Sample records for developing measurement methods

  1. Method for technology-delivered healthcare measures.

    PubMed

    Kramer-Jackman, Kelli Lee; Popkess-Vawter, Sue

    2011-12-01

    Current healthcare literature lacks development and evaluation methods for research and practice measures administered by technology. Researchers with varying levels of informatics experience are developing technology-delivered measures because of the numerous advantages they offer. Hasty development of technology-delivered measures can present issues that negatively influence administration and psychometric properties. The Method for Technology-delivered Healthcare Measures is designed to systematically guide the development and evaluation of technology-delivered measures. The five-step Method for Technology-delivered Healthcare Measures includes establishment of content, e-Health literacy, technology delivery, expert usability, and participant usability. Background information and Method for Technology-delivered Healthcare Measures steps are detailed.

  2. Development of a factory/refinery method to measure total, soluble, and insoluble starch in sugar products

    USDA-ARS?s Scientific Manuscript database

    An easy, rapid, and inexpensive method was developed to measure total, soluble, and insoluble starch in products at the factory and refinery, using microwave-assisted neutralization chemistry. The method was optimized using the previously developed USDA Starch Research method as a reference. Optimal...

  3. Integration of optical measurement methods with flight parameter measurement systems

    NASA Astrophysics Data System (ADS)

    Kopecki, Grzegorz; Rzucidlo, Pawel

    2016-05-01

    During the AIM (advanced in-flight measurement techniques) and AIM2 projects, innovative modern techniques were developed. The purpose of the AIM project was to develop optical measurement techniques dedicated for flight tests. Such methods give information about aircraft elements deformation, thermal loads or pressure distribution, etc. In AIM2 the development of optical methods for flight testing was continued. In particular, this project aimed at the development of methods that could be easily applied in flight tests in an industrial setting. Another equally important task was to guarantee the synchronization of the classical measuring system with cameras. The PW-6U glider used in flight tests was provided by the Rzeszów University of Technology. The glider had all the equipment necessary for testing the IPCT (image pattern correlation technique) and IRT (infrared thermometry) methods. Additionally, equipment adequate for the measurement of typical flight parameters, registration and analysis has been developed. This article describes the designed system, as well as presenting the system’s application during flight tests. Additionally, the results obtained in flight tests show certain limitations of the IRT method as applied.

  4. A Framework for Mixing Methods in Quantitative Measurement Development, Validation, and Revision: A Case Study

    ERIC Educational Resources Information Center

    Luyt, Russell

    2012-01-01

    A framework for quantitative measurement development, validation, and revision that incorporates both qualitative and quantitative methods is introduced. It extends and adapts Adcock and Collier's work, and thus, facilitates understanding of quantitative measurement development, validation, and revision as an integrated and cyclical set of…

  5. An exploratory survey of methods used to develop measures of performance

    NASA Astrophysics Data System (ADS)

    Hamner, Kenneth L.; Lafleur, Charles A.

    1993-09-01

    Nonmanufacturing organizations are being challenged to provide high-quality products and services to their customers, with an emphasis on continuous process improvement. Measures of performance, referred to as metrics, can be used to foster process improvement. The application of performance measurement to nonmanufacturing processes can be very difficult. This research explored methods used to develop metrics in nonmanufacturing organizations. Several methods were formally defined in the literature, and the researchers used a two-step screening process to determine the OMB Generic Method was most likely to produce high-quality metrics. The OMB Generic Method was then used to develop metrics. A few other metric development methods were found in use at nonmanufacturing organizations. The researchers interviewed participants in metric development efforts to determine their satisfaction and to have them identify the strengths and weaknesses of, and recommended improvements to, the metric development methods used. Analysis of participants' responses allowed the researchers to identify the key components of a sound metrics development method. Those components were incorporated into a proposed metric development method that was based on the OMB Generic Method, and should be more likely to produce high-quality metrics that will result in continuous process improvement.

  6. Laser triangulation method for measuring the size of parking claw

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Ming; Pang, Ying

    2017-10-01

    With the development of science and technology and the maturity of measurement technology, the 3D profile measurement technology has been developed rapidly. Three dimensional measurement technology is widely used in mold manufacturing, industrial inspection, automatic processing and manufacturing, etc. There are many kinds of situations in scientific research and industrial production. It is necessary to transform the original mechanical parts into the 3D data model on the computer quickly and accurately. At present, many methods have been developed to measure the contour size, laser triangulation is one of the most widely used methods.

  7. Flexible methods for segmentation evaluation: results from CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2014-01-01

    Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.

  8. Evaluation of expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with light source-stepping method

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu

    2015-03-01

    Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.

  9. The use of qualitative methods in developing the descriptive systems of preference-based measures of health-related quality of life for use in economic evaluation.

    PubMed

    Stevens, Katherine; Palfreyman, Simon

    2012-12-01

    To describe how qualitative methods can be used in the development of descriptive systems of preference-based measures (PBMs) of health-related quality of life. The requirements of the National Institute for Health and Clinical Excellence and other agencies together with the increasing use of patient-reported outcome measures has led to an increase in the demand for PBMs. Recently, interest has grown in developing new PBMs and while previous research on PBMs has mainly focused on the methods of valuation, research into the methods of developing descriptive systems is an emerging field. Traditionally, descriptive systems of PBMs were developed by using top-down methods, where content was derived from existing measures, the literature, or health surveys. A contrasting approach is a bottom-up methodology, which takes the views of patients or laypeople on how their life is affected by their health. This approach generally requires the use of qualitative methods. Qualitative methods lend themselves well to the development of PBMs. They also ensure that the measure has appropriate language, content validity, and responsiveness to change. While the use of qualitative methods in the development of non-PBMs is fairly standard, their use in developing PBMs was until recently nonexistent. In this article, we illustrate the use of qualitative methods by presenting two case studies of recently developed PBMs, one generic and one condition specific. We outline the stages involved, discuss the strengths and weaknesses of the approach, and compare with the top-down approach used in the majority of PBMs to date. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. A Study of Quantitative Measurements of Programmer Productivity for Fleet Material Support Office (FMSO).

    DTIC Science & Technology

    1982-12-01

    paper examines the various measures discussed in the literature and used in selected corpora- tions which develop software. It presents several methods ...examines the various measures discassed in the literature and used in selected corporations which develop software. It presents several methods for...HOUR .... 40 D. SELECTED INDUSrRY METHODS FOR MEASURING PRODUCTIVITY 41 _ I1. 1IBM 41.. . . . . . . . ; 2. Amdahl . . . . . . . . . . . . . . . . . . 44

  11. Developing a Measure of Wealth for Primary Student Families in a Developing Country: Comparison of Two Methods of Psychometric Calibration

    ERIC Educational Resources Information Center

    Griffin, Patrick

    2005-01-01

    This article compares the invariance properties of two methods of psychometric instrument calibration for the development of a measure of wealth among families of Grade 5 pupils in five provinces in Vietnam. The measure is based on self-reported lists of possessions in the home. Its stability has been measured over two time periods. The concept of…

  12. Flexible methods for segmentation evaluation: Results from CT-based luggage screening

    PubMed Central

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2017-01-01

    BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346

  13. THE ONTARIO HYDRO METHOD FOR SPECIATED MERCURY MEASUREMENTS: ISSUES AND CONSIDERATIONS

    EPA Science Inventory

    The Ontario Hydro (OH) method has been developed for the measurement of total and speciated mercury emissions from coal-fired combustion sources. The OH method was initially developed to support EPA's information collection request to characterize and inventory mercury emissions ...

  14. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    NASA Astrophysics Data System (ADS)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  15. Methods of Measurement in epidemiology: Sedentary Behaviour

    PubMed Central

    Atkin, Andrew J; Gorely, Trish; Clemes, Stacy A; Yates, Thomas; Edwardson, Charlotte; Brage, Soren; Salmon, Jo; Marshall, Simon J; Biddle, Stuart JH

    2012-01-01

    Background Research examining sedentary behaviour as a potentially independent risk factor for chronic disease morbidity and mortality has expanded rapidly in recent years. Methods We present a narrative overview of the sedentary behaviour measurement literature. Subjective and objective methods of measuring sedentary behaviour suitable for use in population-based research with children and adults are examined. The validity and reliability of each method is considered, gaps in the literature specific to each method identified and potential future directions discussed. Results To date, subjective approaches to sedentary behaviour measurement, e.g. questionnaires, have focused predominantly on TV viewing or other screen-based behaviours. Typically, such measures demonstrate moderate reliability but slight to moderate validity. Accelerometry is increasingly being used for sedentary behaviour assessments; this approach overcomes some of the limitations of subjective methods, but detection of specific postures and postural changes by this method is somewhat limited. Instruments developed specifically for the assessment of body posture have demonstrated good reliability and validity in the limited research conducted to date. Miniaturization of monitoring devices, interoperability between measurement and communication technologies and advanced analytical approaches are potential avenues for future developments in this field. Conclusions High-quality measurement is essential in all elements of sedentary behaviour epidemiology, from determining associations with health outcomes to the development and evaluation of behaviour change interventions. Sedentary behaviour measurement remains relatively under-developed, although new instruments, both objective and subjective, show considerable promise and warrant further testing. PMID:23045206

  16. Enzymatic method for measuring starch gelatinization in dry products in situ

    USDA-ARS?s Scientific Manuscript database

    An enzymatic method based on hydrolysis of starch by amyloglucosidase and measurement of D-glucose released by glucose oxidase-peroxidase was developed to measure both gelatinized starch and hydrolyzable starch in situ of dried starchy products. Efforts focused on the development of sample handling ...

  17. Methods for Measuring Occurrence and Exposure From Viruses in Drinking and Recreational Water

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) has an active research program to develop and improve methods for detecting human enteric viruses in recreational, source, and drinking waters. EPA is also developing methods to measure exposure to waterborne viruses and ap...

  18. Novel method for measuring a dense 3D strain map of robotic flapping wings

    NASA Astrophysics Data System (ADS)

    Li, Beiwen; Zhang, Song

    2018-04-01

    Measuring dense 3D strain maps of the inextensible membranous flapping wings of robots is of vital importance to the field of bio-inspired engineering. Conventional high-speed 3D videography methods typically reconstruct the wing geometries through measuring sparse points with fiducial markers, and thus cannot obtain the full-field mechanics of the wings in detail. In this research, we propose a novel system to measure a dense strain map of inextensible membranous flapping wings by developing a superfast 3D imaging system and a computational framework for strain analysis. Specifically, first we developed a 5000 Hz 3D imaging system based on the digital fringe projection technique using the defocused binary patterns to precisely measure the dynamic 3D geometries of rapidly flapping wings. Then, we developed a geometry-based algorithm to perform point tracking on the precisely measured 3D surface data. Finally, we developed a dense strain computational method using the Kirchhoff-Love shell theory. Experiments demonstrate that our method can effectively perform point tracking and measure a highly dense strain map of the wings without many fiducial markers.

  19. Metrological characterization methods for confocal chromatic line sensors and optical topography sensors

    NASA Astrophysics Data System (ADS)

    Seppä, Jeremias; Niemelä, Karri; Lassila, Antti

    2018-05-01

    The increasing use of chromatic confocal technology for, e.g. fast, in-line optical topography, and measuring thickness, roughness and profiles implies a need for the characterization of various aspects of the sensors. Single-point, line and matrix versions of chromatic confocal technology, encoding depth information into wavelength, have been developed. Of these, line sensors are particularly suitable for in-line process measurement. Metrological characterization and development of practical methods for calibration and checking is needed for new optical methods and devices. Compared to, e.g. tactile methods, optical topography measurement techniques have limitations related to light wavelength and coherence, optical properties of the sample including reflectivity, specularity, roughness and colour, and definition of optical versus mechanical surfaces. In this work, metrological characterization methods for optical line sensors were developed for scale magnification and linearity, sensitivity to sample properties, and dynamic characteristics. An accurate depth scale calibration method using a single prototype groove depth sample was developed for a line sensor and validated with laser-interferometric sample tracking, attaining (sub)micrometre level or better than 0.1% scale accuracy. Furthermore, the effect of different surfaces and materials on the measurement and depth scale was studied, in particular slope angle, specularity and colour. In addition, dynamic performance, noise, lateral scale and resolution were measured using the developed methods. In the case of the LCI1200 sensor used in this study, which has a 11.3 mm  ×  2.8 mm measurement range, the instrument depth scale was found to depend only minimally on sample colour, whereas measuring steeply sloped specular surfaces in the peripheral measurement area, in the worst case, caused a somewhat larger relative sample-dependent change (1%) in scale.

  20. Development of Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources

    EPA Science Inventory

    Abstract - A standardized version of a mobile tracer correlation measurement method was developed and used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrumentation...

  1. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    PubMed Central

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-01

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488

  2. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    PubMed

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  3. Development of a method for measuring femoral torsion using real-time ultrasound.

    PubMed

    Hafiz, Eliza; Hiller, Claire E; Nicholson, Leslie L; Nightingale, E Jean; Clarke, Jillian L; Grimaldi, Alison; Eisenhuth, John P; Refshauge, Kathryn M

    2014-07-01

    Excessive femoral torsion has been associated with various musculoskeletal and neurological problems. To explore this relationship, it is essential to be able to measure femoral torsion in the clinic accurately. Computerized tomography (CT) and magnetic resonance imaging (MRI) are thought to provide the most accurate measurements but CT involves significant radiation exposure and MRI is expensive. The aim of this study was to design a method for measuring femoral torsion in the clinic, and to determine the reliability of this method. Details of design process, including construction of a jig, the protocol developed and the reliability of the method are presented. The protocol developed used ultrasound to image a ridge on the greater trochanter, and a customized jig placed on the femoral condyles as reference points. An inclinometer attached to the customized jig allowed quantification of the degree of femoral torsion. Measurements taken with this protocol had excellent intra- and inter-rater reliability (ICC2,1 = 0.98 and 0.97, respectively). This method of measuring femoral torsion also permitted measurement of femoral torsion with a high degree of accuracy. This method is applicable to the research setting and, with minor adjustments, will be applicable to the clinical setting.

  4. Development of Aeroservoelastic Analytical Models and Gust Load Alleviation Control Laws of a SensorCraft Wind-Tunnel Model Using Measured Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vartio, Eric; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott,Robert C.

    2007-01-01

    Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.

  5. Development of Aeroservoelastic Analytical Models and Gust Load Alleviation Control Laws of a SensorCraft Wind-Tunnel Model Using Measured Data

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Shimko, Anthony; Kvaternik, Raymond G.; Eure, Kenneth W.; Scott, Robert C.

    2006-01-01

    Aeroservoelastic (ASE) analytical models of a SensorCraft wind-tunnel model are generated using measured data. The data was acquired during the ASE wind-tunnel test of the HiLDA (High Lift-to-Drag Active) Wing model, tested in the NASA Langley Transonic Dynamics Tunnel (TDT) in late 2004. Two time-domain system identification techniques are applied to the development of the ASE analytical models: impulse response (IR) method and the Generalized Predictive Control (GPC) method. Using measured control surface inputs (frequency sweeps) and associated sensor responses, the IR method is used to extract corresponding input/output impulse response pairs. These impulse responses are then transformed into state-space models for use in ASE analyses. Similarly, the GPC method transforms measured random control surface inputs and associated sensor responses into an AutoRegressive with eXogenous input (ARX) model. The ARX model is then used to develop the gust load alleviation (GLA) control law. For the IR method, comparison of measured with simulated responses are presented to investigate the accuracy of the ASE analytical models developed. For the GPC method, comparison of simulated open-loop and closed-loop (GLA) time histories are presented.

  6. Microscale Concentration Measurements Using Laser Light Scattering Methods

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles; Miller, Fletcher

    2004-01-01

    The development of lab-on-a-chip devices for microscale biochemical assays has led to the need for microscale concentration measurements of specific analyses. While fluorescence methods are the current choice, this method requires developing fluorophore-tagged conjugates for each analyte of interest. In addition, fluorescent imaging is also a volume-based method, and can be limiting as smaller detection regions are required.

  7. Development and Validation of a Rapid 13C6-Glucose Isotope Dilution UPLC-MRM Mass Spectrometry Method for Use in Determining System Accuracy and Performance of Blood Glucose Monitoring Devices

    PubMed Central

    Matsunami, Risë K.; Angelides, Kimon; Engler, David A.

    2015-01-01

    Background: There is currently considerable discussion about the accuracy of blood glucose concentrations determined by personal blood glucose monitoring systems (BGMS). To date, the FDA has allowed new BGMS to demonstrate accuracy in reference to other glucose measurement systems that use the same or similar enzymatic-based methods to determine glucose concentration. These types of reference measurement procedures are only comparative in nature and are subject to the same potential sources of error in measurement and system perturbations as the device under evaluation. It would be ideal to have a completely orthogonal primary method that could serve as a true standard reference measurement procedure for establishing the accuracy of new BGMS. Methods: An isotope-dilution liquid chromatography/mass spectrometry (ID-UPLC-MRM) assay was developed using 13C6-glucose as a stable isotope analogue to specifically measure glucose concentration in human plasma, and validated for use against NIST standard reference materials, and against fresh isolates of whole blood and plasma into which exogenous glucose had been spiked. Assay performance was quantified to NIST-traceable dry weight measures for both glucose and 13C6-glucose. Results: The newly developed assay method was shown to be rapid, highly specific, sensitive, accurate, and precise for measuring plasma glucose levels. The assay displayed sufficient dynamic range and linearity to measure across the range of both normal and diabetic blood glucose levels. Assay performance was measured to within the same uncertainty levels (<1%) as the NIST definitive method for glucose measurement in human serum. Conclusions: The newly developed ID UPLC-MRM assay can serve as a validated reference measurement procedure to which new BGMS can be assessed for glucose measurement performance. PMID:25986627

  8. Measuring organizational and individual factors thought to influence the success of quality improvement in primary care: a systematic review of instruments

    PubMed Central

    2012-01-01

    Background Continuous quality improvement (CQI) methods are widely used in healthcare; however, the effectiveness of the methods is variable, and evidence about the extent to which contextual and other factors modify effects is limited. Investigating the relationship between these factors and CQI outcomes poses challenges for those evaluating CQI, among the most complex of which relate to the measurement of modifying factors. We aimed to provide guidance to support the selection of measurement instruments by systematically collating, categorising, and reviewing quantitative self-report instruments. Methods Data sources: We searched MEDLINE, PsycINFO, and Health and Psychosocial Instruments, reference lists of systematic reviews, and citations and references of the main report of instruments. Study selection: The scope of the review was determined by a conceptual framework developed to capture factors relevant to evaluating CQI in primary care (the InQuIRe framework). Papers reporting development or use of an instrument measuring a construct encompassed by the framework were included. Data extracted included instrument purpose; theoretical basis, constructs measured and definitions; development methods and assessment of measurement properties. Analysis and synthesis: We used qualitative analysis of instrument content and our initial framework to develop a taxonomy for summarising and comparing instruments. Instrument content was categorised using the taxonomy, illustrating coverage of the InQuIRe framework. Methods of development and evidence of measurement properties were reviewed for instruments with potential for use in primary care. Results We identified 186 potentially relevant instruments, 152 of which were analysed to develop the taxonomy. Eighty-four instruments measured constructs relevant to primary care, with content measuring CQI implementation and use (19 instruments), organizational context (51 instruments), and individual factors (21 instruments). Forty-one instruments were included for full review. Development methods were often pragmatic, rather than systematic and theory-based, and evidence supporting measurement properties was limited. Conclusions Many instruments are available for evaluating CQI, but most require further use and testing to establish their measurement properties. Further development and use of these measures in evaluations should increase the contribution made by individual studies to our understanding of CQI and enhance our ability to synthesise evidence for informing policy and practice. PMID:23241168

  9. Acoustic evaluation of standing trees : recent research development

    Treesearch

    Xiping Wang; Robert J. Ross; Peter Carter

    2005-01-01

    This paper presents some research results from recent trial studies on measuring acoustic velocities on standing trees of five softwood species. The relationships between tree velocities measured by time of flight method and log velocities measured by resonance method were evaluated. Theoretical and empirical models were developed for adjusting observed tree velocity...

  10. Development of a new test cell to measure cumulative permeation of water-insoluble pesticides with low vapor pressure through protective clothing and glove materials

    PubMed Central

    SHAW, Anugrah; COLEONE-CARVALHO, Ana Carla; HOLLINGSHURST, Julien; DRAPER, Michael; MACHADO NETO, Joaquim Gonçalves

    2017-01-01

    A collaborative approach, involving resources and expertise from several countries, was used to develop a test cell to measure cumulative permeation by a solid-state collection technique. The new technique was developed to measure the permeation of pesticide active ingredients and other chemicals with low vapor pressure that would otherwise be difficult to test via standard techniques. The development process is described and the results from the final chosen test method are reported. Inter-laboratory studies were conducted to further refine the new method and determine repeatability and reliability. The revised test method has been approved as a new ISO/EN standard to measure permeation of chemicals with low vapor pressure and/or solubility in water. PMID:29033403

  11. Estimating direct, diffuse, and global solar radiation for various cities in Iran by two methods and their comparison with the measured data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashjaee, M.; Roomina, M.R.; Ghafouri-Azar, R.

    1993-05-01

    Two computational methods for calculating hourly, daily, and monthly average values of direct, diffuse, and global solar radiation on horizontal collectors have been presented in this article for location with different latitude, altitude, and atmospheric conditions in Iran. These methods were developed using two different independent sets of measured data from the Iranian Meteorological Organization (IMO) for two cities in Iran (Tehran and Isfahan) during 14 years of measurement for Tehran and 4 years of measurement for Isfahan. Comparison of calculated monthly average global solar radiation, using the two models for Tehran and Isfahan with measured data from the IMO,more » has indicated a good agreement between them. Then these developed methods were extended to another location (city of Bandar-Abbas), where measured data are not available. But the work of Daneshyar predicts its monthly global radiation. The maximum discrepancy of 7% between the developed models and the work of Daneshyar was observed.« less

  12. Development of a photogrammetric method of measuring tree taper outside bark

    Treesearch

    David R. Larsen

    2006-01-01

    A photogrammetric method is presented for measuring tree diameters outside bark using calibrated control ground-based digital photographs. The method was designed to rapidly collect tree taper information from subject trees for the development of tree taper equations. Software that is commercially available, but designed for a different purpose, can be readily adapted...

  13. Noncontact evaluation for interface states by photocarrier counting

    NASA Astrophysics Data System (ADS)

    Furuta, Masaaki; Shimizu, Kojiro; Maeta, Takahiro; Miyashita, Moriya; Izunome, Koji; Kubota, Hiroshi

    2018-03-01

    We have developed a noncontact measurement method that enables in-line measurement and does not have any test element group (TEG) formation. In this method, the number of photocarriers excited from the interface states are counted which is called “photocarrier counting”, and then the energy distribution of the interface states density (D it) is evaluated by spectral light excitation. In our previous experiment, the method used was a preliminary contact measurement method at the oxide on top of the Si wafer. We developed, at this time, a D it measurement method as a noncontact measurement with a gap between the probes and the wafer. The shallow trench isolation (STI) sidewall has more localized interface states than the region under the gate electrode. We demonstrate the noncontact measurement of trapped carriers from interface states using wafers of three different crystal plane orientations. The demonstration will pave the way for evaluating STI sidewall interface states in future studies.

  14. Development of nondestructive methods for measurement of slab thickness and modulus of rupture in concrete pavements.

    DOT National Transportation Integrated Search

    2005-01-01

    This report describes work to develop non-destructive testing methods for concrete pavements. Two methods, for pavement thickness and in-place strength estimation, respectively, were developed and evaluated. The thickness estimation method is based o...

  15. Measurement of menadione in urine by HPLC

    USDA-ARS?s Scientific Manuscript database

    Mammals convert phylloquinone to MK-4, with menadione as a possible intermediate. We developed and validated a method measuring urinary menadione. A high performance liquid chromatography (HPLC) method with a C30 column, fluorescence detection and post-column zinc reduction was developed. The mobile...

  16. A method for the in vivo measurement of americium-241 at long times post-exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neton, J.W.

    1988-01-01

    This study investigated an improved method for the quantitative measurement, calibration and calculation of {sup 241}Am organ burdens in humans. The techniques developed correct for cross-talk or count-rate contributions from surrounding and adjacent organ burdens and assures for the proper assignment of activity to the lungs, liver and skeleton. In order to predict the net count-rates for the measurement geometries of the skull, liver and lung, a background prediction method was developed. This method utilizes data obtained from the measurement of a group of control subjects. Based on this data, a linear prediction equation was developed for each measurement geometry.more » In order to correct for the cross-contributions among the various deposition loci, a series of surrogate human phantom structures were measured. The results of measurements of {sup 241}Am depositions in six exposure cases have been evaluated using these new techniques and have indicated that lung burden estimates could be in error by as much as 100 percent when corrections are not made for contributions to the count-rate from other organs.« less

  17. Developing Measures of Job Performance for Support Staff in Housing Services for People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Hatton, Chris; Wigham, Sarah; Craig, Jaime

    2009-01-01

    Background: There is an absence of research concerning the assessment of housing support worker job performance, particularly in the development of job performance measures that reflect the priorities of people with intellectual disabilities and their families. Method: A worker-oriented job analysis method was used to develop four short job…

  18. Development and Validation of a Rapid (13)C6-Glucose Isotope Dilution UPLC-MRM Mass Spectrometry Method for Use in Determining System Accuracy and Performance of Blood Glucose Monitoring Devices.

    PubMed

    Matsunami, Risë K; Angelides, Kimon; Engler, David A

    2015-05-18

    There is currently considerable discussion about the accuracy of blood glucose concentrations determined by personal blood glucose monitoring systems (BGMS). To date, the FDA has allowed new BGMS to demonstrate accuracy in reference to other glucose measurement systems that use the same or similar enzymatic-based methods to determine glucose concentration. These types of reference measurement procedures are only comparative in nature and are subject to the same potential sources of error in measurement and system perturbations as the device under evaluation. It would be ideal to have a completely orthogonal primary method that could serve as a true standard reference measurement procedure for establishing the accuracy of new BGMS. An isotope-dilution liquid chromatography/mass spectrometry (ID-UPLC-MRM) assay was developed using (13)C6-glucose as a stable isotope analogue to specifically measure glucose concentration in human plasma, and validated for use against NIST standard reference materials, and against fresh isolates of whole blood and plasma into which exogenous glucose had been spiked. Assay performance was quantified to NIST-traceable dry weight measures for both glucose and (13)C6-glucose. The newly developed assay method was shown to be rapid, highly specific, sensitive, accurate, and precise for measuring plasma glucose levels. The assay displayed sufficient dynamic range and linearity to measure across the range of both normal and diabetic blood glucose levels. Assay performance was measured to within the same uncertainty levels (<1%) as the NIST definitive method for glucose measurement in human serum. The newly developed ID UPLC-MRM assay can serve as a validated reference measurement procedure to which new BGMS can be assessed for glucose measurement performance. © 2015 Diabetes Technology Society.

  19. Autogenous accelerated curing of concrete cylinders. Part II, Development of a moisture measuring method.

    DOT National Transportation Integrated Search

    1970-01-01

    Through a literature study, approximately fifty methods of measuring moisture were investigated to ascertain a suitable method for use in measuring moisture changes in 6 inch by 12 inch concrete cylinders cured by the autogenous accelerated curing me...

  20. Experimental comparison and validation of hot-ball method with guarded hot plate method on polyurethane foams

    NASA Astrophysics Data System (ADS)

    Hudec, Ján; Glorieux, Christ; Dieška, Peter; Kubičár, Ľudovít

    2016-07-01

    The Hot-ball method is an innovative transient method for measuring thermophysical properties. The principle is based on heating of a small ball, incorporated in measured medium, by constant heating power and simultaneous measuring of the ball's temperature response since the heating was initiated. The shape of the temperature response depends on thermophysical properties of the medium, where the sensor is placed. This method is patented by Institute of Physics, SAS, where the method and sensors based on this method are being developed. At the beginning of the development of sensors for this method we were oriented on monitoring applications, where relative precision is much more important than accuracy. Meanwhile, the quality of sensors was improved good enough to be used for a new application - absolute measuring of thermophysical parameters of low thermally conductive materials. This paper describes experimental verification and validation of measurement by hot-ball method. Thanks to cooperation with Laboratory of Soft Matter and Biophysics of Catholic University of Leuven in Belgium, established Guarded Hot Plate method was used as a reference. Details about measuring setups, description of the experiments and results of the comparison are presented.

  1. Development of a UHPLC-MS/MS method for the measurement of chlortetracycline degradation in swine manure

    USDA-ARS?s Scientific Manuscript database

    An ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed capable of simultaneously measuring chlortetracycline (CTC), epi-chlortetracycline (epi-CTC), isochlortetracycline (ICTC), oxytetracycline, and tetracycline in swine manure. A simple sample pr...

  2. Health-related quality-of-life assessments in diverse population groups in the United States.

    PubMed

    Stewart, A L; Nápoles-Springer, A

    2000-09-01

    Effectiveness research needs to represent the increasing diversity of the United States. Health-related quality-of-life (HRQOL) measures are often included as secondary treatment outcomes. Because most HRQOL measures were developed in nonminority, well-educated samples, we must determine whether such measures are conceptually and psychometrically equivalent in diverse subgroups. Without equivalence, overall findings and observed group differences may contain measurement bias. The objectives of this work were to discuss the nature of diversity, importance of ensuring the adequacy of HRQOL measures in diverse groups, methods for assessing comparability of HRQOL measures across groups, and methodological and analytical challenges. Integration of qualitative and quantitative methods is needed to achieve measurement adequacy in diverse groups. Little research explores conceptual equivalence across US subgroups; of the few studies of psychometric comparability, findings are inconsistent. Evidence is needed regarding whether current measures are comparable or need modifications to meet universality assumptions, and we need to determine the best methods for evaluating this. We recommend coordinated efforts to develop guidelines for assessing measurement adequacy across diverse subgroups, allocate resources for measurement studies in diverse populations, improve reporting of and access to measurement results by subgroups, and develop strategies for optimizing the universality of HRQOL measures and resolving inadequacies. We advocate culturally sensitive research that involves cultural subgroups throughout the research process. Because examining the cultural equivalence of HRQOL measures within the United States is somewhat new, we have a unique opportunity to shape the direction of this work through development and dissemination of appropriate methods.

  3. Development of a UHPLC-MS/MS method for the measurement of chlortetracycline degradation in swine manure

    USDA-ARS?s Scientific Manuscript database

    An ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed capable of simultaneously measuring chlortetracycline (CTC), epi-chlortetracycline (epi-CTC) and isochlortetracycline (ICTC), as well as other structurally related tetracyclines in swine manur...

  4. Assessment on the methods of measuring the tyre-road contact patch stresses

    NASA Astrophysics Data System (ADS)

    Anghelache, G.; Moisescu, A.-R.; Buretea, D.

    2017-08-01

    The paper reviews established and modern methods for investigating tri-axial stress distributions in the tyre-road contact patch. The authors used three methods of measuring stress distributions: strain gauge method; force sensing technique; acceleration measurements. Four prototypes of instrumented pins transducers involving mentioned measuring methods were developed. Data acquisitions of the contact patch stresses distributions were performed using each transducer with instrumented pin. The results are analysed and compared, underlining the advantages and drawbacks of each method. The experimental results indicate that the three methods are valuable.

  5. Assessment of sustainable urban transport development based on entropy and unascertained measure.

    PubMed

    Li, Yancang; Yang, Jing; Shi, Huawang; Li, Yijie

    2017-01-01

    To find a more effective method for the assessment of sustainable urban transport development, the comprehensive assessment model of sustainable urban transport development was established based on the unascertained measure. On the basis of considering the factors influencing urban transport development, the comprehensive assessment indexes were selected, including urban economical development, transport demand, environment quality and energy consumption, and the assessment system of sustainable urban transport development was proposed. In view of different influencing factors of urban transport development, the index weight was calculated through the entropy weight coefficient method. Qualitative and quantitative analyses were conducted according to the actual condition. Then, the grade was obtained by using the credible degree recognition criterion from which the urban transport development level can be determined. Finally, a comprehensive assessment method for urban transport development was introduced. The application practice showed that the method can be used reasonably and effectively for the comprehensive assessment of urban transport development.

  6. Development of a commercially viable piezoelectric force sensor system for static force measurement

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  7. Quantitative comparison of in situ soil CO2 flux measurement methods

    Treesearch

    Jennifer D. Knoepp; James M. Vose

    2002-01-01

    Development of reliable regional or global carbon budgets requires accurate measurement of soil CO2 flux. We conducted laboratory and field studies to determine the accuracy and comparability of methods commonly used to measure in situ soil CO2 fluxes. Methods compared included CO2...

  8. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    EPA Science Inventory

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  9. Cost-Effective, Insitu Field Measurements for Determining the Water Retention Quantification onBehavior of Individual Right-of-Way Bioswales

    NASA Astrophysics Data System (ADS)

    Wang, S.; McGillis, W. R.; Hu, R.; Culligan, P. J.

    2017-12-01

    Green infrastructure (GI) interventions, such as right-of-way bioswales, are being implemented in many urban areas, including New York City, to help mitigate the negative impacts of stormwater runoff. To understand the storm water retention capacity of bioswales, hydrological models, at scales ranging from the tributary area of a single right-of-way bioswale to an entire watershed, are often invoked. The validation and calibration of these models is, however, currently hampered by lack of extensive field measurements that quantify bioswale stormwater retention behaviors for different storm sizes and bioswale configurations. To overcome this problem, three field methods to quantify the water retention capacity of individual bioswales were developed. The methods are potentially applicable to other applications concerned with quantifying flow regimes in urban area. Precise measurements with high time resolutions and low environmental impacts are desired for gauging the hydraulic performance of bioswales, and similar GI configurations. To satisfy these requirements, an in-field measurement method was developed which involved the deployment of acoustic water-level sensors to measure the upstream and downstream water levels of flow into and out of a bioswale located in the Bronx areas of New York City. The measurements were made during several individual storm events. To provide reference flow rates to enable accurate calibration of the acoustic water level measurements, two other conductometry-based methods, which made use of YSI sensors and injected calcium chloride solutions, were also developed and deployed simultaneously with the water level measurements. The suite of data gathered by these methods enabled the development of a relationship between stage-discharge and rainfall intensity, which was then used to obtain the upstream and downstream hydrographs for the individual bioswale for the different storm events. This presentation will describe in detail the developed field methods, and will present results arising from the deployment of the methods, including results on the stormwater infiltration quantity and infiltration rate of the studied bioswale. The field methods are easily deployed at other bioswales sites and for other similar GI configurations.

  10. Survey and Experimental Testing of Nongravimetric Mass Measurement Devices

    NASA Technical Reports Server (NTRS)

    Oakey, W. E.; Lorenz, R.

    1977-01-01

    Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.

  11. DEVELOPMENT AND EVALUATION OF AN ENZYME-LINKED IMMUNOASSAY (ELISA) METHOD FOR THE MEASUREMENT OF 2,4-DICHLOROPHENOXYACETIC ACID IN HUMAN URINE

    EPA Science Inventory

    This paper describes the development of a 96-microwell high sample capacity ELISA method for measuring 2,4-D in urine; the analysis of 2,4-D in real-world urine samples by both ELISA and GC/MS methods; and compares the ELISA and GC/MS results in several key areas: accuracy, preci...

  12. EXPOSURE METHOD CONSIDERATIONS FOR MEASURING VITELLOGENIN EXPRESSION IN LARVAL AND MALE FATHEAD MINNOWS (PIMEPHALES PROMELAS)

    EPA Science Inventory

    Our laboratory has developed methods for measuring the expression of the vitellogenin (Vg) gene in larval and adult male fathead minnows. During this development we found several conditions that affect background Vg levels and we observed preconditions for the expression of this...

  13. Research trend in thermally stimulated current method for development of materials and devices in Japan

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Taguchi, Dai

    2018-03-01

    Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.

  14. Evaluation and development plan of NRTA measurement methods for the Rokkasho Reprocessing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.K.; Hakkila, E.A.; Flosterbuer, S.F.

    Near-real-time accounting (NRTA) has been proposed as a safeguards method at the Rokkasho Reprocessing Plant (RRP), a large-scale commercial boiling water and pressurized water reactors spent-fuel reprocessing facility. NRTA for RRP requires material balance closures every month. To develop a more effective and practical NRTA system for RRP, we have evaluated NRTA measurement techniques and systems that might be implemented in both the main process and the co-denitration process areas at RRP to analyze the concentrations of plutonium in solutions and mixed oxide powder. Based on the comparative evaluation, including performance, reliability, design criteria, operation methods, maintenance requirements, and estimatedmore » costs for each possible measurement method, recommendations for development were formulated. This paper discusses the evaluations and reports on the recommendation of the NRTA development plan for potential implementation at RRP.« less

  15. Antimicrobial Testing Methods & Procedures Developed by EPA's Microbiology Laboratory

    EPA Pesticide Factsheets

    We develop antimicrobial testing methods and standard operating procedures to measure the effectiveness of hard surface disinfectants against a variety of microorganisms. Find methods and procedures for antimicrobial testing.

  16. Uncertainty Evaluation of the New Setup for Measurement of Water-Vapor Permeation Rate by a Dew-Point Sensor

    NASA Astrophysics Data System (ADS)

    Hudoklin, D.; Šetina, J.; Drnovšek, J.

    2012-09-01

    The measurement of the water-vapor permeation rate (WVPR) through materials is very important in many industrial applications such as the development of new fabrics and construction materials, in the semiconductor industry, packaging, vacuum techniques, etc. The demand for this kind of measurement grows considerably and thus many different methods for measuring the WVPR are developed and standardized within numerous national and international standards. However, comparison of existing methods shows a low level of mutual agreement. The objective of this paper is to demonstrate the necessary uncertainty evaluation for WVPR measurements, so as to provide a basis for development of a corresponding reference measurement standard. This paper presents a specially developed measurement setup, which employs a precision dew-point sensor for WVPR measurements on specimens of different shapes. The paper also presents a physical model, which tries to account for both dynamic and quasi-static methods, the common types of WVPR measurements referred to in standards and scientific publications. An uncertainty evaluation carried out according to the ISO/IEC guide to the expression of uncertainty in measurement (GUM) shows the relative expanded ( k = 2) uncertainty to be 3.0 % for WVPR of 6.71 mg . h-1 (corresponding to permeance of 30.4 mg . m-2. day-1 . hPa-1).

  17. Measurement equivalence and differential item functioning in family psychology.

    PubMed

    Bingenheimer, Jeffrey B; Raudenbush, Stephen W; Leventhal, Tama; Brooks-Gunn, Jeanne

    2005-09-01

    Several hypotheses in family psychology involve comparisons of sociocultural groups. Yet the potential for cross-cultural inequivalence in widely used psychological measurement instruments threatens the validity of inferences about group differences. Methods for dealing with these issues have been developed via the framework of item response theory. These methods deal with an important type of measurement inequivalence, called differential item functioning (DIF). The authors introduce DIF analytic methods, linking them to a well-established framework for conceptualizing cross-cultural measurement equivalence in psychology (C.H. Hui and H.C. Triandis, 1985). They illustrate the use of DIF methods using data from the Project on Human Development in Chicago Neighborhoods (PHDCN). Focusing on the Caregiver Warmth and Environmental Organization scales from the PHDCN's adaptation of the Home Observation for Measurement of the Environment Inventory, the authors obtain results that exemplify the range of outcomes that may result when these methods are applied to psychological measurement instruments. (c) 2005 APA, all rights reserved

  18. Photogrammetry and Videogrammetry Methods Development for Solar Sail Structures. Masters Thesis awarded by George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S. (Technical Monitor); Black, Jonathan T.

    2003-01-01

    This report discusses the development and application of metrology methods called photogrammetry and videogrammetry that make accurate measurements from photographs. These methods have been adapted for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, non-contact, dynamic characterization using dot projection videogrammetry. The accuracy of the measurement of the resonant frequencies and operating deflection shapes that were extracted surpassed expectations. While other non-contact measurement methods exist, they are not full-field and require significantly more time to take data.

  19. Dynamic gas temperature measurement system

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 KHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement are presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data.

  20. Characterization and measurement of natural gas trace constituents. Volume 1. Arsenic. Final report, June 1989-October 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, S.S.; Attari, A.

    1995-01-01

    The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less

  1. [Development of ICP-OES, ICP-MS and GF-AAS Methods for Simultaneous Quantification of Lead, Total Arsenic and Cadmium in Soft Drinks].

    PubMed

    Kataoka, Yohei; Watanabe, Takahiro; Hayashi, Tomoko; Teshima, Reiko; Matsuda, Rieko

    2015-01-01

    In this study, we developed methods to quantify lead, total arsenic and cadmium contained in various kinds of soft drinks, and we evaluated their performance. The samples were digested by common methods to prepare solutions for measurement by ICP-OES, ICP-MS and graphite furnace atomic absorption spectrometry (GF-AAS). After digestion, internal standard was added to the digestion solutions for measurements by ICP-OES and ICP-MS. For measurement by GF-AAS, additional purification of the digestion solution was conducted by back-extraction of the three metals into nitric acid solution after extraction into an organic solvent with ammonium pyrrolidine dithiocarbamate. Performance of the developed methods were evaluated for eight kinds of soft drinks.

  2. Proximal sensing for soil carbon accounting

    NASA Astrophysics Data System (ADS)

    England, Jacqueline R.; Viscarra Rossel, Raphael A.

    2018-05-01

    Maintaining or increasing soil organic carbon (C) is vital for securing food production and for mitigating greenhouse gas (GHG) emissions, climate change, and land degradation. Some land management practices in cropping, grazing, horticultural, and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one requires measurements of soil organic C concentration, bulk density, and gravel content, but using conventional laboratory-based analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms of their rapidity, cost, accuracy, safety, readiness, and their state of development. The most suitable method for measuring soil organic C concentrations appears to be visible-near-infrared (vis-NIR) spectroscopy and, for bulk density, active gamma-ray attenuation. Sensors for measuring gravel have not been developed, but an interim solution with rapid wet sieving and automated measurement appears useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for soil organic C accounting, but the methods need to be standardized and procedural guidelines need to be developed to ensure proficient measurement and accurate reporting and verification. These are particularly important if the schemes use financial incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss requirements for developing new soil C accounting methods based on proximal sensing, including requirements for recording, verification, and auditing.

  3. Development of congestion performance measures using ITS information.

    DOT National Transportation Integrated Search

    2003-01-01

    The objectives of this study were to define a performance measure(s) that could be used to show congestion levels on critical corridors throughout Virginia and to develop a method to select and calculate performance measures to quantify congestion in...

  4. Use of information entropy measures of sitting postural sway to quantify developmental delay in infants

    PubMed Central

    Deffeyes, Joan E; Harbourne, Regina T; DeJong, Stacey L; Kyvelidou, Anastasia; Stuberg, Wayne A; Stergiou, Nicholas

    2009-01-01

    Background By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants. PMID:19671183

  5. Development of method for experimental determination of wheel-rail contact forces and contact point position by using instrumented wheelset

    NASA Astrophysics Data System (ADS)

    Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.

    2017-07-01

    This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.

  6. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  7. A New Method for Non-destructive Measurement of Biomass, Growth Rates, Vertical Biomass Distribution and Dry Matter Content Based on Digital Image Analysis

    PubMed Central

    Tackenberg, Oliver

    2007-01-01

    Background and Aims Biomass is an important trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive. Thus, they do not allow the development of individual plants to be followed and they require many individuals to be cultivated for repeated measurements. Non-destructive methods do not have these limitations. Here, a non-destructive method based on digital image analysis is presented, addressing not only above-ground fresh biomass (FBM) and oven-dried biomass (DBM), but also vertical biomass distribution as well as dry matter content (DMC) and growth rates. Methods Scaled digital images of the plants silhouettes were taken for 582 individuals of 27 grass species (Poaceae). Above-ground biomass and DMC were measured using destructive methods. With image analysis software Zeiss KS 300, the projected area and the proportion of greenish pixels were calculated, and generalized linear models (GLMs) were developed with destructively measured parameters as dependent variables and parameters derived from image analysis as independent variables. A bootstrap analysis was performed to assess the number of individuals required for re-calibration of the models. Key Results The results of the developed models showed no systematic errors compared with traditionally measured values and explained most of their variance (R2 ≥ 0·85 for all models). The presented models can be directly applied to herbaceous grasses without further calibration. Applying the models to other growth forms might require a re-calibration which can be based on only 10–20 individuals for FBM or DMC and on 40–50 individuals for DBM. Conclusions The methods presented are time and cost effective compared with traditional methods, especially if development or growth rates are to be measured repeatedly. Hence, they offer an alternative way of determining biomass, especially as they are non-destructive and address not only FBM and DBM, but also vertical biomass distribution and DMC. PMID:17353204

  8. DEVELOPMENT AND VALIDATION OF A METHOD FOR MEASURING EXEMPT VOLATILE ORGANIC COMPOUNDS AND CARBON DIOXIDE IN CONSUMER PRODUCTS

    EPA Science Inventory

    The report describes the development and validation of a method for measuring exempt volatile organic compounds (VOCs) and carbon dioxide in consumer products. (NOTE: Ground-level ozone can cause a variety of adverse health effects as well as agricultural and ecological damage. C...

  9. The non-contact biometric identified bio signal measurement sensor and algorithms.

    PubMed

    Kim, Chan-Il; Lee, Jong-Ha

    2018-01-01

    In these days, wearable devices have been developed for effectively measuring biological data. However, these devices have tissue allege and noise problem. To solve these problems, biometric measurement based on a non-contact method, such as face image sequencing is developed. This makes it possible to measure biometric data without any operation and side effects. However, it is impossible for a remote center to identify the person whose data are measured by the novel methods. In this paper, we propose the novel non-contact heart rate and blood pressure imaging system, Deep Health Eye. This system has authentication process at the same time as measuring bio signals, through non-contact method. In the future, this system can be convenient home bio signal monitoring system by combined with smart mirror.

  10. Microsiemens or Milligrams: Measures of Ionic Mixtures ...

    EPA Pesticide Factsheets

    In December of 2016, EPA released the Draft Field-Based Methods for Developing Aquatic Life Criteria for Specific Conductivity for public comment. Once final, states and authorized tribes may use these methods to derive field-based ecoregional ambient Aquatic Life Ambient Water Quality Criteria (AWQC) for specific conductivity (SC) in flowing waters. The methods provide flexible approaches for developing science-based SC criteria that reflect ecoregional or state specific factors. The concentration of a dissolved salt mixture can be measured in a number of ways including measurement of total dissolved solids, freezing point depression, refractive index, density, or the sum of the concentrations of individually measured ions. For the draft method, SC was selected as the measure because SC is a measure of all ions in the mixture; the measurement technology is fast, inexpensive, and accurate, and it measures only dissolved ions. When developing water quality criteria for major ions, some stakeholders may prefer to identify the ionic constituents as a measure of exposure instead of SC. A field-based method was used to derive example chronic and acute water quality criteria for SC and two anions a common mixture of ions (bicarbonate plus sulfate, [HCO3−] + [SO42−] in mg/L) that represent common mixtures in streams. These two anions are sufficient to model the ion mixture and SC (R2 = 0.94). Using [HCO3−] + [SO42−] does not imply that these two anions are the

  11. Optothermal in vitro diffusion measurements through silicone membranes

    NASA Astrophysics Data System (ADS)

    Cowen, J. A.; Liu, H.; Xiao, P.; Imhof, R. E.

