Sample records for developing mouse embryos

  1. Effect of Culture Conditions on Viability of Mouse and Rat Embryos Developed in Vitro

    PubMed Central

    Popova, Elena; Bader, Michael; Krivokharchenko, Alexander

    2011-01-01

    Currently in vitro culture of mouse preimplantation embryos has become a very important technique to investigate different mechanisms of early embryogenesis. However, there is a big difference in the preimplantation development between mammalian species. Despite close relatedness to mice, in vitro cultivation of rat preimplantation embryos is still delicate and needs further investigation and optimizations. In this study we have compared the in vitro developmental potential of mouse and rat embryos cultured at different culture conditions in parallel experiments. Interestingly, mouse zygotes developed in vitro until blastocyst stage even in inadequate medium without any phosphates and with low osmolarity which was formulated especially for cultivation of rat embryos. Rat parthenotes and zygotes developed in M16 medium formulated for mouse embryos only till 2-cell stage and further development is blocked completely at this stage. Moreover, developmental ability of rat embryos in vitro was significantly lower in comparison with mouse even in special rat mR1ECM medium. Mouse and rat embryos at 2-cell stage obtained in vivo developed until blastocyst stages significantly more efficiently compared to zygotes. Culture of mouse zygotes in glass capillaries resulted in a significantly higher rate of morula and blastocyst development compared with dishes. The Well-of-the-Well system resulted in a significant improvement when compared with dishes for the culture of rat zygotes only until morula stage. Reduced oxygen tension increased the developmental rate of rat but not mouse zygotes until blastocyst stage. This study demonstrates that development of early preimplantation embryos is altered by different culture conditions and show strong differences even between two related species such as mice and rats. Therefore, for understanding the fundamental mechanisms of early mammalian development it is very important to use embryos of various species. PMID:24710194

  2. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria

    PubMed Central

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548

  3. PreImplantation Factor (PIF) correlates with early mammalian embryo development-bovine and murine models

    PubMed Central

    2011-01-01

    Background PreImplantation Factor (PIF), a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb) added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01). In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control) (P = 0.01) and at day 7 were higher than day 3 (P = 0.03). In non-cleaving embryos culture medium was similar to medium alone (control). Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01) as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control). Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the utility of PIF- ELISA to detect viable embryos in a non-invasive manner. PMID:21569635

  4. [Cryopreservation of mouse embryos in ethylene glycol-based solutions: a search for the optimal and simple protocols].

    PubMed

    Luo, Ming-Jiu; Liu, Na; Miao, De-Qiang; Lan, Guo-Cheng; Suo-Feng; Chang, Zhong-Le; Tan, Jing-He

    2005-09-01

    Although ethylene glycol (EG) has been widely used for embryo cryopreservation in domestic animals, few attempts were made to use this molecule to freeze mouse and human embryos. In the few studies that used EG for slow-freezing of mouse and human embryos, complicated protocols for human embryos were used, and the protocols need to be simplified. Besides, freezing mouse morula with EG as a cryoprotectant has not been reported. In this paper, we studied the effects of embryo stages, EG concentration, duration and procedure of equilibration, sucrose supplementation and EG removal after thawing on the development of thawed mouse embryos, using the simple freezing and thawing procedures for bovine embryos. The blastulation and hatching rates (81.92% +/- 2.24% and 68.56% +/- 2.43%, respectively) of the thawed late compact morulae were significantly (P < 0.05) higher than those of embryos frozen-thawed at other stages. When mouse late compact morulae were frozen with different concentrations of EG, the highest rates of blastocyst formation and hatching were obtained with 1.8mol/L EG. The blastulation rate was significantly higher when late morulae were equilibrated in 1.8 mol/L EG for 10 min prior to freezing than when they were equilibrated for 30 min, and the hatching rate of embryos exposed to EG for 10 min was significantly higher than that of embryos exposed for 20 and 30 min. Both rates of blastocyst formation and hatching obtained with two-step equilibration were higher (P < 0.05) than with one-step equilibration in 1.8 mol/L EG. Addition of sucrose to the EG-based solution had no beneficial effects. On the contrary, an increased sucrose level (0.4 mol/L) in the solution impaired the development of the frozen-thawed embryos. In contrast, addition of 0.1 mol/L sucrose to the propylene glycol (PG)-based solution significantly improved the development of the frozen-thawed embryos. Elimination of the cryoprotectant after thawing did not improve the development of the thawed embryos. The cell numbers were less (P < 0.05) in blastocysts developed from the thawed morulae than in the in vivo derived ones. In summary, embryo stage, EG concentration, duration and procedure of equilibration and sucrose supplementation had marked effects on development of the thawed mouse embryos, and a protocol for cryopreservation of mouse embryos is recommended in which the late morulae are frozen in 1.8 mol/L EG using the simple freezing and thawing procedures of bovine embryos after a two-step equilibration and the embryos can be cultured or transferred without EG removal after thawing.

  5. Role of nucleation-promoting factors in mouse early embryo development.

    PubMed

    Wang, Qiao-Chu; Liu, Jun; Wang, Fei; Duan, Xing; Dai, Xiao-Xin; Wang, Teng; Liu, Hong-Lin; Cui, Xiang-Shun; Sun, Shao-Chen; Kim, Nam-Hyung

    2013-06-01

    During mitosis nucleation-promoting factors (NPFs) bind to the Arp2/3 complex and activate actin assembly. JMY and WAVE2 are two critical members of the NPFs. Previous studies have demonstrated that NPFs promote multiple processes such as cell migration and cytokinesis. However, the role of NPFs in development of mammalian embryos is still unknown. Results of the present study show that the NPFs JMY and WAVE2 are critical for cytokinesis during development of mouse embryos. Both JMY and WAVE2 are expressed in mouse embryos. After injection of JMY or WAVE2 siRNA, all embryos failed to develop to the morula or blastocyst stages. Moreover, using fluorescence intensity analysis, we found that the expression of actin decreased, and multiple nuclei were observed within a single cell indicating that NPFs-induced actin reduction caused the failure of cell division. In addition, injection of JMY and WAVE2 siRNA also caused ARP2 degradation, indicating that involvement of NPFs in development of mouse embryos is mainly through regulation of ARP2/3-induced actin assembly. Taken together, these data suggested that WAVE2 and JMY are involved in development of mouse embryos, and their regulation may be through a NPFs-Arp2/3-actin pathway.

  6. The relevance and use of mouse embryo bioassays for quality control in an assisted reproductive technology program.

    PubMed

    Scott, L F; Sundaram, S G; Smith, S

    1993-09-01

    To define both the limits of a mouse embryo bioassay for quality control in an assisted reproductive technology (ART) program and the areas where it can be effectively used. Embryos at the pronuclear and two-cell stage from three different strains of mice were used to assess the effectiveness of this assay for media quality control using five different media routinely used in ART. Pronuclear and two-cell embryos from CD-1 mice were used to test the ability of a mouse embryo bioassay to control for water quality, contaminants in the culture system, and fluctuations in the environmental conditions using a medium, culture system, and scoring technique that were optimized for this strain. The mouse embryo bioassay is not effective in differentiating media appropriate for supporting human embryo development since the development of mouse embryos in vitro is strain, stage, and media related. However, CD-1 embryos were shown to be sensitive to variations in water quality, pH, temperature, incubator conditions, and contaminants in the system when grown in a protein-free medium optimized for their development. Both total blastocyst number and the cell count in the blastocysts were affected. Pronuclear embryos were more sensitive to perturbations in the culture system than two-cell embryos. A mouse embryo bioassay can be effectively used as a means of quality control of water, chemicals, and contact materials and for technique standardization and training in an assisted reproduction program. All the conditions of the test should be defined, pronuclear embryos should be used, and the end point should be fully expanded blastocysts and/or cell numbers in these blastocysts where appropriate.

