expressing the corresponding statistical confidences. The programâs assessments of long-term status, changes, and trends in forest ecosystem health use the Santiago Declaration: âCriteria and Indicators for the...
As the lower Saint Louis River moves closer and closer to delisting as an Area of Concern, it is incumbent that we measure, assess and report on our success. Going forward, It’s equally important that we continue monitoring to protect and sustain the healthy ecosystems we&...
Noskov, V B; Nikolaev, D V; Tuĭkin, S A; Kozharinov, V I; Grachev, V A
2007-01-01
A portable two-frequency tetrapolar impedance meter was developed to study the state of liquid compartments of human body under zero-gravity conditions. The portable impedance meter makes it possible to monitor the hydration state of human body under conditions of long-term space flight on board international space station.
The Optimal Well Locator ( OWL) program was designed and developed by USEPA to be a screening tool to evaluate and optimize the placement of wells in long term monitoring networks at small sites. The first objective of the OWL program is to allow the user to visualize the change ...
Marbled murrelet effectiveness monitoring plan for the Northwest Forest Plan.
Sarah Madsen; Diane Evans; Thomas Hamer; Paul Henson; Sherri Miller; S. Kim Nelson; Daniel Roby; Martin Stapanian
1999-01-01
This report describes options for effectiveness monitoring of long-term status and trends to evaluate the success of the Northwest Forest Plan in maintaining and restoring marbled murrelet nesting habitat and populations on Federal lands. A two-phase approach is described that begins with developing reliable and repeatable processes for identifying nesting habitat and...
Kim, Sun-Young; Olives, Casey; Sheppard, Lianne; Sampson, Paul D.; Larson, Timothy V.; Keller, Joshua P.; Kaufman, Joel D.
2016-01-01
Introduction: Recent cohort studies have used exposure prediction models to estimate the association between long-term residential concentrations of fine particulate matter (PM2.5) and health. Because these prediction models rely on PM2.5 monitoring data, predictions for times before extensive spatial monitoring present a challenge to understanding long-term exposure effects. The U.S. Environmental Protection Agency (EPA) Federal Reference Method (FRM) network for PM2.5 was established in 1999. Objectives: We evaluated a novel statistical approach to produce high-quality exposure predictions from 1980 through 2010 in the continental United States for epidemiological applications. Methods: We developed spatio-temporal prediction models using geographic predictors and annual average PM2.5 data from 1999 through 2010 from the FRM and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks. Temporal trends before 1999 were estimated by using a) extrapolation based on PM2.5 data in FRM/IMPROVE, b) PM2.5 sulfate data in the Clean Air Status and Trends Network, and c) visibility data across the Weather Bureau Army Navy network. We validated the models using PM2.5 data collected before 1999 from IMPROVE, California Air Resources Board dichotomous sampler monitoring (CARB dichot), the Children’s Health Study (CHS), and the Inhalable Particulate Network (IPN). Results: In our validation using pre-1999 data, the prediction model performed well across three trend estimation approaches when validated using IMPROVE and CHS data (R2 = 0.84–0.91) with lower R2 values in early years. Model performance using CARB dichot and IPN data was worse (R2 = 0.00–0.85) most likely because of fewer monitoring sites and inconsistent sampling methods. Conclusions: Our prediction modeling approach will allow health effects estimation associated with long-term exposures to PM2.5 over extended time periods ≤ 30 years. Citation: Kim SY, Olives C, Sheppard L, Sampson PD, Larson TV, Keller JP, Kaufman JD. 2017. Historical prediction modeling approach for estimating long-term concentrations of PM2.5 in cohort studies before the 1999 implementation of widespread monitoring. Environ Health Perspect 125:38–46; http://dx.doi.org/10.1289/EHP131 PMID:27340825
Martin Benlloch, J; Román Ortiz, E; Mendizabal Oteiza, S
There is enough evidence concerning the short-term safety of living donors after kidney transplantation. However, long-term complications continue to be studied, with a particular interest in young donors. Previous studies have been conducted in older donors for adult renal patients. We present a study of long-term complications in kidney donors for our paediatric population. We carried out a long-term donor study for the 54 living kidney-donor transplantations performed at our department from 1979 to June 2014. We monitored the glomerular filtration rate (GFR) on the basis of 24-hour urine creatinine clearance, 24-hour proteinuria and the development of arterial hypertension in the 48 donors who were followed up for more than one year. Only the 39 patients who were exclusively followed up by our department have been included in the results analysis. GFR through creatinine clearance was stable after an initial decrease. No proteinuria was observed in any of the cases. One patient developed chronic kidney disease (CKD), which resulted in a cumulative incidence of 2%. GFR below 60mL/min/1.73 m 2 was not reported in any other patients. Arterial hypertension was diagnosed in 25% of donors, 90% of which were treated with antihypertensives. Risk of CKD and hypertension in living kidney donors for paediatric recipients, who are carefully monitored throughout their evolution, is similar to that of the general population. Therefore, this technique appears to be safe in both the short and long term. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Resistance Management Research Status-May 2008
Long-term sustainability of genetically modified corn expressing Bt relies on the validity of assumptions underlying IRM models used by the EPA and the ability of EPA to monitor, detect and react to insect resistance when it develops. The EPA is developing a multi-tiered approac...
Developing a Long-term Monitoring Program with Undergraduate Students in Marine Sciences
NASA Astrophysics Data System (ADS)
Anders, T. M.; Boryta, M. D.
2015-12-01
A goal of our growing marine geoscience program at Mt. San Antonio College is to involve our students in all stages of developing and running an undergraduate research project. During the initial planning phase, students develop and test their proposals. Instructor-set parameters were chosen carefully to help guide students toward manageable projects but to not limit their creativity. Projects should focus on long-term monitoring of a coastal area in southern California. During the second phase, incoming students will critique the initial proposals, modify as necessary and continue to develop the project. We intend for data collection opportunities to grow from geological and oceanographic bases to eventually include other STEM topics in biology, chemistry, math and GIS. Questions we will address include: What makes this a good research project for a community college? What are the costs and time commitments involved? How will the project benefit students and society? Additionally we will share our initial results, challenges, and unexpected pitfalls and benefits.
Riera, Amalis; Ford, John K; Ross Chapman, N
2013-09-01
Killer whales in British Columbia are at risk, and little is known about their winter distribution. Passive acoustic monitoring of their year-round habitat is a valuable supplemental method to traditional visual and photographic surveys. However, long-term acoustic studies of odontocetes have some limitations, including the generation of large amounts of data that require highly time-consuming processing. There is a need to develop tools and protocols to maximize the efficiency of such studies. Here, two types of analysis, real-time and long term spectral averages, were compared to assess their performance at detecting killer whale calls in long-term acoustic recordings. In addition, two different duty cycles, 1/3 and 2/3, were tested. Both the use of long term spectral averages and a lower duty cycle resulted in a decrease in call detection and positive pod identification, leading to underestimations of the amount of time the whales were present. The impact of these limitations should be considered in future killer whale acoustic surveys. A compromise between a lower resolution data processing method and a higher duty cycle is suggested for maximum methodological efficiency.
Long-term monitoring of the HPC Charenton Canal Bridge.
DOT National Transportation Integrated Search
2011-08-01
The report contains long-term monitoring data collection and analysis of the first fully high : performance concrete (HPC) bridge in Louisiana, the Charenton Canal Bridge. The design of this : bridge started in 1997, and it was built and opened to tr...
This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickles, W. L.; Ebrom, D. A.
This collaborative effort was in support of the CO 2 Capture Project (CCP), to develop techniques that integrate overhead images of plant species, plant health, geological formations, soil types, aquatic, and human use spatial patterns for detection and discrimination of any CO 2 releases from underground storage formations. The goal of this work was to demonstrate advanced hyperspectral geobotanical remote sensing methods to assess potential leakage of CO 2 from underground storage. The timeframes and scales relevant to the long-term storage of CO 2 in the subsurface make remote sensing methods attractive. Moreover, it has been shown that individual fieldmore » measurements of gas composition are subject to variability on extremely small temporal and spatial scales. The ability to verify ultimate reservoir integrity and to place individual surface measurements into context will be crucial to successful long-term monitoring and verification activities. The desired results were to produce a defined and tested procedure that could be easily used for long-term monitoring of possible CO 2 leakage from underground CO 2 sequestration sites. This testing standard will be utilized on behalf of the oil industry.« less
Don Faber-Langendoen; Geraldine Tierney; James Gibbs; Greg Shriver; Fred Dieffenbach; Pam Lombard
2006-01-01
The National Park Service (NPS) initiated a new âVital Signsâ program in 1998 to develop comprehensive, long-term monitoring of ecological resources within U.S. national parks. Vital signs (VS) are indicators, and are defined as key elements, processes or features of the environment that can be measured or estimated and that indicate the ecological integrity of an...
Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors
NASA Astrophysics Data System (ADS)
Glisic, B.; Inaudi, D.; Lau, J. M.; Fong, C. C.
2013-05-01
A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper.
Long-term soil monitoring at U.S. Geological Survey reference watersheds
McHale, Michael R.; Siemion, Jason; Lawrence, Gregory B.; Mast, M. Alisa
2014-01-01
Monitoring the environment by making repeated measurements through time is essential to evaluate and track the health of ecosystems (fig. 1). Long-term datasets produced by such monitoring are indispensable for evaluating the effectiveness of environmental legislation and for designing mitigation strategies to address environmental changes in an era when human activities are altering the environment locally and globally.
Long-term and short-term action-effect links and their impact on effect monitoring.
Wirth, Robert; Steinhauser, Robert; Janczyk, Markus; Steinhauser, Marco; Kunde, Wilfried
2018-04-23
People aim to produce effects in the environment, and according to ideomotor theory, actions are selected and executed via anticipations of their effects. Further, to ensure that an action has been successful and an effect has been realized, we must be able to monitor the consequences of our actions. However, action-effect links might vary between situations, some might apply for a majority of situations, while others might only apply to special occasions. With a combination of behavioral and electrophysiological markers, we show that monitoring of self-produced action effects interferes with other tasks, and that the length of effect monitoring is determined by both, long-term action-effect links that hold for most situations, and short-term action-effect links that emerge from a current setting. Effect monitoring is fast and frugal when these action-effect links allow for valid anticipation of action effects, but otherwise effect monitoring takes longer and delays a subsequent task. Specific influences of long-term and short-term links on the P1/N1 and P3a further allow to dissect the temporal dynamics of when these links interact for the purpose of effect monitoring. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Manouchehri, M.; Kiavarz Moghaddam, M.
2017-09-01
Increasing world population and unprecedented expansion of urbanization in the world has caused many environmental problems. The relationship between man and the environment is bidirectional one that have great short-term and long-term impacts on the cities and regions. The best way to deal with it is the participation of the people themselves. The use of new technologies has now become one of the most important methods for monitoring the environment that can increase the participation of citizens, improving environmental problems to provide the cheapest and the most accessible form. Developing countries such as Iran, which faces enormous environmental problems are suitable for the development of technological methods of monitoring. Large population and citizens' participation feasibility using VGI can have a positive effect on developing countries. Finally, by using F-VGI that ensures the validity and accuracy of data we can access an appropriate platform that leads us to suitable model for environment monitoring in the form of the application.
Environmental perverse incentives in coastal monitoring.
Gibbs, Mark T
2013-08-15
It can be argued that the intensity of monitoring of coastal marine environments lags behind the equivalent terrestrial environments. This results in a paucity of long-term time series of key environmental parameters such as turbidity. This lack of management information of the sources and sinks, and causes and impacts of stressors to the coastal marine environment, along with a lack of co-ordination of information collection is compromising the ability of environmental impact assessments of major coastal developments to discriminate between local and remote anthropogenic impacts, and natural or background processes. In particular, the quasi outsourcing of the collection of coastal information can lead to a perverse incentive whereby in many cases nobody is actively or consistently monitoring the coastal marine environment effectively. This is particularly the case with regards to the collection of long-term and whole-of-system scale data. This lack of effective monitoring can act to incentivise poor environmental performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Monitoring Ground-Water Quality in Coastal Ecosystems
Colman, John A.; Masterson, John P.
2007-01-01
INTRODUCTION The Cape Cod National Seashore (CACO) extends along more than 70 km of Atlantic Ocean open-beach coastline and includes three large saltwater bays - Wellfleet Harbor, Nauset Marsh, and Pleasant Bay (fig. 1). CACO encompasses about 18,000 ha of uplands, lakes, wetlands, and tidal lands (Godfrey and others, 1999) including most habitats typical of the sandy coast in National seashores and parks extending southward from Massachusetts to Florida. In 1995, CACO was selected by the National Park Service (NPS) as a prototype park typifying the Atlantic and Gulf Coast biogeographic region for long-term coastal ecosystem monitoring. The U.S. Geological Survey (USGS) is currently (2007) assisting the NPS in the development of protocols for a Long-Term Coastal Ecosystem Monitoring Program at the CACO in Massachusetts. The overall purpose of the monitoring program is to characterize both natural and human-induced change in the biological resources of the CACO, over a time scale of decades, in the context of a changing global ecosystem.
Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman
2011-01-15
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Craig, Ian M.
2013-11-03
We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.
NASA Astrophysics Data System (ADS)
Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.
2017-12-01
Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)
Design and long-term monitoring of DSC/CIGS tandem solar module
NASA Astrophysics Data System (ADS)
Vildanova, M. F.; Nikolskaia, A. B.; Kozlov, S. S.; Shevaleevskiy, O. I.
2015-11-01
This paper describes the design and development of tandem dye-sensitized/Cu(In, Ga)Se (DSC/CIGS) PV modules. The tandem PV module comprised of the top DSC module and a bottom commercial 0,8 m2 CIGS module. The top DSC module was made of 10 DSC mini-modules with the field size of 20 × 20 cm2 each. Tandem DSC/CIGS PV modules were used for providing the long-term monitoring of energy yield and electrical parameters in comparison with standalone CIGS modules under outdoor conditions. The outdoor test facility, containing solar modules of both types and a measurement unit, was located on the roof of the Institute of Biochemical Physics in Moscow. The data obtained during monitoring within the 2014 year period has shown the advantages of the designed tandem DSC/CIGS PV-modules over the conventional CIGS modules, especially for cloudy weather and low-intensity irradiation conditions.
An RFID-based on-lens sensor system for long-term IOP monitoring.
Hsu, Shun-Hsi; Chiou, Jin-Chern; Liao, Yu-Te; Yang, Tzu-Sen; Kuei, Cheng-Kai; Wu, Tsung-Wei; Huang, Yu-Chieh
2015-01-01
In this paper, an RFID-based on-lens sensor system is proposed for noninvasive long-term intraocular pressure monitoring. The proposed sensor IC, fabricated in a 0.18um CMOS process, consists of capacitive sensor readout circuitry, RFID communication circuits, and digital processing units. The sensor IC is integrated with electroplating capacitive sensors and a receiving antenna on the contact lens. The sensor IC can be wirelessly powered, communicate with RFID compatible equipment, and perform IOP measurement using on-lens capacitive sensor continuously from a 2cm distance while the incident power from an RFID reader is 20 dBm. The proposed system is compatible to Gen2 RFID protocol, extending the flexibility and reducing the self-developed firmware efforts.
Haker, Björn; Fuchs, Sigrid; Dierlamm, Judith; Brümmendorf, Tim H; Wege, Henning
2007-10-18
As a culture model to study hepatocarcinogenesis, telomerase-immortalized human fetal hepatocytes were monitored for karyotype changes evolving in long-term culture and development of functional defects in DNA damage response. G-banding revealed acquisition of characteristic karyotype abnormalities, e.g., trisomy 7 and monosomy X, in two independently immortalized and cultured populations after 80-100 population doublings. Interestingly, the detected aneuploidies resemble some of the genetic events observed in hepatocellular cancer. However, these genetic changes were not sufficient to induce oncogenic transformation reflected by absence of anchorage-independent growth. Furthermore, long-term cultured telomerase-immortalized cells preserved p53 expression levels and effective p53-mediated damage response.
Assessment of LTPP Friction Data
DOT National Transportation Integrated Search
1998-03-01
A major goal of the Long-Term Pavement Performance (LTPP) study is the development of recommendations for improving the design and construction of new and rehabilitated pavements to make them longer lasting. As part of the condition monitoring of the...
Climate Observing Systems: Where are we and where do we need to be in the future
NASA Astrophysics Data System (ADS)
Baker, B.; Diamond, H. J.
2017-12-01
Climate research and monitoring requires an observational strategy that blends long-term, carefully calibrated measurements as well as short-term, focused process studies. The operation and implementation of operational climate observing networks and the provision of related climate services, both have a significant role to play in assisting the development of national climate adaptation policies and in facilitating national economic development. Climate observing systems will require a strong research element for a long time to come. This requires improved observations of the state variables and the ability to set them in a coherent physical (as well as a chemical and biological) framework with models. Climate research and monitoring requires an integrated strategy of land/ocean/atmosphere observations, including both in situ and remote sensing platforms, and modeling and analysis. It is clear that we still need more research and analysis on climate processes, sampling strategies, and processing algorithms.
Health Aspects of a Nuclear or Radiological Attack
2010-07-01
treatment capabilities, population monitoring, decontamination, and so on. The requirements should be developed by a process that engages stakeholders...IND or reactor accident would release radioiodine that could result in hypothyroidism or late thyroid nodules or cancer. External contamination... Treatment and Long-Term Monitoring Victims of acute radiation-related events will require prompt diagnosis and treatment of emergency medical and
DOT National Transportation Integrated Search
2008-05-01
This study concerns the development and evaluation of a dynamic speed monitoring (DSM) system for use at rural intersections. The purpose of the DSM system is to give traffic speed feedback to drivers via an advisory sign, with the goals of improving...
Monitoring Puerto Rican avifauna using roadside surveys
Keith L. Pardieck; Bruce G. Peterjohn
2005-01-01
In 1997 we began investigating the use of roadside point counts to monitor the long-term status and trends of Puerto Rican bird populations. If such a methodology proves feasible it may provide the empirical data needed for the development of sound conservation plans for the island’s avifauna in much the same way that North American Breeding Bird Survey data...
Addison, P F E; Flander, L B; Cook, C N
2015-02-01
Protected area management agencies are increasingly using management effectiveness evaluation (MEE) to better understand, learn from and improve conservation efforts around the globe. Outcome assessment is the final stage of MEE, where conservation outcomes are measured to determine whether management objectives are being achieved. When quantitative monitoring data are available, best-practice examples of outcome assessments demonstrate that data should be assessed against quantitative condition categories. Such assessments enable more transparent and repeatable integration of monitoring data into MEE, which can promote evidence-based management and improve public accountability and reporting. We interviewed key informants from marine protected area (MPA) management agencies to investigate how scientific data sources, especially long-term biological monitoring data, are currently informing conservation management. Our study revealed that even when long-term monitoring results are available, management agencies are not using them for quantitative condition assessment in MEE. Instead, many agencies conduct qualitative condition assessments, where monitoring results are interpreted using expert judgment only. Whilst we found substantial evidence for the use of long-term monitoring data in the evidence-based management of MPAs, MEE is rarely the sole mechanism that facilitates the knowledge transfer of scientific evidence to management action. This suggests that the first goal of MEE (to enable environmental accountability and reporting) is being achieved, but the second and arguably more important goal of facilitating evidence-based management is not. Given that many MEE approaches are in their infancy, recommendations are made to assist management agencies realize the full potential of long-term quantitative monitoring data for protected area evaluation and evidence-based management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cui, Yanyan; Gong, Dongwei; Yang, Bo; Chen, Hua; Tu, Ming-Hsiang; Zhang, Chaonan; Li, Huan; Liang, Naiwen; Jiang, Liping; Chang, Polun
2018-01-01
Comprehensive Geriatric Assessments (CGAs) have been recommended to be used for better monitoring the health status of elder residents and providing quality care. This study reported how our nurses perceived the usability of CGA component of a mobile integrated-care long term care support system developed in China. We used the Continuity Assessment Record and Evaluation (CARE), developed in the US, as the core CGA component of our Android-based support system, in which apps were designed for all key stakeholders for delivering quality long term care. A convenience sample of 18 subjects from local long term care facilities in Shanghai, China were invited to assess the CGA assessment component in terms of Technology Acceptance Model for Mobile based on real field trial assessment. All (100%) were satisfied with the mobile CGA component. 88.9% perceived the system was easy to learn and use. 99.4% showed their willingness to use for their work. We concluded it is technically feasible to implement a CGA-based mobile integrated care support system in China.
Long-term monitoring of a pretensioned concrete bridge near Winfield, Kansas.
DOT National Transportation Integrated Search
2016-10-01
The following report is an expansion of previous work conducted at Kansas State University and published as FHWA-KS-07-1 in April 2007 (Larson, Peterman, & Esmaeily, 2007). It details the findings from the long-term monitoring of a five-span bridge t...
A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...
The challenges of remote monitoring of wetlands
Gallant, Alisa L.
2015-01-01
Wetlands are highly productive and support a wide variety of ecosystem goods and services. Various forms of global change impose compelling needs for timely and reliable information on the status of wetlands worldwide, but several characteristics of wetlands make them challenging to monitor remotely: they lack a single, unifying land-cover feature; they tend to be highly dynamic and their energy signatures are constantly changing; and steep environmental gradients in and around wetlands produce narrow ecotones that often are below the resolving capacity of remote sensors. These challenges and needs set the context for a special issue focused on wetland remote sensing. Contributed papers responded to one of three overarching questions aimed at improving remote, large-area monitoring of wetlands: (1) What approaches and data products are being developed specifically to support regional to global long-term monitoring of wetland landscapes? (2) What are the promising new technologies and sensor/multisensor approaches for more accurate and consistent detection of wetlands? (3) Are there studies that demonstrate how remote long-term monitoring of wetland landscapes can reveal changes that correspond with changes in land cover and land use and/or changes in climate?
NASA Technical Reports Server (NTRS)
Trexler, P. L.; Barker, J. L.
1975-01-01
LANDSAT-1 imagery has been used for water quality and land use monitoring in and around the Swift Creek and Lake Chesdin Reservoirs in Virginia. This has proved useful by (1) helping determine valid reservoir sampling stations, (2) monitoring areas not accessible by land or water, (3) giving the State a viable means of measuring Secchi depth readings in these inaccessible areas, (4) giving an overview of trends in changing sedimentation loadings over a given time period and classifying these waters into various categories, (5) enabling the State to inventory all major lakes and reservoirs and computing their acreage, (6) monitoring land use changes in any specific area, (7) evaluating possible long-term environmental effects of nearby developments, and (8) monitoring and predicting population shifts with possible impact on water quality problems. The main problems in the long-term use of such imagery appear to be cost and lack of consistency due to cloud cover limitations.
The Upper Rio Grande Basin as a Long-Term Hydrologic Observatory - Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Springer, E.; Duffy, C.; Phillips, F.; Hogan, J.; Winter, C. L.
2001-12-01
Long-term hydrologic observatories (LTHO) have been identified as a key element to advance hydrologic science. Issues to be addressed are the size and locations of LTHOs to meet research needs and address water resources management concerns. To date, considerable small watershed research has been performed, and these have provided valuable insights into processes governing hydrologic response on local scales. For hydrology to advance as a science, more complete and coherent data sets at larger scales are needed to tie together local studies and examine lower frequency long wavelength processes that may govern the water cycle at the scale of river basins and continents. The objective of this poster is to describe the potential opportunities and challenges for the upper Rio Grande as a LTHO. The presence of existing research programs and facilities can be leveraged by a LTHO to develop the required scientific measurements. Within the upper Rio Grande Basin, there are two Long-Term Ecological Research sites, Jornada and Sevilleta; Los Alamos National Laboratory, which monitors the atmosphere, surface water and groundwater; a groundwater study is being performed by the USGS in the Albuquerque Basin to examine recharge and water quality issues. Additionally, the upper Rio Grande basin served as an USGS-NAWQA study site starting in the early 1990's and is currently being studied by SAHRA (NSF-STC) to understand sources of salinity of the river system; such studies provide an existing framework on which to base long-term monitoring of water quality. The upper Rio Grande Basin has a wealth of existing long-term climate, hydrologic and geochemical records on which to base an LTHO. Within the basin there are currently 122 discharge gages operated by the USGS; and many of these gages have long-term records of discharge. Other organizations operate additional surface water gages in the lower part of the basin. Long-term records of river chemistry have been kept by the USGS, U. S. Bureau of Reclamation, IBWC and EBID. Significantly, these records extend through periods of climate extremes, notably the 1950's drought. One challenge that the Rio Grande faces as a LTHO is combining datasets maintained by different agencies in order to address research questions at this spatial and temporal scale. Challenges facing the development of a LTHO on the Rio Grande include instrumentation over steep topographic and biological gradients that exist. Political issues surrounding any basin can create problems for making long-term measurements. Current water resources management requires a greater scientific understanding of coupled processes, serious improvements in predictive capability and available computational resources, both of which require a comprehensive hydrologic monitoring system beyond any which exist today.
Boreal partners in flight: Working together to build a regional research and monitoring program
Handel, Colleen M.; Bonney, Rick; Pashley, David N.; Cooper, Robert J.; Niles, Larry
1999-01-01
Boreal regions of western North America regularly support breeding populations of 130 species of landbirds, including 68 Nearctic-Neotropical migrants. Primary conservation concerns within the region include increased timber harvesting, insect outbreaks, fire suppression, mining, impacts of military training activities, urbanization, and recreational activities. Under auspices of Partners in Flight, biologists, land and resource managers, and conservationists from Alaska and western Canada have combined efforts to develop a regional research and monitoring program for landbirds. An experimental monitoring program has been under way during the past four years to test the relative statistical power and cost-effectiveness of various monitoring methods in Alaska. Joint efforts currently include the Alaska Checklist Project on National Wildlife Refuges, 75 Breeding Bird Surveys along the road system, 122 Off-road Point Count routes, 27 Monitoring Avian Productivity and Survivorship banding sites, and 8 migration banding stations. The ultimate goal is to design a comprehensive monitoring program that is sensitive to changes in population size, survival rates, and productivity, but robust enough to accommodate logistical constraints that arise when working in vast, roadless areas with limited funds and staff. Primary challenges that must be faced to assure the long-term future of such a program are obtaining long-term commitment from resource agencies in the region, integrating this program with other national and regional programs that address those species and habitats that are inadequately monitored by established techniques, and developing cooperative research, monitoring, and management programs at the landscape level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclearmore » Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.« less
DOT National Transportation Integrated Search
2010-02-01
This research project demonstrated that it is feasible to use the WIM data to develop long-term corridor performance monitoring of truck travel. From the perspective of a realtime traveler information system, there are too many shortcomings mainl...
The protective effects of good parenting on adolescents.
DeVore, Elise R; Ginsburg, Kenneth R
2005-08-01
To explore recent developments in the literature regarding parenting practices and adolescent development, with a focus on parenting style, parental monitoring, communication, and supervision. There have been significant recent advances in the study of the relationship between parenting and adolescent development. Several recent intervention studies with a parenting component demonstrated immediate and long-term protective effects on adolescent risk behavior. Parent-child connectedness and authoritative parenting style are protective for teens. Parental monitoring has a protective effect on many adolescent risk behaviors in both middle-class populations and poor urban environments and has been shown both to moderate the effect of peer influence and to persist into late adolescence. Whereas unsupervised time, exposure to sexual possibility situations, and out-of-home care increase sexual behavior, improved parent-child communication reduces sexual risk behaviors. Recent scholarship demonstrates the significant, enduring, and protective influence of positive parenting practices on adolescent development. In particular, parental monitoring, open parent-child communication, supervision, and high quality of the parent-child relationship deter involvement in high-risk behavior. Authoritative parenting generally leads to the best outcomes for teens. Clinicians should find opportunities to discuss evidence-based parenting practices with families. Future research should focus on the development and long-term evaluation of effective parenting interventions.
Development of a fully automated network system for long-term health-care monitoring at home.
Motoi, K; Kubota, S; Ikarashi, A; Nogawa, M; Tanaka, S; Nemoto, T; Yamakoshi, K
2007-01-01
Daily monitoring of health condition at home is very important not only as an effective scheme for early diagnosis and treatment of cardiovascular and other diseases, but also for prevention and control of such diseases. From this point of view, we have developed a prototype room for fully automated monitoring of various vital signs. From the results of preliminary experiments using this room, it was confirmed that (1) ECG and respiration during bathing, (2) excretion weight and blood pressure, and (3) respiration and cardiac beat during sleep could be monitored with reasonable accuracy by the sensor system installed in bathtub, toilet and bed, respectively.
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks
Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi
2017-01-01
In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks (LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods. PMID:28146106
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.
Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi
2017-01-30
In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.
Long-term monitoring of a pretensioned concrete bridge near Winfield, Kansas : [technical summary].
DOT National Transportation Integrated Search
2016-10-01
The following report is an expansion of previous work conducted at Kansas State University and published as FHWA-KS-07-1 in April 2007 (Larson, Peterman, & Esmaeily, 2007). It details the findings from the long-term monitoring of a five-span bridge t...
Jachowski, David S.; Katzner, Todd; Rodrigue, Jane L.; Ford, W. Mark
2015-01-01
Conservation of animal migratory movements is among the most important issues in wildlife management. To address this need for landscape-scale monitoring of raptor populations, we developed a novel, baited photographic observation network termed the “Appalachian Eagle Monitoring Program” (AEMP). During winter months of 2008–2012, we partnered with professional and citizen scientists in 11 states in the United States to collect approximately 2.5 million images. To our knowledge, this represents the largest such camera-trap effort to date. Analyses of data collected in 2011 and 2012 revealed complex, often species-specific, spatial and temporal patterns in winter raptor movement behavior as well as spatial and temporal resource partitioning between raptor species. Although programmatic advances in data analysis and involvement are needed, the continued growth of the program has the potential to provide a long-term, cost-effective, range-wide monitoring tool for avian and terrestrial scavengers during the winter season. Perhaps most importantly, by relying heavily on citizen scientists, AEMP has the potential to improve long-term interest and support for raptor conservation and serve as a model for raptor conservation programs in other portions of the world.
Toward achieving precision health
Gambhir, Sanjiv Sam; Ge, T. Jessie; Vermesh, Ophir; Spitler, Ryan
2018-01-01
Health care systems primarily focus on patients after they present with disease, not before. The emerging field of precision health encourages disease prevention and earlier detection by monitoring health and disease based on an individual’s risk. Active participation in health care can be encouraged with continuous health-monitoring devices, providing a higher-resolution picture of human health and disease. However, the development of monitoring technologies must prioritize the collection of actionable data and long-term user engagement. PMID:29491186
An investment benefiting America's highways : the long term pavement performance program
DOT National Transportation Integrated Search
2000-01-01
The Federal Highway Administration (FHWA) and the States, beginning in 1978, jointly developed and implemented a continuous data collection system called the Highway Performance Monitoring System (HPMS). Currently, the HPMS contains over 110,000 high...
Factors affecting biological recovery of wetland restorations
DOT National Transportation Integrated Search
1999-06-01
This report describes a long-term study to monitor and evaluate the ecosystem recovery of seven wetland restorations in south central Minnesota. The study looks at the impact of planting on wetland restoration success in inland wetlands and develops ...
Determination of Section 404 Permit and Habitat Mitigation Requirements
DOT National Transportation Integrated Search
2012-09-01
The Arizona Department of Transportation (ADOT) is committed to developing habitat, mitigation, : monitoring, and maintenance plans that replace the loss of the functions and values of an area and : are self-sustaining, thereby providing long-term co...
Counihan, Timothy D.; Hardiman, Jill M.; Waste, Stephen
2013-01-01
Implementing an Integrated Status and Trends Monitoring program (ISTM) for the mainstem Columbia River will help identify trends in important natural resources and help us understand the long-term collective effects of management actions. In this report, we present progress towards the completion of a stepwise process that will facilitate the development of an ISTM for the mainstem Columbia River. We discuss planning and regulatory documents that can be used to identify monitoring goals and objectives and present existing monitoring and research activities that should be considered as the development of a Columbia River ISTM proceeds. We also report progress towards the development of sample frames for the Columbia and Snake Rivers and their floodplains. The sample frames were formulated using Digital Elevation Models (DEM’s) of the river channel and upland areas and a Generalized Random-Tessellation Stratified (GRTS) algorithm for an area based resource to generate “master sample(s).” Working with the Pacific Northwest Aquatic Monitoring Partnership (PNAMP) we facilitated the transfer of the sample frames to the PNAMP “Monitoring Sample Designer” tool. We then discuss aspects of response and survey designs as they pertain to the formulation of a mainstem Columbia River ISTM. As efforts to formulate an ISTM for the mainstem Columbia River proceed, practitioners should utilize the extensive literature describing the planning and implementation of fish and wildlife mitigation and recovery efforts in the Columbia River Basin. While we make progress towards establishing an ISTM framework, considerable work needs to be done to formulate an ISTM program for the mainstem Columbia River. Long-term monitoring programs have been established for other large rivers systems; scientists that have experience planning, implementing, and maintaining large river monitoring efforts such as those in the Colorado, Illinois, and Mississippi Rivers should be consulted and involved as efforts proceed.
Jenkins, Kurt; Woodward, Andrea; Schreiner, Ed
2003-01-01
This report is the result of a five-year collaboration between scientists of the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, Olympic Field Station, and the natural resources staff of Olympic National Park to develop a comprehensive strategy for monitoring natural resources of Olympic National Park. Olympic National Park is the National Park Serviceʼs prototype monitoring park, representing parks in the coniferous forest biome. Under the umbrella of the National Park Serviceʼs prototype parks program, U.S. Geological Survey and Olympic National Park staffs are obligated to:develop strategies and designs for monitoring the long-term health and integrity of national park ecosystems with a significant coniferous forest component.design exportable monitoring protocols that can be used by other parks within the coniferous forest biome (i.e., parks having similar environments), andcreate a demonstration area and ʻcenter of excellenceʼ for assisting other parks in developing ecological monitoring programs.Olympic National Park is part of the North Coast and Cascades Network, a network of seven Pacific Northwestern park units created recently by the National Park Serviceʼs Inventory and Monitoring Program to extend the monitoring of ʻvital signsʼ of park health to all National Park Service units. It is our intent and hope that the monitoring strategies and conceptual models described here will meet the overall purpose of the prototype parks monitoring program in proving useful not only to Olympic National Park, but also to parks within the North Coast and Cascades Network and elsewhere. Part I contains the conceptual design and sampling framework for the prototype long-term monitoring program in Olympic National Park. In this section, we explore key elements of monitoring design that help to ensure the spatial, ecological, and temporal integration of monitoring program elements and discuss approaches used to design an ecosystem-based monitoring program. Basic monitoring components include ecosystem drivers, (e.g., climate, atmospheric inputs, human pressures), indicators of ecosystem integrity (e.g., biogeochemical indicators), known threats (e.g., impacts of introduced mountain goats), and focal or ʻkeyʼ species (e.g., rare or listed species, Roosevelt elk). Monitoring system drivers and key indicators of ecosystem integrity provide the long-term baseline needed to judge what constitutes ʻunnaturalʼ variation in park resources and provide the earliest possible warning of unacceptable change. Monitoring effects of known threats and the status of focal species will provide information useful to park managers for dealing with current park issues. In Part I we describe the process of identifying potential indicators of ecological condition and present conceptual models of park ecosystems. In addition we report results from several workshops held in conjunction with Olympic National Park aimed at identifying potential indicators of change in the parkʼs ecosystem. First, we describe the responses of Olympic National Park staff to the generic question, “What is the most important resource to monitor in Olympic National Park and why?” followed by the responses from resource and land managers from areas adjoining the park. We also catalogue the responses of various expert groups that we asked to help identify the most appropriate system drivers and indicators of change in the Olympic National Park ecosystems. Results of the workshops provided the justification for selecting basic indicators of ecosystem integrity, effects of current threats to park resources, and focal resources of parks to detect both the currently evident and unforeseeable changes in park resources. We conclude Part I by exploring several generic statistical issues relevant to monitoring natural resources in Olympic National Park. Specifically we discuss trade-offs associated with sampling extensively versus sampling intensively in smaller geographic regions and describe a conceptual framework to guide development of a generic sampling frame for monitoring. We recommend partitioning Olympic National Park into three zones of decreasing accessibility to maximize monitoring efficiency. We present examples of how the generic sampling frame could be used to help ensure spatial integration of individual monitoring projects. Part II of the report is a record of the potential monitoring questions and indicators identified to date in our workshops. The presentation is organized according to the major system drivers, components, and processes identified in the intermediate-level working model of the Olympic National Park ecosystem. For each component of the park system, we develop the need and justification for monitoring, articulate park management issues, and describe key resources and ecosystem functions. We also present a pictorial conceptual model of each ecological subsystem, identify monitoring questions, and list potential indicators for each monitoring question. We conclude each section by identifying linkages of indicators to other ecological subsystems in our general ecosystem model, spatial and temporal contexts for monitoring (where and how often to monitor), and research and development needs. Part II represents the most current detailed listing of potential indicators—the material for subsequent discussions of monitoring priorities and selection of indicators for protocol development.Collectively, the sections of this report contain a comprehensive list of the important monitoring questions and potential indicators as well as recommendations for designing an integrated monitoring program. In Part I, Chapter 6 we provide recommendations on how to proceed with the important next steps in the design process: establishing priorities among the many possible monitoring questions and indicators, and beginning to research and design effective long-term monitoring protocols.