    2003-01-01

    We report the development of a new method for measuring diffusion rates of surface-applied chemicals through polymer membranes such as polydimethylsiloxane (PDMS). An important feature of the approach is the use of optothermal transient emission radiometry to sense diffusant concentration in a noncontacting, noninvasive way. This allows the method to be adapted to perform similar measurements on human skin in vivo, thus providing a way of cross-verifying in vivo and in vitro measurements. The correlation between in vitro and in vivo diffusion measurements is also important for developing credible alternatives to in vivo testing, for use with toxic chemicals or animal substitution. We present the results of experiments with several polyols diffusing through PDMS membranes of thickness 125 or 250 μm, describing the experimental details, the measurement protocol, the data analysis methods, and a study of measurement errors.

  12. The Noninvasive Measurement of X-Ray Tube Potential.

    NASA Astrophysics Data System (ADS)

    Ranallo, Frank Nunzio

    In this thesis I briefly describe the design of clinical x-ray imaging systems and also the various methods of measuring x-ray tube potential, both invasive and noninvasive. I also discuss the meaning and usage of the quantities tube potential (kV) and peak tube potential (kVp) with reference to x-ray systems used in medical imaging. I propose that there exist several quantities which describe different important aspects of the tube potential as a function of time. These quantities are measurable and can be well defined. I have developed a list of definitions of these quantities along with suggested names and symbols. I describe the development and physical principles of a superior noninvasive method of tube potential measurement along with the instrumentation used to implement this method. This thesis research resulted in the development of several commercial kVp test devices (or "kVp Meters") for which the actual measurement procedure is simple, rapid, and reliable compared to other methods, invasive or noninvasive. These kVp test devices provide measurements with a high level of accuracy and reliability over a wide range of test conditions. They provide results which are more reliable and clinically meaningful than many other, more primary and invasive methods. The errors inherent in these new kVp test devices were investigated and methods to minimize them are discussed.

  13. [Comparision of Different Methods of Area Measurement in Irregular Scar].

    PubMed

    Ran, D; Li, W J; Sun, Q G; Li, J Q; Xia, Q

    2016-10-01

    To determine a measurement standard of irregular scar area by comparing the advantages and disadvantages of different measurement methods in measuring same irregular scar area. Irregular scar area was scanned by digital scanning and measured by coordinate reading method, AutoCAD pixel method, Photoshop lasso pixel method, Photoshop magic bar filled pixel method and Foxit PDF reading software, and some aspects of these methods such as measurement time, repeatability, whether could be recorded and whether could be traced were compared and analyzed. There was no significant difference in the scar areas by the measurement methods above. However, there was statistical difference in the measurement time and repeatability by one or multi performers and only Foxit PDF reading software could be traced back. The methods above can be used for measuring scar area, but each one has its advantages and disadvantages. It is necessary to develop new measurement software for forensic identification. Copyright© by the Editorial Department of Journal of Forensic Medicine

  14. Study on AC loss measurements of HTS power cable for standardizing

    NASA Astrophysics Data System (ADS)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  15. Improving Cardiac Action Potential Measurements: 2D and 3D Cell Culture.

    PubMed

    Daily, Neil J; Yin, Yue; Kemanli, Pinar; Ip, Brian; Wakatsuki, Tetsuro

    2015-11-01

    Progress in the development of assays for measuring cardiac action potential is crucial for the discovery of drugs for treating cardiac disease and assessing cardiotoxicity. Recently, high-throughput methods for assessing action potential using induced pluripotent stem cell (iPSC) derived cardiomyocytes in both two-dimensional monolayer cultures and three-dimensional tissues have been developed. We describe an improved method for assessing cardiac action potential using an ultra-fast cost-effective plate reader with commercially available dyes. Our methods improve dramatically the detection of the fluorescence signal from these dyes and make way for the development of more high-throughput methods for cardiac drug discovery and cardiotoxicity.

  16. New method for measuring water seepage through salmon spawning gravel.

    Treesearch

    Richard D. Orchard

    1988-01-01

    A new method, with heat as a tracer, was developed for measuring rate and direction of intragravel waterflow through salmon spawning gravel. A commercial flowmeter was calibrated in the laboratory under controlled environmental conditions. Flow measurements comparing the flowmeter with a dye-tracer method were made in an artificial stream channel at Young Bay and in...

  17. The Development of a New Method of Idiographic Measurement for Dynamic Assessment Intervention

    ERIC Educational Resources Information Center

    Hurley, Emma; Murphy, Raegan

    2015-01-01

    This paper proposes a new method of idiographic measurement for dynamic assessment (DA) intervention. There are two main methods of measurement for DA intervention; split-half tests and integrated scoring systems. Split-half tests of ability have proved useful from a research perspective. Integrated scoring systems coupled with case studies are…

  18. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-03-01

    To date there have been no adequate methods for measuring the heat of vaporization of complex mixtures. This research developed two separate methods for measuring this key property of ethanol and gasoline blends, including the ability to estimate heat of vaporization at multiple temperatures. Methods for determining heat of vaporization of gasoline-ethanol blends by calculation from a compositional analysis and by direct calorimetric measurement were developed. Direct measurement produced values for pure compounds in good agreement with literature. A range of hydrocarbon gasolines were shown to have heat of vaporization of 325 kJ/kg to 375 kJ/kg. The effect of addingmore » ethanol at 10 vol percent to 50 vol percent was significantly larger than the variation between hydrocarbon gasolines (E50 blends at 650 kJ/kg to 700 kJ/kg). The development of these new and accurate methods allows researchers to begin to both quantify the effect of fuel evaporative cooling on knock resistance, and exploit this effect for combustion of hydrocarbon-ethanol fuel blends in high-efficiency SI engines.« less

  19. Assessment of sustainable urban transport development based on entropy and unascertained measure

    PubMed Central

    Li, Yancang; Yang, Jing; Li, Yijie

    2017-01-01

    To find a more effective method for the assessment of sustainable urban transport development, the comprehensive assessment model of sustainable urban transport development was established based on the unascertained measure. On the basis of considering the factors influencing urban transport development, the comprehensive assessment indexes were selected, including urban economical development, transport demand, environment quality and energy consumption, and the assessment system of sustainable urban transport development was proposed. In view of different influencing factors of urban transport development, the index weight was calculated through the entropy weight coefficient method. Qualitative and quantitative analyses were conducted according to the actual condition. Then, the grade was obtained by using the credible degree recognition criterion from which the urban transport development level can be determined. Finally, a comprehensive assessment method for urban transport development was introduced. The application practice showed that the method can be used reasonably and effectively for the comprehensive assessment of urban transport development. PMID:29084281

  20. A study of the river velocity measurement techniques and analysis methods

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Lun Chiang, Jie

    2013-04-01

    Velocity measurement technology can be traced back to the pitot tube velocity measurement method in the 18th century and today's velocity measurement technology use the acoustic and radar technology, with the Doppler principle developed technology advances, in order to develop the measurement method is more suitable for the measurement of velocity, the purpose is to get a more accurate measurement data and with the surface velocity theory, the maximum velocity theory and the indicator theory to obtain the mean velocity. As the main research direction of this article is to review the literature of the velocity measurement techniques and analysis methods, and to explore the applicability of the measurement method of the velocity measurement instruments, and then to describe the advantages and disadvantages of the different mean velocity profiles analysis method. Adequate review of the references of this study will be able to provide a reference for follow-up study of the velocity measurement. Review velocity measurement literature that different velocity measurement is required to follow the different flow conditions measured be upgraded its accuracy, because each flow rate measurement method has its advantages and disadvantages. Traditional velocity instrument can be used at low flow and RiverRAD microwave radar or imaging technology measurement method may be applied in high flow. In the tidal river can use the ADCP to quickly measure river vertical velocity distribution. In addition, urban rivers may be used the CW radar to set up on the bridge, and wide rivers can be used RiverRAD microwave radar to measure the velocities. Review the relevant literature also found that using Ultrasonic Doppler Current Profiler with the Chiu's theory to the velocity of observing automation work can save manpower and resources to improve measurement accuracy, reduce the risk of measurement, but the great variability of river characteristics in Taiwan and a lot of drifting floating objects in water in high flow, resulting in measurement automation work still needs further study. If the priority for the safety of personnel and instruments, we can use the non-contact velocity measurement method with the theoretical analysis method to achieve real-time monitoring.

  1. Development of new methodologies for evaluating the energy performance of new commercial buildings

    NASA Astrophysics Data System (ADS)

    Song, Suwon

    The concept of Measurement and Verification (M&V) of a new building continues to become more important because efficient design alone is often not sufficient to deliver an efficient building. Simulation models that are calibrated to measured data can be used to evaluate the energy performance of new buildings if they are compared to energy baselines such as similar buildings, energy codes, and design standards. Unfortunately, there is a lack of detailed M&V methods and analysis methods to measure energy savings from new buildings that would have hypothetical energy baselines. Therefore, this study developed and demonstrated several new methodologies for evaluating the energy performance of new commercial buildings using a case-study building in Austin, Texas. First, three new M&V methods were developed to enhance the previous generic M&V framework for new buildings, including: (1) The development of a method to synthesize weather-normalized cooling energy use from a correlation of Motor Control Center (MCC) electricity use when chilled water use is unavailable, (2) The development of an improved method to analyze measured solar transmittance against incidence angle for sample glazing using different solar sensor types, including Eppley PSP and Li-Cor sensors, and (3) The development of an improved method to analyze chiller efficiency and operation at part-load conditions. Second, three new calibration methods were developed and analyzed, including: (1) A new percentile analysis added to the previous signature method for use with a DOE-2 calibration, (2) A new analysis to account for undocumented exhaust air in DOE-2 calibration, and (3) An analysis of the impact of synthesized direct normal solar radiation using the Erbs correlation on DOE-2 simulation. Third, an analysis of the actual energy savings compared to three different energy baselines was performed, including: (1) Energy Use Index (EUI) comparisons with sub-metered data, (2) New comparisons against Standards 90.1-1989 and 90.1-2001, and (3) A new evaluation of the performance of selected Energy Conservation Design Measures (ECDMs). Finally, potential energy savings were also simulated from selected improvements, including: minimum supply air flow, undocumented exhaust air, and daylighting.

  2. Development of the psychological impact of tinnitus interview: a clinician-administered measure of tinnitus-related distress.

    PubMed

    Henry, J L; Kangas, M; Wilson, P H

    2001-01-01

    The development of valid and reliable methods for assessing psychological aspects of tinnitus continues to be an important goal of research. Such assessment methods are potentially useful in clinical and research contexts. Existing self-report measures have a number of disadvantages, and so a need exists to develop a form of assessment that is less open to response bias and the effects of experimental demand. A new approach, the Psychological Impact of Tinnitus Interview (PITI), is described, and some preliminary data on its psychometric properties are reported. The results suggest that the PITI is capable of providing a measure of separate, relatively independent dimensions of tinnitus-related distress--namely, sleep difficulties, general distress, mood, suicidal aspects, and avoidance of or interference with normal activities. This method may lead to more refined measures of these dimensions of tinnitus-related psychological difficulties. The PITI should be regarded as a promising assessment tool for use in experimental settings, pending further work on its content, coding method, and administration.

  3. System Identification Methods for Aircraft Flight Control Development and Validation

    DOT National Transportation Integrated Search

    1995-10-01

    System-identification methods compose a mathematical model, or series of models, : from measurements of inputs and outputs of dynamic systems. This paper : discusses the use of frequency-domain system-identification methods for the : development and ...

  4. INDOOR AIR EMISSIONS FROM OFFICE EQUIPMENT: TEST METHOD DEVELOPMENT AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report describes the development and evaluation of a large chamber test method for measuring emissions from dry-process photocopiers. The test method was developed in two phases. Phase 1 was a single-laboratory evaluation at Research Triangle Institute (RTI) using four, mid-r...

  5. Biofilm thickness measurement using an ultrasound method in a liquid phase.

    PubMed

    Maurício, R; Dias, C J; Jubilado, N; Santana, F

    2013-10-01

    In this report, the development of an online, noninvasive, measurement method of the biofilm thickness in a liquid phase is presented. The method is based in the analysis of the ultrasound wave pulse-echo behavior in a liquid phase reproducing the real reactor conditions. It does not imply the removal of the biomass from the support or any kind of intervention in the support (pipes) to detect and perform the measurements (non-invasiveness). The developed method allows for its sensor to be easily and quickly mounted and unmounted in any location along a pipe or reactor wall. Finally, this method is an important innovation because it allows the thickness measurement of a biofilm, in liquid phase conditions that can be used in monitoring programs, to help in scheduling cleaning actions to remove the unwanted biofilm, in several application areas, namely in potable water supply pipes.

  6. 76 FR 9534 - Development of Technical Guidelines and Scientific Methods for Quantifying GHG Emissions and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... DEPARTMENT OF AGRICULTURE Development of Technical Guidelines and Scientific Methods for... technical guidelines and scientific methods for quantifying greenhouse gas (GHG) emissions and carbon...-based methods to measure the carbon benefits from conservation and land management activities. In...

  7. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  8. Mechanics of Ballast Compaction. Volume 2 : Field Methods for Ballast Physical State Measurement

    DOT National Transportation Integrated Search

    1982-03-01

    Field methods for measuring ballast physical state are needed to study the effects of ballast compaction. Following a consideration of various alternatives, three methods were selected for development and evaluation. The first was in-place density, w...

  9. Comparison of sprinkler droplet size and velocity measurements using a laser precipitation meter and photographic method

    USDA-ARS?s Scientific Manuscript database

    Kinetic energy of water droplets has a substantial effect on development of a soil surface seal and infiltration rate of bare soil. Methods for measuring sprinkler droplet size and velocity needed to calculate droplet kinetic energy have been developed and tested over the past 50 years, each with ad...

  10. A brief measure of attitudes toward mixed methods research in psychology.

    PubMed

    Roberts, Lynne D; Povee, Kate

    2014-01-01

    The adoption of mixed methods research in psychology has trailed behind other social science disciplines. Teaching psychology students, academics, and practitioners about mixed methodologies may increase the use of mixed methods within the discipline. However, tailoring and evaluating education and training in mixed methodologies requires an understanding of, and way of measuring, attitudes toward mixed methods research in psychology. To date, no such measure exists. In this article we present the development and initial validation of a new measure: Attitudes toward Mixed Methods Research in Psychology. A pool of 42 items developed from previous qualitative research on attitudes toward mixed methods research along with validation measures was administered via an online survey to a convenience sample of 274 psychology students, academics and psychologists. Principal axis factoring with varimax rotation on a subset of the sample produced a four-factor, 12-item solution. Confirmatory factor analysis on a separate subset of the sample indicated that a higher order four factor model provided the best fit to the data. The four factors; 'Limited Exposure,' '(in)Compatibility,' 'Validity,' and 'Tokenistic Qualitative Component'; each have acceptable internal reliability. Known groups validity analyses based on preferred research orientation and self-rated mixed methods research skills, and convergent and divergent validity analyses based on measures of attitudes toward psychology as a science and scientist and practitioner orientation, provide initial validation of the measure. This brief, internally reliable measure can be used in assessing attitudes toward mixed methods research in psychology, measuring change in attitudes as part of the evaluation of mixed methods education, and in larger research programs.

  11. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  12. Measuring access to primary care appointments: a review of methods

    PubMed Central

    Jones, Wendy; Elwyn, Glyn; Edwards, Peter; Edwards, Adrian; Emmerson, Melody; Hibbs, Richard

    2003-01-01

    Background Patient access to primary care appointments is not routinely measured despite the increasing interest in this aspect of practice activity. The generation of standardised data (or benchmarks) for access could inform developments within primary care organisations and act as a quality marker for clinical governance. Logically the setting of targets should be based on a sound system of measurement. The practicalities of developing appropriate measures need debate. Therefore we aimed to search for and compare methods that have been published or are being developed to measure patient access to primary care appointments, with particular focus on finding methods using appointment system data. Method A search and review was made of the primary care literature from 1990 to 2001, which included an assessment of online resources (websites) and communication with recognised experts. The identified methods were assessed. Results The published literature in this specific area was not extensive but revealed emerging interest in the late 1990s. Two broad approaches to the measurement of waiting times to GP appointments were identified. Firstly, appointment systems in primary care organisations were analysed in differing ways to provide numerical data and, secondly, patient perceptions (reports) of access were evaluated using survey techniques. Six different methods were found which were based on appointment systems data. Conclusion The two approaches of either using patient questionnaires or appointment system data are methods that represent entirely different aims. The latter method when used to represent patient waiting times for 'routine' elective appointments seems to hold promise as a useful tool and this avoids the definitional problems that surround 'urgent' appointments. The purpose for which the data is being collected needs to be borne in mind and will determine the chosen methods of data retrieval and representation. PMID:12846934

  13. Measurement environments and testing

    NASA Astrophysics Data System (ADS)

    Marvin, A. C.

    1991-06-01

    The various methods used to assess both the emission (interference generation) performance of electronic equipment and the immunity of electronic equipment to external electromagnetic interference are described. The measurement methods attempt to simulate realistic operating conditions for the equipment being tested, yet at the same time they must be repeatable and practical to operate. This has led to the development of a variety of test methods, each of which has its limitations. Concentration is on the most common measurement methods such as open-field test sites, screened enclosures and transverse electromagnetic (TEM) cells. The physical justification for the methods, their limitations, and measurement precision are described. Ways of relating similar measurements made by different methods are discussed, and some thoughts on future measurement improvements are presented.

  14. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.

    PubMed

    Kraemer, D; Chen, G

    2014-02-01

    Accurate measurements of thermal conductivity are of great importance for materials research and development. Steady-state methods determine thermal conductivity directly from the proportionality between heat flow and an applied temperature difference (Fourier Law). Although theoretically simple, in practice, achieving high accuracies with steady-state methods is challenging and requires rather complex experimental setups due to temperature sensor uncertainties and parasitic heat loss. We developed a simple differential steady-state method in which the sample is mounted between an electric heater and a temperature-controlled heat sink. Our method calibrates for parasitic heat losses from the electric heater during the measurement by maintaining a constant heater temperature close to the environmental temperature while varying the heat sink temperature. This enables a large signal-to-noise ratio which permits accurate measurements of samples with small thermal conductance values without an additional heater calibration measurement or sophisticated heater guards to eliminate parasitic heater losses. Additionally, the differential nature of the method largely eliminates the uncertainties of the temperature sensors, permitting measurements with small temperature differences, which is advantageous for samples with high thermal conductance values and/or with strongly temperature-dependent thermal conductivities. In order to accelerate measurements of more than one sample, the proposed method allows for measuring several samples consecutively at each temperature measurement point without adding significant error. We demonstrate the method by performing thermal conductivity measurements on commercial bulk thermoelectric Bi2Te3 samples in the temperature range of 30-150 °C with an error below 3%.

  15. Development of a Mobile Tracer Correlation Method for Assessment of Air Emissions from Landfills and Other Area Sources (Abstract)

    EPA Science Inventory

    Work toward a standardized version of a mobile tracer correlation measurement method is discussed. The method used for assessment of methane emissions from 15 landfills in 56 field deployments from 2009 to 2013. This general area source measurement method uses advances in instrum...

  16. Friendship in Young Children: Construction of a Behavioural Sociometric Method

    ERIC Educational Resources Information Center

    van Hoogdalem, Anne-Greth; Singer, Elly; Eek, Anneloes; Heesbeen, Daniëlle

    2013-01-01

    We need methods to measure friendship among very young children to study the beginnings of friendship and the impact of experiences with friendship for later development. This article presents an overview of methods for measuring very young children's friendships. A behavioural sociometric method was constructed to study degrees of friendship…

  17. Simulations for the Development of Thermoelectric Measurements

    NASA Astrophysics Data System (ADS)

    Zabrocki, Knud; Ziolkowski, Pawel; Dasgupta, Titas; de Boor, Johannes; Müller, Eckhard

    2013-07-01

    In thermoelectricity, continuum theoretical equations are usually used for the calculation of the characteristics and performance of thermoelectric elements, modules or devices as a function of external parameters (material, geometry, temperatures, current, flow, load, etc.). An increasing number of commercial software packages aimed at applications, such as COMSOL and ANSYS, contain vkernels using direct thermoelectric coupling. Application of these numerical tools also allows analysis of physical measurement conditions and can lead to specifically adapted methods for developing special test equipment required for the determination of TE material and module properties. System-theoretical and simulation-based considerations of favorable geometries are taken into account to create draft sketches in the development of such measurement systems. Particular consideration is given to the development of transient measurement methods, which have great advantages compared with the conventional static methods in terms of the measurement duration required. In this paper the benefits of using numerical tools in designing measurement facilities are shown using two examples. The first is the determination of geometric correction factors in four-point probe measurement of electrical conductivity, whereas the second example is focused on the so-called combined thermoelectric measurement (CTEM) system, where all thermoelectric material properties (Seebeck coefficient, electrical and thermal conductivity, and Harman measurement of zT) are measured in a combined way. Here, we want to highlight especially the measurement of thermal conductivity in a transient mode. Factors influencing the measurement results such as coupling to the environment due to radiation, heat losses via the mounting of the probe head, as well as contact resistance between the sample and sample holder are illustrated, analyzed, and discussed. By employing the results of the simulations, we have developed an improved sample head that allows for measurements over a larger temperature interval with enhanced accuracy.

  18. Theoretical framework and methodological development of common subjective health outcome measures in osteoarthritis: a critical review

    PubMed Central

    Pollard, Beth; Johnston, Marie; Dixon, Diane

    2007-01-01

    Subjective measures involving clinician ratings or patient self-assessments have become recognised as an important tool for the assessment of health outcome. The value of a health outcome measure is usually assessed by a psychometric evaluation of its reliability, validity and responsiveness. However, psychometric testing involves an accumulation of evidence and has recognised limitations. It has been suggested that an evaluation of how well a measure has been developed would be a useful additional criteria in assessing the value of a measure. This paper explored the theoretical background and methodological development of subjective health status measures commonly used in osteoarthritis research. Fourteen subjective health outcome measures commonly used in osteoarthritis research were examined. Each measure was explored on the basis of their i) theoretical framework (was there a definition of what was being assessed and was it part of a theoretical model?) and ii) methodological development (what was the scaling strategy, how were the items generated and reduced, what was the response format and what was the scoring method?). Only the AIMS, SF-36 and WHOQOL defined what they were assessing (i.e. the construct of interest) and no measure assessed was part of a theoretical model. None of the clinician report measures appeared to have implemented a scaling procedure or described the rationale for the items selected or scoring system. Of the patient self-report measures, the AIMS, MPQ, OXFORD, SF-36, WHOQOL and WOMAC appeared to follow a standard psychometric scaling method. The DRP and EuroQol used alternative scaling methods. The review highlighted the general lack of theoretical framework for both clinician report and patient self-report measures. This review also drew attention to the wide variation in the methodological development of commonly used measures in OA. While, in general the patient self-report measures had good methodological development, the clinician report measures appeared less well developed. It would be of value if new measures defined the construct of interest and, that the construct, be part of theoretical model. By ensuring measures are both theoretically and empirically valid then improvements in subjective health outcome measures should be possible. PMID:17343739

  19. Simultaneous in-plane and out-of-plane displacement measurement based on a dual-camera imaging system and its application to inspection of large-scale space structures

    NASA Astrophysics Data System (ADS)

    Ri, Shien; Tsuda, Hiroshi; Yoshida, Takeshi; Umebayashi, Takashi; Sato, Akiyoshi; Sato, Eiichi

    2015-07-01

    Optical methods providing full-field deformation data have potentially enormous interest for mechanical engineers. In this study, an in-plane and out-of-plane displacement measurement method based on a dual-camera imaging system is proposed. The in-plane and out-of-plane displacements are determined simultaneously using two measured in-plane displacement data observed from two digital cameras at different view angles. The fundamental measurement principle and experimental results of accuracy confirmation are presented. In addition, we applied this method to the displacement measurement in a static loading and bending test of a solid rocket motor case (CFRP material; 2.2 m diameter and 2.3 m long) for an up-to-date Epsilon rocket developed by JAXA. The effectiveness and measurement accuracy is confirmed by comparing with conventional displacement sensor. This method could be useful to diagnose the reliability of large-scale space structures in the rocket development.

  20. An improved microphotometry system for measurement of cytochrome P-450 in hepatocyte cytoplasm.

    PubMed

    Watanabe, J; Kanamura, S

    1991-05-01

    To measure cytochrome P-450 (P-450) content in hepatocyte cytoplasm, we developed a dual monochromator-equipped microphotometry system (KWSP-1). Simultaneous measurements of absorbance at 450 and 490 nm with narrow band width (0.5 nm) and small spot size (2 microns) were accomplished by this system. Corresponding fields in serial sections could be easily and rapidly identified under the Nomarski imaging mode of KWSP-1. Photometric accuracy and repeatability of wavelength setting of KWSP-1 were also satisfactory for measurement of P-450. With this system, it is thus possible to measure the extinction of P-450 from many small measuring areas and to precisely determine P-450 content in the cytoplasm of rat hepatocytes. A microphotometric method was developed using cuvette slides and two serial 10-microns thick sections (mapping method). The intracellular distribution of P-450 in individual hepatocytes could be visualized by the mapping method with KWSP-1. However, this method was not applicable to tissue sections containing hemoglobin larger than 4 microM.

  1. New calibration method for I-scan sensors to enable the precise measurement of pressures delivered by 'pressure garments'.

    PubMed

    Macintyre, Lisa

    2011-11-01

    Accurate measurement of the pressure delivered by medical compression products is highly desirable both in monitoring treatment and in developing new pressure inducing garments or products. There are several complications in measuring pressure at the garment/body interface and at present no ideal pressure measurement tool exists for this purpose. This paper summarises a thorough evaluation of the accuracy and reproducibility of measurements taken following both of Tekscan Inc.'s recommended calibration procedures for I-scan sensors; and presents an improved method for calibrating and using I-scan pressure sensors. The proposed calibration method enables accurate (±2.1 mmHg) measurement of pressures delivered by pressure garments to body parts with a circumference ≥30 cm. This method is too cumbersome for routine clinical use but is very useful, accurate and reproducible for product development or clinical evaluation purposes. Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  2. Testing and Validation of the Dynamic Interia Measurement Method

    NASA Technical Reports Server (NTRS)

    Chin, Alexander; Herrera, Claudia; Spivey, Natalie; Fladung, William; Cloutier, David

    2015-01-01

    This presentation describes the DIM method and how it measures the inertia properties of an object by analyzing the frequency response functions measured during a ground vibration test (GVT). The DIM method has been in development at the University of Cincinnati and has shown success on a variety of small scale test articles. The NASA AFRC version was modified for larger applications.

  3. A Comparison of Three Methods for Computing Scale Score Conditional Standard Errors of Measurement. ACT Research Report Series, 2013 (7)

    ERIC Educational Resources Information Center

    Woodruff, David; Traynor, Anne; Cui, Zhongmin; Fang, Yu

    2013-01-01

    Professional standards for educational testing recommend that both the overall standard error of measurement and the conditional standard error of measurement (CSEM) be computed on the score scale used to report scores to examinees. Several methods have been developed to compute scale score CSEMs. This paper compares three methods, based on…

  4. Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization.

    PubMed

    Hamadani, Behrang H; Roller, John; Dougherty, Brian; Yoon, Howard W

    2012-07-01

    An absolute differential spectral response measurement system for solar cells is presented. The system couples an array of light emitting diodes with an optical waveguide to provide large area illumination. Two unique yet complementary measurement methods were developed and tested with the same measurement apparatus. Good agreement was observed between the two methods based on testing of a variety of solar cells. The first method is a lock-in technique that can be performed over a broad pulse frequency range. The second method is based on synchronous multifrequency optical excitation and electrical detection. An innovative scheme for providing light bias during each measurement method is discussed.

  5. Employed Carers' Empathy towards People with Intellectual Disabilities: The Development of a New Measure and Some Initial Theory

    ERIC Educational Resources Information Center

    Collins, Kirsten; Gratton, Caroline; Heneage, Celia; Dagnan, Dave

    2017-01-01

    Background: This study aimed to develop a self-report measure of paid caregivers' empathy towards people with intellectual disabilities. Materials and Methods: Following questionnaire development, 194 staff working in services for people with intellectual disabilities completed self-report questionnaires, including the new empathy measure. The…

  6. Stages of Psychometric Measure Development: The Example of the Generalized Expertise Measure (GEM)

    ERIC Educational Resources Information Center

    Germain, Marie-Line

    2006-01-01

    This paper chronicles the steps, methods, and presents hypothetical results of quantitative and qualitative studies being conducted to develop a Generalized Expertise Measure (GEM). Per Hinkin (1995), the stages of scale development are domain and item generation, content expert validation, and pilot test. Content/face validity and internal…

  7. Ambient intercomparison of direct and indirect methods for ambient nitrogen dioxide

    EPA Science Inventory

    AbstractRecent advances in measurement techniques for nitrogen dioxide (NO2), along with known interferences in the current Federal Reference Method (FRM) have created the need for NO2 measurement method research within EPA’s Office of Research and Development. Current meth...

  8. 77 FR 53889 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ..., methods, and statistical procedures for assessing and monitoring the health of communities and measuring... methods and the Community Guide, and coordinates division responses to requests for technical assistance...-federal partners in developing indicators, methods, and statistical procedures for measuring and reporting...

  9. Conceptual framework on the application of biomechanical measurement methods in driving behavior study

    NASA Astrophysics Data System (ADS)

    Sanjaya, Kadek Heri; Sya'bana, Yukhi Mustaqim Kusuma

    2017-01-01

    Research on eco-friendly vehicle development in Indonesia has largely neglected ergonomic study, despite the fact that traffic accidents have resulted in greater economic cost than fuel subsidy. We have performed a biomechanical experiment on human locomotion earlier. In this article, we describe the importance of implementing the biomechanical measurement methods in transportation ergonomic study. The instruments such as electromyogram (EMG), load cell, pressure sensor, and motion analysis methods as well as cross-correlation function analysis were explained, then the possibility of their application in driving behavior study is described. We describe the potentials and challenges of the biomechanical methods concerning the future vehicle development. The methods provide greater advantages in objective and accurate measurement not only in human task performance but also its correlation with vehicle performance.

  10. Model correlation and damage location for large space truss structures: Secant method development and evaluation

    NASA Technical Reports Server (NTRS)

    Smith, Suzanne Weaver; Beattie, Christopher A.

    1991-01-01

    On-orbit testing of a large space structure will be required to complete the certification of any mathematical model for the structure dynamic response. The process of establishing a mathematical model that matches measured structure response is referred to as model correlation. Most model correlation approaches have an identification technique to determine structural characteristics from the measurements of the structure response. This problem is approached with one particular class of identification techniques - matrix adjustment methods - which use measured data to produce an optimal update of the structure property matrix, often the stiffness matrix. New methods were developed for identification to handle problems of the size and complexity expected for large space structures. Further development and refinement of these secant-method identification algorithms were undertaken. Also, evaluation of these techniques is an approach for model correlation and damage location was initiated.

  11. A New Frequency-Domain Method for Bunch Length Measurement

    NASA Astrophysics Data System (ADS)

    Ferianis, M.; Pros, M.

    1997-05-01

    A new method for bunch length measurements has been developed at Elettra. It is based on a spectral observation of the synchrotron radiation light pulses. The single pulse spectrum is shaped by means of an optical process which gives the method an increased sensitivity compared to the usual spectral observations. Some simulations have been carried out to check the method in non-ideal conditions. The results of the first measurements are also presented.

  12. A Focusing Method in the Calibration Process of Image Sensors Based on IOFBs

    PubMed Central

    Fernández, Pedro R.; Lázaro, José L.; Gardel, Alfredo; Cano, Ángel E.; Bravo, Ignacio

    2010-01-01

    A focusing procedure in the calibration process of image sensors based on Incoherent Optical Fiber Bundles (IOFBs) is described using the information extracted from fibers. These procedures differ from any other currently known focusing method due to the non spatial in-out correspondence between fibers, which produces a natural codification of the image to transmit. Focus measuring is essential prior to carrying out calibration in order to guarantee accurate processing and decoding. Four algorithms have been developed to estimate the focus measure; two methods based on mean grey level, and the other two based on variance. In this paper, a few simple focus measures are defined and compared. Some experimental results referred to the focus measure and the accuracy of the developed methods are discussed in order to demonstrate its effectiveness. PMID:22315526

  13. The in-situ 3D measurement system combined with CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang

    2013-06-01

    With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.

  14. AN ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA) METHOD FOR MONITORING 2,4 DICHLOROPHENOXYACETIC ACID (2,4-D) EXPOSURES

    EPA Science Inventory

    Abstract describes a streamlined ELISA method developed to quantitatively measure 2,4-D in human urine samples. Method development steps and comparison with gas chromatography/mass spectrometry are presented. Results indicated that the ELISA method could be used as a high throu...

  15. Development and accuracy of a multipoint method for measuring visibility.

    PubMed

    Tai, Hongda; Zhuang, Zibo; Sun, Dongsong

    2017-10-01

    Accurate measurements of visibility are of great importance in many fields. This paper reports a multipoint visibility measurement (MVM) method to measure and calculate the atmospheric transmittance, extinction coefficient, and meteorological optical range (MOR). The relative errors of atmospheric transmittance and MOR measured by the MVM method and traditional transmissometer method are analyzed and compared. Experiments were conducted indoors, and the data were simultaneously processed. The results revealed that the MVM can effectively improve the accuracy under different visibility conditions. The greatest improvement of accuracy was 27%. The MVM can be used to calibrate and evaluate visibility meters.

  16. Enhanced data validation strategy of air quality monitoring network.

    PubMed

    Harkat, Mohamed-Faouzi; Mansouri, Majdi; Nounou, Mohamed; Nounou, Hazem

    2018-01-01

    Quick validation and detection of faults in measured air quality data is a crucial step towards achieving the objectives of air quality networks. Therefore, the objectives of this paper are threefold: (i) to develop a modeling technique that can be used to predict the normal behavior of air quality variables and help provide accurate reference for monitoring purposes; (ii) to develop fault detection method that can effectively and quickly detect any anomalies in measured air quality data. For this purpose, a new fault detection method that is based on the combination of generalized likelihood ratio test (GLRT) and exponentially weighted moving average (EWMA) will be developed. GLRT is a well-known statistical fault detection method that relies on maximizing the detection probability for a given false alarm rate. In this paper, we propose to develop GLRT-based EWMA fault detection method that will be able to detect the changes in the values of certain air quality variables; (iii) to develop fault isolation and identification method that allows defining the fault source(s) in order to properly apply appropriate corrective actions. In this paper, reconstruction approach that is based on Midpoint-Radii Principal Component Analysis (MRPCA) model will be developed to handle the types of data and models associated with air quality monitoring networks. All air quality modeling, fault detection, fault isolation and reconstruction methods developed in this paper will be validated using real air quality data (such as particulate matter, ozone, nitrogen and carbon oxides measurement). Copyright © 2017 Elsevier Inc. All rights reserved.

  17. On the measurement of stationary electric fields in air

    NASA Technical Reports Server (NTRS)

    Kirkham, H.

    2002-01-01

    Applications and measurement methods for field measurements are reviewed. Recent developments using optical technology are examined. The various methods are compared. It is concluded that the best general purpose instrument is the isolated cylindrical field mill, but MEMS technology could furnish better instruments in the future.

  18. Measuring Facial Movement

    ERIC Educational Resources Information Center

    Ekman, Paul; Friesen, Wallace V.

    1976-01-01

    The Facial Action Code (FAC) was derived from an analysis of the anatomical basis of facial movement. The development of the method is explained, contrasting it to other methods of measuring facial behavior. An example of how facial behavior is measured is provided, and ideas about research applications are discussed. (Author)

  19. Assessment methods in human body composition.

    PubMed

    Lee, Seon Yeong; Gallagher, Dympna

    2008-09-01

    The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth.

  20. Assessment methods in human body composition

    PubMed Central

    Lee, Seon Yeong; Gallagher, Dympna

    2009-01-01

    Purpose of review The present study reviews the most recently developed and commonly used methods for the determination of human body composition in vivo with relevance for nutritional assessment. Recent findings Body composition measurement methods are continuously being perfected with the most commonly used methods being bioelectrical impedance analysis, dilution techniques, air displacement plethysmography, dual energy X-ray absorptiometry, and MRI or magnetic resonance spectroscopy. Recent developments include three-dimensional photonic scanning and quantitative magnetic resonance. Collectively, these techniques allow for the measurement of fat, fat-free mass, bone mineral content, total body water, extracellular water, total adipose tissue and its subdepots (visceral, subcutaneous, and intermuscular), skeletal muscle, select organs, and ectopic fat depots. Summary There is an ongoing need to perfect methods that provide information beyond mass and structure (static measures) to kinetic measures that yield information on metabolic and biological functions. On the basis of the wide range of measurable properties, analytical methods and known body composition models, clinicians and scientists can quantify a number of body components and with longitudinal assessment, can track changes in health and disease with implications for understanding efficacy of nutritional and clinical interventions, diagnosis, prevention, and treatment in clinical settings. With the greater need to understand precursors of health risk beginning in childhood, a gap exists in appropriate in-vivo measurement methods beginning at birth. PMID:18685451

  1. Validation of an Instrument to Measure High School Students' Attitudes toward Fitness Testing

    ERIC Educational Resources Information Center

    Mercier, Kevin; Silverman, Stephen

    2014-01-01

    Purpose: The purpose of this investigation was to develop an instrument that has scores that are valid and reliable for measuring students' attitudes toward fitness testing. Method: The method involved the following steps: (a) an elicitation study, (b) item development, (c) a pilot study, and (d) a validation study. The pilot study included 427…

  2. Measuring niacin-associated skin toxicity (NASTy) stigmata along with symptoms to aid development of niacin mimetics[S

    PubMed Central

    Dunbar, Richard L.; Goel, Harsh; Tuteja, Sony; Song, Wen-Liang; Nathanson, Grace; Babar, Zeeshan; Lalic, Dusanka; Gelfand, Joel M.; Rader, Daniel J.; Grove, Gary L.

    2017-01-01

    Though cardioprotective, niacin monotherapy is limited by unpleasant cutaneous symptoms mimicking dermatitis: niacin-associated skin toxicity (NASTy). Niacin is prototypical of several emerging drugs suffering off-target rubefacient properties whereby agonizing the GPR109A receptor on cutaneous immune cells provokes vasodilation, prompting skin plethora and rubor, as well as dolor, tumor, and calor, and systemically, heat loss, frigor, chills, and rigors. Typically, NASTy effects are described by subjective patient-reported perception, at best semi-quantitative and bias-prone. Conversely, objective, quantitative, and unbiased methods measuring NASTy stigmata would facilitate research to abolish them, motivating development of several objective methods. In early drug development, such methods might better predict clinical tolerability in larger clinical trials. Measuring cutaneous stigmata may also aid investigations of vasospastic, ischemic, and inflammatory skin conditions. We present methods to measure NASTy physical stigmata to facilitate research into novel niacin mimetics/analogs, detailing characteristics of each technique following niacin, and how NASTy stigmata relate to symptom perception. We gave niacin orally and measured rubor by colorimetry and white-light spectroscopy, plethora by laser Doppler flowmetry, and calor/frigor by thermometry. Surprisingly, each stigma’s abruptness predicted symptom perception, whereas peak intensity did not. These methods are adaptable to study other rubefacient drugs or dermatologic and vascular disorders. PMID:28119443

  3. RAPID METHODS FOR MEASURING INDICATOR BACTERIA IN BATHING BEACH WATERS

    EPA Science Inventory

    The current methods for measuring the quality of recreational waters were developed in the 1970's and were recommended to the States by EPA in 1986. These methods detect and quantify Escherichia coli and enterococci, two bacteria that are consistently associated with fecal wast...

  4. An Enhanced Method to Estimate Heart Rate from Seismocardiography via Ensemble Averaging of Body Movements at Six Degrees of Freedom.

    PubMed

    Lee, Hyunwoo; Lee, Hana; Whang, Mincheol

    2018-01-15

    Continuous cardiac monitoring has been developed to evaluate cardiac activity outside of clinical environments due to the advancement of novel instruments. Seismocardiography (SCG) is one of the vital components that could develop such a monitoring system. Although SCG has been presented with a lower accuracy, this novel cardiac indicator has been steadily proposed over traditional methods such as electrocardiography (ECG). Thus, it is necessary to develop an enhanced method by combining the significant cardiac indicators. In this study, the six-axis signals of accelerometer and gyroscope were measured and integrated by the L2 normalization and multi-dimensional kineticardiography (MKCG) approaches, respectively. The waveforms of accelerometer and gyroscope were standardized and combined via ensemble averaging, and the heart rate was calculated from the dominant frequency. Thirty participants (15 females) were asked to stand or sit in relaxed and aroused conditions. Their SCG was measured during the task. As a result, proposed method showed higher accuracy than traditional SCG methods in all measurement conditions. The three main contributions are as follows: (1) the ensemble averaging enhanced heart rate estimation with the benefits of the six-axis signals; (2) the proposed method was compared with the previous SCG method that employs fewer-axis; and (3) the method was tested in various measurement conditions for a more practical application.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Paul

    Spectroscopic imaging tools and methods, based on scanning tunneling microscopes (STMs), are being developed and applied to examine buried layers and interfaces with ultrahigh resolution. These new methods measure buried contacts, molecule-substrate bonds, buried dipoles in molecular layers, and key structural aspects of adsorbed molecules, such as tilt angles. We are developing the ability to locate lateral projections of molecular parts as a means of determining the structures of molecular layers. We are developing the ability to measure the orientation of buried functionality.

  6. Development and evaluation of a digital dental modeling method based on grating projection and reverse engineering software.

    PubMed

    Zhou, Qin; Wang, Zhenzhen; Chen, Jun; Song, Jun; Chen, Lu; Lu, Yi

    2016-01-01

    For reasons of convenience and economy, attempts have been made to transform traditional dental gypsum casts into 3-dimensional (3D) digital casts. Different scanning devices have been developed to generate digital casts; however, each has its own limitations and disadvantages. The purpose of this study was to develop an advanced method for the 3D reproduction of dental casts by using a high-speed grating projection system and noncontact reverse engineering (RE) software and to evaluate the accuracy of the method. The methods consisted of 3 main steps: the scanning and acquisition of 3D dental cast data with a high-resolution grating projection system, the reconstruction and measurement of digital casts with RE software, and the evaluation of the accuracy of this method using 20 dental gypsum casts. The common anatomic landmarks were measured directly on the gypsum casts with a Vernier caliper and on the 3D digital casts with the Geomagic software measurement tool. Data were statistically assessed with the t test. The grating projection system had a rapid scanning speed, and smooth 3D dental casts were obtained. The mean differences between the gypsum and 3D measurements were approximately 0.05 mm, and no statistically significant differences were found between the 2 methods (P>.05), except for the measurements of the incisor tooth width and maxillary arch length. A method for the 3D reconstruction of dental casts was developed by using a grating projection system and RE software. The accuracy of the casts generated using the grating projection system was comparable with that of the gypsum casts. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry

    PubMed Central

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J.; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method. PMID:22368463

  8. Development of a hybrid atomic force microscopic measurement system combined with white light scanning interferometry.

    PubMed

    Guo, Tong; Wang, Siming; Dorantes-Gonzalez, Dante J; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2012-01-01

    A hybrid atomic force microscopic (AFM) measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system's dynamic response, the frequency modulation (FM) mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system's good measurement performance and feasibility of the hybrid measurement method.

  9. Different Spectrophotometric and Chromatographic Methods for Determination of Mepivacaine and Its Toxic Impurity.

    PubMed

    Abdelwahab, Nada S; Fared, Nehal F; Elagawany, Mohamed; Abdelmomen, Esraa H

    2017-09-01

    Stability-indicating spectrophotometric, TLC-densitometric, and ultra-performance LC (UPLC) methods were developed for the determination of mepivacaine HCl (MEP) in the presence of its toxic impurity, 2,6-dimethylanaline (DMA). Different spectrophotometric methods were developed for the determination of MEP and DMA. In a dual-wavelength method combined with direct spectrophotometric measurement, the absorbance difference between 221.4 and 240 nm was used for MEP measurements, whereas the absorbance at 283 nm was used for measuring DMA in the binary mixture. In the second-derivative method, amplitudes at 272.2 and 232.6 nm were recorded and used for the determination of MEP and DMA, respectively. The developed TLC-densitometric method depended on chromatographic separation using silica gel 60 F254 TLC plates as a stationary phase and methanol-water-acetic acid (9 + 1 + 0.1, v/v/v) as a developing system, with UV scanning at 230 nm. The developed UPLC method depended on separation using a C18 column (250 × 4.6 mm id, 5 μm particle size) as a stationary phase and acetonitrile-water (40 + 60, v/v; pH 4 with phosphoric acid) as a mobile phase at a flow rate of 0.4 mL/min, with UV detection at 215 nm. The chromatographic run time was approximately 1 min. The proposed methods were validated with respect to International Conference on Harmonization guidelines regarding precision, accuracy, ruggedness, robustness, and specificity.

  10. Contact angle measurement with a smartphone

    NASA Astrophysics Data System (ADS)

    Chen, H.; Muros-Cobos, Jesus L.; Amirfazli, A.

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  11. Contact angle measurement with a smartphone.

    PubMed

    Chen, H; Muros-Cobos, Jesus L; Amirfazli, A

    2018-03-01

    In this study, a smartphone-based contact angle measurement instrument was developed. Compared with the traditional measurement instruments, this instrument has the advantage of simplicity, compact size, and portability. An automatic contact point detection algorithm was developed to allow the instrument to correctly detect the drop contact points. Two different contact angle calculation methods, Young-Laplace and polynomial fitting methods, were implemented in this instrument. The performance of this instrument was tested first with ideal synthetic drop profiles. It was shown that the accuracy of the new system with ideal synthetic drop profiles can reach 0.01% with both Young-Laplace and polynomial fitting methods. Conducting experiments to measure both static and dynamic (advancing and receding) contact angles with the developed instrument, we found that the smartphone-based instrument can provide accurate and practical measurement results as the traditional commercial instruments. The successful demonstration of use of a smartphone (mobile phone) to conduct contact angle measurement is a significant advancement in the field as it breaks the dominate mold of use of a computer and a bench bound setup for such systems since their appearance in 1980s.

  12. Ultra-High Rate Measurements of Spent Fuel Gamma-Ray Emissions

    NASA Astrophysics Data System (ADS)

    Rodriguez, Douglas; Vandevender, Brent; Wood, Lynn; Glasgow, Brian; Taubman, Matthew; Wright, Michael; Dion, Michael; Pitts, Karl; Runkle, Robert; Campbell, Luke; Fast, James

    2014-03-01

    Presently there are over 200,000 irradiated spent nuclear fuel (SNF) assemblies in the world, each containing a concerning amount of weapons-usable material. Both facility operators and safeguards inspectors want to improve composition determination. Current measurements are expensive and difficult so new methods are developed through models. Passive measurements are limited since a few specific decay products and the associated down-scatter overwhelm the gamma rays of interest. Active interrogation methods produce gamma rays beyond 3 MeV, minimizing the impact of the passive emissions that drop off sharply above this energy. New devices like the Ultra-High Rate Germanium (UHRGe) detector are being developed to advance these novel measurement methods. Designed for reasonable resolution at 106 s-1 output rates (compared to ~ 1 - 10 e 3 s-1 standards), SNF samples were directly measured using UHRGe and compared to models. Model verification further enables using Los Alamos National Laboratory SNF assembly models, developed under the Next Generation Safeguards Initiative, to determine emission and signal expectations. Measurement results and future application requirements for UHRGe will be discussed.