  7. [Effect of human oviductal embryotrophic factors on gene expression of mouse preimplantation embryos].

    PubMed

    Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu

    2007-09-01

    To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.

  8. The development of preimplantation mouse parthenogenones in vitro in absence of glucose: influence of the maternally inherited components.

    PubMed

    Mognetti, B; Leppens, G; Sakkas, D

    1996-04-01

    Mouse preimplantation embryo development is characterized by a switch from a dependence on the tricarboxylic acid cycle pre-compaction to a metabolism based on glycolysis post-compaction. In-view of this, the role of glucose in embryo culture medium has come under increased analysis and has lead to improved development of outbred mouse embryos in glucose free medium. Another type of embryo that has proven difficult to culture is the parthenogenetic (PN) mouse embryo. With this in mind we have investigated the effect of glucose deprivation on PN embryo development in vitro. Haploid and diploid PN embryos were grown in medium M16 with or without glucose (M16-G) and development, glycolytic rate, and methionine incorporation rates assessed. Haploid PN and normal embryo development to the blastocyst stage did not differ in either M16 or M16-G. In contrast, although diploid PN embryos formed blastocysts in M16 (28.3%), they had difficulty in undergoing the morula/blastocyst transition in M16-G (7.6%). There was no significant difference in mean cell numbers of haploid PN, diploid PN and normal embryos cultured in M16 and M16-G at the morula and blastocyst stage. Transfer of diploid PN embryos from M16-G to M16 at the four- to eight-cell stage dramatically increased blastocyst development. At the morula stage diploid PN embryos grown in M16-G exhibited a higher glucose metabolism and protein synthesis compared to those grown in M16 and to haploid PN embryos. Difficulties of diploid PN embryos in undergoing the morula/blastocyst transition in absence of glucose infer the existence of a link between the maternally inherited components and the preimplantation embryos dependence on glucose.

  9. 4D atlas of the mouse embryo for precise morphological staging.

    PubMed

    Wong, Michael D; van Eede, Matthijs C; Spring, Shoshana; Jevtic, Stefan; Boughner, Julia C; Lerch, Jason P; Henkelman, R Mark

    2015-10-15

    After more than a century of research, the mouse remains the gold-standard model system, for it recapitulates human development and disease and is quickly and highly tractable to genetic manipulations. Fundamental to the power and success of using a mouse model is the ability to stage embryonic mouse development accurately. Past staging systems were limited by the technologies of the day, such that only surface features, visible with a light microscope, could be recognized and used to define stages. With the advent of high-throughput 3D imaging tools that capture embryo morphology in microscopic detail, we now present the first 4D atlas staging system for mouse embryonic development using optical projection tomography and image registration methods. By tracking 3D trajectories of every anatomical point in the mouse embryo from E11.5 to E14.0, we established the first 4D atlas compiled from ex vivo 3D mouse embryo reference images. The resulting 4D atlas comprises 51 interpolated 3D images in this gestational range, resulting in a temporal resolution of 72 min. From this 4D atlas, any mouse embryo image can be subsequently compared and staged at the global, voxel and/or structural level. Assigning an embryonic stage to each point in anatomy allows for unprecedented quantitative analysis of developmental asynchrony among different anatomical structures in the same mouse embryo. This comprehensive developmental data set offers developmental biologists a new, powerful staging system that can identify and compare differences in developmental timing in wild-type embryos and shows promise for localizing deviations in mutant development. © 2015. Published by The Company of Biologists Ltd.

  10. The first cell-fate decisions in the mouse embryo: destiny is a matter of both chance and choice.

    PubMed

    Zernicka-Goetz, Magdalena

    2006-08-01

    Development of the early mouse embryo has always been classified as regulative, meaning that when parts or blastomeres of the embryo are isolated they change their developmental fate and can even reconstruct the whole. However, regulative development does not mean that, in situ, these parts or blastomeres are equivalent; it does not mean that the early mammalian embryo is a ball of identical cells without any bias. Regulative development simply means that whatever bias the regions of the embryo might have they still remain flexible and can respond to experimental interference by changes of fate. This realization -- that regulative development and patterning can co-exist -- has led to a renaissance of interest in the first days of development of the mouse embryo, and several laboratories have provided evidence for some early bias. Now the challenge is to gain some understanding of the molecular basis of this bias.

  11. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    PubMed

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Selection against BALB/c strain cells in mouse chimaeras

    PubMed Central

    Tang, Pin-Chi; MacKay, Gillian E.; Flockhart, Jean H.; Keighren, Margaret A.; Kopakaki, Anna

    2018-01-01

    ABSTRACT It has been shown previously that BALB/c strain embryos tend to contribute poorly to mouse aggregation chimaeras. In the present study we showed that BALB/c cells were not preferentially allocated to any extraembryonic lineages of mouse aggregation chimaeras, but their contribution decreased during the early postimplantation period and they were significantly depleted by E8.5. The development of BALB/c strain preimplantation embryos lagged behind embryos from some other strains and the contribution that BALB/c and other embryos made to chimaeras correlated with their developmental stage at E2.5. This relationship suggests that the poor contribution of BALB/c embryos to aggregation chimaeras is at least partly a consequence of generalised selection related to slow or delayed preimplantation development. The suitability of BALB/c embryos for maximising the ES cell contribution to mouse ES cell chimaeras is also discussed. PMID:29330350

  13. Culture of bovine embryos in deproteinized hemodialysate-supplemented media and immature mouse uterine horns.

    PubMed

    Thuemmel, A E; Gwazdauskas, F C; Canseco, R S; Pearson, R E; Jochle, W

    1991-06-01

    Bovine morulae (d 6) were used to evaluate embryonic development in a deproteinized hemodialysate, agar embedding, and in the uterus of the immature mouse. Agar-embedded embryos were cultured in Ham's F-10 and 10% steer serum either (treatment 1) immediately after collection or (treatment 2) 24 h after storage in the uterus of the immature mouse. Unembedded embryos were cultured in Ham's F-10 containing (treatment 3) 10% steer serum, (treatment 4) 1% deproteinized hemodialysate CLB1107, or (treatment 5) 1% de-proteinized hemodialysate CLB1107 and 10% steer serum. A greater percentage of the embryos reached the hatched blastocyst stage after culture in treatments 1, 3, 4, and 5 (38.1, 34.6, 28.6, and 21.1%) than in treatment 2 (9.5%) in which embryos were stored in the immature mouse uterus for 24 h prior to in vitro culture. Final development scores for unembedded and agar-embedded embryos cultured in Ham's F-10 (5.5 +/- .3) and 10% steer serum (4.9 +/- .4) were similar and higher than those of embryos cultured in deproteinized hemodialysate CLB1107 (4.2 +/- .4), deproteinized hemodialysate CLB1107 and steer serum (4.2 +/- .4), or immature mouse uteri (3.4 +/- .4). It is concluded that deproteinized hemodialysate supplementation at 1% (vol/vol) failed to enhance embryonic development in vitro. Moreover, bovine morulae were unaffected by agar embedding and were able to develop to a limited extent following short-term storage in the uterus of the immature mouse.