The “Common Solutions” Strategy of the Experiment Support group at CERN for the LHC Experiments
NASA Astrophysics Data System (ADS)
Girone, M.; Andreeva, J.; Barreiro Megino, F. H.; Campana, S.; Cinquilli, M.; Di Girolamo, A.; Dimou, M.; Giordano, D.; Karavakis, E.; Kenyon, M. J.; Kokozkiewicz, L.; Lanciotti, E.; Litmaath, M.; Magini, N.; Negri, G.; Roiser, S.; Saiz, P.; Saiz Santos, M. D.; Schovancova, J.; Sciabà, A.; Spiga, D.; Trentadue, R.; Tuckett, D.; Valassi, A.; Van der Ster, D. C.; Shiers, J. D.
2012-12-01
After two years of LHC data taking, processing and analysis and with numerous changes in computing technology, a number of aspects of the experiments’ computing, as well as WLCG deployment and operations, need to evolve. As part of the activities of the Experiment Support group in CERN's IT department, and reinforced by effort from the EGI-InSPIRE project, we present work aimed at common solutions across all LHC experiments. Such solutions allow us not only to optimize development manpower but also offer lower long-term maintenance and support costs. The main areas cover Distributed Data Management, Data Analysis, Monitoring and the LCG Persistency Framework. Specific tools have been developed including the HammerCloud framework, automated services for data placement, data cleaning and data integrity (such as the data popularity service for CMS, the common Victor cleaning agent for ATLAS and CMS and tools for catalogue/storage consistency), the Dashboard Monitoring framework (job monitoring, data management monitoring, File Transfer monitoring) and the Site Status Board. This talk focuses primarily on the strategic aspects of providing such common solutions and how this relates to the overall goals of long-term sustainability and the relationship to the various WLCG Technical Evolution Groups. The success of the service components has given us confidence in the process, and has developed the trust of the stakeholders. We are now attempting to expand the development of common solutions into the more critical workflows. The first is a feasibility study of common analysis workflow execution elements between ATLAS and CMS. We look forward to additional common development in the future.
Home medical monitoring network based on embedded technology
NASA Astrophysics Data System (ADS)
Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang
2006-11-01
Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.
NASA Astrophysics Data System (ADS)
Barnett, L.
2013-12-01
Many site-based educators (Wildlife Refuges, nature centers, Cooperative Extension Programs, schools, arboretums) struggle with developing and implementing cohesive long-term scientific monitoring projects into their existing outreach programming. Moreover, projects that are not meaningful to participants often have little or no sustainable long-term impact. Programs proven most effective are those which 1.) engage the participants in the study design and implementation process, 2.) answer a scientific question posed by site leaders; the data collected supports USA-NPN efforts as well as related site management and monitoring questions, 3.) are built into existing outreach and education programs, using phenology as a lens for understanding both natural and cultural history, and 4.) consistently share outcomes and results with the participants. The USA National Phenology Network's (USA-NPN) Education Program provides phenology curriculum and outreach to educators in formal, non-formal, and informal settings. Materials are designed to serve participants in grades 5-12, higher education, and adult learners. Phenology, used as a lens for place-based education, can inform science, environmental, and climate literacy, as well as other subject areas including cultural studies, art, and language arts. The USA-NPN offers consultation with site leaders on how to successfully engage site-based volunteers and students in long-term phenological studies using Nature's Notebook (NN), the professional and citizen science phenology monitoring program. USA-NPN education and educator instruction materials are designed and field-tested to demonstrate how to implement a long-term NN phenology-monitoring program at such sites. These curricula incorporate monitoring for public visitors, long-term volunteers, and school groups, while meeting the goals of USA-NPN and the site, and can be used as a model for other public participation in science programs interested in achieving similar sustainable results. Encouraging long-term data collection, interaction between educators, and offering information about how educators can ask and answer science questions is a key component to meaningfully engaging participants in long-term scientific participation. Evaluation data collected during a two-year initial implementation plan at a demonstration garden site inclusive of these four engagement strategies reflect these findings. Thirty percent of year one participants were very likely to continue NN observations while 48% of year two participants were very likely to continue with the project. Forty percent of participants were very likely to attend an advanced training on NN and 55% of second year participants responded positively. Students better understood phenology's relationship to gardening. Comments included: '...makes you more aware,' 'Very informative... motivate(s) me to record more than...when I hear the first cicada,' and 'Phenology touches everything...brings to light...connecting you already know...tests your new insights [that will] make it more meaningful.' In conclusion, effective education materials holistically and explicitly incorporate personal meaning. Directed content creation helps form an engaged participant base.
Long term thermoelectric module testing system.
D'Angelo, Jonathan; Hogan, Timothy
2009-10-01
Thermoelectric generators can be used for converting waste heat into electric power. Significant interest in developing new materials in recent years has led to the discovery of several promising thermoelectrics, however, there can be considerable challenges in developing the materials into working devices. Testing and feedback is needed at each step to gain valuable information for identification of difficulties, quality of the materials and modules, repeatability in fabrication, and longevity of the devices. This paper describes a long-term module testing system for monitoring the output power of a module over extended testing times. To evaluate the system, we have tested commercially available thermoelectric modules over a one month time period.
Kristopher J. Abell; Leah S. Bauer; Jian J. Duan; Roy Van Driesche
2014-01-01
Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of ash trees (Fraxinus spp.) in North America from China. The egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) was introduced from China as a biological control agent for this pest in...
USDA-ARS?s Scientific Manuscript database
Emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of ash trees (Fraxinus spp.) in North America. The egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) was introduced as a biological control agent of this pest in Michiga...
Monitoring Physical and Biogeochemical Dynamics of Uranium Bioremediation at the Intermediate Scale
NASA Astrophysics Data System (ADS)
Tarrell, A. N.; Figueroa, L. A.; Rodriguez, D.; Haas, A.; Revil, A.
2011-12-01
Subsurface uranium above desired levels for aquifer use categories exists naturally and from historic mining and milling practices. In situ bioimmobilization offers a cost effective alternative to conventional pump and treat methods by stimulating growth of microorganisms that lead to the reduction and precipitation of uranium. Vital to the long-term success of in situ bioimmobilization is the ability to successfully predict and demonstrate treatment effectiveness to assure that regulatory goals are met. However, successfully monitoring the progress over time is difficult and requires long-term stewardship to ensure effective treatment due to complex physical and biogeochemical heterogeneity. In order to better understand these complexities and the resultant effect on uranium immobilization, innovative systematic monitoring approaches with multiple performance indicators must be investigated. A key issue for uranium bioremediation is the long term stability of solid-phase reduction products. It has been shown that a combination of data from electrode-based monitoring, self-potential monitoring, oxidation reduction potential (ORP), and water level sensors provides insight for identifying and localizing bioremediation activity and can provide better predictions of deleterious biogeochemical change such as pore clogging. In order to test the proof-of-concept of these sensing techniques and to deconvolve redox activity from other electric potential changing events, an intermediate scale 3D tank experiment has been developed. Well-characterized materials will be packed into the tank and an artificial groundwater will flow across the tank through a constant-head boundary. The experiment will utilize these sensing methods to image the electrical current produced by bacteria as well as indications of when and where electrical activity is occurring, such as with the reduction of radionuclides. This work will expand upon current knowledge by exploring the behavior of uranium bioremediation at an intermediate scale, as well as examining the effects from introducing a flow field in a laboratory setting. Data collected from this experiment will help further characterize which factors are contributing to current increases. Additional information concerning the effect of geochemical changes in porosity may also be observed. The results of this work will allow the creation of a new data set collected from a more comprehensive laboratory monitoring network and will allow stakeholders to develop effective decision-making tools on the long-term remediation management at uranium contaminated sites. The data will also aid in the long-term prediction abilities of a reactive transport models. As in situ bioremediation offers a low cost alternative to ex situ treatment methods, the results of this work will help to both reduce cost at existing sites and enable treatment of sites that otherwise have no clear solution.
A study to assess the long-term stability of the ionization chamber reference system in the LNMRI
NASA Astrophysics Data System (ADS)
Trindade Filho, O. L.; Conceição, D. A.; da Silva, C. J.; Delgado, J. U.; de Oliveira, A. E.; Iwahara, A.; Tauhata, L.
2018-03-01
Ionization chambers are used as secondary standard in order to maintain the calibration factors of radionuclides in the activity measurements in metrology laboratories. Used as radionuclide calibrator in nuclear medicine clinics to control dose in patients, its long-term performance is not evaluated systematically. A methodology for long-term evaluation for its stability is monitored and checked. Historical data produced monthly of 2012 until 2017, by an ionization chamber, electrometer and 226Ra, were analyzed via control chart, aiming to follow the long-term performance. Monitoring systematic errors were consistent within the limits of control, demonstrating the quality of measurements in compliance with ISO17025.
Proton Pump Inhibitors in Gastroesophageal Reflux Disease: Friend or Foe.
Gyawali, C Prakash
2017-09-01
Proton pump inhibitor (PPI) use in gastroesophageal reflux disease (GERD) has been redefined, in light of recent advances highlighting GERD phenotypes that respond to PPIs, and fresh revelations of potential risks of long-term PPI therapy. Erosive esophagitis predicts excellent response to PPI therapy, but non-erosive reflux disease (NERD) with abnormal reflux parameters on ambulatory reflux monitoring also demonstrates a similar response. In contrast, response is suboptimal in the absence of abnormal reflux parameters. In this setting, if an alternate appropriate indication for PPI therapy does not coexist, risks may outweigh benefits of PPI therapy. Adverse events from long-term PPI therapy continue to be reported, most based on association rather than cause-and-effect. Appropriate indications need to be established before embarking on long-term PPI therapy. Future research will define true risks of long-term PPI therapy, and develop alternate management options for acid peptic diseases.
A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring
Su, Chuan-Jun; Chu, Ta-Wei
2014-01-01
Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256
Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.
2014-01-08
Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the costmore » of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead to improved monitoring while simultaneously reducing costs. This paradigm is being tested at the SRS F-Area where an innovative passive remedial system is being monitored and evaluated over the long term prior to traditional regulatory closure. Contaminants being addressed at this site are uranium, strontium-90, iodine-129, and tritium. We believe that the proposed strategies will be more effective in early identification of potential risks; these strategies will also be cost effective because controlling variables are relatively simple to measure. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate large cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.« less
Ellingsen, Kari E; Yoccoz, Nigel G; Tveraa, Torkild; Hewitt, Judi E; Thrush, Simon F
2017-10-30
The importance of long-term environmental monitoring and research for detecting and understanding changes in ecosystems and human impacts on natural systems is widely acknowledged. Over the last decades, a number of critical components for successful long-term monitoring have been identified. One basic component is quality assurance/quality control protocols to ensure consistency and comparability of data. In Norway, the authorities require environmental monitoring of the impacts of the offshore petroleum industry on the Norwegian continental shelf, and in 1996, a large-scale regional environmental monitoring program was established. As a case study, we used a sub-set of data from this monitoring to explore concepts regarding best practices for long-term environmental monitoring. Specifically, we examined data from physical and chemical sediment samples and benthic macroinvertebrate assemblages from 11 stations from six sampling occasions during the period 1996-2011. Despite the established quality assessment and quality control protocols for this monitoring program, we identified several data challenges, such as missing values and outliers, discrepancies in variable and station names, changes in procedures without calibration, and different taxonomic resolution. Furthermore, we show that the use of different laboratories over time makes it difficult to draw conclusions with regard to some of the observed changes. We offer recommendations to facilitate comparison of data over time. We also present a new procedure to handle different taxonomic resolution, so valuable historical data is not discarded. These topics have a broader relevance and application than for our case study.
Development and Testing of a Portable Vocal Accumulator
ERIC Educational Resources Information Center
Cheyne, Harold A.; Hanson, Helen M.; Genereux, Ronald P.; Stevens, Kenneth N.; Hillman, Robert E.
2003-01-01
This research note describes the design and testing of a device for unobtrusive, long-term ambulatory monitoring of voice use, named the Portable Vocal Accumulator (PVA). The PVA contains a digital signal processor for analyzing input from a neck-placed miniature accelerometer. During its development, accelerometer recordings were obtained from 99…
Development and layout of a protocol for the field performance of concrete deck and crack sealers.
DOT National Transportation Integrated Search
2009-09-01
The main objective of this project was to develop and layout a protocol for the long-term monitoring and assessment of the performance of concrete deck and crack sealants in the field. To accomplish this goal, a total of six bridge decks were chosen ...
Highway-railway at-grade crossing structures : long term settlement measurements and assessments.
DOT National Transportation Integrated Search
2009-05-01
The purpose of this research to evaluate the long-term settlements for a wide variety of at-grade crossings. Twenty-four highway crossings were monitored to determine the effects of enhanced support on minimizing long-term settlements of the crossing...
Tekgunduz, Kadir Şerafettin; Caner, Ibrahim; Eras, Zeynep; Taştekin, Ayhan; Tan, Huseyin; Dinlen, Nurdan
2014-05-01
Hypernatremic dehydration in neonates is a condition that develops due to inadequate fluid intake and it may lead to cerebral damage. We aimed to determine whether there was an association between serum sodium levels on admission and aEEG patterns and prognosis, as well as any association between aEEG findings and survival rates and long-term prognosis. The present study included all term infants hospitalized for hypernatremic dehydration in between January 2010 and May 2011. Infants were monitored by aEEG. At 2 years of age, we performed a detailed evaluation to assess the impact of hypernatremic dehydration on the neurodevelopmental outcome. Twenty-one infants were admitted to the neonatal intensive care unit for hypernatremic dehydration. A correlation was found between increased serum sodium levels and aEEG abnormalities. Neurodevelopmental assessment was available for 17 of the 21 infants. The results revealed that hypernatremic dehydration did not adversely affect the long-term outcomes. The follow-up of newborns after discharge is key to determine the risks associated with hypernatremic dehydration. Our results suggest that hypernatremic dehydration had no impact on the long-term outcome. In addition, continuous aEEG monitoring could provide information regarding early prognosis and mortality.
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian
2016-04-01
Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.
Long-Term Monitoring of Dolphin Biosonar Activity in Deep Pelagic Waters of the Mediterranean Sea.
Caruso, Francesco; Alonge, Giuseppe; Bellia, Giorgio; De Domenico, Emilio; Grammauta, Rosario; Larosa, Giuseppina; Mazzola, Salvatore; Riccobene, Giorgio; Pavan, Gianni; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Sciacca, Virginia; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Buscaino, Giuseppa
2017-06-28
Dolphins emit short ultrasonic pulses (clicks) to acquire information about the surrounding environment, prey and habitat features. We investigated Delphinidae activity over multiple temporal scales through the detection of their echolocation clicks, using long-term Passive Acoustic Monitoring (PAM). The Istituto Nazionale di Fisica Nucleare operates multidisciplinary seafloor observatories in a deep area of the Central Mediterranean Sea. The Ocean noise Detection Experiment collected data offshore the Gulf of Catania from January 2005 to November 2006, allowing the study of temporal patterns of dolphin activity in this deep pelagic zone for the first time. Nearly 5,500 five-minute recordings acquired over two years were examined using spectrogram analysis and through development and testing of an automatic detection algorithm. Echolocation activity of dolphins was mostly confined to nighttime and crepuscular hours, in contrast with communicative signals (whistles). Seasonal variation, with a peak number of clicks in August, was also evident, but no effect of lunar cycle was observed. Temporal trends in echolocation corresponded to environmental and trophic variability known in the deep pelagic waters of the Ionian Sea. Long-term PAM and the continued development of automatic analysis techniques are essential to advancing the study of pelagic marine mammal distribution and behaviour patterns.
[An ultra-low power, wearable, long-term ECG monitoring system with mass storage].
Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai
2012-01-01
In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.
SBIR Phase II Final Report: Low cost Autonomous NMR and Multi-sensor Soil Monitoring Instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, David O.
In this 32-month SBIR Phase 2 program, Vista Clara designed, assembled and successfully tested four new NMR instruments for soil moisture measurement and monitoring: An enhanced performance man-portable Dart NMR logging probe and control unit for rapid, mobile measurement in core holes and 2” PVC access wells; A prototype 4-level Dart NMR monitoring probe and prototype multi-sensor soil monitoring control unit for long-term unattended monitoring of soil moisture and other measurements in-situ; A non-invasive 1m x 1m Discus NMR soil moisture sensor with surface based magnet/coil array for rapid measurement of soil moisture in the top 50 cm of themore » subsurface; A non-invasive, ultra-lightweight Earth’s field surface NMR instrument for non-invasive measurement and mapping of soil moisture in the top 3 meters of the subsurface. The Phase 2 research and development achieved most, but not all of our technical objectives. The single-coil Dart in-situ sensor and control unit were fully developed, demonstrated and successfully commercialized within the Phase 2 period of performance. The multi-level version of the Dart probe was designed, assembled and demonstrated in Phase 2, but its final assembly and testing were delayed until close to the end of the Phase 2 performance period, which limited our opportunities for demonstration in field settings. Likewise, the multi-sensor version of the Dart control unit was designed and assembled, but not in time for it to be deployed for any long-term monitoring demonstrations. The prototype ultra-lightweight surface NMR instrument was developed and demonstrated, and this result will be carried forward into the development of a new flexible surface NMR instrument and commercial product in 2018.« less
Long-term monitoring of the HPC Charenton Canal Bridge : tech summary.
DOT National Transportation Integrated Search
2011-08-01
In 1997, the Louisiana Department of Transportation and Development (LADOTD) began to design the : Charenton Canal Bridge using HPC for both the superstructure and the substructure. As a part of the project, : a research contract was awarded to assis...
Fernández-Navajas, Ángel; Merello, Paloma; Beltrán, Pedro; García-Diego, Fernando-Juan
2013-01-01
Cultural Heritage preventive conservation requires the monitoring of the parameters involved in the process of deterioration of artworks. Thus, both long-term monitoring of the environmental parameters as well as further analysis of the recorded data are necessary. The long-term monitoring at frequencies higher than 1 data point/day generates large volumes of data that are difficult to store, manage and analyze. This paper presents software which uses a free open source database engine that allows managing and interacting with huge amounts of data from environmental monitoring of cultural heritage sites. It is of simple operation and offers multiple capabilities, such as detection of anomalous data, inquiries, graph plotting and mean trajectories. It is also possible to export the data to a spreadsheet for analyses with more advanced statistical methods (principal component analysis, ANOVA, linear regression, etc.). This paper also deals with a practical application developed for the Renaissance frescoes of the Cathedral of Valencia. The results suggest infiltration of rainwater in the vault and weekly relative humidity changes related with the religious service schedules. PMID:23447005
NASA Astrophysics Data System (ADS)
Emmerton, C. A.
2015-12-01
The IISD Experimental Lakes Area is a unique facility which has existed since 1968 and consists of 58 lakes and their watersheds set aside for research purposes. The IISD-ELA also boasts an on-site water chemistry lab, accommodations and facilities for up to 60 personnel. Since its inception in 1968 over 50 whole ecosystem experiments have been conducted at the ELA including eutrophication, acidification of lakes, environmental mercury fates, hydro-electric reservoir impacts and much more. The recent partnership between IISD and ELA has allowed ELA to refocus on freshwater research and policy development in a time where the preservation of the earth's most precious resource is of the utmost concern. In addition to water quality monitoring, the ELA is also focused on autotrophic ecology, zooplankton community structures, fish population and behaviour and food-web interactions. Monitoring all of these disciplines and their inter-relationships gives the research facility a unique perspective and along with the long term dataset stretching back to 1968 the ELA can look at historical records to monitor long term changes in the environment.
Using Modern Digital Photography Tools to Guide Management Decisions on Forested Land
ERIC Educational Resources Information Center
Craft, Brandon; Barlow, Rebecca; Kush, John; Hemard, Charles
2016-01-01
Forestland management depends on assessing changes that occur over time. Long-term photo point monitoring is a low-cost method for documenting these changes. Using forestry as an example, this article highlights the idea that long-term photo point monitoring can be used to improve many types of land management decision making. Guidance on…
Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Meroño de Larriva, Jose Emilio; Ortíz Cordero, Rafael; Hidalgo Fernández, Rafael Enrique; García-Ferrer, Alfonso
2016-01-01
A number of physical factors can adversely affect cultural heritage. Therefore, monitoring parameters involved in the deterioration process, principally temperature and relative humidity, is useful for preventive conservation. In this study, a total of 15 microclimate stations using open source hardware were developed and stationed at the Mosque-Cathedral of Córdoba, which is registered with UNESCO for its outstanding universal value, to assess the behavior of interior temperature and relative humidity in relation to exterior weather conditions, public hours and interior design. Long-term monitoring of these parameters is of interest in terms of preservation and reducing the costs of future conservation strategies. Results from monitoring are presented to demonstrate the usefulness of this system. PMID:27690056
Long term SAR interferometry monitoring for assessing changing levels of slope instability hazards
NASA Astrophysics Data System (ADS)
Wasowski, J.; Ferretti, A.
The population growth with increasing impact of man on the environment and urbanisation of areas susceptible to slope failures coupled with the ongoing change in climate patterns will require a shift in the approaches to landslide hazard reduction Indeed there is evidence that landslide activity and related socio-economic loss are increasing in both rich and less developed countries throughout the world Because of this and because the urbanisation of hillside and mountain slopes prone to failure will likely continue in the future the protection of new and pre-existing developed areas via traditional engineering stabilisation works and in situ monitoring is not considered economically feasible Furthermore in most cases the ground control systems are installed post-factum and for short term monitoring and hence their role in preventing disasters is limited Considering the global dimension of the slope instability problem a sustainable road to landslide hazard reduction seems to be via exploitation of EO systems with focus on early detection long term monitoring and early warning Thanks to the wide-area coverage regular schedule and improving resolution of space-borne sensors the EO can foster the auspicious shift from a culture of repair to a culture of awarness and prevention Under this scenario the space-borne synthetic aperture radar differential interferometry DInSAR is attractive because of its capability to provide both wide-area and spatially dense information on surface displacements Since the presence of movements represents a direct evidence of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, Sid; Brown, Sally; Sims, Lynn
Long-term stewardship is the set of activities necessary to return contaminated land to safe and beneficial use. The activities include physical and legal controls to prevent inappropriate exposure to contamination left in place at a site. It is the longest phase of the Department of Energy's Environmental Management Program and ensures the protection of human health and the environment for varied end uses. At the Department of Energy's Oak Ridge Reservation an automated program has been developed and implemented that tracks the multitude of long-term stewardship activities. The Oak Ridge Reservation is a large site that currently has over 50more » actions requiring long-term stewardship activities. The Oak Ridge Reservation consists primarily of three plant sites, and long-term stewardship will enable these sites to be leased to private entities (East Tennessee Technology Park), modernized for an evolving national security mission (Y-12 National Security Complex), and revitalized to continue multi-disciplinary research (Oak Ridge National Laboratory). The varied site end uses of the individual plant sites coupled with the multitude of controls required by leaving waste in place presents challenges. A single remedial action may include surveillance and maintenance activities, media monitoring, property record notices as well as physical controls such as fences and signs. Thus, the array of long-term stewardship activities is complex and intermingled (over 200 inspections each year at various frequencies are required currently) and requires an effective tracking program, termed the Land Use Manager. The Land Use Manager is a web-based data management application for use by personnel responsible for implementing, maintaining, and verifying engineering and land use controls on the Oak Ridge Reservation. The program is a data entry and tracking tool, as well as a notification tool. The status and performance of engineering and land use controls are checked annually for evaluation in the required Remediation Effectiveness Report, and the automated Land Use Manager collects, maintains, tracks, notifies, monitors, and manages the information necessary to perform this evaluation. Land Use Manager tracks site information including type of contamination, regulatory requirements, locates land use controls; provides information on inspections, certification, and reporting; and provides reports. Most data access features, e.g., view, print, query, and download, are available to all users; however, data input, updating, and editing are restricted to the personnel directly responsible for monitoring and inspection. The Land Use Manager application was developed for the Department of Energy Oak Ridge Office by URS - CH2M Oak Ridge LLC, Restoration Services Incorporated, and MIJARA Corporation to meet the specific needs of long-term stewardship tracking on the Oak Ridge Reservation. The successful implementation of long-term stewardship enables the future government and private activities being planned on the Oak Ridge Reservation to proceed. (authors)« less
A novel bio-mimicking, planar nano-edge microelectrode enables enhanced long-term neural recording
NASA Astrophysics Data System (ADS)
Wijdenes, Pierre; Ali, Hasan; Armstrong, Ryden; Zaidi, Wali; Dalton, Colin; Syed, Naweed I.
2016-10-01
Our inability to accurately monitor individual neurons and their synaptic activity precludes fundamental understanding of brain function under normal and various pathological conditions. However, recent breakthroughs in micro- and nano-scale fabrication processes have advanced the development of neuro-electronic hybrid technology. Among such devices are three-dimensional and planar electrodes, offering the advantages of either high fidelity or longer-term recordings respectively. Here, we present the next generation of planar microelectrode arrays with “nano-edges” that enable long-term (≥1 month) and high fidelity recordings at a resolution 15 times higher than traditional planar electrodes. This novel technology enables better understanding of brain function and offers a tremendous opportunity towards the development of future bionic hybrids and drug discovery devices.
Colorado River fish monitoring in Grand Canyon, Arizona; 2000 to 2009 summary
Makinster, Andrew S.; Persons, William R.; Avery, Luke A.; Bunch, Aaron J.
2010-01-01
Long-term fish monitoring in the Colorado River below Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program (GCDAMP). The GCDAMP is a federally authorized initiative to ensure that the primary mandate of the Grand Canyon Protection Act of 1992 to protect resources downstream from Glen Canyon Dam is met. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center is responsible for the program's long-term fish monitoring, which is implemented in cooperation with the Arizona Game and Fish Department, U.S. Fish and Wildlife Service, SWCA Environmental Consultants, and others. Electrofishing and tagging protocols have been developed and implemented for standardized annual monitoring of Colorado River fishes since 2000. In 2009, sampling occurred throughout the river between Lees Ferry and Lake Mead for 38 nights over two trips. During the two trips, scientists captured 6,826 fish representing 11 species. Based on catch-per-unit-effort, salmonids (for example, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta)) increased eightfold between 2006 and 2009. Flannelmouth sucker (Catostomus latipinnis) catch rates were twice as high in 2009 as in 2006. Humpback chub (Gila cypha) catches were low throughout the 10-year sampling period.
Long-term monitoring of marine gas leakage
NASA Astrophysics Data System (ADS)
Spickenbom, Kai; Faber, Eckhard; Poggenburg, Jürgen; Seeger, Christian; Furche, Markus
2010-05-01
The sequestration of CO2 in sub-seabed geological formations is one of the Carbon Capture and Storage (CCS) strategies currently under study. Although offshore operations are significantly more expensive than comparable onshore operations, the growing public resistance against onshore CCS projects makes sub-seabed storage a promising option. Even after a thorough review of the geological setting, there is always the possibility of leakage from the reservoir. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. The basic design of the monitoring system builds on our experience in volcano monitoring. Early prototypes were composed of a raft floating on the surface of a mud volcano, carrying sensors for CO2 flux and concentration, data storage and transmission, and power supply by battery-buffered solar panels. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, connected by a flexible tube. This setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. A system for unattended long-term monitoring in a marine environment has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of a funnel-shaped gas collector, a sensor head and pressure housings for electronics and power supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data transmission by acoustic modem or cable, relay stations on the seafloor or buoys etc. the infrastructure can be adapted to the environmental setting and financial budget. Prototype tests under laboratory conditions as well as field tests on natural submarine gas vents as an analogue to leaking storage sites have demonstrated the capabilities and robustness of the systems.
Long-Term Monitoring of Pavement Maintenance Materials Test Sites
DOT National Transportation Integrated Search
1998-06-01
The Strategic Highway Research Program's {SHRP) H-106 pothole repair experiment was part of the most extensive pavement maintenance experiment ever conducted. Started under SHRP and continued under the Long-Term Pavement Performance program's Long-Te...
Mobile nocturnal long-term monitoring of wheezing and cough.
Gross, Volker; Reinke, Christian; Dette, Frank; Koch, Roland; Vasilescu, Dragos; Penzel, Thomas; Koehler, Ulrich
2007-02-01
Changes in normal lung sounds are an important sign of pathophysiological processes in the bronchial system and lung tissue. For the diagnosis of bronchial asthma, coughing and wheezing are important symptoms that indicate the existence of obstruction. In particular, nocturnal long-term acoustic monitoring and assessment make sense for qualitative and quantitative detection and documentation. Previous methods used for lung function diagnosis require active patient cooperation that is not possible during sleep. We developed a mobile device based on the CORSA standard that allows the recording of respiratory sounds throughout the night. To date, we have recorded 133 patients with different diagnoses (80 male, 53 female), of whom 38 were children. In 68 of the patients we could detect cough events and in 87 we detected wheezing. The recording method was tolerated by all participating adults and children. Our mobile system allows non-invasive and cooperation-independent nocturnal monitoring of acoustic symptoms in the domestic environment, especially at night, when most ailments occur.
40 CFR 75.64 - Quarterly reports.
Code of Federal Regulations, 2013 CFR
2013-07-01
... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...
40 CFR 75.64 - Quarterly reports.
Code of Federal Regulations, 2012 CFR
2012-07-01
... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...
40 CFR 75.64 - Quarterly reports.
Code of Federal Regulations, 2011 CFR
2011-07-01
... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...
40 CFR 75.64 - Quarterly reports.
Code of Federal Regulations, 2014 CFR
2014-07-01
... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...
Surprises and insights from long-term aquatic datasets and experiments
Walter K. Dodds; Christopher T. Robinson; Evelyn E. Gaiser; Gretchen J.A. Hansen; Heather Powell; Joseph M. Smith; Nathaniel B. Morse; Sherri L. Johnson; Stanley V. Gregory; Tisza Bell; Timothy K. Kratz; William H. McDowell
2012-01-01
Long-term research on freshwater ecosystems provides insights that can be difficult to obtain from other approaches. Widespread monitoring of ecologically relevant water-quality parameters spanning decades can facilitate important tests of ecological principles. Unique long-term data sets and analytical tools are increasingly available, allowing for powerful and...
Ultra-low power wireless sensing for long-term structural health monitoring
NASA Astrophysics Data System (ADS)
Bilbao, Argenis; Hoover, Davis; Rice, Jennifer; Chapman, Jamie
2011-04-01
Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, Ariana J., E-mail: ariana.mckay@outlook.com; Johnson, Chris J., E-mail: chris.johnson@unbc.ca
Aboriginal communities can be negatively affected by resource development, but often they do not have a full opportunity to participate in project review and the resulting monitoring and mitigation activities. Cumulative impacts of resource development are also typically neglected in monitoring protocols that focus on a limited number of environmental values, rather than adopting a long-term, holistic view of development over time and space. Community-based environmental monitoring (CBEM) is emerging as a way to meaningfully include local Aboriginal citizens in the decision-making process as well as the assessment of the long-term impacts of the development of natural resources. We exploredmore » opportunities and barriers for developing CBEM programs that meet the needs of small and rural Aboriginal communities that are faced with the rapid and wide-spread development of natural resources. We conducted interviews with a local Aboriginal community, and natural resource management practitioners who could provide perspectives on the application of CBEM to resource management in north-central British Columbia, Canada. Results demonstrate that CBEM offers a locally adapted and culturally appropriate approach to facilitate the participation of Aboriginal communities in natural resource decision making and management. The interpretation of the specific role and purpose of CBEM differed among participants, depending on their objectives for and concerns about natural resource development. However, all parties were consistent in viewing CBEM as an effective method for engaging in dialogue, cooperation, and tracking environmental change. The development or improvement of CBEM programs should consider the efficacy of monitoring protocols, social cohesion and relationships, ability to inform decision-making, and effectiveness of CBEM for the members of the community. - Highlights: • We explored how to develop effective CBEM with a focus on Aboriginal communities. • We identified opportunities and barriers for developing CBEM programs. • CBEM can facilitate Aboriginal community participation in natural resource management.« less
Long-term monitoring FBG-based cable load sensor
NASA Astrophysics Data System (ADS)
Zhang, Zhichun; Zhou, Zhi; Wang, Chuan; Ou, Jinping
2006-03-01
Stay cables are the main load-bearing components of stayed-cable bridges. The cables stress status is an important factor to the stayed-cable bridge structure safety evaluation. So it's very important not only to the bridge construction, but also to the long-term safety evaluation for the bridge structure in-service. The accurate measurement for cable load depends on an effective sensor, especially to meet the long time durability and measurement demand. FBG, for its great advantage of corrosion resistance, absolute measurement, high accuracy, electro-magnetic resistance, quasi-distribution sensing, absolute measurement and so on, is the most promising sensor, which can cater for the cable force monitoring. In this paper, a load sensor has been developed, which is made up of a bushing elastic supporting body, 4 FBGs uniformly-spaced attached outside of the bushing supporting body, and a temperature compensation FBG for other four FBGs, moreover a cover for protection of FBGs. Firstly, the sensor measuring principle is analyzed, and relationship equation of FBG wavelength shifts and extrinsic load has also been gotten. And then the sensor calibration experiments of a steel cable stretching test with the FBG load sensor and a reference electric pressure sensor is finished, and the results shows excellent linearity of extrinsic load and FBG wavelength shifts, and good repeatability, which indicates that such kind of FBG-based load sensor is suitable for load measurement, especially for long-term, real time monitoring of stay-cables.
Long-term conditioning of deep-seated rockslides in deglaciated valleys: the Spriana case study
NASA Astrophysics Data System (ADS)
Agliardi, Federico; Crosta, Giovanni B.