  13. Measuring healthcare productivity - from unit to system level.

    PubMed

    Kämäräinen, Vesa Johannes; Peltokorpi, Antti; Torkki, Paulus; Tallbacka, Kaj

    2016-04-18

    Purpose - Healthcare productivity is a growing issue in most Western countries where healthcare expenditure is rapidly increasing. Therefore, accurate productivity metrics are essential to avoid sub-optimization within a healthcare system. The purpose of this paper is to focus on healthcare production system productivity measurement. Design/methodology/approach - Traditionally, healthcare productivity has been studied and measured independently at the unit, organization and system level. Suggesting that productivity measurement should be done in different levels, while simultaneously linking productivity measurement to incentives, this study presents the challenges of productivity measurement at the different levels. The study introduces different methods to measure productivity in healthcare. In addition, it provides background information on the methods used to measure productivity and the parameters used in these methods. A pilot investigation of productivity measurement is used to illustrate the challenges of measurement, to test the developed measures and to prove the practical information for managers. Findings - The study introduces different approaches and methods to measure productivity in healthcare. Practical implications - A pilot investigation of productivity measurement is used to illustrate the challenges of measurement, to test the developed measures and to prove the practical benefits for managers. Originality/value - The authors focus on the measurement of the whole healthcare production system and try to avoid sub-optimization. Additionally considering an individual patient approach, productivity measurement is examined at the unit level, the organizational level and the system level.

  14. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    NASA Astrophysics Data System (ADS)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of the jet where the average convection velocity is negligible and turbulence intensities increase dramatically. The measurements in the developing region reveal interesting features of an incomplete Richardson-Kolmogorov cascade under development.

  15. Total body nitrogen analysis. [neutron activation analysis

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    Studies of two potential in vivo neutron activation methods for determining total and partial body nitrogen in animals and humans are described. A method using the CO-11 in the expired air as a measure of nitrogen content was found to be adequate for small animals such as rats, but inadequate for human measurements due to a slow excretion rate. Studies on the method of measuring the induced N-13 in the body show that with further development, this method should be adequate for measuring muscle mass changes occurring in animals or humans during space flight.

  16. Near surface illumination method to detect particle size information by optical calibration free remission measurements

    NASA Astrophysics Data System (ADS)

    Stocker, Sabrina; Foschum, Florian; Kienle, Alwin

    2017-07-01

    A calibration free method to detect particle size information is presented. A possible application for such measurements is the investigation of raw milk since there not only the fat and protein content varies but also the fat droplet size. The newly developed method is sensitive to the scattering phase function, which makes it applicable to many other applications, too. By simulating the light propagation by use of Monte Carlo simulations, a calibration free device can be developed from this principle.

  17. Recent trends in the determination of vitamin D.

    PubMed

    Gomes, Fabio P; Shaw, P Nicholas; Whitfield, Karen; Koorts, Pieter; Hewavitharana, Amitha K

    2013-12-01

    The occurrence of vitamin D deficiency has become an issue of serious concern in the worldwide population. As a result numerous analytical methods have been developed, for a variety of matrices, during the last few years to measure vitamin D analogs and metabolites. This review employs a comprehensive search of all vitamin D methods developed during the last 5 years for all applications, using ISI Web of Science(®), Scifinder(®), Science Direct, Scopus and PubMed. Particular emphasis is given to sample-preparation methods and the different forms of vitamin D measured across different fields of applications such as biological fluids, food and pharmaceutical preparations. This review compares and critically evaluates a wide range of approaches and methods, and hence it will enable readers to access developments across a number of applications and to select or develop the optimal analytical method for vitamin D for their particular application.

  18. Measuring housing quality in the absence of a monetized real estate market.

    PubMed

    Rindfuss, Ronald R; Piotrowski, Martin; Thongthai, Varachai; Prasartkul, Pramote

    2007-03-01

    Measuring housing quality or value or both has been a weak component of demographic and development research in less developed countries that lack an active real estate (housing) market. We describe a new method based on a standardized subjective rating process. It is designed to be used in settings that do not have an active, monetized housing market. The method is applied in an ongoing longitudinal study in north-east Thailand and could be straightforwardly used in many other settings. We develop a conceptual model of the process whereby households come to reside in high-quality or low-quality housing units. We use this theoretical model in conjunction with longitudinal data to show that the new method of measuring housing quality behaves as theoretically expected, thus providing evidence of face validity.

  19. Steponas Kolupaila's contribution to hydrological science development

    NASA Astrophysics Data System (ADS)

    Valiuškevičius, Gintaras

    2017-08-01

    Steponas Kolupaila (1892-1964) was an important figure in 20th century hydrology and one of the pioneers of scientific water gauging in Europe. His research on the reliability of hydrological data and measurement methods was particularly important and contributed to the development of empirical hydrological calculation methods. Kolupaila was one of the first who standardised water-gauging methods internationally. He created several original hydrological and hydraulic calculation methods (his discharge assessment method for winter period was particularly significant). His innate abilities and frequent travel made Kolupaila a universal specialist in various fields and an active public figure. He revealed his multilayered scientific and cultural experiences in his most famous book, Bibliography of Hydrometry. This book introduced the unique European hydrological-measurement and computation methods to the community of world hydrologists at that time and allowed the development and adaptation of these methods across the world.

  20. Measurement of the airway surface liquid volume with simple light refraction microscopy.

    PubMed

    Harvey, Peter R; Tarran, Robert; Garoff, Stephen; Myerburg, Mike M

    2011-09-01

    In the cystic fibrosis (CF) lung, the airway surface liquid (ASL) volume is depleted, impairing mucus clearance from the lung and leading to chronic airway infection and obstruction. Several therapeutics have been developed that aim to restore normal airway surface hydration to the CF airway, yet preclinical evaluation of these agents is hindered by the paucity of methods available to directly measure the ASL. Therefore, we sought to develop a straightforward approach to measure the ASL volume that would serve as the basis for a standardized method to assess mucosal hydration using readily available resources. Primary human bronchial epithelial (HBE) cells cultured at an air-liquid interface develop a liquid meniscus at the edge of the culture. We hypothesized that the size of the fluid meniscus is determined by the ASL volume, and could be measured as an index of the epithelial surface hydration status. A simple method was developed to measure the volume of fluid present in meniscus by imaging the refraction of light at the ASL interface with the culture wall using low-magnification microscopy. Using this method, we found that primary CF HBE cells had a reduced ASL volume compared with non-CF HBE cells, and that known modulators of ASL volume caused the predicted responses. Thus, we have demonstrated that this method can detect physiologically relevant changes in the ASL volume, and propose that this novel approach may be used to rapidly assess the effects of airway hydration therapies in high-throughput screening assays.

  1. A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation

    PubMed Central

    Ali Khan, Wajahat; Hur, Taeho; Muhammad Bilal, Hafiz Syed; Ul Hassan, Anees; Lee, Sungyoung

    2018-01-01

    The user experience (UX) is an emerging field in user research and design, and the development of UX evaluation methods presents a challenge for both researchers and practitioners. Different UX evaluation methods have been developed to extract accurate UX data. Among UX evaluation methods, the mixed-method approach of triangulation has gained importance. It provides more accurate and precise information about the user while interacting with the product. However, this approach requires skilled UX researchers and developers to integrate multiple devices, synchronize them, analyze the data, and ultimately produce an informed decision. In this paper, a method and system for measuring the overall UX over time using a triangulation method are proposed. The proposed platform incorporates observational and physiological measurements in addition to traditional ones. The platform reduces the subjective bias and validates the user’s perceptions, which are measured by different sensors through objectification of the subjective nature of the user in the UX assessment. The platform additionally offers plug-and-play support for different devices and powerful analytics for obtaining insight on the UX in terms of multiple participants. PMID:29783712

  2. A Multimodal Deep Log-Based User Experience (UX) Platform for UX Evaluation.

    PubMed

    Hussain, Jamil; Khan, Wajahat Ali; Hur, Taeho; Bilal, Hafiz Syed Muhammad; Bang, Jaehun; Hassan, Anees Ul; Afzal, Muhammad; Lee, Sungyoung

    2018-05-18

    The user experience (UX) is an emerging field in user research and design, and the development of UX evaluation methods presents a challenge for both researchers and practitioners. Different UX evaluation methods have been developed to extract accurate UX data. Among UX evaluation methods, the mixed-method approach of triangulation has gained importance. It provides more accurate and precise information about the user while interacting with the product. However, this approach requires skilled UX researchers and developers to integrate multiple devices, synchronize them, analyze the data, and ultimately produce an informed decision. In this paper, a method and system for measuring the overall UX over time using a triangulation method are proposed. The proposed platform incorporates observational and physiological measurements in addition to traditional ones. The platform reduces the subjective bias and validates the user's perceptions, which are measured by different sensors through objectification of the subjective nature of the user in the UX assessment. The platform additionally offers plug-and-play support for different devices and powerful analytics for obtaining insight on the UX in terms of multiple participants.

  3. Development and application of a statistical quality assessment method for dense-graded mixes.

    DOT National Transportation Integrated Search

    2004-08-01

    This report describes the development of the statistical quality assessment method and the procedure for mapping the measures obtained from the quality assessment method to a composite pay factor. The application to dense-graded mixes is demonstrated...

  4. RAPIDLY MEASURED INDICATORS OF RECREATIONAL WATER QUALITY ARE PREDICTIVE OF SWIMMING ASSOCIATED GASTROINTESTINAL ILLNESS

    EPA Science Inventory

    Standard methods to measure recreational water quality require at least 24 hours to obtain results making it impossible to assess the quality of water within a single day. Methods to measure recreational water quality in two hours or less have been developed. Application of rapid...

  5. CAN RAPID MEASURES OF RECREATIONAL WATER QUALITY PREDICT SWIMMING ASSOCIATED GASTROINTESTINAL ILLNESS?

    EPA Science Inventory

    Standard methods to measure recreational water quality require at least 24 hours to obtain results making it impossible to assess the quality of water within a single day. Methods to measure recreational water quality in two hours or less have been developed. Application of rapid...

  6. A brief measure of attitudes toward mixed methods research in psychology

    PubMed Central

    Roberts, Lynne D.; Povee, Kate

    2014-01-01

    The adoption of mixed methods research in psychology has trailed behind other social science disciplines. Teaching psychology students, academics, and practitioners about mixed methodologies may increase the use of mixed methods within the discipline. However, tailoring and evaluating education and training in mixed methodologies requires an understanding of, and way of measuring, attitudes toward mixed methods research in psychology. To date, no such measure exists. In this article we present the development and initial validation of a new measure: Attitudes toward Mixed Methods Research in Psychology. A pool of 42 items developed from previous qualitative research on attitudes toward mixed methods research along with validation measures was administered via an online survey to a convenience sample of 274 psychology students, academics and psychologists. Principal axis factoring with varimax rotation on a subset of the sample produced a four-factor, 12-item solution. Confirmatory factor analysis on a separate subset of the sample indicated that a higher order four factor model provided the best fit to the data. The four factors; ‘Limited Exposure,’ ‘(in)Compatibility,’ ‘Validity,’ and ‘Tokenistic Qualitative Component’; each have acceptable internal reliability. Known groups validity analyses based on preferred research orientation and self-rated mixed methods research skills, and convergent and divergent validity analyses based on measures of attitudes toward psychology as a science and scientist and practitioner orientation, provide initial validation of the measure. This brief, internally reliable measure can be used in assessing attitudes toward mixed methods research in psychology, measuring change in attitudes as part of the evaluation of mixed methods education, and in larger research programs. PMID:25429281

  7. Holographic Methods Of Dynamic Particulate Measurements ¬â€?Current Status

    NASA Astrophysics Data System (ADS)

    Thompson, Brian J.

    1983-03-01

    The field of holographic particulate measurements continues to be very active with many new applications in such diverse fields as bubble chamber recording and contaminant measurements in small vials. The methods have also been extended to measure velocity distributions of particles within a volume, particularly by the application of subsequent image processing methods. These techniques could be coupled with hybrid systems to become near real time. The current status of these more recent developments is reviewed.

  8. Development of phantom and methodology for 3D and 4D dose intercomparisons for advanced lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Caloz, Misael; Kafrouni, Marilyne; Leturgie, Quentin; Corde, Stéphanie; Downes, Simon; Lehmann, Joerg; Thwaites, David

    2015-01-01

    There are few reported intercomparisons or audits of combinations of advanced radiotherapy methods, particularly for 4D treatments. As part of an evaluation of the implementation of advanced radiotherapy technology, a phantom and associated methods, initially developed for in-house commissioning and QA of 4D lung treatments, has been developed further with the aim of using it for end-to-end dose intercomparison of 4D treatment planning and delivery. The respiratory thorax phantom can house moving inserts with variable speed (breathing rate) and motion amplitude. In one set-up mode it contains a small ion chamber for point dose measurements, or alternatively it can hold strips of radiochromic film to measure dose distributions. Initial pilot and feasibility measurements have been carried out in one hospital to thoroughly test the methods and procedures before using it more widely across a range of hospitals and treatment systems. Overall, the results show good agreement between measured and calculated doses and distributions, supporting the use of the phantom and methodology for multi-centre intercomparisons. However, before wider use, refinements of the method and analysis are currently underway particularly for the film measurements.

  9. Approaching sub-50 nanoradian measurements by reducing the saw-tooth deviation of the autocollimator in the Nano-Optic-Measuring Machine

    NASA Astrophysics Data System (ADS)

    Qian, Shinan; Geckeler, Ralf D.; Just, Andreas; Idir, Mourad; Wu, Xuehui

    2015-06-01

    Since the development of the Nano-Optic-Measuring Machine (NOM), the accuracy of measuring the profile of an optical surface has been enhanced to the 100-nrad rms level or better. However, to update the accuracy of the NOM system to sub-50 nrad rms, the large saw-tooth deviation (269 nrad rms) of an existing electronic autocollimator, the Elcomat 3000/8, must be resolved. We carried out simulations to assess the saw-tooth-like deviation. We developed a method for setting readings to reduce the deviation to sub-50 nrad rms, suitable for testing plane mirrors. With this method, we found that all the tests conducted in a slowly rising section of the saw-tooth show a small deviation of 28.8 to <40 nrad rms. We also developed a dense-measurement method and an integer-period method to lower the saw-tooth deviation during tests of sphere mirrors. Further research is necessary for formulating a precise test for a spherical mirror. We present a series of test results from our experiments that verify the value of the improvements we made.

  10. Secondary Ion Mass Spectrometry for Mg Tracer Diffusion: Issues and Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuggle, Jay; Giordani, Andrew; Kulkarni, Nagraj S

    2014-01-01

    A Secondary Ion Mass Spectrometry (SIMS) method has been developed to measure stable Mg isotope tracer diffusion. This SIMS method was then used to calculate Mg self- diffusivities and the data was verified against historical data measured using radio tracers. The SIMS method has been validated as a reliable alternative to the radio-tracer technique for the measurement of Mg self-diffusion coefficients and can be used as a routine method for determining diffusion coefficients.

  11. RAPID, PCR-BASED METHODS FOR MEASURING THE QUALITY OF BATHING BEACH WATERS

    EPA Science Inventory

    The current methods for measuring the quality of recreational waters were developed in the 1970's and were recommended to the States by EPA in 1986. These methods detect and quantify Escherichia coli and enterococci, two bacteria that are consistently associated with fecal wast...

  12. Using Policy-Capturing to Measure Attitudes in Organizational Diagnosis.

    ERIC Educational Resources Information Center

    Madden, Joseph M.

    1981-01-01

    Discusses an indirect method of attitude measurement, policy-capturing, that can be applied on an individual basis. In three experiments this method detected prejudicial attitudes toward females not detected with traditional methods. Can be used as a self-improvement diagnostic tool for developing awareness of behavior influences. (JAC)

  13. Measuring Education for Sustainable Development: Experiences from the University of Bristol

    ERIC Educational Resources Information Center

    Tierney, Aisling; Tweddell, Hannah; Willmore, Chris

    2015-01-01

    Purpose: The purpose of this paper is to explore how education for sustainable development (ESD) was measured in the taught curriculum at the University of Bristol (UoB), providing comparison to other methods of measurement and how measurements were used to engage academics in considering the visibility of the penetration of sustainable…

  14. Measuring the arterial-induced skin vibration by geometrical moiré fringe

    NASA Astrophysics Data System (ADS)

    Chiu, Shih-Yung; Wang, Chun-Hsiung; Lee, Shu-Sheng; Wu, Wen-Jong; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2018-02-01

    The demand for self-measured blood pressure self-monitoring device has much increased due to cardiovascular diseases have become leading causes of death for aging population. Currently, the primary non-invasive blood pressure monitoring method is cuff-based. It is well developed and accurate. However, the measuring process is not comfortable, and it cannot provide a continuous measurement. To overcome this problem, methods such as tonometry, volume clamp method, photoplethysmography, pulse wave velocity, and pulse transit time are reported. However, the limited accuracy hindered its application for diagnostics. To perform sequential blood pressure measurement with a high accuracy and long-term examination, we apply moiré interferometry to measure wrist skin vibration induced by radial artery. To achieve this goal, we developed a miniaturized device that can perform moiré interferometry around the wrist region. The 0.4-mm-pitched binary grating and tattoo sticker with 0.46 mm-pitched stripe pattern are used to perform geometric moiré. We demonstrated that the sensitivity and accuracy of this integrated system were sufficient to monitor arterialinduced skin vibration non-invasively. Our developed system was validated with ECG signals collected by a commercial system. According to our studies from measurement, the repeatability of wrist pulsation measurement was achieved with an accuracy of 99.1% in heart rate. A good repeatability of wrist pulse measurement was achieved. Simulations and experiments are both conducted in this paper and prove of geometrical moiré method a suitable technique for arterial-induced skin vibration monitoring.

  15. Quantifying Error in Survey Measures of School and Classroom Environments

    ERIC Educational Resources Information Center

    Schweig, Jonathan David

    2014-01-01

    Developing indicators that reflect important aspects of school and classroom environments has become central in a nationwide effort to develop comprehensive programs that measure teacher quality and effectiveness. Formulating teacher evaluation policy necessitates accurate and reliable methods for measuring these environmental variables. This…

  16. L-C Measurement Acquisition Method for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.

    2003-01-01

    This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.

  17. Measurement of Crystalline Silica Aerosol Using Quantum Cascade Laser-Based Infrared Spectroscopy.

    PubMed

    Wei, Shijun; Kulkarni, Pramod; Ashley, Kevin; Zheng, Lina

    2017-10-24

    Inhalation exposure to airborne respirable crystalline silica (RCS) poses major health risks in many industrial environments. There is a need for new sensitive instruments and methods for in-field or near real-time measurement of crystalline silica aerosol. The objective of this study was to develop an approach, using quantum cascade laser (QCL)-based infrared spectroscopy (IR), to quantify airborne concentrations of RCS. Three sampling methods were investigated for their potential for effective coupling with QCL-based transmittance measurements: (i) conventional aerosol filter collection, (ii) focused spot sample collection directly from the aerosol phase, and (iii) dried spot obtained from deposition of liquid suspensions. Spectral analysis methods were developed to obtain IR spectra from the collected particulate samples in the range 750-1030 cm -1 . The new instrument was calibrated and the results were compared with standardized methods based on Fourier transform infrared (FTIR) spectrometry. Results show that significantly lower detection limits for RCS (≈330 ng), compared to conventional infrared methods, could be achieved with effective microconcentration and careful coupling of the particulate sample with the QCL beam. These results offer promise for further development of sensitive filter-based laboratory methods and portable sensors for near real-time measurement of crystalline silica aerosol.

  18. Methods of measuring soil moisture in the field

    USGS Publications Warehouse

    Johnson, A.I.

    1962-01-01

    For centuries, the amount of moisture in the soil has been of interest in agriculture. The subject of soil moisture is also of great importance to the hydrologist, forester, and soils engineer. Much equipment and many methods have been developed to measure soil moisture under field conditions. This report discusses and evaluates the various methods for measurement of soil moisture and describes the equipment needed for each method. The advantages and disadvantages of each method are discussed and an extensive list of references is provided for those desiring to study the subject in more detail. The gravimetric method is concluded to be the most satisfactory method for most problems requiring onetime moisture-content data. The radioactive method is normally best for obtaining repeated measurements of soil moisture in place. It is concluded that all methods have some limitations and that the ideal method for measurement of soil moisture under field conditions has yet to be perfected.

  19. 15 CFR 16.2 - Description and goal of program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... standardized test methods by which selected product performance characteristics can be measured; (2) Developing... voluntarily to test and label their products according to the selected or developed methods; and (4...

  20. 15 CFR 16.2 - Description and goal of program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... standardized test methods by which selected product performance characteristics can be measured; (2) Developing... voluntarily to test and label their products according to the selected or developed methods; and (4...

  1. 15 CFR 16.2 - Description and goal of program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... standardized test methods by which selected product performance characteristics can be measured; (2) Developing... voluntarily to test and label their products according to the selected or developed methods; and (4...

  2. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  3. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2005-01-01

    In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.

  4. Method for 3D noncontact measurements of cut trees package area

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  5. A novel measure of effect size for mediation analysis.

    PubMed

    Lachowicz, Mark J; Preacher, Kristopher J; Kelley, Ken

    2018-06-01

    Mediation analysis has become one of the most popular statistical methods in the social sciences. However, many currently available effect size measures for mediation have limitations that restrict their use to specific mediation models. In this article, we develop a measure of effect size that addresses these limitations. We show how modification of a currently existing effect size measure results in a novel effect size measure with many desirable properties. We also derive an expression for the bias of the sample estimator for the proposed effect size measure and propose an adjusted version of the estimator. We present a Monte Carlo simulation study conducted to examine the finite sampling properties of the adjusted and unadjusted estimators, which shows that the adjusted estimator is effective at recovering the true value it estimates. Finally, we demonstrate the use of the effect size measure with an empirical example. We provide freely available software so that researchers can immediately implement the methods we discuss. Our developments here extend the existing literature on effect sizes and mediation by developing a potentially useful method of communicating the magnitude of mediation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Development of a Research Methods and Statistics Concept Inventory

    ERIC Educational Resources Information Center

    Veilleux, Jennifer C.; Chapman, Kate M.

    2017-01-01

    Research methods and statistics are core courses in the undergraduate psychology major. To assess learning outcomes, it would be useful to have a measure that assesses research methods and statistical literacy beyond course grades. In two studies, we developed and provided initial validation results for a research methods and statistical knowledge…

  7. Development of a Measure to Assess the Impact of Epilepsy on People with an Intellectual Disability: The Glasgow Epilepsy Outcome Scale-Client Version (GEOS-C)

    ERIC Educational Resources Information Center

    Watkins, J.; Espie, C. A.; Curtice, L.; Mantala, K.; Corp, A.; Foley, J.

    2006-01-01

    Background: Epilepsy is common in people with intellectual disability, yet clinicians and researchers seldom obtain information directly from the client. The development and preliminary validation of a novel measure for use with people with mild to moderate intellectual disabilities is described. Methods: Focus group methods (6 groups; 24…

  8. Does Creative Drama Promote Language Development in Early Childhood? A Review of the Methods and Measures Employed in the Empirical Literature

    ERIC Educational Resources Information Center

    Mages, Wendy Karen

    2008-01-01

    This systematic review of the literature synthesizes research from a number of disciplines and provides a succinct distillation of the methods and measures used to study the impact of creative drama on the language development of young children. An analysis of the merits and limitations of the reviewed studies reveals a number of methodological…

  9. PM: RESEARCH METHODS FOR PM TOXIC COMPOUNDS - PARTICLE METHODS EVALUATION AND DEVELOPMENT

    EPA Science Inventory

    The Federal Reference Method (FRM) for Particulate Matter (PM) developed by EPA's National Exposure Research Laboratory (NERL) forms the backbone of the EPA's national monitoring strategy. It is the measurement that defines attainment of the National Ambient Air Quality Standard...

  10. PESTICIDE ANALYTICAL METHODS TO SUPPORT DUPLICATE-DIET HUMAN EXPOSURE MEASUREMENTS

    EPA Science Inventory

    Historically, analytical methods for determination of pesticides in foods have been developed in support of regulatory programs and are specific to food items or food groups. Most of the available methods have been developed, tested and validated for relatively few analytes an...

  11. Contact Thermocouple Methodology and Evaluation for Temperature Measurement in the Laboratory

    NASA Technical Reports Server (NTRS)

    Brewer, Ethan J.; Pawlik, Ralph J.; Krause, David L.

    2013-01-01

    Laboratory testing of advanced aerospace components very often requires highly accurate temperature measurement and control devices, as well as methods to precisely analyze and predict the performance of such components. Analysis of test articles depends on accurate measurements of temperature across the specimen. Where possible, this task is accomplished using many thermocouples welded directly to the test specimen, which can produce results with great precision. However, it is known that thermocouple spot welds can initiate deleterious cracks in some materials, prohibiting the use of welded thermocouples. Such is the case for the nickel-based superalloy MarM-247, which is used in the high temperature, high pressure heater heads for the Advanced Stirling Converter component of the Advanced Stirling Radioisotope Generator space power system. To overcome this limitation, a method was developed that uses small diameter contact thermocouples to measure the temperature of heater head test articles with the same level of accuracy as welded thermocouples. This paper includes a brief introduction and a background describing the circumstances that compelled the development of the contact thermocouple measurement method. Next, the paper describes studies performed on contact thermocouple readings to determine the accuracy of results. It continues on to describe in detail the developed measurement method and the evaluation of results produced. A further study that evaluates the performance of different measurement output devices is also described. Finally, a brief conclusion and summary of results is provided.

  12. Updated techniques for estimating monthly streamflow-duration characteristics at ungaged and partial-record sites in central Nevada

    USGS Publications Warehouse

    Hess, Glen W.

    2002-01-01

    Techniques for estimating monthly streamflow-duration characteristics at ungaged and partial-record sites in central Nevada have been updated. These techniques were developed using streamflow records at six continuous-record sites, basin physical and climatic characteristics, and concurrent streamflow measurements at four partial-record sites. Two methods, the basin-characteristic method and the concurrent-measurement method, were developed to provide estimating techniques for selected streamflow characteristics at ungaged and partial-record sites in central Nevada. In the first method, logarithmic-regression analyses were used to relate monthly mean streamflows (from all months and by month) from continuous-record gaging sites of various percent exceedence levels or monthly mean streamflows (by month) to selected basin physical and climatic variables at ungaged sites. Analyses indicate that the total drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the equations developed from all months of monthly mean streamflow, the coefficient of determination averaged 0.84 and the standard error of estimate of the relations for the ungaged sites averaged 72 percent. For the equations derived from monthly means by month, the coefficient of determination averaged 0.72 and the standard error of estimate of the relations averaged 78 percent. If standard errors are compared, the relations developed in this study appear generally to be less accurate than those developed in a previous study. However, the new relations are based on additional data and the slight increase in error may be due to the wider range of streamflow for a longer period of record, 1995-2000. In the second method, streamflow measurements at partial-record sites were correlated with concurrent streamflows at nearby gaged sites by the use of linear-regression techniques. Statistical measures of results using the second method typically indicated greater accuracy than for the first method. However, to make estimates for individual months, the concurrent-measurement method requires several years additional streamflow data at more partial-record sites. Thus, exceedence values for individual months are not yet available due to the low number of concurrent-streamflow-measurement data available. Reliability, limitations, and applications of both estimating methods are described herein.

  13. Methods Development for Spectral Simplification of Room-Temperature Rotational Spectra

    NASA Astrophysics Data System (ADS)

    Kent, Erin B.; Shipman, Steven

    2014-06-01

    Room-temperature rotational spectra are dense and difficult to assign, and so we have been working to develop methods to accelerate this process. We have tested two different methods with our waveguide-based spectrometer, which operates from 8.7 to 26.5 GHz. The first method, based on previous work by Medvedev and De Lucia, was used to estimate lower state energies of transitions by performing relative intensity measurements at a range of temperatures between -20 and +50 °C. The second method employed hundreds of microwave-microwave double resonance measurements to determine level connectivity between rotational transitions. The relative intensity measurements were not particularly successful in this frequency range (the reasons for this will be discussed), but the information gleaned from the double-resonance measurements can be incorporated into other spectral search algorithms (such as autofit or genetic algorithm approaches) via scoring or penalty functions to help with the spectral assignment process. I.R. Medvedev, F.C. De Lucia, Astrophys. J. 656, 621-628 (2007).

  14. Thermal conductivity measurement of fluids using the 3ω method

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Min

    2009-02-01

    We have developed a procedure to measure the thermal conductivity of dielectric liquids and gases using a steady state ac hot wire method in which a thin metal wire is used as a heater and thermometer. The temperature response of the heater wire was measured in a four-probe geometry using an electronic circuit developed for the conventional 3ω method. The measurements have been performed in the frequency range from 1 mHz to 1 kHz. We devised a method to transform the raw data into well-known linear logarithmic frequency dependence plot. After the transformation, an optimal frequency region of the thermal conductivity data was clearly determined as has been done with the data from thin metal film heater. The method was tested with air, water, ethanol, mono-, and tetraethylene glycol. Volumetric heat capacity of the fluids was also calculated with uncertainty and the capability as a probe for metal-liquid thermal boundary conductance was discussed.

  15. Development of ocular viscosity characterization method.

    PubMed

    Shu-Hao Lu; Guo-Zhen Chen; Leung, Stanley Y Y; Lam, David C C

    2016-08-01

    Glaucoma is the second leading cause for blindness. Irreversible and progressive optic nerve damage results when the intraocular pressure (IOP) exceeds 21 mmHg. The elevated IOP is attributed to blocked fluid drainage from the eye. Methods to measure the IOP are widely available, but methods to measure the viscous response to blocked drainage has yet been developed. An indentation method to characterize the ocular flow is developed in this study. Analysis of the load-relaxation data from indentation tests on drainage-controlled porcine eyes showed that the blocked drainage is correlated with increases in ocular viscosity. Successful correlation of the ocular viscosity with drainage suggests that ocular viscosity maybe further developed as a new diagnostic parameter for assessment of normal tension glaucoma where nerve damage occurs without noticeable IOP elevation; and as a diagnostic parameter complimentary to conventional IOP in conventional diagnosis.

  16. The Development of a Flexible Measuring System for Muscle Volume Using Ultrasonography

    NASA Astrophysics Data System (ADS)

    Fukumoto, Kiyotaka; Fukuda, Osamu; Tsubai, Masayoshi; Muraki, Satoshi

    Quantification of muscle volume can be used as a means for the estimation of muscle strength. Its measuring process does not need the subject's muscular contractions so it is completely safe and particularly suited for elderly people. Therefore, we have developed a flexible measuring system for muscle volume using ultrasonography. In this system, an ultrasound probe is installed on a link mechanism which continuously scans fragmental images along the human body surface. These images are then measured and composed into a wide area cross-sectional image based on the spatial compounding method. The flexibility of the link mechanism enables the operator to measure the images under any body postures and body site. The spatial compounding method significantly reduces speckle and artifact noises from the composed cross-sectional image so that the operator can observe the individual muscles, such as Rectus femoris, Vastus intermedius, and so on, in detail. We conducted the experiments in order to examine the advantages of this system we have developed. The experimental results showed a high accuracy of the measuring position which was calculated using the link mechanism and presented the noise reduction effect based on the spatial compounding method. Finally, we confirmed high correlations between the MRI images and the ones of the developed system to verify the validity of the system.

  17. Intersubjectivity as a Measure of Social Competence among Children Attending Head Start: Assessing the Measure's Validity and Relation to Context

    ERIC Educational Resources Information Center

    Garte, Rebecca R.

    2015-01-01

    The present paper reported on a new method and procedure for assessing preschooler's social competence. This method utilized an observational measure of intersubjectivity to assess the social competence that develops in real time during interaction between two or more children. The measure of intersubjectivity reflected a conceptualization of the…

  18. Development of ultrasonic methods for hemodynamic measurements

    NASA Technical Reports Server (NTRS)

    Histand, M. B.; Miller, C. W.; Wells, M. K.; Mcleod, F. D.; Greene, E. R.; Winter, D.

    1975-01-01

    A transcutanous method to measure instantaneous mean blood flow in peripheral arteries of the human body was defined. Transcutanous and implanted cuff ultrasound velocity measurements were evaluated, and the accuracies of velocity, flow, and diameter measurements were assessed for steady flow. Performance criteria were established for the pulsed Doppler velocity meter (PUDVM), and performance tests were conducted. Several improvements are suggested.

  19. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorbachev, V. V., E-mail: vvgor-gfb1@mail.ru; Gavrin, V. N.; Ibragimova, T. V.

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

  20. A picture's worth a thousand words: a food-selection observational method.

    PubMed

    Carins, Julia E; Rundle-Thiele, Sharyn R; Parkinson, Joy E

    2016-05-04

    Issue addressed: Methods are needed to accurately measure and describe behaviour so that social marketers and other behaviour change researchers can gain consumer insights before designing behaviour change strategies and so, in time, they can measure the impact of strategies or interventions when implemented. This paper describes a photographic method developed to meet these needs. Methods: Direct observation and photographic methods were developed and used to capture food-selection behaviour and examine those selections according to their healthfulness. Four meals (two lunches and two dinners) were observed at a workplace buffet-style cafeteria over a 1-week period. The healthfulness of individual meals was assessed using a classification scheme developed for the present study and based on the Australian Dietary Guidelines. Results: Approximately 27% of meals (n = 168) were photographed. Agreement was high between raters classifying dishes using the scheme, as well as between researchers when coding photographs. The subset of photographs was representative of patterns observed in the entire dining room. Diners chose main dishes in line with the proportions presented, but in opposition to the proportions presented for side dishes. Conclusions: The present study developed a rigorous observational method to investigate food choice behaviour. The comprehensive food classification scheme produced consistent classifications of foods. The photographic data collection method was found to be robust and accurate. Combining the two observation methods allows researchers and/or practitioners to accurately measure and interpret food selections. Consumer insights gained suggest that, in this setting, increasing the availability of green (healthful) offerings for main dishes would assist in improving healthfulness, whereas other strategies (e.g. promotion) may be needed for side dishes. So what?: Visual observation methods that accurately measure and interpret food-selection behaviour provide both insight for those developing healthy eating interventions and a means to evaluate the effect of implemented interventions on food selection.

  1. Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods

    PubMed Central

    Lam, Gabrielle C; Hill, Doug L; Le, Lawrence H; Raso, Jim V; Lou, Edmond H

    2008-01-01

    Current research has provided a more comprehensive understanding of Adolescent Idiopathic Scoliosis (AIS) as a three-dimensional spinal deformity, encompassing both lateral and rotational components. Apart from quantifying curve severity using the Cobb angle, vertebral rotation has become increasingly prominent in the study of scoliosis. It demonstrates significance in both preoperative and postoperative assessment, providing better appreciation of the impact of bracing or surgical interventions. In the past, the need for computer resources, digitizers and custom software limited studies of rotation to research performed after a patient left the scoliosis clinic. With advanced technology, however, rotation measurements are now more feasible. While numerous vertebral rotation measurement methods have been developed and tested, thorough comparisons of these are still relatively unexplored. This review discusses the advantages and disadvantages of six common measurement techniques based on technology most pertinent in clinical settings: radiography (Cobb, Nash-Moe, Perdriolle and Stokes' method) and computer tomography (CT) imaging (Aaro-Dahlborn and Ho's method). Better insight into the clinical suitability of rotation measurement methods currently available is presented, along with a discussion of critical concerns that should be addressed in future studies and development of new methods. PMID:18976498

  2. Development and Evaluation of a Measure of Library Automation.

    ERIC Educational Resources Information Center

    Pungitore, Verna L.

    1986-01-01

    Construct validity and reliability estimates indicate that study designed to measure utilization of automation in public and academic libraries was successful in tentatively identifying and measuring three subdimensions of level of automation: quality of hardware, method of software development, and number of automation specialists. Questionnaire…

  3. Measurement of the Young's modulus of thin or flexible specimen with digital-image correlation method

    NASA Astrophysics Data System (ADS)

    Xu, Lianyun; Hou, Zhende; Qin, Yuwen

    2002-05-01

    Because some composite material, thin film material, and biomaterial, are very thin and some of them are flexible, the classical methods for measuring their Young's moduli, by mounting extensometers on specimens, are not available. A bi-image method based on image correlation for measuring Young's moduli is developed in this paper. The measuring precision achieved is one order enhanced with general digital image correlation or called single image method. By this way, the Young's modulus of a SS301 stainless steel thin tape, with thickness 0.067mm, is measured, and the moduli of polyester fiber films, a kind of flexible sheet with thickness 0.25 mm, are also measured.

  4. A Multipurpose Apparatus to Measure Viscosity and Surface Tension of Solutions: The Measurement of the Molecular Cross-Sectional Area of N-Proposal

    ERIC Educational Resources Information Center

    Xin Zhang; Shouxin Liu; Booxin Li; Na An; Fan Zhang

    2004-01-01

    A multipurpose apparatus that can be used to measure the viscosity of solution by the Ostwald method and the surface tension of solution by the drop-weight method or by the capillary-rise method is developed. The apparatus is convenient for in-situ preparation of solutions of different concentrations and avoids the error that frothing of the…

  5. Measuring the Return on Information Technology: A Knowledge-Based Approach for Revenue Allocation at the Process and Firm Level

    DTIC Science & Technology

    2005-07-01

    approach for measuring the return on Information Technology (IT) investments. A review of existing methods suggests the difficulty in adequately...measuring the returns of IT at various levels of analysis (e.g., firm or process level). To address this issue, this study aims to develop a method for...view (KBV), this paper proposes an analytic method for measuring the historical revenue and cost of IT investments by estimating the amount of

  6. Interfacial strength development in thermoplastic resins and fiber-reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Howes, Jeremy C.; Loos, Alfred C.

    1987-01-01

    An experimental program to develop test methods to be used to characterize interfacial (autohesive) strength development in polysulfone thermoplastic resin and graphite-polysulfone prepreg during processing is reported. Two test methods were used to examine interfacial strength development in neat resin samples. These included an interfacial tension test and a compact tension (CT) fracture toughness test. The interfacial tensile test proved to be very difficult to perform with a considerable amount of data scatter. Thus, the interfacial test was discarded in favor of the fracture toughness test. Interfacial strength development was observed by measuring the refracture toughness of precracked compact tension specimens that were rehealed at a given temperature and contact time. The measured refracture toughness was correlated with temperature and contact time. Interfacial strength development in graphite-polysulfone unidirectional composites was measured using a double cantilever beam (DCB) interlaminar fracture toughness test. The critical strain energy release rate of refractured composite specimens was measured as a function of healing temperature and contact time.

  7. A method to measure internal contact angle in opaque systems by magnetic resonance imaging.

    PubMed

    Zhu, Weiqin; Tian, Ye; Gao, Xuefeng; Jiang, Lei

    2013-07-23

    Internal contact angle is an important parameter for internal wettability characterization. However, due to the limitation of optical imaging, methods available for contact angle measurement are only suitable for transparent or open systems. For most of the practical situations that require contact angle measurement in opaque or enclosed systems, the traditional methods are not effective. Based upon the requirement, a method suitable for contact angle measurement in nontransparent systems is developed by employing MRI technology. In the Article, the method is demonstrated by measuring internal contact angles in opaque cylindrical tubes. It proves that the method also shows great feasibility in transparent situations and opaque capillary systems. By using the method, contact angle in opaque systems could be measured successfully, which is significant in understanding the wetting behaviors in nontransparent systems and calculating interfacial parameters in enclosed systems.

  8. Development and evaluation of a low cost probe-type instrument to measure the equilibrium moisture content of grain

    USDA-ARS?s Scientific Manuscript database

    Storage bags are common in Africa, Asia and many other less developed countries therefore a grain probing method is well-suited for moisture content (MC) measurement. A low cost meter was developed as part of a USAID project to reduce the post-harvest loss (PHL). The meter measures the MC of maize a...

  9. Development and beyond: Strategy for long-term maintenance of an online laser diffraction particle size method in a spray drying manufacturing process.

    PubMed

    Medendorp, Joseph; Bric, John; Connelly, Greg; Tolton, Kelly; Warman, Martin

    2015-08-10

    The purpose of this manuscript is to present the intended use and long-term maintenance strategy of an online laser diffraction particle size method used for process control in a spray drying process. A Malvern Insitec was used for online particle size measurements and a Malvern Mastersizer was used for offline particle size measurements. The two methods were developed in parallel with the Mastersizer serving as the reference method. Despite extensive method development across a range of particle sizes, the two instruments demonstrated different sensitivities to material and process changes over the product lifecycle. This paper will describe the procedure used to ensure consistent alignment of the two methods, thus allowing for continued use of online real-time laser diffraction as a surrogate for the offline system over the product lifecycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Measuring carbon in forests: current status and future challenges.

    PubMed

    Brown, Sandra

    2002-01-01

    To accurately and precisely measure the carbon in forests is gaining global attention as countries seek to comply with agreements under the UN Framework Convention on Climate Change. Established methods for measuring carbon in forests exist, and are best based on permanent sample plots laid out in a statistically sound design. Measurements on trees in these plots can be readily converted to aboveground biomass using either biomass expansion factors or allometric regression equations. A compilation of existing root biomass data for upland forests of the world generated a significant regression equation that can be used to predict root biomass based on aboveground biomass only. Methods for measuring coarse dead wood have been tested in many forest types, but the methods could be improved if a non-destructive tool for measuring the density of dead wood was developed. Future measurements of carbon storage in forests may rely more on remote sensing data, and new remote data collection technologies are in development.

  11. Measuring Metal Thickness With an Electric Probe

    NASA Technical Reports Server (NTRS)

    Shumka, A.

    1986-01-01

    Thickness of metal parts measured from one side with aid of Kelvin probe. Method developed for measuring thickness of end plate on sealed metal bellows from outside. Suitable for thicknesses of few thousandth's of inch (few hundred micrometers). Method also used to determine thickness of metal coatings applied by sputtering, electroplating, and flame spraying.

  12. Measurement of Chlorine Dioxide in Water by DPD Colorimetric Method

    NASA Astrophysics Data System (ADS)

    Song, Min; Yan, Panping; Yao, Jun

    2018-01-01

    In order to solve the problems of chlorine dioxide in water by DPD colorimetric method, this paper discusses the effects of the formulation, temperature, color development time and amount of color reagent on the measurement process, improving the on-line instrument for domestic and drinking water in chlorine dioxide measurement precision and accuracy.

  13. Using a Michelson Interferometer to Measure Coefficient of Thermal Expansion of Copper

    ERIC Educational Resources Information Center

    Scholl, Ryan; Liby, Bruce W.

    2009-01-01

    When most materials are heated they expand. This concept is usually demonstrated using some type of mechanical measurement of the linear expansion of a metal rod. We have developed an alternative laboratory method for measuring thermal expansion by using a Michelson interferometer. Using the method presented, interference, interferometry, and the…

  14. Metrology of fused silica

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Rollmann, K.

    2016-12-01

    In over 100 years of quartz glass fabrication, the applications and the optical requirements for this type of optical material have significantly changed. Applications like spectroscopy, UV flash lamps, the Apollo missions as well as the growth in UV and IR applications have directed quartz glass development towards new products, technologies or methods of measurement. The boundaries of the original measurement methods have been achieved and more sensitive measurements with precise resolution for transmission, purity, radiation resistance, absorption, thermal and mechanical stability as well as optical properties like homogeneity, stress birefringence, striae and bubbles/inclusions had to be found. This article will provide an overview of the development of measuring methods of quartz glass, discuss their limits and accuracy and point out the parameters which are of high relevance for today's laser applications.

  15. Library Objectives and Performance Measures and Their Use in Decision Making

    ERIC Educational Resources Information Center

    Hamburg, Morris; And Others

    1972-01-01

    For optimal allocations of limited funds, it is necessary for libraries to develop measures of output. Various forms of user exposure to documents are discussed in an effort to develop such measures for public libraries. It is suggested that the accrual method of accounting be used to compare such measures with costs. (40 references) (Author/NH)

  16. Acoustic analysis of the composition of human blood serum

    NASA Astrophysics Data System (ADS)

    Gurbatov, S. N.; Demin, I. Yu.; Klemina, A. V.; Klemin, V. A.

    2009-10-01

    New acoustic methods of determining total protein, protein fractions, and lipid components of the human blood serum are presented. Acoustic methods are based on high-precision measurements of velocity and temperature dependences and frequency and temperature dependences of ultrasound absorption. Acoustic characteristics of the blood serum were measured using the method of a fixed length interferometer in acoustic cells ˜80 mcl in volume in the temperature range from 15 to 40°C and the 4-9 MHz frequency range with the acoustic analyzer developed by BIOM company. An error in measuring ultrasound velocity in the blood serum was 3 × 10-5; that of absorption, 2 × 10-2. The developed acoustic methods were clinically tested and recommended for application at clinical diagnostic laboratories with RF treatment-and-prophylactics establishments.

  17. Ultrasonic Method for Measuring Internal Temperature Profile in Heated Materials

    NASA Astrophysics Data System (ADS)

    Ihara, I.; Takahashi, M.

    2008-02-01

    A new ultrasonic method for internal temperature measurement is presented. The principle of the method is based on temperature dependence of the velocity of the ultrasonic wave propagating through the material. An inverse analysis to determine the temperature profile in a heated material is developed and an experiment is carried out to verify the validity of the developed method. A single side of a silicone rubber plate of 30 mm thickness is heated and ultrasonic pulse-echo measurements are then performed during heating. A change in transit time of ultrasonic wave in the heated rubber plate is monitored and used to determine the transient variation in internal temperature distribution of the rubber. The internal temperature distribution determined ultrasonically agrees well with both obtained using commercial thermocouples installed in the rubber and estimated theoretically.

  18. VALIDATION OF A METHOD FOR ESTIMATING LONG-TERM EXPOSURES BASED ON SHORT-TERM MEASUREMENTS

    EPA Science Inventory

    A method for estimating long-term exposures from short-term measurements is validated using data from a recent EPA study of exposure to fine particles. The method was developed a decade ago but data to validate it did not exist until recently. In this paper, data from repeated ...

  19. VALIDATION OF A METHOD FOR ESTIMATING LONG-TERM EXPOSURES BASED ON SHORT-TERM MEASUREMENTS

    EPA Science Inventory

    A method for estimating long-term exposures from short-term measurements is validated using data from a recent EPA study of exposure to fine particles. The method was developed a decade ago but long-term exposure data to validate it did not exist until recently. In this paper, ...

  20. Development of a field method for measuring manganese in welding fume.

    PubMed

    Dale Marcy, A; Drake, Pamela L

    2007-11-01

    Workers who perform routine welding tasks are potentially exposed to fume that may contain manganese. Manganese may cause respiratory problems and is implicated in causing the occurrence of Parkinson-like symptoms. In this study, a field colorimetric method for extracting and measuring manganese in welding fume was developed. The method uses ultrasonic extraction with an acidic hydrogen peroxide solution to extract welding fume collected on polyvinyl chloride filters. Commercially available pre-packaged reagents are used to produce a colored solution, created by a reaction of manganese(ii) with 1-(2-pyridylazo)-2-naphthol. Absorbance measurements are then made using a portable spectrophotometer. The method detection limit and limit of quantification (LOQ) were 5.2 microg filter(-1) and 17 microg filter(-1), respectively, with a dynamic range up to 400 microg filter(-1). When the results are above the LOQ for the colorimetric method, the manganese masses are equivalent to those measured by the International Organization for Standardization Method 15202-2, which employs a strong acid digestion and analysis using inductively coupled plasma-optical emission spectrometry.

  1. Objective measurement of bread crumb texture

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Coles, Graeme D.

    1995-01-01

    Evaluation of bread crumb texture plays an important role in judging bread quality. This paper discusses the application of image analysis methods to the objective measurement of the visual texture of bread crumb. The application of Fast Fourier Transform and mathematical morphology methods have been discussed by the authors in their previous work, and a commercial bread texture measurement system has been developed. Based on the nature of bread crumb texture, we compare the advantages and disadvantages of the two methods, and a third method based on features derived directly from statistics of edge density in local windows of the bread image. The analysis of various methods and experimental results provides an insight into the characteristics of the bread texture image and interconnection between texture measurement algorithms. The usefulness of the application of general stochastic process modelling of texture is thus revealed; it leads to more reliable and accurate evaluation of bread crumb texture. During the development of these methods, we also gained useful insights into how subjective judges form opinions about bread visual texture. These are discussed here.