  14. A modified culture method significantly improves the development of mouse somatic cell nuclear transfer embryos.

    PubMed

    Dai, Xiangpeng; Hao, Jie; Zhou, Qi

    2009-08-01

    Many strategies have been established to improve the efficiency of somatic cell nuclear transfer (SCNT), but relatively few focused on improving culture conditions. The effect of different culture media on preimplantation development of mouse nuclear transfer embryos was investigated. A modified sequential media method, named D media (M16/KSOM and CZB-EG/KSOM), was successfully established that significantly improves SCNT embryo development. Our result demonstrated that while lacking any adverse effect on in vivo fertilized embryos, the D media dramatically improves the blastocyst development of SCNT embryos compared with other commonly used media, including KSOM, M16, CZB, and alphaMEM. Specifically, the rate of blastocyst formation was 62.3% for D1 (M16/KSOM) versus 10-30% for the other media. An analysis of media components indicated that removing EDTA and glutamine from the media can be beneficial for early SCNT embryo development. Our results suggest that in vitro culture environment plays an important role in somatic cell reprogramming, and D media represent the most efficient culture method reported to date to support mouse SCNT early embryo development in vitro.

  15. [Effect of phytohemagglutinin (PHA) from Yunnan white kidney bean on development of mouse embryos].

    PubMed

    Zhang, Lifen; Wang, Changmei; Yang, Mingjie; Zhang, Tian; Wang, Minkang

    2011-06-01

    To study the effect of different concentration of phytohemagglutinin (PHA) on mouse embryo development. In experiment 1, crude and purified PHA extracted from Yunnan white kidney bean with different concentration were added into M16 culture medium, the final concentration of PHA were: 50, 100, 200, 500, 1 000, 2 000 and 5 000 mg x L(-1) respectively. 2-cell stage embryos were collected and cultured in PHA containing or control medium for 72-96 h and their development were recorded. In experiment 2, different stage of embryos from 1-cell to blastocyst were treated by different concentrations of PHA same as experiment 1 and 10 000 mg x L(-1) in culture medium for 24 h before washing and cultured in M16 + PVA without PHA to blastocyst or hatching blastocyst stage. Low concentrations PHA at 50-100 mg x L(-1) promoted embryo development and increased the number of blastocyst stage embryos. In contrast, high concentrations of PHA (> 1 000 mg x L(-1)) blocked the embryos development from 1-cell to blastocyst stage and showed apoptosis morphology or death. Depending on the concentrations, PHA from white kidney bean shown promotion or inhibition on mouse embryo development. 1-cell stage embryo shown more sensitive to PHA treatment than that of later stage embryos. Pretreatment 24 h in PHA containing medium can influence the further development of embryos. Low concentrations of PHA is benefit to embryo development, but high concentrations of PHA (> 1 000 mg x L(-1)) will block of the development of embryos.

  16. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  17. ZINC INFLUENCES THE IN VITRO DEVELOPMENT OF PERI-IMPLANTATION MOUSE EMBRYOS

    EPA Science Inventory

    Background: For humans, it is estimated that over 70% of concepti are lost during early development. In culture, mouse peri-implantation embryos can mimic development from the blastocyst to the egg cylinder stage of development, a period during which implantation occurs in viv...

  18. Laser fusion of mouse embryonic cells and intra-embryonic fusion of blastomeres without affecting the embryo integrity.

    PubMed

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.

  19. Effect of Short-Term Hypergravity Treatment on Mouse 2-Cell Embryo Development

    NASA Astrophysics Data System (ADS)

    Ning, Li-Na; Lei, Xiao-Hua; Cao, Yu-Jing; Zhang, Yun-Fang; Cao, Zhong-Hong; Chen, Qi; Duan, En-Kui

    2015-11-01

    Though there are numerous biological experiments, which have been performed in a space environment, to study the physiological effect of space travel on living organisms, while the potential effect of weightlessness or short-term hypergravity on the reproductive system in most species, particularly in mammalian is still controversial and unclear. In our previous study, we investigated the effect of space microgravity on the development of mouse 4-cell embryos by using Chinese SJ-8. .Unexpectedly, we did not get any developed embryo during the space-flight. Considering that the process of space experiment is quite different from most experiments done on earth in several aspects such as, the vibration and short-term hypergravity during the rock launching and landing. Thus we want to know whether the short-term hypergravity produced by the launch process affect the early embryo development in mice, and howthe early embryos respond to the hypergravity. In present study, we are mimicking the short-term hypergravity during launch by using a centrifuge to investigate its influence on the development of early embryo (2-cell) in mice. We also examined the actin filament distribution in 2-cell embryos by immunostaining to test their potential capacity of development under short-term hypergravity exposure. Our results showed that most 2-cell embryos in the hypergravity exposure groups developed into blastocysts with normal morphology after 72h cultured in vitro, and there is no obvious difference in the development rate of blastocyst formation compared to the control. Moreover, there were no statistically significant differences in birth rates after oviduct transfer of 2-cell mouse embryos exposed on short-term hypergravity compared with 1 g condition. In addition, the well-organized actin distribution appeared in 2-cell embryos after exposed on hypergravity and also in the subsequent developmental blastocysts. Taken together, our data shows that short-term exposure in hypergravity conditions does not affect the normal development and actin filament structures of mouse embryos.

  20. Direct embryo tagging and identification system by attachment of biofunctionalized polysilicon barcodes to the zona pellucida of mouse embryos.

    PubMed

    Novo, Sergi; Penon, Oriol; Barrios, Leonardo; Nogués, Carme; Santaló, Josep; Durán, Sara; Gómez-Matínez, Rodrigo; Samitier, Josep; Plaza, José Antonio; Pérez-García, Luisa; Ibáñez, Elena

    2013-06-01

    Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of cultured embryos? The results achieved provide a proof of concept for a direct embryo tagging system using biofunctionalized polysilicon barcodes, which could help to minimize the risk of mismatching errors (mix-ups) in human assisted reproduction technologies. Even though the occurrence of mix-ups is rare, several cases have been reported in fertility clinics around the world. Measures to prevent the risk of mix-ups in human assisted reproduction technologies are therefore required. Mouse embryos were tagged with 10 barcodes and the effectiveness of the tagging system was tested during fresh in vitro culture (n=140) and after embryo cryopreservation (n = 84). Finally, the full-term development of tagged embryos was evaluated (n =105). Mouse pronuclear embryos were individually rolled over wheat germ agglutinin-biofunctionalized polysilicon barcodes to distribute them uniformly around the ZONA PELLUCIDA surface. Embryo viability and retention of barcodes were determined during 96 h of culture. The identification of tagged embryos was performed every 24 h in an inverted microscope and without embryo manipulation to simulate an automatic reading procedure. Full-term development of the tagged embryos was assessed after their transfer to pseudo-pregnant females. To test the validity of the embryo tagging system after a cryopreservation process, tagged embryos were frozen at the 2-cell stage using a slow freezing protocol, and followed in culture for 72 h after thawing. Neither the in vitro or in vivo development of tagged embryos was adversely affected. The tagging system also proved effective during an embryo cryopreservation process. Global identification rates higher than 96 and 92% in fresh and frozen-thawed tagged embryos, respectively, were obtained when simulating an automatic barcode reading system, although these rates could be increased to 100% by simply rotating the embryos during the reading process. The direct embryo tagging developed here has exclusively been tested in mouse embryos. Its effectiveness in other species, such as the human, is currently being tested. The direct embryo tagging system developed here, once tested in human embryos, could provide fertility clinics with a novel tool to reduce the risk of mix-ups in human assisted reproduction technologies.