2015-04-01
Deep-seated rockslides in alpine valleys evolve over long time under the action of multiple triggers. Early Warning based on monitoring is often the only effective approach to cope with these landslides, but it requires an improved understanding of mechanisms interplaying over long time. Deep-seated rockslides are often characterized by long-term 'creep' and seasonal displacement components, contributing to measured displacement patterns which are often modelled as rockslide responses to hydrologic perturbations. Although this hydro-mechanical modelling approach fits the behaviour of disrupted rockslide masses with well-developed shear zones, it is often insufficient to explain the initial onset and the long-term components of creep movements of deep-seated rockslides. This outlines the need to link long-term evolution of rock slopes and their sensitivity to triggers. We discuss the Spriana rockslide, affecting the steep left-hand flank of Val Malenco (italian Central Alps). Documented instabilities date back to 1912, whereas the rockslide underwent major acceleration stages in 1960 and 1977-78 and later minor reactivations. We reviewed a large amount of data collected since 1978 by extensive geotechnical site investigation (borehole drilling, exploratory adits, and seismic refraction) and monitoring activities (ground surface and deep displacements, pore pressures) motivated by potential catastrophic collapse threatening the city of Sondrio area. We performed rock mass characterization based on laboratory studies on intact rock samples, field surveys and drillcore logging. These data allowed re-evaluating the geological model of the Spriana rockslide, which is a compound slide of up to 50 Mm3 of slope debris and fractured gneiss, with multiple shear failure zones up to 90 m deep. Two main scarps developed in different stages, suggesting progressive failure processes. The rockslide creeps at slow rates of 0.4-3 cm/a, and undergoes acceleration stages (weeks to months) during increased water recharge periods. Heavily fractured rock masses occur below rockslide base up to 150 m in depth, suggesting extensive rock mass damage pre-dating rockslide onset. Groundwater monitoring shows that this fractured layer hosts a perched water table characterized by annual fluctuations up to 3 m. To gain insights in the long-term slope evolution we performed 2D Finite-Element multi-stage stress-strain and seepage modelling, accounting for post-LGM deglaciation, damage and related changes in slope strength and hydrology. Results validated using investigation data show that rockslide onset would have been unlikely without the strong preconditioning of long-term damage related to deglaciation. This led to a two-layer hydro-mechanical slope differentiation, with a fractured upper layer hosting a perched water table that favoured rockslide onset. Once structured, the rockslide became more sensitive to short-term hydrologic triggers, with displacement rates increasing in response to groundwater recharge related to critical values of antecedent (7 to 30 days) rainfall. Our results outline the importance of accounting for long-term slope evolution when dealing with rockslides evolving over 102-103 year timescales, and point to the need of modelling approaches able to relate changing hydro-mechanical properties of slopes to long-term damage processes.
2002-11-01
synopsis of the collected data and collection methods, as well as a preliminary report of remarkable or unusual conditions in the system. They are intended...resource requires scientific understanding of the ecosystem and of its long-term trends and conditions . To meet this need, Congress authorized a Long...chemical oxygen demand, biochemical oxygen demand, total coliform bacteria , fecal coliform bacteria , fecal streptococcus, heavy metals, pesticides, and
Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.
1995-12-31
This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less
Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Lingyu
Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extendedmore » life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures including a medium-scale vacuum drying chamber and a small-scale mockup canister available for the desired testing. Our work developed the potential candidate for long term structural health monitoring of spent fuel canister through piezoelectric wafer sensors and provided the sensing methodologies based on AE and GUW methodologies. It overall provides an innovative system and methodology for enhancing the safe operation of nuclear power plant. All major accomplishments planned in the original proposal were successfully achieved.« less
Towards a better monitoring of seed ageing under ex situ seed conservation
Fu, Yong-Bi; Ahmed, Zaheer; Diederichsen, Axel
2015-01-01
Long-term conservation of 7.4 million ex situ seed accessions held in agricultural genebanks and botanic gardens worldwide is a challenging mission for human food security and ecosystem services. Recent advances in seed biology and genomics may have opened new opportunities for effective management of seed germplasm under long-term storage. Here, we review the current development of tools for assessing seed ageing and research advances in seed biology and genomics, with a focus on exploring their potential as better tools for monitoring of seed ageing. Seed ageing is found to be associated with the changes reflected in reactive oxygen species and mitochondria-triggered programmed cell deaths, expression of antioxidative genes and DNA and protein repair genes, chromosome telomere lengths, epigenetic regulation of related genes (microRNA and methylation) and altered organelle and nuclear genomes. Among these changes, the signals from mitochondrial and nuclear genomes may show the most promise for use in the development of tools to predict seed ageing. Non-destructive and non-invasive analyses of stored seeds through calorimetry or imaging techniques are also promising. It is clear that research into developing advanced tools for monitoring seed ageing to supplement traditional germination tests will be fruitful for effective conservation of ex situ seed germplasm. PMID:27293711
Global biodiversity monitoring: from data sources to essential biodiversity variables
Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A
2016-01-01
Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.
Long-term monitoring of river basins: strengths and weaknesses, opportunities and threats
NASA Astrophysics Data System (ADS)
Howden, N. J. K.; Burt, T. P.
2016-12-01
In a world where equilibrium is more and more uncommon, monitoring is an essential way to discover whether undesirable change is taking place. Monitoring requires a deliberate plan of action: the regular collection and processing of information. Long-term data reveal important patterns, allowing trends, cycles, and rare events to be identified. This is particularly important for complex systems where signals may be subtle and slow to emerge. Moreover, very long data sets are essential to test hypotheses undreamt of at the time the monitoring was started. This overview includes long time series from UK river basins showing how hydrology and water quality have changed over time - and continue to change. An important conclusion is the long time frame of system recovery, well beyond the normal lifetime of individual governments or research grants. At a time of increasing hydroclimatic variability, long time series remain crucially important; in particular, continuity of observations is vital at key benchmark sites.
Space Propulsion Synergy Group ETO technology assessments
NASA Astrophysics Data System (ADS)
Bray, James
There exists within the aerospace community a widely recognized need to improve future space launch systems. While these needs have been expressed by many national committees, potential solutions have not achieved consensus nor have they endured. Facing the challenge to remain competitive with limited national resources, the U.S. must improve its strategic planning efforts. A nationally accepted strategic plan for space would enable a focused research & development program. The Space Propulsion Synergy Group (SPSG), chartered to support long range strategic planning, has achieved several breakthroughs. First, using a broad industry/government team, the SPSG evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a-priori. Second, realizing that systems having the best long term payoffs can loose support when constraints are tight, the SPSG invented a dual prioritization approach that balances long term strategic thrusts with current programmatic constraints. This breakthrough enables individual program managers to make decisions based on both individual project needs and long term strategic needs. Results indicate that a SSTO using an integrated modular engine has the best long term potential for a 20 Klb class vehicle and that health monitoring and control technologies rank among the highest dual priority liquid rocket technologies.
ATLAS Distributed Computing Monitoring tools during the LHC Run I
NASA Astrophysics Data System (ADS)
Schovancová, J.; Campana, S.; Di Girolamo, A.; Jézéquel, S.; Ueda, I.; Wenaus, T.; Atlas Collaboration
2014-06-01
This contribution summarizes evolution of the ATLAS Distributed Computing (ADC) Monitoring project during the LHC Run I. The ADC Monitoring targets at the three groups of customers: ADC Operations team to early identify malfunctions and escalate issues to an activity or a service expert, ATLAS national contacts and sites for the real-time monitoring and long-term measurement of the performance of the provided computing resources, and the ATLAS Management for long-term trends and accounting information about the ATLAS Distributed Computing resources. During the LHC Run I a significant development effort has been invested in standardization of the monitoring and accounting applications in order to provide extensive monitoring and accounting suite. ADC Monitoring applications separate the data layer and the visualization layer. The data layer exposes data in a predefined format. The visualization layer is designed bearing in mind visual identity of the provided graphical elements, and re-usability of the visualization bits across the different tools. A rich family of various filtering and searching options enhancing available user interfaces comes naturally with the data and visualization layer separation. With a variety of reliable monitoring data accessible through standardized interfaces, the possibility of automating actions under well defined conditions correlating multiple data sources has become feasible. In this contribution we discuss also about the automated exclusion of degraded resources and their automated recovery in various activities.
Kennedy, Robert E.; Cohen, Warren B.; Kirschbaum, Alan A.; Haunreiter, Erik
2007-01-01
Background and Objectives As part of the National Park Service's larger goal of developing long-term monitoring programs in response to the Natural Resource Challenge of 2000, the parks of the North Coast and Cascades Network (NCCN) have determined that monitoring of landscape dynamics is necessary to track ecosystem health (Weber and others, 2005). Landscape dynamics refer to a broad suite of ecological, geomorphological, and anthropogenic processes occurring across broad spatial scales. The NCCN has sought protocols that would leverage remote-sensing technologies to aid in monitoring landscape dynamics.
Long-term solar-terrestrial observations
NASA Technical Reports Server (NTRS)
1988-01-01
The results of an 18-month study of the requirements for long-term monitoring and archiving of solar-terrestrial data is presented. The value of long-term solar-terrestrial observations is discussed together with parameters, associated measurements, and observational problem areas in each of the solar-terrestrial links (the sun, the interplanetary medium, the magnetosphere, and the thermosphere-ionosphere). Some recommendations are offered for coordinated planning for long-term solar-terrestrial observations.
Long term observation of low altitude atmosphere by high precision polarization lidar
NASA Astrophysics Data System (ADS)
Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo
2011-11-01
Prediction of weather disaster such as heavy rain and light strike is an earnest desire. Successive monitoring of the low altitude atmosphere is important to predict it. The weather disaster often befalls with a steep change in a local area. It is hard for usual meteorological equipments to capture and alert it speedily. We have been developed the near range lidar to capture and analyze the low altitude atmosphere. In this study, high precision polarization lidar was developed to observe the low altitude atmosphere. This lidar has the high extinction ratio of polarization of >30dB to detect the small polarization change of the atmosphere. The change of the polarization in the atmosphere leads to the detection of the depolarization effect and the Faraday effect, which are caused by ice-crystals and lightning discharge, respectively. As the lidar optics is "inline" type, which means common use of optics for transmitter and receiver, it can observe the near range echo with the narrow field of view. The long-term observation was accomplished at low elevation angle. It aims to monitor the low altitude atmosphere under the cloud base and capture its spatial distribution and convection process. In the viewpoint of polarization, the ice-crystals' flow and concentration change of the aerosols are monitored. The observation has been continued in the cloudy and rainy days. The thunder cloud is also a target. In this report, the system specification is explained to clear the potential and the aims. The several observation data including the long-term observation will be shown with the consideration of polarization analysis.
Jennifer E. Carlson; Douglas D. Piirto; John J. Keane; Samantha J. Gill
2015-01-01
Long-term monitoring programs that can detect a population change over time can be useful for managers interested in assessing population trends in response to forest management activities for a particular species. Such long-term monitoring programs have been designed for the Northern Goshawk (Accipiter gentilis), but not for the more elusive Sharp...
Cascabel prescribed fire long-term watershed study: an opportunity to monitor climate change
Gerald Gottfried; Daniel Neary; Peter Ffolliott; Karen Koestner
2012-01-01
Experimental watershed studies can provide answers to new challenges facing land managers and society including the impacts of fires and climate change on upstream and regional hydrology. The Cascabel Watersheds long-term prescribed fire study provides a unique opportunity to monitor climate change because of its location in an oak savanna situated between deserts or...
Mary Beth Adams; James N. Kochenderfer
2007-01-01
Long-term monitoring of stream chemistry of forested watersheds on the Fernow Experimental Forest in West Virginia has been conducted to determine the effects of both human induced and natural disturbances on nutrient cycling and stream chemistry. We compare mean annual stream water pH, and nitrate (NO3), sulfate (SO4), and...
Munson, Seth M.; Duniway, Michael C.; Johanson, Jamin K.
2015-01-01
Managers of rangeland ecosystems require methods to track the condition of natural resources over large areas and long periods of time as they confront climate change and land use intensification. We demonstrate how rangeland monitoring results can be synthesized using ecological site concepts to understand how climate, site factors, and management actions affect long-term vegetation dynamics at the landscape-scale. Forty-six years of rangeland monitoring conducted by the Bureau of Land Management (BLM) on the Colorado Plateau reveals variable responses of plant species cover to cool-season precipitation, land type (ecological site groups), and grazing intensity. Dominant C3 perennial grasses (Achnatherum hymenoides, Hesperostipa comata), which are essential to support wildlife and livestock on the Colorado Plateau, had responses to cool-season precipitation that were at least twice as large as the dominant C4 perennial grass (Pleuraphis jamesii) and woody vegetation. However, these C3 perennial grass responses to precipitation were reduced by nearly one-third on grassland ecological sites with fine- rather than coarse-textured soils, and there were no detectable C3 perennial grass responses to precipitation on ecological sites dominated by a dense-growing shrub, Coleogyne ramosissima. Heavy grazing intensity further reduced the responses of C3 perennial grasses to cool-season precipitation on ecological sites with coarse-textured soils and surprisingly reduced the responses of shrubs as well. By using ecological site groups to assess rangeland condition, we were able to improve our understanding of the long-term relationships between vegetation change and climate, land use, and site characteristics, which has important implications for developing landscape-scale monitoring strategies.
Patel, Shyamal; Chen, Bor-Rong; Buckley, Thomas; Rednic, Ramona; McClure, Doug; Tarsy, Daniel; Shih, Ludy; Dy, Jennifer; Welsh, Matt; Bonato, Paolo
2010-01-01
Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.
Lessons from a Community-Based Program to Monitor Forest Vertebrates in the Brazilian Amazon
NASA Astrophysics Data System (ADS)
Benchimol, Maíra; von Mühlen, Eduardo M.; Venticinque, Eduardo M.
2017-09-01
A large number of sustainable use reserves recently have been titled in the Brazilian Amazonia. These reserves require public participation in the design and implementation of management and monitoring programs. Species-monitoring programs that engage local stakeholders may be useful for assessing wildlife status over the long term. We collaborated on the development of a participatory program to monitor forest vertebrates in the Piagaçu-Purus Sustainable Development Reserve and to build capacity among the local people. We examined relations between the distance to the nearest human community and sighting rates of each species, and evaluated the program overall. Eighteen wildlife monitors received training in line transect and sign surveys and then conducted surveys along a total of ten transects. Sighting rates of most species in the Piagaçu-Purus Sustainable Development Reserve were higher than those reported in other Amazonian forests. Distance to the human community was not associated with the overall vertebrate sighting rate. Use of the trained monitors was successful in terms of data acquisition and engagement. The involvement of local people promoted discussions about regulation of hunting in the reserve. Implementation of community-based programs to monitor forest wildlife in Amazonian sustainable use reserves may empower local communities and assess the status of wildlife through time.
A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands.
Batzias, A F; Siontorou, C G
2008-10-30
This work introduces a semi-natural wetland biomonitoring framework for heavy metal concentrations based on a robust dynamic integration between biological assemblages and relevant biosensors. The cooperative/synergistic scheme developed minimizes uncertainty and monitoring costs and increases reliability of pollution control and abatement. Attention is given to establishing a fully functioning and reliable network approach for monitoring inflows and achieving dose-response relations and calibration of biomonitoring species. The biomonitoring network initially consists of both, biosensors and species, as a validation phase in each wetland of the surveillance area; once the species monitoring efficiency is verified by the biosensors, the biosensor network moves to the next wetland and so on, following a circular pattern until all area wetlands have a fully functional natural monitoring scheme. By means of species recalibration with periodic revisiting of the biosensors, the scheme progressively reaches a quasi steady-state (including seasonality), thus ensuring reliability and robustness. This framework, currently pilot-tested in Voiotia, Greece, for assessing chromium levels, has been built to cover short-, medium- and long-term monitoring requirements. The results gathered so far, support the employment of the proposed scheme in heavy metal monitoring, and, further, arise the need for volunteer involvement to achieve long-term viability.
O'Connor, N; Milosavljević, V; Daniels, S
2011-08-01
In this paper we present the development and application of a real time atmospheric pressure discharge monitoring diagnostic. The software based diagnostic is designed to extract latent electrical and optical information associated with the operation of an atmospheric pressure dielectric barrier discharge (APDBD) over long time scales. Given that little is known about long term temporal effects in such discharges, the diagnostic methodology is applied to the monitoring of an APDBD in helium and helium with both 0.1% nitrogen and 0.1% oxygen gas admixtures over periods of tens of minutes. Given the large datasets associated with the experiments, it is shown that this process is much expedited through the novel application of multivariate correlations between the electrical and optical parameters of the corresponding chemistries which, in turn, facilitates comparisons between each individual chemistry also. The results of these studies show that the electrical and optical parameters of the discharge in helium and upon the addition of gas admixtures evolve over time scales far longer than the gas residence time and have been compared to current modelling works. It is envisaged that the diagnostic together with the application of multivariate correlations will be applied to rapid system identification and prototyping in both experimental and industrial APDBD systems in the future.
Adapting inland fisheries management to a changing climate
Paukert, Craig P.; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.
2016-01-01
Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.
IoT based Growth Monitoring System of Guava (Psidium guajava L.) Fruits
NASA Astrophysics Data System (ADS)
Slamet, W.; Irham, N. M.; Sutan, M. S. A.
2018-05-01
Growth monitoring of plant is important especially to evaluate the influence of environment or growing condition on its productivity. One way to monitor the plant growth is by measuring the radial growth (i.e., the change of circumference) of certain part of plant such as trunk, branch, and fruit. In this study we develop an internet of things (IoT) based monitoring system of radial growth of plant using a low-cost optoelectronic sensor. The system was applied to monitor radial growth of guava fruits (Psidium guajava L.). The principle of the developed sensor is based on the optoelectronic sensor which detects alternating white and black narrow bar printed on reflective tapes. Reflective tape was installed encircling the fruit. The movement of reflective tapes will follow the radial growth of the fruit so that the infrared sensor on the optoelectronic would response reflective tapes movement. This device is designed to measure object continuously and long-term monitor with minimum maintenance. The data collected by the sensors are then sent to the server and also can be monitored in real-time. Based on field test, at current stage, the developed sensor could measure the radial growth of the fruits with a maximum error 2 mm. In term of data transfer, the success rate of the developed system was 97.54%. The result indicated that the developed system can be used as an effective tool for growth monitoring of plant.
Time vs. Money: A Quantitative Evaluation of Monitoring Frequency vs. Monitoring Duration.
McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J
2016-09-01
The National Research Council has estimated that over 126,000 contaminated groundwater sites are unlikely to achieve low ug/L clean-up goals in the foreseeable future. At these sites, cost-effective, long-term monitoring schemes are needed in order to understand the long-term changes in contaminant concentrations. Current monitoring optimization schemes rely on site-specific evaluations to optimize groundwater monitoring frequency. However, when using linear regression to estimate the long-term zero-order or first-order contaminant attenuation rate, the effect of monitoring frequency and monitoring duration on the accuracy and confidence for the estimated attenuation rate is not site-specific. For a fixed number of monitoring events, doubling the time between monitoring events (e.g., changing from quarterly monitoring to semi-annual monitoring) will double the accuracy of estimated attenuation rate. For a fixed monitoring frequency (e.g., semi-annual monitoring), increasing the number of monitoring events by 60% will double the accuracy of the estimated attenuation rate. Combining these two factors, doubling the time between monitoring events (e.g., quarterly monitoring to semi-annual monitoring) while decreasing the total number of monitoring events by 38% will result in no change in the accuracy of the estimated attenuation rate. However, the time required to collect this dataset will increase by 25%. Understanding that the trade-off between monitoring frequency and monitoring duration is not site-specific should simplify the process of optimizing groundwater monitoring frequency at contaminated groundwater sites. © 2016 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.
Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.
2015-01-01
Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of adaptive monitoring. We suspect our situation is not unique and many programs may suffer from the same inferential disconnect. Commonly, the survey design is optimized for robust estimates of regional status and trend detection and not necessarily to provide statistical inferences on the causal mechanisms outlined in the conceptual model, even though these relationships are typically used to justify and promote the long-term monitoring of a chosen ecological indicator. Our application demonstrates a process for empirical evaluation of conceptual models and exemplifies the need for such interim assessments in order for programs to evolve and persist.
Temporal variations in the potential hydrological performance of extensive green roof systems
NASA Astrophysics Data System (ADS)
De-Ville, Simon; Menon, Manoj; Stovin, Virginia
2018-03-01
Existing literature provides contradictory information about variation in potential green roof hydrological performance over time. This study has evaluated a long-term hydrological monitoring record from a series of extensive green roof test beds to identify long-term evolutions and sub-annual (seasonal) variations in potential hydrological performance. Monitoring of nine differently-configured extensive green roof test beds took place over a period of 6 years in Sheffield, UK. Long-term evolutions and sub-annual trends in maximum potential retention performance were identified through physical monitoring of substrate field capacity over time. An independent evaluation of temporal variations in detention performance was undertaken through the fitting of reservoir-routing model parameters. Aggregation of the resulting retention and detention variations permitted the prediction of extensive green roof hydrological performance in response to a 1-in-30-year 1-h summer design storm for Sheffield, UK, which facilitated the comparison of multi and sub-annual hydrological performance variations. Sub-annual (seasonal) variation was found to be significantly greater than long-term evolution. Potential retention performance increased by up to 12% after 5-years, whilst the maximum sub-annual variation in potential retention was 27%. For vegetated roof configurations, a 4% long-term improvement was observed for detention performance, compared to a maximum 63% sub-annual variation. Consistent long-term reductions in detention performance were observed in unvegetated roof configurations, with a non-standard expanded-clay substrate experiencing a 45% reduction in peak attenuation over 5-years. Conventional roof configurations exhibit stable long-term hydrological performance, but are nonetheless subject to sub-annual variation.
Emergency department management of patients internally contaminated with radioactive material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz
After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.
Emergency department management of patients internally contaminated with radioactive material
Kazzi, Ziad; Buzzell, Jennifer; Bertelli, Luiz; ...
2014-11-15
After a radiation emergency that involves the dispersal of radioactive material, patients can become externally and internally contaminated with one or more radionuclides. Internal contamination can lead to the delivery of harmful ionizing radiation doses to various organs and tissues or the whole body. The clinical consequences can range from acute radiation syndrome (ARS) to the long term development of cancer. Estimating the amount of radioactive material absorbed into the body can guide the management of patients. Treatment includes, in addition to supportive care and long term monitoring, certain medical countermeasures like Prussian blue, Calcium DTPA and Zinc DTPA.
Developing an operational rangeland water requirement satisfaction index
Senay, Gabriel B.; Verdin, James P.; Rowland, James
2011-01-01
Developing an operational water requirement satisfaction index (WRSI) for rangeland monitoring is an important goal of the famine early warning systems network. An operational WRSI has been developed for crop monitoring, but until recently a comparable WRSI for rangeland was not successful because of the extremely poor performance of the index when based on published crop coefficients (K c) for rangelands. To improve the rangeland WRSI, we developed a simple calibration technique that adjusts the K c values for rangeland monitoring using long-term rainfall distribution and reference evapotranspiration data. The premise for adjusting the K c values is based on the assumption that a viable rangeland should exhibit above-average WRSI (values >80%) during a normal year. The normal year was represented by a median dekadal rainfall distribution (satellite rainfall estimate from 1996 to 2006). Similarly, a long-term average for potential evapotranspiration was used as input to the famine early warning systems network WRSI model in combination with soil-water-holding capacity data. A dekadal rangeland WRSI has been operational for east and west Africa since 2005. User feedback has been encouraging, especially with regard to the end-of-season WRSI anomaly products that compare the index's performance to ‘normal’ years. Currently, rangeland WRSI products are generated on a dekadal basis and posted for free distribution on the US Geological Survey early warning website at http://earlywarning.usgs.gov/adds/
Vandergast, Amy G.
2017-06-02
Habitat and species conservation plans usually rely on monitoring to assess progress towards conservation goals. Southern California, USA, is a hotspot of biodiversity and home to many federally endangered and threatened species. Here, several regional multi-species conservation plans have been implemented to balance development and conservation goals, including in San Diego County. In the San Diego County Management Strategic Plan Area (MSPA), a monitoring framework for the preserve system has been developed with a focus on species monitoring, vegetation monitoring, threats monitoring and abiotic monitoring. Genetic sampling over time (genetic monitoring) has proven useful in gathering species presence and abundance data and detecting population trends, particularly related to species and threats monitoring objectives. This report reviews genetic concepts and techniques of genetics that relate to monitoring goals and outlines components of a genetic monitoring scheme that could be applied in San Diego or in other monitoring frameworks throughout the Nation.
Development and implementation of a human accuracy program in patient foodservice.
Eden, S H; Wood, S M; Ptak, K M
1987-04-01
For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.
Fei, Ding-Yu; Zhao, Xiaoming; Boanca, Cosmin; Hughes, Esther; Bai, Ou; Merrell, Ronald; Rafiq, Azhar
2010-07-01
To design and test an embedded biomedical sensor system that can monitor astronauts' comprehensive physiological parameters, and provide real-time data display during extra-vehicle activities (EVA) in the space exploration. An embedded system was developed with an array of biomedical sensors that can be integrated into the spacesuit. Wired communications were tested for physiological data acquisition and data transmission to a computer mounted on the spacesuit during task performances simulating EVA sessions. The sensor integration, data collection and communication, and the real-time data monitoring were successfully validated in the NASA field tests. The developed system may work as an embedded system for monitoring health status during long-term space mission. Copyright 2010 Elsevier Ltd. All rights reserved.
NOAA's Scientific Data Stewardship Program
NASA Astrophysics Data System (ADS)
Bates, J. J.
2004-12-01
The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the following definition: a climate data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change.
Daniel, Eleni; Jones, Robert; Bull, Matthew; Newell-Price, John
2016-12-01
Patients with SDHx mutations need long-term radiological surveillance for the development of paragangliomas and phaeochromocytomas, but no longitudinal data exist. The aim of the study was to assess the performance of rapid-sequence non-contrast magnetic resonance imaging (MRI) in the long-term monitoring of patients with SDHx mutations. Retrospective study between 2005 and 2015 at a University Hospital and regional endocrine genetics referral centre. Clinical and imaging data of 47 patients with SDHx mutations (SDHB (36), SDHC (6) and SDHD (5)) who had surveillance for detection of paragangliomas by rapid-sequence non-contrast MRI (base of skull to pubic symphysis) were collected. Twelve index cases (nine SDHB, one SDHC and two SDHD) and 35 mutation-positive relatives were monitored for a mean of 6.4 years (range 3.1-10.0 years). Mean age at the end of the study: SDHB 46.9 ± 17.6 years; SDHC 42.3 ± 24.4 years; SDHD 54.9 ± 10.6 years. On excluding imaging at initial diagnosis of index cases, 42 patients underwent 116 rapid-sequence MRI scans: 83 scans were negative and 31 scans were positive for sPGL/HNPGL in 13 patients. Most patients had multiple scans (n = number of patients (number of rapid-sequence MRI scans during screening)): n = 9 (2), n = 20 (3), n = 6 (4), n = 1 (6). Nine patients (three index) were diagnosed with new paragangliomas during surveillance and non-operated tumour size was monitored in nine patients. There were two false-positive scans (1.6%). Scans were repeated every 27 ± 9 months. Biannual rapid-sequence non-contrast MRI is effective to monitor patients with SDHx mutations for detection of new tumours and monitoring of known tumours. © 2016 European Society of Endocrinology.
When the Fog Clears: Long-Term Monitoring of Fog and Fog-Dependent Biota in the Namib Desert
NASA Astrophysics Data System (ADS)
Logan, J. R. V.
2014-12-01
The Gobabeb Research and Training Centre in western Namibia is currently undertaking several efforts to enhance long-term atmospheric and fog monitoring in the central Namib Desert and to measure how fog-dependent biota are responding to global change. In an environment that receives regular sea fog and a mean annual rainfall of only 25 mm, Gobabeb is ideally situated to study the drivers and ecological role of fog in arid environments. Currently more than ten meteorological projects perform measurements at or close to Gobabeb. These projects include continuous trace gas measurements, fog isotope sampling, in situ surface radiation measurements, land surface temperature and other satellite validation studies, and multiple aerosol/dust monitoring projects; most of these projects are also components in other global monitoring networks. To these projects, Gobabeb has recently added a network of nine autonomous weather stations spanning the central Namib that will continuously collect basic meteorological data over an area of approximately 70x70 km. Using this data in conjunction with modeling efforts will expand our understanding of fog formation and the linkages between fog and the Benguela Current off Namibia's coast. Historical weather data from previous meteorological stations and satellite observations will also enable development of a fog time series for the last 50 years to determine climate variability driven by possible changes in the Benguela Current system. To complement these efforts, Gobabeb is also expanding its decades-old ecological research programs to explore the impacts of the fog on the region's biota at various time and spatial scales. Gobabeb's long-term, multidisciplinary projects can serve as a prototype for monitoring in other fog-affected systems, together increasing our understanding of coastal fog dynamics, land-atmosphere-ocean connections, and the impacts of fog-related global change.
Re-Evaluation of Development of the TMDL Using Long-Term Monitoring Data and Modeling
NASA Astrophysics Data System (ADS)
Squires, A.; Rittenburg, R.; Boll, J.; Brooks, E. S.
2012-12-01
Since 1996, 47,979 Total Maximum Daily Loads (TMDLs) have been approved throughout the United States for impaired water bodies. TMDLs are set through the determination of natural background loads for a given water body which then estimate contributions from point and nonpoint sources to create load allocations and determine acceptable pollutant levels to meet water quality standards. Monitoring data and hydrologic models may be used in this process. However, data sets used are often limited in duration and frequency, and model simulations are not always accurate. The objective of this study is to retrospectively look at the development and accuracy of the TMDL for a stream in an agricultural area using long-term monitoring data and a robust modeling process. The study area is the Paradise Creek Watershed in northern Idaho. A sediment TMDL was determined for the Idaho section of Paradise Creek in 1997. Sediment TMDL levels were determined using a short-term data set and the Water Erosion Prediction Project (WEPP) model. Background loads used for the TMDL in 1997 were from pre-agricultural levels, based on WEPP model results. We modified the WEPP model for simulation of saturation excess overland flow, the dominant runoff generation mechanism, and analyzed more than 10 years of high resolution monitoring data from 2001 - 2012, including discharge and total suspended solids. Results will compare background loading and current loading based on present-day land use documented during the monitoring period and compare previous WEPP model results with the modified WEPP model results. This research presents a reevaluation of the TMDL process with recommendations for a more scientifically sound methodology to attain realistic water quality goals.
This report discusses soil and ground-water sampling methods and procedures used to evaluate the long-term performance of permeable reactive barriers (PRBS) at two sites, Elizabeth City, NC, and the Denver Federal Center near Lakewood, CO. Both PRBs were installed in 1996 and hav...
O. Badea; S. Neagu; Andrzej Bytnerowicz; D. Silaghi; I. Barbu; C. Iacoban; F. Popescu; M. Andrei; E. Preda; C. Iacob; I. Dumitru; H. Iuncu; C. Vezeanu; V. Huber
2011-01-01
The monitoring studies carried out in the southern Romanian Carpathians (Retezat and Bucegi - Piatra Craiului Mts) provide a scientific support for long term ecosystem research (LTER). Their general objective is to characterize the air pollution and its potential effects upon forest ecosystems' status and biodiversity in close connection with climatic changes. Two...
Improving the Navys Passive Underwater Acoustic Monitoring of Marine Mammal Populations
2015-09-30
DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Improving the Navy’s Passive Underwater Acoustic...mpl.ucsd.edu LONG-TERM GOALS The long-term goals of this research effort are to improve the Navy’s passive underwater acoustic monitoring of marine...research of a graduate student in marine bioacoustics and ocean acoustics at the Scripps Institution of Oceanography. OBJECTIVES The
Rossignoli, Serena; Coticchia, Fabrizio; Mezzasalma, Annarosa
2015-06-01
The role of monitoring and evaluation (M&E) systems in the field of development cooperation has globally increased in last decades. International and regional organizations, as well as states, local governments and NGOs have largely adopted the tools provided by M&E in order to enhance transparency, effectiveness and efficiency. The paper aims at verifying how and to what extent the implementation of M&E systems has affected the overall quality of international cooperation projects financed by a local government. After a literature review on M&E in development cooperation, the research analyzes the wide range of activities (evaluation ex-ante, mid-term, final, monitoring, consultancy) carried out by the Evaluation Team of the XY in the last eight years in behalf of an Italian local government: the Region of Tuscany. The paper reveals the strategic significance of adopting M&E systems in the medium-long term. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon
Schneider, Tiffany Rae; McFarland, William D.
1995-01-01
Information from field visits was used to develop a monitoring plan. The plan would include monitoring Borax Lake by measuring discharge, stage, evaporation, temperature, and specific conductance; water-quality sampling and analysis; and monitoring shallow ground-water levels near Borax Lake using shallow piezometers. Minimally, one hot spring in North Borax Lake Spring Group 1 would be monitored for temperature and specific conductance and sampled for water-quality analysis. In addition, two flowing wells would be monitored for water levels, temperature, specific conductance, and discharge and sampled for water-quality analysis. The construction characteristics of these wells must be verified before long-term data collection begins. In the future, it may be helpful to monitor shallow and (or) deep observation wells drilled into the thermal aquifer to understand the possible effects of geothermal development on Borax Lake and nearby springs.
Monitoring California Hardwood Rangeland Resources: An Adaptive Approach
Raul Tuazon
1991-01-01
This paper describes monitoring hardwood rangelands in California within the context of an adaptive or anticipatory approach. A heuristic process of policy evolution under conditions of complexity and uncertainty is presented. Long-term, short-term and program effectiveness monitoring for hardwood rangelands are discussed relative to the process described. The...
MURMoT. Design and Application of Microbial Uranium Reduction Monitoring Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeffler, Frank E.
2014-12-31
Uranium (U) contamination in the subsurface is a major remediation challenge at many DOE sites. Traditional site remedies present enormous costs to DOE; hence, enhanced bioremediation technologies (i.e., biostimulation and bioaugmentation) combined with monitoring efforts are being considered as cost-effective corrective actions to address subsurface contamination. This research effort improved understanding of the microbial U reduction process and developed new tools for monitoring microbial activities. Application of these tools will promote science-based site management decisions that achieve contaminant detoxification, plume control, and long-term stewardship in the most efficient manner. The overarching hypothesis was that the design, validation and application ofmore » a suite of new molecular and biogeochemical tools advance process understanding, and improve environmental monitoring regimes to assess and predict in situ U immobilization. Accomplishments: This project (i) advanced nucleic acid-based approaches to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-detoxifying bacteria; (ii) developed proteomics workflows for detection of metal reduction biomarker proteins in laboratory cultures and contaminated site groundwater; (iii) developed and demonstrated the utility of U isotopic fractionation using high precision mass spectrometry to quantify U(VI) reduction for a range of reduction mechanisms and environmental conditions; and (iv) validated the new tools using field samples from U-contaminated IFRC sites, and demonstrated their prognostic and diagnostic capabilities in guiding decision making for environmental remediation and long-term site stewardship.« less
Matam, B Rajeswari; Duncan, Heather
2018-06-01
Most existing, expert monitoring systems do not provide the real time continuous analysis of the monitored physiological data that is necessary to detect transient or combined vital sign indicators nor do they provide long term storage of the data for retrospective analyses. In this paper we examine the feasibility of implementing a long term data storage system which has the ability to incorporate real-time data analytics, the system design, report the main technical issues encountered, the solutions implemented and the statistics of the data recorded. McLaren Electronic Systems expertise used to continually monitor and analyse the data from F1 racing cars in real time was utilised to implement a similar real-time data recording platform system adapted with real time analytics to suit the requirements of the intensive care environment. We encountered many technical (hardware and software) implementation challenges. However there were many advantages of the system once it was operational. They include: (1) The ability to store the data for long periods of time enabling access to historical physiological data. (2) The ability to alter the time axis to contract or expand periods of interest. (3) The ability to store and review ECG morphology retrospectively. (4) Detailed post event (cardiac/respiratory arrest or other clinically significant deteriorations in patients) data can be reviewed clinically as opposed to trend data providing valuable clinical insight. Informed mortality and morbidity reviews can be conducted. (5) Storage of waveform data capture to use for algorithm development for adaptive early warning systems. Recording data from bed-side monitors in intensive care/wards is feasible. It is possible to set up real time data recording and long term storage systems. These systems in future can be improved with additional patient specific metrics which predict the status of a patient thus paving the way for real time predictive monitoring.
Development of motion resistant instrumentation for ambulatory near-infrared spectroscopy
Zhang, Quan; Yan, Xiangguo; Strangman, Gary E.