  2. A Better Way to Measure: New Survey Tool Gives Educators a Clear Picture of Professional Learning's Impact

    ERIC Educational Resources Information Center

    Blank, Rolf K.

    2010-01-01

    Just when educators are learning more about what constitutes effective professional development, a collaborative team of education researchers and practitioners have developed, tested, and implemented a cost-effective method of measuring and reporting on the quality of teacher professional development. The teacher professional development analysis…

  3. PARTNERING TO IMPROVE HUMAN EXPOSURE METHODS

    EPA Science Inventory

    Methods development research is an application-driven scientific area that addresses programmatic needs. The goals are to reduce measurement uncertainties, address data gaps, and improve existing analytical procedures for estimating human exposures. Partnerships have been develop...

  4. Measuring milk intake in breast-fed babies.

    PubMed

    Coward, W A

    1984-03-01

    The relative merits of test weighing, water turnover methods, and a flowmeter method for the measurement of milk intake in breast-fed babies are reviewed to allow the prospective investigator to choose the method most suited to his or her needs. Provided that measurements are made over 3-4 days to minimize the effects of day-to-day variation in milk intake, test weighing is a satisfactory procedure when feed frequency is low and individual feed volumes are large. However, in developing countries where frequency is high and feed volumes low, test weighing is inherently less accurate and may impose an unfamiliar and unphysiological discipline on the mother and child that severely limits its usefulness. In these circumstances methods based on the measurement of water turnover rates using 2H2O are the only procedures likely to yield useful information. A method in which single doses of 2H2O are given to the mother, and milk intake rates measured over 14 days, is described. Neither test weighing nor water turnover methods provide simultaneous milk intake and composition data. The development of flowmeter methods will make this possible, but their use is likely to limited to metabolic wards rather than the home and widespread use in community studies is not a practical proposition.

  5. Determination of parameters of a nuclear reactor through noise measurements

    DOEpatents

    Cohn, C.E.

    1975-07-15

    A method of measuring parameters of a nuclear reactor by noise measurements is described. Noise signals are developed by the detectors placed in the reactor core. The polarity coincidence between the noise signals is used to develop quantities from which various parameters of the reactor can be calculated. (auth)

  6. DEVELOPMENT OF TECHNIQUES FOR EDDY-CORRELATION MEASUREMENTS OF NON-METHANE VOLATILE ORGANIC COMPOUND FLUXED IN THE ATMOSPHERE

    EPA Science Inventory

    An analytical technique for the measurement of the exchange (flux) of trace gases between the earth's surface and the atmosphere will be developed. Measurements will rely on the eddy correlation method (ECM). Target compounds are biogenically and anthropogenically emitted v...

  7. A new way of measuring wiggling pattern in SADP for 3D NAND technology

    NASA Astrophysics Data System (ADS)

    Mi, Jian; Chen, Ziqi; Tu, Li Ming; Mao, Xiaoming; Liu, Gong Cai; Kawada, Hiroki

    2018-03-01

    A new metrology method of quantitatively measuring wiggling patterns in a Self-Aligned Double Patterning (SADP) process for 2D NAND technology has been developed with a CD-SEM metrology program on images from a Review-SEM system. The metrology program provided accurate modeling of various wiggling patterns. The Review-SEM system provided a-few-micrometer-wide Field of View (FOV), which exceeds precision-guaranteed FOV of a conventional CD-SEM. The result has been effectively verified by visual inspection on vertically compressed images compared with Wiggling Index from this new method. A best-known method (BKM) system has been developed with connected HW and SW to automatically measure wiggling patterns.

  8. Method of determining interwell oil field fluid saturation distribution

    DOEpatents

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  9. Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic Sediments

    DTIC Science & Technology

    2016-11-01

    A.; Weinstein, M. P.; Lohmann, R. Trophodynamic behavior of hydrophobic organic contaminants in the aquatic food web of a tidal river. Environ. Sci...FINAL REPORT Development of a Passive Multisampling Method to Measure Dioxins/Furans and Other Contaminant Bioavailability in Aquatic...trade name, trademark, manufacturer , or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

  10. Development of a visible light transmission (VLT) measurement system using an open-path optical method

    NASA Astrophysics Data System (ADS)

    Nurulain, S.; Manap, H.

    2017-09-01

    This paper describes about a visible light transmission (VLT) measurement system using an optical method. VLT rate plays an important role in order to determine the visibility of a medium. Current instrument to measure visibility has a gigantic set up, costly and mostly fails to function at low light condition environment. This research focuses on the development of a VLT measurement system using a simple experimental set-up and at a low cost. An open path optical technique is used to measure a few series of known-VLT thin film that act as sample of different visibilities. This measurement system is able to measure the light intensity of these thin films within the visible light region (535-540 nm) and the response time is less than 1s.

  11. Measuring coherence of computer-assisted likelihood ratio methods.

    PubMed

    Haraksim, Rudolf; Ramos, Daniel; Meuwly, Didier; Berger, Charles E H

    2015-04-01

    Measuring the performance of forensic evaluation methods that compute likelihood ratios (LRs) is relevant for both the development and the validation of such methods. A framework of performance characteristics categorized as primary and secondary is introduced in this study to help achieve such development and validation. Ground-truth labelled fingerprint data is used to assess the performance of an example likelihood ratio method in terms of those performance characteristics. Discrimination, calibration, and especially the coherence of this LR method are assessed as a function of the quantity and quality of the trace fingerprint specimen. Assessment of the coherence revealed a weakness of the comparison algorithm in the computer-assisted likelihood ratio method used. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. “Tension” in South Asian Women: Developing a Measure of Common Mental Disorder Using Participatory Methods

    PubMed Central

    Karasz, Alison; Patel, Viraj; Kabita, Mahbhooba; Shimu, Parvin

    2015-01-01

    Background Though common mental disorder (CMD) is highly prevalent among South Asian immigrant women, they rarely seek mental treatment. This may be due in part to the lack of conceptual synchrony between medical models of mental disorder and the social models of distress common in South Asian communities. Furthermore, common mental health screening and diagnostic measures may not adequately capture distress in this group. CBPR is ideally suited to help address measurement issues in CMD as well as develop culturally appropriate treatment models. Objectives To use participatory methods to identify an appropriate, culturally specific mental health syndrome and develop an instrument to measure this syndrome. Methods We formed a partnership between researchers, clinicians, and community members. The partnership selected a culturally specific model of emotional distress/ illness, “Tension,” as a focus for further study. Partners developed a scale to measure Tension and tested the new scale on 162 Bangladeshi immigrant women living in the Bronx. Results The 24-item “Tension Scale” had high internal consistency (alpha =0.83). In bivariate analysis, the scale significantly correlated in the expected direction with depressed as measured by the PHQ-2, age, education, self-rated health, having seen a physician in the past year, and other variables. Conclusions Using participatory techniques, we created a new measure designed to assess common mental disorder in an isolated immigrant group. The new measure shows excellent psychometric properties and will be helpful in the implementation of a community-based, culturally synchronous intervention for depression. We describe a useful strategy for the rapid development and field testing of culturally appropriate measures of mental distress and disorder. PMID:24375184

  13. A Practical, Robust and Fast Method for Location Localization in Range-Based Systems.

    PubMed

    Huang, Shiping; Wu, Zhifeng; Misra, Anil

    2017-12-11

    Location localization technology is used in a number of industrial and civil applications. Real time location localization accuracy is highly dependent on the quality of the distance measurements and efficiency of solving the localization equations. In this paper, we provide a novel approach to solve the nonlinear localization equations efficiently and simultaneously eliminate the bad measurement data in range-based systems. A geometric intersection model was developed to narrow the target search area, where Newton's Method and the Direct Search Method are used to search for the unknown position. Not only does the geometric intersection model offer a small bounded search domain for Newton's Method and the Direct Search Method, but also it can self-correct bad measurement data. The Direct Search Method is useful for the coarse localization or small target search domain, while the Newton's Method can be used for accurate localization. For accurate localization, by utilizing the proposed Modified Newton's Method (MNM), challenges of avoiding the local extrema, singularities, and initial value choice are addressed. The applicability and robustness of the developed method has been demonstrated by experiments with an indoor system.

  14. An experimental method to simulate incipient decay of wood basidiomycete fungi

    Treesearch

    Simon Curling; Jerrold E. Winandy; Carol A. Clausen

    2000-01-01

    At very early stages of decay of wood by basidiomycete fungi, strength loss can be measured from wood before any measurable weight loss. Therefore, strength loss is a more efficient measure of incipient decay than weight loss. However, common standard decay tests (e.g. EN 113 or ASTM D2017) use weight loss as the measure of decay. A method was developed that allowed...

  15. [Development of methods and instruments for external quality assurance in inpatient parent-child rehabilitation and prevention].

    PubMed

    Neuderth, S; Lukasczik, M; Musekamp, G; Gerlich, C; Saupe-Heide, M; Löbmann, R; Vogel, H

    2013-02-01

    There so far is no standardized program for external quality assurance in inpatient parent-child prevention and rehabilitation in Germany. Therefore, instruments and methods of external quality assurance were developed and evaluated on behalf of the federal-level health insurance institutions. On the level of structure quality, a modular questionnaire for assessing structural features of rehabilitation/prevention centers, basic and allocation criteria as well as a checklist for visitations were developed. Structural data were collected in a nationwide survey of parent-child prevention and rehabilitation centers. Process and outcome quality data were collected in n=38 centers. Process quality was assessed using multiple methods (process-related structural features, case-related routine documentation, and incident-related patient questionnaires). Outcome quality was measured via patient questionnaires (n=1 799 patients). We used a multi-level modelling approach by adjusting relevant confounders on institutional and patient levels. The methods, instruments and analyzing procedures developed for measuring quality on the level of structure, processes and outcomes were adjusted in cooperation with all relevant stakeholders. Results are exemplarily presented for all quality assurance tools. For most of the risk-adjusted outcome parameters, we found no significant differences between institutions. For the first time, a comprehensive, standardized and generally applicable set of methods and instruments for routine use in comparative quality measurement of inpatient parent-child prevention and rehabilitation is available. However, it should be considered that the very heterogeneous field of family-oriented measures can not be covered entirely by an external quality assurance program. Therefore, methods and instruments have to be adapted continuously to the specifics of this area of health care and to new developments. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Summary of laser speckle photogrammetry for HOST

    NASA Technical Reports Server (NTRS)

    Pollack, Frank G.

    1986-01-01

    High temperature static strain measurement capability is important for the success of the HOST program. As part of the NASA Lewis effort to develop the technology for improved hot-section durability, the HOST instrumentation program has, as a major goal, the development of methods for measuring strain at high temperature. Development work includes both improvements in resistance strain-gauge technology and, as an alternative approach, the development of optical techniques for high temperature strain measurement.

  17. Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    NASA Technical Reports Server (NTRS)

    Chin, Alexander; Herrera, Claudia; Spivey, Natalie; Fladung, William; Cloutier, David

    2015-01-01

    This presentation describes the DIM method and how it measures the inertia properties of an object by analyzing the frequency response functions measured during a ground vibration test (GVT). The DIM method has been in development at the University of Cincinnati and has shown success on a variety of small scale test articles. The NASA AFRC version was modified for larger applications.

  18. Estimation of the zeta potential and the dielectric constant using velocity measurements in the electroosmotic flows.

    PubMed

    Park, H M; Hong, S M

    2006-12-15

    In this paper we develop a method for the determination of the zeta potential zeta and the dielectric constant epsilon by exploiting velocity measurements of the electroosmotic flow in microchannels. The inverse problem is solved through the minimization of a performance function utilizing the conjugate gradient method. The present method is found to estimate zeta and epsilon with reasonable accuracy even with noisy velocity measurements.

  19. Trends in measurement models and methods in understanding occupational health psychology.

    PubMed

    Tetrick, Lois E

    2017-07-01

    Measurement of occupational health psychology constructs is the cornerstone to developing our understanding of occupational health and safety. It also is critical in the design, evaluation, and implementation of interventions to improve employees and organizations well-being. The purpose of this article is a brief review of the current state of measurement theory and practice in occupational health psychology. Also included are a discussion of development of newer measurement models and methods, which are in use in other disciplines of psychology, but have not been incorporated into the occupational health psychology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Development of Static Balance Measurement and Correction Compound Platform for Single Blade of Controllable Pitch Propeller

    NASA Astrophysics Data System (ADS)

    Chao, Zhang; Shijie, Su; Yilin, Yang; Guofu, Wang; Chao, Wang

    2017-11-01

    Aiming at the static balance of the controllable pitch propeller (CPP), a high efficiency static balance method based on the double-layer structure of the measuring table and gantry robot is adopted to realize the integration of torque measurement and corrected polish for controllable pitch propeller blade. The control system was developed by Microsoft Visual Studio 2015, and a composite platform prototype was developed. Through this prototype, conduct an experiment on the complete process of torque measurement and corrected polish based on a 300kg class controllable pitch propeller blade. The results show that the composite platform can correct the static balance of blade with a correct, efficient and labor-saving operation, and can replace the traditional method on static balance of the blade.

  1. National Quality Measures for Child Mental Health Care: Background, Progress, and Next Steps

    PubMed Central

    Murphy, J. Michael; Scholle, Sarah Hudson; Hoagwood, Kimberly Eaton; Sachdeva, Ramesh C.; Mangione-Smith, Rita; Woods, Donna; Kamin, Hayley S.; Jellinek, Michael

    2013-01-01

    OBJECTIVE: To review recent health policies related to measuring child health care quality, the selection processes of national child health quality measures, the nationally recommended quality measures for child mental health care and their evidence strength, the progress made toward developing new measures, and early lessons learned from these national efforts. METHODS: Methods used included description of the selection process of child health care quality measures from 2 independent national initiatives, the recommended quality measures for child mental health care, and the strength of scientific evidence supporting them. RESULTS: Of the child health quality measures recommended or endorsed during these national initiatives, only 9 unique measures were related to child mental health. CONCLUSIONS: The development of new child mental health quality measures poses methodologic challenges that will require a paradigm shift to align research with its accelerated pace. PMID:23457148

  2. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  3. Alcohol and Sexual Consent Scale: Development and Validation

    ERIC Educational Resources Information Center

    Ward, Rose Marie; Matthews, Molly R.; Weiner, Judith; Hogan, Kathryn M.; Popson, Halle C.

    2012-01-01

    Objective: To establish a short measure of attitudes toward sexual consent in the context of alcohol consumption. Methods: Using a multistage and systematic measurement development process, the investigators developed the Alcohol and Sexual Consent Scale using a sample of college students. Results: The resulting 12-item scale, the Alcohol and…

  4. A Perceptual Measure of the Degree of Development of Proprietary Equipment.

    ERIC Educational Resources Information Center

    Cua, Kristy O.; Junttila, Mikko A.; Schroeder, Roger G.

    2002-01-01

    Evaluated the psychometric properties of a perceptual measure of the extent to which manufacturing organizations develop proprietary equipment, the Proprietary Equipment Scale (developed by the World Class Manufacturing study). Analysis of data from 164 manufacturing plants in 5 countries indicates that although method effects are present, the…

  5. Recent Advances in Resonance Region Nuclear Data Measurements and Analyses for Supporting Nuclear Energy Applications

    NASA Astrophysics Data System (ADS)

    Dunn, Michael

    2008-10-01

    For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.

  6. Development and optimization of a noncontact optical device for online monitoring of jaundice in human subjects.

    PubMed

    Polley, Nabarun; Saha, Srimoyee; Singh, Soumendra; Adhikari, Aniruddha; Das, Sukhen; Choudhury, Bhaskar Roy; Pal, Samir Kumar

    2015-06-01

    Jaundice is one of the notable markers of liver malfunction in our body, revealing a significant rise in the concentration of an endogenous yellow pigment bilirubin. We have described a method for measuring the optical spectrum of our conjunctiva and derived pigment concentration by using diffused reflection measurement. The method uses no prior model and is expected to work across the races (skin color) encompassing a wide range of age groups. An optical fiber-based setup capable of measuring the conjunctival absorption spectrum from 400 to 800 nm is used to monitor the level of bilirubin and is calibrated with the value measured from blood serum of the same human subject. We have also developed software in the LabVIEW platform for use in online monitoring of bilirubin levels in human subjects by nonexperts. The results demonstrate that relative absorption at 460 and 600 nm has a distinct correlation with that of the bilirubin concentration measured from blood serum. Statistical analysis revealed that our proposed method is in agreement with the conventional biochemical method. The innovative noncontact, low-cost technique is expected to have importance in monitoring jaundice in developing/underdeveloped countries, where the inexpensive diagnosis of jaundice with minimally trained manpower is obligatory.

  7. Development and optimization of a noncontact optical device for online monitoring of jaundice in human subjects

    NASA Astrophysics Data System (ADS)

    Polley, Nabarun; Saha, Srimoyee; Singh, Soumendra; Adhikari, Aniruddha; Das, Sukhen; Choudhury, Bhaskar Roy; Pal, Samir Kumar

    2015-06-01

    Jaundice is one of the notable markers of liver malfunction in our body, revealing a significant rise in the concentration of an endogenous yellow pigment bilirubin. We have described a method for measuring the optical spectrum of our conjunctiva and derived pigment concentration by using diffused reflection measurement. The method uses no prior model and is expected to work across the races (skin color) encompassing a wide range of age groups. An optical fiber-based setup capable of measuring the conjunctival absorption spectrum from 400 to 800 nm is used to monitor the level of bilirubin and is calibrated with the value measured from blood serum of the same human subject. We have also developed software in the LabVIEW platform for use in online monitoring of bilirubin levels in human subjects by nonexperts. The results demonstrate that relative absorption at 460 and 600 nm has a distinct correlation with that of the bilirubin concentration measured from blood serum. Statistical analysis revealed that our proposed method is in agreement with the conventional biochemical method. The innovative noncontact, low-cost technique is expected to have importance in monitoring jaundice in developing/underdeveloped countries, where the inexpensive diagnosis of jaundice with minimally trained manpower is obligatory.

  8. Capacitance variation measurement method with a continuously variable measuring range for a micro-capacitance sensor

    NASA Astrophysics Data System (ADS)

    Lü, Xiaozhou; Xie, Kai; Xue, Dongfeng; Zhang, Feng; Qi, Liang; Tao, Yebo; Li, Teng; Bao, Weimin; Wang, Songlin; Li, Xiaoping; Chen, Renjie

    2017-10-01

    Micro-capacitance sensors are widely applied in industrial applications for the measurement of mechanical variations. The measurement accuracy of micro-capacitance sensors is highly dependent on the capacitance measurement circuit. To overcome the inability of commonly used methods to directly measure capacitance variation and deal with the conflict between the measurement range and accuracy, this paper presents a capacitance variation measurement method which is able to measure the output capacitance variation (relative value) of the micro-capacitance sensor with a continuously variable measuring range. We present the principles and analyze the non-ideal factors affecting this method. To implement the method, we developed a capacitance variation measurement circuit and carried out experiments to test the circuit. The result shows that the circuit is able to measure a capacitance variation range of 0-700 pF linearly with a maximum relative accuracy of 0.05% and a capacitance range of 0-2 nF (with a baseline capacitance of 1 nF) with a constant resolution of 0.03%. The circuit is proposed as a new method to measure capacitance and is expected to have applications in micro-capacitance sensors for measuring capacitance variation with a continuously variable measuring range.

  9. Study of Adaptive Mathematical Models for Deriving Automated Pilot Performance Measurement Techniques. Volume I. Model Development.

    ERIC Educational Resources Information Center

    Connelly, Edward A.; And Others

    A new approach to deriving human performance measures and criteria for use in automatically evaluating trainee performance is documented in this report. The ultimate application of the research is to provide methods for automatically measuring pilot performance in a flight simulator or from recorded in-flight data. An efficient method of…

  10. Assessing Resilience across Cultures Using Mixed Methods: Construction of the Child and Youth Resilience Measure

    ERIC Educational Resources Information Center

    Ungar, Michael; Liebenberg, Linda

    2011-01-01

    An international team of investigators in 11 countries have worked collaboratively to develop a culturally and contextually relevant measure of youth resilience, the Child and Youth Resilience Measure (CYRM-28). The team used a mixed methods design that facilitated understanding of both common and unique aspects of resilience across cultures.…

  11. A method for developing outcome measures in the clinical laboratory.

    PubMed

    Jones, J

    1996-01-01

    Measuring and reporting outcomes in health care is becoming more important for quality assessment, utilization assessment, accreditation standards, and negotiating contracts in managed care. How does one develop an outcome measure for the laboratory to assess the value of the services? A method is described which outlines seven steps in developing outcome measures for a laboratory service or process. These steps include the following: 1. Identify the process or service to be monitored for performance and outcome assessment. 2. If necessary, form an multidisciplinary team of laboratory staff, other department staff, physicians, and pathologists. 3. State the purpose of the test or service including a review of published data for the clinical pathological correlation. 4. Prepare a process cause and effect diagram including steps critical to the outcome. 5. Identify key process variables that contribute to positive or negative outcomes. 6. Identify outcome measures that are not process measures. 7. Develop an operational definition, identify data sources, and collect data. Examples, including a process cause and effect diagram, process variables, and outcome measures, are given using the Therapeutic Drug Monitoring service (TDM). A summary of conclusions and precautions for outcome measurement is then provided.

  12. Measuring forest evapotranspiration--theory and problems

    Treesearch

    Anthony C. Federer; Anthony C. Federer

    1970-01-01

    A satisfactory general method of measuring forest evapotranspiration has yet to be developed. Many procedures have been tried, but only the soil-water budget method and the micrometeorological methods offer any degree of success. This paper is a discussion of these procedures and the problems that arise in applying them. It is designed as a reference for scientists and...

  13. METHODS DEVELOPMENT AND DEMONSTRATION FOR ASSESSING LEVEL OF NATIVE PESTICIDES, PCBS, PAHS, AND VOCS IN HUMAN BLOOD

    EPA Science Inventory

    Methods have been developed for screening and assessing the level of volatile, semi-volatile and non-volatile organic pollutants in human blood. The specific methodology is developed for measuring the presence of "native" compounds rather than their metabolites. Spe...

  14. Investigation of thickness uniformity of thin metal films by using α-particle energy loss method and successive scanning measurements

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xu, Jiayun; Bai, Lixin

    2017-03-01

    The metal films are widely used in the Inertial Confinement Fusion (ICF) experiments to obtain the radiation opacity, and the accuracy of the measuring results mainly depends on the accuracy of the film thickness and thickness uniformity. The traditional used measuring methods all have various disadvantages, the optical method and stylus method cannot provide mass thickness which reflects the internal density distribution of the films, and the weighing method cannot provide the uniformity of the thickness distribution. This paper describes a new method which combines the α-particle energy loss (AEL) method and the successive scanning measurements to obtain the film thickness and thickness uniformity. The measuring system was partly installed in the vacuum chamber, and the relationship of chamber pressure and energy loss caused by the residual air in the vacuum chamber was studied for the source-to-detector distance ranging from 1 to 5 cm. The results show that the chamber pressure should be less than 10 Pa for the present measuring system. In the process of measurement, the energy spectrum of α-particles transmitted through each different measuring point were obtained, and then recorded automatically by a self-developed multi-channel analysis software. At the same time, the central channel numbers of the spectrum (CH) were also saved in a text form document. In order to realize the automation of data processing and represent the thickness uniformity visually in a graphic 3D plot, a software package was developed to convert the CH values into film thickness and thickness uniformity. The results obtained in this paper make the film thickness uniformity measurements more accurate and efficient in the ICF experiments.

  15. Fluorescence based spectral assessment of pork meat freshness

    USDA-ARS?s Scientific Manuscript database

    Development of sensitive, nondestructive measurement methods for meat freshness is necessary to ensure safe distribution of meat products in the continually growing meat market. Fluorescence spectral technology has been shown to be a promising measurement method for quality and safety evaluation of ...

  16. Measurement of scour-depth near bridge piers

    USGS Publications Warehouse

    Skinner, J.V.

    1986-01-01

    Because a free-running craft will be undesirably heavy and large, other methods of obtaining scour data are proposed. A tethered craft fitted with a controllable rudder and some methods of measuring scour at a point are presented for future study and development.

  17. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1973-01-01

    This progress report describes NBS activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices. Significant accomplishments during this reporting period include design of a plan to provide standard silicon wafers for four-probe resistivity measurements for the industry, publication of a summary report on the photoconductive decay method for measuring carrier lifetime, publication of a comprehensive review of the field of wire bond fabrication and testing, and successful completion of organizational activity leading to the establishment of a new group on quality and hardness assurance in ASTM Committee F-1 on Electronics. Work is continuing on measurement of resistivity of semiconductor crystals; characterization of generation-recombination-trapping centers in silicon; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  18. An Early Years Toolbox for Assessing Early Executive Function, Language, Self-Regulation, and Social Development: Validity, Reliability, and Preliminary Norms

    PubMed Central

    Howard, Steven J.; Melhuish, Edward

    2016-01-01

    Several methods of assessing executive function (EF), self-regulation, language development, and social development in young children have been developed over previous decades. Yet new technologies make available methods of assessment not previously considered. In resolving conceptual and pragmatic limitations of existing tools, the Early Years Toolbox (EYT) offers substantial advantages for early assessment of language, EF, self-regulation, and social development. In the current study, results of our large-scale administration of this toolbox to 1,764 preschool and early primary school students indicated very good reliability, convergent validity with existing measures, and developmental sensitivity. Results were also suggestive of better capture of children’s emerging abilities relative to comparison measures. Preliminary norms are presented, showing a clear developmental trajectory across half-year age groups. The accessibility of the EYT, as well as its advantages over existing measures, offers considerably enhanced opportunities for objective measurement of young children’s abilities to enable research and educational applications. PMID:28503022

  19. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  20. Development of Michelson interferometer based spatial phase-shift digital shearography

    NASA Astrophysics Data System (ADS)

    Xie, Xin

    Digital shearography is a non-contact, full field, optical measurement method, which has the capability of directly measuring the gradient of deformation. For high measurement sensitivity, phase evaluation method has to be introduced into digital shearography by phase-shift technique. Catalog by phase-shift method, digital phase-shift shearography can be divided into Temporal Phase-Shift Digital Shearography (TPS-DS) and Spatial Phase-Shift Digital Shearography (SPS-DS). TPS-DS is the most widely used phase-shift shearography system, due to its simple algorithm, easy operation and good phase-map quality. However, the application of TPS-DS is only limited in static/step-by-step loading measurement situation, due to its multi-step shifting process. In order to measure the strain under dynamic/continuous loading situation, a SPS-DS system has to be developed. This dissertation aims to develop a series of Michelson Interferometer based SPS-DS measurement methods to achieve the strain measurement by using only a single pair of speckle pattern images. The Michelson Interferometer based SPS-DS systems utilize special designed optical setup to introduce extra carrier frequency into the laser wavefront. The phase information corresponds to the strain field can be separated on the Fourier domain using a Fourier Transform and can further be evaluated with a Windowed Inverse Fourier Transform. With different optical setups and carrier frequency arrangements, the Michelson Interferometer based SPS-DS method is capable to achieve a variety of measurement tasks using only single pair of speckle pattern images. Catalog by the aimed measurand, these capable measurement tasks can be divided into five categories: 1) measurement of out-of-plane strain field with small shearing amount; 2) measurement of relative out-of-plane deformation field with big shearing amount; 3) simultaneous measurement of relative out-of-plane deformation field and deformation gradient field by using multiple carrier frequencies; 4) simultaneous measurement of two directional strain field using dual measurement channels 5) measurement of pure in-plane strain and pure out-of-plane strain with multiple carrier frequencies. The basic theory, optical path analysis, preliminary studies, results analysis and research plan are shown in detail in this dissertation.

  1. EPA-ORD MEASUREMENT SCIENCE SUPPORT FOR HOMELAND SECURITY

    EPA Science Inventory

    This presentation will describe the organization and the research and development activities of the ORD National Exposure Measurements Center and will focus on the Center's planned role in providing analytical method development, statistical sampling and design guidance, quality ...

  2. Measuring benefits of transit oriented development.

    DOT National Transportation Integrated Search

    2014-10-01

    Transit-oriented development (TOD) in New Jersey is evaluated using a variety of methods and different outcome measures. : Data was gathered from respondents residing around eight train stations in New Jersey and up to two miles away from those : sta...

  3. Novel Imaging Method of Continuous Shear Wave by Ultrasonic Color Flow Mapping

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamamoto, Atsushi; Yuminaka, Yasushi

    Shear wave velocity measurement is a promising method in evaluation of tissue stiffness. Several methods have been developed to measure the shear wave velocity, however, it is difficult to obtain quantitative shear wave image in real-time by low cost system. In this paper, a novel shear wave imaging method for continuous shear wave is proposed. This method uses a color flow imaging which is used in ultrasonic imaging system to obtain shear wave's wavefront map. Two conditions, shear wave frequency condition and shear wave displacement amplitude condition, are required, however, these conditions are not severe restrictions in most applications. Using the proposed method, shear wave velocity of trapezius muscle is measured. The result is consistent with the velocity which is calculated from shear elastic modulus measured by ARFI method.

  4. An investigation of density measurement method for yarn-dyed woven fabrics based on dual-side fusion technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Xin, Binjie

    2016-08-01

    Yarn density is always considered as the fundamental structural parameter used for the quality evaluation of woven fabrics. The conventional yarn density measurement method is based on one-side analysis. In this paper, a novel density measurement method is developed for yarn-dyed woven fabrics based on a dual-side fusion technique. Firstly, a lab-used dual-side imaging system is established to acquire both face-side and back-side images of woven fabric and the affine transform is used for the alignment and fusion of the dual-side images. Then, the color images of the woven fabrics are transferred from the RGB to the CIE-Lab color space, and the intensity information of the image extracted from the L component is used for texture fusion and analysis. Subsequently, three image fusion methods are developed and utilized to merge the dual-side images: the weighted average method, wavelet transform method and Laplacian pyramid blending method. The fusion efficacy of each method is evaluated by three evaluation indicators and the best of them is selected to do the reconstruction of the complete fabric texture. Finally, the yarn density of the fused image is measured based on the fast Fourier transform, and the yarn alignment image could be reconstructed using the inverse fast Fourier transform. Our experimental results show that the accuracy of density measurement by using the proposed method is close to 99.44% compared with the traditional method and the robustness of this new proposed method is better than that of conventional analysis methods.

  5. [Development and validation of an analytical method to quantify residues of cleaning products able to inactivate prion].

    PubMed

    Briot, T; Robelet, A; Morin, N; Riou, J; Lelièvre, B; Lebelle-Dehaut, A-V

    2016-07-01

    In this study, a novel analytical method to quantify prion inactivating detergent in rinsing waters coming from the washer-disinfector of a hospital sterilization unit has been developed. The final aim was to obtain an easy and functional method in a routine hospital process which does not need the cleaning product manufacturer services. An ICP-MS method based on the potassium dosage of the washer-disinfector's rinsing waters was developed. Potassium hydroxide is present on the composition of the three prion inactivating detergent currently on the French market. The detergent used in this study was the Actanios LDI(®) (Anios laboratories). A Passing and Bablok regression compares concentrations measured with this developed method and with the HPLC-UV manufacturer method. According to results obtained, the developed method is easy to use in a routine hospital process. The Passing and Bablok regression showed that there is no statistical difference between the two analytical methods during the second rinsing step. Besides, both methods were linear on the third rinsing step, with a 1.5ppm difference between the concentrations measured for each method. This study shows that the ICP-MS method developed is nonspecific for the detergent, but specific for the potassium element which is present in all prion inactivating detergent currently on the French market. This method should be functional for all the prion inactivating detergent containing potassium, if the sensibility of the method is sufficient when the potassium concentration is very low in the prion inactivating detergent formulation. Copyright © 2016. Published by Elsevier Masson SAS.

  6. The importance of quantitative measurement methods for uveitis: laser flare photometry endorsed in Europe while neglected in Japan where the technology measuring quantitatively intraocular inflammation was developed.

    PubMed

    Herbort, Carl P; Tugal-Tutkun, Ilknur

    2017-06-01

    Laser flare photometry (LFP) is an objective and quantitative method to measure intraocular inflammation. The LFP technology was developed in Japan and has been commercially available since 1990. The aim of this work was to review the application of LFP in uveitis practice in Europe compared to Japan where the technology was born. We reviewed PubMed articles published on LFP and uveitis. Although LFP has been largely integrated in routine uveitis practice in Europe, it has been comparatively neglected in Japan and still has not received FDA approval in the USA. As LFP is the only method that provides a precise measure of intraocular inflammation, it should be used as a gold standard in uveitis centres worldwide.

  7. Development of a Scale to Measure Lifelong Learning

    ERIC Educational Resources Information Center

    Kirby, John R.; Knapper, Christopher; Lamon, Patrick; Egnatoff, William J.

    2010-01-01

    Primary objective: to develop a scale to measure students' disposition to engage in lifelong learning. Research design, methods and procedures: using items that reflected the components of lifelong learning, we constructed a 14-item scale that was completed by 309 university and vocational college students, who also completed a measure of deep and…

  8. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Jiang, Hao

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are themore » simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.« less

  9. Development of a test method for carbonyl compounds from stationary source emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhihua Fan; Peterson, M.R.; Jayanty, R.K.M.

    1997-12-31

    Carbonyl compounds have received increasing attention because of their important role in ground-level ozone formation. The common method used for the measurement of aldehydes and ketones is 2,4-dinitrophenylhydrazine (DNPH) derivatization followed by high performance liquid chromatography and ultra violet (HPLC-UV) analysis. One of the problems associated with this method is the low recovery for certain compounds such as acrolein. This paper presents a study in the development of a test method for the collection and measurement of carbonyl compounds from stationary source emissions. This method involves collection of carbonyl compounds in impingers, conversion of carbonyl compounds to a stable derivativemore » with O-2,3,4,5,6-pentafluorobenzyl hydroxylamine hydrochloride (PFBHA), and separation and measurement by electron capture gas chromatography (GC-ECD). Eight compounds were selected for the evaluation of this method: formaldehyde, acetaldehyde, acrolein, acetone, butanal, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and hexanal.« less

  10. Ionospheric gravity wave measurements with the USU dynasonde

    NASA Technical Reports Server (NTRS)

    Berkey, Frank T.; Deng, Jun Yuan

    1992-01-01

    A method for the measurement of ionospheric Gravity Wave (GW) using the USU Dynasonde is outlined. This method consists of a series of individual procedures, which includes functions for data acquisition, adaptive scaling, polarization discrimination, interpolation and extrapolation, digital filtering, windowing, spectrum analysis, GW detection, and graphics display. Concepts of system theory are applied to treat the ionosphere as a system. An adaptive ionogram scaling method was developed for automatically extracting ionogram echo traces from noisy raw sounding data. The method uses the well known Least Mean Square (LMS) algorithm to form a stochastic optimal estimate of the echo trace which is then used to control a moving window. The window tracks the echo trace, simultaneously eliminating the noise and interference. Experimental results show that the proposed method functions as designed. Case studies which extract GW from ionosonde measurements were carried out using the techniques described. Geophysically significant events were detected and the resultant processed results are illustrated graphically. This method was also developed for real time implementation in mind.

  11. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  12. Advances in thickness measurements and dynamic visualization of the tear film using non-invasive optical approaches.

    PubMed

    Bai, Yuqiang; Nichols, Jason J

    2017-05-01

    The thickness of tear film has been investigated under both invasive and non-invasive methods. While invasive methods are largely historical, more recent noninvasive methods are generally based on optical approaches that provide accurate, precise, and rapid measures. Optical microscopy, interferometry, and optical coherence tomography (OCT) have been developed to characterize the thickness of tear film or certain aspects of the tear film (e.g., the lipid layer). This review provides an in-depth overview on contemporary optical techniques used in studying the tear film, including both advantages and limitations of these approaches. It is anticipated that further developments of high-resolution OCT and other interferometric methods will enable a more accurate and precise measurement of the thickness of the tear film and its related dynamic properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Automated general temperature correction method for dielectric soil moisture sensors

    NASA Astrophysics Data System (ADS)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.

  14. Reflection measurement of waveguide-injected high-power microwave antennas.

    PubMed

    Yuan, Chengwei; Peng, Shengren; Shu, Ting; Zhang, Qiang; Zhao, Xuelong

    2015-12-01

    A method for reflection measurements of High-power Microwave (HPM) antennas excited with overmoded waveguides is proposed and studied systemically. In theory, principle of the method is proposed and the data processing formulas are developed. In simulations, a horn antenna excited by a TE11 mode exciter is examined and its reflection is calculated by CST Microwave Studio and by the method proposed in this article, respectively. In experiments, reflection measurements of two HPM antennas are conducted, and the measured results are well consistent with the theoretical expectations.

  15. Development and implementation of a novel measure for quantifying training loads in rowing: the T2minute method.

    PubMed

    Tran, Jacqueline; Rice, Anthony J; Main, Luana C; Gastin, Paul B

    2014-04-01

    The systematic management of training requires accurate training load measurement. However, quantifying the training of elite Australian rowers is challenging because of (a) the multicenter, multistate structure of the national program; (b) the variety of training undertaken; and (c) the limitations of existing methods for quantifying the loads accumulated from varied training formats. Therefore, the purpose of this project was to develop a new measure for quantifying training loads in rowing (the T2minute method). Sport scientists and senior coaches at the National Rowing Center of Excellence collaborated to develop the measure, which incorporates training duration, intensity, and mode to quantify a single index of training load. To account for training at different intensities, the method uses standardized intensity zones (T zones) established at the Australian Institute of Sport. Each zone was assigned a weighting factor according to the curvilinear relationship between power output and blood lactate response. Each training mode was assigned a weighting factor based on whether coaches perceived it to be "harder" or "easier" than on-water rowing. A common measurement unit, the T2minute, was defined to normalize sessions in different modes to a single index of load; one T2minute is equivalent to 1 minute of on-water single scull rowing at T2 intensity (approximately 60-72% VO2max). The T2minute method was successfully implemented to support national training strategies in Australian high performance rowing. By incorporating duration, intensity, and mode, the T2minute method extends the concepts that underpin current load measures, providing 1 consistent system to quantify loads from varied training formats.

  16. Research on the method of improving the accuracy of CMM (coordinate measuring machine) testing aspheric surface

    NASA Astrophysics Data System (ADS)

    Cong, Wang; Xu, Lingdi; Li, Ang

    2017-10-01

    Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial-grade coordinate system nominal measurement accuracy PV value of 7 microns to 4microns, Which effectively improves the grinding efficiency of aspheric mirrors and verifies the correctness of the method. This paper also investigates the error detection and operation control method, the error calibration of the CMM and the random error calibration of the CMM .

  17. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    NASA Astrophysics Data System (ADS)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  18. Directly Measuring the Degree of Quantum Coherence using Interference Fringes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-01

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior—the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l1 norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  19. Directly Measuring the Degree of Quantum Coherence using Interference Fringes.

    PubMed

    Wang, Yi-Tao; Tang, Jian-Shun; Wei, Zhi-Yuan; Yu, Shang; Ke, Zhi-Jin; Xu, Xiao-Ye; Li, Chuan-Feng; Guo, Guang-Can

    2017-01-13

    Quantum coherence is the most distinguished feature of quantum mechanics. It lies at the heart of the quantum-information technologies as the fundamental resource and is also related to other quantum resources, including entanglement. It plays a critical role in various fields, even in biology. Nevertheless, the rigorous and systematic resource-theoretic framework of coherence has just been developed recently, and several coherence measures are proposed. Experimentally, the usual method to measure coherence is to perform state tomography and use mathematical expressions. Here, we alternatively develop a method to measure coherence directly using its most essential behavior-the interference fringes. The ancilla states are mixed into the target state with various ratios, and the minimal ratio that makes the interference fringes of the "mixed state" vanish is taken as the quantity of coherence. We also use the witness observable to witness coherence, and the optimal witness constitutes another direct method to measure coherence. For comparison, we perform tomography and calculate l_{1} norm of coherence, which coincides with the results of the other two methods in our situation. Our methods are explicit and robust, providing a nice alternative to the tomographic technique.

  20. Analysis and testing of a new method for drop size measurement using laser scatter interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Houser, M. J.

    1984-01-01

    Research was conducted on a laser light scatter detection method for measuring the size and velocity of spherical particles. The method is based upon the measurement of the interference fringe pattern produced by spheres passing through the intersection of two laser beams. A theoretical analysis of the method was carried out using the geometrical optics theory. Experimental verification of the theory was obtained by using monodisperse droplet streams. Several optical configurations were tested to identify all of the parametric effects upon the size measurements. Both off-axis forward and backscatter light detection were utilized. Simulated spray environments and fuel spray nozzles were used in the evaluation of the method. The measurements of the monodisperse drops showed complete agreement with the theoretical predictions. The method was demonstrated to be independent of the beam intensity and extinction resulting from the surrounding drops. Signal processing concepts were considered and a method was selected for development.

  1. Advanced Self-Potential Inversion. Development and Use for Investigating Natural Recharge Processes at the ORNL IFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revil, Andre

    2013-01-15

    Understanding the influence of coupled biological, chemical, and hydrological processes on subsurface contaminant behavior at multiple scales is a prerequisite for developing effective remedial approaches, whether they are active remediation or natural attenuation strategies. To develop this understanding, methods are needed that can measure critical components of the natural system in real time. The self-potential method corresponds to the passive measurement of the distribution of the electrical potential at the surface of the Earth or in boreholes. This method is very complemetary to other geophysical methods like DC resistivity and induced polarization. In this report, we summarize of research effortsmore » to advance the theory of low-frequency geoelectrical methods and their applications to the contaminant plumes in the vicinity of the former S-3 settling basins at Oak Ridge, TN.« less

  2. Determination of the human spine curve based on laser triangulation.

    PubMed

    Poredoš, Primož; Čelan, Dušan; Možina, Janez; Jezeršek, Matija

    2015-02-05

    The main objective of the present method was to automatically obtain a spatial curve of the thoracic and lumbar spine based on a 3D shape measurement of a human torso with developed scoliosis. Manual determination of the spine curve, which was based on palpation of the thoracic and lumbar spinous processes, was found to be an appropriate way to validate the method. Therefore a new, noninvasive, optical 3D method for human torso evaluation in medical practice is introduced. Twenty-four patients with confirmed clinical diagnosis of scoliosis were scanned using a specially developed 3D laser profilometer. The measuring principle of the system is based on laser triangulation with one-laser-plane illumination. The measurement took approximately 10 seconds at 700 mm of the longitudinal translation along the back. The single point measurement accuracy was 0.1 mm. Computer analysis of the measured surface returned two 3D curves. The first curve was determined by manual marking (manual curve), and the second was determined by detecting surface curvature extremes (automatic curve). The manual and automatic curve comparison was given as the root mean square deviation (RMSD) for each patient. The intra-operator study involved assessing 20 successive measurements of the same person, and the inter-operator study involved assessing measurements from 8 operators. The results obtained for the 24 patients showed that the typical RMSD between the manual and automatic curve was 5.0 mm in the frontal plane and 1.0 mm in the sagittal plane, which is a good result compared with palpatory accuracy (9.8 mm). The intra-operator repeatability of the presented method in the frontal and sagittal planes was 0.45 mm and 0.06 mm, respectively. The inter-operator repeatability assessment shows that that the presented method is invariant to the operator of the computer program with the presented method. The main novelty of the presented paper is the development of a new, non-contact method that provides a quick, precise and non-invasive way to determine the spatial spine curve for patients with developed scoliosis and the validation of the presented method using the palpation of the spinous processes, where no harmful ionizing radiation is present.

  3. Transcutaneous analyte measuring method (TAMM): a reflective, noninvasive, near-infrared blood chemistry analyzer

    NASA Astrophysics Data System (ADS)

    Schlager, Kenneth J.; Ruchti, Timothy L.

    1995-04-01

    TAMM for Transcutaneous Analyte Measuring Method is a near infrared spectroscopic technique for the noninvasive measurement of human blood chemistry. A near infrared indium gallium arsenide (InGaAs) photodiode array spectrometer has been developed and tested on over 1,000 patients as a part of an SBIR program sponsored by the Naval Medical Research and Development Command. Nine (9) blood analytes have been measured and evaluated during pre-clinical testing: sodium, chloride, calcium, potassium, bicarbonate, BUN, glucose, hematocrit and hemoglobin. A reflective rather than a transmissive invasive approach to measurement has been taken to avoid variations resulting from skin color and sensor positioning. The current status of the instrumentation, neural network pattern recognition algorithms and test results will be discussed.

  4. Stimulating innovations in the measurement of parenting constructs.

    PubMed

    Mâsse, Louise C; Watts, Allison W

    2013-08-01

    Parents can play a crucial role in the development of children's behaviors associated with dietary habits, physical activity, and sedentary lifestyles. Many parenting practices and/or styles measures have been developed; however, there is little agreement as to how the influence of parenting should be measured. More importantly, our ability to relate parenting practices and/or styles to children's behaviors depends on its accurate assessment. While there is a need to standardize our assessment to further advance knowledge in this area, this article will discuss areas that may stimulate advances in the measurement of parenting constructs. Because self-report measures are important for the assessment of parenting, this article discusses whether solutions to improve self-report measures may lie in: (1) Improving the questions asked; (2) improving the methods used to correct for social desirability or measurement errors; (3) changing our measurement paradigm to assess implicit parenting behaviors; (4) changing how self-report is collected by taking advantage of ecological momentary assessment methods; (5) using better psychometric methods to validate parenting measures or alternatively using advances in psychometric methods, such as item banking and computerized adaptive testing, to solve common administration issues (i.e., response burden and comparability of results across studies); and (6) employing novel technologies to collect data such as portable technologies, gaming, and virtual reality simulation. This article will briefly discuss the potential of technologies to measure parenting constructs.

  5. Stimulating Innovations in the Measurement of Parenting Constructs

    PubMed Central

    Watts, Allison W.

    2013-01-01

    Abstract Parents can play a crucial role in the development of children's behaviors associated with dietary habits, physical activity, and sedentary lifestyles. Many parenting practices and/or styles measures have been developed; however, there is little agreement as to how the influence of parenting should be measured. More importantly, our ability to relate parenting practices and/or styles to children's behaviors depends on its accurate assessment. While there is a need to standardize our assessment to further advance knowledge in this area, this article will discuss areas that may stimulate advances in the measurement of parenting constructs. Because self-report measures are important for the assessment of parenting, this article discusses whether solutions to improve self-report measures may lie in: (1) Improving the questions asked; (2) improving the methods used to correct for social desirability or measurement errors; (3) changing our measurement paradigm to assess implicit parenting behaviors; (4) changing how self-report is collected by taking advantage of ecological momentary assessment methods; (5) using better psychometric methods to validate parenting measures or alternatively using advances in psychometric methods, such as item banking and computerized adaptive testing, to solve common administration issues (i.e., response burden and comparability of results across studies); and (6) employing novel technologies to collect data such as portable technologies, gaming, and virtual reality simulation. This article will briefly discuss the potential of technologies to measure parenting constructs. PMID:23944924

  6. Procedures utilized for obtaining direct and remote atmospheric carbon monoxide measurements over the lower Lake Michigan Basin in August of 1976

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Condon, E.; Campbell, S. A.

    1978-01-01

    In order to establish the applicability of a gas filter correlation radiometer, GFCR, to remote carbon monoxide, CO, measurements on a regional and worldwide basis, Old Dominion University has been engaged in the development of accurate and cost effective techniques for inversion of GFCR CO data and in the development of an independent gas chromatographic technique for measuring CO. This independent method is used to verify the results and the associated inversion method obtained from the GFCR. A description of both methods (direct and remote) will be presented. Data obtained by both techniques during a flight test over the lower Lake Michigan Basin in August of 1976 will also be discussed.