  1. Laser Fusion of Mouse Embryonic Cells and Intra-Embryonic Fusion of Blastomeres without Affecting the Embryo Integrity

    PubMed Central

    Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik

    2012-01-01

    Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development. PMID:23227157

  2. Embryotrophic factor-3 from human oviductal cells enhances proliferation, suppresses apoptosis and stimulates the expression of the beta1 subunit of sodium-potassium ATPase in mouse embryos.

    PubMed

    Xu, J S; Lee, Y L; Lee, K F; Kwok, K L; Lee, W M; Luk, J M; Yeung, W S B

    2004-12-01

    Embrytrophic factor-3 (ETF-3) from human oviductal cells enhanced the development of mouse preimplantation embryos. This report studied the embryotrophic mechanisms of the molecule. Mouse embryos were incubated with ETF-3 for 24 h at different stages of development. ETF-3 treatment between 96 and 120 h post-HCG increased the cell count of blastocysts, whilst treatment between 72 and 96 h post-HCG enhanced the expansion and hatching of the blastocysts. ETF-3 increased the cell number of the embryos by suppressing apoptosis and increasing proliferation as determined by TUNEL and bromodeoxyuridine uptake assays, respectively. Real-time quantitative PCR showed that the in vivo developed and ETF-3-treated blastocysts had a significantly higher mRNA copy number of Na/K-ATPase-beta1, but not of hepsin, than that of blastocysts cultured in medium alone. The former gene was associated with cavitation of blastocysts while the latter was related to hatching of blastocyst. The beneficial effect of ETF-3 on blastocyst hatching was also seen when ETF-3-supplemented commercially available sequential culture medium for human embryo culture was used to culture mouse embryos. ETF-3 improves embryo development by enhancing proliferation, suppressing apoptosis and stimulating expression of genes related to blastocyst cavitation. Supplementating human embryo culture medium with ETF-3 may improve the success rate in clinical assisted reproduction.

  3. Complete method to obtain, culture, and transfer mouse blastocysts nonsurgically to study implantation and development.

    PubMed

    Moreno-Moya, Juan Manuel; Ramírez, Leslie; Vilella, Felipe; Martínez, Sebastián; Quiñonero, Alicia; Noguera, Inmaculada; Pellicer, Antonio; Simón, Carlos

    2014-03-01

    To illustrate an efficient, complete, step-by-step protocol for studying implantation in mice. Video presentation of an animal model for research in reproductive biology. Mouse (Mus musculus). A nonsurgical embryo transfer system very similar to that used for human embryo transfer. The protocols with recipient and donor mice are performed in parallel in the same week. For the donor mice: the first step is ovarian stimulation, followed by ovulation induction and mating; finally, the mice are sacrificed, and the embryos are collected and cultured. For recipient mice: first estrous synchrony is induced, followed by mating with a vasectomized male, visualization of the vaginal plug, and nonsurgical transfer of the embryos. Finally (optionally), the implantation sites can be visualized on day 7.5 of development. (All animal experiments were performed with the approval of the institutional review board.) Implantation is an essential step in human reproduction although, because of technical and ethics considerations, still relatively little is known about human implantation and early development. Conversely, mouse models are well established and can be used for preliminary experiments. However, there are various bottlenecks in the procedure for obtaining and transferring murine embryos, which makes experimentation with this model more difficult. These difficulties include pseudopregnancy, ovarian hyperstimulation, and embryo collection, culture, and transfer. We have proposed a complete, efficient method for obtaining, culturing, and transferring mouse blastocysts that can be easily applied in research. Potential applications include testing new media components that do not affect preimplantation but do affect implantation and early development. The embryo transfer method proposed here has been demonstrated to achieve embryo implantation easier and faster than, and in approximately similar rates as other traditional surgery methods. This workflow is the first set of complete step-by-step instructions available that incorporate advances such as nonsurgical mouse embryo transfer. This will facilitate research into different reproduction events such as embryo development, embryo implantation, or contraception. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury.

    PubMed

    Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2017-09-01

    Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Human endometrial cell coculture reduces the endocrine disruptor toxicity on mouse embryo development

    PubMed Central

    2012-01-01

    Backgrounds Previous studies suggested that endocrine disruptors (ED) are toxic on preimplantation embryos and inhibit development of embryos in vitro culture. However, information about the toxicity of endocrine disruptors on preimplantation development of embryo in human reproductive environment is lacking. Methods Bisphenol A (BPA) and Aroclor 1254 (polychlorinated biphenyls) were used as endocrine disruptors in this study. Mouse 2-cell embryos were cultured in medium alone or vehicle or co-cultured with human endometrial epithelial layers in increasing ED concentrations. Results At 72 hours the percentage of normal blastocyst were decreased by ED in a dose-dependent manner while the co-culture system significantly enhanced the rate and reduced the toxicity of endocrine disruptors on the embryonic development in vitro. Conclusions In conclusion, although EDs have the toxic effect on embryo development, the co-culture with human endometrial cell reduced the preimplantation embryo from it thereby making human reproductive environment protective to preimplantation embryo from the toxicity of endocrine disruptors. PMID:22546201

  6. Long-term imaging of mouse embryos using adaptive harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Thayil, Anisha; Watanabe, Tomoko; Jesacher, Alexander; Wilson, Tony; Srinivas, Shankar; Booth, Martin

    2011-04-01

    We present a detailed description of an adaptive harmonic generation (HG) microscope and culture techniques that permit long-term, three-dimensional imaging of mouse embryos. HG signal from both pre- and postimplantation stage (0.5-5.5 day-old) mouse embryos are fully characterized. The second HG images reveal central spindles during cytokinesis whereas third HG images show several features, such as lipid droplets, nucleoli, and plasma membranes. The embryos are found to develop normally during one-day-long discontinuous HG imaging, permitting the observation of several dynamic events, such as morula compaction and blastocyst formation.

  7. Genetic mouse embryo assay: improving performance and quality testing for assisted reproductive technology (ART) with a functional bioassay.

    PubMed

    Gilbert, Rebecca S; Nunez, Brandy; Sakurai, Kumi; Fielder, Thomas; Ni, Hsiao-Tzu

    2016-03-24

    Growing concerns about safety of ART on human gametes, embryos, clinical outcomes and long-term health of offspring require improved methods of risk assessment to provide functionally relevant assays for quality control testing and pre-clinical studies prior to clinical implementation. The one-cell mouse embryo assay (MEA) is the most widely used for development and quality testing of human ART products; however, concerns exist due to the insensitivity/variability of this bioassay which lacks standardization and involves subjective analysis by morphology alone rather than functional analysis of the developing embryos. We hypothesized that improvements to MEA by the use of functional molecular biomarkers could enhance sensitivity and improve detection of suboptimal materials/conditions. Fresh one-cell transgenic mouse embryos with green fluorescent protein (GFP) expression driven by Pou6f1 or Cdx2 control elements were harvested and cultured to blastocysts in varied test and control conditions to compare assessment by standard morphology alone versus the added dynamic expression of GFP for screening and selection of critical raw materials and detection of suboptimal culture conditions. Transgenic mouse embryos expressing functionally relevant biomarkers of normal early embryo development can be used to monitor the developmental impact of culture conditions. This novel approach provides a superior MEA that is more meaningful and sensitive for detection of embryotoxicity than morphological assessment alone.

  8. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  9. [In vitro development and chimeric efficiency of mouse-porcine interspecies chimeric embryos in different culture systems].