2011-01-01
Ambulatory near-infrared spectroscopy (aNIRS) enables recording of systemic or tissue-specific hemodynamics and oxygenation during a person's normal activities. It has particular potential for the diagnosis and management of health problems with unpredictable and transient hemodynamic symptoms, or medical conditions requiring continuous, long-duration monitoring. aNIRS is also needed in conditions where regular monitoring or imaging cannot be applied, including remote environments such as during spaceflight or at high altitude. One key to the successful application of aNIRS is reducing the impact of motion artifacts in aNIRS recordings. In this paper, we describe the development of a novel prototype aNIRS monitor, called NINscan, and our efforts to reduce motion artifacts in aNIRS monitoring. Powered by 2 AA size batteries and weighting 350 g, NINscan records NIRS, ECG, respiration, and acceleration for up to 14 h at a 250 Hz sampling rate. The system's performance and resistance to motion is demonstrated by long term quantitative phantom tests, Valsalva maneuver tests, and multiparameter monitoring during parabolic flight and high altitude hiking. To the best of our knowledge, this is the first report of multiparameter aNIRS monitoring and its application in parabolic flight. PMID:21895335
Evaluation of afforestation development and natural colonization on a reclaimed mine site
Diana Laarmann; Henn Korjus; Allan Sims; Ahto Kangur; Andres Kiviste; John Stanturf
2015-01-01
Post-mining restoration sites often develop novel ecosystems as soil conditions are completely new and ecosystem assemblage can be spontaneous even on afforested sites. This study presents results from long-term monitoring and evaluation of an afforested oil-shale quarry in Estonia. The study is based on chronosequence data of soil and vegetation and comparisons are...
New Bedford Harbor (NBH), MA, is a marine Superfund site due to severely PCB-contaminated sediments. Prior to initial remedial activities, a comprehensive long-term monitoring program was developed to assess the effectiveness of dredging at this site, both spatially and temporal...
Robert B. Douglas; David W. Ulrich; Christopher A. Morris; Matthew O. Goldsworthy
2017-01-01
Documenting species distribution patterns and habitat associations is a necessary prerequisite for developing conservation measures, prioritizing areas for habitat restoration, and establishing baseline conditions for long-term monitoring programs. The coastal tailed frog (Ascaphus truei) ranges from coastal British Columbia to...
2013-02-11
calibration curves was ±5%. Ion chromatography (IC) was used for analysis of perchlorate and other ionic targets. Analysis was carried out on a...The methods utilize liquid or gas chromatography , techniques that do not lend themselves well to portable devices and methods. Portable methods are...
NASA Astrophysics Data System (ADS)
Filippa, Gianluca; Cremonese, Edoardo; Galvagno, Marta; Migliavacca, Mirco; Morra di Cella, Umberto; Petey, Martina; Siniscalco, Consolata
2015-12-01
The increasingly important effect of climate change and extremes on alpine phenology highlights the need to establish accurate monitoring methods to track inter-annual variation (IAV) and long-term trends in plant phenology. We evaluated four different indices of phenological development (two for plant productivity, i.e., green biomass and leaf area index; two for plant greenness, i.e., greenness from visual inspection and from digital images) from a 5-year monitoring of ecosystem phenology, here defined as the seasonal development of the grassland canopy, in a subalpine grassland site (NW Alps). Our aim was to establish an effective observation strategy that enables the detection of shifts in grassland phenology in response to climate trends and meteorological extremes. The seasonal development of the vegetation at this site appears strongly controlled by snowmelt mostly in its first stages and to a lesser extent in the overall development trajectory. All indices were able to detect an anomalous beginning of the growing season in 2011 due to an exceptionally early snowmelt, whereas only some of them revealed a later beginning of the growing season in 2013 due to a late snowmelt. A method is developed to derive the number of samples that maximise the trade-off between sampling effort and accuracy in IAV detection in the context of long-term phenology monitoring programmes. Results show that spring phenology requires a smaller number of samples than autumn phenology to track a given target of IAV. Additionally, productivity indices (leaf area index and green biomass) have a higher sampling requirement than greenness derived from visual estimation and from the analysis of digital images. Of the latter two, the analysis of digital images stands out as the more effective, rapid and objective method to detect IAV in vegetation development.
Filippa, Gianluca; Cremonese, Edoardo; Galvagno, Marta; Migliavacca, Mirco; Morra di Cella, Umberto; Petey, Martina; Siniscalco, Consolata
2015-12-01
The increasingly important effect of climate change and extremes on alpine phenology highlights the need to establish accurate monitoring methods to track inter-annual variation (IAV) and long-term trends in plant phenology. We evaluated four different indices of phenological development (two for plant productivity, i.e., green biomass and leaf area index; two for plant greenness, i.e., greenness from visual inspection and from digital images) from a 5-year monitoring of ecosystem phenology, here defined as the seasonal development of the grassland canopy, in a subalpine grassland site (NW Alps). Our aim was to establish an effective observation strategy that enables the detection of shifts in grassland phenology in response to climate trends and meteorological extremes. The seasonal development of the vegetation at this site appears strongly controlled by snowmelt mostly in its first stages and to a lesser extent in the overall development trajectory. All indices were able to detect an anomalous beginning of the growing season in 2011 due to an exceptionally early snowmelt, whereas only some of them revealed a later beginning of the growing season in 2013 due to a late snowmelt. A method is developed to derive the number of samples that maximise the trade-off between sampling effort and accuracy in IAV detection in the context of long-term phenology monitoring programmes. Results show that spring phenology requires a smaller number of samples than autumn phenology to track a given target of IAV. Additionally, productivity indices (leaf area index and green biomass) have a higher sampling requirement than greenness derived from visual estimation and from the analysis of digital images. Of the latter two, the analysis of digital images stands out as the more effective, rapid and objective method to detect IAV in vegetation development.
Application of Geodetic VLBI Data to Obtaining Long-Term Light Curves for Astrophysics
NASA Technical Reports Server (NTRS)
Kijima, Masachika
2010-01-01
The long-term light curve is important to research on binary black holes and disk instability in AGNs. The light curves have been drawn mainly using single dish data provided by the University of Michigan Radio Observatory and the Metsahovi Radio Observatory. Hence, thus far, we have to research on limited sources. I attempt to draw light curves using VLBI data for those sources that have not been monitored by any observatories with single dish. I developed software, analyzed all geodetic VLBI data available at the IVS Data Centers, and drew the light curves at 8 GHz. In this report, I show the tentative results for two AGNs. I compared two light curves of 4C39.25, which were drawn based on single dish data and on VLBI data. I confirmed that the two light curves were consistent. Furthermore, I succeeded in drawing the light curve of 0454-234 with VLBI data, which has not been monitored by any observatory with single dish. In this report, I suggest that the geodetic VLBI archive data is useful to obtain the long-term light curves at radio bands for astrophysics.
Long-term limnological research and monitoring at Crater Lake, Oregon
Larson, G.L.; Collier, R.; Buktenica, M.
2007-01-01
Crater Lake is located in the caldera of Mount Mazama in Crater Lake National Park, Oregon. The lake has a surface area of about 53 km2at an elevation of 1882 m and a maximum depth of 594 m. Limited studies of this ultraoligotrophic lake conducted between 1896 and 1981, lead to a 10-year limnological study to evaluate any potential degradation of water quality. No long-term variations in water quality were observed that could be attributed to anthropogenic activity. Building on the success of this study, a permanent limnological program has been established with a long-term monitoring program to insure a reliable data base for use in the future. Of equal importance, this program serves as a research platform to develop and communicate to the public a better understanding of the coupled biological, physical, and geochemical processes in the lake and its surrounding environment. This special volume represents our current state of knowledge of the status of this pristine ecosystem including its special optical properties, algal nutrient limitations, pelagic bacteria, and models of the inter-relationships of thermal properties, nutrients, phytoplankton, deep-water mixing, and water budgets. ?? 2007 Springer Science+Business Media B.V.
Andrade, Jurandyr M de; Brito, Luiz G O; Moises, Elaine C D; Amorim, Andréa C; Rapatoni, Liane; Carrara, Hélio H A; Tiezzi, Daniel G
2016-04-01
Here, we describe the case of a patient diagnosed with locally advanced breast cancer 8 years ago. Her treatment course was neoadjuvant chemotherapy, followed by mastectomy and then adjuvant radiotherapy and trastuzumab (TTZ). During the use of adjuvant targeted therapy, an incidental pregnancy was diagnosed. Four years later, she developed bone and cerebral metastases, and since then, she has received courses of TTZ, capecitabine, lapatinib, and radiotherapy with intermittent control of the disease. Her 7-year-old son presents a normal physical and long-term neurological developmental curve according to specialized evaluation. This case is unique for several reasons: the patient received the highest dose of TTZ yet described during pregnancy (4400 mg); there has been a long period of disease-free survival after treatment for locally advanced breast cancer and long overall survival despite successive disease progressions during the metastatic phase of the disease (97 months), and there was a monitored pediatric follow-up period (7 years).
Development of a new approach to cumulative effects assessment: a northern river ecosystem example.
Dubé, Monique; Johnson, Brian; Dunn, Gary; Culp, Joseph; Cash, Kevin; Munkittrick, Kelly; Wong, Isaac; Hedley, Kathlene; Booty, William; Lam, David; Resler, Oskar; Storey, Alex
2006-02-01
If sustainable development of Canadian waters is to be achieved, a realistic and manageable framework is required for assessing cumulative effects. The objective of this paper is to describe an approach for aquatic cumulative effects assessment that was developed under the Northern Rivers Ecosystem Initiative. The approach is based on a review of existing monitoring practices in Canada and the presence of existing thresholds for aquatic ecosystem health assessments. It suggests that a sustainable framework is possible for cumulative effects assessment of Canadian waters that would result in integration of national indicators of aquatic health, integration of national initiatives (e.g., water quality index, environmental effects monitoring), and provide an avenue where long-term monitoring programs could be integrated with baseline and follow-up monitoring conducted under the environmental assessment process.
Feasibility assessment of Doppler radar long-term physiological measurements.
Massagram, Wansuree; Lubecke, Victor M; Boric-Lubecke, Olga
2011-01-01
In this paper we examine the feasibility of applying doppler radar technique for a long-term health monitoring. Doppler radar was used to detect and eliminate periods of significant motion. This technique was verified using a human study on 17 subjects, and it was determined that for 15 out of 17 subjects there was no significant motion for over 85% of the measurement interval in supine positions. Majority of subjects exhibited significantly less motion in supine position, which is promising for sleep monitoring, and monitoring of hospitalized patients.
Kleinhappel, T K; Al-Zoubi, A; Al-Diri, B; Burman, O; Dickinson, P; John, L; Wilkinson, A; Pike, T W
2014-04-01
This paper describes and evaluates a flexible, non-invasive tagging system for the automated identification and long-term monitoring of individual three-spined sticklebacks Gasterosteus aculeatus. The system is based on barcoded tags, which can be reliably and robustly detected and decoded to provide information on an individual's identity and location. Because large numbers of fish can be individually tagged, it can be used to monitor individual- and group-level dynamics within fish shoals. © 2014 The Fisheries Society of the British Isles.
Simulation of Smart Home Activity Datasets
Synnott, Jonathan; Nugent, Chris; Jeffers, Paul
2015-01-01
A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation. PMID:26087371
Simulation of Smart Home Activity Datasets.
Synnott, Jonathan; Nugent, Chris; Jeffers, Paul
2015-06-16
A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation.
Elias, C J; Alexander, B H; Sokly, T
1990-01-01
This report demonstrates the role of epidemiologic surveillance and investigation in the control of infectious diseases in a long-term refugee camp. The applications of simple epidemiologic methods in a refugee camp on the Thai-Cambodian border are described for a one-year period. The development of a Health Information Office facilitated the collection of demographic and vital statistics data, administration of a disease surveillance system, regular monitoring of hospital and outpatient discharge diagnoses, and investigation of disease outbreaks. This office also organized community health education campaigns and disease control efforts. Examples of specific disease investigations are provided to demonstrate the utility of epidemiologic surveillance in the control of infectious disease. We conclude that simple epidemiologic methods play an important role in health planning in long-term refugee camps. PMID:2356906
NASA Astrophysics Data System (ADS)
Heise, H. Michael; Damm, Uwe; Kondepati, Venkata R.
2006-02-01
For clinical research, in-vivo blood glucose monitoring is an ongoing important topic to improve glycemic control in patients with non-adequate blood glucose regulation. Critically ill patients received much interest, since the intensive insulin therapy treatment, as established for diabetics, reduces mortality significantly. Despite the existence of commercially available, mainly amperometric biosensors, continued interest is in infrared spectroscopic techniques for reagent-free glucose monitoring. For stable long-term operation, avoiding also sensor recalibration, a bed-side device coupled to a micro-dialysis probe was developed for quasi-continuous glucose monitoring. Multivariate calibration is required for glucose concentration prediction due to the complex composition of dialysates from interstitial body fluid. Measurements were carried out with different test persons, each experiment lasting for more than 8 hours. Owing to low dialysis recovery rates, glucose concentrations in the dialysates were between 0.83 and 4.44 mM. Standard errors of prediction (SEP) obtained with Partial Least Squares (PLS) calibration and different cross-validation strategies were mainly between 0.13 and 0.18 mM based on either full interval data or specially selected spectral variables.
An ultra-high input impedance ECG amplifier for long-term monitoring of athletes.
Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Ruffo, Mariano; Romano, Maria; Calvo, Rafael A; Jin, Craig; van Schaik, André
2010-01-01
We present a new, low-power electrocardiogram (ECG) recording system with an ultra-high input impedance that enables the use of long-lasting, dry electrodes. The system incorporates a low-power Bluetooth module for wireless connectivity and is designed to be suitable for long-term monitoring during daily activities. The new system using dry electrodes was compared with a clinically approved ECG reference system using gelled Ag/AgCl electrodes and performance was found to be equivalent. In addition, the system was used to monitor an athlete during several physical tasks, and a good quality ECG was obtained in all cases, including when the athlete was totally submerged in fresh water.
Population Parameters of Blainvilles and Cuviers Beaked Whales
2015-09-30
cetacean populations. Long-term monitoring of beaked whale populations in El Hierro , a nearly pristine habitat far from areas of sonar testing or...marine industry, enables valuable studies of demographic trends and life history dictated mainly by natural parameters. El Hierro is in process of...functioning (expected in 2018-2019), it is essential to continue monitoring the populations in El Hierro to obtain an uninterrupted long-term dataset of
The Effects of Harvesting on Long-Term Soil Productivity in Southern Indiana Oak-Hickory Forests
Travis W. Idol; Phillip E. Pope; Felix Ponder
2002-01-01
Timber harvesting has the potential to alter long-term soil productivity in a variety of forest ecosystems. We monitored the effects of harvesting on N cycling processes in upland oak-hickory forests of southern Indiana, using a chronosequence of stands ranging in age from 1 year to 100 years after harvest. N cycling pools and processes were monitored from 1995-1999....
Long-term residual dry matter mapping for monitoring California hardwood rangelands
Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen
2002-01-01
Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous seasonâs use and can be used to describe the health...
Preconcentration for Improved Long-term Monitoring of Contaminants in Groundwater
2014-04-10
Johnson of the US Army Corps of Engineers, Tulsa District (recently retired) provided sites in northeastern Oklahoma for field trials as well as...neighboring wildlife is also a concern. Long-term monitoring of sites undergoing remediation as well as sites that may eventually require cleanup is...Activated charcoal and peroxide cleanup steps offer potential avenues for addressing this problem. The materials may be of value in isotopic analysis of
Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong
2010-12-01
Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.
The effects of short- and long-term air pollutants on plant phenology and leaf characteristics.
Jochner, Susanne; Markevych, Iana; Beck, Isabelle; Traidl-Hoffmann, Claudia; Heinrich, Joachim; Menzel, Annette
2015-11-01
Pollution adversely affects vegetation; however, its impact on phenology and leaf morphology is not satisfactorily understood yet. We analyzed associations between pollutants and phenological data of birch, hazel and horse chestnut in Munich (2010) along with the suitability of leaf morphological parameters of birch for monitoring air pollution using two datasets: cumulated atmospheric concentrations of nitrogen dioxide and ozone derived from passive sampling (short-term exposure) and pollutant information derived from Land Use Regression models (long-term exposure). Partial correlations and stepwise regressions revealed that increased ozone (birch, horse chestnut), NO2, NOx and PM levels (hazel) were significantly related to delays in phenology. Correlations were especially high when rural sites were excluded suggesting a better estimation of long-term within-city pollution. In situ measurements of foliar characteristics of birch were not suitable for bio-monitoring pollution. Inconsistencies between long- and short-term exposure effects suggest some caution when interpreting short-term data collected within field studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fogwell, T. W.
2009-12-01
Sir David King, Chief Science Advisor to the British government and Cambridge University Professor, stated in October 2005, "The scientific community is considerably more capable than it has been in the past to assist governments to avoid and reduce risk to their own populations. Prime ministers and presidents ignore the advice from the science community at the peril of their own populations." Some of these greater capabilities can be found in better monitoring techniques applied to better modeling methods. These modeling methods can be combined with the information derived from monitoring data in order to decrease the risk of population exposure to dangerous substances and to promote efficient control or cleanup of the contaminants. An introduction is presented of the types of problems that exist for long-term control of radionuclides at DOE sites. A breakdown of the distributions at specific sites is given, together with the associated difficulties. A paradigm for remediation showing the integration of monitoring with modeling is presented. It is based on a feedback system that allows for the monitoring to act as principal sensors in a control system. The resulting system can be optimized to improve performance. Optimizing monitoring automatically entails linking the monitoring with modeling. If monitoring designs were required to be more efficient, thus requiring optimization, then the monitoring automatically becomes linked to modeling. Records of decision could be written to accommodate revisions in monitoring as better modeling evolves. Currently the establishment of a very prescriptive monitoring program fails to have a mechanism for improving models and improving control of the contaminants. The technical pieces of the required paradigm are already available; they just need to be implemented and applied to solve the long-term control of the contaminants. An integration of the various parts of the system is presented. Each part is described, and examples are given. References are given to other projects which bring together similar elements in systems for the control of contaminants. Trends are given for the development of the technical features of a robust system. Examples of monitoring methods for specific sites are given. The examples are used to illustrate how such a system would work. Examples of technology needs are presented. Finally, other examples of integrated modeling-monitoring approaches are presented.
Yip, Hon Ming; Li, John C. S.; Cui, Xin; Gao, Qiannan; Leung, Chi Chiu
2014-01-01
As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities. PMID:25133248
Listening to old beech and young cherry trees - long-term research in the Alleghenies
Susan L. Stout; Coeli M. Hoover; Todd E. Ristau
2006-01-01
Long-term research results have been a foundation of forestry practice on the Allegheny Plateau since the 1970s. This includes results from monitoring reference conditions in areas set aside for this purpose and from long-running manipulative studies, some dating back to the 1920s. The success of long-term research in this region reflects the commitment of a handful of...
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
NASA Technical Reports Server (NTRS)
Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.
1989-01-01
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.
NASA Astrophysics Data System (ADS)
Nijssen, B.
2013-12-01
While the absolute magnitude of economic losses associated with weather and climate disasters such as droughts is greatest in the developed world, the relative impact is much larger in the developing world, where agriculture typically constitutes a much larger percentage of the labor force and food insecurity is a major concern. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited and long-term records of soil moisture are essentially non-existent globally The problem is particularly critical given that many of the most damaging droughts occur in parts of the world that are most deficient in terms of in situ precipitation observations. In recent years, a number of near real-time drought monitoring systems have been developed with regional or global extent. While direct observations of key variables such as moisture storage are missing, the evolution of land surface models that are globally applicable provides a means of reconstructing them. The implementation of a multi-model drought monitoring system is described, which provides near real-time estimates of surface moisture storage for the global land areas between 50S and 50N with a time lag of about one day. Near real-time forcings are derived from satellite-based precipitation estimates and modeled air temperatures. The system is distinguished from other operational systems in that it uses multiple land surface models to simulate surface moisture storage, which are then combined to derive a multi-model estimate of drought. Previous work has shown that while land surface models agree in broad context, particularly in terms of soil moisture percentiles, important differences remain, which motivates a multi-model ensemble approach. The system is an extension of similar systems developed by at the University of Washington for the Pacific Northwest and for the United States, but global application of the protocols used in the U.S. systems poses new challenges, particularly with respect to the generation of meteorological forcings that drive the land surface models. Agricultural and hydrological droughts are inherently defined in the context of a long-term climatology. Changes in observing platforms can be misinterpreted as droughts (or as excessively wet periods). This problem cannot simply be addressed through the addition of more observations or through the development of new observing platforms. Instead, it will require careful (re)construction of long-term records that are updated in near real-time in a consistent manner so that changes in surface meteorological forcings reflect actual conditions rather than changes in methods or sources.
Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study
Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn
2009-01-01
SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523
James M. Vose; Jose Manuel Maass
1999-01-01
Long-term monitoring of ecological and hydrological processes is critical to understanding ecosystem function and responses to anthropogenic and natural disturbances. Much of the world's knowledge of ecosystem responses to disturbance comes from long-term studies on gaged watersheds. However, there are relatively few long-term sites due to the large cost and...
NASA Astrophysics Data System (ADS)
Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.
2013-07-01
A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).
Coastal Louisiana Wetlands Restoration Monitoring with Global Fiducials Program (GFP) Imagery
NASA Astrophysics Data System (ADS)
Fisher, G.
2012-12-01
Coastal Louisiana has experienced dramatic landscape change over the past century due to human induced changes to the environment as well as an onslaught of major coastal storms. Coastal Louisiana loses on average 25-35 square miles of land per year. The USGS has partnered with the National Oceanographic and Atmospheric Administration (NOAA) - National Marine Fisheries Service to provide cyclical remote sensing data for selected restoration sites along the coast of Louisiana. Three of these sites are actively maintained in the GFP archive - Atchafalaya River Delta, East Timbalier Island, and Pecan Island. These three sites coincide with NOAA restoration sites that have been monitored since early 2000. The GFP has provided a consistent set of remote sensing data that has greatly benefited the long-term monitoring of these restoration sites. Long-term monitoring of these sites includes both pre- and post-hurricane season data collection used to identify landscape change along the coast. The long-term monitoring also has helped to identify areas of success in the restoration projects, as well as areas that have continued to decline in spite of restoration efforts. These three sites are significant to the program because they provide a variety of coastal landscape types: an open water barrier island environment at East Timbalier Island; coastal wetlands at Pecan Island, which have experienced subsidence of the marsh and convergence to an open water environment; and a deltaic marsh environment at Atchafalaya River Delta. Long-term monitoring of these sites has provided a wealth of knowledge about the changes occurring, as well as a valuable tool for reliable shoreline measurements. Continued monitoring is necessary to accurately assess the condition of these areas as environmental conditions continue to shape the landscape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This decision document amends the September 29, 1995, Record of Decision (ROD) Amendment for the H. Brown Co., Inc. site, in Walker, Michigan. The major components of the selected remedy include: Consolidating contaminated surface soil and sediment requiring cleanup onto the H. Brown property (2200 Turner Avenue N.W.); Redevelopment of the site, by private parties, with warehousing facilities constructed above the contaminated soil; A cover system comprised of clean fill to develop appropriate grades and elevations, concrete slab foundations, asphalt parking areas, and landscaped areas; Long-term maintenance of the cover system to ensure that the cover will continue to preventmore » direct contact with contaminated soil and minimize infiltration of precipitation; Long-term monitoring of the shallow and intermediate aquifers to monitor the effectiveness of the remedy; Monitoring and/or treatment of landfill gas; Restricting the use of the land and the groundwater; Demolishing on-site buildings to accommodate redevelopment; and Cleanup standards for soil will remain the same as in the 1992 ROD. The purpose of this ROD Amendment is to facilitate the re-development of the H. Brown Co., Inc. Site, and if re-development does not occur or proves to be unsuccessful then the remedy selected in the September 29, 1995 ROD Amendment will be implemented.« less
Grizzle, R E; Ward, L G; Fredriksson, D W; Irish, J D; Langan, R; Heinig, C S; Greene, J K; Abeels, H A; Peter, C R; Eberhardt, A L
2014-11-15
The seafloor at an open ocean finfish aquaculture facility in the western Gulf of Maine, USA was monitored from 1999 to 2008 by sampling sites inside a predicted impact area modeled by oceanographic conditions and fecal and food settling characteristics, and nearby reference sites. Univariate and multivariate analyses of benthic community measures from box core samples indicated minimal or no significant differences between impact and reference areas. These findings resulted in development of an adaptive monitoring protocol involving initial low-cost methods that required more intensive and costly efforts only when negative impacts were initially indicated. The continued growth of marine aquaculture is dependent on further development of farming methods that minimize negative environmental impacts, as well as effective monitoring protocols. Adaptive monitoring protocols, such as the one described herein, coupled with mathematical modeling approaches, have the potential to provide effective protection of the environment while minimize monitoring effort and costs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model.
Shin, Sung-Hwan; Kim, SangRyul; Seo, Yun-Ho
2018-06-02
Regular inspection for the maintenance of the wind turbines is difficult because of their remote locations. For this reason, condition monitoring systems (CMSs) are typically installed to monitor their health condition. The purpose of this study is to propose a fault detection algorithm for the mechanical parts of the wind turbine. To this end, long-term vibration data were collected over two years by a CMS installed on a 3 MW wind turbine. The vibration distribution at a specific rotating speed of main shaft is approximated by the Weibull distribution and its cumulative distribution function is utilized for determining the threshold levels that indicate impending failure of mechanical parts. A Hidden Markov model (HMM) is employed to propose the statistical fault detection algorithm in the time domain and the method whereby the input sequence for HMM is extracted is also introduced by considering the threshold levels and the correlation between the signals. Finally, it was demonstrated that the proposed HMM algorithm achieved a greater than 95% detection success rate by using the long-term signals.
Science Data Report for the Optical Properties Monitor (OPM) Experiment
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Zwiener, James M.
1999-01-01
Long term stability of spacecraft materials when exposed to the space environment continues to be a major area of investigation. The natural and induced environment surrounding a spacecraft can decrease material performance and limit useful lifetimes. The Optical Properties Monitor (OPM) experiment provided the capability to perform the important flight testing of materials and was flown on the Russian Mir Station to study the long term effects of the natural and induced space environment on materials. The core of the OPM in-flight analysis was three independent optical instruments. These instruments included an integrating sphere spectral reflectometer, a vacuum ultraviolet spectrometer, and a Total Integrated Scatter instrument. The OPM also monitored selected components of the environment including molecular contamination. The OPM was exposed on the exterior of the Mir Docking Module for approximately 8-1/2 months. This report describes the OPM experiment, a brief background of its development, program organization, experiment description, mission overview including space environment definition, performance overview, materials data including flight and ground data, in-depth post flight analysis including ground analysis measurements and a summary discussion of the findings and results.
[Current state and prospects of military personnel health monitoring].
Rezvantsev, M V; Kuznetsov, S M; Ivanov, V V; Zakurdaev, V V
2014-01-01
The current article is dedicated to some features of the Russian Federation Armed Forces military personnel health monitoring such as legal and informational provision, methodological basis of functioning, historical aspect of formation and development of the social and hygienic monitoring in the Russian Federation Armed Forces. The term "military personnel health monitoring" is defined as an analytical system of constant and long-term observation, analysis, assessment, studying of factors determined the military personnel health, these factors correlations, health risk factors management in order to minimize them. The current state of the military personnel health monitoring allows coming to the conclusion that the military health system does have forces and resources for state policy of establishing the population health monitoring system implementation. The following directions of the militarily personnel health monitoring improvement are proposed: the Russian Federation Armed Forces medical service record and report system reorganization bringing it closer to the civilian one, implementation of the integrated approach to the medical service informatisation, namely, military personnel health status and medical service resources monitoring. The leading means in this direction are development and introduction of a military serviceman individual health status monitoring system on the basis of a serviceman electronic medical record card. Also it is proposed the current Russian Federation Armed Forces social and hygienic monitoring improvement at the expense of informational interaction between the two subsystems on the basis of unified military medical service space.
Phenological observations since the Linnean time in Finland
NASA Astrophysics Data System (ADS)
Kubin, E.; Poikolainen, J.; Karhu, J.; Terhivuo, J.
2012-04-01
The Finnish National Phenological Network was established in 1996 by the Finnish Forest Research Institute in collaboration with other research institutes and universities. The Network investigates the timing of phenological phases of forest plants in relation to climate factors, develops real time information to the internet and studies digital techniques as tools for monitoring. Monitoring is done troughout the growth period, focusing on nine forest tree species and two dwarf shrubs. The results can be followed in real time at: http://www.metla.fi/metinfo/fenologia/index-en.htm. The results indicate that spring phenophases usually advanced with respect to climatic conditions, but there were also differences between the years. The research period started in 1995 is relatively short and the results indicates that long-term monitoring is needed in order to detect true trends in the impacts of climate on plant phenology. The Finnish National Phenological Network has therefore collaborated with the Finnish Museum of Natural History and analysed historical phenological data based on voluntary monitoring. The oldest phenological observation series based on voluntary observers started in Finland in 1752. The long-term data shows an advancement in the timing of bud burst by five days per 100 years in Prunus padus. The onset of flowering in the rowan (Sorbus aucuparia) has become correspondingly earlier in Finland at the rate of three days per century. In the conference the focus is on a historical long-term dataset as well as on the newer Finnish National Phenological Network established for monitoring annual phenological events taking place in the same individual plants. The latest results of the network will be updated with the earlier presented historical data. Phenological monitoring is nowadays more important than ever especially in boreal regions, where spring temperatures are elevated. Compilation and documentation of observations on plant phenophases play a key role in working out the rate of global dimate change. The timing of spring phenolgy will be discussed in the conference.
Ostro, Bart; Lipsett, Michael; Reynolds, Peggy; Goldberg, Debbie; Hertz, Andrew; Garcia, Cynthia; Henderson, Katherine D; Bernstein, Leslie
2010-03-01
Several studies have reported associations between long-term exposure to ambient fine particulate matter (PM) and cardiovascular mortality. However, the health impacts of long-term exposure to specific constituents of PM(2.5) (PM with aerodynamic diameter < or = 2.5 microm) have not been explored. We used data from the California Teachers Study, a prospective cohort of active and former female public school professionals. We developed estimates of long-term exposures to PM(2.5) and several of its constituents, including elemental carbon, organic carbon (OC), sulfates, nitrates, iron, potassium, silicon, and zinc. Monthly averages of exposure were created using pollution data from June 2002 through July 2007. We included participants whose residential addresses were within 8 and 30 km of a monitor collecting PM(2.5) constituent data. Hazard ratios (HRs) were estimated for long-term exposure for mortality from all nontraumatic causes, cardiopulmonary disease, ischemic heart disease (IHD), and pulmonary disease. Approximately 45,000 women with 2,600 deaths lived within 30 km of a monitor. We observed associations of all-cause, cardiopulmonary, and IHD mortality with PM(2.5) mass and each of its measured constituents, and between pulmonary mortality and several constituents. For example, for cardiopulmonary mortality, HRs for interquartile ranges of PM(2.5), OC, and sulfates were 1.55 [95% confidence interval (CI), 1.431.69], 1.80 (95% CI, 1.681.93), and 1.79 (95% CI, 1.582.03), respectively. Subsequent analyses indicated that, of the constituents analyzed, OC and sulfates had the strongest associations with all four outcomes. Long-term exposures to PM(2.5) and several of its constituents were associated with increased risks of all-cause and cardiopulmonary mortality in this cohort. Constituents derived from combustion of fossil fuel (including diesel), as well as those of crustal origin, were associated with some of the greatest risks. These results provide additional evidence that reduction of ambient PM(2.5) may provide significant public health benefits.
Fiber optic sensing subsystem for temperature monitoring in space in-flight applications
NASA Astrophysics Data System (ADS)
Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.
2017-11-01
Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.
The establishment of science-based long-term environmental management goals is just the first step in what is typically a decades-long process to restore estuarine and coastal ecosystems. In addition to adequate monitoring and reporting, maintaining public interest, financial sup...
Long term pavement performance program protocol for calibrating traffic data collection equipment
DOT National Transportation Integrated Search
1998-05-10
This document describes the procedures that the Long Term Pavement Performance (LTPP) program recommends for ensuring that traffic data collection equipment used for LTPP traffic monitoring efforts operates correctly and collects valid data.
Sartori, Marina R; Taylor, Edwin W; Abe, Augusto S; Crossley, Dane A
2015-10-01
Measurement of heart rate (fH) in embryonic reptiles has previously imposed some degree of invasive treatment on the developing embryo. Recently a non-invasive technique of fH detection from intact eggs was developed for commercial avian breeders and has since been used in biological research. This device uses infrared light, enabling it to detect heartbeats in very early embryos. However, infrared light is a source of heat and extended enclosure of an egg in the device is likely to affect temperature with consequent effects on physiological processes, including fH. We studied the effect of use of the monitor on the temperature of eggs and on fH in two species of reptiles, the snapping turtle (Chelydra serpentina) and the green iguana (Iguana iguana). Egg temperature increased from a room temperature of 27-28 °C, by 26% in turtles and 14% in iguanas over 1h of enclosure, resulting in an increase in fH of 76-81% in turtles and 35-50% iguanas. These effects on fH can either be avoided by brief enclosure of each egg in the monitor or measured and accounted for during the design of long-term experiments. Copyright © 2015 Elsevier Inc. All rights reserved.
Development of the INEEL Site Wide Vadose Zone Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonk, Alan Keith
2001-09-01
The INEEL Vadose Zone Roadmap was developed to identify inadquacies in current knowledge, to assist in contaminant management capabilities relative to the INEEL vadose zone, and to ensure that ongoing and planned Science and Technology developments will meet the risk management challenges facing the INEEL in coming years. The primary objective of the Roadmap is to determine the S&T needs that will facilitate monitoring, characterization, prediction, and assessment activities necessary to support INEEL risk management decisions and to ensure that long-term stewardship of contaminated sites at the INEEL is achieved. The mission of the Roadmap is to insure that themore » long-term S&T strategy is aligned with site programs, that it takes advantage of progress made to date, and that it can assist in meeting the milestones and budgets of operations.« less
Venkataraman, Rohini; Kamaluddeen, Majeeda; Amin, Harish; Lodha, Abhay
2018-01-15
In utero sensory stimuli and interaction with the environment strongly influence early phases of fetal and infant development. Extremely premature infants are subjected to noxious procedures and routine monitoring, in addition to exposure to excessive light and noise, which disturb the natural sleep cycle and induce stress. Non-invasive ventilation, measures to prevent sepsis, and human milk feeding improve short-term and long-term neurodevelopmental outcomes in premature infants. To preserve brain function, and to improve quality of life and long-term neurodevelopmental outcomes, the focus now is on the neonatal intensive care unit (NICU) environment and its impact on the infant during hospital stay. The objectives of this write-up are to understand the effects of environmental factors, including lighting and noise in the NICU, on sensory development of the infant, the need to decrease parental and caregiver stress, and to review existing literature, local policies and recommendations.
Long-term strategy for the statistical design of a forest health monitoring system
Hans T. Schreuder; Raymond L. Czaplewski
1993-01-01
A conceptual framework is given for a broad-scale survey of forest health that accomplishes three objectives: generate descriptive statistics; detect changes in such statistics; and simplify analytical inferences that identify, and possibly establish cause-effect relationships. Our paper discusses the development of sampling schemes to satisfy these three objectives,...
Current methods for screening, testing and monitoring endocrine-disrupting chemicals (EDCs) rely relatively substantially upon moderate- to long-term assays that can, in some instances, require significant numbers of animals. Recent developments in the areas of in vitro testing...
USDA-ARS?s Scientific Manuscript database
In-situ methods for estimating water quality parameters would facilitate efforts in spatial and temporal monitoring, and optical reflectance sensing has shown potential in this regard, particularly for chlorophyll, suspended sediment and turbidity. The objective of this research was to develop and e...
PRISM Climate Group, Oregon State U
FAQ PRISM Climate Data The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling
Swann, Don E.; Bucci, Melanie; Kuenzi, Amy J.; Alberti, Barbara N.; Schwalbe, Cecil R.; Halvorson, William L.; van Riper, Charles; Schwalbe, Cecil R.