  7. A new tritiated water measurement method with plastic scintillator pellets.

    PubMed

    Furuta, Etsuko; Iwasaki, Noriko; Kato, Yuka; Tomozoe, Yusuke

    2016-01-01

    A new tritiated water measurement method with plastic scintillator pellets (PS-pellets) by using a conventional liquid scintillation counter was developed. The PS-pellets used were 3 mm in both diameter and length. A low potassium glass vial was filled full with the pellets, and tritiated water was applied to the vial from 5 to 100 μl. Then, the sample solution was scattered in the interstices of the pellets in a vial. This method needs no liquid scintillator, so no liquid organic waste fluid is generated. The counting efficiency with the pellets was approximately 48 % when a 5 μl solution was used, which was higher than that of conventional measurement using liquid scintillator. The relationship between count rate and activity showed good linearity. The pellets were able to be used repeatedly, so few solid wastes are generated with this method. The PS-pellets are useful for tritiated water measurement; however, it is necessary to develop a new device which can be applied to a larger volume and measure low level concentration like an environmental application.

  8. Piezoresistive method for a laser induced shock wave detection on solids

    NASA Astrophysics Data System (ADS)

    Gonzalez-Romero, R.; Garcia-Torales, G.; Gomez Rosas, G.; Strojnik, M.

    2017-08-01

    A laser shock wave is a mechanical high-pressure impulse with a duration of a few nanoseconds induced by a high power laser pulse. We performed wave pressure measurements in order to build and check mathematical models. They are used for wave applications in material science, health, and defense, to list a few. Piezoresistive methods have been shown to be highly sensitive, linear, and highly appropriate for practical implementation, compared with piezoelectric methods employed in shock wave pressure measurements. In this work, we develop a novel method to obtain the sensitivity of a piezoresistive measurement system. The results shows that it is possible to use a mechanical method to measure pressure of a laser induced shock wave in nanosecond range. Experimental pressure measurements are presented.

  9. Comparison of different estimation techniques for biomass concentration in large scale yeast fermentation.

    PubMed

    Hocalar, A; Türker, M; Karakuzu, C; Yüzgeç, U

    2011-04-01

    In this study, previously developed five different state estimation methods are examined and compared for estimation of biomass concentrations at a production scale fed-batch bioprocess. These methods are i. estimation based on kinetic model of overflow metabolism; ii. estimation based on metabolic black-box model; iii. estimation based on observer; iv. estimation based on artificial neural network; v. estimation based on differential evaluation. Biomass concentrations are estimated from available measurements and compared with experimental data obtained from large scale fermentations. The advantages and disadvantages of the presented techniques are discussed with regard to accuracy, reproducibility, number of primary measurements required and adaptation to different working conditions. Among the various techniques, the metabolic black-box method seems to have advantages although the number of measurements required is more than that for the other methods. However, the required extra measurements are based on commonly employed instruments in an industrial environment. This method is used for developing a model based control of fed-batch yeast fermentations. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  10. COMPARISON OF ANALYTICAL METHODS FOR THE MEASUREMENT OF NON-VIABLE BIOLOGICAL PM

    EPA Science Inventory

    The paper describes a preliminary research effort to develop a methodology for the measurement of non-viable biologically based particulate matter (PM), analyzing for mold, dust mite, and ragweed antigens and endotoxins. Using a comparison of analytical methods, the research obj...

  11. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    NASA Astrophysics Data System (ADS)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  12. A study on new method of noninvasive esophageal venous pressure measurement based on the airflow and laser detection technology.

    PubMed

    Hu, Chenghuan; Huang, Feizhou; Zhang, Rui; Zhu, Shaihong; Nie, Wanpin; Liu, Xunyang; Liu, Yinglong; Li, Peng

    2015-01-01

    Using optics combined with automatic control and computer real-time image detection technology, a novel noninvasive method of noncontact pressure manometry was developed based on the airflow and laser detection technology in this study. The new esophageal venous pressure measurement system was tested in-vitro experiments. A stable and adjustable pulse stream was produced from a self-developed pump and a laser emitting apparatus could generate optical signals which can be captured by image acquisition and analysis system program. A synchronization system simultaneous measured the changes of air pressure and the deformation of the vein wall to capture the vascular deformation while simultaneously record the current pressure value. The results of this study indicated that the pressure values tested by the new method have good correlation with the actual pressure value in animal experiments. The new method of noninvasive pressure measurement based on the airflow and laser detection technology is accurate, feasible, repeatable and has a good application prospects.

  13. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  14. The use of concept mapping in measurement development and evaluation: Application and future directions.

    PubMed

    Rosas, Scott R; Ridings, John W

    2017-02-01

    The past decade has seen an increase of measurement development research in social and health sciences that featured the use of concept mapping as a core technique. The purpose, application, and utility of concept mapping have varied across this emerging literature. Despite the variety of uses and range of outputs, little has been done to critically review how researchers have approached the application of concept mapping in the measurement development and evaluation process. This article focuses on a review of the current state of practice regarding the use of concept mapping as methodological tool in this process. We systematically reviewed 23 scale or measure development and evaluation studies, and detail the application of concept mapping in the context of traditional measurement development and psychometric testing processes. Although several limitations surfaced, we found several strengths in the contemporary application of the method. We determined concept mapping provides (a) a solid method for establishing content validity, (b) facilitates researcher decision-making, (c) insight into target population perspectives that are integrated a priori, and (d) a foundation for analytical and interpretative choices. Based on these results, we outline how concept mapping can be situated in the measurement development and evaluation processes for new instrumentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The National Shipbuilding Research Program. Development of a Quick TBT Analytical Method

    DTIC Science & Technology

    2000-08-16

    Development of a Quick TBT Analytical Method 09/25/2000 Page 3 of 38 Executive Summary Concern about the toxic effect of tributyltin have caused the...paints, developed in the 1960s, contains the organotin tributyltin ( TBT ), which has been proven to cause deformations in oysters and sex changes in...measured response (area counts) for tributyltin in deionized distilled water. Final Report – Development of a Quick TBT Analytical Method 09/25/2000

  16. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  17. Optical fiber sensors measurement system and special fibers improvement

    NASA Astrophysics Data System (ADS)

    Jelinek, Michal; Hrabina, Jan; Hola, Miroslava; Hucl, Vaclav; Cizek, Martin; Rerucha, Simon; Lazar, Josef; Mikel, Bretislav

    2017-06-01

    We present method for the improvement of the measurement accuracy in the optical frequency spectra measurements based on tunable optical filters. The optical filter was used during the design and realization of the measurement system for the inspection of the fiber Bragg gratings. The system incorporates a reference block for the compensation of environmental influences, an interferometric verification subsystem and a PC - based control software implemented in LabView. The preliminary experimental verification of the measurement principle and the measurement system functionality were carried out on a testing rig with a specially prepared concrete console in the UJV Řež. The presented system is the laboratory version of the special nuclear power plant containment shape deformation measurement system which was installed in the power plant Temelin during last year. On the base of this research we started with preparation other optical fiber sensors to nuclear power plants measurement. These sensors will be based on the microstructured and polarization maintaining optical fibers. We started with development of new methods and techniques of the splicing and shaping optical fibers. We are able to made optical tapers from ultra-short called adiabatic with length around 400 um up to long tapers with length up to 6 millimeters. We developed new techniques of splicing standard Single Mode (SM) and Multimode (MM) optical fibers and splicing of optical fibers with different diameters in the wavelength range from 532 to 1550 nm. Together with development these techniques we prepared other techniques to splicing and shaping special optical fibers like as Polarization-Maintaining (PM) or hollow core Photonic Crystal Fiber (PCF) and theirs cross splicing methods with focus to minimalize backreflection and attenuation. The splicing special optical fibers especially PCF fibers with standard telecommunication and other SM fibers can be done by our developed techniques. Adjustment of the splicing process has to be prepared for any new optical fibers and new fibers combinations. The splicing of the same types of fibers from different manufacturers can be adjusted by several tested changes in the splicing process. We are able to splice PCF with standard telecommunication fiber with attenuation up to 2 dB. The method is also presented. Development of these new techniques and methods of the optical fibers splicing are made with respect to using these fibers to another research and development in the field of optical fibers sensors, laser frequency stabilization and laser interferometry based on optical fibers. Especially for the field of laser frequency stabilization we developed and present new techniques to closing microstructured fibers with gases inside.

  18. X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.

    PubMed

    Girardin, E; Millet, P; Lodini, A

    2000-02-01

    To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.

  19. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike

    2016-12-14

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to a consensus reference which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, developed to measure the extended broadband spectrum of the terrestrial direct solar beam irradiance that extends beyond the ultraviolet and infrared bands; i.e. below 0.2 um and above 50 um, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 um to 3 um, while the present photovoltaic cells are limited to the spectralmore » range of approximately 0.3 um to 1 um. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers, which measure the atmospheric longwave irradiance, are also used for solar and atmospheric science applications and calibrated with traceability to a consensus reference, yet they are calibrated during nighttime only, because no consensus reference has been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 um to 50 um, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80 degrees to 16 degrees, respectively. Recent development shows that there is greater than 1.1 percent bias in measuring shortwave solar irradiance.« less

  20. Assessing Consumer Responses to PREPs: A Review of Tobacco Industry and Independent Research Methods

    PubMed Central

    Rees, Vaughan W.; Kreslake, Jennifer M.; Cummings, K. Michael; O'Connor, Richard J.; Hatsukami, Dorothy K.; Parascandola, Mark; Shields, Peter G.; Connolly, Gregory N.

    2009-01-01

    Objective Internal tobacco industry documents and the mainstream literature are reviewed to identify methods and measures for evaluating tobacco consumer response. The review aims to outline areas in which established methods exist, identify gaps in current methods for assessing CR, and consider how these methods might be applied to evaluate PREPs and new products. Methods Internal industry research reviewed included published papers, manuscript drafts, presentations, protocols, and instruments relating to consumer response measures were identified and analyzed. Peer-reviewed research was identified using PubMed and Scopus. Results Industry research on consumer response focuses on product development and marketing. To develop and refine new products, the tobacco industry has developed notable strategies for assessing consumers' sensory and subjective responses to product design characteristics. Independent research is often conducted to gauge the likelihood of future product adoption by measuring consumers' risk perceptions, responses to product, and product acceptability. Conclusions A model which conceptualizes consumer response as comprising the separate, but interacting domains of product perceptions and response to product is outlined. Industry and independent research supports the dual domain model, and provides a wide range of methods for assessment of the construct components of consumer response. Further research is needed to validate consumer response constructs, determine the relationship between consumer response and tobacco user behavior, and improve reliability of consumer response measures. Scientifically rigorous consumer response assessment methods will provide a needed empirical basis for future regulation of PREPs and new products, to counteract tobacco industry influence on consumers, and enhance the public health. PMID:19959675

  1. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method.

    PubMed

    Kwon, Beomjin; Baek, Seung-Hyub; Kim, Seong Keun; Kim, Jin-Sang

    2014-04-01

    Harman method is a rapid and simple technique to measure thermoelectric properties. However, its validity has been often questioned due to the over-simplified assumptions that this method relies on. Here, we quantitatively investigate the influence of the previously ignored parasitic thermal effects on the Harman method and develop a method to determine an intrinsic ZT. We expand the original Harman relation with three extra terms: heat losses via both the lead wires and radiation, and Joule heating within the sample. Based on the expanded Harman relation, we use differential measurement of the sample geometry to measure the intrinsic ZT. To separately evaluate the parasitic terms, the measured ZTs with systematically varied sample geometries and the lead wire types are fitted to the expanded relation. A huge discrepancy (∼28%) of the measured ZTs depending on the measurement configuration is observed. We are able to separately evaluate those parasitic terms. This work will help to evaluate the intrinsic thermoelectric property with Harman method by eliminating ambiguities coming from extrinsic effects.

  2. Measuring Impact in Research Evaluations: A Thorough Discussion of Methods For, Effects of and Problems with Impact Measurements

    ERIC Educational Resources Information Center

    Bornmann, Lutz

    2017-01-01

    Impact of science is one of the most important topics in scientometrics. Recent developments show a fundamental change in impact measurements from impact on science to impact on society. Since impact measurement is currently in a state of far reaching changes, this paper describes recent developments and facing problems in this area. For that, the…

  3. Bacteriocidal activity of sanitizers against Enterococcus faecium attached to stainless steel as determined by plate count and impedance methods.

    PubMed

    Andrade, N J; Bridgeman, T A; Zottola, E A

    1998-07-01

    Enterococcus faecium attached to stainless steel chips (100 mm2) was treated with the following sanitizers: sodium hypochlorite, peracetic acid (PA), peracetic acid plus an organic acid (PAS), quaternary ammonium, organic acid, and anionic acid. The effectiveness of sanitizer solutions on planktonic cells (not attached) was evaluated by the Association of Official Analytical Chemists (AOAC) suspension test. The number of attached cells was determined by impedance measurement and plate count method after vortexing. The decimal reduction (DR) in numbers of the E. faecium population was determined for the three methods and was analyzed by analysis of variance (P < 0.05) using Statview software. The adhered cells were more resistant (P < 0.05) than nonadherent cells. The DR averages for all of the sanitizers for 30 s of exposure were 6.4, 2.2, and 2.5 for the AOAC suspension test, plate count method after vortexing, and impedance measurement, respectively. Plate count and impedance methods showed a difference (P < 0.05) after 30 s of sanitizer exposure but not after 2 min. The impedance measurement was the best method to measure adherent cells. Impedance measurement required the development of a quadratic regression. The equation developed from 82 samples is as follows: log CFU/chip = 0.2385T2-0.96T + 9.35, r2 = 0.92, P < 0.05, T = impedance detection time in hours. This method showed that the sanitizers PAS and PA were more effective against E. faecium than the other sanitizers. At 30 s, the impedance method recovered about 25 times more cells than the plate count method after vortexing. These data suggest that impedance measurement is the method of choice when evaluating the number of bacterial cells adhered to a surface.

  4. Coherent Raman spectroscopy for supersonic flow measurments

    NASA Technical Reports Server (NTRS)

    She, C. Y.

    1986-01-01

    In collaboration with NASA/Langley Research Center, a truly nonintrusive and nonseeding method for measuring supersonic molecular flow parameters was proposed and developed at Colorado State University. The feasibility of this Raman Doppler Velocimetry (RDV), currently operated in a scanning mode, was demonstrated not only in a laboratory environment at Colorado State University, but also in a major wind tunnel at NASA/Langley Research Center. The research progress of the RDV development is summarized. In addition, methods of coherent Rayleigh-Brillouin spectroscopy and single-pulse coherent Raman spectroscopy are investigated, respectively, for measurements of high-pressure and turbulent flows.

  5. Measuring team factors thought to influence the success of quality improvement in primary care: a systematic review of instruments

    PubMed Central

    2013-01-01

    Background Measuring team factors in evaluations of Continuous Quality Improvement (CQI) may provide important information for enhancing CQI processes and outcomes; however, the large number of potentially relevant factors and associated measurement instruments makes inclusion of such measures challenging. This review aims to provide guidance on the selection of instruments for measuring team-level factors by systematically collating, categorizing, and reviewing quantitative self-report instruments. Methods Data sources: We searched MEDLINE, PsycINFO, and Health and Psychosocial Instruments; reference lists of systematic reviews; and citations and references of the main report of instruments. Study selection: To determine the scope of the review, we developed and used a conceptual framework designed to capture factors relevant to evaluating CQI in primary care (the InQuIRe framework). We included papers reporting development or use of an instrument measuring factors relevant to teamwork. Data extracted included instrument purpose; theoretical basis, constructs measured and definitions; development methods and assessment of measurement properties. Analysis and synthesis: We used qualitative analysis of instrument content and our initial framework to develop a taxonomy for summarizing and comparing instruments. Instrument content was categorized using the taxonomy, illustrating coverage of the InQuIRe framework. Methods of development and evidence of measurement properties were reviewed for instruments with potential for use in primary care. Results We identified 192 potentially relevant instruments, 170 of which were analyzed to develop the taxonomy. Eighty-one instruments measured constructs relevant to CQI teams in primary care, with content covering teamwork context (45 instruments measured enabling conditions or attitudes to teamwork), team process (57 instruments measured teamwork behaviors), and team outcomes (59 instruments measured perceptions of the team or its effectiveness). Forty instruments were included for full review, many with a strong theoretical basis. Evidence supporting measurement properties was limited. Conclusions Existing instruments cover many of the factors hypothesized to contribute to QI success. With further testing, use of these instruments measuring team factors in evaluations could aid our understanding of the influence of teamwork on CQI outcomes. Greater consistency in the factors measured and choice of measurement instruments is required to enable synthesis of findings for informing policy and practice. PMID:23410500

  6. A Video-Based Measure of Preservice Teachers' Abilities to Predict Elementary Students' Scientific Reasoning

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Carter, Ingrid S.; Park Rogers, Meredith A.; Pongsanon, Khemmawadee

    2018-01-01

    In this mixed methods study, the researchers developed a video-based measure called a "Prediction Assessment" to determine preservice elementary teachers' abilities to predict students' scientific reasoning. The instrument is based on teachers' need to develop pedagogical content knowledge for teaching science. Developing a knowledge…

  7. Measuring Service Quality in Higher Education: Development of a Hierarchical Model (HESQUAL)

    ERIC Educational Resources Information Center

    Teeroovengadum, Viraiyan; Kamalanabhan, T. J.; Seebaluck, Ashley Keshwar

    2016-01-01

    Purpose: This paper aims to develop and empirically test a hierarchical model for measuring service quality in higher education. Design/methodology/approach: The first phase of the study consisted of qualitative research methods and a comprehensive literature review, which allowed the development of a conceptual model comprising 53 service quality…

  8. Initial Development and Validation of the BullyHARM: The Bullying, Harassment, and Aggression Receipt Measure

    ERIC Educational Resources Information Center

    Hall, William J.

    2016-01-01

    This article describes the development and preliminary validation of the Bullying, Harassment, and Aggression Receipt Measure (BullyHARM). The development of the BullyHARM involved a number of steps and methods, including a literature review, expert review, cognitive testing, readability testing, data collection from a large sample, reliability…

  9. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method.

    PubMed

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-07-22

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account.

  10. Correlative multiple porosimetries for reservoir sandstones with adoption of a new reference-sample-guided computed-tomographic method

    PubMed Central

    Jin, Jae Hwa; Kim, Junho; Lee, Jeong-Yil; Oh, Young Min

    2016-01-01

    One of the main interests in petroleum geology and reservoir engineering is to quantify the porosity of reservoir beds as accurately as possible. A variety of direct measurements, including methods of mercury intrusion, helium injection and petrographic image analysis, have been developed; however, their application frequently yields equivocal results because these methods are different in theoretical bases, means of measurement, and causes of measurement errors. Here, we present a set of porosities measured in Berea Sandstone samples by the multiple methods, in particular with adoption of a new method using computed tomography and reference samples. The multiple porosimetric data show a marked correlativeness among different methods, suggesting that these methods are compatible with each other. The new method of reference-sample-guided computed tomography is more effective than the previous methods when the accompanied merits such as experimental conveniences are taken into account. PMID:27445105

  11. Smartphone Assessment of Knee Flexion Compared to Radiographic Standards

    PubMed Central

    Dietz, Matthew J.; Sprando, Daniel; Hanselman, Andrew E.; Regier, Michael D.; Frye, Benjamin M.

    2017-01-01

    Purpose Measuring knee range of motion (ROM) is an important assessment for the outcomes of total knee arthroplasty. Recent technological advances have led to the development and use of accelerometer-based smartphone applications to measure knee ROM. The purpose of this study was to develop, standardize, and validate methods of utilizing smartphone accelerometer technology compared to radiographic standards, visual estimation, and goniometric evaluation. Methods Participants used visual estimation, a long-arm goniometer, and a smartphone accelerometer to determine range of motion of a cadaveric lower extremity; these results were compared to radiographs taken at the same angles. Results The optimal smartphone position was determined to be on top of the leg at the distal femur and proximal tibia location. Between methods, it was found that the smartphone and goniometer were comparably reliable in measuring knee flexion (ICC = 0.94; 95% CI: 0.91–0.96). Visual estimation was found to be the least reliable method of measurement. Conclusions The results suggested that the smartphone accelerometer was non-inferior when compared to the other measurement techniques, demonstrated similar deviations from radiographic standards, and did not appear to be influenced by the person performing the measurements or the girth of the extremity. PMID:28179062

  12. Developing Non-Targeted Measurement Methods to Characterize the Human Exposome

    EPA Science Inventory

    The exposome represents all exposures experienced by an individual during their lifetime. Registered chemicals currently number in the tens-of-thousands, and therefore comprise a significant portion of the human exposome. To date, quantitative monitoring methods have been develop...

  13. Automated delay estimation at signalized intersections : phase I concept and algorithm development.

    DOT National Transportation Integrated Search

    2011-07-01

    Currently there are several methods to measure the performance of surface streets, but their capabilities in dynamically estimating vehicle delay are limited. The objective of this research is to develop a method to automate traffic delay estimation ...

  14. Large-scale-system effectiveness analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, A.D.; Ayoub, A.K.; Foster, J.W.

    1979-11-01

    Objective of the research project has been the investigation and development of methods for calculating system reliability indices which have absolute, and measurable, significance to consumers. Such indices are a necessary prerequisite to any scheme for system optimization which includes the economic consequences of consumer service interruptions. A further area of investigation has been joint consideration of generation and transmission in reliability studies. Methods for finding or estimating the probability distributions of some measures of reliability performance have been developed. The application of modern Monte Carlo simulation methods to compute reliability indices in generating systems has been studied.

  15. Advanced Recording and Preprocessing of Physiological Signals. [data processing equipment for flow measurement of blood flow by ultrasonics

    NASA Technical Reports Server (NTRS)

    Bentley, P. B.

    1975-01-01

    The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.

  16. The Value of Measurement for Development of Nursing Knowledge:Underlying Philosophy, Contributions and Critiques.

    PubMed

    Durepos, Pamela; Orr, Elizabeth; Ploeg, Jenny; Kaasalainen, Sharon

    2018-06-26

    A philosophical discussion of constructive realism and measurement in the development of nursing knowledge is presented. Through Carper's four patterns of knowing, nurses come to know a person holistically. However, measurement as a source for nursing knowledge has been criticized for underlying positivism and reductionist approach to exploring reality. Which seems mal-alignment with person-centered care. Discussion paper. Constructive realism bridges positivism and constructivism, facilitating the measurement of physical and psychological phenomena. Reduction of complex phenomena and theoretical constructs into measurable properties is essential to building nursing's empiric knowledge and facilitates (rather than inhibits) person-knowing. Nurses should consider constructive realism as a philosophy to underpin their practice. This philosophy supports measurement as a primary method of inquiry in nursing research and clinical practice. Nurses can carefully select, and purposefully integrate, measurement tools with other methods of inquiry (such as qualitative research methods) to demonstrate the usefulness of nursing interventions and highlight nursing as a science. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashida, Misa; Malac, Marek; Egerton, Ray F.

    Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy ofmore » the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.« less

  18. Geometrical calibration television measuring systems with solid state photodetectors

    NASA Astrophysics Data System (ADS)

    Matiouchenko, V. G.; Strakhov, V. V.; Zhirkov, A. O.

    2000-11-01

    The various optical measuring methods for deriving information about the size and form of objects are now used in difference branches- mechanical engineering, medicine, art, criminalistics. Measuring by means of the digital television systems is one of these methods. The development of this direction is promoted by occurrence on the market of various types and costs small-sized television cameras and frame grabbers. There are many television measuring systems using the expensive cameras, but accuracy performances of low cost cameras are also interested for the system developers. For this reason inexpensive mountingless camera SK1004CP (format 1/3', cost up to 40$) and frame grabber Aver2000 were used in experiments.

  19. Applying the Mixed Methods Instrument Development and Construct Validation Process: the Transformative Experience Questionnaire

    ERIC Educational Resources Information Center

    Koskey, Kristin L. K.; Sondergeld, Toni A.; Stewart, Victoria C.; Pugh, Kevin J.

    2018-01-01

    Onwuegbuzie and colleagues proposed the Instrument Development and Construct Validation (IDCV) process as a mixed methods framework for creating and validating measures. Examples applying IDCV are lacking. We provide an illustrative case integrating the Rasch model and cognitive interviews applied to the development of the Transformative…

  20. Effects of microgravity on tissue perfusion and the efficacy of astronaut denitrogenation for EVA

    NASA Technical Reports Server (NTRS)

    Gerth, Wayne A.; Vann, Richard D.; Leatherman, Nelson E.; Feezor, Michael D.

    1987-01-01

    A potentially flight-applicable, breath-by-breath method for measuring N2 elimination from human subjects breathing 100 percent O2 for 2-3 hr periods has been developed. The present report describes this development with particular emphasis on required methodological accuracy and its achievement in view of certain properties of mass spectrometer performance. A method for the breath-by-breath analysis of errors in measured N2 elimination profiles is also described.

  1. One-sided ultrasonic determination of third order elastic constants using angle-beam acoustoelasticity measurements

    NASA Astrophysics Data System (ADS)

    Muir, Dave D.

    This thesis describes procedures and theory for a family of one-sided ultrasonic methods for determining third order elastic constants (TOEC) using sets of angle-beam wedges mounted on one side of a specimen. The methods are based on the well-known acoustoelastic effect, which is the change of wave speed with applied loads and is a consequence of the mechanical nonlinearity of a material. Increases in material nonlinearity have been correlated to the progression of damage, indicating that tracking changes in TOECs may provide a practical means of monitoring damage accumulation at the microstructural level prior to formation of macroscopic defects. Ultrasonic methods are one of the only ways to measure TOECs, and most prior techniques have utilized wave propagation paths parallel and perpendicular to the loading directions. A few additional ultrasonic techniques reported in the literature have employed oblique paths but with immersion coupling. These reported techniques are generally unsuitable for field implementation. The one-sided contact approach described here is applicable for in situ measurements of TOECs and thus lays the foundation for tracking of TOECs with damage. Theory is reviewed and further developed for calculating predicted velocity changes, and thus time shifts, as a function of uniaxial tensile loading for longitudinal, shear vertical, and shear horizontal waves in the context of angle-beam transducers mounted on the surface of the specimen. A comparison is made to published results where possible. The inverse problem of determining the three TOECs of an isotropic material from three measurements employing three different angle beam configurations is comprehensively analyzed. Four configurations providing well-posed solutions are identified and examined. A detailed sensitivity analysis is carried out to identify the best mounting configuration, wave mode combinations, refracted angles and geometry requirements for recovering the three TOECs. Two transducer mounting configurations are considered: (1) attached (glued-on) transducers potentially suitable for in situ monitoring, and (2) floating (oil-coupled) transducers potentially suitable for single measurements. Limited experimental results are presented for the attached case using two longitudinal measurements and one shear vertical measurement. The floating case experiments utilized three of the four well-posed solutions, and measurements were made on several aluminum alloys and low carbon steel. Key experimental issues are identified and discussed for both transducer mounting configurations. The specific contributions of this thesis are: (1) Development of the general theory for determining TOECs of isotropic materials with a one-sided approach using contact angle-beam transducers. This development includes identification of four valid measurement configurations that result in a well-posed problem for recovering the three TOECs. (2) Development of the specific theory as applied to attached (i.e., glued-on) angle-beam transducers that have a variable separation distance with load. This coupling method is potentially suitable for in situ monitoring applications. (3) Development of the specific theory as applied to floating (i.e., liquid-coupled) angle-beam transducers where the separation distance does not change with load. This method is potentially suitable for single field or laboratory measurements. (4) Comparison of the eight valid TOEC recovery methods (four wave mode configurations, each having two mounting techniques) via numerical simulations and a detailed sensitivity analysis in which the effect of all expected measurement and parameter errors on determination of the TOECs is quantified. (5) Development of experimental methods that provide insight as to the relative merits of the attached vs. floating coupling methods.

  2. Correcting AUC for Measurement Error.

    PubMed

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  3. The Thermal Diffusivity Measurement of the Two-layer Ceramics Using the Laser Flash Methodn

    NASA Astrophysics Data System (ADS)

    Akoshima, Megumi; Ogwa, Mitsue; Baba, Tetsuya; Mizuno, Mineo

    Ceramics-based thermal barrier coatings are used as heat and wear shields of gas turbines. There are strong needs to evaluate thermophysical properties of coating, such as thermal conductivity, thermal diffusivity and heat capacity of them. Since the coatings are attached on substrates, it is no easy to measure these properties separately. The laser flash method is one of the most popular thermal diffusivity measurement methods above room temperature for solid materials. The surface of the plate shape specimen is heated by the pulsed laser-beam, then the time variation of the temperature of the rear surface is observed by the infrared radiometer. The laser flash method is non-contact and short time measurement. In general, the thermal diffusivity of solids that are dense, homogeneous and stable, are measured by this method. It is easy to measure thermal diffusivity of a specimen which shows heat diffusion time about 1 ms to 1 s consistent with the specimen thickness of about 1 mm to 5 mm. On the other hand, this method can be applied to measure the specific heat capacity of the solids. And it is also used to estimate the thermal diffusivity of an unknown layer in the layered materials. In order to evaluate the thermal diffusivity of the coating attached on substrate, we have developed a measurement procedure using the laser flash method. The multi-layer model based on the response function method was applied to calculate the thermal diffusivity of the coating attached on substrate from the temperature history curve observed for the two-layer sample. We have verified applicability of the laser flash measurement with the multi-layer model using the measured results and the simulation. It was found that the laser flash measurement for the layered sample using the multi-layer model was effective to estimate the thermal diffusivity of an unknown layer in the sample. We have also developed the two-layer ceramics samples as the reference materials for this procedure.

  4. Development of a Handmade Conductivity Measurement Device for a Thin-Film Semiconductor and Its Application to Polypyrrole

    ERIC Educational Resources Information Center

    Seng, Set; Shinpei, Tomita; Yoshihiko, Inada; Masakazu, Kita

    2014-01-01

    The precise measurement of conductivity of a semiconductor film such as polypyrrole (Ppy) should be carried out by the four-point probe method; however, this is difficult for classroom application. This article describes the development of a new, convenient, handmade conductivity device from inexpensive materials that can measure the conductivity…

  5. Unhelpful Thoughts and Beliefs Linked to Social Anxiety in Stuttering: Development of a Measure

    ERIC Educational Resources Information Center

    St Clare, Tamsen; Menzies, Ross G.; Onslow, Mark; Packman, Ann; Thompson, Robyn; Block, Susan

    2009-01-01

    Background: Those who stutter have a proclivity to social anxiety. Yet, to date, there is no comprehensive measure of thoughts and beliefs about stuttering that represent the cognitions associated with that anxiety. Aims: The present paper describes the development of a measure to assess unhelpful thoughts and beliefs about stuttering. Methods &…

  6. Application of 3-signal coherence to core noise transmission

    NASA Technical Reports Server (NTRS)

    Krejsa, E. A.

    1983-01-01

    A method for determining transfer functions across turbofan engine components and from the engine to the far-field is developed. The method is based on the three-signal coherence technique used previously to obtain far-field core noise levels. This method eliminates the bias error in transfer function measurements due to contamination of measured pressures by nonpropagating pressure fluctuations. Measured transfer functions from the engine to the far-field, across the tailpipe, and across the turbine are presented for three turbofan engines.

  7. Determination of car on-road black carbon and particle number emission factors and comparison between mobile and stationary measurements

    NASA Astrophysics Data System (ADS)

    Ježek, I.; Drinovec, L.; Ferrero, L.; Carriero, M.; Močnik, G.

    2015-01-01

    We have used two methods for measuring emission factors (EFs) in real driving conditions on five cars in a controlled environment: the stationary method, where the investigated vehicle drives by the stationary measurement platform and the composition of the plume is measured, and the chasing method, where a mobile measurement platform drives behind the investigated vehicle. We measured EFs of black carbon and particle number concentration. The stationary method was tested for repeatability at different speeds and on a slope. The chasing method was tested on a test track and compared to the portable emission measurement system. We further developed the data processing algorithm for both methods, trying to improve consistency, determine the plume duration, limit the background influence and facilitate automatic processing of measurements. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions. Measuring EFs at different speeds or slopes did not significantly influence the EFs of different cars; hence, we propose a new description of vehicle emissions that is not related to kinematic or engine parameters, and we rather describe the vehicle EF with a characteristic value and a super emission tail.

  8. Fractal analysis of GPS time series for early detection of disastrous seismic events

    NASA Astrophysics Data System (ADS)

    Filatov, Denis M.; Lyubushin, Alexey A.

    2017-03-01

    A new method of fractal analysis of time series for estimating the chaoticity of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. We start from analysing both methods from the physical point of view and demonstrate the difference between them which results in a higher accuracy of the new method compared to the conventional DFA. Then, applying the developed method to estimate the measure of chaoticity of a real dynamical system - the Earth's crust, we reveal that the latter exhibits two distinct mechanisms of transition to a critical state: while the first mechanism has already been known due to numerous studies of other dynamical systems, the second one is new and has not previously been described. Using GPS time series, we demonstrate efficiency of the developed method in identification of critical states of the Earth's crust. Finally we employ the method to solve a practically important task: we show how the developed measure of chaoticity can be used for early detection of disastrous seismic events and provide a detailed discussion of the numerical results, which are shown to be consistent with outcomes of other researches on the topic.

  9. Measurement of radon concentration in water using the portable radon survey meter.

    PubMed

    Yokoyama, S; Mori, N; Shimo, M; Fukushi, M; Ohnuma, S

    2011-07-01

    A measurement method for measuring radon in water using the portable radon survey meter (RnSM) was developed. The container with propeller was used to stir the water samples and release radon from the water into the air in a sample box of the RnSM. In this method, the measurement of error would be <20 %, when the radon concentration in the mineral water was >20 Bq l(-1).

  10. Remote measurement of soil moisture over vegetation using infrared temperature measurements

    NASA Technical Reports Server (NTRS)

    Carlson, Toby N.

    1991-01-01

    Better methods for remote sensing of surface evapotranspiration, soil moisture, and fractional vegetation cover were developed. The objectives were to: (1) further develop a model of water movement through the soil/plant/atmosphere system; (2) use this model, in conjunction with measurements of infrared surface temperature and vegetation fraction; (3) determine the magnitude of radiometric temperature response to water stress in vegetation; (4) show at what point one can detect that sensitivity to water stress; and (5) determine the practical limits of the methods. A hydrological model that can be used to calculate soil water content versus depth given conventional meteorological records and observations of vegetation cover was developed. An outline of the results of these initiatives is presented.

  11. Evaluation and Uncertainty of a New Method to Detect Suspected Nuclear and WMD Activity: Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzeja, R.; Werth, D.; Buckley, R.

    The Atmospheric Technology Group at SRNL developed a new method to detect signals from Weapons of Mass Destruction (WMD) activities in a time series of chemical measurements at a downwind location. This method was tested with radioxenon measured in Russia and Japan after the 2013 underground test in North Korea. This LDRD calculated the uncertainty in the method with the measured data and also for a case with the signal reduced to 1/10 its measured value. The research showed that the uncertainty in the calculated probability of origin from the NK test site was small enough to confirm the test.more » The method was also wellbehaved for small signal strengths.« less

  12. Ion chromatography for the precise analysis of chloride and sodium in sweat for the diagnosis of cystic fibrosis.

    PubMed

    Doorn, J; Storteboom, T T R; Mulder, A M; de Jong, W H A; Rottier, B L; Kema, I P

    2015-07-01

    Measurement of chloride in sweat is an essential part of the diagnostic algorithm for cystic fibrosis. The lack in sensitivity and reproducibility of current methods led us to develop an ion chromatography/high-performance liquid chromatography (IC/HPLC) method, suitable for the analysis of both chloride and sodium in small volumes of sweat. Precision, linearity and limit of detection of an in-house developed IC/HPLC method were established. Method comparison between the newly developed IC/HPLC method and the traditional Chlorocounter was performed, and trueness was determined using Passing Bablok method comparison with external quality assurance material (Royal College of Pathologists of Australasia). Precision and linearity fulfill criteria as established by UK guidelines are comparable with inductively coupled plasma-mass spectrometry methods. Passing Bablok analysis demonstrated excellent correlation between IC/HPLC measurements and external quality assessment target values, for both chloride and sodium. With a limit of quantitation of 0.95 mmol/L, our method is suitable for the analysis of small amounts of sweat and can thus be used in combination with the Macroduct collection system. Although a chromatographic application results in a somewhat more expensive test compared to a Chlorocounter test, more accurate measurements are achieved. In addition, simultaneous measurements of sodium concentrations will result in better detection of false positives, less test repeating and thus faster and more accurate and effective diagnosis. The described IC/HPLC method, therefore, provides a precise, relatively cheap and easy-to-handle application for the analysis of both chloride and sodium in sweat. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. A Rapid Method to Achieve Aero-Engine Blade Form Detection

    PubMed Central

    Sun, Bin; Li, Bing

    2015-01-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces. PMID:26039420

  14. A rapid method to achieve aero-engine blade form detection.

    PubMed

    Sun, Bin; Li, Bing

    2015-06-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces.

  15. A comparative review of measurement instruments to inform and evaluate effectiveness of disability inclusive development.

    PubMed

    Goujon, Nicolas; Devine, Alexandra; Baker, Sally M; Sprunt, Beth; Edmonds, Tanya J; Booth, Jennifer K; Keeffe, Jill E

    2014-01-01

    A review of existing measurement instruments was conducted to examine their suitability to measure disability prevalence and assess quality of life, protection of disability rights and community participation by people with disabilities, specifically within the context of development programs in low and middle-income countries. From a search of PubMed and the grey literature, potentially relevant measurement instruments were identified and examined for their content and psychometric properties, where possible. Criteria for inclusion were: based on the WHO's International Classification of Functioning Disability and Health (ICF), used quantitative methods, suitable for population-based studies of disability inclusive development in English and published after 1990. Characteristics of existing instruments were analysed according to components of the ICF and quality of life domains. Ten instruments were identified and reviewed according to the criteria listed above. Each version of instruments was analysed separately. Only three instruments included a component on quality of life. Domains from the ICF that were addressed by some but not all instruments included the environment, technology and communication. The measurement instruments reviewed covered the range of elements required to measure disability-inclusion within development contexts. However no single measurement instrument has the capacity to measure both disability prevalence and changes in quality of life according to contemporary disability paradigms. The review of measurement instruments supports the need for developing an instrument specifically intended to measure disability inclusive practice within development programs. Implications for Rehabilitation Surveys and tools are needed to plan disability inclusive development. Existing measurement tools to determine prevalence of disability, wellbeing, rights and access to the community were reviewed. No single validated tool exists for population-based studies, uses quantitative methods and the components of the ICF to measure prevalence of disability, well-being of people with disability and their access to their communities. A measurement tool that reflects the UNCRPD and addresses all components of the ICF is needed to assist in disability inclusive development, especially in low and mid resource countries.

  16. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    NASA Astrophysics Data System (ADS)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-05-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.

  17. Optical methods for non-contact measurements of membranes

    NASA Astrophysics Data System (ADS)

    Roose, S.; Stockman, Y.; Rochus, P.; Kuhn, T.; Lang, M.; Baier, H.; Langlois, S.; Casarosa, G.

    2009-11-01

    Structures for space applications very often suffer stringent mass constraints. Lightweight structures are developed for this purpose, through the use of deployable and/or inflatable beams, and thin-film membranes. Their inherent properties (low mass and small thickness) preclude the use of conventional measurement methods (accelerometers and displacement transducers for example) during on-ground testing. In this context, innovative non-contact measurement methods need to be investigated for these stretched membranes. The object of the present project is to review existing measurement systems capable of measuring characteristics of membrane space-structures such as: dot-projection videogrammetry (static measurements), stereo-correlation (dynamic and static measurements), fringe projection (wrinkles) and 3D laser scanning vibrometry (dynamic measurements). Therefore, minimum requirements were given for the study in order to have representative test articles covering a wide range of applications. We present test results obtained with the different methods on our test articles.

  18. Videodensitometric Methods for Cardiac Output Measurements

    NASA Astrophysics Data System (ADS)

    Mischi, Massimo; Kalker, Ton; Korsten, Erik

    2003-12-01

    Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a method for blood flow measurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger than 0.95 and 0.99, respectively.

  19. Development of a simplified and convenient assay for cell-mediated immunity to the mumps virus.

    PubMed

    Otani, Naruhito; Shima, Masayuki; Nakajima, Kazuhiko; Takesue, Yoshio; Okuno, Toshiomi

    2014-09-01

    Because methods for measuring cell-mediated immunity (CMI) to the mumps virus are expensive, time-consuming, and technically demanding, the role of CMI in mumps virus infection remains unclear. To address this issue, we report here the development of a simplified method for measuring mumps virus-specific CMI that is suitable for use in diverse laboratory and clinical settings. A mumps vaccine was cultured with whole blood, and interferon (IFN)-γ released into the culture supernatant was measured using an enzyme-linked immunosorbent assay. IFN-γ production in blood from vaccinated subjects markedly increased in response to the vaccine and decreased before the antibody titer decreased in some cases, suggesting that this assay may be used as a simple surrogate method for measuring CMI specific for the mumps virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Barber, Samuel; Domning, Edward E.

    2009-06-15

    Development of X-ray optics for 3rd and 4th generation X-ray light sources with a level of surface slope precision of 0.1-0.2 {micro}rad requires the development of adequate fabrication technologies and dedicated metrology instrumentation and methods. Currently, the best performance of surface slope measurement has been achieved with the NOM (Nanometer Optical Component Measuring Machine) slope profiler at BESSY (Germany) [1] and the ESAD (Extended Shear Angle Difference) profiler at the PTB (Germany) [2]. Both instruments are based on electronic autocollimators (AC) precisely calibrated for the specific application [3] with small apertures of 2.5-5 mm in diameter. In the present work,more » we describe the design, initial alignment and calibration procedures, the instrumental control and data acquisition system, as well as the measurement performance of the Developmental Long Trace Profiler (DLTP) slope measuring instrument recently brought into operation at the Advanced Light Source (ALS) Optical Metrology Laboratory (OML). Similar to the NOM and ESAD, the DLTP is based on a precisely calibrated autocollimator. However, this is a reasonably low budget instrument used at the ALS OML for the development and testing of new measuring techniques and methods. Some of the developed methods have been implemented into the ALS LTP-II (slope measuring long trace profiler [4]) which was recently upgraded and has demonstrated a capability for 0.25 {micro}rad surface metrology [5]. Performance of the DLTP was verified via a number of measurements with high quality reference mirrors. A comparison with the corresponding results obtained with the world's best slope measuring instrument, the BESSY NOM, proves the accuracy of the DLTP measurements on the level of 0.1-0.2 {micro}rad depending on the curvature of a surface under test. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.« less

  1. Methods for assessing reliability and validity for a measurement tool: a case study and critique using the WHO haemoglobin colour scale.

    PubMed

    White, Sarah A; van den Broek, Nynke R

    2004-05-30

    Before introducing a new measurement tool it is necessary to evaluate its performance. Several statistical methods have been developed, or used, to evaluate the reliability and validity of a new assessment method in such circumstances. In this paper we review some commonly used methods. Data from a study that was conducted to evaluate the usefulness of a specific measurement tool (the WHO Colour Scale) is then used to illustrate the application of these methods. The WHO Colour Scale was developed under the auspices of the WHO to provide a simple portable and reliable method of detecting anaemia. This Colour Scale is a discrete interval scale, whereas the actual haemoglobin values it is used to estimate are on a continuous interval scale and can be measured accurately using electrical laboratory equipment. The methods we consider are: linear regression, correlation coefficients, paired t-tests plotting differences against mean values and deriving limits of agreement; kappa and weighted kappa statistics, sensitivity and specificity, an intraclass correlation coefficient and the repeatability coefficient. We note that although the definition and properties of each of these methods is well established inappropriate methods continue to be used in medical literature for assessing reliability and validity, as evidenced in the context of the evaluation of the WHO Colour Scale. Copyright 2004 John Wiley & Sons, Ltd.

  2. Measuring the Characteristic Topography of Brain Stiffness with Magnetic Resonance Elastography

    PubMed Central

    Murphy, Matthew C.; Huston, John; Jack, Clifford R.; Glaser, Kevin J.; Senjem, Matthew L.; Chen, Jun; Manduca, Armando; Felmlee, Joel P.; Ehman, Richard L.

    2013-01-01

    Purpose To develop a reliable magnetic resonance elastography (MRE)-based method for measuring regional brain stiffness. Methods First, simulation studies were used to demonstrate how stiffness measurements can be biased by changes in brain morphometry, such as those due to atrophy. Adaptive postprocessing methods were created that significantly reduce the spatial extent of edge artifacts and eliminate atrophy-related bias. Second, a pipeline for regional brain stiffness measurement was developed and evaluated for test-retest reliability in 10 healthy control subjects. Results This technique indicates high test-retest repeatability with a typical coefficient of variation of less than 1% for global brain stiffness and less than 2% for the lobes of the brain and the cerebellum. Furthermore, this study reveals that the brain possesses a characteristic topography of mechanical properties, and also that lobar stiffness measurements tend to correlate with one another within an individual. Conclusion The methods presented in this work are resistant to noise- and edge-related biases that are common in the field of brain MRE, demonstrate high test-retest reliability, and provide independent regional stiffness measurements. This pipeline will allow future investigations to measure changes to the brain’s mechanical properties and how they relate to the characteristic topographies that are typical of many neurologic diseases. PMID:24312570

  3. In vivo X-ray fluorescence of lead in bone: review and current issues.

    PubMed Central

    Todd, A C; Chettle, D R

    1994-01-01

    Bone lead measurements can assess long-term lead dosimetry because the residence time of lead in bone is long. Bone lead measurements thus complement blood and plasma lead measurements, which reflect more short-term exposure. Although the noninvasive, in vivo measurement of lead in bone by X-ray fluorescence (XRF) has been under development since the 1970s, its use is still largely confined to research institutions. There are three principal methods used that vary both in the how lead X-rays are fluoresced and in which lead X-rays are fluoresced. Several groups have reported the independent development of in vivo measurement systems, the majority adopting the 109Cd K XRF method because of its advantages: a robust measurement, a lower detection limit (compared to 57Co K XRF), and a lower effective (radiation) dose (compared to L XRF) when calculated according to the most recent guidelines. These advantages, and the subsequent widespread adoption of the 109Cd method, are primarily consequences of the physics principles of the technique. This paper presents an explanation of the principles of XRF, a description of the practical measurement systems, a review of the human bone lead studies performed to date; and a discussion of some issues surrounding future application of the methods. Images p172-a PMID:8033846

  4. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction.

    PubMed

    Christien, F; Telling, M T F; Knight, K S; Le Gall, R

    2015-05-01

    A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature ramping as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.

  5. A systematic review of health care efficiency measures.

    PubMed

    Hussey, Peter S; de Vries, Han; Romley, John; Wang, Margaret C; Chen, Susan S; Shekelle, Paul G; McGlynn, Elizabeth A

    2009-06-01

    To review and characterize existing health care efficiency measures in order to facilitate a common understanding about the adequacy of these methods. Review of the MedLine and EconLit databases for articles published from 1990 to 2008, as well as search of the "gray" literature for additional measures developed by private organizations. We performed a systematic review for existing efficiency measures. We classified the efficiency measures by perspective, outputs, inputs, methods used, and reporting of scientific soundness. We identified 265 measures in the peer-reviewed literature and eight measures in the gray literature, with little overlap between the two sets of measures. Almost all of the measures did not explicitly consider the quality of care. Thus, if quality varies substantially across groups, which is likely in some cases, the measures reflect only the costs of care, not efficiency. Evidence on the measures' scientific soundness was mostly lacking: evidence on reliability or validity was reported for six measures (2.3 percent) and sensitivity analyses were reported for 67 measures (25.3 percent). Efficiency measures have been subjected to few rigorous evaluations of reliability and validity, and methods of accounting for quality of care in efficiency measurement are not well developed at this time. Use of these measures without greater understanding of these issues is likely to engender resistance from providers and could lead to unintended consequences.