    PubMed

    Wang, Ying; Ren, Jilong; Song, Yuran; Hai, Tang; Zhou, Qi; Liu, Zhonghua

    2016-07-25

    With the advancements of stem cells and regenerative medicine, interspecies chimera has become a hot topic and will pave a new way of providing donor sources in organ transplantation. However, the interspecies chimera is confronted with a number of scientific questions and technical obstacles, including selections of appropriate embryonic stage and appropriate culture medium; those factors will deeply influence the developmental balance between donor cells and receptor embryos. Due to its relatively rapid reproductive cycle and similar organ size to human's, porcine is a very potential donor candidate to study these questions. To compare the development and chimeric efficiency of interspecies embryos, we tested and evaluated three different culture systems, PZM-3 (Porcine zygotic medium), culture medium for iPSCs (N2B27) and 3.5 h of N2B27 before PZM-3 (N2B27(3.5 h)), and two different embryonic stages, 8-cell and blastocyst in mouse-porcine chimeric embryos using parthenogenetically activated porcine embryos and mouse induced pluripotent stem cells (miPS). The results showed that, PZM-3 was beneficial for both development of chimeric embryos and miPSCs proliferation in porcine embryos in the 8-cell injection group. After early blastocyst injection, the chimeric efficiency did not appear significantly different among the three culture systems but was lower than 8-cell injection. In summary, the results suggest that 8-cell injection and PZM-3 culture medium are more beneficial to the in vitro development and chimeric efficiency of mouse-porcine chimeric embryos.

  10. Establishment of left–right asymmetry in vertebrate development: the node in mouse embryos

    PubMed Central

    Komatsu, Yoshihiro

    2014-01-01

    Establishment of vertebrate left–right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left–right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left–right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left–right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left–right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left–right asymmetry. PMID:23771646

  11. Establishment of left-right asymmetry in vertebrate development: the node in mouse embryos.

    PubMed

    Komatsu, Yoshihiro; Mishina, Yuji

    2013-12-01

    Establishment of vertebrate left-right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left-right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left-right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left-right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left-right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left-right asymmetry.

  12. Low cost labeling with highlighter ink efficiently visualizes developing blood vessels in avian and mouse embryos.

    PubMed

    Takase, Yuta; Tadokoro, Ryosuke; Takahashi, Yoshiko

    2013-12-01

    To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo-wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein (GFP) and red fluorescent protein (RFP) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink-infused embryos were further subjected to histological sections, and double stained with antibodies including QH-1 (quail), α smooth muscle actin (αSMA), and PECAM-1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter-labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate (FITC)-lectin and Rhodamine-dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink-infused embryos visualized fine vascular structures of both embryo proper and extra-embryonic plexus in a Z-stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  13. Media composition: salts and osmolality.

    PubMed

    Baltz, Jay M

    2012-01-01

    The main components of embryo culture media are salts, which dissociate into their component inorganic ions in aqueous solution. All embryo culture media contain the same six inorganic ions: Na(+), K(+), Cl(-), Ca(2+), Mg(2+), and SO(4)(2-), while most also contain PO(4)(2-). The salts that are used to formulate embryo culture media can be traced back to classic saline solutions, particularly Krebs-Ringer Bicarbonate (KRB), that were developed for somatic cells in the first half of the twentieth century. The salt and inorganic ion concentrations in the first successful defined mouse embryo culture medium, Whittens medium, were identical to those in KRB. These remained largely unchanged in embryo culture media for decades, with similar levels found in the standard mouse embryo culture medium, M16, formulated in the 1970s. Human embryos were initially cultured in undefined somatic cell media such as Earles and Hams F-10 with serum added. This changed in the mid-1980s, however, with the development of Quinns HTF, a defined medium specifically formulated for human embryo culture, in which the inorganic ion concentrations are similar to those in M16 and Whittens. While these media were useful both for experimental work and clinically, embryos suffered developmental blocks in all of them, with mouse embryos blocking at the 2-cell stage and human embryos at the 4- to 8-cell stage. Starting in the late 1980s, however, mouse embryo culture media were first developed that alleviated these developmental blocks. These media, CZB and KSOM, had much lower osmolalities than previous media, mainly due to lower inorganic ion concentrations. Indeed, lowering total inorganic ion concentration and osmolality proved key to understanding how media that supported complete preimplantation development in vitro can be formulated. A subsequent improvement was the addition of amino acids to culture media for both mouse and human embryos. At least in part, their beneficial effect during the cleavage stages of development is due to the presence in early preimplantation embryos of mechanisms for cell volume regulation that depend on the accumulation of amino acids as organic osmolytes to provide intracellular osmotic support. These amino acids, principally glycine, replace a portion of the intracellular inorganic ions that would otherwise be needed to maintain cell size, preventing the intracellular ionic strength from rising to deleterious levels and blocking development. Thus, the optimum salts levels, osmolality, and amino acid contents of culture media are not independent, but interact strongly because of their roles in cell volume regulation. In the absence of compounds that preimplantation embryos can use as organic osmolytes, embryos will develop only at lower osmolalities and salt concentrations in the medium. However, when organic osmolytes such as some amino acids are present, embryos will develop in culture at higher osmolarities that are similar to those they experience in tubal fluid in vivo.

  14. In utero imaging of mouse embryonic development with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Dickinson, Mary E.; Larin, Kirill V.; Larina, Irina V.

    2011-03-01

    Studying progression of congenital diseases in animal models can greatly benefit from live embryonic imaging Mouse have long served as a model of mammalian embryonic developmental processes, however, due to intra-uterine nature of mammalian development live imaging is challenging. In this report we present results on live mouse embryonic imaging in utero with Optical Coherence Tomography. Embryos from 12.5 through 17.5 days post-coitus (dpc) were studied through the uterine wall. In longitudinal studies, same embryos were imaged at developmental stages 13.5, 15.5 and 17.5 dpc. This study suggests that OCT can serve as a powerful tool for live mouse embryo imaging. Potentially this technique can contribute to our understanding developmental abnormalities associated with mutations, toxic drugs.

  15. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    PubMed

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  16. Effects of various freezing containers for vitrification freezing on mouse oogenesis.

    PubMed

    Kim, Ji Chul; Kim, Jae Myeoung; Seo, Byoung Boo

    2016-01-01

    In the present study, various freezing containers were tested for mouse embryos of respective developmental stages; embryos were vitrified and then their survival rate and developmental rate were monitored. Mouse two cell, 8 cell, and blastula stage embryos underwent vitrification freezing-thawing and then their recovery rate, survival rate, development rate, and hatching rate were investigated. EM-grid, OPS, and cryo-loop were utilized for vitrification freezing-thawing of mouse embryos. It was found that recovery rate and survival rate were higher in the group of cryo-loop compared to those of EM-grid (p < 0.05). Embryonic development rate, two cell embryos to blastocyst, as well as hatching rate were higher in the control group compared to the EM-grid group and OPS group (p < 0.05), yet no difference was noted between the control group and cryo-loop group. Development rate and hatching rate of eight cell morulae and blastocysts were all lower in the treatment groups than the control group whilst hatching rate of blastocysts was higher in the control group compared to the groups of EM-grid and OPS (p < 0.05); although the cryo-loop group was shown to be slightly higher than other groups, it was not statistically significant. In the study, we investigate effects of freezing containers on vitrified embryos of respective developmental stages; it was demonstrated that higher developmental rate was shown in more progressed (or developed) embryos with more blastomeres. There was however, no difference in embryonic development rate was shown amongst containers. Taken together, further additional studies are warranted with regards to 1) manipulation techniques of embryos for various vitrification freezing containers and 2) preventive measures against contamination via liquid nitrogen.