2010-01-01
Long-term monitoring in national parks is essential to meet National Park Service and other important public goals. Terrestrial mammals are often proposed for monitoring because large mammals are of interest to visitors and small mammals are important as prey. However, traditional monitoring strategies for mammals are often too expensive and complex to sustain for long periods, particularly in small parks. To evaluate potential strategies for long-term monitoring in small parks, we conducted an intensive one-year inventory of terrestrial mammals at Coronado National Memorial, located in Arizona on the U.S.-Mexico international border, then continued less-intensive monitoring at the site for 7 additional years. During 1996-2003 we confirmed 44 species of terrestrial mammals. Most species (40) were detected in the intensive first year of the study, but we continued to detect new species in later years. Mark-recapture data on small mammals indicated large inter-annual fluctuations in population size, but no significant trend over the 7-year period. Issues associated with the international border affected monitoring efforts and increased sampling costs. Our study confirms that sustained annual monitoring of mammals is probably not feasible in small park units like Coronado. However, comparisons of our data with past studies provide insight into important changes in the mammal community since the 1970s, including an increase in abundance and diversity of grassland rodents. Our results suggest that intensive inventories every 10-20 years may be a valuable and cost-effective approach for detecting long-term trends in terrestrial mammal communities in small natural areas.
Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring
Lazarescu, Mihai T.
2015-01-01
Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349
Roberts, James H.; Anderson, Gregory B.; Angermeier, Paul
2016-01-01
Projects to assess environmental impact or restoration success in rivers focus on project-specific questions but can also provide valuable insights for future projects. Both restoration actions and impact assessments can become “adaptive” by using the knowledge gained from long-term monitoring and analysis to revise the actions, monitoring, conceptual model, or interpretation of findings so that subsequent actions or assessments are better informed. Assessments of impact or restoration success are especially challenging when the indicators of interest are imperiled species and/or the impacts being addressed are complex. From 1997 to 2015, we worked closely with two federal agencies to monitor habitat availability for and population density of Roanoke logperch (Percina rex), an endangered fish, in a 24-km-long segment of the upper Roanoke River, VA. We primarily used a Before-After-Control-Impact analytical framework to assess potential impacts of a river channelization project on the P. rex population. In this paper, we summarize how our extensive monitoring facilitated the evolution of our (a) conceptual understanding of the ecosystem and fish population dynamics; (b) choices of ecological indicators and analytical tools; and (c) conclusions regarding the magnitude, mechanisms, and significance of observed impacts. Our experience with this case study taught us important lessons about how to adaptively develop and conduct a monitoring program, which we believe are broadly applicable to assessments of environmental impact and restoration success in other rivers. In particular, we learned that (a) pre-treatment planning can enhance monitoring effectiveness, help avoid unforeseen pitfalls, and lead to more robust conclusions; (b) developing adaptable conceptual and analytical models early was crucial to organizing our knowledge, guiding our study design, and analyzing our data; (c) catchment-wide processes that we did not monitor, or initially consider, had profound implications for interpreting our findings; and (d) using multiple analytical frameworks, with varying assumptions, led to clearer interpretation of findings than the use of a single framework alone. Broader integration of these guiding principles into monitoring studies, though potentially challenging, could lead to more scientifically defensible assessments of project effects.
Monitoring of formaldehyde in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balmat, J.L.; Meadows, G.W.
1985-10-01
Any one of several monitoring methods, depending on requirement and circumstance, can be used to measure employee exposure to formaldehyde. Ordinarily, monitoring at DuPont is performed by sampling with impingers containing 1% aqueous sodium bisulfite or with silica gel tubes. The collected formaldehyde is measured spectrophotometrically after reaction with chromotropic acid. Results from studies on a selected number of formaldehyde monitoring methods reveal that reliable methods are available for area and personnel monitoring over both short term and long term. Accurate results are obtained from short-term monitoring (15 min at 1 L/min) with impingers of formaldehyde concentrations as low asmore » 0.14 ppm. The current studies show that long-term monitoring (8 hr at 0.5 L/min) can be performed accurately at concentrations as low as 0.05 ppm. Accurate results also are obtained from short-term monitoring (15 min at 500 mL/min) with silica gel tubes of concentrations as low as 0.11 ppm formaldehyde. Passive monitors provide the most convenient means of obtaining 8-hour time-weighted average (TWA) data. The Pro-Tek Formaldehyde Badge was demonstrated to reliably monitor formaldehyde concentrations varying from 0-0.5 ppm or 0-3 ppm. Investigation of the Lion Formaldemeter disclosed that instantaneous and accurate (+/- 5%) measurement of formaldehyde in air can be made over a concentration range of 0.3-5 ppm in the absence of other substances that are oxidizable in its fuel cell detector.« less
Automated acquisition system for routine, noninvasive monitoring of physiological data.
Ogawa, M; Tamura, T; Togawa, T
1998-01-01
A fully automated, noninvasive data-acquisition system was developed to permit long-term measurement of physiological functions at home, without disturbing subjects' normal routines. The system consists of unconstrained monitors built into furnishings and structures in a home environment. An electrocardiographic (ECG) monitor in the bathtub measures heart function during bathing, a temperature monitor in the bed measures body temperature, and a weight monitor built into the toilet serves as a scale to record weight. All three monitors are connected to one computer and function with data-acquisition programs and a data format rule. The unconstrained physiological parameter monitors and fully automated measurement procedures collect data noninvasively without the subject's awareness. The system was tested for 1 week by a healthy male subject, aged 28, in laboratory-based facilities.
Hundt, Ann Schoofs; Adams, Jean A.; Schmid, J. Andrew; Musser, Linda M.; Walker, James M.; Wetterneck, Tosha B; Douglas, Stephen V.; Paris, Bonnie L.; Carayon, Pascale
2012-01-01
Purpose To develop, conduct, and evaluate a proactive risk assessment (PRA) of the design and implementation of CPOE in an ICU. Methods We developed a PRA method based on issues identified from documented experience with conventional PRA methods and the constraints of an organization about to implement CPOE in an intensive care unit. The PRA method consists of three phases: planning (three months), team (one five-hour meeting), and evaluation (short- and long-term). Results Sixteen unique relevant vulnerabilities were identified as a result of the PRA team’s efforts. Negative consequences resulting from the vulnerabilities included potential patient safety and quality of care issues, non-compliance with regulatory requirements, increases in cognitive burden on CPOE users, and/or worker inconvenience or distress. Actions taken to address the vulnerabilities included redesign of the technology, process (workflow) redesign, user training, and/or ongoing monitoring. Verbal and written evaluation by the team members indicated that the PRA method was useful and that participants were willing to participate in future PRAs. Long-term evaluation was accomplished by monitoring an ongoing “issues list” of CPOE problems identified by or reported to IT staff. Vulnerabilities identified by the team were either resolved prior to CPOE implementation (n = 7) or shortly thereafter (n = 9). No other issues were identified beside those identified by the team. Conclusions Generally positive results from the various evaluations including a long-term evaluation demonstrate the value of developing an efficient PRA method that meets organizational and contextual requirements and constraints. PMID:22608242
Mary Beth Adams; Pamela J. Edwards; W. Mark Ford; Joshua B. Johnson; Thomas M. Schuler; Melissa Thomas-Van Gundy; Frederica Wood
2011-01-01
Development of a natural gas well and pipeline on the Fernow Experimental Forest, WV, raised concerns about the effects on the natural and scientifi c resources of the Fernow, set aside in 1934 for long-term research. A case study approach was used to evaluate effects of the development. This report includes results of monitoring projects as well as observations...
NASA Astrophysics Data System (ADS)
Cho, Sunny; Vijayaraghavan, Krish; Spink, David; Cosic, Biljana; Davies, Mervyn; Jung, Jaegun
2017-11-01
A study was undertaken to determine whether, and the extent to which, increased ground-level ozone (O3) precursor emissions from oil sands development have impacted ambient air quality in the north-eastern Alberta, Canada, over the period 1998 to 2012. Temporal trends in emissions of O3 precursors (NOx and VOC) and ambient air concentrations of O3 precursors, and O3 were examined using the Theil-Sen statistical analysis method. Statistically significant correlations between NOx emissions and ambient NOx concentrations were found mainly near surface (open-pit) mining areas where mine fleets are a large source of NOx emissions. No statistically significant trends in the 4th highest daily maximum 8-hr average O3 at any of the continuous and passive ambient air monitoring stations were found. A significant long-term decrease in monthly averaged O3 is observed at some ambient monitoring sites in summer. A visual examination of long-term variations in annual NOx and VOC emissions and annual 4th highest daily maximum 8-hr O3 concentrations does not reveal any indication of a correlation between O3 concentrations and O3 precursor emissions or ambient levels in the study area. Despite a significant increase in oil sands NOx emissions (8%/yr), there is no statistically significant increase in long-term O3 concentrations at any of monitoring stations considered. This suggests that there is surplus NOx available in the environment which results in a titration of ambient O3 in the areas that have ambient monitoring. The limited ambient O3 monitoring data distant from NOx emission sources makes it impossible to assess the impact of these increased O3 precursor levels on O3 levels on a regional scale. As a precautionary measure, the increasing oil sands development O3 precursor emissions would require that priority be given to the management of these emissions to prevent possible future O3 ambient air quality issues.
Mishara, Brian L; Chagnon, François; Daigle, Marc; Balan, Bogdan; Raymond, Sylvaine; Marcoux, Isabelle; Bardon, Cécile; Campbell, Julie K; Berman, Alan
2007-06-01
A total of 2,611 calls to 14 helplines were monitored to observe helper behaviors and caller characteristics and changes during the calls. The relationship between intervention characteristics and call outcomes are reported for 1,431 crisis calls. Empathy and respect, as well as factor-analytically derived scales of supportive approach and good contact and collaborative problem solving were significantly related to positive outcomes, but not active listening. We recommend recruitment of helpers with these characteristics, development of standardized training in those methods that are empirically shown to be effective, and the need for research relating short-term outcomes to long-term effects.
R. S. Seymour; J. Guldin; D. Marshall; B. Palik
2006-01-01
This paper provides a synopsis of large-scale, long-term silviculture experiments in the United States. Large-scale in a silvicultural context means that experimental treatment units encompass entire stands (5 to 30 ha); long-term means that results are intended to be monitored over many cutting cycles or an entire rotation, typically for many decades. Such studies...
Development of an integrated sensor module for a non-invasive respiratory monitoring system
NASA Astrophysics Data System (ADS)
Kang, Seok-Won; Chang, Keun-Shik
2013-09-01
A respiratory monitoring system has been developed for analyzing the carbon dioxide (CO2) and oxygen (O2) concentrations in the expired air using gas sensors. The data can be used to estimate some medical conditions, including diffusion capability of the lung membrane, oxygen uptake, and carbon dioxide output. For this purpose, a 3-way valve derived from a servomotor was developed, which operates synchronously with human respiratory signals. In particular, the breath analysis system includes an integrated sensor module for valve control, data acquisition through the O2 and CO2 sensors, and respiratory rate monitoring, as well as software dedicated to analysis of respiratory gasses. In addition, an approximation technique for experimental data based on Haar-wavelet-based decomposition is explored to remove noise as well as to reduce the file size of data for long-term monitoring.
Long-term ex vivo and in vivo monitoring of tumor progression by using dual luciferases.
Morita, Naoki; Haga, Sanae; Ohmiya, Yoshihiro; Ozaki, Michitaka
2016-03-15
We propose a new concept of tumor progression monitoring using dual luciferases in living animals to reduce stress for small animals and the cost of luciferin. The secreted Cypridina luciferase (CLuc) was used as an ex vivo indicator to continuously monitor tumor progression. On the other hand, the non-secreted firefly luciferase was used as an in vivo indicator to analyze the spatial distribution of the tumor at suitable time points indicated by CLuc. Thus, the new monitoring systems that use dual luciferases are available, allowing long-term bioluminescence imaging under minimal stress for the experimental animals. Copyright © 2015 Elsevier Inc. All rights reserved.
Long term pavement performance computed parameter : moisture content
DOT National Transportation Integrated Search
2008-01-01
A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...
Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity
Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R.; Baldelli, Pietro; Benfenati, Fabio
2013-01-01
Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows. PMID:23970852
Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity.
Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R; Baldelli, Pietro; Benfenati, Fabio
2013-01-01
Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.
NASA Astrophysics Data System (ADS)
Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu
2018-06-01
Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.
Tuning Into Brown Dwarfs: Long-Term Radio Monitoring of Two Very Low Mass Dwarfs
NASA Astrophysics Data System (ADS)
Van Linge, Russell; Burgasser, Adam J.; Melis, Carl; Williams, Peter K. G.
2017-01-01
The very lowest-mass (VLM) stars and brown dwarfs, with effective temperatures T < 3000 K, exhibit mixed magnetic activity trends, with H-alpha and X-ray emission that declines rapidly beyond type M7/M8, but persistent radio emission in roughly 10-20% of sources. The dozen or so VLM radio emitters known show a broad range of emission characteristics and time-dependent behavior, including steady persistent emission, periodic oscillations, periodic polarized bursts, and aperiodic flares. Understanding the evolution of these variability patterns, and in particular whether they undergo solar-like cycles, requires long-term monitoring. We report the results of a long-term JVLA monitoring program of two magnetically-active VLM dwarf binaries, the young M7 2MASS 1314+1320AB and older L5 2MASS 1315-2649AB. On the bi-weekly cadence, 2MASS 1314 continues to show variability by revealing regular flaring while 2MASS 1315 continues to be a quiescent emitter. On the daily time scale, both sources show a mean flux density that can vary significantly just over a few days. These results suggest long-term radio behavior in radio-emitting VLM dwarfs is just as diverse and complex as short-term behavior.
Khoury, Ghassan A; Diamond, Gary L
2003-01-01
Superfund sites that are contaminated with lead and undergoing remedial action generate lead-enriched dust that can be released into the air. Activities that can emit lead-enriched dust include demolition of lead smelter buildings, stacks, and baghouses; on-site traffic of heavy construction vehicles; and excavation of soil. Typically, air monitoring stations are placed around the perimeter of a site of an ongoing remediation to monitor air lead concentrations that might result from site emissions. The National Ambient Air Quality (NAAQ) standard, established in 1978 to be a quarterly average of 1.5 microg/m(3), is often used as a trigger level for corrective action to reduce emissions. This study explored modeling approaches for assessing potential risks to children from air lead emissions from the RSR Superfund site in West Dallas, TX, during demolition and removal of a smelter facility. The EPA Integrated Exposure Uptake Biokinetic (IEUBK) model and the International Commission of Radiologic Protection (ICRP) lead model were used to simulate blood lead concentrations in children, based on monitored air lead concentrations. Although air lead concentrations at monitoring stations located in the downwind community intermittently exceeded the NAAQ standard, both models indicated that exposures to children in the community areas did not pose a significant long-term or acute risk. Long-term risk was defined as greater than 5% probability of a child having a long-term blood lead concentration that exceeded 10 microg/dl, which is the CDC and the EPA blood lead concern level. Short-term or acute risk was defined as greater than 5% probability of a child having a blood lead concentration on any given day that exceeded 20 microg/dl, which is the CDC trigger level for medical evaluation (this is not intended to imply that 20 microg/dl is a threshold for health effects in children exposed acutely to airborne lead). The estimated potential long-term and short-term exposures at the downwind West Dallas community did not result in more than 5% of children exceeding the target blood lead levels. The models were also used to estimate air lead levels for short-term and long-term exposures that would not exceed specified levels of risk (risk-based concentrations, RBCs). RBCs were derived for various daily exposure durations (3 or 8 h/day) and frequencies (1-7 days/week). RBCs based on the ICRP model ranged from 0.3 (7 days/week, 8 h/day) to 4.4 microg/m(3) (1 day/week, 3 h/day) for long-term exposures and were lower than those based on the IEUBK model. For short-term exposures, the RBCs ranged from 3.5 to 29.0 microg/m(3). Recontamination of remediated residential yards from deposition of air lead emitted during remedial activities at the RSR Superfund site was also examined. The predicted increase in soil concentration due to lead deposition at the monitoring station, which represented the community at large, was 3.0 mg/kg. This potential increase in soil lead concentration was insignificant, less than 1% increase, when compared to the clean-up level of 500 mg/kg developed for residential yards at the site.
Total energy management for nursing homes and other long-term care institutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-01-01
The purpose of this publication is to provide the basic instruction needed to implement the most effective form of energy conservation--Total Energy Management, or TEM--in your long-term care facility. The effort required is worthwhile for many different reasons: TEM is self-paying; TEM promotes energy conservation without negative impact on health care services; and energy costs will continue to escalate. Following the introductory chapter, chapters are titled: Understanding Energy Consumption; Initiating a Total Energy Management Program; Developing Energy Consumption Data; Conducting the Facility Survey; Developing and Implementing the Basic Plan; Communication and Motivation; Monitoring Your Program and Keeping It Effective; andmore » Guidelines for Energy Conservation. Two appendices furnish information on building information for TEM and sources of information for energy management. (MCW)« less
Innovative Visualizations Shed Light on Avian Nocturnal Migration
Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A.; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M.; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F.; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans
2016-01-01
Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals’ life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human–wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement. PMID:27557096
The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory.
Karan, Mirko; Liddell, Michael; Prober, Suzanne M; Arndt, Stefan; Beringer, Jason; Boer, Matthias; Cleverly, James; Eamus, Derek; Grace, Peter; Van Gorsel, Eva; Hero, Jean-Marc; Hutley, Lindsay; Macfarlane, Craig; Metcalfe, Dan; Meyer, Wayne; Pendall, Elise; Sebastian, Alvin; Wardlaw, Tim
2016-10-15
Ecosystem monitoring networks aim to collect data on physical, chemical and biological systems and their interactions that shape the biosphere. Here we introduce the Australian SuperSite Network that, along with complementary facilities of Australia's Terrestrial Ecosystem Research Network (TERN), delivers field infrastructure and diverse, ecosystem-related datasets for use by researchers, educators and policy makers. The SuperSite Network uses infrastructure replicated across research sites in different biomes, to allow comparisons across ecosystems and improve scalability of findings to regional, continental and global scales. This conforms with the approaches of other ecosystem monitoring networks such as Critical Zone Observatories, the U.S. National Ecological Observatory Network; Analysis and Experimentation on Ecosystems, Europe; Chinese Ecosystem Research Network; International Long Term Ecological Research network and the United States Long Term Ecological Research Network. The Australian SuperSite Network currently involves 10 SuperSites across a diverse range of biomes, including tropical rainforest, grassland and savanna; wet and dry sclerophyll forest and woodland; and semi-arid grassland, woodland and savanna. The focus of the SuperSite Network is on using vegetation, faunal and biophysical monitoring to develop a process-based understanding of ecosystem function and change in Australian biomes; and to link this with data streams provided by the series of flux towers across the network. The Australian SuperSite Network is also intended to support a range of auxiliary researchers who contribute to the growing body of knowledge within and across the SuperSite Network, public outreach and education to promote environmental awareness and the role of ecosystem monitoring in the management of Australian environments. Copyright © 2016 Elsevier B.V. All rights reserved.
Endangered and Threatened Species at Kennedy Space Center Merritt Island National Wildlife Refuge
NASA Technical Reports Server (NTRS)
Galdolfi, Catherine
2010-01-01
Throughout my internship, I assisted with the long-term monitoring of the Florida Scrub- Jay (Aphelocoma coerulescens), a threatened species endemic to Florida. The Florida Scrub Jay diet consists of insects and small vertebrates throughout most of the year; however, during the winter their primary diet is acorns because the insect population is low. Furthermore, the Florida Scrub-Jay is a habitat specialist that lives in a disappearing plant community called the scrub, which consists of sand live oak, myrtle oak and chapman oak. The Florida Scrub-Jay is considered threatened because its numbers are decreasing primarily due to the loss of habitat that it needs to survive. Scrub habitat is highly desirable for human development because it is high, dry, and sandy. Periodic controlled burns maintain the scrub in a low, open condition favored by Scrub-Jays. Florida Scrub-Jays build their nests approximately 3-5 feet (approximately 1.5 m) above the ground in shrubby oaks (Breininger 153), mate for life and are cooperative breeders; which means that the young jays remain in their natal territory for at least a year to help their parents defend their territory, feed the young, and mob predators. (Breininger 152). I assisted in conducting monthly censuses at long-term monitoring sites and a juvenile in July survey to determine reproductive success for the year. In addition, to Scrub-Jay monitoring, I also had the opportunity to assist with some long term monitoring of ecosystem recovery. Scrub is a fire maintained system. Fire maintains the structure of scrub necessary for many of the threatened species that reside in the scrub habitat.
Innovative Visualizations Shed Light on Avian Nocturnal Migration.
Shamoun-Baranes, Judy; Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans
2016-01-01
Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.
Low-power sensor module for long-term activity monitoring.
Leuenberger, Kaspar; Gassert, Roger
2011-01-01
Wearable sensor modules are a promising approach to collecting data on functional motor activities, both for repeated and long-term assessments, as well as to investigate the transfer of therapy to activities of daily living at home, but have so far either had limited sensing capabilities, or were not laid out for long-term monitoring. This paper presents ReSense, a miniature sensor unit optimized for long-term monitoring of functional activity. Inertial MEMS sensors capture accelerations along six degrees of freedom and a barometric pressure sensor serves as a precise altimeter. Data is written to an integrated memory card. The realized module measures Ø25 × 10 mm, weighs 10 g and can record continuously for 27 h at 25 Hz and over 22 h at 100 Hz. The integrated power-management system detects inactivity and extends the operating time by about a factor of two, as shown by initial 24 h recordings on five energetic healthy adults. The integrated barometric pressure sensor allowed to identify activities incorporating a change in altitude, such as going up/down stairs or riding an elevator. By taking into account data from the inertial sensors during the altitude changes, it becomes possible to distinguish between these two activities.
Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions
NASA Astrophysics Data System (ADS)
Mosch, Thomas; Fietzek, Peer
2016-04-01
In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the efficiency of subsea monitoring in a variety of applications.
Chesapeake Bay recovery and factors affecting trends: Long-termmonitoring, indicators, and insights
Tango, Peter J.; Batiuk, Richard A.
2016-01-01
Monitoring the outcome of restoration efforts is the only way to identify the status of a recovery and the most effective management strategies. In this paper, we discuss Chesapeake Bay and watershed recovery and factors influencing water quality trends. For over 30 years, the Chesapeake Bay Program Partnership’s long-term tidal and watershed water quality monitoring networks have measured physical, chemical and biological parameters throughout the bay and its surrounding watershed underpinning an adaptive management process to drive ecosystem recovery. There are many natural and anthropogenic factors operating and interacting to affect the watershed and bay water quality recovery responses to management actions. Across habitats and indicators, the bay and its watershed continue to express a diverse spatial and temporal fabric of multiscale conditions, stressors and trends that show a range of health conditions and impairments, as well as evidence of progress and degradation. Recurrent independent reviews of the monitoring program have driven a culture of continued adaptation of the monitoring networks to reflect ever evolving management information needs. The adherence to bay and watershed-wide consistent monitoring protocols provides monitoring data supporting analyses and development of scientific syntheses that underpin indicator and model development, regulatory assessments, targeting of management actions, evaluation of management effectiveness, and directing of priorities and policies.
Lucisano, Joseph Y; Routh, Timothy L; Lin, Joe T; Gough, David A
2017-09-01
The use of a fully implanted first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 min to external receivers. The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched, respectively, to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is, therefore, included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of -2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Continuous long-term glucose monitoring in individuals with diabetes is feasible with this system. All therapies for diabetes are based on glucose control, and therefore, require glucose monitoring. This fully implanted long-term sensor/telemetry system may facilitate a new era of management of the disease.
Lucisano, Joseph Y.; Routh, Timothy L.; Lin, Joe T.; Gough, David A.
2017-01-01
Objective The use of a fully implanted, first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Methods Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 minutes to external receivers. Results The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched respectively to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is therefore included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of −2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Conclusions Continuous, long-term glucose monitoring in individuals with diabetes is feasible with this system. Significance All therapies for diabetes are based on glucose control and therefore require glucose monitoring. This fully implanted, long-term sensor/telemetry system may facilitate a new era of management of the disease. PMID:27775510
Advanced active health monitoring system of liquid rocket engines
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo
2008-11-01
An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.
Cooperative water-resources monitoring in the St. Clair River/Lake St. Clair Basin, Michigan
Rheaume, Stephen J.; Neff, Brian P.; Blumer, Stephen P.
2007-01-01
As part of the Lake St. Clair Regional Monitoring Project, this report describes numerous cooperative water-resources monitoring efforts conducted in the St. Clair River/Lake St. Clair Basin over the last 100 years. Cooperative monitoring is a tool used to observe and record changes in water quantity and quality over time. This report describes cooperative efforts for monitoring streamflows and flood magnitudes, past and present water-quality conditions, significant human-health threats, and flow-regime changes that are the result of changing land use. Water-resources monitoring is a long-term effort that can be made cost-effective by leveraging funds, sharing data, and avoiding duplication of effort. Without long-term cooperative monitoring, future water-resources managers and planners may find it difficult to establish and maintain public supply, recreational, ecological, and esthetic water-quality goals for the St. Clair River/Lake St. Clair Basin.
Grant, Evan H. Campbell; Muths, Erin L.; Katz, Rachel A.; Canessa, Stefano; Adams, Michael J.; Ballard, Jennifer R.; Berger, Lee; Briggs, Cheryl J.; Coleman, Jeremy; Gray, Matthew J.; Harris, M. Camille; Harris, Reid N.; Hossack, Blake R.; Huyvaert, Kathryn P.; Kolby, Jonathan E.; Lips, Karen R.; Lovich, Robert E.; McCallum, Hamish I.; Mendelson, Joseph R.; Nanjappa, Priya; Olson, Deanna H.; Powers, Jenny G.; Richgels, Katherine L. D.; Russell, Robin E.; Schmidt, Benedikt R.; Spitzen-van der Sluijs, Annemarieke; Watry, Mary Kay; Woodhams, Douglas C.; White, C. LeAnn
2016-01-20
The recently (2013) identified pathogenic chytrid fungus, Batrachochytrium salamandrivorans (Bsal), poses a severe threat to the distribution and abundance of salamanders within the United States and Europe. Development of a response strategy for the potential, and likely, invasion of Bsal into the United States is crucial to protect global salamander biodiversity. A formal working group, led by Amphibian Research and Monitoring Initiative (ARMI) scientists from the U.S. Geological Survey (USGS) Patuxent Wildlife Research Center, Fort Collins Science Center, and Forest and Rangeland Ecosystem Science Center, was held at the USGS Powell Center for Analysis and Synthesis in Fort Collins, Colorado, United States from June 23 to June 25, 2015, to identify crucial Bsal research and monitoring needs that could inform conservation and management strategies for salamanders in the United States. Key findings of the workshop included the following: (1) the introduction of Bsal into the United States is highly probable, if not inevitable, thus requiring development of immediate short-term and long-term intervention strategies to prevent Bsal establishment and biodiversity decline; (2) management actions targeted towards pathogen containment may be ineffective in reducing the long-term spread of Bsal throughout the United States; and (3) early detection of Bsal through surveillance at key amphibian import locations, among high-risk wild populations, and through analysis of archived samples is necessary for developing management responses. Top research priorities during the preinvasion stage included the following: (1) deployment of qualified diagnostic methods for Bsal and establishment of standardized laboratory practices, (2) assessment of susceptibility for amphibian hosts (including anurans), and (3) development and evaluation of short- and long-term pathogen intervention and management strategies. Several outcomes were achieved during the workshop, including development of an organizational structure with working groups for a Bsal Task Force, creation of an initial influence diagram to aid in identifying effective management actions in the face of uncertainty, and production of a list of potential management actions and key research uncertainties. Additional products under development include a Bsal Strategic Action plan, an emergency response plan, a monitoring and surveillance program, a standardized diagnostic approach, decision models for natural resource agencies, and a reporting database for salamander mortalities. This workshop was the first international meeting to address the threat of Bsal to salamander populations in the United States, with more than 30 participants from U.S. conservation and resource management agencies (U.S. Fish and Wildlife Service, U.S. Forest Service, U.S. Department of Defense, U.S. National Park Service, and Association of Fish and Wildlife Agencies) and academic research institutions in Australia, the Netherlands, Switzerland, the United Kingdom, and the United States.
Sarzotti-Kelsoe, Marcella; Needham, Leila K.; Rountree, Wes; Bainbridge, John; Gray, Clive M.; Fiscus, Susan A.; Ferrari, Guido; Stevens, Wendy S.; Stager, Susan L.; Binz, Whitney; Louzao, Raul; Long, Kristy O.; Mokgotho, Pauline; Moodley, Niranjini; Mackay, Melanie; Kerkau, Melissa; McMillion, Takesha; Kirchherr, Jennifer; Soderberg, Kelly A.; Haynes, Barton F.; Denny, Thomas N.
2014-01-01
The Center for HIV/AIDS Vaccine Immunology (CHAVI) consortium was established to determine the host and virus factors associated with HIV transmission, infection and containment of virus replication, with the goal of advancing the development of an HIV protective vaccine. Studies to meet this goal required the use of cryopreserved Peripheral Blood Mononuclear Cell (PBMC) specimens, and therefore it was imperative that a quality assurance (QA) oversight program be developed to monitor PBMC samples obtained from study participants at multiple international sites. Nine site-affiliated laboratories in Africa and the USA collected and processed PBMCs, and cryopreserved PBMC were shipped to CHAVI repositories in Africa and the USA for long-term storage. A three-stage program was designed, based on Good Clinical Laboratory Practices (GCLP), to monitor PBMC integrity at each step of this process. The first stage evaluated the integrity of fresh PBMCs for initial viability, overall yield, and processing time at the site-affiliated laboratories (Stage 1); for the second stage, the repositories determined post-thaw viability and cell recovery of cryopreserved PBMC, received from the site-affiliated laboratories (Stage 2); the third stage assessed the long-term specimen storage at each repository (Stage 3). Overall, the CHAVI PBMC QA oversight program results highlight the relative importance of each of these stages to the ultimate goal of preserving specimen integrity from peripheral blood collection to long-term repository storage. PMID:24910414
Symstad, Amy J.; Wienk, Cody L.; Thorstenson, Andy
2006-01-01
The Northern Great Plains Inventory & Monitoring (I&M) Network (Network) of the National Park Service (NPS) consists of 13 NPS units in North Dakota, South Dakota, Nebraska, and eastern Wyoming. The Network is in the planning phase of a long-term program to monitor the health of park ecosystems. Plant community composition is one of the 'Vital Signs,' or indicators, that will be monitored as part of this program for three main reasons. First, plant community composition is information-rich; a single sampling protocol can provide information on the diversity of native and non-native species, the abundance of individual dominant species, and the abundance of groups of plants. Second, plant community composition is of specific management concern. The abundance and diversity of exotic plants, both absolute and relative to native species, is one of the greatest management concerns in almost all Network parks (Symstad 2004). Finally, plant community composition reflects the effects of a variety of current or anticipated stressors on ecosystem health in the Network parks including invasive exotic plants, large ungulate grazing, lack of fire in a fire-adapted system, chemical exotic plant control, nitrogen deposition, increased atmospheric carbon dioxide concentrations, and climate change. Before the Network begins its Vital Signs monitoring, a detailed plan describing specific protocols used for each of the Vital Signs must go through rigorous development and review. The pilot study on which we report here is one of the components of this protocol development. The goal of the work we report on here was to determine a specific method to use for monitoring plant community composition of the herb layer (< 2 m tall).
Global, long-term surface reflectance records from Landsat
USDA-ARS?s Scientific Manuscript database
Global, long-term monitoring of changes in Earth’s land surface requires quantitative comparisons of satellite images acquired under widely varying atmospheric conditions. Although physically based estimates of surface reflectance (SR) ultimately provide the most accurate representation of Earth’s s...
Long term monitoring of broken and seated pavements : executive summary.
DOT National Transportation Integrated Search
2002-05-01
This report presents details of a study conducted by the University of Cincinnati (UC), in association : with the Ohio Department of Transportation (ODOT), to evaluate the long term performance of asphalt : overlays on broken and seated (B/S) concret...
Quantifiable long-term monitoring on parks and nature preserves
Beck, Scott; Moorman, Christopher; DePerno, Christopher S.; Simons, Theodore R.
2013-01-01
Herpetofauna have declined globally, and monitoring is a useful approach to document local and long-term changes. However, monitoring efforts often fail to account for detectability or follow standardized protocols. We performed a case study at Hemlock Bluffs Nature Preserve in Cary, NC to model occupancy of focal species and demonstrate a replicable long-term protocol useful to parks and nature preserves. From March 2010 to 2011, we documented occupancy of Ambystoma opacum(Marbled Salamander), Plethodon cinereus (Red-backed Salamander), Carphophis amoenus (Eastern Worm Snake), and Diadophis punctatus (Ringneck Snake) at coverboard sites and estimated breeding female Ambystoma maculatum (Spotted Salamander) abundance via dependent double-observer egg-mass counts in ephemeral pools. Temperature influenced detection of both Marbled and Red-backed Salamanders. Based on egg-mass data, we estimated Spotted Salamander abundance to be between 21 and 44 breeding females. We detected 43 of 53 previously documented herpetofauna species. Our approach demonstrates a monitoring protocol that accounts for factors that influence species detection and is replicable by parks or nature preserves with limited resources.
A comparison of methods to assess long-term changes in Sonoran Desert vegetation
Munson, S.M.; Webb, R.H.; Hubbard, J.A.
2011-01-01
Knowledge about the condition of vegetation cover and composition is critical for assessing the structure and function of ecosystems. To effectively quantify the impacts of a rapidly changing environment, methods to track long-term trends of vegetation must be precise, repeatable, and time- and cost-efficient. Measuring vegetation cover and composition in arid and semiarid regions is especially challenging because vegetation is typically sparse, discontinuous, and individual plants are widely spaced. To meet the goal of long-term vegetation monitoring in the Sonoran Desert and other arid and semiarid regions, we determined how estimates of plant species, total vegetation, and soil cover obtained using a widely-implemented monitoring protocol compared to a more time- and resource-intensive plant census. We also assessed how well this protocol tracked changes in cover through 82 years compared to the plant census. Results from the monitoring protocol were comparable to those from the plant census, despite low and variable plant species cover. Importantly, this monitoring protocol could be used as a rapid, "off-the shelf" tool for assessing land degradation (or desertification) in arid and semiarid ecosystems.
Optical measurement of medical aerosol media parameters
NASA Astrophysics Data System (ADS)
Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.
2000-07-01
The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.
NASA Astrophysics Data System (ADS)
Weltzin, J. F.; Browning, D. M.
2014-12-01
The USA National Phenology Network (USA-NPN; www.usanpn.org) is a national-scale science and monitoring initiative focused on phenology - the study of seasonal life-cycle events such as leafing, flowering, reproduction, and migration - as a tool to understand the response of biodiversity to environmental variation and change. USA-NPN provides a hierarchical, national monitoring framework that enables other organizations to leverage the capacity of the Network for their own applications - minimizing investment and duplication of effort - while promoting interoperability. Network participants can leverage: (1) Standardized monitoring protocols that have been broadly vetted, tested and published; (2) A centralized National Phenology Database (NPDb) for maintaining, archiving and replicating data, with standard metadata, terms-of-use, web-services, and documentation of QA/QC, plus tools for discovery, visualization and download of raw data and derived data products; and/or (3) A national in-situ, multi-taxa phenological monitoring system, Nature's Notebook, which enables participants to observe and record phenology of plants and animals - based on the protocols and information management system (IMS) described above - via either web or mobile applications. The protocols, NPDb and IMS, and Nature's Notebook represent a hierarchy of opportunities for involvement by a broad range of interested stakeholders, from individuals to agencies. For example, some organizations have adopted (e.g., the National Ecological Observatory Network or NEON) -- or are considering adopting (e.g., the Long-Term Agroecosystems Network or LTAR) -- the USA-NPN standardized protocols, but will develop their own database and IMS with web services to promote sharing of data with the NPDb. Other organizations (e.g., the Inventory and Monitoring Programs of the National Wildlife Refuge System and the National Park Service) have elected to use Nature's Notebook to support their phenological monitoring programs. We highlight the challenges and benefits of integrating phenology monitoring within existing and emerging national monitoring networks, and showcase opportunities that exist when standardized protocols are adopted and implemented to promote data interoperability and sharing.
Utilization of PD modalities: evolution.