  6. EXPOSURE ASSESSMENT METHODS DEVELOPMENT PILOTS FOR THE NATIONAL CHILDREN'S STUDY

    EPA Science Inventory

    Accurate exposure classification tools are needed to link exposure with health effects. EPA began methods development pilot studies in 2000 to address general questions about exposures and outcome measures. Selected pilot studies are highlighted in this poster. The “Literature Re...

  7. Evaluation of methods for measuring particulate matter emissions from gas turbines.

    PubMed

    Petzold, Andreas; Marsh, Richard; Johnson, Mark; Miller, Michael; Sevcenco, Yura; Delhaye, David; Ibrahim, Amir; Williams, Paul; Bauer, Heidi; Crayford, Andrew; Bachalo, William D; Raper, David

    2011-04-15

    The project SAMPLE evaluated methods for measuring particle properties in the exhaust of aircraft engines with respect to the development of standardized operation procedures for particulate matter measurement in aviation industry. Filter-based off-line mass methods included gravimetry and chemical analysis of carbonaceous species by combustion methods. Online mass methods were based on light absorption measurement or used size distribution measurements obtained from an electrical mobility analyzer approach. Number concentrations were determined using different condensation particle counters (CPC). Total mass from filter-based methods balanced gravimetric mass within 8% error. Carbonaceous matter accounted for 70% of gravimetric mass while the remaining 30% were attributed to hydrated sulfate and noncarbonaceous organic matter fractions. Online methods were closely correlated over the entire range of emission levels studied in the tests. Elemental carbon from combustion methods and black carbon from optical methods deviated by maximum 5% with respect to mass for low to medium emission levels, whereas for high emission levels a systematic deviation between online methods and filter based methods was found which is attributed to sampling effects. CPC based instruments proved highly reproducible for number concentration measurements with a maximum interinstrument standard deviation of 7.5%.

  8. Development and Validation of a Method for Determining Tridimensional Angular Displacements with Special Applications to Ice Hockey Motions.

    ERIC Educational Resources Information Center

    Gagnon, Micheline; And Others

    1983-01-01

    A method for determining the tridimensional angular displacement of skates during the two-legged stop in ice hockey was developed and validated. The angles were measured by geometry, using a cinecamera and specially equipped skates. The method provides a new tool for kinetic analyses of skating movements. (Authors/PP)

  9. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accuratemore » as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.« less

  10. Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems

    NASA Astrophysics Data System (ADS)

    Kang, Dongwoo; duk Kim, Young; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Dongmin

    2013-12-01

    Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.

  11. Smartphone-based Continuous Blood Pressure Measurement Using Pulse Transit Time.

    PubMed

    Gholamhosseini, Hamid; Meintjes, Andries; Baig, Mirza; Linden, Maria

    2016-01-01

    The increasing availability of low cost and easy to use personalized medical monitoring devices has opened the door for new and innovative methods of health monitoring to emerge. Cuff-less and continuous methods of measuring blood pressure are particularly attractive as blood pressure is one of the most important measurements of long term cardiovascular health. Current methods of noninvasive blood pressure measurement are based on inflation and deflation of a cuff with some effects on arteries where blood pressure is being measured. This inflation can also cause patient discomfort and alter the measurement results. In this work, a mobile application was developed to collate the PhotoPlethysmoGramm (PPG) waveform provided by a pulse oximeter and the electrocardiogram (ECG) for calculating the pulse transit time. This information is then indirectly related to the user's systolic blood pressure. The developed application successfully connects to the PPG and ECG monitoring devices using Bluetooth wireless connection and stores the data onto an online server. The pulse transit time is estimated in real time and the user's systolic blood pressure can be estimated after the system has been calibrated. The synchronization between the two devices was found to pose a challenge to this method of continuous blood pressure monitoring. However, the implemented continuous blood pressure monitoring system effectively serves as a proof of concept. This combined with the massive benefits that an accurate and robust continuous blood pressure monitoring system would provide indicates that it is certainly worthwhile to further develop this system.

  12. Measurement of luminance and color uniformity of displays using the large-format scanner

    NASA Astrophysics Data System (ADS)

    Mazikowski, Adam

    2017-08-01

    Uniformity of display luminance and color is important for comfort and good perception of the information presented on the display. Although display technology has developed and improved a lot over the past years, different types of displays still present a challenge in selected applications, e.g. in medical use or in case of multi-screen installations. A simplified 9-point method of determining uniformity does not always produce satisfactory results, so a different solution is proposed in the paper. The developed system consists of the large-format X-Y-Z ISEL scanner (isel Germany AG), Konica Minolta high sensitivity spot photometer-colorimeter (e.g. CS-200, Konica Minolta, Inc.) and PC computer. Dedicated software in LabView environment for control of the scanner, transfer the measured data to the computer, and visualization of measurement results was also prepared. Based on the developed setup measurements of plasma display and LCD-LED display were performed. A heavily wornout plasma TV unit, with several artifacts visible was selected. These tests show the advantages and drawbacks of described scanning method with comparison with 9-point simplified uniformity determining method.

  13. Development and pilot of an internationally standardized measure of cardiovascular risk management in European primary care

    PubMed Central

    2011-01-01

    Background Primary care can play an important role in providing cardiovascular risk management in patients with established Cardiovascular Diseases (CVD), patients with a known high risk of developing CVD, and potentially for individuals with a low risk of developing CVD, but who have unhealthy lifestyles. To describe and compare cardiovascular risk management, internationally valid quality indicators and standardized measures are needed. As part of a large project in 9 European countries (EPA-Cardio), we have developed and tested a set of standardized measures, linked to previously developed quality indicators. Methods A structured stepwise procedure was followed to develop measures. First, the research team allocated 106 validated quality indicators to one of the three target populations (established CVD, at high risk, at low risk) and to different data-collection methods (data abstraction from the medical records, a patient survey, an interview with lead practice GP/a practice survey). Secondly, we selected a number of other validated measures to enrich the assessment. A pilot study was performed to test the feasibility. Finally, we revised the measures based on the findings. Results The EPA-Cardio measures consisted of abstraction forms from the medical-records data of established Coronary Heart Disease (CHD)-patients - and high-risk groups, a patient questionnaire for each of the 3 groups, an interview questionnaire for the lead GP and a questionnaire for practice teams. The measures were feasible and accepted by general practices from different countries. Conclusions An internationally standardized measure of cardiovascular risk management, linked to validated quality indicators and tested for feasibility in general practice, is now available. Careful development and pilot testing of the measures are crucial in international studies of quality of healthcare. PMID:21473758

  14. Whakawhiti Kōrero, a Method for the Development of a Cultural Assessment Tool, Te Waka Kuaka, in Māori Traumatic Brain Injury.

    PubMed

    Elder, Hinemoa; Kersten, Paula

    2015-01-01

    The importance of tools for the measurement of outcomes and needs in traumatic brain injury is well recognised. The development of tools for these injuries in indigenous communities has been limited despite the well-documented disparity of brain injury. The wairua theory of traumatic brain injury (TBI) in Māori proposes that a culturally defined injury occurs in tandem with the physical injury. A cultural response is therefore indicated. This research investigates a Māori method used in the development of cultural needs assessment tool designed to further examine needs associated with the culturally determined injury and in preparation for formal validation. Whakawhiti kōrero is a method used to develop better statements in the development of the assessment tool. Four wānanga (traditional fora) were held including one with whānau (extended family) with experience of traumatic brain injury. The approach was well received. A final version, Te Waka Kuaka, is now ready for validation. Whakawhiti kōrero is an indigenous method used in the development of cultural needs assessment tool in Māori traumatic brain injury. This method is likely to have wider applicability, such as Mental Health and Addictions Services, to ensure robust process of outcome measure and needs assessment development.

  15. A novel method for accurate needle-tip identification in trans-rectal ultrasound-based high-dose-rate prostate brachytherapy.

    PubMed

    Zheng, Dandan; Todor, Dorin A

    2011-01-01

    In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. Studies on remote sensing method of particle size and water density distribution in mists and clouds using laser radar techniques

    NASA Technical Reports Server (NTRS)

    Shimizu, H.; Kobayasi, T.; Inaba, H.

    1979-01-01

    A method of remote measurement of the particle size and density distribution of water droplets was developed. In this method, the size of droplets is measured from the Mie scattering parameter which is defined as the total-to-backscattering ratio of the laser beam. The water density distribution is obtained by a combination of the Mie scattering parameter and the extinction coefficient of the laser beam. This method was examined experimentally for the mist generated by an ultrasonic mist generator and applied to clouds containing rain and snow. Compared with the conventional sampling method, the present method has advantages of remote measurement capability and improvement in accuracy.

  17. Moisture content measurement in paddy

    NASA Astrophysics Data System (ADS)

    Klomklao, P.; Kuntinugunetanon, S.; Wongkokua, W.

    2017-09-01

    Moisture content is an important quantity for agriculture product, especially in paddy. In principle, the moisture content can be measured by a gravimetric method which is a direct method. However, the gravimetric method is time-consuming. There are indirect methods such as resistance and capacitance methods. In this work, we developed an indirect method based on a 555 integrated circuit timer. The moisture content sensor was capacitive parallel plates using the dielectric constant property of the moisture. The instrument generated the output frequency that depended on the capacitance of the sensor. We fitted a linear relation between periods and moisture contents. The measurement results have a standard uncertainty of 1.23 % of the moisture content in the range of 14 % to 20 %.

  18. Effectiveness of Variable-Gain Kalman Filter Based on Angle Error Calculated from Acceleration Signals in Lower Limb Angle Measurement with Inertial Sensors

    PubMed Central

    Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442

  19. Three dimensional shape measurement of wear particle by iterative volume intersection

    NASA Astrophysics Data System (ADS)

    Wu, Hongkun; Li, Ruowei; Liu, Shilong; Rahman, Md Arifur; Liu, Sanchi; Kwok, Ngaiming; Peng, Zhongxiao

    2018-04-01

    The morphology of wear particle is a fundamental indicator where wear oriented machine health can be assessed. Previous research proved that thorough measurement of the particle shape allows more reliable explanation of the occurred wear mechanism. However, most of current particle measurement techniques are focused on extraction of the two-dimensional (2-D) morphology, while other critical particle features including volume and thickness are not available. As a result, a three-dimensional (3-D) shape measurement method is developed to enable a more comprehensive particle feature description. The developed method is implemented in three steps: (1) particle profiles in multiple views are captured via a camera mounted above a micro fluid channel; (2) a preliminary reconstruction is accomplished by the shape-from-silhouette approach with the collected particle contours; (3) an iterative re-projection process follows to obtain the final 3-D measurement by minimizing the difference between the original and the re-projected contours. Results from real data are presented, demonstrating the feasibility of the proposed method.

  20. Development of the Digital Arthritis Index, a Novel Metric to Measure Disease Parameters in a Rat Model of Rheumatoid Arthritis.

    PubMed

    Lim, Maria A; Louie, Brenton; Ford, Daniel; Heath, Kyle; Cha, Paulyn; Betts-Lacroix, Joe; Lum, Pek Yee; Robertson, Timothy L; Schaevitz, Laura

    2017-01-01

    Despite a broad spectrum of anti-arthritic drugs currently on the market, there is a constant demand to develop improved therapeutic agents. Efficient compound screening and rapid evaluation of treatment efficacy in animal models of rheumatoid arthritis (RA) can accelerate the development of clinical candidates. Compound screening by evaluation of disease phenotypes in animal models facilitates preclinical research by enhancing understanding of human pathophysiology; however, there is still a continuous need to improve methods for evaluating disease. Current clinical assessment methods are challenged by the subjective nature of scoring-based methods, time-consuming longitudinal experiments, and the requirement for better functional readouts with relevance to human disease. To address these needs, we developed a low-touch, digital platform for phenotyping preclinical rodent models of disease. As a proof-of-concept, we utilized the rat collagen-induced arthritis (CIA) model of RA and developed the Digital Arthritis Index (DAI), an objective and automated behavioral metric that does not require human-animal interaction during the measurement and calculation of disease parameters. The DAI detected the development of arthritis similar to standard in vivo methods, including ankle joint measurements and arthritis scores, as well as demonstrated a positive correlation to ankle joint histopathology. The DAI also determined responses to multiple standard-of-care (SOC) treatments and nine repurposed compounds predicted by the SMarTR TM Engine to have varying degrees of impact on RA. The disease profiles generated by the DAI complemented those generated by standard methods. The DAI is a highly reproducible and automated approach that can be used in-conjunction with standard methods for detecting RA disease progression and conducting phenotypic drug screens.

  1. Chapter 1: Introduction. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Michael; Haeri, Hossein; Reynolds, Arlis

    This chapter provides a set of model protocols for determining energy and demand savings that result from specific energy efficiency measures implemented through state and utility efficiency programs. The methods described here are approaches that are or are among the most commonly used and accepted in the energy efficiency industry for certain measures or programs. As such, they draw from the existing body of research and best practices for energy efficiency program evaluation, measurement, and verification (EM&V). These protocols were developed as part of the Uniform Methods Project (UMP), funded by the U.S. Department of Energy (DOE). The principal objectivemore » for the project was to establish easy-to-follow protocols based on commonly accepted methods for a core set of widely deployed energy efficiency measures.« less

  2. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption

    NASA Astrophysics Data System (ADS)

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (˜100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ˜0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  3. Combination volumetric and gravimetric sorption instrument for high accuracy measurements of methane adsorption.

    PubMed

    Burress, Jacob; Bethea, Donald; Troub, Brandon

    2017-05-01

    The accurate measurement of adsorbed gas up to high pressures (∼100 bars) is critical for the development of new materials for adsorbed gas storage. The typical Sievert-type volumetric method introduces accumulating errors that can become large at maximum pressures. Alternatively, gravimetric methods employing microbalances require careful buoyancy corrections. In this paper, we present a combination gravimetric and volumetric system for methane sorption measurements on samples between ∼0.5 and 1 g. The gravimetric method described requires no buoyancy corrections. The tandem use of the gravimetric method allows for a check on the highest uncertainty volumetric measurements. The sources and proper calculation of uncertainties are discussed. Results from methane measurements on activated carbon MSC-30 and metal-organic framework HKUST-1 are compared across methods and within the literature.

  4. Ciliate ingestion and digestion: flow cytometric measurements and regrowth of a digestion-resistant campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    We developed a method to measure ingestion and digestion rates of bacterivorous protists feeding on pathogenic bacteria. We tested this method using the enteric bacteria Campylobacter jejuni and a freshwater colpodid ciliate. Campylobacter and a non-pathogenic bacteria isolated from the environment ...

  5. A COMBINED MODELING AND MEASUREMENT TECHNIQUE FOR ESTIMATING WIND-BLOWN DUST EMISSIONS AT OWENS (DRY) LAKE, CA

    EPA Science Inventory

    A refined method of modeling atmospheric dust concentrations due to wind erosion was developed using real-time saltation flux measurements and ambient dust monitoring data at Owens Lake, California. This modeling method may have practical applications for modeling the atmospheric...

  6. TESTING DUPLICATE DIET SAMPLE COLLECTION METHODS FOR MEASURING PERSONAL DIETARY EXPOSURES TO CHEMICAL CONTAMINANTS

    EPA Science Inventory

    Dietary ingestion may be a significant pathway of human exposure to many potentially toxic chemicals. The U.S.Environmental Protection Agency-National Human Exposure Laboratory has made the development of methods for measuring persoanl dietary exposures a high priority for its di...

  7. ABSCISSA ASSESSMENT WITH ALGAE: A COMPARISON OF LOCAL AND LANDSCAPE IMPAIRMENT MEASURES FOR BIOLOGICAL ASSESSMENT USING BENTHIC DIATOMS

    EPA Science Inventory

    The development of rigorous biological assessments is dependent upon well-constructed abscissa, and various methods, both subjective and objective, exist to measure expected impairment at both the landscape and local scale. A new, landscape-scale method has recently been offered...

  8. HAND WIPE SUBSAMPLING METHOD FOR USE WITH BIOMARKER MEASUREMENTS IN THE AGRICULTURAL HEALTH STUDY/PESTICIDE EXPOSURE STUDY

    EPA Science Inventory

    Dermal exposure studies incorporating urinary biomarker measurements are complicated because dermal sampling may intercept or remove the target chemical before it is absorbed. A hand wipe subsampling method has been developed using polyurethane foam-tipped (PUF) swabs to minim...

  9. EVALUATION OF A TEST METHOD FOR MEASURING INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPIERS

    EPA Science Inventory

    A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in ...

  10. Probing-error compensation using 5 degree of freedom force/moment sensor for coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Lee, Minho; Cho, Nahm-Gyoo

    2013-09-01

    A new probing and compensation method is proposed to improve the three-dimensional (3D) measuring accuracy of 3D shapes, including irregular surfaces. A new tactile coordinate measuring machine (CMM) probe with a five-degree of freedom (5-DOF) force/moment sensor using carbon fiber plates was developed. The proposed method efficiently removes the anisotropic sensitivity error and decreases the stylus deformation and the actual contact point estimation errors that are major error components of shape measurement using touch probes. The relationship between the measuring force and estimation accuracy of the actual contact point error and stylus deformation error are examined for practical use of the proposed method. The appropriate measuring force condition is presented for the precision measurement.

  11. Note: Measuring instrument of singlet oxygen quantum yield in photodynamic effects

    NASA Astrophysics Data System (ADS)

    Li, Zhongwei; Zhang, Pengwei; Zang, Lixin; Qin, Feng; Zhang, Zhiguo; Zhang, Hongli

    2017-06-01

    Using diphenylisobenzofuran (C20H14O) as a singlet oxygen (1O2) reporter, a comparison method, which can be used to measure the singlet oxygen quantum yield (ΦΔ) of the photosensitizer quantitatively, is presented in this paper. Based on this method, an automatic measuring instrument of singlet oxygen quantum yield is developed. The singlet oxygen quantum yield of the photosensitizer hermimether and aloe-emodin is measured. It is found that the measuring results are identical to the existing ones, which verifies the validity of the measuring instrument.

  12. Introduction to meteorological measurements and data handling for solar energy applications. Task IV. Development of an isolation handbook and instrument package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The following are covered: the Sun and its radiation, solar radiation and atmospheric interaction, solar radiation measurement methods, spectral irradiance measurements of natural sources, the measurement of infrared radiation, the measurement of circumsolar radiation, some empirical properties of solar radiation and related parameters, duration of sunshine, and meteorological variables related to solar energy. Included in appendices are manufacturers and distributors of solar radiation measuring instruments and an approximate method for quality control of solar radiation instruments. (MHR)

  13. Contactless measurement of electrical conductivity of semiconductor wafers using the reflection of millimeter waves

    NASA Astrophysics Data System (ADS)

    Ju, Yang; Inoue, Kojiro; Saka, Masumi; Abe, Hiroyuki

    2002-11-01

    We present a method for quantitative measurement of electrical conductivity of semiconductor wafers in a contactless fashion by using millimeter waves. A focusing sensor was developed to focus a 110 GHz millimeter wave beam on the surface of a silicon wafer. The amplitude and the phase of the reflection coefficient of the millimeter wave signal were measured by which electrical conductivity of the wafer was determined quantitatively, independent of the permittivity and thickness of the wafers. The conductivity obtained by this method agrees well with that measured by the conventional four-point-probe method.

  14. The optical measurement of 1,2-propanediol for the determination of lung capillary permeability surface area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, R.L. Jr.; Staton, D.J.; Harris, T.R.

    1989-06-01

    A technique has been developed which allows for the optical measurement of the concentration-time relationship for a diffusion-limited material in indicator dilution studies. The material, 1-2 propanediol, is used as a probe of the permeability of capillaries in the lung. Comparisons between standard radioisotope measurements and the optical measurements are provided and show excellent agreement. The optical method represents an improvement over the standard radioisotope method in that it provides the same data at lower cost, lower risk, and without the delay required by the radiographic methods.

  15. On-line noninvasive one-point measurements of pulse wave velocity.

    PubMed

    Harada, Akimitsu; Okada, Takashi; Niki, Kiyomi; Chang, Dehua; Sugawara, Motoaki

    2002-12-01

    Pulse wave velocity (PWV) is a basic parameter in the dynamics of pressure and flow waves traveling in arteries. Conventional on-line methods of measuring PWV have mainly been based on "two-point" measurements, i.e., measurements of the time of travel of the wave over a known distance. This paper describes two methods by which on-line "one-point" measurements can be made, and compares the results obtained by the two methods. The principle of one method is to measure blood pressure and velocity at a point, and use the water-hammer equation for forward traveling waves. The principle of the other method is to derive PWV from the stiffness parameter of the artery. Both methods were realized by using an ultrasonic system which we specially developed for noninvasive measurements of wave intensity. We applied the methods to the common carotid artery in 13 normal humans. The regression line of the PWV (m/s) obtained by the former method on the PWV (m/s) obtained by the latter method was y = 1.03x - 0.899 (R(2) = 0.83). Although regional PWV in the human carotid artery has not been reported so far, the correlation between the PWVs obtained by the present two methods was so high that we are convinced of the validity of these methods.

  16. Development of a Measure of Asthma-Specific Quality of Life among Adults

    PubMed Central

    Eberhart, Nicole K.; Sherbourne, Cathy D.; Edelen, Maria Orlando; Stucky, Brian D.; Sin, Nancy L.; Lara, Marielena

    2014-01-01

    Purpose A key goal in asthma treatment is improvement in quality of life (QoL), but existing measures often confound QoL with symptoms and functional impairment. The current study addresses these limitations and the need for valid patient-reported outcome measures by using state-of-the-art methods to develop an item bank assessing QoL in adults with asthma. This article describes the process for developing an initial item pool for field testing. Methods Five focus group interviews were conducted with a total of 50 asthmatic adults. We used “pile sorting/binning” and “winnowing” methods to identify key QoL dimensions and develop a pool of items based on statements made in the focus group interviews. We then conducted a literature review and consulted with an expert panel to ensure that no key concepts were omitted. Finally, we conducted individual cognitive interviews to ensure that items were well understood and inform final item refinement. Results 661 QoL statements were identified from focus group interview transcripts and subsequently used to generate a pool of 112 items in 16 different content areas. Conclusions Items covering a broad range of content were developed that can serve as a valid gauge of individuals’ perceptions of the effects of asthma and its treatment on their lives. These items do not directly measure symptoms or functional impairment, yet they include a broader range of content than most existent measures of asthma-specific QoL. PMID:24062237

  17. A Method for Determining Pseudo-measurement State Values for Topology Observability of State Estimation in Power Systems

    NASA Astrophysics Data System (ADS)

    Urano, Shoichi; Mori, Hiroyuki

    This paper proposes a new technique for determining of state values in power systems. Recently, it is useful for carrying out state estimation with data of PMU (Phasor Measurement Unit). The authors have developed a method for determining state values with artificial neural network (ANN) considering topology observability in power systems. ANN has advantage to approximate nonlinear functions with high precision. The method evaluates pseudo-measurement state values of the data which are lost in power systems. The method is successfully applied to the IEEE 14-bus system.

  18. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2014-10-30

    obtain range measurements . A MATLAB- based system developed at Clarkson University in FY14 has been used to perform real-time FDR ranging... measurement accuracy. There have been various methods that attempt to reduce the backscatter. One method is to increase the modulation frequency beyond...an unambiguous range measurement . In general, it is desired to determine which combination of Radio Frequency (RF) modulation frequencies, modulation

  19. The execution of systematic measurements on plane cascades

    NASA Technical Reports Server (NTRS)

    Scholz, N.

    1978-01-01

    The present state of development of the experimental technique regarding the flow through cascades and several points to be specially observed in the design of cascade wind tunnels were discussed. The equations required for the evaluation of the momentum measurements in two dimensional flow through cascades were developed. Regarding the effect of the jet contraction due to the boundary layer along the side walls a simple method for correction was also given in order to obtain two dimensional flow characteristics. Also given were the equations for the evaluation of the pressure distribution measurements. Another contribution was made regarding the presentation of the test results in the form of nondimensional quantities. The results of systematic measurements of cascades with symmetrical aerofoil were reported, and the above suggested method was applied for the evaluation of the measurements.

  20. Computation of backwater and discharge at width constrictions of heavily vegetated flood plains

    USGS Publications Warehouse

    Schneider, V.R.; Board, J.W.; Colson, B.E.; Lee, F.N.; Druffel, Leroy

    1977-01-01

    The U.S. Geological Survey, cooperated with the Federal Highway Administration and the State Highway Departments of Mississippi, Alabama, and Louisiana, to develop a proposed method for computing backwater and discharge at width constrictions of heavily vegetated flood plains. Data were collected at 20 single opening sites for 31 floods. Flood-plain width varied from 4 to 14 times the bridge opening width. The recurrence intervals of peak discharge ranged from a 2-year flood to greater than a 100-year flood, with a median interval of 6 years. Measured backwater ranged from 0.39 to 3.16 feet. Backwater computed by the present standard Geological Survey method averaged 29 percent less than the measured, and that computed by the currently used Federal Highway Administration method averaged 47 percent less than the measured. Discharge computed by the Survey method averaged 21 percent more then the measured. Analysis of data showed that the flood-plain widths and the Manning 's roughness coefficient are larger than those used to develop the standard methods. A method to more accurately compute backwater and discharge was developed. The difference between the contracted and natural water-surface profiles computed using standard step-backwater procedures is defined as backwater. The energy loss terms in the step-backwater procedure are computed as the product of the geometric mean of the energy slopes and the flow distance in the reach was derived from potential flow theory. The mean error was 1 percent when using the proposed method for computing backwater and 3 percent for computing discharge. (Woodard-USGS)

  1. Assessing consumer responses to potential reduced-exposure tobacco products: a review of tobacco industry and independent research methods.

    PubMed

    Rees, Vaughan W; Kreslake, Jennifer M; Cummings, K Michael; O'Connor, Richard J; Hatsukami, Dorothy K; Parascandola, Mark; Shields, Peter G; Connolly, Gregory N

    2009-12-01

    Internal tobacco industry documents and the mainstream literature are reviewed to identify methods and measures for evaluating tobacco consumer response. The review aims to outline areas in which established methods exist, identify gaps in current methods for assessing consumer response, and consider how these methods might be applied to evaluate potentially reduced exposure tobacco products and new products. Internal industry research reviewed included published articles, manuscript drafts, presentations, protocols, and instruments relating to consumer response measures were identified and analyzed. Peer-reviewed research was identified using PubMed and Scopus. Industry research on consumer response focuses on product development and marketing. To develop and refine new products, the tobacco industry has developed notable strategies for assessing consumers' sensory and subjective responses to product design characteristics. Independent research is often conducted to gauge the likelihood of future product adoption by measuring consumers' risk perceptions, responses to product, and product acceptability. A model that conceptualizes consumer response as comprising the separate, but interacting, domains of product perceptions and response to product is outlined. Industry and independent research supports the dual domain model and provides a wide range of methods for assessment of the construct components of consumer response. Further research is needed to validate consumer response constructs, determine the relationship between consumer response and tobacco user behavior, and improve reliability of consumer response measures. Scientifically rigorous consumer response assessment methods will provide a needed empirical basis for future regulation of potentially reduced-exposure tobacco products and new products, to counteract tobacco industry influence on consumers, and enhance the public health.

  2. Development of a histologically validated segmentation protocol for the hippocampal body.

    PubMed

    Steve, Trevor A; Yasuda, Clarissa L; Coras, Roland; Lail, Mohjevan; Blumcke, Ingmar; Livy, Daniel J; Malykhin, Nikolai; Gross, Donald W

    2017-08-15

    Recent findings have demonstrated that hippocampal subfields can be selectively affected in different disease states, which has led to efforts to segment the human hippocampus with in vivo magnetic resonance imaging (MRI). However, no studies have examined the histological accuracy of subfield segmentation protocols. The presence of MRI-visible anatomical landmarks with known correspondence to histology represents a fundamental prerequisite for in vivo hippocampal subfield segmentation. In the present study, we aimed to: 1) develop a novel method for hippocampal body segmentation, based on two MRI-visible anatomical landmarks (stratum lacunosum moleculare [SLM] & dentate gyrus [DG]), and assess its accuracy in comparison to the gold standard direct histological measurements; 2) quantify the accuracy of two published segmentation strategies in comparison to the histological gold standard; and 3) apply the novel method to ex vivo MRI and correlate the results with histology. Ultra-high resolution ex vivo MRI was performed on six whole cadaveric hippocampal specimens, which were then divided into 22 blocks and histologically processed. The hippocampal bodies were segmented into subfields based on histological criteria and subfield boundaries and areas were directly measured. A novel method was developed using mean percentage of the total SLM distance to define subfield boundaries. Boundary distances and subfield areas on histology were then determined using the novel method and compared to the gold standard histological measurements. The novel method was then used to determine ex vivo MRI measures of subfield boundaries and areas, which were compared to histological measurements. For direct histological measurements, the mean percentages of total SLM distance were: Subiculum/CA1 = 9.7%, CA1/CA2 = 78.4%, CA2/CA3 = 97.5%. When applied to histology, the novel method provided accurate measures for CA1/CA2 (ICC = 0.93) and CA2/CA3 (ICC = 0.97) boundaries, but not for the Subiculum/CA1 (ICC = -0.04) boundary. Accuracy was poorer using previous techniques for CA1/CA2 (maximum ICC = 0.85) and CA2/CA3 (maximum ICC = 0.88), with the previously reported techniques also performing poorly in defining the Subiculum/CA1 boundary (maximum ICC = 0.00). Ex vivo MRI measurements using the novel method were linearly related to direct measurements of SLM length (r 2 = 0.58), CA1/CA2 boundary (r 2 = 0.39) and CA2/CA3 boundary (r 2 = 0.47), but not for Subiculum/CA1 boundary (r 2 = 0.01). Subfield areas measured with the novel method on histology and ex vivo MRI were linearly related to gold standard histological measures for CA1, CA2, and CA3/CA4/DG. In this initial proof of concept study, we used ex vivo MRI and histology of cadaveric hippocampi to develop a novel segmentation protocol for the hippocampal body. The novel method utilized two anatomical landmarks, SLM & DG, and provided accurate measurements of CA1, CA2, and CA3/CA4/DG subfields in comparison to the gold standard histological measurements. The relationships demonstrated between histology and ex vivo MRI supports the potential feasibility of applying this method to in vivo MRI studies. Copyright © 2017. Published by Elsevier Inc.

  3. Turbine blade and vane heat flux sensor development, phase 2

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippincott, W. H.; McKinsey, D. N.; Nikkel, J. A.

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10{sup -7} between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally,more » we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence.« less

  5. "Not just little adults": qualitative methods to support the development of pediatric patient-reported outcomes.

    PubMed

    Arbuckle, Rob; Abetz-Webb, Linda

    2013-01-01

    The US FDA and the European Medicines Agency (EMA) have issued incentives and laws mandating clinical research in pediatrics. While guidances for the development and validation of patient-reported outcomes (PROs) or health-related quality of life (HRQL) measures have been issued by these agencies, little attention has focused on pediatric PRO development methods. With reference to the literature, this article provides an overview of specific considerations that should be made with regard to the development of pediatric PRO measures, with a focus on performing qualitative research to ensure content validity. Throughout the questionnaire development process it is critical to use developmentally appropriate language and techniques to ensure outcomes have content validity, and will be reliable and valid within narrow age bands (0-2, 3-5, 6-8, 9-11, 12-14, 15-17 years). For qualitative research, sample sizes within those age bands must be adequate to demonstrate saturation while taking into account children's rapid growth and development. Interview methods, interview guides, and length of interview must all take developmental stage into account. Drawings, play-doh, or props can be used to engage the child. Care needs to be taken during cognitive debriefing, where repeated questioning can lead a child to change their answers, due to thinking their answer is incorrect. For the PROs themselves, the greatest challenge is in measuring outcomes in children aged 5-8 years. In this age range, while self-report is generally more valid, parent reports of observable behaviors are generally more reliable. As such, 'team completion' or a parent-administered child report is often the best option for children aged 5-8 years. For infants and very young children (aged 0-4 years), patient rating of observable behaviors is necessary, and, for adolescents and children aged 9 years and older, self-reported outcomes are generally valid and reliable. In conclusion, the development of PRO measures for use in children requires careful tailoring of qualitative methods, and performing research within narrow age bands. The best reporter should be carefully considered dependent on the child's age, developmental ability, and the concept being measured, and team completion should be considered alongside self-completion and observer measures.

  6. Measurement of Sediment Deposition Rates using an Optical Backscatter Sensor

    NASA Astrophysics Data System (ADS)

    Ridd, P.; Day, G.; Thomas, S.; Harradence, J.; Fox, D.; Bunt, J.; Renagi, O.; Jago, C.

    2001-02-01

    An optical method for measuring siltation of sediment has been developed using an optical fibre backscatter (OBS) nephelometer. Sediment settling upon the optical fibre sensor causes an increase in the backscatter reading which can be related to the settled sediment surface density (SSSD) as measured in units of mg cm -2. Calibration and laboratory tests indicate that the resolution of measurements of SSSD is 0·01 mg cm -2and an accuracy of 5% in still water. In moving water it is more difficult to determine the accuracy of the method because other methods with suitable resolution are unavailable. However, indirect methods using measurements of changing suspended sediment concentration in a ring flume, indicate that the OBS method under-predicts deposition. The series of siltation from three field sites are presented. This sensor offers considerable advances over other methods of measuring settling because time series of settling may be taken and thus settling events may be related to other hydrodynamic parameters such as wave climate and currents.

  7. New approaches to the measurement of chlorophyll, related pigments and productivity in the sea

    NASA Technical Reports Server (NTRS)

    Booth, C. R.; Keifer, D. A.

    1989-01-01

    In the 1984 SBIR Call for Proposals, NASA solicited new methods to measure primary production and chlorophyll in the ocean. Biospherical Instruments Inc. responded to this call with a proposal first to study a variety of approaches to this problem. A second phase of research was then funded to pursue instrumentation to measure the sunlight stimulated naturally occurring fluorescence of chlorophyll in marine phytoplankton. The monitoring of global productivity, global fisheries resources, application of above surface-to-underwater optical communications systems, submarine detection applications, correlation, and calibration of remote sensing systems are but some of the reasons for developing inexpensive sensors to measure chlorophyll and productivity. Normally, productivity measurements are manpower and cost intensive and, with the exception of a very few expensive multiship research experiments, provide no contemporaneous data. We feel that the patented, simple sensors that we have designed will provide a cost effective method for large scale, synoptic, optical measurements in the ocean. This document is the final project report for a NASA sponsored SBIR Phase 2 effort to develop new methods for the measurements of primary production in the ocean. This project has been successfully completed, a U.S. patent was issued covering the methodology and sensors, and the first production run of instrumentation developed under this contract has sold out and been delivered.

  8. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1971-01-01

    The development of methods of measurement for semiconductor materials, process control, and devices is discussed. The following subjects are also presented: (1) demonstration of the high sensitivity of the infrared response technique by the identification of gold in a germanium diode, (2) verification that transient thermal response is significantly more sensitive to the presence of voids in die attachment than steady-state thermal resistance, and (3) development of equipment for determining susceptibility of transistors to hot spot formation by the current-gain technique.

  9. Development of Measurement Methods for Detection of Special Nuclear Materials using D-D Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Misawa, Tsuyoshi; Takahashi, Yoshiyuki; Yagi, Takahiro; Pyeon, Cheol Ho; Kimura, Masaharu; Masuda, Kai; Ohgaki, Hideaki

    2015-10-01

    For detection of hidden special nuclear materials (SNMs), we have developed an active neutron-based interrogation system combined with a D-D fusion pulsed neutron source and a neutron detection system. In the detection scheme, we have adopted new measurement techniques simultaneously; neutron noise analysis and neutron energy spectrum analysis. The validity of neutron noise analysis method has been experimentally studied in the Kyoto University Critical Assembly (KUCA), and was applied to a cargo container inspection system by simulation.

  10. DEVELOPMENT OF IN-PLACE DENSITY METHOD FOR COLD IN-PLACE RECYCLING

    DOT National Transportation Integrated Search

    2018-01-01

    This report presents the results of a research study funded by the Nevada DOT and the SOLARIS University Transportation Center. The research developed a method for measuring the in-place density of the cold in-place recycled (CIR) layer immediately a...

  11. HEASD PM RESEARCH METHODS: PARTICLE METHODS EVALUATION AND DEVELOPMENT

    EPA Science Inventory

    The FRM developed by NERL forms the backbone of the EPA's national monitoring strategy. It is the measurement that defines attainment of the new standard. However, the agency has numerous other needs in assessing the physical and chemical characteristics of ambient fine particl...

  12. Development of new test procedures for measuring fine and coarse aggregates specific gravity.

    DOT National Transportation Integrated Search

    2009-09-01

    The objective of the research is to develop and evaluate new test methods at determining the specific gravity and absorption of both fine and coarse aggregates. Current methods at determining the specific gravity and absorption of fine and coarse agg...

  13. A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations

    NASA Astrophysics Data System (ADS)

    Whittaker, Lee; Brown, Michael L.; Battye, Richard A.

    2015-12-01

    We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.

  14. 432- μm laser's beam-waist measurement for the polarimeter/interferometer on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Wang, Z. X.; Liu, H. Q.; Jie, Y. X.; Wu, M. Q.; Lan, T.; Zhu, X.; Zou, Z. Y.; Yang, Y.; Wei, X. C.; Zeng, L.; Li, G. S.; Gao, X.

    2014-10-01

    A far-infrared (FIR) polarimeter/interferometer (PI) system is under development for measurements of the current-density and the electron-density profiles in the EAST tokamak. The system will utilize three identical 432- μm CHCOOH lasers pumped by a CO2 laser. Measurements of the laser beam's waist size and position are basic works. This paper will introduce three methods with a beam profiler and several focusing optical elements. The beam profiler can be used to show the spatial energy distribution of the laser beam. The active area of the profiler is 12.4 × 12.4 mm2. Some focusing optical elements are needed to focus the beam in order for the beam profiler to receive the entire laser beam. Two principles and three methods are used in the measurement. The first and the third methods are based on the same principle, and the second method adopts an other principle. Due to the fast and convenient measurement, although the first method is a special form of the third and it can only give the size of beam waist, it is essential to the development of the experiment and it can provide guidance for the choices of the sizes of the optical elements in the next step. A concave mirror, a high-density polyethylene (HDPE) lens and a polymethylpentene (TPX) lens are each used in the measurement process. The results of these methods are close enough for the design of PI system's optical path.

  15. CREATININE DETERMINATION IN URINE BY LIQUID CHROMATOGRAPHY-ELECTROSPRAY IONIZATION-TANDEM MASS SPECTROMETRY METHOD.

    PubMed

    Dereziński, Paweł; Klupczyńska, Agnieszka; Sawicki, Wojciech; Kokot, Zenon J

    2016-01-01

    Creatinine determination in urine is used to estimate the completeness of the 24-h urine collection, compensation for variable diuresis and as a preliminary step in protein profiling in urine. Despite the fact that a wide range of methods of measuring creatinine level in biofluids has been developed, many of them are adversely affected by interfering substances. A new liquid chromatography-tandem mass spectrometry method for creatinine determination in urine has been developed. Chromatographic separation was performed by applying C18 column and a gradient elution. Analyses were carried out on a triple quadrupole mass spectrometer equipped with an electrospray ion source. The developed method was fully validated according to the international guidelines. The quantification range of the method was 5-1500 ng/mL, which corresponds to 1-300 mg/dL in urine. Limit of detection and quantitation were 2 and 5 ng/mL, respectively. Additionally, the comparison of creatinine determination by newly developed method to the colorimetric method was performed. The method enables the determination of creatinine in urine samples with a minimal sample preparation, excellent sensitivity and prominent selectivity. Since mass spectrometry allows to measure a number of compounds simultaneously, a future perspective would be to incorporate the determination of other clinically important compounds excreted in urine.

  16. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.

    PubMed

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-07-24

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.

  17. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites

    PubMed Central

    Gagani, Abedin I.; Echtermeyer, Andreas T.

    2018-01-01

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer–Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described. PMID:29641451

  18. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites.

    PubMed

    Krauklis, Andrey E; Gagani, Abedin I; Echtermeyer, Andreas T

    2018-04-11

    Monitoring water content and predicting the water-induced drop in strength of fiber-reinforced composites are of great importance for the oil and gas and marine industries. Fourier transform infrared (FTIR) spectroscopic methods are broadly available and often used for process and quality control in industrial applications. A benefit of using such spectroscopic methods over the conventional gravimetric analysis is the possibility to deduce the mass of an absolutely dry material and subsequently the true water content, which is an important indicator of water content-dependent properties. The objective of this study is to develop an efficient and detailed method for estimating the water content in epoxy resins and fiber-reinforced composites. In this study, Fourier transform near-infrared (FT-NIR) spectroscopy was applied to measure the water content of amine-epoxy neat resin. The method was developed and successfully extended to glass fiber-reinforced composite materials. Based on extensive measurements of neat resin and composite samples of varying water content and thickness, regression was performed, and the quantitative absorbance dependence on water content in the material was established. The mass of an absolutely dry resin was identified, and the true water content was obtained. The method was related to the Beer-Lambert law and explained in such terms. A detailed spectroscopic method for measuring water content in resins and fiber-reinforced composites was developed and described.

  19. A neural network method to correct bidirectional effects in water-leaving radiance

    NASA Astrophysics Data System (ADS)

    Fan, Yongzhen; Li, Wei; Voss, Kenneth J.; Gatebe, Charles K.; Stamnes, Knut

    2017-02-01

    The standard method to convert the measured water-leaving radiances from the observation direction to the nadir direction developed by Morel and coworkers requires knowledge of the chlorophyll concentration (CHL). Also, the standard method was developed for open ocean water, which makes it unsuitable for turbid coastal waters. We introduce a neural network method to convert the water-leaving radiance (or the corresponding remote sensing reflectance) from the observation direction to the nadir direction. This method does not require any prior knowledge of the water constituents or the inherent optical properties (IOPs). This method is fast, accurate and can be easily adapted to different remote sensing instruments. Validation using NuRADS measurements in different types of water shows that this method is suitable for both open ocean and coastal waters. In open ocean or chlorophyll-dominated waters, our neural network method produces corrections similar to those of the standard method. In turbid coastal waters, especially sediment-dominated waters, a significant improvement was obtained compared to the standard method.

  20. High-precision Non-Contact Measurement of Creep of Ultra-High Temperature Materials for Aerospace

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.; Hyers, Robert

    2008-01-01

    For high-temperature applications (greater than 2,000 C) such as solid rocket motors, hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines, creep becomes one of the most important design factors to be considered. Conventional creep-testing methods, where the specimen and test apparatus are in contact with each other, are limited to temperatures approximately 1,700 C. Development of alloys for higher-temperature applications is limited by the availability of testing methods at temperatures above 2000 C. Development of alloys for applications requiring a long service life at temperatures as low as 1500 C, such as the next generation of jet turbine superalloys, is limited by the difficulty of accelerated testing at temperatures above 1700 C. For these reasons, a new, non-contact creep-measurement technique is needed for higher temperature applications. A new non-contact method for creep measurements of ultra-high-temperature metals and ceramics has been developed and validated. Using the electrostatic levitation (ESL) facility at NASA Marshall Space Flight Center, a spherical sample is rotated quickly enough to cause creep deformation due to centrifugal acceleration. Very accurate measurement of the deformed shape through digital image analysis allows the stress exponent n to be determined very precisely from a single test, rather than from numerous conventional tests. Validation tests on single-crystal niobium spheres showed excellent agreement with conventional tests at 1985 C; however the non-contact method provides much greater precision while using only about 40 milligrams of material. This method is being applied to materials including metals and ceramics for non-eroding throats in solid rockets and next-generation superalloys for turbine engines. Recent advances in the method and the current state of these new measurements will be presented.

  1. Height Measuring System On Video Using Otsu Method

    NASA Astrophysics Data System (ADS)

    Sandy, C. L. M.; Meiyanti, R.

    2017-01-01

    A measurement of height is comparing the value of the magnitude of an object with a standard measuring tool. The problems that exist in the measurement are still the use of a simple apparatus in which one of them is by using a meter. This method requires a relatively long time. To overcome these problems, this research aims to create software with image processing that is used for the measurement of height. And subsequent that image is tested, where the object captured by the video camera can be known so that the height of the object can be measured using the learning method of Otsu. The system was built using Delphi 7 of Vision Lab VCL 4.5 component. To increase the quality of work of the system in future research, the developed system can be combined with other methods.

  2. Performance Measures for Public Participation Methods : Final Report

    DOT National Transportation Integrated Search

    2018-01-01

    Public engagement is an important part of transportation project development, but measuring its effectiveness is typically piecemealed. Performance measurementdescribed by the Urban Institute as the measurement on a regular basis of the results (o...

  3. Comparison of Optimization and Two-point Methods in Estimation of Soil Water Retention Curve

    NASA Astrophysics Data System (ADS)

    Ghanbarian-Alavijeh, B.; Liaghat, A. M.; Huang, G.

    2009-04-01

    Soil water retention curve (SWRC) is one of the soil hydraulic properties in which its direct measurement is time consuming and expensive. Since, its measurement is unavoidable in study of environmental sciences i.e. investigation of unsaturated hydraulic conductivity and solute transport, in this study the attempt is to predict soil water retention curve from two measured points. By using Cresswell and Paydar (1996) method (two-point method) and an optimization method developed in this study on the basis of two points of SWRC, parameters of Tyler and Wheatcraft (1990) model (fractal dimension and air entry value) were estimated and then water content at different matric potentials were estimated and compared with their measured values (n=180). For each method, we used both 3 and 1500 kPa (case 1) and 33 and 1500 kPa (case 2) as two points of SWRC. The calculated RMSE values showed that in the Creswell and Paydar (1996) method, there exists no significant difference between case 1 and case 2. However, the calculated RMSE value in case 2 (2.35) was slightly less than case 1 (2.37). The results also showed that the developed optimization method in this study had significantly less RMSE values for cases 1 (1.63) and 2 (1.33) rather than Cresswell and Paydar (1996) method.

  4. Traceability in hardness measurements: from the definition to industry

    NASA Astrophysics Data System (ADS)

    Germak, Alessandro; Herrmann, Konrad; Low, Samuel

    2010-04-01

    The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).

  5. Effect of Heat Generation of Ultrasound Transducer on Ultrasonic Power Measured by Calorimetric Method

    NASA Astrophysics Data System (ADS)

    Uchida, Takeyoshi; Kikuchi, Tsuneo

    2013-07-01

    Ultrasonic power is one of the key quantities closely related to the safety of medical ultrasonic equipment. An ultrasonic power standard is required for establishment of safety. Generally, an ultrasonic power standard below approximately 20 W is established by the radiation force balance (RFB) method as the most accurate measurement method. However, RFB is not suitable for high ultrasonic power because of thermal damage to the absorbing target. Consequently, an alternative method to RFB is required. We have been developing a measurement technique for high ultrasonic power by the calorimetric method. In this study, we examined the effect of heat generation of an ultrasound transducer on ultrasonic power measured by the calorimetric method. As a result, an excessively high ultrasonic power was measured owing to the effect of heat generation from internal loss in the transducer. A reference ultrasound transducer with low heat generation is required for a high ultrasonic power standard established by the calorimetric method.

  6. Development of Holmium-163 electron-capture spectroscopy with transition-edge sensors

    DOE PAGES

    Croce, Mark Philip; Rabin, Michael W.; Mocko, Veronika; ...