  17. Effect of micro-vibration culture system on embryo development.

    PubMed

    Hur, Yong Soo; Park, Jeong Hyun; Ryu, Eun Kyung; Park, Sung Jin; Lee, Jun Ho; Lee, Soo Hee; Yoon, Jung; Yoon, San Hyun; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho

    2013-06-01

    Micro-vibration culture system was examined to determine the effects on mouse and human embryo development and possible improvement of clinical outcomes in poor responders. The embryonic development rates and cell numbers of blastocysts were compared between a static culture group (n = 178) and a micro-vibration culture group (n = 181) in mice. The embryonic development rates and clinical results were compared between a static culture group (n = 159 cycles) and a micro-vibration culture group (n = 166 cycles) in poor responders. A micro-vibrator was set at a frequency of 42 Hz, 5 s/60 min duration for mouse and human embryo development. The embryonic development rate was significantly improved in the micro-vibration culture group in mice (p < 0.05). The cell numbers of mouse blastocysts were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). In the poor responders, the rate of high grade embryos was not significantly improved in the micro-vibration culture group on day 3. However, the optimal embryonic development rate on day 5 was improved in the micro-vibration group, and the total pregnancy rate and implantation rate were significantly higher in the micro-vibration group than in the static culture group (p < 0.05). Micro-vibration culture methods have a beneficial effect on embryonic development in mouse embryos. In poor responders, the embryo development rate was improved to a limited extent under the micro-vibration culture conditions, but the clinical results were significantly improved.

  18. Live dynamic analysis of the developing cardiovascular system in mice

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Larina, Irina V.

    2017-02-01

    The study of the developing cardiovascular system in mice is important for understanding human cardiogenesis and congenital heart defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development under the regulation of dynamic factors like contractile force and blood flow using optical coherence tomography (OCT). We have previously developed an OCT based approach that combines static embryo culture and advanced image processing with computational modeling to live-image mouse embryos and obtain 4D (3D+time) cardiodynamic datasets. Here we present live 4D dynamic blood flow imaging of the early embryonic mouse heart in correlation with heart wall movement. We are using this approach to understand how specific mutations impact heart wall dynamics, and how this influences flow patterns and cardiogenesis. We perform studies in mutant embryos with cardiac phenotypes such as myosin regulatory light chain 2, atrial isoform (Mlc2a). This work is brings us closer to understanding the connections between dynamic mechanical factors and gene programs responsible for early cardiovascular development.

  19. Identification and functional analysis of long non-coding RNAs in human and mouse early embryos based on single-cell transcriptome data

    PubMed Central

    Qiu, Jia-jun; Ren, Zhao-rui; Yan, Jing-bin

    2016-01-01

    Epigenetics regulations have an important role in fertilization and proper embryonic development, and several human diseases are associated with epigenetic modification disorders, such as Rett syndrome, Beckwith-Wiedemann syndrome and Angelman syndrome. However, the dynamics and functions of long non-coding RNAs (lncRNAs), one type of epigenetic regulators, in human pre-implantation development have not yet been demonstrated. In this study, a comprehensive analysis of human and mouse early-stage embryonic lncRNAs was performed based on public single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs are expressed in a developmental stage–specific manner during human early-stage embryonic development, whereas a more temporal-specific expression pattern was identified in mouse embryos. Weighted gene co-expression network analysis suggested that lncRNAs involved in human early-stage embryonic development are associated with several important functions and processes, such as oocyte maturation, zygotic genome activation and mitochondrial functions. We also found that the network of lncRNAs involved in zygotic genome activation was highly preservative between human and mouse embryos, whereas in other stages no strong correlation between human and mouse embryo was observed. This study provides insight into the molecular mechanism underlying lncRNA involvement in human pre-implantation embryonic development. PMID:27542205

  20. Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation.

    PubMed

    Zenker, Jennifer; White, Melanie D; Gasnier, Maxime; Alvarez, Yanina D; Lim, Hui Yi Grace; Bissiere, Stephanie; Biro, Maté; Plachta, Nicolas

    2018-04-19

    Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. BROMOCHLORO-HALOACETIC ACIDS: EFFECTS ON MOUSE EMBRYOS IN VITRO AND QSAR CONSIDERATIONS

    EPA Science Inventory

    The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids altered embryonic development when mouse conceptuses were directly exposed to these xenobiotics in whole embryo culture...

  2. Learning to segment mouse embryo cells

    NASA Astrophysics Data System (ADS)

    León, Juan; Pardo, Alejandro; Arbeláez, Pablo

    2017-11-01

    Recent advances in microscopy enable the capture of temporal sequences during cell development stages. However, the study of such sequences is a complex task and time consuming task. In this paper we propose an automatic strategy to adders the problem of semantic and instance segmentation of mouse embryos using NYU's Mouse Embryo Tracking Database. We obtain our instance proposals as refined predictions from the generalized hough transform, using prior knowledge of the embryo's locations and their current cell stage. We use two main approaches to learn the priors: Hand crafted features and automatic learned features. Our strategy increases the baseline jaccard index from 0.12 up to 0.24 using hand crafted features and 0.28 by using automatic learned ones.

  3. Quantitative analyses of cell behaviors underlying notochord formation and extension in mouse embryos.

    PubMed

    Sausedo, R A; Schoenwolf, G C

    1994-05-01

    Formation and extension of the notochord (i.e., notogenesis) is one of the earliest and most obvious events of axis development in vertebrate embryos. In birds and mammals, prospective notochord cells arise from Hensen's node and come to lie beneath the midline of the neural plate. Throughout the period of neurulation, the notochord retains its close spatial relationship with the developing neural tube and undergoes rapid extension in concert with the overlying neuroepithelium. In the present study, we examined notochord development quantitatively in mouse embryos. C57BL/6 mouse embryos were collected at 8, 8.5, 9, 9.5, and 10 days of gestation. They were then embedded in paraffin and sectioned transversely. Serial sections from 21 embryos were stained with Schiff's reagent according to the Feulgen-Rossenbeck procedure and used for quantitative analyses of notochord extension. Quantitative analyses revealed that extension of the notochord involves cell division within the notochord proper and cell rearrangement within the notochordal plate (the immediate precursor of the notochord). In addition, extension of the notochord involves cell accretion, that is, the addition of cells to the notochord's caudal end, a process that involves considerable cell rearrangement at the notochordal plate-node interface. Extension of the mouse notochord occurs similarly to that described previously for birds (Sausedo and Schoenwolf, 1993 Anat. Rec. 237:58-70). That is, in both birds (i.e., quail and chick) and mouse embryos, notochord extension involves cell division, cell rearrangement, and cell accretion. Thus higher vertebrates utilize similar morphogenetic movements to effect notogenesis.