Venkataraman, Vijaya; Nolph, Karl D
2002-01-01
In the early 1960s, peritoneal dialysis (PD) was introduced as a form of long-term maintenance therapy in patients with end-stage renal disease (ESRD). We have come a long way since. Increasing understanding of peritoneal kinetic behavior, its innovative manipulation to meet patient needs, critical monitoring of clinical outcomes, and parallel development in technology have all contributed to the worldwide success of the therapy over the past four decades. In this article we review the evolution of the various PD modalities in the context of these factors.
Application of Remote Sensing for Forest Management in Nepal
NASA Astrophysics Data System (ADS)
Bajracharya, B.; Matin, M. A.
2016-12-01
Large area of the Hindu Kush Himalayan (HKH) region is covered by forest that is playing a vital role to address the challenges of climate change and livelihood options for a growing population. Effective management of forest cover needs establishment of regular monitoring system for forest. Supporting REDD assessment needs reliable baseline assessment of forest biomass and its monitoring at multiple scale. Adaptation of forest to climate change needs understanding vulnerability of forests and dependence of local communities on these forest. We present here different forest monitoring products developed under the SERVIR-Himalaya programme to address these issues. Landsat 30 meter images were used for decadal land cover change assessment and annual forest change hotspot monitoring. Methodology developed for biomass estimation at national and sub-national level biomass estimation. Decision support system was developed for analysis of forest vulnerability and dependence and selection of adaptation options based on resource availability. These products are forming the basis for development of an integrated system that will be very useful for comprehensive forest monitoring and long term strategy development for sustainable forest management.
Limmer, Matt A; Holmes, Amanda J; Burken, Joel G
2014-09-16
Long-term monitoring (LTM) of groundwater remedial projects is costly and time-consuming, particularly when using phytoremediation, a long-term remedial approach. The use of trees as sensors of groundwater contamination (i.e., phytoscreening) has been widely described, although the use of trees to provide long-term monitoring of such plumes (phytomonitoring) has been more limited due to unexplained variability of contaminant concentrations in trees. To assess this variability, we developed an in planta sampling method to obtain high-frequency measurements of chlorinated ethenes in oak (Quercus rubra) and baldcypress (Taxodium distichum) trees growing above a contaminated plume during a 4-year trial. The data set revealed that contaminant concentrations increased rapidly with transpiration in the spring and decreased in the fall, resulting in perchloroethene (PCE) and trichloroethene (TCE) sapwood concentrations an order of magnitude higher in late summer as compared to winter. Heartwood PCE and TCE concentrations were more buffered against seasonal effects. Rainfall events caused negligible dilution of contaminant concentrations in trees after precipitation events. Modeling evapotranspiration potential from meteorological data and comparing the modeled uptake and transport with the 4 years of high frequency data provides a foundation to advance the implementation of phytomonitoring and improved understanding of plant contaminant interactions.
Hamada, Yoshinori; Hamada, Hiroshi; Shirai, Takeshi; Nakamura, Yusuke; Sakaguchi, Tatsuma; Yanagimoto, Hiroaki; Inoue, Kentaro; Kon, Masanori
2017-10-01
We examined the clinical significance of duodenogastric regurgitation (DGR) as a late complication in the long-term follow-up after hepaticoduodenostomy (HD) as a reconstruction surgery for congenital biliary dilatation (CBD). Seventeen patients with CBD were retrospectively analyzed for late complications (mean follow-up, 16.8 years). All patients had undergone total resection of the extrahepatic bile duct followed by HD. DGR was identified using endoscopic examination, intraluminal bile monitoring, and liver scanning. DGR was found in all 17 patients by endoscopic examination and intraluminal bile monitoring. Fourteen of the 17 (82.4%) patients with DGR had experienced abdominal symptoms since a mean of 6.9 years postoperatively. Liver scanning also revealed apparent DGR in all 14 symptomatic patients. We converted 7 of the 14 patients to hepaticojejunostomy reconstruction at a mean of 13.0 years after the initial excisional surgery. Their symptoms were completely relieved postoperatively. DGR is an important complication after HD. Examination of patients for the development of DGR is an essential part of long-term follow-up in patients with CBD who have undergone HD as a reconstruction surgery. Conversion surgery is recommended in patients with DGR accompanied by long-term abdominal symptoms. Level IV. Copyright © 2017 Elsevier Inc. All rights reserved.
Ingebritsen, S.E.; Galloway, D.L.; Colvard, E.M.; Sorey, M.L.; Mariner, R.H.
2001-01-01
We compiled time series of hydrothermal discharge consisting of 3593 chloride- or heat-flux measurements from 24 sites in the Yellowstone region, the northern Oregon Cascades, Lassen Volcanic National Park and vicinity, and Long Valley, California. At all of these sites the hydrothermal phenomena are believed to be as yet unaffected by human activity, though much of the data collection was driven by mandates to collect environmental-baseline data in acticipation of geothermal development. The time series average 19 years in length and some of the Yellowstone sites have been monitored intermittently for over 30 years. Many sites show strong seasonality but few show clear long-term trends, and at most sites statistically significant decadal-scale trends are absent. Thus, the data provide robust estimates of advective heat flow ranging from ~130 MW in the north-central Oregon Cascades to ~6100 MW in the Yellowstone region, and also document Yellowstone hydrothermal chloride and arsenic fluxes of 1740 and 15-20 g/s, respectively. The discharge time series show little sensitivity to regional tectonic events such as earthquakes or inflation/deflation cycles. Most long-term monitoring to date has focused on high-chloride springs and low-temperature fumaroles. The relative stability of these features suggests that discharge measurements done as part of volcano-monitoring programs should focus instead on high-temperature fumaroles, which may be more immediately linked to the magmatic heat source. ?? 2001 Elsevier Science B.V. All rights reserved.
Clean Air Markets - Monitoring Surface Water Chemistry
Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.
Forest genetic monitoring: an overview of concepts and definitions.
Fussi, Barbara; Westergren, Marjana; Aravanopoulos, Filippos; Baier, Roland; Kavaliauskas, Darius; Finzgar, Domen; Alizoti, Paraskevi; Bozic, Gregor; Avramidou, Evangelia; Konnert, Monika; Kraigher, Hojka
2016-08-01
Safeguarding sustainability of forest ecosystems with their habitat variability and all their functions is of highest priority. Therefore, the long-term adaptability of forest ecosystems to a changing environment must be secured, e.g., through sustainable forest management. High adaptability is based on biological variation starting at the genetic level. Thus, the ultimate goal of the Convention on Biological Diversity (CBD) to halt the ongoing erosion of biological variation is of utmost importance for forest ecosystem functioning and sustainability. Monitoring of biological diversity over time is needed to detect changes that threaten these biological resources. Genetic variation, as an integral part of biological diversity, needs special attention, and its monitoring can ensure its effective conservation. We compare forest genetic monitoring to other biodiversity monitoring concepts. Forest genetic monitoring (FGM) enables early detection of potentially harmful changes of forest adaptability before these appear at higher biodiversity levels (e.g., species or ecosystem diversity) and can improve the sustainability of applied forest management practices and direct further research. Theoretical genetic monitoring concepts developed up to now need to be evaluated before being implemented on a national and international scale. This article provides an overview of FGM concepts and definitions, discusses their advantages and disadvantages, and provides a flow chart of the steps needed for the optimization and implementation of FGM. FGM is an important module of biodiversity monitoring, and we define an effective FGM scheme as consisting of an assessment of a forest population's capacity to survive, reproduce, and persist under rapid environmental changes on a long-term scale.
Development and application of a long dynamic range nitrous oxide monitoring system.
Ward, B G
1985-12-01
The laboratory and field evaluation of a nitrous oxide monitor for an extremely wide range of cumulative exposures are reviewed. The passive sampling behavior and high analyte capacity show it to be useful for short-term and full workweek exposure monitoring. The monitor has application for both area and personnel surveillance. The principal criterion is for an accurate report of exposure time of the monitor. Application of the monitor to real workplace environments--with and without a reference method--demonstrated the ability of workweek monitoring as a valuable and potentially superior way of documenting exposure stress of employees. Environmental factors such as humidity and temperature variation are shown to have acceptably small effects on both short- and long-term exposure data; barometric pressure affects the data in a predictable manner. Paired dosimeters show good agreement in the workplace environment throughout the range of 6-40 cumulative hours of exposure. In both hospital and dental operating suites, work logistics and work group relationships were readily traceable on a week-by-week basis during a continuous weekly monitoring program. Source emissions and appropriate worker and work area exposure relationships were clearly evident, with appropriate reduction of all exposures as a result of an abbreviated work schedule. The ability to effectively track employee and area exposure excursions in an integrated weekly manner leads to a whole series of new applications and concepts of industrial hygiene surveillance. Such approaches could effectively replace the speculative statistical approaches currently in use with actual data on a cost effective basis.
High Temperature Adhesives for Bonding Kapton
NASA Technical Reports Server (NTRS)
Stclair, A. K.; Slemp, W. S.; Stclair, T. L.
1978-01-01
Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.
High temperature adhesives for bonding Kapton
NASA Technical Reports Server (NTRS)
Saint Clair, A. K.; Slemp, W. S.; Saint Clair, T. L.
1978-01-01
Experimental polyimide resins have been developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of 'Kapton'/'Kapton' bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/'Kapton' bondlines were monitored by thermomechanical analysis.
Temperature Climatology with Rayleigh Lidar Above Observatory of Haute-Provence: Dynamical Feedback
NASA Astrophysics Data System (ADS)
Keckhut, Philippe; Hauchecorne, Alain; Funatsu, Beatriz; Khaykin, Serguey; Mze, Nahouda; Claud, Chantal; Angot, Guillaume
2016-06-01
Rayleigh lidar in synergy with satellite observations (SSU and AMSU) allow insuring an efficient monitoring and showing that cooling has continued. New approach for trend detection has been developed allowing a better estimate of changes due to radiative forcing. Stratospheric Warmings and gravity waves contribute to insure a dynamical feedback of the long-term changes.
This presentation will provide an overview of permeable reactive barrier performance for field sites in the U.S. evaluated over the last 10 years by the U.S. Environmental Protection Agency's Office of Research and Development (EPA-ORD) in collaboration with other U.S. federal ag...
USDA-ARS?s Scientific Manuscript database
Arid rangelands within the southwestern United States have been severely degraded over the past century due to intensive land-use practices (e.g., livestock overgrazing, recreation) and the increasing effects of drought and climate change. Consequently, there is a critical need to develop monitoring...
Microelectronics bioinstrumentation systems
NASA Technical Reports Server (NTRS)
Ko, W. H.
1977-01-01
Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.
An overview of permeable reactive barrier (PRB) performance for field sites in the U.S. was evaluated over the last 10 years by the U.S. Environmental Protection Agencys Office of Research and Development (EPA-ORD) in collaboration with other U.S. federal agencies, consulting co...
Microcomputer software for calculating the western Oregon elk habitat effectiveness index.
Alan Ager; Mark Hitchcock
1992-01-01
This paper describes the operation of the microcomputer program HEIWEST, which was developed to automate calculation of the western Oregon elk habitat effectiveness index (HEI). HEIWEST requires little or no training to operate and vastly simplifies the task of measuring HEI for either site-specific project analysis or long-term monitoring of elk habitat. It is...
Luis Artemio T. Alonso
2006-01-01
In 1966 the State Government of Jalisco conducted a review of the stateâs forest sector. A new forest agenda resulted from this review, which led to a set of ground breaking actions creating a long term forest development program known as FIPRODEFO (Trust Fund for the Administration of the Forest Development Program of Jalisco). Among the relevant issues, the survey...
Skylab medical technology utilization
NASA Technical Reports Server (NTRS)
Stonesifer, J. C.
1974-01-01
To perform the extensive medical experimentation on man in a long-term, zero-g environment, new medical measuring and monitoring equipment had to be developed, new techniques in training and operations were required, and new methods of collecting and analyzing the great amounts of medical data were developed. Examples of technology transfers to the public sector resulted from the development of new equipment, methods, techniques, and data. This paper describes several of the examples that stemmed directly from Skylab technology.
DOT National Transportation Integrated Search
2014-09-01
The primary objectives of this research are to monitor the : short-term and long-term behavior and performance of inservice : GRS-IBS abutments in the state of Louisiana, and to : verify important design factors and parameters for GRS-IBS : abutment,...
Ackermann, Günter; Kirschner, Michael; Guggenbühl, Lisa; Abel, Bettina; Klohn, Axel; Mattig, Thomas
2015-01-01
Aims Since 2007, Health Promotion Switzerland has implemented a national priority program for a healthy body weight. This article provides insight into the methodological challenges and results of the program evaluation. Methods Evaluation of the long-term program required targeted monitoring and evaluation projects addressing different outcome levels. The evaluation was carried out according to the Swiss Model for Outcome Classification (SMOC), a model designed to classify the effects of health promotion and prevention efforts. Results The results presented in this article emphasize both content and methods. The national program successfully achieved outcomes on many different levels within complex societal structures. The evaluation system built around the SMOC enabled assessment of program progress and the development of key indicators. However, it is not possible to determine definitively to what extent the national program helped stabilize the prevalence of obesity in Switzerland. Conclusion The model has shown its utility in providing a basis for evaluation and monitoring of the national program. Continuous analysis of data from evaluation and monitoring has made it possible to check the plausibility of suspected causal relationships as well as to establish an overall perspective and assessment of effectiveness supported by a growing body of evidence. PMID:25765161
Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia
NASA Astrophysics Data System (ADS)
Hoelzle, Martin; Azisov, Erlan; Barandun, Martina; Huss, Matthias; Farinotti, Daniel; Gafurov, Abror; Hagg, Wilfried; Kenzhebaev, Ruslan; Kronenberg, Marlene; Machguth, Horst; Merkushkin, Alexandr; Moldobekov, Bolot; Petrov, Maxim; Saks, Tomas; Salzmann, Nadine; Schöne, Tilo; Tarasov, Yuri; Usubaliev, Ryskul; Vorogushyn, Sergiy; Yakovlev, Andrey; Zemp, Michael
2017-10-01
Glacier mass loss is among the clearest indicators of atmospheric warming. The observation of these changes is one of the major objectives of the international climate monitoring strategy developed by the Global Climate Observing System (GCOS). Long-term glacier mass balance measurements are furthermore the basis for calibrating and validating models simulating future runoff of glacierised catchments. This is essential for Central Asia, which is one of the driest continental regions of the Northern Hemisphere. In the highly populated regions, water shortage due to decreased glacierisation potentially leads to pronounced political instability, drastic ecological changes and endangered food security. As a consequence of the collapse of the former Soviet Union, however, many valuable glacier monitoring sites in the Tien Shan and Pamir Mountains were abandoned. In recent years, multinational actors have re-established a set of important in situ measuring sites to continue the invaluable long-term data series. This paper introduces the applied monitoring strategy for selected glaciers in the Kyrgyz and Uzbek Tien Shan and Pamir, highlights the existing and the new measurements on these glaciers, and presents an example for how the old and new data can be combined to establish multi-decadal mass balance time series. This is crucial for understanding the impact of climate change on glaciers in this region.
NASA Astrophysics Data System (ADS)
Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic
2014-05-01
Aging of transport infrastructures combined with traffic and climatic solicitations contribute to the reduction of their performances. To address and quantify the resilience of civil engineering structure, investigations on robust, fast and efficient methods are required. Among research works carried out at IFSTTAR, methods for long term monitoring face an increasing demand. Such works take benefits of this last decade technological progresses in ICT domain. The present study follows the ISTIMES European project [1], which aimed at demonstrate the ability of different electromagnetic sensing techniques, processing methods and ICT architecture, to be used for long term monitoring of critical transport infrastructures. Thanks to this project a multi-sensing techniques system, able to date and synchronize measurements carried out by infrared thermography coupled with various measurements data (i.e. weather parameters), have been designed, developed and implemented on real site [2]. Among experiments carried out on real transport infrastructure, it has been shown, for the "Musmesci" bridge deck (Italy), that by using infrared thermal image sequence with weather measurements during sevral days it was possible to develop analysis methods able to produce qualitative and quantitative data [3]. In the present study, added functionalities were designed and added to the "IrLAW" system in order to reach full autonomy in term of power supply, very long term measurement capability (at least 1 year) and automated data base feeding. The surveyed civil engineering structures consist in two concrete beams of 16 m long and 21 T weight each. One of the two beams was damage by high energy mechanical impact at the IFSTTAR falling rocks test station facilities located in the French Alpes [4]. The system is composed of one IR uncooled microbolometric camera (FLIR SC325) with a 320X240 Focal Plane Array detector in band III, a weather station VAISALA WXT520, a GPS, a failover power supply and a backup system. All the components of the system are connected to the IrLaW software through an IP network. The monitoring system is fully autonomous since August 2013 and provides data at 0. Hz sampling frequency. First results obtained by data post-processing is addressed. Finally, discussion on experimental feedback and main outcomes of several month of measurement in outdoor conditions will be presented. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, R. Averty ".Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", in Proc of 11th International Conference on Quantitative InfraRed Thermography, Naples Italy, 2012. [3]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [4]I. Catapano, R. Di Napoli, F. Soldovieri1, M. Bavusi, A. Loperte and J. Dumoulin, "Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site", Journal of Geophysics and Engineering, Volume 9, Number 4, August 2012, pp 100-107, IOP Science, doi:10.1088/1742-2132/9/4/S100.
ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TEST OF DIOXIN EMISSION MONITORS
The performance of four dioxin emission monitors including two long-term sampling devices, the DMS (DioxinMonitoringSystem) and AMESA (Adsorption Method for Sampling Dioxins and Furans), and two semi-real-time continuous monitors, RIMMPA-TOFMS (Resonance Ionization with Multi-Mir...
The "leap forward" in nursing home development in urban China: future policy directions.
Shum, Michelle H Y; Lou, Vivian W Q; He, Kelly Z J; Chen, Coco C H; Wang, Junfang
2015-09-01
In the past decade, the number of nursing beds in China has increased annually by an average of 10%, reaching 4.3 million in 2013. Although the State Council pushed for further increases to a ratio of 30 nursing home beds per 1000 persons by 2015, service utilization, quality assurance, and regulatory oversight are the inherent challenges in developing an equitable long-term care (LTC) system that can safeguard older persons' rights. We review and analyze both laws and policies in light of demographic and socioeconomic changes and advocate 3 policy directions for LTC development in China: allocating LTC resources with comprehensive eligibility criteria, with particular consideration of family needs; establishing viable quality standards for outcome-driven evaluation; and highlighting standardized monitoring mechanisms in both institutional and home LTC settings. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Klie, T; Pfundstein, T
2010-04-01
In times of demographic and social change, it is increasingly important to ensure the availability of care services to cover the growing demand. With the implementation of the German long-term insurance act in 1994, the responsibility of states and municipalities was maintained; however, given the long-term care legislation's market orientation and competition neutrality, the classic instruments for demand planning and supervision of infrastructure developments were lost. This leads to new challenges for states and municipalities: their conventional objective-oriented planning lacks professional and juridical legitimization. Calculations of requirements must relate to methodology and professional expertise. In order to exercise their influence on infrastructure development, instruments of demand planning other than subsidization are required. Using the example of Rheinland-Pfalz (Rhineland-Palatinate) and the newly implemented care structure planning, the concept of care monitoring is introduced, and instruments to influence infrastructure development are outlined.
Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-12-21
The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.
De Rosis, Sabina; Nuti, Sabina
2018-01-01
eHealth is expected to contribute in tackling challenges for health care systems. However, it also imposes challenges. Financing strategies adopted at national as well regional levels widely affect eHealth long-term sustainability. In a public health care system, the public actor is among the main "buyers" eHealth. However, public interventions have been increasingly focused on cost containment. How to match these 2 aspects? This article explores some central issues, mainly related to financial aspects, in the development of effective and valuable eHealth strategies in a public health care system: How can the public health care system (as a "buyer") improve long-term success and sustainability of eHealth solutions? What levers are available to match in the long period different interests of different stakeholders in the eHealth field? A case study was performed in the Region of Tuscany, Italy. According to our results, win-win strategies should be followed. Investments should take into account the need to long-term finance solutions, for sustaining changes in health care organizations for obtaining benefits. To solve the interoperability issues, the concept of the "platform approach" emerged, based on collaboration within and between organizations. Private sector as well as beneficiaries and final users of the eHealth solutions should participate in their design, provision, and monitoring. For creating value for all, the evidence gap and the financial needs could be addressed with a pull mechanism of funding, aimed at paying according to the outcomes produced by the eHealth solution, on the base of an ongoing monitoring, measurement, and evaluation of the outcomes. © 2017 The Authors. The International Journal of Health Planning and Management published by John Wiley & Sons Ltd.
An introduction to orbit dynamics and its application to satellite-based earth monitoring systems
NASA Technical Reports Server (NTRS)
Brooks, D. R.
1977-01-01
The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.
A Wearable Cardiac Monitor for Long-Term Data Acquisition and Analysis
Winokur, Eric S.; Delano, Maggie K.; Sodini, Charles G.
2015-01-01
A low-power wearable ECG monitoring system has been developed entirely from discrete electronic components and a custom PCB. This device removes all loose wires from the system and minimizes the footprint on the user. The monitor consists of five electrodes, which allow a cardiologist to choose from a variety of possible projections. Clinical tests to compare our wearable monitor with a commercial clinical ECG recorder are conducted on ten healthy adults under different ambulatory conditions, with nine of the datasets used for analysis. Data from both monitors were synchronized and annotated with PhysioNet's waveform viewer WAVE (physionet.org) [1]. All gold standard annotations are compared to the results of the WQRS detection algorithm [2] provided by PhysioNet. QRS sensitivity and QRS positive predictability are extracted from both monitors to validate the wearable monitor. PMID:22968205
Spahr, Norman E.; Hartle, David M.; Diaz, Paul
2008-01-01
Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were collected following USGS protocols.
Solberg, P.A.; Moore, Bryan; Smits, Dennis
2009-01-01
Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were collected following USGS protocols (U.S. Geological Survey, variously dated).
Verow, P; Hargreaves, C
2000-05-01
Sandwell Healthcare NHS Trust has been developing a tool for monitoring the reasons and costs of long-term sick leave (> 7 days). The data obtained from this process has been used to modify the type of occupational health and safety services provided for the Trust. Adoption of more standardized tools of this nature throughout the National Health Service (NHS) would help trusts to compare, and where appropriate enhance, the services provided by occupational health. Musculo-skeletal and mental health problems, account for the greatest costs arising from long-term sickness absence. It may therefore be prudent for NHS employers and their occupational health services to target their efforts on these particular problems.
ERIC Educational Resources Information Center
Mitchell, Karen J.; Raye, Carol L.; McGuire, Joseph T.; Frankel, Hillary; Greene, Erich J.; Johnson, Marcia K.
2008-01-01
A short-term source monitoring procedure with functional magnetic resonance imaging assessed neural activity when participants made judgments about the format of 1 of 4 studied items (picture, word), the encoding task performed (cost, place), or whether an item was old or new. The results support findings from long-term memory studies showing that…
NASA Astrophysics Data System (ADS)
Wisniewiski, David
2014-03-01
The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along with 10 year long-term stability results.
Baron, Jill S.
2001-01-01
Long-term ecosystem research and monitoring was begun in the Loch Vale watershed of Rocky Mountain National Park in 1983, after extensive survey work to identify the best location. Then, as now, our scientific objectives were to understand natural biogeochemical cycles and variability, so that we could differentiate ecosystem changes from human-caused disturbances, such as atmospheric deposition of pollutants and climate change. We have learned many lessons, often through our mistakes, that are worth passing on. Clear scientific objectives, even for long-term monitoring, are essential. Standardized methods, including rigorous quality assurance procedures should be adhered to from the beginning of the program. All data, even those collected routinely for background records, should be scrutinized and summarized at least once a year. Freely share basic information such as weather, hydrologic, chemical, and descriptive records with other researchers who can build upon your efforts. Use many tools when asking complex ecological questions, in order to minimize bias toward specific results. Publish frequently; long-term studies do not imply there are no interim conclusions or interesting findings. Interpret findings frequently to policy makers and citizens; increased understanding of the environment and human-caused changes may improve natural resource management, and build support for ecological research. And finally, be persistent. Long-term ecological research can be frustrating and difficult to maintain, yet is often the best way to observe and understand ecological change on a meaningful time scale.
NASA Astrophysics Data System (ADS)
Beckers, J.; Fennell, J.; Scott, M.
2011-12-01
We will present a systematic approach to cumulative effects groundwater management predicated on an integration of traditional tools and the necessary intimate connection between modelling, monitoring and adaptive management, which includes an inventory and gap analysis of available data, consideration for system dynamics in the context of climate variability and change, an assessment of aquifer vulnerability, and consideration for potential future development and overall associated risk to groundwater resources and connected receptors. In our experience, a systematic approach to cumulative effects groundwater management is key to addressing complex challenges associated with large resource development projects, with effects of these projects to aquifer systems often occurring at regional scales and possibly enduring over long time horizons. The principal goal for the groundwater management framework is to manage groundwater resources in a sustainable manner and protect it from over-use. However, proper balances with economic and community objectives need to be taken into account, emphasizing the need for stakeholder engagement in the overall process. Through an understanding of inter-relationships between natural resource and other objectives, legislation, policies and programs across various sectors goals can be developed to achieve the best overall long-term benefits for society and the environment, while minimizing conflicts. The principal goal of monitoring is to evaluate past and current conditions and address data gaps. Long-term monitoring can also be used to improve the hydrogeologic conceptualization of a region. The role of numerical modelling is to quantify the understanding of groundwater flow systems in a region, address uncertainty in this understanding, to quantify potential regional cumulative impacts of current and future development, to provide recommendations for future monitoring locations and targets and for assessing the effectiveness of existing water management guidelines. Each of the three main tools for groundwater management cannot be used in isolation, decision making and regional management is optimized by their proper integration where each tool informs the others. Lastly, water management needs to be adaptive. The tools developed for groundwater management are dynamic, not static, and require regular updating and maintenance as new information becomes available (performance monitoring) and/or new questions and challenges arise. This in turn requires a clear specification of roles and responsibilities of various parties including regulators, operators, stakeholders and consultants. The presentation will introduce our systematic methodology to water management with examples of recent successful implementation from Canada and/or Australia.
Distributed architecture and distributed processing mode in urban sewage treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Decentralized rural sewage treatment facility over the broad area, a larger operation and management difficult, based on the analysis of rural sewage treatment model based on the response to these challenges, we describe the principle, structure and function in networking technology and network communications technology as the core of distributed remote monitoring system, through the application of case analysis to explore remote monitoring system features in a decentralized rural sewage treatment facilities in the daily operation and management. Practice shows that the remote monitoring system to provide technical support for the long-term operation and effective supervision of the facilities, and reduced operating, maintenance and supervision costs for development.
NASA Technical Reports Server (NTRS)
1982-01-01
The QuadraScan Longterm Flow Monitoring System is a second generation sewer monitor developed by American Digital Systems, Inc.'s founder Peter Petroff. Petroff, a former spacecraft instrumentation designer at Marshall Space Flight Center, used expertise based on principles acquired in Apollo and other NASA programs. QuadraScan borrows even more heavily from space technology, for example in its data acquisition and memory system derived from NASA satellites. "One-time" measurements are often plagued with substantial errors due to the flow of groundwater absorbed into the system. These system sizing errors stem from a basic informational deficiency: accurate, reliable data on how much water flows through a sewer system over a long period of time is very difficult to obtain. City officials are turning to "permanent," or long-term sewer monitoring systems. QuadraScan offers many advantages to city officials such as the early warning capability to effectively plan for city growth in order to avoid the crippling economic impact of bans on new sewer connections in effect in many cities today.
Louisiana offshore terminal authority environmental monitoring
DOT National Transportation Integrated Search
2002-09-01
The current Louisiana Offshore Oil Port (LOOP) monitoring program includes seasonal monitoring of aquatic and marine resources, sediment composition, and water quality on a five-year cycle. These data provide an update to the existing long-term LOOP ...
Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Thomas B.
The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.
INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION
The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...
Long-term movement patterns of a coral reef predator
NASA Astrophysics Data System (ADS)
Heupel, M. R.; Simpfendorfer, C. A.
2015-06-01
Long-term monitoring is required to fully define periodicity and patterns in animal movement. This is particularly relevant for defining what factors are driving the presence, location, and movements of individuals. The long-term movement and space use patterns of grey reef sharks, Carcharhinus amblyrhynchos, were examined on a whole of reef scale in the southern Great Barrier Reef to define whether movement and activity space varied through time. Twenty-nine C. amblyrhynchos were tracked for over 2 years to define movement patterns. All individuals showed high residency within the study site, but also had high roaming indices. This indicated that individuals remained in the region and used all of the monitored habitat (i.e., the entire reef perimeter). Use of space was consistent through time with high reuse of areas most of the year. Therefore, individuals maintained discrete home ranges, but undertook broader movements around the reef at times. Mature males showed greatest variation in movement with larger activity spaces and movement into new regions during the mating season (August-September). Depth use patterns also differed, suggesting behaviour or resource requirements varied between sexes. Examination of the long-term, reef-scale movements of C. amblyrhynchos has revealed that reproductive activity may play a key role in space use and activity patterns. It was unclear whether mating behaviour or an increased need for food to sustain reproductive activity and development played a greater role in these patterns. Reef shark movement patterns are becoming more clearly defined, but research is still required to fully understand the biological drivers for the observed patterns.
The measurement procedure in the SEMONT monitoring system.
Djuric, Nikola; Kljajic, Dragan; Kasas-Lazetic, Karolina; Bajovic, Vera
2014-03-01
The measurement procedure of the open area in situ electric field strength is presented, acquiring the real field data for testing of the Serbian electromagnetic field monitoring network (SEMONT) and its Internet portal. The SEMONT monitoring system introduces an advanced approach of wireless sensor network utilization for the continuous supervision of overall and cumulative level of electromagnetic field over the observed area. The aim of the SEMONT system is to become a useful tool for the national and municipal agencies for the environmental protection, regarding the electromagnetic pollution monitoring and the exposure assessment of the general population. Considering the public concern on the potentially harmful effects of the long-term exposure to electromagnetic radiation, as well as the public transparency principle that is incorporated into the Serbian law on non-ionizing radiation protection, the SEMONT monitoring system is designed for the long-term continuous monitoring, presenting real-time measurement results, and corresponding exposure assessment over the public Internet network.
NASA Astrophysics Data System (ADS)
Haas, W. J.; Venedam, R. J.; Lohrstorfer, C. F.; Weeks, S. J.
2005-05-01
The Advanced Monitoring System Initiative (AMSI) is a new approach to accelerate the development and application of advanced sensors and monitoring systems in support of Department of Energy needs in monitoring the performance of environmental remediation and contaminant containment activities. The Nevada Site Office of the National Nuclear Security Administration (NNSA) and Bechtel Nevada manage AMSI, with funding provided by the DOE Office of Environmental Management (DOE EM). AMSI has easy access to unique facilities and capabilities available at the Nevada Test Site (NTS), including the Hazardous Materials (HazMat) Spill Center, a one-of-a-kind facility built and permitted for releases of hazardous materials for training purposes, field-test detection, plume dispersion experimentation, and equipment and materials testing under controlled conditions. AMSI also has easy access to the facilities and considerable capabilities of the DOE and NNSA National Laboratories, the Special Technologies Laboratory, Remote Sensing Laboratory, Desert Research Institute, and Nevada Universities. AMSI provides rapid prototyping, systems integration, and field-testing, including assistance during initial site deployment. The emphasis is on application. Important features of the AMSI approach are: (1) customer investment, involvement and commitment to use - including definition of needs, desired mode of operation, and performance requirements; and (2) employment of a complete systems engineering approach, which allows the developer to focus maximum attention on the essential new sensing element or elements while AMSI assumes principal responsibility for infrastructure support elements such as power, packaging, and general data acquisition, control, communication, visualization and analysis software for support of decisions. This presentation describes: (1) the needs for sensors and performance monitoring for environmental systems as seen by the DOE Long Term Stewardship Science and Technology Roadmap and the Long Term Monitoring Sensors and Analytical Methods Workshop, and (2) AMSI operating characteristics and progress in addressing those needs. Topics addressed will include: vadose zone and groundwater tritium monitoring, a wireless moisture monitoring system, Cr(VI) and CCl4 monitoring using a commercially available "universal sensor platform", strontium-90 and technetium-99 monitoring, and area chemical monitoring using an array of multi-chemical sensors.
Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-31
The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be usedmore » by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.« less
The value of long-term monitoring in the development of ground-water-flow models
Feinstein, Daniel T.; Hart, David J.; Krohelski, James T.
2004-01-01
As environmental issues have come to the forefront of public concern, so has the awareness of the importance of ground water in the overall water cycle and as a source of the Nation’s drinking water. Heightened interest has spawned a host of scientific enterprises (Taylor and Alley, 2001). Some activities are directed toward collection of water-level data and related information to monitor the physical and chemical state of the resource. Other activities are directed at interpretive studies undertaken, for example, to optimize the location of new water-supply wells or to protect rivers and lakes fed by ground water. An important type of interpretive study is the computer ground-water-flow model that inte- grates field data in a mathematical framework. Long-term, systematic collection of hydro- logic data is crucial to the construction and testing of ground-water models so that they can reproduce the evolution of flow systems and forecast future conditions.
NASA Astrophysics Data System (ADS)
Lee, Seung Min; Byeon, Hang Jin; Lee, Joong Hoon; Baek, Dong Hyun; Lee, Kwang Ho; Hong, Joung Sook; Lee, Sang-Hoon
2014-08-01
The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minsker, Barbara
2005-06-01
Yonas Demissie, a research assistant supported by the project, has successfully created artificial data and assimilated it into coupled Modflow and artificial neural network models. His initial findings show that the neural networks help correct errors in the Modflow models. Abhishek Singh has used test cases from the literature to show that performing model calibration with an interactive genetic algorithm results in significantly improved parameter values. Meghna Babbar, the third research assistant supported by the project, has found similar results when applying an interactive genetic algorithms to long-term monitoring design. She has also developed new types of interactive genetic algorithmsmore » that significantly improve performance. Gayathri Gopalakrishnan, the last research assistant who is partially supported by the project, has shown that sampling branches of phytoremediation trees is an accurate approach to estimating soil and groundwater contaminations in areas surrounding the trees at the Argonne 317/319 site.« less
Lee, Seung Min; Byeon, Hang Jin; Lee, Joong Hoon; Baek, Dong Hyun; Lee, Kwang Ho; Hong, Joung Sook; Lee, Sang-Hoon
2014-01-01
The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system. PMID:25123356
Long Term 2 Second Round Source Water Monitoring and Bin Placement Memo
The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) applies to all public water systems served by a surface water source or public water systems served by a ground water source under the direct influence of surface water.
Long Term Monitoring of Broken and Seated Pavements
DOT National Transportation Integrated Search
2002-05-01
This report presents details of a study conducted to evaluate the long term performance of asphalt overlays on broken and seated : (B/S) concrete p avements, us ing field expe riments. Th e primary p urpose o f this study is to evaluate the effective...
Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos
2016-01-01
Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate. Copyright © 2015 Elsevier B.V. All rights reserved.
Time-series modeling of long-term weight self-monitoring data.
Helander, Elina; Pavel, Misha; Jimison, Holly; Korhonen, Ilkka
2015-08-01
Long-term self-monitoring of weight is beneficial for weight maintenance, especially after weight loss. Connected weight scales accumulate time series information over long term and hence enable time series analysis of the data. The analysis can reveal individual patterns, provide more sensitive detection of significant weight trends, and enable more accurate and timely prediction of weight outcomes. However, long term self-weighing data has several challenges which complicate the analysis. Especially, irregular sampling, missing data, and existence of periodic (e.g. diurnal and weekly) patterns are common. In this study, we apply time series modeling approach on daily weight time series from two individuals and describe information that can be extracted from this kind of data. We study the properties of weight time series data, missing data and its link to individuals behavior, periodic patterns and weight series segmentation. Being able to understand behavior through weight data and give relevant feedback is desired to lead to positive intervention on health behaviors.
Who needs environmental monitoring?