    2016-08-01

    Calorimetric decay energy spectroscopy of electron-capture-decaying isotopes is a promising method to achieve the sensitivity required for electron neutrino mass measurement. The very low total nuclear decay energy (Q EC < 3 keV) and short half-life (4570 years) of 163Ho make it attractive for high-precision electron-capture spectroscopy (ECS) near the kinematic endpoint, where the neutrino momentum goes to zero. In the ECS approach, an electron-capture-decaying isotope is embedded inside a microcalorimeter designed to capture and measure the energy of all the decay radiation except that of the escaping neutrino. We have developed a complete process for proton irradiation-based isotope production,more » isolation, and purification of 163Ho. We have developed transition-edge sensors for this measurement and methods for incorporating 163Ho into high-resolution microcalorimeters, and have measured the electron-capture spectrum of 163Ho. Finally, we present our work in these areas and discuss the measured spectrum and its comparison to current theory.« less

  7. Development of Holmium-163 electron-capture spectroscopy with transition-edge sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, Mark Philip; Rabin, Michael W.; Mocko, Veronika

    Calorimetric decay energy spectroscopy of electron-capture-decaying isotopes is a promising method to achieve the sensitivity required for electron neutrino mass measurement. The very low total nuclear decay energy (Q EC < 3 keV) and short half-life (4570 years) of 163Ho make it attractive for high-precision electron-capture spectroscopy (ECS) near the kinematic endpoint, where the neutrino momentum goes to zero. In the ECS approach, an electron-capture-decaying isotope is embedded inside a microcalorimeter designed to capture and measure the energy of all the decay radiation except that of the escaping neutrino. We have developed a complete process for proton irradiation-based isotope production,more » isolation, and purification of 163Ho. We have developed transition-edge sensors for this measurement and methods for incorporating 163Ho into high-resolution microcalorimeters, and have measured the electron-capture spectrum of 163Ho. Finally, we present our work in these areas and discuss the measured spectrum and its comparison to current theory.« less

  8. Capturing the Patient’s Experience: Using Qualitative Methods to Develop a Measure of Patient-Reported Symptom Burden: An Example from Ovarian Cancer

    PubMed Central

    Williams, Loretta A.; Agarwal, Sonika; Bodurka, Diane C.; Saleeba, Angele K.; Sun, Charlotte C.; Cleeland, Charles S.

    2013-01-01

    Context Experts in patient-reported outcome (PRO) measurement emphasize the importance of including patient input in the development of PRO measures. Although best methods for acquiring this input are not yet identified, patient input early in instrument development ensures that instrument content captures information most important and relevant to patients in understandable terms. Objectives The M. D. Anderson Symptom Inventory (MDASI) is a reliable, valid PRO instrument for assessing cancer symptom burden. We report a qualitative (open-ended, in-depth) interviewing method that can be used to incorporate patient input into PRO symptom measure development, with our experience in constructing a MDASI module for ovarian cancer (MDASI-OC) as a model. Methods Fourteen patients with ovarian cancer (OC) described symptoms experienced at the time of the study, at diagnosis, and during prior treatments. Researchers and clinicians used content analysis of interview transcripts to identify symptoms in patient language. Symptoms were ranked on the basis of the number of patients mentioning them and by clinician assessment of relevance. Results Forty-two symptoms were mentioned. Eight OC-specific items will be added to the 13 core symptom items and six interference items of the MDASI in a test version of the MDASI-OC based on the number of patients mentioning them and clinician assessment of importance. The test version is undergoing psychometric evaluation. Conclusion The qualitative interviewing process, used to develop the test MDASI-OC, systematically captures common symptoms important to patients with ovarian cancer. This methodology incorporates the patient experience recommended by experts in PRO instrument development. PMID:23615044

  9. Bayesian adjustment for measurement error in continuous exposures in an individually matched case-control study.

    PubMed

    Espino-Hernandez, Gabriela; Gustafson, Paul; Burstyn, Igor

    2011-05-14

    In epidemiological studies explanatory variables are frequently subject to measurement error. The aim of this paper is to develop a Bayesian method to correct for measurement error in multiple continuous exposures in individually matched case-control studies. This is a topic that has not been widely investigated. The new method is illustrated using data from an individually matched case-control study of the association between thyroid hormone levels during pregnancy and exposure to perfluorinated acids. The objective of the motivating study was to examine the risk of maternal hypothyroxinemia due to exposure to three perfluorinated acids measured on a continuous scale. Results from the proposed method are compared with those obtained from a naive analysis. Using a Bayesian approach, the developed method considers a classical measurement error model for the exposures, as well as the conditional logistic regression likelihood as the disease model, together with a random-effect exposure model. Proper and diffuse prior distributions are assigned, and results from a quality control experiment are used to estimate the perfluorinated acids' measurement error variability. As a result, posterior distributions and 95% credible intervals of the odds ratios are computed. A sensitivity analysis of method's performance in this particular application with different measurement error variability was performed. The proposed Bayesian method to correct for measurement error is feasible and can be implemented using statistical software. For the study on perfluorinated acids, a comparison of the inferences which are corrected for measurement error to those which ignore it indicates that little adjustment is manifested for the level of measurement error actually exhibited in the exposures. Nevertheless, a sensitivity analysis shows that more substantial adjustments arise if larger measurement errors are assumed. In individually matched case-control studies, the use of conditional logistic regression likelihood as a disease model in the presence of measurement error in multiple continuous exposures can be justified by having a random-effect exposure model. The proposed method can be successfully implemented in WinBUGS to correct individually matched case-control studies for several mismeasured continuous exposures under a classical measurement error model.

  10. The development of the simultaneous GC method of helium, argon and neon measurements for the groundwater dating.

    NASA Astrophysics Data System (ADS)

    Najman, Joanna; Śliwka, Ireneusz

    2014-05-01

    In this work we present a chromatographic method for simultaneous analysis of helium, neon and argon in groundwater from one water sample. The concentration of helium in groundwater may be a good environmental tracer for groundwater dating. Proper use of environmental tracers in hydrogeology for dating purpose, requires the knowledge of recharge temperature of the system and the so-called "Excess air". "Excess air" allows for the necessary correction of measured concentration of helium in water. Both parameters can be determined by measuring the concentration of argon and neon in groundwater. In the Department of Physicochemistry of Ecosystems from the Institute of Nuclear Physics Polish Academy of Sciences the chromatographic method for the simultaneous analysis of He, Ar and Ne from one groundwater sample for dating purposes was developed. Water samples are taken to the stainless steel vessels with a capacity of 2900 cc. Gases are extracted from water by headspace method (HS). Helium, neon and argon are analyzed on two gas chromatographs equipped with capillary and packed columns and three thermo-conductive detectors (TCD). The chromatographic method was applied to groundwater dating from areas of Podhalańska Basin, Kraków and Żarnowiec. The levels of detection LOD for each measurement systems for the tested compounds are: 1,9•10-8 cm3STP/cm3 for Ne, 3,1•10-6 cm3STP/cm3 for Ar and 1,2•10-8 cm3STP/cm3 for He. Work performed within the strategic research project "Technologies supporting the development of safe nuclear power" financed by the National Centre for Research and Development (NCBiR). Research Task "Development of methods to assure nuclear safety and radiation protection for current and future needs of nuclear power plants", contract No. SP/J/6/143339/11. This work was also supported by grant No. N N525 3488 38 from the Polish National Science Centre.

  11. In-depth analysis and characterization of a dual damascene process with respect to different CD

    NASA Astrophysics Data System (ADS)

    Krause, Gerd; Hofmann, Detlef; Habets, Boris; Buhl, Stefan; Gutsch, Manuela; Lopez-Gomez, Alberto; Kim, Wan-Soo; Thrun, Xaver

    2018-03-01

    In a 200 mm high volume environment, we studied data from a dual damascene process. Dual damascene is a combination of lithography, etch and CMP that is used to create copper lines and contacts in one single step. During these process steps, different metal CD are measured by different measurement methods. In this study, we analyze the key numbers of the different measurements after different process steps and develop simple models to predict the electrical behavior* . In addition, radial profiles have been analyzed of both inline measurement parameters and electrical parameters. A matching method was developed based on inline and electrical data. Finally, correlation analysis for radial signatures is presented that can be used to predict excursions in electrical signatures.

  12. Implications of construction method and spatial scale on measures of the built environment.

    PubMed

    Strominger, Julie; Anthopolos, Rebecca; Miranda, Marie Lynn

    2016-04-28

    Research surrounding the built environment (BE) and health has resulted in inconsistent findings. Experts have identified the need to examine methodological choices, such as development and testing of BE indices at varying spatial scales. We sought to examine the impact of construction method and spatial scale on seven measures of the BE using data collected at two time points. The Children's Environmental Health Initiative conducted parcel-level assessments of 57 BE variables in Durham, NC (parcel N = 30,319). Based on a priori defined variable groupings, we constructed seven mutually exclusive BE domains (housing damage, property disorder, territoriality, vacancy, public nuisances, crime, and tenancy). Domain-based indices were developed according to four different index construction methods that differentially account for number of parcels and parcel area. Indices were constructed at the census block level and two alternative spatial scales that better depict the larger neighborhood context experienced by local residents: the primary adjacency community and secondary adjacency community. Spearman's rank correlation was used to assess if indices and relationships among indices were preserved across methods. Territoriality, public nuisances, and tenancy were weakly to moderately preserved across methods at the block level while all other indices were well preserved. Except for the relationships between public nuisances and crime or tenancy, and crime and housing damage or territoriality, relationships among indices were poorly preserved across methods. The number of indices affected by construction method increased as spatial scale increased, while the impact of construction method on relationships among indices varied according to spatial scale. We found that the impact of construction method on BE measures was index and spatial scale specific. Operationalizing and developing BE measures using alternative methods at varying spatial scales before connecting to health outcomes allows researchers to better understand how methodological decisions may affect associations between health outcomes and BE measures. To ensure that associations between the BE and health outcomes are not artifacts of methodological decisions, researchers would be well-advised to conduct sensitivity analysis using different construction methods. This approach may lead to more robust results regarding the BE and health outcomes.

  13. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs

    PubMed Central

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  14. Contaminants of Emerging Concern - Methods Documents

    EPA Pesticide Factsheets

    Analytical methods developed by EPA to identify and measure certain contaminants of emerging concern. These methods are not approved under 40 CFR Part 136, but may be of interest to regulated entities, permitting authorities, and the public.

  15. Discharge measurements using a broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Simpson, Michael R.

    2002-01-01

    The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.

  16. Analysis of the error of the developed method of determination the active conductivity reducing the insulation level between one phase of the network and ground, and insulation parameters in a non-symmetric network with isolated neutral with voltage above 1000 V

    NASA Astrophysics Data System (ADS)

    Utegulov, B. B.

    2018-02-01

    In the work the study of the developed method was carried out for reliability by analyzing the error in indirect determination of the insulation parameters in an asymmetric network with an isolated neutral voltage above 1000 V. The conducted studies of the random relative mean square errors show that the accuracy of indirect measurements in the developed method can be effectively regulated not only by selecting a capacitive additional conductivity, which are connected between phases of the electrical network and the ground, but also by the selection of measuring instruments according to the accuracy class. When choosing meters with accuracy class of 0.5 with the correct selection of capacitive additional conductivity that are connected between the phases of the electrical network and the ground, the errors in measuring the insulation parameters will not exceed 10%.

  17. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) and how to select an outcome measurement instrument

    PubMed Central

    Mokkink, Lidwine B.; Prinsen, Cecilia A. C.; Bouter, Lex M.; de Vet, Henrica C. W.; Terwee, Caroline B.

    2016-01-01

    Background: COSMIN (COnsensus-based Standards for the selection of health Measurement INstruments) is an initiative of an international multidisciplinary team of researchers who aim to improve the selection of outcome measurement instruments both in research and in clinical practice by developing tools for selecting the most appropriate available instrument. Method: In this paper these tools are described, i.e. the COSMIN taxonomy and definition of measurement properties; the COSMIN checklist to evaluate the methodological quality of studies on measurement properties; a search filter for finding studies on measurement properties; a protocol for systematic reviews of outcome measurement instruments; a database of systematic reviews of outcome measurement instruments; and a guideline for selecting outcome measurement instruments for Core Outcome Sets in clinical trials. Currently, we are updating the COSMIN checklist, particularly the standards for content validity studies. Also new standards for studies using Item Response Theory methods will be developed. Additionally, in the future we want to develop standards for studies on the quality of non-patient reported outcome measures, such as clinician-reported outcomes and performance-based outcomes. Conclusions: In summary, we plea for more standardization in the use of outcome measurement instruments, for conducting high quality systematic reviews on measurement instruments in which the best available outcome measurement instrument is recommended, and for stopping the use of poor outcome measurement instruments. PMID:26786084

  18. Methodology issues in implementation science.

    PubMed

    Newhouse, Robin; Bobay, Kathleen; Dykes, Patricia C; Stevens, Kathleen R; Titler, Marita

    2013-04-01

    Putting evidence into practice at the point of care delivery requires an understanding of implementation strategies that work, in what context and how. To identify methodological issues in implementation science using 4 studies as cases and make recommendations for further methods development. Four cases are presented and methodological issues identified. For each issue raised, evidence on the state of the science is described. Issues in implementation science identified include diverse conceptual frameworks, potential weaknesses in pragmatic study designs, and the paucity of standard concepts and measurement. Recommendations to advance methods in implementation include developing a core set of implementation concepts and metrics, generating standards for implementation methods including pragmatic trials, mixed methods designs, complex interventions and measurement, and endorsing reporting standards for implementation studies.

  19. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Beomjin, E-mail: bkwon@kist.re.kr; Baek, Seung-Hyub; Keun Kim, Seong

    2014-04-15

    Harman method is a rapid and simple technique to measure thermoelectric properties. However, its validity has been often questioned due to the over-simplified assumptions that this method relies on. Here, we quantitatively investigate the influence of the previously ignored parasitic thermal effects on the Harman method and develop a method to determine an intrinsic ZT. We expand the original Harman relation with three extra terms: heat losses via both the lead wires and radiation, and Joule heating within the sample. Based on the expanded Harman relation, we use differential measurement of the sample geometry to measure the intrinsic ZT. Tomore » separately evaluate the parasitic terms, the measured ZTs with systematically varied sample geometries and the lead wire types are fitted to the expanded relation. A huge discrepancy (∼28%) of the measured ZTs depending on the measurement configuration is observed. We are able to separately evaluate those parasitic terms. This work will help to evaluate the intrinsic thermoelectric property with Harman method by eliminating ambiguities coming from extrinsic effects.« less

  20. A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry

    PubMed Central

    Suzuki, Sara; Aoyama, Yusuke; Umezu, Mitsuo

    2017-01-01

    Background The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D) distribution of strain using tomographic particle image velocimetry (Tomo-PIV) and compares the measurement accuracy with the gauge strain in tensile tests. Methods and findings The test system for measuring 3D strain distribution consists of two cameras, a laser, a universal testing machine, an acrylic chamber with a glycerol water solution for adjusting the refractive index with the silicone, and dumbbell-shaped specimens mixed with fluorescent tracer particles. 3D images of the particles were reconstructed from 2D images using a multiplicative algebraic reconstruction technique (MART) and motion tracking enhancement. Distributions of the 3D displacements were calculated using a digital volume correlation. To evaluate the accuracy of the measurement method in terms of particle density and interrogation voxel size, the gauge strain and one of the two cameras for Tomo-PIV were used as a video-extensometer in the tensile test. The results show that the optimal particle density and interrogation voxel size are 0.014 particles per pixel and 40 × 40 × 40 voxels with a 75% overlap. The maximum measurement error was maintained at less than 2.5% in the 4-mm-wide region of the specimen. Conclusions We successfully developed a method to experimentally measure 3D strain distribution in an elastic silicone material using Tomo-PIV and fluorescent particles. To the best of our knowledge, this is the first report that applies Tomo-PIV to investigate 3D strain measurements in elastic materials with large deformation and validates the measurement accuracy. PMID:28910397

  1. III Lead ECG Pulse Measurement Sensor

    NASA Astrophysics Data System (ADS)

    Thangaraju, S. K.; Munisamy, K.

    2015-09-01

    Heart rate sensing is very important. Method of measuring heart pulse by using an electrocardiogram (ECG) technique is described. Electrocardiogram is a measurement of the potential difference (the electrical pulse) generated by a cardiac tissue, mainly the heart. This paper also reports the development of a three lead ECG hardware system that would be the basis of developing a more cost efficient, portable and easy to use ECG machine. Einthoven's Three Lead method [1] is used for ECG signal extraction. Using amplifiers such as the instrumentation amplifier AD620BN and the conventional operational amplifier Ua741 that would be used to amplify the ECG signal extracted develop this system. The signal would then be filtered from noise using Butterworth filter techniques to obtain optimum output. Also a right leg guard was implemented as a safety feature to this system. Simulation was carried out for development of the system using P-spice Program.

  2. An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan

    2014-03-28

    Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less

  3. A novel method for the activity measurement of large-area beta reference sources.

    PubMed

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ioan, M R

    2016-03-01

    A novel method has been developed for the activity measurement of large-area beta reference sources. It makes use of two emission rate measurements and is based on the weak dependence between the source activity and the activity distribution for a given value of transmission coefficient. The method was checked experimentally by measuring the activity of two ((60)Co and (137)Cs) large-area reference sources constructed from anodized aluminum foils. Measurement results were compared with the activity values measured by gamma spectrometry. For each source, they agree within one standard uncertainty and also agree within the same limits with the certified values of the source activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development of 3D Image Measurement System and Stereo-matching Method, and Its Archeological Measurement

    NASA Astrophysics Data System (ADS)

    Kochi, Nobuo; Ito, Tadayuki; Kitamura, Kazuo; Kaneko, Syun'ichi

    The three dimensional measurement & modeling system with digital cameras on PC is now making progress and its need and hope is increasingly felt in terrestrial (close-range) photogrammetry for such sectors as cultural heritage preservation, architecture, civil engineering, manufacturing, measurement etc. Therefore, we have developed a system to improve the accuracy of stereo-matching, which is the very core of 3D measurement. As for stereo-matching method, in order to minimize the mismatching and to be robust in geometric distortions, occlusion, as well as brightness change, we invented Coarse-to-Fine Strategy Method by integrating OCM (Orientation Code Matching) with LSM (Least Squares Matching). Thus this system could attain the accuracy of 0.26mm, when we experimented on a mannequin. And when we actually experimented on the archeological ruins in Greece and Turkey, the accuracy was within the range of 1cm, compared with their blue-print plan. Besides, formally workers used to take at least 1.5 month for this kind of survey operation with the existing method, but now workers need only 3 or 4 days. Thus, its practicality and efficiency was confirmed. This paper demonstrates our new system of 3D measurement and stereo-matching with some concrete examples as its practical application.

  5. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  6. USING RESPIROMETRY TO MEASURE HYDROGEN UTILIZATION IN SULFATE REDUCING BACTERIA IN THE PRESENCE OF COPPER AND ZINC

    EPA Science Inventory

    A respirometric method has been developed to measure hydrogen utilization by sulfate reducing bacteria (SRB). One application of this method has been to test inhibitory metals effects on the SRB culture used in a novel acid mine drainage treatment technology. As a control param...

  7. Implementing the measurement interval midpoint method for change estimation

    Treesearch

    James A. Westfall; Thomas Frieswyk; Douglas M. Griffith

    2009-01-01

    The adoption of nationally consistent estimation procedures for the Forest Inventory and Analysis (FIA) program mandates changes in the methods used to develop resource trend information. Particularly, it is prescribed that changes in tree status occur at the midpoint of the measurement interval to minimize potential bias. The individual-tree characteristics requiring...

  8. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants.

    PubMed

    Gosselin, Robert C; Adcock, Dorothy M; Bates, Shannon M; Douxfils, Jonathan; Favaloro, Emmanuel J; Gouin-Thibault, Isabelle; Guillermo, Cecilia; Kawai, Yohko; Lindhoff-Last, Edelgard; Kitchen, Steve

    2018-03-01

    This guidance document was prepared on behalf of the International Council for Standardization in Haematology (ICSH) for providing haemostasis-related guidance documents for clinical laboratories. This inaugural coagulation ICSH document was developed by an ad hoc committee, comprised of international clinical and laboratory direct acting oral anticoagulant (DOAC) experts. The committee developed consensus recommendations for laboratory measurement of DOACs (dabigatran, rivaroxaban, apixaban and edoxaban), which would be germane for laboratories assessing DOAC anticoagulation. This guidance document addresses all phases of laboratory DOAC measurements, including pre-analytical (e.g. preferred time sample collection, preferred sample type, sample stability), analytical (gold standard method, screening and quantifying methods) and post analytical (e.g. reporting units, quality assurance). The committee addressed the use and limitations of screening tests such as prothrombin time, activated partial thromboplastin time as well as viscoelastic measurements of clotting blood and point of care methods. Additionally, the committee provided recommendations for the proper validation or verification of performance of laboratory assays prior to implementation for clinical use, and external quality assurance to provide continuous assessment of testing and reporting method. Schattauer GmbH Stuttgart.

  9. Miniature fiber optic spectrometer-based quantitative fluorescence resonance energy transfer measurement in single living cells.

    PubMed

    Chai, Liuying; Zhang, Jianwei; Zhang, Lili; Chen, Tongsheng

    2015-03-01

    Spectral measurement of fluorescence resonance energy transfer (FRET), spFRET, is a widely used FRET quantification method in living cells today. We set up a spectrometer-microscope platform that consists of a miniature fiber optic spectrometer and a widefield fluorescence microscope for the spectral measurement of absolute FRET efficiency (E) and acceptor-to-donor concentration ratio (R(C)) in single living cells. The microscope was used for guiding cells and the spectra were simultaneously detected by the miniature fiber optic spectrometer. Moreover, our platform has independent excitation and emission controllers, so different excitations can share the same emission channel. In addition, we developed a modified spectral FRET quantification method (mlux-FRET) for the multiple donors and multiple acceptors FRET construct (mD∼nA) sample, and we also developed a spectra-based 2-channel acceptor-sensitized FRET quantification method (spE-FRET). We implemented these modified FRET quantification methods on our platform to measure the absolute E and R(C) values of tandem constructs with different acceptor/donor stoichiometries in single living Huh-7 cells.

  10. Studies related to ocean dynamics. Task 3.2: Aircraft Field Test Program to investigate the ability of remote sensing methods to measure current/wind-wave interactions

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Flood, W. A.; Brown, G. S.

    1975-01-01

    The feasibility of remote sensing of current flows in the ocean and the remote sensing of ocean currents by backscattering cross section techniques was studied. It was established that for capillary waves, small scale currents could be accurately measured through observation of wave kinematics. Drastic modifications of waves by changing currents were noted. The development of new methods for the measurement of capillary waves are discussed. Improvement methods to resolve data processing problems are suggested.

  11. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  12. Spiritual Development Differences between Online and on Campus College Students

    ERIC Educational Resources Information Center

    Comeaux, Russell Mark

    2013-01-01

    The purpose of this mixed methods study was to explore spiritual development differences between online and on-campus students. For this study, spiritual maturation was measured by the locus of authority and view of self and others, primarily as measured by the God Image Scales. The assumption was that development is marked by a shift in locus of…

  13. Weight Measurements and Standards for Soldiers

    DTIC Science & Technology

    2009-10-01

    Dr. Corby Martin has expanded on this technology and has developed the Remote Food Photography Method (RFPM) for use in free-living conditions...Allen HR, Champagne CM, Anton SD. A novel method to remotely measure food intake of free-living individuals in real time: the remote food ... photography method. Br J Nutr. 2009 Feb;101:446-56. 5. Martin CK, Kaya S, Gunturk BK. Quantification of food intake using food image analysis. Conference

  14. Lightweight Small Arms Technologies

    DTIC Science & Technology

    2006-11-01

    conducted using several methods. Initial measurements were obtained using a strand burner , followed by closed bomb measurements using both pressed... pellets and entire cases. Specialized fixtures were developed to measure primer and booster combustion properties. The final verification of interior

  15. Body Fat Measurement: Weighing the Pros and Cons of Electrical Impedance.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1985-01-01

    Research technologists have developed electrical impedance units in response to demand for a convenient and reliable method of measuring body fat. Accuracy of impedance measures versus calipers and underwater weighing are discussed. (MT)

  16. A Parameter Identification Method for Helicopter Noise Source Identification and Physics-Based Semi-Empirical Modeling

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric, II; Schmitz, Fredric H.

    2010-01-01

    A new physics-based parameter identification method for rotor harmonic noise sources is developed using an acoustic inverse simulation technique. This new method allows for the identification of individual rotor harmonic noise sources and allows them to be characterized in terms of their individual non-dimensional governing parameters. This new method is applied to both wind tunnel measurements and ground noise measurements of two-bladed rotors. The method is shown to match the parametric trends of main rotor Blade-Vortex Interaction (BVI) noise, allowing accurate estimates of BVI noise to be made for operating conditions based on a small number of measurements taken at different operating conditions.

  17. What’s in a game? A systems approach to enhancing performance analysis in football

    PubMed Central

    2017-01-01

    Purpose Performance analysis (PA) in football is considered to be an integral component of understanding the requirements for optimal performance. Despite vast amounts of research in this area key gaps remain, including what comprises PA in football, and methods to minimise research-practitioner gaps. The aim of this study was to develop a model of the football match system in order to better describe and understand the components of football performance. Such a model could inform the design of new PA methods. Method Eight elite level football Subject Method Experts (SME’s) participated in two workshops to develop a systems model of the football match system. The model was developed using a first-of-its-kind application of Cognitive Work Analysis (CWA) in football. CWA has been used in many other non-sporting domains to analyse and understand complex systems. Result Using CWA, a model of the football match ‘system’ was developed. The model enabled identification of several PA measures not currently utilised, including communication between team members, adaptability of teams, playing at the appropriate tempo, as well as attacking and defending related measures. Conclusion The results indicate that football is characteristic of a complex sociotechnical system, and revealed potential new and unique PA measures regarded as important by SME’s, yet not currently measured. Importantly, these results have identified a gap between the current PA research and the information that is meaningful to football coaches and practitioners. PMID:28212392

  18. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; hide

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  19. Measuring faculty retention and success in academic medicine.

    PubMed

    Ries, Andrew; Wingard, Deborah; Gamst, Anthony; Larsen, Catherine; Farrell, Elizabeth; Reznik, Vivian

    2012-08-01

    To develop and demonstrate the usefulness of quantitative methods for assessing retention and academic success of junior faculty in academic medicine. The authors created matched sets of participants and nonparticipants in a junior faculty development program based on hire date and academic series for newly hired assistant professors at the University of California, San Diego (UCSD), School of Medicine between 1988 and 2005. They used Kaplan-Meier and Cox proportional hazards survival analyses to characterize the influence of covariates, including gender, ethnicity, and program participation, on retention. They also developed a new method for quantifying academic success based on several measures including (1) leadership and professional activities, (2) honors and awards, (3) research grants, (4) teaching and mentoring/advising activities, and (5) publications. The authors then used these measures to compare matched pairs of participating and nonparticipating faculty who were subsequently promoted and remained at UCSD. Compared with matched nonparticipants, the retention of junior faculty who participated in the faculty development program was significantly higher. Among those who were promoted and remained at UCSD, the academic success of faculty development participants was consistently greater than that of matched nonparticipants. This difference reached statistical significance for leadership and professional activities. Using better quantitative methods for evaluating retention and academic success will improve understanding and research in these areas. In this study, use of such methods indicated that organized junior faculty development programs have positive effects on faculty retention and may facilitate success in academic medicine.

  20. SU-F-P-36: Automation of Linear Accelerator Star Shot Measurement with Advanced XML Scripting and Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, N; Knutson, N; Schmidt, M

    Purpose: To verify a method used to automatically acquire jaw, MLC, collimator and couch star shots for a Varian TrueBeam linear accelerator utilizing Developer Mode and an Electronic Portal Imaging Device (EPID). Methods: An XML script was written to automate motion of the jaws, MLC, collimator and couch in TrueBeam Developer Mode (TBDM) to acquire star shot measurements. The XML script also dictates MV imaging parameters to facilitate automatic acquisition and recording of integrated EPID images. Since couch star shot measurements cannot be acquired using a combination of EPID and jaw/MLC collimation alone due to a fixed imager geometry, amore » method utilizing a 5mm wide steel ruler placed on the table and centered within a 15×15cm2 open field to produce a surrogate of the narrow field aperture was investigated. Four individual star shot measurements (X jaw, Y jaw, MLC and couch) were obtained using our proposed as well as traditional film-based method. Integrated EPID images and scanned measurement films were analyzed and compared. Results: Star shot (X jaw, Y jaw, MLC and couch) measurements were obtained in a single 5 minute delivery using the TBDM XML script method compared to 60 minutes for equivalent traditional film measurements. Analysis of the images and films demonstrated comparable isocentricity results, agreeing within 0.3mm of each other. Conclusion: The presented automatic approach of acquiring star shot measurements using TBDM and EPID has proven to be more efficient than the traditional film approach with equivalent results.« less

  1. Step-height measurement with a low coherence interferometer using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Jian, Zhang; Suzuki, Takamasa; Choi, Samuel; Sasaki, Osami

    2013-12-01

    With the development of electronic technology in recent years, electronic components become increasingly miniaturized. At the same time a more accurate measurement method becomes indispensable. In the current measurement of nano-level, the Michelson interferometer with the laser diode is widely used, the method can measure the object accurately without touching the object. However it can't measure the step height that is larger than the half-wavelength. In this study, we improve the conventional Michelson interferometer by using a super luminescent diode and continuous wavelet transform, which can detect the time that maximizes the amplitude of the interference signal. We can accurately measure the surface-position of the object with this time. The method used in this experiment measured the step height of 20 microns.

  2. Measurement of complex permittivities of biological materials and human skin in vivo in the frequency band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghodgaonkar, D.K.

    1987-01-01

    A new method, namely, modified infinite sample method, has been developed which is particularly suitable for millimeter-wave dielectric measurements of biological materials. In this method, an impedance transformer is used which reduces the reflectivity of the biological sample. Because of the effect of introducing impendance transformer, the measured reflection coefficients are more sensitive to the complex permittivities of biological samples. For accurate measurement of reflection coefficients, two automated measurment systems were developed which cover the frequencies range of 26.5-60 GHz. An uncertainty analysis was performed to get an estimate of the errors in the measured complex permittivities. The dielectric propertiesmore » were measured for 10% saline solution, whole human blood, 200 mg/ml bovine serum albumin (BSA) solution and suspension of Saccharomyces cerevisiae cells. The Maxwell-Fricke equation, which is derived from dielectric mixture theory, was used for determination bound water in BSA solution. The results of all biological samples were interpreted by fitting Debye relaxation and Cole-Cole model. It is observed that the dielectric data for the biological materials can be explained on the basis of Debye relaxation of water molecule.« less

  3. Validation of cardiac accelerometer sensor measurements.

    PubMed

    Remme, Espen W; Hoff, Lars; Halvorsen, Per Steinar; Naerum, Edvard; Skulstad, Helge; Fleischer, Lars A; Elle, Ole Jakob; Fosse, Erik

    2009-12-01

    In this study we have investigated the accuracy of an accelerometer sensor designed for the measurement of cardiac motion and automatic detection of motion abnormalities caused by myocardial ischaemia. The accelerometer, attached to the left ventricular wall, changed its orientation relative to the direction of gravity during the cardiac cycle. This caused a varying gravity component in the measured acceleration signal that introduced an error in the calculation of myocardial motion. Circumferential displacement, velocity and rotation of the left ventricular apical region were calculated from the measured acceleration signal. We developed a mathematical method to separate translational and gravitational acceleration components based on a priori assumptions of myocardial motion. The accuracy of the measured motion was investigated by comparison with known motion of a robot arm programmed to move like the heart wall. The accuracy was also investigated in an animal study. The sensor measurements were compared with simultaneously recorded motion from a robot arm attached next to the sensor on the heart and with measured motion by echocardiography and a video camera. The developed compensation method for the varying gravity component improved the accuracy of the calculated velocity and displacement traces, giving very good agreement with the reference methods.

  4. Center index method-an alternative for wear measurements with radiostereometry (RSA).

    PubMed

    Dahl, Jon; Figved, Wender; Snorrason, Finnur; Nordsletten, Lars; Röhrl, Stephan M

    2013-03-01

    Radiostereometry (RSA) is considered to be the most precise and accurate method for wear-measurements in total hip replacement. Post-operative stereoradiographs has so far been necessary for wear measurement. Hence, the use of RSA has been limited to studies planned for RSA measurements. We compared a new RSA method for wear measurements that does not require previous radiographs with conventional RSA. Instead of comparing present stereoradiographs with post-operative ones, we developed a method for calculating the post-operative position of the center of the femoral head on the present examination and using this as the index measurement. We compared this alternative method to conventional RSA in 27 hips in an ongoing RSA study. We found a high degree of agreement between the methods for both mean proximal (1.19 mm vs. 1.14 mm) and mean 3D wear (1.52 mm vs. 1.44 mm) after 10 years. Intraclass correlation coefficients (ICC) were 0.958 and 0.955, respectively (p<0.001 for both ICCs). The results were also within the limits of agreement when plotted subject-by-subject in a Bland-Altman plot. Our alternative method for wear measurements with RSA offers comparable results to conventional RSA measurements. It allows precise wear measurements without previous radiological examinations. Copyright © 2012 Orthopaedic Research Society.

  5. ELISA MEASUREMENT OF STACHYLYSIN IN SERUM TO QUANTIFY HUMAN EXPOSURES TO THE INDOOR MOLD STACHYBOTRYS CHARTARUM

    EPA Science Inventory

    Problem- To develop a measurable indicator of human exposure to Stachybotys chartarum.

    Methods- Antibodies were produced against the hemolytic agent stachylysin obtained from the mold S. chartarum. These antibodies were used to develop two enzyme-linked immunosorbent ass...

  6. Development and Evaluation of the School Cafeteria Nutrition Assessment Measures

    ERIC Educational Resources Information Center

    Krukowski, Rebecca A.; Philyaw Perez, Amanda G.; Bursac, Zoran; Goodell, Melanie; Raczynski, James M.; Smith West, Delia; Phillips, Martha M.

    2011-01-01

    Background: Foods provided in schools represent a substantial portion of US children's dietary intake; however, the school food environment has proven difficult to describe due to the lack of comprehensive, standardized, and validated measures. Methods: As part of the Arkansas Act 1220 evaluation project, we developed the School Cafeteria…

  7. New methodology of measurement the unsteady thermal cooling of objects

    NASA Astrophysics Data System (ADS)

    Winczek, Jerzy

    2018-04-01

    The problems of measurements of unsteady thermal turbulent flow affect a many of domains, such as heat energy, manufacturing technologies, and many others. The subject of the study is focused on the analysis of current state of the problem, overview of the design solutions and methods to measure non-stationary thermal phenomena, presentation, and choice of adequate design of the cylinder, development of the method to measure and calculate basic values that characterize the process of heat exchange on the model surface.

  8. Solar energy microclimate as determined from satellite observations

    NASA Technical Reports Server (NTRS)

    Vonder Haar, T. H.; Ellis, J. S.

    1975-01-01

    A method is presented for determining solar insolation at the earth's surface using satellite broadband visible radiance and cloud imagery data, along with conventional in situ measurements. Conventional measurements are used to both tune satellite measurements and to develop empirical relationships between satellite observations and surface solar insolation. Cloudiness is the primary modulator of sunshine. The satellite measurements as applied in this method consider cloudiness both explicitly and implicitly in determining surface solar insolation at space scales smaller than the conventional pyranometer network.

  9. Evolution of modern approaches to express uncertainty in measurement

    NASA Astrophysics Data System (ADS)

    Kacker, Raghu; Sommer, Klaus-Dieter; Kessel, Rüdiger

    2007-12-01

    An object of this paper is to discuss the logical development of the concept of uncertainty in measurement and the methods for its quantification from the classical error analysis to the modern approaches based on the Guide to the Expression of Uncertainty in Measurement (GUM). We review authoritative literature on error analysis and then discuss its limitations which motivated the experts from the International Committee for Weights and Measures (CIPM), the International Bureau of Weights and Measures (BIPM) and various national metrology institutes to develop specific recommendations which form the basis of the GUM. We discuss the new concepts introduced by the GUM and their merits and limitations. The limitations of the GUM led the BIPM Joint Committee on Guides in Metrology to develop an alternative approach—the draft Supplement 1 to the GUM (draft GUM-S1). We discuss the draft GUM-S1 and its merits and limitations. We hope this discussion will lead to a more effective use of the GUM and the draft GUM-S1 and stimulate investigations leading to further improvements in the methods to quantify uncertainty in measurement.

  10. A candidate reference method for serum potassium measurement by inductively coupled plasma mass spectrometry.

    PubMed

    Yan, Ying; Han, Bingqing; Zeng, Jie; Zhou, Weiyan; Zhang, Tianjiao; Zhang, Jiangtao; Chen, Wenxiang; Zhang, Chuanbao

    2017-08-28

    Potassium is an important serum ion that is frequently assayed in clinical laboratories. Quality assurance requires reference methods; thus, the establishment of a candidate reference method for serum potassium measurements is important. An inductively coupled plasma mass spectrometry (ICP-MS) method was developed. Serum samples were gravimetrically spiked with an aluminum internal standard, digested with 69% ultrapure nitric acid, and diluted to the required concentration. The 39K/27Al ratios were measured by ICP-MS in hydrogen mode. The method was calibrated using 5% nitric acid matrix calibrators, and the calibration function was established using the bracketing method. The correlation coefficients between the measured 39K/27Al ratios and the analyte concentration ratios were >0.9999. The coefficients of variation were 0.40%, 0.68%, and 0.22% for the three serum samples, and the analytical recovery was 99.8%. The accuracy of the measurement was also verified by measuring certified reference materials, SRM909b and SRM956b. Comparison with the ion selective electrode routine method and international inter-laboratory comparisons gave satisfied results. The new ICP-MS method is specific, precise, simple, and low-cost, and it may be used as a candidate reference method for standardizing serum potassium measurements.

  11. Development and Content Validation of the Transition Readiness Inventory Item Pool for Adolescent and Young Adult Survivors of Childhood Cancer.

    PubMed

    Schwartz, Lisa A; Hamilton, Jessica L; Brumley, Lauren D; Barakat, Lamia P; Deatrick, Janet A; Szalda, Dava E; Bevans, Katherine B; Tucker, Carole A; Daniel, Lauren C; Butler, Eliana; Kazak, Anne E; Hobbie, Wendy L; Ginsberg, Jill P; Psihogios, Alexandra M; Ver Hoeve, Elizabeth; Tuchman, Lisa K

    2017-10-01

    The development of the Transition Readiness Inventory (TRI) item pool for adolescent and young adult childhood cancer survivors is described, aiming to both advance transition research and provide an example of the application of NIH Patient Reported Outcomes Information System methods. Using rigorous measurement development methods including mixed methods, patient and parent versions of the TRI item pool were created based on the Social-ecological Model of Adolescent and young adult Readiness for Transition (SMART). Each stage informed development and refinement of the item pool. Content validity ratings and cognitive interviews resulted in 81 content valid items for the patient version and 85 items for the parent version. TRI represents the first multi-informant, rigorously developed transition readiness item pool that comprehensively measures the social-ecological components of transition readiness. Discussion includes clinical implications, the application of TRI and the methods to develop the item pool to other populations, and next steps for further validation and refinement. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  12. Methods for measuring water activity (aw) of foods and its applications to moisture sorption isotherm studies.

    PubMed

    Zhang, Lida; Sun, Da-Wen; Zhang, Zhihang

    2017-03-24

    Moisture sorption isotherm is commonly determined by saturated salt slurry method, which has defects of long time cost, cumbersome labor, and microbial deterioration of samples. Thus, a novel method, a w measurement (AWM) method, has been developed to overcome these drawbacks. Fundamentals and applications of this fast method have been introduced with respects to its typical operational steps, a variety of equipment set-ups and applied samples. The resultant rapidness and reliability have been evaluated by comparing with conventional methods. This review also discussed factors impairing measurement precision and accuracy, including inappropriate choice of predryingwetting techniques and unachieved moisture uniformity in samples due to inadequate time. This analysis and corresponding suggestions can facilitate improved AWM method with more satisfying accuracy and time cost.

  13. Methods of measurement for semiconductor materials, process control, and devices

    NASA Technical Reports Server (NTRS)

    Bullis, W. M. (Editor)

    1972-01-01

    Activities directed toward the development of methods of measurement for semiconductor materials, process control, and devices are described. Accomplishments include the determination of the reasons for differences in measurements of transistor delay time, identification of an energy level model for gold-doped silicon, and the finding of evidence that it does not appear to be necessary for an ultrasonic bonding tool to grip the wire and move it across the substrate metallization to make the bond. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon; development of the infrared response technique; evaluation of wire bonds and die attachment; measurement of thermal properties of semiconductor devices, delay time, and related carrier transport properties in junction devices, and noise properties of microwave diodes; and characterization of silicon nuclear radiation detectors.

  14. Hydrogen fluoride overtone laser: experimental methods of characterization

    NASA Astrophysics Data System (ADS)

    Wisniewski, Charles F.; Hewett, Kevin B.; Manke, Gerald C., II; Truman, C. Randall; Hager, Gordon D.

    2004-09-01

    The uncertainty in both the fluorine atom concentration and the gain length has inhibited the development of accurate and device independent models of HF overtone lasers. Furthermore, previous methods of measuring the small signal gain were cumbersome and could not easily generate spatial maps of the gain in the cavity. Experimental techniques have been developed to directly measure the concentration of fluorine atoms, the gain length and the small signal gain in a hydrogen fluoride 5 cm slit nozzle laser. A gas phase titration technique was utilized to measure the fluorine atom concentration using HCl as the titrant. The gain length was measured using a pitot probe to locate the interface of the primary flow with the high Mach number shroud flows. A tunable diode laser was utilized to perform small signal gain measurements on HF overtone (ν=2-->0) transitions.

  15. The Development and Validation of an End-User Satisfaction Measure in a Student Laptop Environment

    ERIC Educational Resources Information Center

    Kim, Sung; Meng, Juan; Kalinowski, Jon; Shin, Dooyoung

    2014-01-01

    The purpose of this paper is to present the development and validation of a measurement model for student user satisfaction in a laptop environment. Using a "quasi Delphi" method in addition to contributions from prior research we used EFA and CFA (LISREL) to identify a five factor (14 item) measurement model that best fit the data. The…

  16. Nanosensors and nanomaterials for monitoring glucose in diabetes

    PubMed Central

    Cash, Kevin J.; Clark, Heather A.

    2010-01-01

    Worldwide, diabetes is a rapidly growing problem that is managed at the individual level by monitoring and controlling blood glucose levels to minimize the negative effects of the disease. Because of limitations in diagnostic methods, significant research efforts are focused on developing improved methods to measure glucose. Nanotechnology has impacted these efforts by increasing the surface area of sensors, improving the catalytic properties of electrodes and providing nanoscale sensors. Herein, we discuss developments in the past several years on both nanosensors that directly measure glucose as well as nanomaterials that improve glucose sensor function. Finally, we discuss challenges that must be overcome to apply these developments in the clinic. PMID:20869318

  17. Wet refractivity tomography with an improved Kalman-Filter method

    NASA Astrophysics Data System (ADS)

    Cao, Yunchang; Chen, Yongqi; Li, Pingwha

    2006-10-01

    An improved retrieval method, which uses the solution with a Gaussian constraint as the initial state variables for the Kalman Filtering (KF) method, was developed to retrieve the wet refractivity profiles from slant wet delays (SWD) extracted by the double-differenced (DD) GPS method. The accuracy of the GPS-derived SWDs is also tested in this study against the measurements of a water vapor radiometer (WVR) and a weather model. It is concluded that the GPS-derived SWDs have similar accuracy to those measured with WVR and are much higher in quality than those derived from the weather model used. The developed method is used to retrieve the 3D wet refractivity distribution in the Hong Kong region. The retrieved profiles agree well with the radiosonde observations, with a difference of about 4 mm km-1 in the low levels. The accurate profiles obtained with this method are applicable in a number of meteorological applications.

  18. Contextualizing and assessing the social capital of seniors in congregate housing residences: study design and methods

    PubMed Central

    Moore, Spencer; Shiell, Alan; Haines, Valerie; Riley, Therese; Collier, Carrie

    2005-01-01

    Background This article discusses the study design and methods used to contextualize and assess the social capital of seniors living in congregate housing residences in Calgary, Alberta. The project is being funded as a pilot project under the Institute of Aging, Canadian Institutes for Health Research. Design/Methods Working with seniors living in 5 congregate housing residencies in Calgary, the project uses a mixed method approach to develop grounded measures of the social capital of seniors. The project integrates both qualitative and quantitative methods in a 3-phase research design: 1) qualitative, 2) quantitative, and 3) qualitative. Phase 1 uses gender-specific focus groups; phase 2 involves the administration of individual surveys that include a social network module; and phase 3 uses anamolous-case interviews. Not only does the study design allow us to develop grounded measures of social capital but it also permits us to test how well the three methods work separately, and how well they fit together to achieve project goals. This article describes the selection of the study population, the multiple methods used in the research and a brief discussion of our conceptualization and measurement of social capital. PMID:15836784

  19. Comparison of three methods for evaluation of work postures in a truck assembly plant.

    PubMed

    Zare, Mohsen; Biau, Sophie; Brunet, Rene; Roquelaure, Yves

    2017-11-01

    This study compared the results of three risk assessment tools (self-reported questionnaire, observational tool, direct measurement method) for the upper limbs and back in a truck assembly plant at two cycle times (11 and 8 min). The weighted Kappa factor showed fair agreement between the observational and direct measurement method for the arm (0.39) and back (0.47). The weighted Kappa factor for these methods was poor for the neck (0) and wrist (0) but the observed proportional agreement (P o ) was 0.78 for the neck and 0.83 for the wrist. The weighted Kappa factor between questionnaire and direct measurement showed poor or slight agreement (0) for different body segments in both cycle times. The results revealed moderate agreement between the observational tool and the direct measurement method, and poor agreement between the self-reported questionnaire and direct measurement. Practitioner Summary: This study provides risk exposure measurement by different common ergonomic methods in the field. The results help to develop valid measurements and improve exposure evaluation. Hence, the ergonomist/practitioners should apply the methods with caution, or at least knowing what the issues/errors are.

  20. HUMAN BLOOD AND ENVIRONMENTAL MEDIA SCREENING METHOD FOR PESTICIDES AND POLYCHLORINATED BIPHENYL COMPOUNDS USING LIQUID EXTRACTION AND GAS CHROMATOGRAPHY-MASS SPECTROMETRY ANALYSIS

    EPA Science Inventory

    Screening assessment methods have been developed for semi- and non-volatile persistent organic pollutants (POPs) for human blood and solid environmental media. The specific methodology is developed for measuring the presence of "native" compounds, specifically, a var...

  1. Develop cost effective field monitoring and laboratory methods to measure groups of contaminants of emerging concern and/or legacy chemicals and pathogens

    EPA Science Inventory

    Analytical chemistry methods were developed to quantify numerous emerging contaminants (ECs), such as pharmaceuticals (i.e., tamoxifen, tamoxifen metabolites, aromatase inhibitors, antibiotics, illicit drugs, over-the-counter drugs) in aqueous samples (wastewater, surface waters)...

  2. ASSESSMENT OF PC12 CELL DIFFERENTIATION AND NEURITE GROWTH: A COMPARISON OF MORPHOLOGICAL AND NEUROCHEMICAL MEASURES.

    EPA Science Inventory

    In order to screen large numbers of chemicals for their potential to produce developmental neurotoxicity new, in vitro methods are needed. One approach is to develop methods based on the biologic processes which underlie brain development including the growth and maturation of ce...