  4. Estrogen receptor-mediated effects of a xenoestrogen, bisphenol A, on preimplantation mouse embryos.

    PubMed

    Takai, Y; Tsutsumi, O; Ikezuki, Y; Hiroi, H; Osuga, Y; Momoeda, M; Yano, T; Taketani, Y

    2000-04-21

    The effects of bisphenol A, a xenoestrogen widely used in industry and dentistry, were studied in early preimplantation mouse embryos. Two-cell mouse embryos were cultured with 100 pM to 100 microM bisphenol A with or without 100 nM tamoxifen and evaluated at 24-h intervals for their development to eight-cell and blastocyst stages. At 72 h, blastocysts were cultured for another 48 h without bisphenol A, and surface areas of trophoblast spread were measured. At 24 h, more embryos exposed to 3 nM bisphenol A than to controls had reached the eight-cell stage. At 48 h, more embryos exposed to 1 nM and 3 nM bisphenol A than to controls had become blastocysts. At 100 microM, bisphenol A decreased frequency of development to blastocysts. Tamoxifen counteracted both stimulatory and inhibitory effects of bisphenol A on blastocyst formation. Although bisphenol A did not alter blastocyst morphology or cell number, early exposure to 100 microM bisphenol A increased subsequent trophoblast areas. These findings suggest that bisphenol A may not only effect early embryonic development via estrogen receptors even at low, environmentally relevant doses, but also exert some late effects on subsequent development of these embryos. Copyright 2000 Academic Press.

  5. Inhibitory effect of a Microcystis sp (cyanobacteria) toxin on development of preimplantation mouse embryos.

    PubMed

    Sepulveda, M S; Rojas, M; Zambrano, F

    1992-07-01

    1. A soluble toxin, purified from the algae bloom of an eutrophic lake dominated by Microcystis, is a very effective inhibitor of early embryo development in a dose-response relationship. 2. Two- and 8-cell mouse embryos under the influence of Microcystis toxin do not reach the developmental stages of morula and blastocyst, respectively. 3. Actin cortex is disorganized without change in the microtubules structure. 4. Results are discussed in terms of the possible mechanisms by which the toxin arrests development considering, specifically, effects on the cytoskeleton and/or on voltage-insensitive transmembrane Ca2+ channels.

  6. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging

    PubMed Central

    Wu, Chen; Sudheendran, Narendran; Singh, Manmohan; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    Abstract. Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT. PMID:26848543

  7. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos.

    PubMed

    Yokoo, Masaki; Mori, Miho

    2017-05-27

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing of blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P < 0.05). When 195 irradiated blastocysts were transferred to 18 pseudopregnant mice, all became pregnant and 92 (47.2%) normal-looking pups were born alive. When 182 control blastocysts were transferred to 17 pseudopregnant mice, 14 (82.4%) became pregnant and 54 (29.7%) normal-looking pups were born alive. The growth trajectories (up to 5 weeks) of offspring from irradiated blastocysts were similar to those from control blastocysts. Second generation offspring from transplanted animals were all fertile. These results indicate that near-infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Contrast imaging in mouse embryos using high-frequency ultrasound.

    PubMed

    Denbeigh, Janet M; Nixon, Brian A; Puri, Mira C; Foster, F Stuart

    2015-03-04

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

  9. EXPOSURE TO A P13KINASE INHIBITOR PRODUCED DYSMORPHOGENESIS IN NEURULATION-STAGED MOUSE EMBRYOS IN CULTURE

    EPA Science Inventory

    The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids alter embryonic development when mouse conceptuses are directly exposed to these xenobiotics in whole embryo culture. C...

  10. Recognition of the CDEI motif GTCACATG by mouse nuclear proteins and interference with the early development of the mouse embryo.

    PubMed Central

    Blangy, A; Léopold, P; Vidal, F; Rassoulzadegan, M; Cuzin, F

    1991-01-01

    We have reported previously (1) two unexpected consequences of the microinjection into fertilized mouse eggs of a recombinant plasmid designated p12B1, carrying a 343 bp insert of non-repetitive mouse DNA. Injected at very low concentrations, this plasmid could be established as an extrachromosomal genetic element. When injected in greater concentration, an early arrest of embryonic development resulted. In the present work, we have studied this toxic effect in more detail by microinjecting short synthetic oligonucleotides with sequences from the mouse insert. Lethality was associated with the nucleotide sequence GTCACATG, identical with the CDEl element of yeast centromeres. Development of injected embryos was arrested between the one-cell and the early morula stages, with abnormal structures and DNA contents. Electrophoretic mobility shift and DNAse foot-printing assays demonstrated the binding of mouse nuclear protein(s) to the CDEl-like box. Base changes within the CDEl sequence prevented both the toxic effects in embryos and the formation of protein complex in vitro, suggesting that protein binding at such sites in chromosomal DNA plays an important role in early development. Images PMID:1766880

  11. Normal embryonic and germ cell development in mice lacking alpha 1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1.

    PubMed

    Kudo, Takashi; Kaneko, Mika; Iwasaki, Hiroko; Togayachi, Akira; Nishihara, Shoko; Abe, Kuniya; Narimatsu, Hisashi

    2004-05-01

    Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.

  12. Live embryo imaging to follow cell cycle and chromosomes stability after nuclear transfer.

    PubMed

    Balbach, Sebastian T; Boiani, Michele

    2015-01-01

    Nuclear transfer (NT) into mouse oocytes yields a transcriptionally and functionally heterogeneous population of cloned embryos. Most studies of NT embryos consider only embryos at predefined key stages (e.g., morula or blastocyst), that is, after the bulk of reprogramming has taken place. These retrospective approaches are of limited use to elucidate mechanisms of reprogramming and to predict developmental success. Observing cloned embryo development using live embryo cinematography has the potential to reveal otherwise undetectable embryo features. However, light exposure necessary for live cell cinematography is highly toxic to cloned embryos. Here we describe a protocol for combined bright-field and fluorescence live-cell imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This protocol, which can be adapted to observe other reporters such as Oct4-GFP or Nanog-GFP, allowed us to quantitatively analyze cleavage kinetics of cloned embryos.

  13. Fluorescence-based visualization of autophagic activity predicts mouse embryo viability

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki

    2014-03-01

    Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.

  14. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoo, Masaki; Mori, Miho

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing ofmore » blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P < 0.05). When 195 irradiated blastocysts were transferred to 18 pseudopregnant mice, all became pregnant and 92 (47.2%) normal-looking pups were born alive. When 182 control blastocysts were transferred to 17 pseudopregnant mice, 14 (82.4%) became pregnant and 54 (29.7%) normal-looking pups were born alive. The growth trajectories (up to 5 weeks) of offspring from irradiated blastocysts were similar to those from control blastocysts. Second generation offspring from transplanted animals were all fertile. These results indicate that near-infrared laser irradiation improves the quality of mouse embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. - Highlights: • Irradiation of blastocysts with a near-infrared laser improves embryo development. • Irradiation of blastocysts increases the live birth rate after embryo transfer. • Irradiation of blastocysts did not affect the normality of the pups. • Near-infrared laser irradiation may be useful to enhance the quality of embryos. • This study may contribute to improvements in reproductive technologies in mammals.« less

  15. Facilitated glucose transporters play a crucial role throughout mouse preimplantation embryo development.

    PubMed

    Leppens-Luisier, G; Urner, F; Sakkas, D

    2001-06-01

    The role of glucose fluctuates during preimplantation mouse embryo development, indicating that a specific interplay exists between glucose metabolism and uptake. In this study, attempts were made to characterize the role of the Na(+)-coupled active and the facilitated glucose transporters (GLUT) during preimplantation development by using specific glucose analogues and transport inhibitors and by examining the expression of GLUT1. One-cell outbred mouse embryos were cultured in medium M16 (5.5 mmol/l glucose), M16 without glucose (M16-G), M16-G + 2-deoxyglucose, M16-G + 3-O-methylglucose, M16 + phlorizin and M16 + phloretin and development to the blastocyst stage assessed. The absence of glucose, or the presence of 3-O-methylglucose, which is taken up but not metabolized, did not inhibit blastocyst development. 2-Deoxyglucose, which is phosphorylated but not metabolized, inhibited blastocyst development. Culture in M16 supplemented with phlorizin, an inhibitor of Na(+)-coupled active glucose transport did not inhibit blastocyst formation. Phloretin had no effect on the cleavage of two-cell embryos to the four-cell stage, but inhibited the morula/blastocyst transition. Both phloretin and phlorizin inhibited glucose uptake in two-cell embryos. Finally, GLUT1 expression was 10-fold less in blastocysts cultured in M16 compared to in-vivo blastocysts and those cultured in M16-G. The results show that both types of glucose transporters influence preimplantation embryo development and that the embryo has an innate ability to control the uptake of glucose by regulating the expression of GLUT1.