Gary M. Lovett; Douglas A. Burns; Charles T. Driscoll; Jennifer C. Jenkins; Myron J. Mitchell; Lindsey Rustad; James B. Shanley; Gene E. Likens; Richard Haeuber
2007-01-01
Environmental monitoring is often criticized as being unscientific, too expensive, and wasteful. While some monitoring studies do suffer from these problems, there are also many highly successful long-term monitoring programs that have provided important scientific advances and crucial information for environmental policy. Here, we discuss the characteristics of...
Space life support engineering program
NASA Technical Reports Server (NTRS)
Seagrave, Richard C.
1991-01-01
This report covers the first six months of work performed under the NASA University Grant awarded to Iowa State University to perform research on two topics relating to the development of closed-loop long-term life support systems. A comprehensive study to develop software to simulate the dynamic operation of water reclamation systems in long-term closed-loop life support systems is being carried out as part of an overall program for the design of systems for a Mars voyage. This project is being done in parallel with a similar effort in the Department of Chemistry to develop durable accurate low-cost sensors for monitoring of trace chemical and biological species in recycled water supplies. Aspen-Plus software is being used on a group of high-performance workstations to develop the steady state descriptions for a number of existing technologies. Following completion, a dynamic simulation package will be developed for determining the response of such systems to changes in the metabolic needs of the crew and to upsets in system hardware performance.
A framework for supervising lifestyle diseases using long-term activity monitoring.
Han, Yongkoo; Han, Manhyung; Lee, Sungyoung; Sarkar, A M Jehad; Lee, Young-Koo
2012-01-01
Activity monitoring of a person for a long-term would be helpful for controlling lifestyle associated diseases. Such diseases are often linked with the way a person lives. An unhealthy and irregular standard of living influences the risk of such diseases in the later part of one's life. The symptoms and the initial signs of these diseases are common to the people with irregular lifestyle. In this paper, we propose a novel healthcare framework to manage lifestyle diseases using long-term activity monitoring. The framework recognizes the user's activities with the help of the sensed data in runtime and reports the irregular and unhealthy activity patterns to a doctor and a caregiver. The proposed framework is a hierarchical structure that consists of three modules: activity recognition, activity pattern generation and lifestyle disease prediction. We show that it is possible to assess the possibility of lifestyle diseases from the sensor data. We also show the viability of the proposed framework.
Angal, A.; Xiong, X.; Choi, T.; Chander, G.; Wu, A.
2009-01-01
Pseudo-invariant ground targets have been extensively used to monitor the long-term radiometric calibration stability of remote sensing instruments. The NASA MODIS Characterization Support Team (MCST), in collaboration with members from the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center, has previously demonstrated the use of pseudo-invariant ground sites for the long-term stability monitoring of Terra MODIS and Landsat 7 ETM+ sensors. This paper focuses on the results derived from observations made over the Sonoran Desert. Additionally, Landsat 5 TM data over the Sonoran Desert site were used to evaluate the temporal stability of this site. Top-ofatmosphere (TOA) reflectances were computed for the closely matched TM, ETM+, and MODIS spectral bands over selected regions of interest. The impacts due to different viewing geometries, or the effect of test site Bi-directional Reflectance Distribution Function (BRDF), are also presented. ?? 2009 SPIE.
McCarthy, K.
2006-01-01
Semipermeable membrane devices (SPMDs) were deployed at eight sites within the Buffalo Slough, near Portland, Oregon, to (1) measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbon (PAH) and organochlorine (OC) compounds in the slough, (2) assess the usefulness of SPMDs as a tool for investigating and monitoring hydrophobic compounds throughout the Columbia Slough system, and (3) evaluate the utility of SPMDs as a tool for measuring the long-term effects of watershed improvement activities. Data from the SPMDs revealed clear spatial and seasonal differences in water quality within the slough and indicate that for hydrophobic compounds, this time-integrated passive-sampling technique is a useful tool for long-term watershed monitoring. In addition, the data suggest that a spiking rate of 2-5 ??g/SPMD of permeability/performance reference compounds, including at least one compound that is not susceptible to photodegradation, may be optimum for the conditions encountered here. ?? Springer Science + Business Media, Inc. 2006.
PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY
DOE Office of Scientific and Technical Information (OSTI.GOV)
QIAN,S.; TAKACS,P.
2000-07-30
The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less
[Long-term non-invasive ventilation in chronic obstructive pulmonary disease patients].
Schopfer, Léonore; Groenendijk, Lena; Janssens, Jean-Paul; Younossian, Alain Bigin; Vignaux, Laurence
2018-01-31
Non-invasive ventilation (NIV) is recognized as first line therapy in acute hypercapnic respiratory failure and chronic alveolar hypoventilation caused by several diseases (restrictive thoracic disorders, neuromuscular disease and obesity-hypoventilation syndrome). In Switzerland and other European countries, long-term NIV has also been applied in hypercapnic patients with chronic obstructive pulmonary disease (COPD). However, only recently has conclusive evidence showing benefits of long-term NIV become available. Long-term NIV in COPD has now shown its efficacy in many studies. However, despite these findings, indications, ventilatory settings and monitoring remain poorly known and topic of debate.
Wyoming Landscape Conservation Initiative Science Workshop Proceedings, May 15-17, 2007
D'Erchia, Frank
2008-01-01
The U.S. Geological Survey (USGS) hosted a Wyoming Landscape Conservation Initiative (WLCI) Science Workshop at the University of Wyoming on May 15, 16, and 17, 2007. The goal of the workshop was to gather information from stakeholders about research needs and existing data resources to help develop the USGS WLCI science plan. The workshop focused on six research and management needs identified by WLCI partners prior to the workshop: *evaluate the cumulative effects of development activities; *identify key drivers of change; *identify condition and distribution of key wildlife species, habitat, and species habitat requirements; *evaluate wildlife and livestock responses to development; *develop an integrated inventory and monitoring strategy; and *develop a data clearinghouse and an information-management framework. These topics correlated to six plenary panels and discussions and six breakout sessions. Several collective needs were identified: *create a long-term, accessible information database; *identify key habitats, indicator species; *collect and research missing critical baseline data; *begin on-the-ground projects as soon as possible; and *implement a monitoring program to assist with adaptive management techniques. Several concerns were expressed repeatedly: *secure adequate and long-term funding; *meeting the WLCI workload with agencies that are already understaffed; *assess cumulative effects as an analysis approach; *perform offsite mitigation in a way that is valuable and effective; *focus all research on providing practical applications; and *involve the public in WLCI proceedings.
Seasonality in ocean microbial communities.
Giovannoni, Stephen J; Vergin, Kevin L
2012-02-10
Ocean warming occurs every year in seasonal cycles that can help us to understand long-term responses of plankton to climate change. Rhythmic seasonal patterns of microbial community turnover are revealed when high-resolution measurements of microbial plankton diversity are applied to samples collected in lengthy time series. Seasonal cycles in microbial plankton are complex, but the expansion of fixed ocean stations monitoring long-term change and the development of automated instrumentation are providing the time-series data needed to understand how these cycles vary across broad geographical scales. By accumulating data and using predictive modeling, we gain insights into changes that will occur as the ocean surface continues to warm and as the extent and duration of ocean stratification increase. These developments will enable marine scientists to predict changes in geochemical cycles mediated by microbial communities and to gauge their broader impacts.
Nagamori, Masanao; Mowjood, M I M; Watanabe, Youichi; Isobe, Yugo; Ishigaki, Tomonori; Kawamoto, Ken
2016-12-01
A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Gas samples were taken from vertical gas monitoring pipes installed along transects at two sections (called new and old) of an abandoned waste dump site in Sri Lanka. N 2 O concentrations varied especially widely, by more than three orders of magnitude (0.046-140 ppmv). The nitrogen/argon ratio of landfill gas was normally higher than that of fresh air, implying that denitrification occurred in the dump site. Argon assays indicate that both N 2 and N 2 O production occurred inside waste and more significantly in the old section. The Ar assay would help for evaluations of N 2 O emission in developing countries. A long-term monitoring of composition of landfill gases in the region with high rainfall was conducted using an argon assay in order to discuss air intrusion into the dump site. Argon assays indicate that both N 2 and N 2 O production occurred inside waste and more significantly in the old section.
Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; ...
2016-10-05
In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.
In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less
Parallel computer processing and modeling: applications for the ICU
NASA Astrophysics Data System (ADS)
Baxter, Grant; Pranger, L. Alex; Draghic, Nicole; Sims, Nathaniel M.; Wiesmann, William P.
2003-07-01
Current patient monitoring procedures in hospital intensive care units (ICUs) generate vast quantities of medical data, much of which is considered extemporaneous and not evaluated. Although sophisticated monitors to analyze individual types of patient data are routinely used in the hospital setting, this equipment lacks high order signal analysis tools for detecting long-term trends and correlations between different signals within a patient data set. Without the ability to continuously analyze disjoint sets of patient data, it is difficult to detect slow-forming complications. As a result, the early onset of conditions such as pneumonia or sepsis may not be apparent until the advanced stages. We report here on the development of a distributed software architecture test bed and software medical models to analyze both asynchronous and continuous patient data in real time. Hardware and software has been developed to support a multi-node distributed computer cluster capable of amassing data from multiple patient monitors and projecting near and long-term outcomes based upon the application of physiologic models to the incoming patient data stream. One computer acts as a central coordinating node; additional computers accommodate processing needs. A simple, non-clinical model for sepsis detection was implemented on the system for demonstration purposes. This work shows exceptional promise as a highly effective means to rapidly predict and thereby mitigate the effect of nosocomial infections.
Using larval fish community structure to guide long-term monitoring of fish spawning activity
Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.
2015-01-01
Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.
Characterization of the Nimbus-7 SBUV radiometer for the long-term monitoring of stratospheric ozone
NASA Technical Reports Server (NTRS)
Cebula, Richard P.; Park, H.; Heath, D. F.
1988-01-01
Precise knowledge of in-orbit sensitivity change is critical for the successful monitoring of stratospheric ozone by satellite-based remote sensors. This paper evaluates those aspects of the in-flight operation that influence the long-term stability of the upper stratospheric ozone measurements made by the Nimbus-7 SBUV spectroradiometer and chronicles methods used to maintain the long-term albedo calibration of this UV sensor. It is shown that the instrument's calibration for the ozone measurement, the albedo calibration, has been maintained over the first 6 yr of operation to an accuracy of approximately + or - 2 percent. The instrument's wavelength calibration is shown to drift linearly with time. The knowledge of the SBUV wavelength assignment is maintained to a 0.02-nm precision.
NASA Astrophysics Data System (ADS)
Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.
2018-06-01
Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.
USDA-ARS?s Scientific Manuscript database
Strategies to mitigate agricultural runoff must consider long-term changes in climate. We investigated temperature, precipitation and runoff trends over roughly four decades of monitoring an agricultural watershed in east central Pennsylvania (1968-2012). Temperature data confirmed significant expan...
Internal corrosion monitoring of subsea oil and gas production equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joosten, M.W.; Fischer, K.P.; Strommen, R.
1995-04-01
Nonintrusive techniques will dominate subsea corrosion monitoring compared with the intrusive methods because such methods do not interfere with pipeline operations. The long-term reliability of the nonintrusive techniques in general is considered to be much better than that of intrusive-type probes. The nonintrusive techniques based on radioactive tracers (TLA, NA) and FSM and UT are expected to be the main types of subsea corrosion monitoring equipment in the coming years. Available techniques that could be developed specifically for subsea applications are: electrochemical noise, corrosion potentials (using new types of reference electrodes), multiprobe system for electrochemical measurements, and video camera inspectionmore » (mini-video camera with light source). The following innovative techniques have potential but need further development: ion selective electrodes, radioactive tracers, and Raman spectroscopy.« less
Wagner, Tyler; Irwin, Brian J.; James R. Bence,; Daniel B. Hayes,
2016-01-01
Monitoring to detect temporal trends in biological and habitat indices is a critical component of fisheries management. Thus, it is important that management objectives are linked to monitoring objectives. This linkage requires a definition of what constitutes a management-relevant “temporal trend.” It is also important to develop expectations for the amount of time required to detect a trend (i.e., statistical power) and for choosing an appropriate statistical model for analysis. We provide an overview of temporal trends commonly encountered in fisheries management, review published studies that evaluated statistical power of long-term trend detection, and illustrate dynamic linear models in a Bayesian context, as an additional analytical approach focused on shorter term change. We show that monitoring programs generally have low statistical power for detecting linear temporal trends and argue that often management should be focused on different definitions of trends, some of which can be better addressed by alternative analytical approaches.
Bridge condition assessment based on long-term strain monitoring
NASA Astrophysics Data System (ADS)
Sun, LiMin; Sun, Shouwang
2011-04-01
In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.
NASA Astrophysics Data System (ADS)
Archer, Reginald S.
This research focuses on measuring and monitoring long term recovery progress from the impacts of Hurricane Katrina on New Orleans, LA. Remote sensing has frequently been used for emergency response and damage assessment after natural disasters. However, techniques for analysis of long term disaster recovery using remote sensing have not been widely explored. With increased availability and lower costs, remote sensing offers an objective perspective, systematic and repeatable analysis, and provides a substitute to multiple site visits. In addition, remote sensing allows access to large geographical areas and areas where ground access may be disrupted, restricted or denied. This dissertation addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators. Maximum likelihood classification and post-classification change detection were applied to multi-temporal high resolution aerial images to quantitatively measure the progress of recovery. Images were classified to automatically identify disaster recovery indicators and exploit the indicators that are visible within each image. The spectral analysis demonstrated that employing maximum likelihood classification to high resolution true color aerial images performed adequately and provided a good indication of spectral pattern recognition, despite the limited spectral information. Applying the change detection to the classified images was effective for determining the temporal trajectory of indicators categorized as blue tarps, FEMA trailers, houses, vegetation, bare earth and pavement. The results of the post classification change detection revealed a dominant change trajectory from bluetarp to house, as damaged houses became permanently repaired. Specifically, the level of activity of blue tarps, housing, vegetation, FEMA trailers (temporary housing) pavement and bare earth were derived from aerial image processing to measure and monitor the progress of recovery. Trajectories of recovery for each individual indicator were examined to provide a better understanding of activity during reconstruction. A collection of spatial metrics was explored in order to identify spatial patterns and characterize classes in terms of patches of pixels. One of the key findings of the spatial analysis is that patch shapes were more complex in the presence of debris and damaged or destroyed buildings. The combination of spectral, temporal, and spatial analysis provided a satisfactory, though limited, solution to the question of whether remote sensing alone, can be used to quantitatively assess and monitor the progress of long term recovery following a major disaster. The research described in this dissertation provided a detailed illustration of the level of activity experienced by different recovery indicators during the long term recovery process. It also addressed the primary difficulties involved in the development of change detection methods capable of detecting changes experienced by disaster recovery indicators identified from classified high resolution true color aerial imagery. The results produced in this research demonstrate that the observed trajectories for actual indicators of recovery indicate different levels of recovery activity even within the same community. The level of activity of the long term reconstruction phase observed in the Kates model is not consistent with the level of activity of key recovery indicators in the Lower 9th Ward during the same period. Used in the proper context, these methods and results provide decision making information for determining resources. KEYWORDS: Change detection, classification, Katrina, New Orleans, remote sensing, disaster recovery, spatial metrics
Validation of a wireless modular monitoring system for structures
NASA Astrophysics Data System (ADS)
Lynch, Jerome P.; Law, Kincho H.; Kiremidjian, Anne S.; Carryer, John E.; Kenny, Thomas W.; Partridge, Aaron; Sundararajan, Arvind
2002-06-01
A wireless sensing unit for use in a Wireless Modular Monitoring System (WiMMS) has been designed and constructed. Drawing upon advanced technological developments in the areas of wireless communications, low-power microprocessors and micro-electro mechanical system (MEMS) sensing transducers, the wireless sensing unit represents a high-performance yet low-cost solution to monitoring the short-term and long-term performance of structures. A sophisticated reduced instruction set computer (RISC) microcontroller is placed at the core of the unit to accommodate on-board computations, measurement filtering and data interrogation algorithms. The functionality of the wireless sensing unit is validated through various experiments involving multiple sensing transducers interfaced to the sensing unit. In particular, MEMS-based accelerometers are used as the primary sensing transducer in this study's validation experiments. A five degree of freedom scaled test structure mounted upon a shaking table is employed for system validation.
INEL Geothermal Environmental Program. 1979 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurow, T.L.; Sullivan, J.F.
1980-04-01
The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.
A wireless smart sensor network for automated monitoring of cable tension
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo
2014-02-01
As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.
Rodríguez-González, Patricia María; Albuquerque, António; Martínez-Almarza, Miguel; Díaz-Delgado, Ricardo
2017-11-01
Implementing long-term monitoring programs that effectively inform conservation plans is a top priority in environmental management. In floodplain forests, historical pressures interplay with the complex multiscale dynamics of fluvial systems and require integrative approaches to pinpoint drivers for their deterioration and ecosystem services loss. Combining a conceptual framework such as the Driver-Pressure-State-Impact-Response (DPSIR) with the development of valid biological indicators can contribute to the analysis of the driving forces and their effects on the ecosystem in order to formulate coordinated conservation measures. In the present study, we evaluate the initial results of a decade (2004-2014) of floodplain forest monitoring. We adopted the DPSIR framework to summarize the main drivers in land use and environmental change, analyzed the effects on biological indicators of foundation trees and compared the consistency of the main drivers and their effects at two spatial scales. The monitoring program was conducted in one of the largest and best preserved floodplain forests in SW Europe located within Doñana National Park (Spain) which is dominated by Salix atrocinerea and Fraxinus angustifolia. The program combined field (in situ) surveys on a network of permanent plots with several remote sensing sources. The accuracy obtained in spectral classifications allowed shifts in species cover across the whole forest to be detected and assessed. However, remote sensing did not reflect the ecological status of forest populations. The field survey revealed a general decline in Salix populations, especially in the first five years of sampling -a factor probably associated with a lag effect from past human impact on the hydrology of the catchment and recent extreme climatic episodes (drought). In spite of much reduced seed regeneration, a resprouting strategy allows long-lived Salix individuals to persist in complex spatial dynamics. This suggests the beginning of a recovery resulting from recent coordinated societal responses to control excessive water extraction in the catchment, highlighting the need for continuing long-term monitoring. The DPSIR framework proved useful as a conceptual tool in analyzing the entire environmental system, while both field and remote sensing approaches complemented each other in quantifying indicator trends, improving the monitoring design and informing conservation plans. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-temperature adhesives for bonding polyimide film. [bonding Kapton film for solar sails
NASA Technical Reports Server (NTRS)
St.clair, A. K.; Slemp, W. S.; St.clair, T. L.
1980-01-01
Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575 K (575 F) in vacuum. Glass transition temperatures of the polyimide/"Kapton" bondlines were monitored by thermomechanical analysis.
ERIC Educational Resources Information Center
Endedijk, Hinke; Denessen, Eddie; Hendriks, Angelique W.
2011-01-01
Despite the fact that homework forms an important cornerstone of student development, many students fail to capitalize on the long-term benefits of doing homework. Several executive skills, including cognitive flexibility, monitoring and planning are suggested as prerequisites for the completion of homework. It follows that homework difficulties…
ERIC Educational Resources Information Center
Hodel, Amanda S.; Brumbaugh, Jane E.; Morris, Alyssa R.; Thomas, Kathleen M.
2016-01-01
Interest in monitoring long-term neurodevelopmental outcomes of children born moderate-to-late preterm (32-36 weeks gestation) is increasing. Moderate-to-late preterm birth has a negative impact on academic achievement, which may relate to differential development of executive function (EF). Prior studies reporting deficits in EF in preterm…
Munger, Lisa; Lammers, Marc O; Cifuentes, Mattie; Würsig, Bernd; Jefferson, Thomas A; Hung, Samuel K
2016-10-01
Long-term passive acoustic monitoring (PAM) was conducted to study Indo-Pacific humpback dolphins, Sousa chinensis, as part of environmental impact assessments for several major coastal development projects in Hong Kong waters north of Lantau Island. Ecological acoustic recorders obtained 2711 days of recording at 13 sites from December 2012 to December 2014. Humpback dolphin sounds were manually detected on more than half of days with recordings at 12 sites, 8 of which were within proposed reclamation areas. Dolphin detection rates were greatest at Lung Kwu Chau, with other high-occurrence locations northeast of the Hong Kong International Airport and within the Lung Kwu Tan and Siu Ho Wan regions. Dolphin detection rates were greatest in summer and autumn (June-November) and were significantly reduced in spring (March-May) compared to other times of year. Click detection rates were significantly higher at night than during daylight hours. These findings suggest high use of many of the proposed reclamation/development areas by humpback dolphins, particularly at night, and demonstrate the value of long-term PAM for documenting spatial and temporal patterns in dolphin occurrence to help inform management decisions.
Monitoring technologies for ocean disposal of radioactive waste
NASA Astrophysics Data System (ADS)
Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.
1982-01-01
The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.
Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.
André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V
2011-01-01
The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.
Arne Amberger; Christiane Brandenburg; Andreas Muhar
2002-01-01
The Danube Floodplains National Park, Vienna, Austria is used predominantly by the Viennese population for daily recreation purposes. Different methods were applied for the monitoring of visitor activities in the National Park (long-term video monitoring, short-term visitor observation, interviews and route registration). The results show that only a combination of...
Ansermot, Nicolas; Rudaz, Serge; Brawand-Amey, Marlyse; Fleury-Souverain, Sandrine; Veuthey, Jean-Luc; Eap, Chin B
2009-08-01
Matrix effects, which represent an important issue in liquid chromatography coupled to mass spectrometry or tandem mass spectrometry detection, should be closely assessed during method development. In the case of quantitative analysis, the use of stable isotope-labelled internal standard with physico-chemical properties and ionization behaviour similar to the analyte is recommended. In this paper, an example of the choice of a co-eluting deuterated internal standard to compensate for short-term and long-term matrix effect in the case of chiral (R,S)-methadone plasma quantification is reported. The method was fully validated over a concentration range of 5-800 ng/mL for each methadone enantiomer with satisfactory relative bias (-1.0 to 1.0%), repeatability (0.9-4.9%) and intermediate precision (1.4-12.0%). From the results obtained during validation, a control chart process during 52 series of routine analysis was established using both intermediate precision standard deviation and FDA acceptance criteria. The results of routine quality control samples were generally included in the +/-15% variability around the target value and mainly in the two standard deviation interval illustrating the long-term stability of the method. The intermediate precision variability estimated in method validation was found to be coherent with the routine use of the method. During this period, 257 trough concentration and 54 peak concentration plasma samples of patients undergoing (R,S)-methadone treatment were successfully analysed for routine therapeutic drug monitoring.
Low cost environmental sensors for Spaceflight : NMP Space Environmental Monitor (SEM) requirements
NASA Technical Reports Server (NTRS)
Garrett, Henry B.; Buelher, Martin G.; Brinza, D.; Patel, J. U.
2005-01-01
An outstanding problem in spaceflight is the lack of adequate sensors for monitoring the space environment and its effects on engineering systems. By adequate, we mean low cost in terms of mission impact (e.g., low price, low mass/size, low power, low data rate, and low design impact). The New Millennium Program (NMP) is investigating the development of such a low-cost Space Environmental Monitor (SEM) package for inclusion on its technology validation flights. This effort follows from the need by NMP to characterize the space environment during testing so that potential users can extrapolate the test results to end-use conditions. The immediate objective of this effort is to develop a small diagnostic sensor package that could be obtained from commercial sources. Environments being considered are: contamination, atomic oxygen, ionizing radiation, cosmic radiation, EMI, and temperature. This talk describes the requirements and rational for selecting these environments and reviews a preliminary design that includes a micro-controller data logger with data storage and interfaces to the sensors and spacecraft. If successful, such a sensor package could be the basis of a unique, long term program for monitoring the effects of the space environment on spacecraft systems.
Low Cost Environmental Sensors for Spaceflight: NMP Space Environmental Monitor (SEM) Requirements
NASA Technical Reports Server (NTRS)
Garrett, Henry B.; Buehler, Martin G.; Brinza, D.; Patel, J. U.
2005-01-01
An outstanding problem in spaceflight is the lack of adequate sensors for monitoring the space environment and its effects on engineering systems. By adequate, we mean low cost in terms of mission impact (e.g., low price, low mass/size, low power, low data rate, and low design impact). The New Millennium Program (NMP) is investigating the development of such a low-cost Space Environmental Monitor (SEM) package for inclusion on its technology validation flights. This effort follows from the need by NMP to characterize the space environment during testing so that potential users can extrapolate the test results to end-use conditions. The immediate objective of this effort is to develop a small diagnostic sensor package that could be obtained from commercial sources. Environments being considered are: contamination, atomic oxygen, ionizing radiation, cosmic radiation, EMI, and temperature. This talk describes the requirements and rational for selecting these environments and reviews a preliminary design that includes a micro-controller data logger with data storage and interfaces to the sensors and spacecraft. If successful, such a sensor package could be the basis of a unique, long term program for monitoring the effects of the space environment on spacecraft systems.
APDS: the autonomous pathogen detection system.
Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M
2005-04-15
We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.
ETV TEST OF PCDD/F EMISSIONS MONITORING SYSTEMS
Four polychlorinated dibenzodioxin and furan (PCDD/F) emission monitors were tested under the EPA Environmental Technology and Verification (ETV) program. Two long-term sampling devices, the DioxinMonitoringSystem and Adsorption Method for Sampling Dioxins and Furans, and two sem...
Contamination Mitigation Strategies for Long Duration Human Spaceflight Missions
NASA Technical Reports Server (NTRS)
Lewis, Ruthan; Lupisella, Mark; Bleacher, Jake; Farrell, William
2017-01-01
Contamination control issues are particularly challenging for long-term human spaceflight and are associated with the search for life, dynamic environmental conditions, human-robotic-environment interaction, sample collection and return, biological processes, waste management, long-term environmental disturbance, etc. These issues impact mission success, human health, planetary protection, and research and discovery. Mitigation and control techniques and strategies may include and integrate long-term environmental monitoring and reporting, contamination control and planetary protection protocols, habitation site design, habitat design, and surface exploration and traverse pathways and area access planning.
Implementation of a wireless sensor network for heart rate monitoring in a senior center.
Huang, Jyh-How; Su, Tzu-Yao; Raknim, Paweeya; Lan, Kun-Chan
2015-06-01
Wearable sensor systems are widely used to monitor vital sign in hospitals and in recent years have also been used at home. In this article we present a system that includes a ring probe, sensor, radio, and receiver, designed for use as a long-term heart rate monitoring system in a senior center. The primary contribution of this article is successfully implementing a cheap, large-scale wireless heart rate monitoring system that is stable and comfortable to use 24 h a day. We developed new finger ring sensors for comfortable continuous wearing experience and used dynamic power adjustment on the ring so the sensor can detect pulses at different strength levels. Our system has been deployed in a senior center since May 2012, and 63 seniors have used this system in this period. During the 54-h system observation period, 10 alarms were set off. Eight of them were due to abnormal heart rate, and two of them were due to loose probes. The monitoring system runs stably with the senior center's existing WiFi network, and achieves 99.48% system availability. The managers and caregivers use our system as a reliable warning system for clinical deterioration. The results of the year-long deployment show that the wireless group heart rate monitoring system developed in this work is viable for use within a designated area.
Clinical imaging in regenerative medicine
Naumova, Anna V; Modo, Michel; Moore, Anna; Murry, Charles E; Frank, Joseph A
2014-01-01
In regenerative medicine, clinical imaging is indispensable for characterizing damaged tissue and for measuring the safety and efficacy of therapy. However, the ability to track the fate and function of transplanted cells with current technologies is limited. Exogenous contrast labels such as nanoparticles give a strong signal in the short term but are unreliable long term. Genetically encoded labels are good both short- and long-term in animals, but in the human setting they raise regulatory issues related to the safety of genomic integration and potential immunogenicity of reporter proteins. Imaging studies in brain, heart and islets share a common set of challenges, including developing novel labeling approaches to improve detection thresholds and early delineation of toxicity and function. Key areas for future research include addressing safety concerns associated with genetic labels and developing methods to follow cell survival, differentiation and integration with host tissue. Imaging may bridge the gap between cell therapies and health outcomes by elucidating mechanisms of action through longitudinal monitoring. PMID:25093889
Continuous monitors were employed for 18 months in an occupied townhouse to measure ultrafine, fine, and coarse particles; air change rates; wind speed and direction; temperature; and relative humidity (RH). A main objective was to document short-term and long-term variation in...
Forest Soil Disturbance Monitoring Protocol: Volume I: Rapid assessment
Deborah S. Page-Dumroese; Ann M. Abbott; Thomas M. Rice
2009-01-01
This volume of the Forest Soil Disturbance Monitoring Protocol (FSDMP) describes how to monitor forest sites before and after ground disturbing management activities for physical attributes that could influence site resilience and long-term sustainability. The attributes describe surface conditions that affect site sustainability and hydrologic function. Monitoring the...
Atkinson, A.J.; Trenham, P.C.; Fisher, R.N.; Hathaway, S.A.; Johnson, B.S.; Torres, S.G.; Moore, Y.C.
2004-01-01
critical management uncertainties; and 3) implementing long-term monitoring and adaptive management. Ultimately, the success of regional conservation planning depends on the ability of monitoring programs to confront the challenges of adaptively managing and monitoring complex ecosystems and diverse arrays of sensitive species.
42 CFR 488.422 - State monitoring.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false State monitoring. 488.422 Section 488.422 Public... Long-Term Care Facilities with Deficiencies § 488.422 State monitoring. (a) A State monitor— (1... deficiencies on the last 3 consecutive standard surveys. (c) State monitoring is discontinued when— (1) The...
Developing A National Groundwater-Monitoring Network In Korea
NASA Astrophysics Data System (ADS)
Kim, N. J.; Cho, M. J.; Woo, N. C.
1995-04-01
Since the 1960's, the groundwater resources of Korea have been developed without a proper regulatory system for monitoring and preservation, resulting in significant source depletion, land subsidence, water contamination, and sea-water intrusion. With the activation of the "Groundwater Law" in June 1994, the government initiated a project to develop a groundwater-monitoring network to describe general groundwater quality, to define its long-term changes, and to identify major factors affecting changes in groundwater quality and yield. In selecting monitoring locations nationwide, criteria considered are 1) spatial distribution, 2) aquifer characteristics of hydrogeologic units, 3) local groundwater flow regime, 4) linkage with surface hydrology observations, 5) site accessibility, and 6) financial situations. A total of 310 sites in 78 small hydrologic basins were selected to compose the monitoring network. Installation of monitoring wells is scheduled to start in 1995 for 15 sites; the remainder are scheduled to be completed by 2001. At each site, a nest of monitoring wells was designed; shallow and deep groundwater will be monitored for water temperature, pH, EC, DO and TDS every month. Water-level fluctuations will also be measured by automatic recorders equipped with pressure transducers. As a next step, the government plans to develop a groundwater-database management system, which could be linked with surface hydrologic data.
North American long-term soil productivity research program
Allan E. Tiarks; Robert F. Powers; Jerry F. Ragus; Deborah S. Page-Dumroese; Felix, Jr. Ponder; Douglas M. Stone
1997-01-01
The National Long-term Soil Productivity research program was chartered to address National Forest Management Act concerns over possible losses in soil productivity on National Forest lands. The program supports validation of soil quality monitoring standards and process-level productivity research. Summarized results are supplied to Forests as collected. National...
The introduction of Dreissena to the Great lakes has profoundly impacted benthic ecosystems, resulting in the decline of native species and dramatic community restructuring. In Lake Ontario, long-term monitoring has yielded a wealth of detailed information regarding both the exp...
Background: Epidemiological studies have identified associations between long-term PM2.5 exposure and cardiovascular events, though most have relied on concentrations from central-site air quality monitors. Methods: We utilized a cohort of 5679 patients who had undergone cardiac ...
DOT National Transportation Integrated Search
2014-01-01
Construction of a new prestressed bridge with Self-Consolidating Concrete (SCC) provided the opportunity to further study the time-dependent properties of SCC mix and its long-term performance; considering the results and recommendations of previous ...
DOT National Transportation Integrated Search
2014-01-01
Construction of a new prestressed bridge with Self-Consolidating Concrete (SCC) : provided the opportunity to further study the time-dependent properties of SCC mix and : its long-term performance; considering the results and recommendations of previ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Trevor; Pelletier, Steve; Giovanni, Matt
This report summarizes results of a long-term regional acoustic survey of bat activity at remote islands, offshore structures, and coastal sites in the Gulf of Maine, Great Lakes, and mid-Atlantic coast.
SEASONAL AND LONG-TERM TEMPORAL PATTERNS IN THE CHEMISTRY OF ADIRONDACK LAKES
There is considerable interest in the recovery of surface waters from acidification by acidic deposition. he Adirondack Long-Term Monitoring (ALTM) program was established in 1982 to evaluate changes in the chemistry of 17 Adirondack lakes. he objectives of this paper are to: 1) ...
North American long-term soil productivity research program
Allan E. Tiarks; Robert F. Powers; Jerry F. Ragus; Deborah S. Page-Dumroese; Felix Ponder; Douglas M. Stone
1997-01-01
The National Long-term Soil Productivity research program was chartered to address National Forest Management Act concerns over possible losses n soil productivity on national forest lands. The program supports validation of soil quality monitoring standards and process-level productivity research. Summarized results are supplied to forests as collected. National...
GENASIS national and international monitoring networks for persistent organic pollutants
NASA Astrophysics Data System (ADS)
Brabec, Karel; Dušek, Ladislav; Holoubek, Ivan; Hřebíček, Jiří; Kubásek, Miroslav; Urbánek, Jaroslav
2010-05-01
Persistent organic pollutants (POPs) remain in the centre of scientific attention due to their slow rates of degradation, their toxicity, and potential for both long-range transport and bioaccumulation in living organisms. This group of compounds covers large number of various chemicals from industrial products, such as polychlorinated biphenyls, etc. The GENASIS (Global Environmental Assessment and Information System) information system utilizes data from national and international monitoring networks to obtain as-complete-as-possible set of information and a representative picture of environmental contamination by persistent organic pollutants (POPs). There are data from two main datasets on POPs monitoring: 1.Integrated monitoring of POPs in Košetice Observatory (Czech Republic) which is a long term background site of the European Monitoring and Evaluation Programme (EMEP) for the Central Europe; the data reveals long term trends of POPs in all environmental matrices. The Observatory is the only one in Europe where POPs have been monitored not only in ambient air, but also in wet atmospheric deposition, surface waters, sediments, soil, mosses and needles (integrated monitoring). Consistent data since the year 1996 are available, earlier data (up to 1998) are burdened by high variability and high detection limits. 2.MONET network is ambient air monitoring activities in the Central and Eastern European region (CEEC), Central Asia, Africa and Pacific Islands driven by RECETOX as the Regional Centre of the Stockholm Convention for the region of Central and Eastern Europe under the common name of the MONET networks (MONitoring NETwork). For many of the participating countries these activities generated first data on the atmospheric levels of POPs. The MONET network uses new technologies of air passive sampling, which was developed, tested, and calibrated by RECETOX in cooperation with Environment Canada and Lancaster University, and was originally launched as a model monitoring network providing public administration, private subject, and general public information about air pollution by POPs that had not been previously regularly monitored and whose measurement is further required by global monitoring plan of the Stockholm Convention. The MONET network is international project with many participants. Monitoring in the MONET-CZ network started in 2004 with the pilot project and continues to the current days, MONET CEEC started in 2006 and continues nowadays, MONET Africa started in 2008. The database of the GENASIS systems currently covers MONET-CZ data until the year 2008. The MONET network currently covers 37 countries in the Europe, Asia and Africa with more than 350 sampling sites. The paper will discuss about following topics * Data Fusion in GENASIS: how can GENASIS maximize the value and accuracy of the information gathered from heterogeneous data sources? * Sensor types in GENASIS: which POPs can be measured; what are the physical limitations to achievable accuracy, reliability, and long-term stability of miniaturized sensors; which applications can (not) be realized within these limitations?
NASA Astrophysics Data System (ADS)
Renger, Bernhard; Rummeny, Ernst J.; Noël, Peter B.