  3. Development of Mobile Tracer Correlation Method for Quantification of Emissions from Landfills and Other Large Area Sources

    EPA Science Inventory

    There is an emerging need to develop cost effective measurement methods for greenhouse gas and air pollutant emissions from large area sources such as landfills, waste water treatment ponds, open area processing units, agricultural operations, CO2 sequestration fields, and site r...

  4. Valuing Drinking Water Risk Reductions Using the Contingent Valuation Method: A Methodological Study of Risks from THM and Giardia (1986)

    EPA Pesticide Factsheets

    This study develops contingent valuation methods for measuring the benefits of mortality and morbidity drinking water risk reductions. The major effort was devoted to developing and testing a survey instrument to value low-level risk reductions.

  5. Development of a research method to measure insoluble and soluble starch in sugarcane factory and refinery products

    USDA-ARS?s Scientific Manuscript database

    A rapid, quantitative research method using microwave-assisted probe ultrasonication was developed to facilitate the determination of total insoluble, and soluble starch in various sugar factory and refinery products. Several variables that affect starch solubilization were evaluated: 1) conductiv...

  6. Development of an analytical method to measure insoluble and soluble starch in sugarcane and sweet sorghum products

    USDA-ARS?s Scientific Manuscript database

    A rapid, quantitative research method using microwave-assisted probe ultrasonication was developed to facilitate the determination of total insoluble, and soluble starch in various sugar crop products. Several variables that affect starch solubilization were evaluated, 1) conductive boiling time, 2...

  7. DETECTING CCL-RELATED, EMERGING WATERBORNE HUMAN VIRUSES AND VIRAL INDICATORS FOR EXPOSURE ASSESSMENT

    EPA Science Inventory

    Enteric viruses cause waterborne disease outbreaks in the U.S. and worldwide. The primary focus of this task is to develop methods to measure the occurrence of enteric viruses in environmental and drinking waters. Cell culture- and molecular-based methods are being developed fo...

  8. Calibration-free self-absorption model for measuring nitric oxide concentration in a pulsed corona discharge.

    PubMed

    Du, Yanjun; Ding, Yanjun; Liu, Yufeng; Lan, Lijuan; Peng, Zhimin

    2014-08-01

    The effect of self-absorption on emission intensity distributions can be used for species concentration measurements. A calculation model is developed based on the Beer-Lambert law to quantify this effect. And then, a calibration-free measurement method is proposed on the basis of this model by establishing the relationship between gas concentration and absorption strength. The effect of collision parameters and rotational temperature on the method is also discussed. The proposed method is verified by investigating the nitric oxide emission bands (A²Σ⁺→X²∏) that are generated by a pulsed corona discharge at various gas concentrations. Experiment results coincide well with the expectations, thus confirming the precision and accuracy of the proposed measurement method.

  9. Comparison of two methods in deriving a short version of oral health-related quality of life measure.

    PubMed

    Saub, R; Locker, D; Allison, P

    2008-09-01

    To compare two methods of developing short forms of the Malaysian Oral Health Impact Profile (OHIP-M) measure. Cross sectional data obtained using the long form of the OHIP-M was used to produce two types of OHIP-M short forms, derived using two different methods; namely regression and item frequency methods. The short version derived using a regression method is known as Reg-SOHIP(M) and that derived using a frequency method is known as Freq-SOHIP(M). Both short forms contained 14 items. These two forms were then compared in terms of their content, scores, reliability, validity and the ability to distinguish between groups. Out of 14 items, only four were in common. The form derived from the frequency method contained more high prevalence items and higher scores than the form derived from the regression method. Both methods produced a reliable and valid measure. However, the frequency method produced a measure, which was slightly better in terms of distinguishing between groups. Regardless of the method used to produce the measures, both forms performed equally well when tested for their cross-sectional psychometric properties.

  10. New Primary Standards for Establishing SI Traceability for Moisture Measurements in Solid Materials

    NASA Astrophysics Data System (ADS)

    Heinonen, M.; Bell, S.; Choi, B. Il; Cortellessa, G.; Fernicola, V.; Georgin, E.; Hudoklin, D.; Ionescu, G. V.; Ismail, N.; Keawprasert, T.; Krasheninina, M.; Aro, R.; Nielsen, J.; Oğuz Aytekin, S.; Österberg, P.; Skabar, J.; Strnad, R.

    2018-01-01

    A European research project METefnet addresses a fundamental obstacle to improving energy-intensive drying process control: due to ambiguous reference analysis methods and insufficient methods for estimating uncertainty in moisture measurements, the achievable accuracy in the past was limited and measurement uncertainties were largely unknown. This paper reports the developments in METefnet that provide a sound basis for the SI traceability: four new primary standards for realizing the water mass fraction were set up, analyzed and compared to each other. The operation of these standards is based on combining sample weighing with different water vapor detection techniques: cold trap, chilled mirror, electrolytic and coulometric Karl Fischer titration. The results show that an equivalence of 0.2 % has been achieved between the water mass fraction realizations and that the developed methods are applicable to a wide range of materials.

  11. S-F graphic representation analysis of photoelectric facula focometer poroo-plate glass

    NASA Astrophysics Data System (ADS)

    Tong, Yilin; Han, Xuecai

    2016-10-01

    Optical system focal length is usually based on the magnification method with focal length measurement poroo-plate glass is used as base element measuring focal length of focometer. On the basis of using analysis of magnification method to measure the accuracy of optical lens focal length, an expression between the ruling span of poroo-plate glass and the focal length of measured optical system was deduced, an efficient method to work out S-F graph with AUTOCAD was developed, the selecting principle of focometer parameter was analyzed, and Applied examples for designing poroo-plate glass in S-F figure was obtained.

  12. Portable emittance measurement device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liakin, D.; Seleznev, D.; Orlov, A.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  13. A method to assess social sustainability of capture fisheries: An application to a Norwegian trawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veldhuizen, L.J.L., E-mail: linda.veldhuizen@wur.nl; Berentsen, P.B.M.; Bokkers, E.A.M.

    Social sustainability assessment of capture fisheries is, both in terms of method development and measurement, not well developed. The objective of this study, therefore, was to develop a method consisting of indicators and rubrics (i.e. categories that articulate levels of performance) to assess social sustainability of capture fisheries. This method was applied to a Norwegian trawler that targets cod and haddock in the northeast Atlantic. Based on previous research, 13 social sustainability issues were selected. To measure the state of these issues, 17 process and outcome indicators were determined. To interpret indicator values, rubrics were developed for each indicator, usingmore » standards set by international conventions or data retrieved from national statistics, industry agreements or scientific publications that explore rubric scales. The indicators and rubrics were subsequently used in a social sustainability assessment of a Norwegian trawler. This assessment indicated that overall, social sustainability of this trawler is relatively high, with high rubric scores, for example, for worker safety, provisions aboard for the crew and companies' salary levels. The assessment also indicated that the trawler could improve on healthy working environment, product freshness and fish welfare during capture. This application demonstrated that our method provides insight into social sustainability at the level of the vessel and can be used to identify potential room for improvement. This method is also promising for social sustainability assessment of other capture fisheries. - Highlights: • A method was developed for social sustainability assessment of capture fisheries. • This method entailed determining outcome and process indicators for important issues. • To interpret indicator values, a rubric was developed for each indicator. • Use of this method gives insight into social sustainability and improvement options. • This method is promising for social sustainability assessment of capture fisheries.« less

  14. Self-Developed Testing System for Determining the Temperature Behavior of Concrete.

    PubMed

    Zhu, He; Li, Qingbin; Hu, Yu

    2017-04-16

    Cracking due to temperature and restraint in mass concrete is an important issue. A temperature stress testing machine (TSTM) is an effective test method to study the mechanism of temperature cracking. A synchronous closed loop federated control TSTM system has been developed by adopting the design concepts of a closed loop federated control, a detachable mold design, a direct measuring deformation method, and a temperature deformation compensation method. The results show that the self-developed system has the comprehensive ability of simulating different restraint degrees, multiple temperature and humidity modes, and closed-loop control of multi-TSTMs during one test period. Additionally, the direct measuring deformation method can obtain a more accurate deformation and restraint degree result with little local damage. The external temperature deformation affecting the concrete specimen can be eliminated by adopting the temperature deformation compensation method with different considerations of steel materials. The concrete quality of different TSTMs can be guaranteed by being vibrated on the vibrating stand synchronously. The detachable mold design and assembled method has greatly overcome the difficulty of eccentric force and deformation.

  15. Self-Developed Testing System for Determining the Temperature Behavior of Concrete

    PubMed Central

    Zhu, He; Li, Qingbin; Hu, Yu

    2017-01-01

    Cracking due to temperature and restraint in mass concrete is an important issue. A temperature stress testing machine (TSTM) is an effective test method to study the mechanism of temperature cracking. A synchronous closed loop federated control TSTM system has been developed by adopting the design concepts of a closed loop federated control, a detachable mold design, a direct measuring deformation method, and a temperature deformation compensation method. The results show that the self-developed system has the comprehensive ability of simulating different restraint degrees, multiple temperature and humidity modes, and closed-loop control of multi-TSTMs during one test period. Additionally, the direct measuring deformation method can obtain a more accurate deformation and restraint degree result with little local damage. The external temperature deformation affecting the concrete specimen can be eliminated by adopting the temperature deformation compensation method with different considerations of steel materials. The concrete quality of different TSTMs can be guaranteed by being vibrated on the vibrating stand synchronously. The detachable mold design and assembled method has greatly overcome the difficulty of eccentric force and deformation. PMID:28772778

  16. Topography measurements and applications in ballistics and tool mark identifications*

    PubMed Central

    Vorburger, T V; Song, J; Petraco, N

    2016-01-01

    The application of surface topography measurement methods to the field of firearm and toolmark analysis is fairly new. The field has been boosted by the development of a number of competing optical methods, which has improved the speed and accuracy of surface topography acquisitions. We describe here some of these measurement methods as well as several analytical methods for assessing similarities and differences among pairs of surfaces. We also provide a few examples of research results to identify cartridge cases originating from the same firearm or tool marks produced by the same tool. Physical standards and issues of traceability are also discussed. PMID:27182440

  17. Analysis method for Thomson scattering diagnostics in GAMMA 10/PDX.

    PubMed

    Ohta, K; Yoshikawa, M; Yasuhara, R; Chikatsu, M; Shima, Y; Kohagura, J; Sakamoto, M; Nakasima, Y; Imai, T; Ichimura, M; Yamada, I; Funaba, H; Minami, T

    2016-11-01

    We have developed an analysis method to improve the accuracies of electron temperature measurement by employing a fitting technique for the raw Thomson scattering (TS) signals. Least square fitting of the raw TS signals enabled reduction of the error in the electron temperature measurement. We applied the analysis method to a multi-pass (MP) TS system. Because the interval between the MPTS signals is very short, it is difficult to separately analyze each Thomson scattering signal intensity by using the raw signals. We used the fitting method to obtain the original TS scattering signals from the measured raw MPTS signals to obtain the electron temperatures in each pass.

  18. Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.

    PubMed

    Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R

    2017-07-01

    To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.

  19. Study of swelling behavior in ArF resist during development by the QCM method (3): observations of swelling layer elastic modulus

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi

    2013-03-01

    The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.

  20. 78 FR 67360 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Methods: Designation of Five New Equivalent Methods AGENCY: Office of Research and Development; Environmental Protection Agency (EPA). ACTION: Notice of the designation of five new equivalent methods for...) has designated, in accordance with 40 CFR Part 53, five new equivalent methods, one for measuring...

  1. "Reagent-free" L-asparaginase activity assay based on CD spectroscopy and conductometry.

    PubMed

    Kudryashova, Elena V; Sukhoverkov, Kirill V

    2016-02-01

    A new method to determine the catalytic parameters of L-asparaginase using circular dichroism spectroscopy (CD spectroscopy) has been developed. The assay is based on the difference in CD signal between the substrate (L-asparagine) and the product (L-aspartic acid) of enzymatic reaction. CD spectroscopy, being a direct method, enables continuous measurement, and thus differentiates from multistage and laborious approach based on Nessler's method, and overcomes limitations of conjugated enzymatic reaction methods. In this work, we show robust measurements of L-asparaginase activity in conjugates with PEG-chitosan copolymers, which otherwise would not have been possible. The main limitation associated with the CD method is that the analysis should be performed at substrate saturation conditions (V max regime). For K M measurement, the conductometry method is suggested, which can serve as a complimentary method to CD spectroscopy. The activity assay based on CD spectroscopy and conductometry was successfully implicated to examine the catalytic parameters of L-asparaginase conjugates with chitosan and its derivatives, and for optimization of the molecular architecture and composition of such conjugates for improving biocatalytic properties of the enzyme in the physiological conditions. The approach developed is potentially applicable to other enzymatic reactions where the spectroscopic properties of substrate and product do not enable direct measurement with absorption or fluorescence spectroscopy. This may include a number of amino acid or glycoside-transforming enzymes.

  2. Direct concentration and viability measurement of yeast in corn mash using a novel imaging cytometry method.

    PubMed

    Chan, Leo L; Lyettefi, Emily J; Pirani, Alnoor; Smith, Tim; Qiu, Jean; Lin, Bo

    2011-08-01

    Worldwide awareness of fossil-fuel depletion and global warming has been increasing over the last 30 years. Numerous countries, including the USA and Brazil, have introduced large-scale industrial fermentation facilities for bioethanol, biobutanol, or biodiesel production. Most of these biofuel facilities perform fermentation using standard baker's yeasts that ferment sugar present in corn mash, sugar cane, or other glucose media. In research and development in the biofuel industry, selection of yeast strains (for higher ethanol tolerance) and fermentation conditions (yeast concentration, temperature, pH, nutrients, etc.) can be studied to optimize fermentation performance. Yeast viability measurement is needed to identify higher ethanol-tolerant yeast strains, which may prolong the fermentation cycle and increase biofuel output. In addition, yeast concentration may be optimized to improve fermentation performance. Therefore, it is important to develop a simple method for concentration and viability measurement of fermenting yeast. In this work, we demonstrate an imaging cytometry method for concentration and viability measurements of yeast in corn mash directly from operating fermenters. It employs an automated cell counter, a dilution buffer, and staining solution from Nexcelom Bioscience to perform enumeration. The proposed method enables specific fluorescence detection of viable and nonviable yeasts, which can generate precise results for concentration and viability of yeast in corn mash. This method can provide an essential tool for research and development in the biofuel industry and may be incorporated into manufacturing to monitor yeast concentration and viability efficiently during the fermentation process.

  3. Method for in situ carbon deposition measurement for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  4. Experimental Validation of the Dynamic Inertia Measurement Method to Find the Mass Properties of an Iron Bird Test Article

    NASA Technical Reports Server (NTRS)

    Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David

    2015-01-01

    The mass properties of an aerospace vehicle are required by multiple disciplines in the analysis and prediction of flight behavior. Pendulum oscillation methods have been developed and employed for almost a century as a means to measure mass properties. However, these oscillation methods are costly, time consuming, and risky. The NASA Armstrong Flight Research Center has been investigating the Dynamic Inertia Measurement, or DIM method as a possible alternative to oscillation methods. The DIM method uses ground test techniques that are already applied to aerospace vehicles when conducting modal surveys. Ground vibration tests would require minimal additional instrumentation and time to apply the DIM method. The DIM method has been validated on smaller test articles, but has not yet been fully proven on large aerospace vehicles.

  5. Measuring Broadband IR Irradiance in the Direct Solar Beam and Recent Development

    NASA Astrophysics Data System (ADS)

    Reda, I.; Andreas, A.; Dooraghi, M.; Habte, A.; Sengupta, M.; Kutchenreiter, M.

    2016-12-01

    Solar and atmospheric science radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus Reference, which is maintained by Absolute Cavity Radiometers (ACRs). An ACR is an open cavity with no window, and developed to measure extended broadband spectrum of the terrestrial direct solar beam irradiance, extends beyond the ultraviolet and infrared bands; i.e. below 0.2 µm and above 50 µm, respectively. On the other hand, the pyranometers and pyrheliometers were developed to measure broadband shortwave irradiance from approximately 0.3 µm to 3 µm, while the present photovoltaic cells are limited to the spectral range of approximately 0.3 µm to 1 µm. The broadband mismatch of ACR versus such radiometers causes discrepancy in radiometers' calibration methods that has not been discussed or addressed in the solar and atmospheric science literature. Pyrgeometers are also used for solar and atmospheric science applications and calibrated with traceability to consensus Reference, yet they are calibrated during nighttime only, because no consensus reference has yet been established for the daytime longwave irradiance. This poster describes a method to measure the broadband longwave irradiance in the terrestrial direct solar beam from 3 µm to 50 µm, as a first step that might be used to help develop calibration methods to address the mismatch between broadband ACR and shortwave radiometers, and the lack of a daytime reference for pyrgeometers. The described method is used to measure the irradiance from sunrise to sunset; the irradiance varied from approximately 1 Wm-2 to 16 Wm-2 with an estimated uncertainty of 1.5 Wm-2, for a solar zenith angle range from 80° to 16°, respectively.

  6. Defining new dental phenotypes using 3-D image analysis to enhance discrimination and insights into biological processes

    PubMed Central

    Smith, Richard; Zaitoun, Halla; Coxon, Tom; Karmo, Mayada; Kaur, Gurpreet; Townsend, Grant; Harris, Edward F.; Brook, Alan

    2009-01-01

    Aims In studying aetiological interactions of genetic, epigenetic and environmental factors in normal and abnormal developments of the dentition, methods of measurement have often been limited to maximum mesio-distal and bucco-lingual crown diameters, obtained with hand-held calipers. While this approach has led to many important findings, there are potentially many other informative measurements that can be made to describe dental crown morphology. Advances in digital imaging and computer technology now offer the opportunity to define and measure new dental phenotypes in 3-D that have the potential to provide better anatomical discrimination and clearer insights into the underlying biological processes in dental development. Over recent years, image analysis in 2-D has proved to be a valuable addition to hand-measurement methods but a reliable and rapid 3-D method would increase greatly the morphological information obtainable from natural teeth and dental models. Additional measurements such as crown heights, surface contours, actual surface perimeters and areas, and tooth volumes would maximise our ability to discriminate between samples and to explore more deeply genetic and environmental contributions to observed variation. The research objectives were to investigate the limitations of existing methodologies and to develop and validate new methods for obtaining true 3-D measurements, including curvatures and volumes, in order to enhance discrimination to allow increased differentiation in studies of dental morphology and development. The validity of a new methodology for the 3-D measurement of teeth is compared against an established 2-D system. The intra- and inter-observer reliability of some additional measurements, made possible with a 3-D approach, are also tested. Methods and results From each of 20 study models, the permanent upper right lateral and upper left central incisors were separated and imaged independently by two operators using 2-D image analysis and a 3-D image analysis system. The mesio-distal (MD), labio-lingual (LL) and inciso-gingival (IG) dimensions were recorded using our 2-D system and the same projected variables were also recorded using a newly developed 3-D system for comparison. Values of Pearson's correlation coefficient between measurements obtained using the two techniques were significant at the 0.01 probability level for variables mesio-distal and incisal-gingival with labio-lingual significant at the 0.05 level for the upper left side only, confirming their comparability. For both 2-D and 3-D systems the intra- and inter-operator reliability was substantial or excellent for variables mesio-distal, labio-lingual, incisal-gingival actual and projected and actual surface area. The reliability was good for inter-operator reliability measurement of the labio-lingual dimension using 3-D. Conclusions We have developed a new 3-D laser scanning system that enables additional dental phenotypes to be defined. It has been validated against an established 2-D system and shown to provide measurements with excellent reliability, both within and between operators. This new approach provides exciting possibilities for exploring normal and abnormal variations in dental morphology and development applicable to research on genetic and environmental factors. PMID:18644585

  7. A new point contact surface acoustic wave transducer for measurement of acoustoelastic effect of polymethylmethacrylate.

    PubMed

    Lee, Yung-Chun; Kuo, Shi Hoa

    2004-01-01

    A new acoustic transducer and measurement method have been developed for precise measurement of surface wave velocity. This measurement method is used to investigate the acoustoelastic effects for waves propagating on the surface of a polymethylmethacrylate (PMMA) sample. The transducer uses two miniature conical PZT elements for acoustic wave transmitter and receiver on the sample surface; hence, it can be viewed as a point-source/point-receiver transducer. Acoustic waves are excited and detected with the PZT elements, and the wave velocity can be accurately determined with a cross-correlation waveform comparison method. The transducer and its measurement method are particularly sensitive and accurate in determining small changes in wave velocity; therefore, they are applied to the measurement of acoustoelastic effects in PMMA materials. Both the surface skimming longitudinal wave and Rayleigh surface wave can be simultaneously excited and measured. With a uniaxial-loaded PMMA sample, both acoustoelastic effects for surface skimming longitudinal wave and Rayleigh waves of PMMA are measured. The acoustoelastic coefficients for both types of surface wave motions are simultaneously determined. The transducer and its measurement method provide a practical way for measuring surface stresses nondestructively.

  8. Sensor of total hip arthoplasty wear designed on principle of scanning profilometry

    NASA Astrophysics Data System (ADS)

    Rössler, Tomas; Mandat, Dusan; Gallo, Jiri; Hrabovsky, Miroslav; Pochmon, Michal; Havranek, Vitezslav

    2008-12-01

    Total hip arthroplasty significantly improves the quality of life in majority of patients with osteoarthritis. However, prosthetic wear is a problem because of inducing the development of aseptic loosening and periprosthetic osteolysis which needs the revision surgery. Thus, the polyethylene wear measurement is the central to contemporary orthopaedics and this interesting has encouraged the development and improvement of both radiologic (in vivo) and non-radiologic (in vitro) methods for polyethylene wear quantification. The principles of polyethylene liner wear measurements are predominantly geometric; nevertheless, the realization of individual types of in vivo measurements brings with it the necessity of many simplifications and compromising steps to acquire approximately accurate values. In fact, the volumetric wear can be obtained by mathematical conversion based on the most linear shift of femoral head in the cup. However, such approach is understood to be somewhat insufficient. Our ongoing research pointed to the development of optical non-contact method for wear measurement and its results are introduced in this paper including the methodology designed for the usability validation of the method for the given purpose and the description of sensor, its principle, technical realization, design and parameters.

  9. Estimation of blade airloads from rotor blade bending moments

    NASA Technical Reports Server (NTRS)

    Bousman, William G.

    1987-01-01

    A method is developed to estimate the blade normal airloads by using measured flap bending moments; that is, the rotor blade is used as a force balance. The blade's rotation is calculated in vacuum modes and the airloads are then expressed as an algebraic sum of the mode shapes, modal amplitudes, mass distribution, and frequency properties. The modal amplitudes are identified from the blade bending moments using the Strain Pattern Analysis Method. The application of the method is examined using simulated flap bending moment data that have been calculated for measured airloads for a full-scale rotor in a wind tunnel. The estimated airloads are compared with the wind tunnel measurements. The effects of the number of measurements, the number of modes, and errors in the measurements and the blade properties are examined, and the method is shown to be robust.

  10. Simultaneous determination of glucose, triglycerides, urea, cholesterol, albumin and total protein in human plasma by Fourier transform infrared spectroscopy: direct clinical biochemistry without reagents.

    PubMed

    Jessen, Torben E; Höskuldsson, Agnar T; Bjerrum, Poul J; Verder, Henrik; Sørensen, Lars; Bratholm, Palle S; Christensen, Bo; Jensen, Lene S; Jensen, Maria A B

    2014-09-01

    Direct measurement of chemical constituents in complex biologic matrices without the use of analyte specific reagents could be a step forward toward the simplification of clinical biochemistry. Problems related to reagents such as production errors, improper handling, and lot-to-lot variations would be eliminated as well as errors occurring during assay execution. We describe and validate a reagent free method for direct measurement of six analytes in human plasma based on Fourier-transform infrared spectroscopy (FTIR). Blood plasma is analyzed without any sample preparation. FTIR spectrum of the raw plasma is recorded in a sampling cuvette specially designed for measurement of aqueous solutions. For each analyte, a mathematical calibration process is performed by a stepwise selection of wavelengths giving the optimal least-squares correlation between the measured FTIR signal and the analyte concentration measured by conventional clinical reference methods. The developed calibration algorithms are subsequently evaluated for their capability to predict the concentration of the six analytes in blinded patient samples. The correlation between the six FTIR methods and corresponding reference methods were 0.87

  11. Tensor-based dynamic reconstruction method for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.

    2017-03-01

    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  12. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    PubMed Central

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835

  13. Governance for public health and health equity: The Tröndelag model for public health work.

    PubMed

    Lillefjell, Monica; Magnus, Eva; Knudtsen, Margunn SkJei; Wist, Guri; Horghagen, Sissel; Espnes, Geir Arild; Maass, Ruca; Anthun, Kirsti Sarheim

    2018-06-01

    Multi-sectoral governance of population health is linked to the realization that health is the property of many societal systems. This study aims to contribute knowledge and methods that can strengthen the capacities of municipalities regarding how to work more systematically, knowledge-based and multi-sectoral in promoting health and health equity in the population. Process evaluation was conducted, applying a mixed-methods research design, combining qualitative and quantitative data collection methods. Processes strengthening systematic and multi-sectoral development, implementation and evaluation of research-based measures to promote health, quality of life, and health equity in, for and with municipalities were revealed. A step-by-step model, that emphasizes the promotion of knowledge-based, systematic, multi-sectoral public health work, as well as joint ownership of local resources, initiatives and policies has been developed. Implementation of systematic, knowledge-based and multi-sectoral governance of public health measures in municipalities demand shared understanding of the challenges, updated overview of the population health and impact factors, anchoring in plans, new skills and methods for selection and implementation of measures, as well as development of trust, ownership, shared ethics and goals among those involved.

  14. Method for the measurement of susceptibility to decubitus ulcer formation.

    PubMed

    Meijer, J H; Schut, G L; Ribbe, M W; Goovaerts, H G; Nieuwenhuys, R; Reulen, J P; Schneider, H

    1989-09-01

    A method for measuring the susceptibility of a patient to develop decubitus ulcers is described and initially evaluated. It is based on an indirect, noninvasive measurement of the transient regional blood flow response after a test pressure load which simulates the external stimulus for pressure-sore formation. This method was developed to determine the individual risk of a patient and to study the subfactors which contribute to the susceptibility. This would also offer the possibility of evaluating the effect of preventive treatment aimed at reducing the susceptibility. The method was found to discriminate between preselected elderly patients at risk on the one hand, and non-risk patients and healthy young adults on the other hand. No differences in blood flow responses were found between the non-risk elderly patients and the healthy young adults. This suggests that age per se is not a factor in the formation of pressure sores. In the risk group the recovery time after pressure relief was found to be three times as long as the duration of the pressure exercise. This indicates that the recovery time after pressure exercise may be as important as the period of pressure exercise in deducing the risk of developing decubitus ulcers.

  15. A study of methods to predict and measure the transmission of sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Bernhard, R. J.; Bolton, J. S.; Gardner, B.; Mickol, J.; Mollo, C.; Bruer, C.

    1986-01-01

    Progress was made in the following areas: development of a numerical/empirical noise source identification procedure using bondary element techniques; identification of structure-borne noise paths using structural intensity and finite element methods; development of a design optimization numerical procedure to be used to study active noise control in three-dimensional geometries; measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; and structure-borne sound path identification by use of the Wigner distribution.

  16. Platinum thin film resistors as accurate and stable temperature sensors

    NASA Technical Reports Server (NTRS)

    Diehl, W.

    1984-01-01

    The measurement characteristics of thin-Pt-film temperature sensors fabricated using advanced methods are discussed. The limitations of wound-wire Pt temperature sensors and the history of Pt-film development are outlined, and the commonly used film-deposition, structuring, and trimming methods are presented in a table. The development of a family of sputtered film resistors is described in detail and illustrated with photographs of the different types. The most commonly used tolerances are reported as + or - 0.3 C + 0.5 percent of the temperature measured.

  17. Design of a device for simultaneous particle size and electrostatic charge measurement of inhalation drugs.

    PubMed

    Zhu, Kewu; Ng, Wai Kiong; Shen, Shoucang; Tan, Reginald B H; Heng, Paul W S

    2008-11-01

    To develop a device for simultaneous measurement of particle aerodynamic diameter and electrostatic charge of inhalation aerosols. An integrated system consisting of an add-on charge measurement device and a liquid impinger was developed to simultaneously determine particle aerodynamic diameter and electrostatic charge. The accuracy in charge measurement and fine particle fraction characterization of the new system was evaluated. The integrated system was then applied to analyze the electrostatic charges of a DPI formulation composed of salbutamol sulphate-Inhalac 230 dispersed using a Rotahaler. The charge measurement accuracy was comparable with the Faraday cage method, and incorporation of the charge measurement module had no effect on the performance of the liquid impinger. Salbutamol sulphate carried negative charges while the net charge of Inhalac 230 and un-dispersed salbutamol sulphate was found to be positive after being aerosolized from the inhaler. The instantaneous current signal was strong with small noise to signal ratio, and good reproducibility of charge to mass ratio was obtained for the DPI system investigated. A system for simultaneously measuring particle aerodynamic diameter and aerosol electrostatic charges has been developed, and the system provides a non-intrusive and reliable electrostatic charge characterization method for inhalation dosage forms.

  18. Modeling and Measurement of Correlation between Blood and Interstitial Glucose Changes

    PubMed Central

    Shi, Ting; Li, Dachao; Li, Guoqing; Zhang, Yiming; Xu, Kexin; Lu, Luo

    2016-01-01

    One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to blood glucose changes. A theoretical model was developed based on biophysics and physiology of glucose transport in the microcirculation system. Blood and interstitial fluid glucose changes were measured in mice and rats by fluorescent and isotope methods, respectively. Computer simulation mimicked curves were fitted with data resulting from fluorescent measurements of mice and isotope measurements of rats, indicating that there were lag times for ISF glucose changes. It also showed that there was a required diffusion distance for glucose to travel from center of capillaries to interstitial space in both mouse and rat models. We conclude that it is feasible with the developed model to continuously monitor dynamic changes of blood glucose concentration through measuring glucose changes in ISF with high accuracy, which requires correct parameters for determining and compensating for the delay time of glucose changes in ISF. PMID:27239479

  19. Force-length relationship in the pelvic floor muscles under transverse vaginal distension: a method study in healthy women.

    PubMed

    Verelst, M; Leivseth, G

    2004-01-01

    The purpose of this study was to investigate whether there is a relationship between changes in the diameter of the urogenital hiatus and force developed in pelvic floor musculature. In addition, we wanted to examine the reliability of the method that measures force development in the pelvic floor in the transverse direction of the urogenital hiatus. Passive and total force in the pelvic floor was measured with an intra-vaginal device in 20 healthy parous volunteers. The measurements were done with a consecutively increasing diameter in the transverse plane of the urogenital hiatus. The procedure was repeated with a few days interval. The measurements show an increase in force with an increasing device-diameter. The results are reliable at all the diameters tested, estimated by the within-subject day-to-day variability which was non-significant. The 40 mm diameter device is most favourable, estimated by Bland Altman plots of the test-retest measurements. Force development in pelvic floor muscles increased as a function of vaginal diameter when measured in the frontal plane. The measurements were reliable at all the different diameters chosen. 2004 Wiley-Liss, Inc.

  20. A systematic review and synthesis of the strengths and limitations of measuring malaria mortality through verbal autopsy.

    PubMed

    Herrera, Samantha; Enuameh, Yeetey; Adjei, George; Ae-Ngibise, Kenneth Ayuurebobi; Asante, Kwaku Poku; Sankoh, Osman; Owusu-Agyei, Seth; Yé, Yazoume

    2017-10-23

    Lack of valid and reliable data on malaria deaths continues to be a problem that plagues the global health community. To address this gap, the verbal autopsy (VA) method was developed to ascertain cause of death at the population level. Despite the adoption and wide use of VA, there are many recognized limitations of VA tools and methods, especially for measuring malaria mortality. This study synthesizes the strengths and limitations of existing VA tools and methods for measuring malaria mortality (MM) in low- and middle-income countries through a systematic literature review. The authors searched PubMed, Cochrane Library, Popline, WHOLIS, Google Scholar, and INDEPTH Network Health and Demographic Surveillance System sites' websites from 1 January 1990 to 15 January 2016 for articles and reports on MM measurement through VA. article presented results from a VA study where malaria was a cause of death; article discussed limitations/challenges related to measurement of MM through VA. Two authors independently searched the databases and websites and conducted a synthesis of articles using a standard matrix. The authors identified 828 publications; 88 were included in the final review. Most publications were VA studies; others were systematic reviews discussing VA tools or methods; editorials or commentaries; and studies using VA data to develop MM estimates. The main limitation were low sensitivity and specificity of VA tools for measuring MM. Other limitations included lack of standardized VA tools and methods, lack of a 'true' gold standard to assess accuracy of VA malaria mortality. Existing VA tools and methods for measuring MM have limitations. Given the need for data to measure progress toward the World Health Organization's Global Technical Strategy for Malaria 2016-2030 goals, the malaria community should define strategies for improving MM estimates, including exploring whether VA tools and methods could be further improved. Longer term strategies should focus on improving countries' vital registration systems for more robust and timely cause of death data.

  1. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Bruce R., E-mail: whitingbrucer@gmail.com; Evans, Joshua D.; Williamson, Jeffrey F.

    2014-10-15

    Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as themore » x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on one system produced agreement with a relative error of 2%–6%. Fan beam profiles were found to differ for different filter types on a given system and between different vendors. Conclusions: A commercially available real-time dosimeter probe was found to be a convenient and accurate instrument for measuring fan beam profiles. An analysis method was developed that could handle a wide range of collimation widths by explicitly considering the finite width of the ion chamber. Relative errors in the profiles were found to be less than 5%. Measurements of five different clinical scanners demonstrate the variation in bow tie designs, indicating that generic bow tie models will not be adequate for CT system research.« less

  2. Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications

    PubMed Central

    Khalid, Ashiq Hussain; Kontis, Konstantinos

    2008-01-01

    This paper reviews the state of phosphor thermometry, focusing on developments in the past 15 years. The fundamental principles and theory are presented, and the various spectral and temporal modes, including the lifetime decay, rise time and intensity ratio, are discussed. The entire phosphor measurement system, including relative advantages to conventional methods, choice of phosphors, bonding techniques, excitation sources and emission detection, is reviewed. Special attention is given to issues that may arise at high temperatures. A number of recent developments and applications are surveyed, with examples including: measurements in engines, hypersonic wind tunnel experiments, pyrolysis studies and droplet/spray/gas temperature determination. They show the technique is flexible and successful in measuring temperatures where conventional methods may prove to be unsuitable. PMID:27873836

  3. Post-PRK corneal scatter measurements with a scanning confocal slit photon counter

    NASA Astrophysics Data System (ADS)

    Taboada, John; Gaines, David; Perez, Mary A.; Waller, Steve G.; Ivan, Douglas J.; Baldwin, J. Bruce; LoRusso, Frank; Tutt, Ronald C.; Perez, Jose; Tredici, Thomas; Johnson, Dan A.

    2000-06-01

    Increased corneal light scatter or 'haze' has been associated with excimer laser photorefractive surgery of the cornea. The increased scatter can affect visual performance; however, topical steroid treatment post surgery substantially reduces the post PRK scatter. For the treatment and monitoring of the scattering characteristics of the cornea, various methods have been developed to objectively measure the magnitude of the scatter. These methods generally can measure scatter associated with clinically observable levels of haze. For patients with moderate to low PRK corrections receiving steroid treatment, measurement becomes fairly difficult as the haze clinical rating is non observable. The goal of this development was to realize an objective, non-invasive physical measurement that could produce a significant reading for any level including the background present in a normal cornea. As back-scatter is the only readily accessible observable, the instrument is based on this measurement. To achieve this end required the use of a confocal method to bias out the background light that would normally confound conventional methods. A number of subjects with nominal refractive errors in an Air Force study have undergone PRK surgery. A measurable increase in corneal scatter has been observed in these subjects whereas clinical ratings of the haze were noted as level zero. Other favorable aspects of this back-scatter based instrument include an optical capability to perform what is equivalent to an optical A-scan of the anterior chamber. Lens scatter can also be measured.

  4. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    PubMed Central

    2010-01-01

    Background The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas. PMID:20487532

  5. Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system

    NASA Astrophysics Data System (ADS)

    Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin

    2010-09-01

    Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.

  6. Convert a low-cost sensor to a colorimeter using an improved regression method

    NASA Astrophysics Data System (ADS)

    Wu, Yifeng

    2008-01-01

    Closed loop color calibration is a process to maintain consistent color reproduction for color printers. To perform closed loop color calibration, a pre-designed color target should be printed, and automatically measured by a color measuring instrument. A low cost sensor has been embedded to the printer to perform the color measurement. A series of sensor calibration and color conversion methods have been developed. The purpose is to get accurate colorimetric measurement from the data measured by the low cost sensor. In order to get high accuracy colorimetric measurement, we need carefully calibrate the sensor, and minimize all possible errors during the color conversion. After comparing several classical color conversion methods, a regression based color conversion method has been selected. The regression is a powerful method to estimate the color conversion functions. But the main difficulty to use this method is to find an appropriate function to describe the relationship between the input and the output data. In this paper, we propose to use 1D pre-linearization tables to improve the linearity between the input sensor measuring data and the output colorimetric data. Using this method, we can increase the accuracy of the regression method, so as to improve the accuracy of the color conversion.

  7. The Development of the Redox Concept Inventory as a Measure of Students' Symbolic and Particulate Redox Understandings and Confidence

    ERIC Educational Resources Information Center

    Brandriet, Alexandra R.; Bretz, Stacey Lowery

    2014-01-01

    This article describes the development of the Redox Concept Inventory (ROXCI) as a measure of students' understandings and confidence of both the symbolic and particulate domains of oxidation-reduction (redox) reactions. The ROXCI was created using a mixed-methods design in which the items were developed based upon themes that emerged from…

  8. A method for the monitoring of metal recrystallization based on the in-situ measurement of the elastic energy release using neutron diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christien, F., E-mail: frederic.christien@univ-nantes.fr; Le Gall, R.; Telling, M. T. F.

    2015-05-15

    A method is proposed for the monitoring of metal recrystallization using neutron diffraction that is based on the measurement of stored energy. Experiments were performed using deformed metal specimens heated in-situ while mounted at the sample position of the High Resolution Powder Diffractometer, HRPD (ISIS Facility), UK. Monitoring the breadth of the resulting Bragg lines during heating not only allows the time-dependence (or temperature-dependence) of the stored energy to be determined but also the recrystallized fraction. The analysis method presented here was developed using pure nickel (Ni270) specimens with different deformation levels from 0.29 to 0.94. In situ temperature rampingmore » as well as isothermal annealing was undertaken. The method developed in this work allows accurate and quantitative monitoring of the recrystallization process. The results from neutron diffraction are satisfactorily compared to data obtained from calorimetry and hardness measurements.« less

  9. Evaluation of Learning Environments for Object-Oriented Programming: Measuring Cognitive Load with a Novel Measurement Technique

    ERIC Educational Resources Information Center

    Uysal, Murat Pasa

    2016-01-01

    Various methods and tools have been proposed to overcome the learning obstacles for Object-Oriented Programming (OOP). However, it remains difficult especially for novice learners. The problem may be not only adopting an instructional method, but also an Integrated Development Environment (IDE). Learners employ IDEs as a means to solve programming…

  10. Assessing Risk for Sexual Offenders in New Zealand: Development and Validation of a Computer-Scored Risk Measure

    ERIC Educational Resources Information Center

    Skelton, Alexander; Riley, David; Wales, David; Vess, James

    2006-01-01

    A growing research base supports the predictive validity of actuarial methods of risk assessment with sexual offenders. These methods use clearly defined variables with demonstrated empirical association with re-offending. The advantages of actuarial measures for screening large numbers of offenders quickly and economically are further enhanced…

  11. Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents. Program Element 1BA027.

    ERIC Educational Resources Information Center

    Weber, Cornelius I., Ed.

    This Environmental Protection Agency manual was developed to provide pollution biologists with the most recent methods for measuring the effects of environmental contaminants on freshwater and marine organisms. The sections of this manual include: (1) Biometrics; (2) Plankton; (3) Periphyton; (4) Macrophyton; (5) Macroinvertebrates; (6) Fish; and…

  12. A method for determining electrophoretic and electroosmotic mobilities using AC and DC electric field particle displacements.

    PubMed

    Oddy, M H; Santiago, J G

    2004-01-01

    We have developed a method for measuring the electrophoretic mobility of submicrometer, fluorescently labeled particles and the electroosmotic mobility of a microchannel. We derive explicit expressions for the unknown electrophoretic and the electroosmotic mobilities as a function of particle displacements resulting from alternating current (AC) and direct current (DC) applied electric fields. Images of particle displacements are captured using an epifluorescent microscope and a CCD camera. A custom image-processing code was developed to determine image streak lengths associated with AC measurements, and a custom particle tracking velocimetry (PTV) code was devised to determine DC particle displacements. Statistical analysis was applied to relate mobility estimates to measured particle displacement distributions.

  13. Light and Life in Baltimore—and Beyond

    PubMed Central

    Edidin, Michael

    2015-01-01

    Baltimore has been the home of numerous biophysical studies using light to probe cells. One such study, quantitative measurement of lateral diffusion of rhodopsin, set the standard for experiments in which recovery after photobleaching is used to measure lateral diffusion. Development of this method from specialized microscopes to commercial scanning confocal microscopes has led to widespread use of the technique to measure lateral diffusion of membrane proteins and lipids, and as well diffusion and binding interactions in cell organelles and cytoplasm. Perturbation of equilibrium distributions by photobleaching has also been developed into a robust method to image molecular proximity in terms of fluorescence resonance energy transfer between donor and acceptor fluorophores. PMID:25650914

  14. Development and Characterization of a Low-Pressure Calibration System for Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Everhart, Joel L.; Rhode, Matthew N.

    2004-01-01

    Minimization of uncertainty is essential for accurate ESP measurements at very low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources requires a well defined and controlled calibration method. A calibration system has been constructed and environmental control software developed to control experimentation to eliminate human induced error sources. The initial stability study of the calibration system shows a high degree of measurement accuracy and precision in temperature and pressure control. Control manometer drift and reference pressure instabilities induce uncertainty into the repeatability of voltage responses measured from the PSI System 8400 between calibrations. Methods of improving repeatability are possible through software programming and further experimentation.

  15. Effect Size as the Essential Statistic in Developing Methods for mTBI Diagnosis.

    PubMed

    Gibson, Douglas Brandt

    2015-01-01

    The descriptive statistic known as "effect size" measures the distinguishability of two sets of data. Distingishability is at the core of diagnosis. This article is intended to point out the importance of effect size in the development of effective diagnostics for mild traumatic brain injury and to point out the applicability of the effect size statistic in comparing diagnostic efficiency across the main proposed TBI diagnostic methods: psychological, physiological, biochemical, and radiologic. Comparing diagnostic approaches is difficult because different researcher in different fields have different approaches to measuring efficacy. Converting diverse measures to effect sizes, as is done in meta-analysis, is a relatively easy way to make studies comparable.

  16. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    PubMed

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  17. Development of one-shot aspheric measurement system with a Shack-Hartmann sensor.

    PubMed

    Furukawa, Yasunori; Takaie, Yuichi; Maeda, Yoshiki; Ohsaki, Yumiko; Takeuchi, Seiji; Hasegawa, Masanobu

    2016-10-10

    We present a measurement system for a rotationally symmetric aspheric surface that is designed for accurate and high-volume measurements. The system uses the Shack-Hartmann sensor and is capable of measuring aspheres with a maximum diameter of 90 mm in one shot. In our system, a reference surface, made with the same aspheric parameter as the test surface, is prepared. The test surface is recovered as the deviation from the reference surface using a figure-error reconstruction algorithm with a ray coordinate and angle variant table. In addition, we developed a method to calibrate the rotationally symmetric system error. These techniques produce stable measurements and high accuracy. For high-throughput measurements, a single measurement scheme and auto alignment are implemented; they produce a 4.5 min measurement time, including calibration and alignment. In this paper, we introduce the principle and calibration method of our system. We also demonstrate that our system achieved an accuracy better than 5.8 nm RMS and a repeatability of 0.75 nm RMS by comparing our system's aspheric measurement results with those of a probe measurement machine.

  18. Development of a new method for the noninvasive measurement of deep body temperature without a heater.

    PubMed

    Kitamura, Kei-Ichiro; Zhu, Xin; Chen, Wenxi; Nemoto, Tetsu

    2010-01-01

    The conventional zero-heat-flow thermometer, which measures the deep body temperature from the skin surface, is widely used at present. However, this thermometer requires considerable electricity to power the electric heater that compensates for heat loss from the probe; thus, AC power is indispensable for its use. Therefore, this conventional thermometer is inconvenient for unconstrained monitoring. We have developed a new dual-heat-flux method that can measure the deep body temperature from the skin surface without a heater. Our method is convenient for unconstrained and long-term measurement because the instrument is driven by a battery and its design promotes energy conservation. Its probe consists of dual-heat-flow channels with different thermal resistances, and each heat-flow-channel has a pair of IC sensors attached on its top and bottom. The average deep body temperature measurements taken using both the dual-heat-flux and then the zero-heat-flow thermometers from the foreheads of 17 healthy subjects were 37.08 degrees C and 37.02 degrees C, respectively. In addition, the correlation coefficient between the values obtained by the 2 methods was 0.970 (p<0.001). These results show that our method can be used for monitoring the deep body temperature as accurately as the conventional method, and it overcomes the disadvantage of the necessity of AC power supply. (c) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larimer, Curtis J.; Winder, Eric M.; Jeters, Robert T.

    Here, the accumulation of bacteria in surface attached biofilms, or biofouling, can be detrimental to human health, dental hygiene, and many industrial processes. A critical need in identifying and preventing the deleterious effects of biofilms is the ability to observe and quantify their development. Analytical methods capable of assessing early stage fouling are cumbersome or lab-confined, subjective, and qualitative. Herein, a novel photographic method is described that uses biomolecular staining and image analysis to enhance contrast of early stage biofouling. A robust algorithm was developed to objectively and quantitatively measure surface accumulation of Pseudomonas putida from photographs and results weremore » compared to independent measurements of cell density. Results from image analysis quantified biofilm growth intensity accurately and with approximately the same precision of the more laborious cell counting method. This simple method for early stage biofilm detection enables quantifiable measurement of surface fouling and is flexible enough to be applied from the laboratory to the field. Broad spectrum staining highlights fouling biomass, photography quickly captures a large area of interest, and image analysis rapidly quantifies fouling in the image.« less

  20. A method for rapid quantitative assessment of biofilms with biomolecular staining and image analysis

    DOE PAGES

    Larimer, Curtis J.; Winder, Eric M.; Jeters, Robert T.; ...

    2015-12-07

    Here, the accumulation of bacteria in surface attached biofilms, or biofouling, can be detrimental to human health, dental hygiene, and many industrial processes. A critical need in identifying and preventing the deleterious effects of biofilms is the ability to observe and quantify their development. Analytical methods capable of assessing early stage fouling are cumbersome or lab-confined, subjective, and qualitative. Herein, a novel photographic method is described that uses biomolecular staining and image analysis to enhance contrast of early stage biofouling. A robust algorithm was developed to objectively and quantitatively measure surface accumulation of Pseudomonas putida from photographs and results weremore » compared to independent measurements of cell density. Results from image analysis quantified biofilm growth intensity accurately and with approximately the same precision of the more laborious cell counting method. This simple method for early stage biofilm detection enables quantifiable measurement of surface fouling and is flexible enough to be applied from the laboratory to the field. Broad spectrum staining highlights fouling biomass, photography quickly captures a large area of interest, and image analysis rapidly quantifies fouling in the image.« less

Top