2013-03-01
During the last decades, the reduction of radiation exposure especially in diagnostic computed tomography is one of the most explored topics. In the same time, it seems challenging to quantify the long-term clinical dose reduction with regard to new hardware as well as software solutions. To overcome this challenge, we developed a Dose Monitoring System (DMS), which collects information from PACS, RIS, MPPS and structured reports. The integration of all sources overcomes the weaknesses of single systems. To gather all possible information, we integrated an optical character recognition system to extract, for example, information from the CT-dose-report. All collected data are transferred to a database for further evaluation, e.g., for calculations of effective as well as organ doses. The DMS provides a single database for tracking all essential study and patient specific information across different modality as well as different vendors. As an initial study, we longitudinally investigated the dose reduction in CT examination when employing a noise-suppressing reconstruction algorithm. For this examination type a significant long-term reduction in radiation exposure is reported, when comparing to a CT-system with standard reconstruction. In summary our DMS tool not only enables us to track radiation exposure on daily bases but further enables to analyses the long term effect of new dose saving strategies. In the future the statistical analyses of all retrospective data, which are available in a modern imaging department, will provide a unique overview of advances in reduction of radiation exposure.
Rieger, Stefan B.; Pfau, Jennifer; Stieglitz, Thomas; Asplund, Maria; Ordonez, Juan S.
2016-01-01
There has been substantial progress over the last decade towards miniaturizing implantable microelectrodes for use in Active Implantable Medical Devices (AIMD). Compared to the rapid development and complexity of electrode miniaturization, methods to monitor and assess functional integrity and electrical functionality of these electrodes, particularly during long term stimulation, have not progressed to the same extent. Evaluation methods that form the gold standard, such as stimulus pulse testing, cyclic voltammetry and electrochemical impedance spectroscopy, are either still bound to laboratory infrastructure (impractical for long term in vivo experiments) or deliver no comprehensive insight into the material’s behaviour. As there is a lack of cost effective and practical predictive measures to understand long term electrode behaviour in vivo, material investigations need to be performed after explantation of the electrodes. We propose the analysis of the electrode and its environment in situ, to better understand and correlate the effects leading to electrode failure. The derived knowledge shall eventually lead to improved electrode designs, increased electrode functionality and safety in clinical applications. In this paper, the concept, design and prototyping of a sensor framework used to analyse the electrode’s behaviour and to monitor diverse electrode failure mechanisms, even during stimulation pulses, is presented. We focused on the electronic circuitry and data acquisition techniques required for a conceptual multi-sensor system. Functionality of single modules and a prototype framework have been demonstrated, but further work is needed to convert the prototype system into an implantable device. In vitro studies will be conducted first to verify sensor performance and reliability. PMID:28042815
Experiences with a Decade of Wireless Sensor Networks in Mountain Cryosphere Research
NASA Astrophysics Data System (ADS)
Beutel, Jan
2017-04-01
Research in geoscience depends on high-quality measurements over long periods of time in order to understand processes and to create and validate models. The promise of wireless sensor networks to monitor autonomously at unprecedented spatial and temporal scale motivated the use of this novel technology for studying mountain permafrost in the mid 2000s. Starting from a first experimental deployment to investigate the thermal properties of steep bedrock permafrost in 2006 on the Jungfraujoch, Switzerland at 3500 m asl using prototype wireless sensors the PermaSense project has evolved into a multi-site and multi-discipline initiative. We develop, deploy and operate wireless sensing systems customized for long-term autonomous operation in high-mountain environments. Around this central element, we develop concepts, methods and tools to investigate and to quantify the connection between climate, cryosphere (permafrost, glaciers, snow) and geomorphodynamics. In this presentation, we describe the concepts and system architecture used both for the wireless sensor network as well as for data management and processing. Furthermore, we will discuss the experience gained in over a decade of planning, installing and operating large deployments on field sites spread across a large part of the Swiss and French Alps and applications ranging from academic, experimental research campaigns, long-term monitoring and natural hazard warning in collaboration with government authorities and local industry partners. Reference http://www.permasense.ch Online Open Data Access http://data.permasense.ch
Sustainable Seas Student Intertidal Monitoring Project, Duxbury Reef, Bolinas, CA
NASA Astrophysics Data System (ADS)
Soave, K.; Dean, A.; Prescutti, K.; Ball, O.; Chang, E.; Darakananda, K.; Jessup, K.; Poutian, J.; Schwalbe, H.; Storm, E.
2008-12-01
The Sustainable Seas Student Monitoring Project at the Branson School in Ross, CA has monitored Duxbury Reef in Bolinas, CA since 1999, in cooperation with the Farallones Marine Sanctuary Association and the Gulf of Farallones National Marine Sanctuary. Goals of the project include: 1) To monitor the rocky intertidal habitat and develop a baseline database of invertebrates and algal density and abundance; 2) To contribute to the conservation of the rocky intertidal habitat through education of students and visitors about intertidal species and requirements for maintaining a healthy, diverse intertidal ecosystem; 3) To increase stewardship in the Gulf of the Farallones National Marine Sanctuary; and 4) To contribute abundance and population data on key algae and invertebrate species to the national database, LiMPETS (Long Term Monitoring Program and Experiential Training for Students). Student volunteers complete an intensive training course on the natural history of intertidal invertebrates and algae, identification of key species, rocky intertidal ecology, interpretation and monitoring techniques, and history of the sanctuary. Students identify and count key invertebrate and algae species along two permanent transects (A and B), and using randomly determined points within a permanent 100 m2 area, three times per year (fall, winter, and late spring). Using the data collected since 2004, we will analyze the population densities of aggregating anemones, Anthopleura elegantissima, for seasonal abundance variations as well as long-term population trends. We will also follow the seasonal and long-term population fluctuations of red algal turf, Endocladia muricata and Gelidium coulteri, and black turban snails, Tegula funebralis. Comparing populations of turf algae and the herbivorous black turban snails gathered before and after the November 7, 2007 San Francisco Bay oil spill shows very little impact on the Duxbury Reef intertidal inhabitants. Future analyses will include intertidal abiotic factors to enhance insights into the workings of the Duxbury Reef ecosystem. Kathy Soave The Branson School 39 Fernhill Rd. Ross, CA 94957 (415) 454-3612 x 323 Amy Dean Farallones Marine Sanctuary Association, PO Box 29386 San Francisco, CA 94129, 415-561-6625 x 303 AGU Sponsor, Ines Cifuentes, AGU membership number 10189667
García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma
2015-01-01
Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board’s designs and more than 5000 algorithm lines. System tests have shown an adequate system operation. PMID:25815447
Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette
2017-01-01
Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km 2 landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.
García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma
2015-03-25
Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.
NASA Astrophysics Data System (ADS)
Shvartsman, Leonid D.; Tverskoy, Boris
2015-03-01
We present system for long-term continuous PPG monitoring, and physical model for PPG analysis. The system is based on ideology of light scattering modulated by the process of RBC aggregation. OXIRATE's system works in reflection geometry. The sensor is tiny, completely mobile phone compatible, it can be placed nearly everywhere on the body surface. These technical features allow all-night comfortable PPG monitoring that was performed and analyzed. We can define various sleep stages on the basis of different reproducible time-behavior of PPG signal. Our system of PPG monitoring was used also for reflection pulse oximetry and for extreme PPG studies, such as diving.
Yamanashi, Yumi; Teramoto, Migaku; Morimura, Naruki; Hirata, Satoshi; Inoue-Murayama, Miho; Idani, Gen'ichi
2016-01-01
Understanding the factors associated with the long-term stress levels of captive animals is important from the view of animal welfare. In this study, we investigated the effects of relocation in addition to individual and environmental factors related to social management on long-term stress level in group-living captive chimpanzees by examining behaviors and hair cortisol (HC). Specifically, we conducted two studies. The first compared changes in HC levels before and after the relocation of 8 chimpanzees (Study 1) and the second examined the relationship between individual and environmental factors and individual HC levels in 58 chimpanzees living in Kumamoto Sanctuary (KS), Kyoto University (Study 2). We hypothesized that relocation, social situation, sex, and early rearing conditions, would affect the HC levels of captive chimpanzees. We cut arm hair from chimpanzees and extracted and assayed cortisol with an enzyme immunoassay. Aggressive behaviors were recorded ad libitum by keepers using a daily behavior monitoring sheet developed for this study. The results of Study 1 indicate that HC levels increased during the first year after relocation to the new environment and then decreased during the second year. We observed individual differences in reactions to relocation and hypothesized that social factors may mediate these changes. In Study 2, we found that the standardized rate of receiving aggression, rearing history, sex, and group formation had a significant influence on mean HC levels. Relocation status was not a significant factor, but mean HC level was positively correlated with the rate of receiving aggression. Mean HC levels were higher in males than in females, and the association between aggressive interactions and HC levels differed by sex. These results suggest that, although relocation can affect long-term stress level, individuals' experiences of aggression and sex may be more important contributors to long-term stress than relocation alone.
Mossavar-Rahmani, Yasmin; Henry, Holly; Rodabough, Rebecca; Bragg, Charlotte; Brewer, Amy; Freed, Trish; Kinzel, Laura; Pedersen, Margaret; Soule, C Oehme; Vosburg, Shirley
2004-01-01
Self-monitoring promotes behavior changes by promoting awareness of eating habits and creates self-efficacy. It is an important component of the Women's Health Initiative dietary intervention. During the first year of intervention, 74% of the total sample of 19,542 dietary intervention participants self-monitored. As the study progressed the self-monitoring rate declined to 59% by spring 2000. Participants were challenged by inability to accurately estimate fat content of restaurant foods and the inconvenience of carrying bulky self-monitoring tools. In 1996, a Self-Monitoring Working Group was organized to develop additional self-monitoring options that were responsive to participant needs. This article describes the original and additional self-monitoring tools and trends in tool use over time. Original tools were the Food Diary and Fat Scan. Additional tools include the Keeping Track of Goals, Quick Scan, Picture Tracker, and Eating Pattern Changes instruments. The additional tools were used by the majority of participants (5,353 of 10,260 or 52% of participants who were self-monitoring) by spring 2000. Developing self-monitoring tools that are responsive to participant needs increases the likelihood that self-monitoring can enhance dietary reporting adherence, especially in long-term clinical trials.
A Long-Term Psychological Observation in an Adolescent Affected with Gardner Diamond Syndrome
Bizzi, Fabiola; Sciarretta, Lucia; D’Alessandro, Matteo; Picco, Paolo
2016-01-01
Gardner-Diamond syndrome (GDS) is an uncommon disease clinically characterized by a wide spectrum of psycho-emotive symptoms associated with painful ecchymoses/purpuric lesions and positivity of auto-erythrocyte sensitization skin test. Herein, a perspective clinical and psychological observation of an adolescent GDS is firstly reported focusing on her psychological features long-term monitored for a 1-year period. The administration of a standardized tools battery allowed us to define psychological features of the young patient over time and to monitored clinical course and response to treatment. PMID:27011410
Satellite Monitoring of the Northern Territories Disturbed by Oil Production
NASA Astrophysics Data System (ADS)
Bondur, V. G.; Vorobyev, V. E.; Lukin, A. A.
2017-12-01
The results of satellite monitoring of the state of northern territories disturbed by oil production are presented by the example of the Usinsk oil field in the Komi Republic. The sets of vegetation indices formed by the results of processing long-term series of multispectral satellite images for the period from 1988 to 2014 are analyzed. They are used to assess long-term environmental changes, to reveal the most disturbed zones, and to estimate the dynamics of changes in the vegetation cover area caused by the extraction and transportation of hydrocarbons.
Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring
Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan
2009-01-01
The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152
Jindra, P; Žejšková, L; Peková, S; Navrátilová, J; Schutzová, M; Vokurka, S; Koza, V
2012-01-01
Donor cell leukemia (DCL) is a relatively rare but well documented complication of hematopoietic stem cell transplantation. So far, publications described only DCL arising de novo in the recipient. In this study, we describe a case of chronic lymphocytic leukemia (B-CLL) developing in a volunteer unrelated donor from the Czech National Marrow Donors Registry (CNMDR) several years after donation. From archival DNA sample, we have retrospectively found that subclinical CLL clone was already present at the time of donation but early death of recipient prevented eventual development of DCL. This case documents well the long period between detection of B-CLL clone and full development of clinical-laboratory symptomatology. The medical and ethical questions posed by an isolated case of detection of hematological malignancy present either only in the donor or only in the recipient are discussed. The case demonstrates the increasing risk of development of various forms of DCL and thus highlights the need for long-term monitoring of stem cell donor, not only in terms of health of donor but also in terms of potential risks for the recipient.
DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P
2017-01-01
Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Long-term outcomes and management of lung transplant recipients.
Costa, Joseph; Benvenuto, Luke J; Sonett, Joshua R
2017-06-01
Lung transplantation is an established treatment for patients with end-stage lung disease. Improvements in immunosuppression and therapeutic management of infections have resulted in improved long-term survival and a decline in allograft rejection. Allograft rejection continues to be a serious complication following lung transplantation, thereby leading to acute graft failure and, subsequently, chronic lung allograft dysfunction (CLAD). Bronchiolitis obliterans syndrome (BOS), the most common phenotype of CLAD, is the leading cause of late mortality and morbidity in lung recipients, with 50% having developed BOS within 5 years of lung transplantation. Infections in lung transplant recipients are also a significant complication and represent the most common cause of death within the first year. The success of lung transplantation depends on careful management of immunosuppressive regimens to reduce the rate of rejection, while monitoring recipients for infections and complications to help identify problems early. The long-term outcomes and management of lung transplant recipients are critically based on modulating natural immune response of the recipient to prevent acute and chronic rejection. Understanding the immune mechanisms and temporal correlation of acute and chronic rejection is thus critical in the long-term management of lung recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teubner, Diana; Paulus, Martin; Veith, Michael; Klein, Roland
2015-02-01
Piscifaunal health depends upon the state and quality of the aquatic environment. Variations in physical condition of fish may therefore be attributed to changes in environmental quality. Based on time series of up to 20 years of biometric data of bream from multiple sampling sites of the German environmental specimen bank (ESB), this study assessed whether changes in biometric parameters are able to indicate long-term alterations in fish health and environmental quality. Evaluated biometric parameters of fish health comprised length and weight of individuals of a defined age class, the condition factor, lipid content and hepatosomatic index (HSI). Although there are negative trends of the HSI, the overall development of health parameters can be interpreted as positive. This seems to suggest that health parameters conclusively mirror the long-term improvement of water quality in the selected rivers. However, the applicability of the condition factor as well as lipid content as indicators for fish health remained subject to restrictions. Altogether, the results from the ESB confirmed the high value of biometric parameters for monitoring of long-term changes in state and quality of aquatic ecosystems.
NASA Astrophysics Data System (ADS)
Royon, Arnaud; Papon, Gautier
2016-03-01
Fluorescence microscopes have become ubiquitous in life sciences laboratories, including those focused on pharmaceuticals, diagnosis, and forensics. For the past few years, the need for both performance guarantees and quantifiable results has driven development in this area. However, the lack of appropriate standards and reference materials makes it difficult or impossible to compare the results of two fluorescence microscopes, or to measure performance fluctuations of one microscope over time. Therefore, the operation of fluorescence microscopes is not monitored as often as their use warrants - an issue that is recognized by both systems manufacturers and national metrology institutes. We have developed a new process that enables the etching of long-term stable fluorescent patterns with sub-micrometer sizes in three dimensions inside glass. In this paper, we present, based on this new process, a fluorescent multi-dimensional ruler and a dedicated software that are suitable for monitoring and quality management of fluorescence-based imaging systems (wide-field, confocal, multiphoton, high content machines). In addition to fluorescence, the same patterns exhibit bright- and dark-field contrast, DIC, and phase contrast, which make them also relevant to monitor these types of microscopes. Non-exhaustively, this new solution enables the measurement of: The stage repositioning accuracy; The illumination and detection homogeneities; The field flatness; The detectors' characteristics; The lateral and axial spatial resolutions; The spectral response (spectrum, intensity and lifetime) of the system. Thanks to the stability of the patterns, microscope performance assessment can be carried out as well in a daily basis as in the long term.
Long Term, Operational Monitoring Of Enhanced Oil Recovery In Harsh Environments With INSAR
NASA Astrophysics Data System (ADS)
Sato, S.; Henschel, M. D.
2012-01-01
Since 2004, MDA GSI has provided ground deformation measurements for an oil field in northern Alberta, Canada using InSAR technology. During this period, the monitoring has reliably shown the slow rise of the oil field due to enhanced oil recovery operations. The InSAR monitoring solution is essentially based on the observation of point and point-like targets in the field. Ground conditions in the area are almost continuously changing (in their reflectivity characteristics) making it difficult to ob- serve coherent patterns from the ground. The extended duration of the oil operations has allowed us to continue InSAR monitoring and transition from RADARSAT-1 to RADARSAT-2. With RADARSAT-2 and the enhancement of the satellite resolution capability has provided more targets of opportunity as identified by a differential coherence method. This poster provides an overview of the long term monitoring of the oil field in northern Alberta, Canada.
Development of New Sensing Materials Using Combinatorial and High-Throughput Experimentation
NASA Astrophysics Data System (ADS)
Potyrailo, Radislav A.; Mirsky, Vladimir M.
New sensors with improved performance characteristics are needed for applications as diverse as bedside continuous monitoring, tracking of environmental pollutants, monitoring of food and water quality, monitoring of chemical processes, and safety in industrial, consumer, and automotive settings. Typical requirements in sensor improvement are selectivity, long-term stability, sensitivity, response time, reversibility, and reproducibility. Design of new sensing materials is the important cornerstone in the effort to develop new sensors. Often, sensing materials are too complex to predict their performance quantitatively in the design stage. Thus, combinatorial and high-throughput experimentation methodologies provide an opportunity to generate new required data to discover new sensing materials and/or to optimize existing material compositions. The goal of this chapter is to provide an overview of the key concepts of experimental development of sensing materials using combinatorial and high-throughput experimentation tools, and to promote additional fruitful interactions between computational scientists and experimentalists.
Static and Dynamic Behaviour Assessment of the Trajan Arch by Means of New Monitoring Technologies
NASA Astrophysics Data System (ADS)
Petti, L.; Barone, F.; Mammone, A.; Giordano, G.
2017-08-01
An effective assessment of the static and dynamic structural behavior of historical monuments requires the development and validation of suitable adaptive structural models using high-quality experimental data acquired with an effectively continuous and distributed monitoring. Furthermore, the adaptive strategy allows an efficient evaluation of the health status and of the evolution along the time of a historical monument, providing relevant information to plan appropriate actions for its long-term preservation. The Trajan Arch in Benevento chosen as a case of study to develop and apply this new adaptive strategy in cultural heritage conservation. The paper, after a description of the innovative monitoring system, based on state-of-the-art mechanical sensors, presents and discusses the results of two tests, comparing the measurements with the predictions of an adaptive structural FEM model developed for the dynamical simulation of the Trajan Arch.
Toth, Peter P
2016-01-01
Patients who have had a venous thromboembolic event are generally advised to receive anticoagulant treatment for 3 months or longer to prevent a recurrent episode. Current guidelines recommend initial heparin and an oral vitamin K antagonist (VKA) for long-term anticoagulation. However, because of the well-described disadvantages of VKAs, including extensive food and drug interactions and the need for regular anticoagulation monitoring, novel oral anticoagulants (NOACs) have become an attractive option in recent years. These agents are given at fixed doses and do not require routine coagulation-time monitoring. The NOACs are discussed in this review with regard to the needs of patients on long-term anticoagulation. Current guidelines from Europe and North America that refer to the treatment of deep vein thrombosis and/or pulmonary embolism are included, as well as published randomized Phase III clinical trials of NOACs. PubMed searches were used for sourcing case studies of long-term anticoagulant treatment, and results were filtered for human application and screened for relevance. NOAC-based therapy showed a similar efficacy and safety profile to heparins/VKAs but without the need for regular anticoagulation monitoring or dietary adjustments, and can be taken as a fixed-dose regimen once or twice daily. This represents a significant step forward in facilitating the management of long-term anticoagulation therapy. Furthermore, in the EINSTEIN studies, improved patient satisfaction was documented with the NOAC rivaroxaban, which may result in better adherence to therapy and an overall reduction in the incidence of recurrent venous thromboembolism.
NASA Astrophysics Data System (ADS)
Noh, J.; Russo, S.
2017-08-01
Long-term dynamic monitoring of the masonry façade of Palazzo Ducale known as Doge's palace in Venice, Italy was performed from September 2010 to October 2012. This article demonstrates the results of preliminary analysis on the data set of the first 12-month long monitoring campaign for out-of-plumb dynamic responses of the medieval façade of the monument. The aim of the analysis of the dynamic signals is to validate the data set and investigate dynamic characteristics of the vibration signature of the historical masonry wall in the long-term. Palazzo Ducale is a heavily visited heritage due to its high cultural importance and architectural value. Nevertheless, little is known about the dynamic behaviour of the double-leaf masonry façade. In this study, the dynamic properties of the structure are presented by dynamic identification carried out with the effect of the ambient vibration measured at four different locations on the façade and portico level. The trend and intensity of the vibration at each measurement locations are identified over the year. In addition, the issue on eliminating the noise blended in the signals for reliable analysis are also discussed.
Join the Revolution: How Montessori for Aging and Dementia can Change Long-Term Care Culture.
Bourgeois, Michelle S; Brush, Jennifer; Elliot, Gail; Kelly, Anne
2015-08-01
Efforts to improve the quality of life of persons with dementia in long-term care through the implementation of various approaches to person-centered care have been underway for the past two decades. Studies have yielded conflicting reports evaluating the evidence for these approaches. The purpose of this article is to outline the findings of several systematic reviews of this literature, highlighting the areas of improvement needs, and to describe a new person-centered care model, DementiAbility Methods: The Montessori Way. This model focuses on the abilities, needs, interests, and strengths of the person and creating worthwhile and meaningful roles, routines, and activities for the person within a supportive physical environment. This is accomplished through gaining the commitment of the facility's leaders, training staff, and monitoring program implementation. The potential for a culture change in long-term care environments is dependent on the development and rigorous evaluation of person-centered care approaches. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Development of mHealth system for supporting self-management and remote consultation of skincare.
Parmanto, Bambang; Pramana, Gede; Yu, Daihua X; Fairman, Andrea D; Dicianno, Brad E
2015-12-30
Individuals with spina bifida (SB) are vulnerable to chronic skin complications such as wounds on the buttocks and lower extremities. Most of these complications can be prevented with adherence to self-care routines. We have developed a mobile health (mHealth) system for supporting self-care and management of skin problems called SkinCare as part of an mHealth suite called iMHere (interactive Mobile Health and Rehabilitation). The objective of this research is to develop an innovative mHealth system to support self-skincare tasks, skin condition monitoring, adherence to self-care regimens, skincare consultation, and secure two-way communications between patients and clinicians. In order to support self-skincare tasks, the SkinCare app requires three main functions: (1) self-care task schedule and reminders, (2) skin condition monitoring and communications that include imaging, information about the skin problem, and consultation with clinician, and (3) secure two-way messaging between the patient and clinician (wellness coordinator). The SkinCare system we have developed consists of the SkinCare app, a clinician portal, and a two-way communication protocol connecting the two. The SkinCare system is one component of a more comprehensive system to support a wellness program for individuals with SB. The SkinCare app has several features that include reminders to perform daily skin checks as well as the ability to report skin breakdown and injury, which uses a combination of skin images and descriptions. The SkinCare app provides reminders to visually inspect one's skin as a preventative measure, often termed a "skin check." The data is sent to the portal where clinicians can monitor patients' conditions. Using the two-way communication, clinicians can receive pictures of the skin conditions, track progress in healing over time, and provide instructions for how to best care for the wound. The system was capable of supporting self-care and adherence to regimen, monitoring adherence, and supporting clinician engagement with patients, as well as testing its feasibility in a long-term implementation. The study shows the feasibility of a long-term implementation of skincare mHealth systems to support self-care and two-way interactions between patients and clinicians.
Development of Hybrid pH sensor for long-term seawater pH monitoring.
NASA Astrophysics Data System (ADS)
Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.
2016-02-01
We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.
NASA Astrophysics Data System (ADS)
Liu, Carol Y. B.; Luk, David C. K.; Zhou, Kany S. Y.; So, Bryan M. K.; Louie, Derek C. H.
2015-03-01
Due to the increasing incidences of malignant melanoma, there is a rising demand for assistive technologies for its early diagnosis and improving the survival rate. The commonly used visual screening method is with limited accuracy as the early phase of melanoma shares many clinical features with an atypical nevus, while conventional dermoscopes are not user-friendly in terms of setup time and operations. Therefore, the development of an intelligent and handy system to assist the accurate screening and long-term monitoring of melanocytic skin lesions is crucial for early diagnosis and prevention of melanoma. In this paper, an advanced design of non-invasive and non-radioactive dermoscopy system was reported. Computer-aided simulations were conducted for optimizing the optical design and uniform illumination distribution. Functional prototype and the software system were further developed, which could enable image capturing at 10x amplified and general modes, convenient data transmission, analysis of dermoscopic features (e.g., asymmetry, border irregularity, color, diameter and dermoscopic structure) for assisting the early detection of melanoma, extract patient information (e.g. code, lesion location) and integrate with dermoscopic images, thus further support long term monitoring of diagnostic analysis results. A clinical trial study was further conducted on 185 Chinese children (0-18 years old). The results showed that for all subjects, skin conditions diagnosed based on the developed system accurately confirmed the diagnoses by conventional clinical procedures. Besides, clinical analysis on dermoscopic features and a potential standard approach by the developed system to support identifying specific melanocytic patterns for dermoscopic examination in Chinese children were also reported.
NASA Astrophysics Data System (ADS)
Gardner, A.; Baer, D. S.; Owano, T. G.; Provencal, R. A.; Gupta, M.; Parsotam, V.; Graves, P.; Goldstein, A.; Guha, A.
2010-12-01
Development and Deployment of Mobile Emissions Laboratory for Continuous Long-Term Unattended Measurements of Greenhouse Gases, Fluxes, Isotopes and Pollutants A. Gardner(1), D. Baer (1), T. Owano (1), R. Provencal (1), V. Parsotam (1), P. Graves (1), M. Gupta (1), Allen Goldstein (2), Abhinav Guha (2) (1) Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, CA 94041-1529 (2) Department of Environmental Science, Policy, and Management, University of California at Berkeley Quantifying the Urban Fossil Fuel Plume: Convergence of top-down and bottom-up approaches (Session A54). We report on the design, development and deployment of a novel Mobile Emissions Laboratory, consisting of innovative laser-based gas analyzers, for rapid measurements of multiple greenhouse gases and pollutants. Designed for real-time mobile and stationery emissions monitoring, the Mobile Emissions Laboratory was deployed at several locations during 2010, including CalNEX 2010, Caldecott Tunnel (Oakland, CA), and Altamont Landfill (Livermore, CA), to record real-time continuous measurements of isotopic CO2 (δ13C, CO2), methane (CH4), acetylene (C2H2), nitrous oxide (N2O), carbon monoxide (CO), and isotopic water vapor (H2O; δ18O, δ2H). The commercial gas analyzers are based on novel cavity-enhanced laser absorption spectroscopy. The portable analyzers provide measurements in real time, require about 150 watts (each) of power and do not need liquid nitrogen to operate. These instruments have been applied in the field for applications that require high data rates (for eddy correlation flux), wide dynamic range (e.g., for chamber flux and other applications with concentrations that can be 10-1000 times higher than typical ambient levels) and highest accuracy (atmospheric monitoring stations). The Mobile Emissions Laboratory, which contains onboard batteries for long-term unattended measurements without access to mains power, can provide regulatory agencies, monitoring stations, scientists and researchers with temporally and spatially resolved data (including measurements of important greenhouse gases, isotopes and pollutants) necessary for compliance monitoring, hot-spot detection, as well as cap and trade, at any location. Details of extended measurement campaigns (including lessons learned) at the various field sites (urban and rural environments) will be presented.
Unsworth, Richard K. F.; Rasheed, Michael A.; Chartrand, Kathryn M.; Roelofs, Anthony J.
2012-01-01
There is strong evidence of a global long-term decline in seagrass meadows that is widely attributed to anthropogenic activity. Yet in many regions, attributing these changes to actual activities is difficult, as there exists limited understanding of the natural processes that can influence these valuable ecosystem service providers. Being able to separate natural from anthropogenic causes of seagrass change is important for developing strategies that effectively mitigate and manage anthropogenic impacts on seagrass, and promote coastal ecosystems resilient to future environmental change. The present study investigated the influence of environmental and climate related factors on seagrass biomass in a large ≈250 ha meadow in tropical north east Australia. Annual monitoring of the intertidal Enhalus acoroides (L.f.) Royle seagrass meadow over eleven years revealed a declining trend in above-ground biomass (54% significant overall reduction from 2000 to 2010). Partial Least Squares Regression found this reduction to be significantly and negatively correlated with tidal exposure, and significantly and negatively correlated with the amount of solar radiation. This study documents how natural long-term tidal variability can influence long-term seagrass dynamics. Exposure to desiccation, high UV, and daytime temperature regimes are discussed as the likely mechanisms for the action of these factors in causing this decline. The results emphasise the importance of understanding and assessing natural environmentally-driven change when interpreting the results of seagrass monitoring programs. PMID:22479541
Development and Performance of a Filter Radiometer Monitor System for Integrating Sphere Sources
NASA Technical Reports Server (NTRS)
Ding, Leibo; Kowalewski, Matthew G.; Cooper, John W.; Smith, GIlbert R.; Barnes, Robert A.; Waluschka, Eugene; Butler, James J.
2011-01-01
The NASA Goddard Space Flight Center (GSFC) Radiometric Calibration Laboratory (RCL) maintains several large integrating sphere sources covering the visible to the shortwave infrared wavelength range. Two critical, functional requirements of an integrating sphere source are short and long-term operational stability and repeatability. Monitoring the source is essential in determining the origin of systemic errors, thus increasing confidence in source performance and quantifying repeatability. If monitor data falls outside the established parameters, this could be an indication that the source requires maintenance or re-calibration against the National Institute of Science and Technology (NIST) irradiance standard. The GSFC RCL has developed a Filter Radiometer Monitoring System (FRMS) to continuously monitor the performance of its integrating sphere calibration sources in the 400 to 2400nm region. Sphere output change mechanisms include lamp aging, coating (e.g. BaSO4) deterioration, and ambient water vapor level. The Filter Radiometer Monitor System (FRMS) wavelength bands are selected to quantify changes caused by these mechanisms. The FRMS design and operation are presented, as well as data from monitoring four of the RCL s integrating sphere sources.
Lemming, Gitte; Chambon, Julie C; Binning, Philip J; Bjerg, Poul L
2012-12-15
A comparative life cycle assessment is presented for four different management options for a trichloroethene-contaminated site with a contaminant source zone located in a fractured clay till. The compared options are (i) long-term monitoring (ii) in-situ enhanced reductive dechlorination (ERD), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic impacts due to contaminant leaching into groundwater that is used for drinking water, whereas the secondary environmental impacts are related to remediation activities such as monitoring, drilling and construction of wells and use of remedial amendments. The primary impacts for the compared scenarios were determined by a numerical risk assessment and remedial performance model, which predicted the contaminant mass discharge over time at a point of compliance in the aquifer and at the waterworks. The combined assessment of risk reduction and life cycle impacts showed that all management options result in higher environmental impacts than they remediate, in terms of person equivalents and assuming equal weighting of all impacts. The ERD and long-term monitoring were the scenarios with the lowest secondary life cycle impacts and are therefore the preferred alternatives. However, if activated carbon treatment at the waterworks is required in the long-term monitoring scenario, then it becomes unfavorable because of large secondary impacts. ERD is favorable due to its low secondary impacts, but only if leaching of vinyl chloride to the groundwater aquifer can be avoided. Remediation with ISCO caused the highest secondary impacts and cannot be recommended for the site. Copyright © 2012 Elsevier Ltd. All rights reserved.
Connock, M; Stevens, C; Fry-Smith, A; Jowett, S; Fitzmaurice, D; Moore, D; Song, F
2007-10-01
To examine the clinical effectiveness and cost-effectiveness of self-testing and self-management of oral anticoagulation treatment compared with clinic-based monitoring. Major electronic databases were searched up to September 2005. A systematic review was undertaken of relevant data from selected studies. Results about complication events and deaths were pooled in meta-analyses using risk difference (RD) as the outcome statistic. Heterogeneity across trials and possible publication bias were statistically measured. Subgroup analyses (post hoc) were conducted to compare results of self-testing versus self-management, low versus high trial quality, trials conducted in the UK versus trials in other countries and industry versus other sponsors. A Markov-type, state-transition model was developed. Stochastic simulations using the model were conducted to investigate uncertainty in estimated model parameters. In the 16 randomised and eight non-randomised trials selected, patient self-monitoring of oral anticoagulation therapy was found to be more effective than poor-quality usual care provided by family doctors and as effective as good-quality specialised anticoagulation clinics in maintaining the quality of anticoagulation therapy. There was no significant RD of major bleeding events between patient self-monitoring and usual care controls and pooled analyses found that compared with primary care or anticoagulation control (AC) clinics, self-monitoring was statistically significantly associated with fewer thromboembolic events. However, the reduction in complication events and deaths was not consistently associated with the improvement of AC; in some trials this may be due to alternative explanations, including patient education and patient empowerment. Also, the improved AC and the reduction of major complications and deaths by patient self-monitoring were mainly observed in trials conducted outside the UK. According to UK-specific data, for every 100 eligible patients, 24% would agree to conduct self-monitoring, 17 of the 24 patients (70%) could be successfully trained and able to carry out self-monitoring and only 14 of these (80%) would conduct long-term self-monitoring. Seven cost-effectiveness studies were identified and the study that provided the most relevant UK data found that patient self-management was more expensive than current routine care (417 pounds versus 122 pounds per patient-year) and concluded that using a cost-effectiveness threshold of 30,000 pounds per quality-adjusted life-year (QALY) gained, patient self-management does not appear to be cost-effective. De novo modelling for this report found that the incremental cost per QALY gained by patient self-monitoring is 122,365 pounds over 5 years and 63,655 pounds over 10 years. The estimated probability that patient self-monitoring is cost-effective (up to 30,000 pounds/QALY) is 44% over a 10-year period. Wide adoption of patient self-monitoring of anticoagulation therapy would cost the NHS an estimated additional 8-14 million pounds per year. For selected and successfully trained patients, self-monitoring is effective and safe for long-term oral anticoagulation therapy. In general, patient self-management (PSM) is unlikely to be more cost-effective than the current specialised anticoagulation clinics in the UK; self-monitoring may enhance the quality of life for some patients who are frequently away from home, who are in employment or education, or those who find it difficult to travel to clinics. Further research is needed into alternative dosing regimes, the clinical effectiveness and cost-effectiveness of patient education and training in long-term oral anticoagulation therapy, UK-relevant cost-effectiveness, the effectiveness of PSM in children, and the potential future developments of near-patient testing devices.
Applications of remote sensing to water resources
NASA Technical Reports Server (NTRS)
1977-01-01
Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.
Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; Kristine, David; John A. Sweka,
2014-01-01
Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2 fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated with elevation and negatively correlated with percent developed land use in the network catchment. Probability of capture did not vary substantially across sites or years but was negatively correlated with mean stream width. Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE (catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term linear trends in density.
NASA Astrophysics Data System (ADS)
Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy
2003-10-01
The Marine Mammal Monitoring on Navy Ranges (M3R) project has developed a toolset for passive detection and localization of marine mammals using the existing infrastructure of Navy's undersea ranges. The Office of Naval Research funded the M3R project as part of the Navy's effort to determine the effects of acoustic and other emissions on marine mammals and threatened/endangered species. A necessary first step in this effort is the creation of a baseline of behavior, which requires long-term monitoring of marine mammals. Such monitoring, in turn, requires the ability to detect and localize the animals. This paper will present the passive acoustic monitoring and localization tools developed under M3R. It will also present results of the deployment of the M3R tools at the Atlantic Undersea Test and Evaluation Center (AUTEC), Andros Island, Bahamas from June through November 2003. Finally, it will discuss current work to improve automated species classification.