  16. ART culture conditions change the probability of mouse embryo gestation through defined cellular and molecular responses.

    PubMed

    Schwarzer, Caroline; Esteves, Telma Cristina; Araúzo-Bravo, Marcos J; Le Gac, Séverine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele

    2012-09-01

    Do different human ART culture protocols prepare embryos differently for post-implantation development? The type of ART culture protocol results in distinct cellular and molecular phenotypes in vitro at the blastocyst stage as well as subsequently during in vivo development. It has been reported that ART culture medium affects human development as measured by gestation rates and birthweights. However, due to individual variation across ART patients, it is not possible as yet to pinpoint a cause-effect relationship between choice of culture medium and developmental outcome. In a prospective study, 13 human ART culture protocols were compared two at a time against in vivo and in vitro controls. Superovulated mouse oocytes were fertilized in vivo using outbred and inbred mating schemes. Zygotes were cultured in medium or in the oviduct and scored for developmental parameters 96 h later. Blastocysts were either analyzed or transferred into fosters to measure implantation rates and fetal development. In total, 5735 fertilized mouse oocytes, 1732 blastocysts, 605 fetuses and 178 newborns were examined during the course of the study (December 2010-December 2011). Mice of the B6C3F1, C57Bl/6 and CD1 strains were used as oocyte donors, sperm donors and recipients for embryo transfer, respectively. In vivo fertilized B6C3F1 oocytes were allowed to cleave in 13 human ART culture protocols compared with mouse oviduct and optimized mouse medium (KSOM(aa)). Cell lineage composition of resultant blastocysts was analyzed by immunostaining and confocal microscopy (trophectoderm, Cdx2; primitive ectoderm, Nanog; primitive endoderm, Sox17), global gene expression by microarray analysis, and rates of development to midgestation and to term. Mouse zygotes show profound variation in blastocyst (49.9-91.9%) and fetal (15.7-62.0%) development rates across the 13 ART culture protocols tested (R(2)= 0.337). Two opposite protocols, human tubal fluid/multiblast (high fetal rate) and ISM1/ISM2 (low fetal rate), were analyzed in depth using outbred and inbred fertilization schemes. Resultant blastocysts show imbalances of cell lineage composition; culture medium-specific deviation of gene expression (38 genes, ≥ 4-fold) compared with the in vivo pattern; and produce different litter sizes (P ≤ 0.0076) after transfer into fosters. Confounding effects of subfertility, life style and genetic heterogeneity are reduced to a minimum in the mouse model compared with ART patients. This is an animal model study. Mouse embryo responses to human ART media are not transferable 1-to-1 to human development due to structural and physiologic differences between oocytes of the two species. Our data promote awareness that human ART culture media affect embryo development. Effects reported here in the mouse may apply also in human, because no ART medium presently available on the market has been optimized for human embryo development. The mouse embryo assay (MEA), which requires ART media to support at least 80% blastocyst formation, is in need of reform and should be extended to include post-implantation development.

  17. Effects of deer velvet extract from Formosan sika deer on the embryonic development and anti-oxidative enzymes mRNA expression in mouse embryos.

    PubMed

    Cheng, Shih-Lin; Lai, Yi-Ling; Lee, Ming-Che; Shen, Perng-Chih; Liu, Shyh-Shyan; Liu, Bing-Tsan

    2014-07-03

    The deer velvet or its extracts has been widely used in clinic. It has been used in promoting reproductive performances and treating of oxidation and aging process. The aim of this study is to investigate the effects of velvet extract from Formosan sika deer (Formosan sika deer; Cervus nippon taiouanus, FSD) velvet on mouse embryonic development and anti-oxidant ability in vitro. Mouse 4-cells embryos were divided into 16 groups for 72 h in vitro incubation. The embryonic development stages and morphology were evaluated every 12h in experimental period. The quantitative real time PCR was used to measure the CuZn-SOD, GPx and CAT mRNA expression of the blastocysts. The 4-cells embryos of hydrogen peroxide (HP) groups did not continue developing after oxidant stress challenged. The blastocyst developmental rate (90.0-90.4%, P>0.05) and normal morphological rate (84.4-85.1%, P>0.05) of the 1% and 2% DV extract groups were similar to those in the control group (90.7% and 88.8%, respectively). The embryos challenged by HP (5, 10 and 25 μM) and subsequently incubated in mHTF medium with 1% and 2% of deer velvet (DV) extracts were able to continue development; the blastocyst developmental rate of these groups were similar to that in the control group. The relative mRNA expression of the focused anti-oxidative enzymes in the mouse embryos did not significantly differ among the designed DV treatment groups (P>0.05). The FSD velvet extract in adequate concentration could promote anti-oxidative enzymes mRNA expression followed the challenge of hydrogen peroxide, relieve the mouse embryo under oxidative stress, and maintain the blastocyst developmental ability in vitro. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage.

    PubMed Central

    Yamauchi, N; Kiessling, A A; Cooper, G M

    1994-01-01

    We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos. Images PMID:7935384

  19. In Amnio MRI of Mouse Embryos

    PubMed Central

    Roberts, Thomas A.; Norris, Francesca C.; Carnaghan, Helen; Savery, Dawn; Wells, Jack A.; Siow, Bernard; Scambler, Peter J.; Pierro, Agostino; De Coppi, Paolo; Eaton, Simon; Lythgoe, Mark F.

    2014-01-01

    Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community. PMID:25330230

  20. Altered methanol embryopathies in embryo culture with mutant catalase-deficient mice and transgenic mice expressing human catalase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Lutfiya; Wells, Peter G., E-mail: pg.wells@utoronto.ca; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON

    2011-04-01

    The mechanisms underlying the teratogenicity of methanol (MeOH) in rodents, unlike its acute toxicity in humans, are unclear, but may involve reactive oxygen species (ROS). Embryonic catalase, although expressed at about 5% of maternal activity, may protect the embryo by detoxifying ROS. This hypothesis was investigated in whole embryo culture to remove confounding maternal factors, including metabolism of MeOH by maternal catalase. C57BL/6 (C57) mouse embryos expressing human catalase (hCat) or their wild-type (C57 WT) controls, and C3Ga.Cg-Catb/J acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1),more » exposed for 24 h to 4 mg/ml MeOH or vehicle, and evaluated for functional and morphological changes. hCat and C57 WT vehicle-exposed embryos developed normally. MeOH was embryopathic in C57 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed and turning, whereas hCat embryos were protected. Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to C3H WT controls, suggesting that endogenous ROS are embryopathic. MeOH was more embryopathic in aCat embryos than WT controls, with reduced anterior neuropore closure and head length only in catalase-deficient embryos. These data suggest that ROS may be involved in the embryopathic mechanism of methanol, and that embryonic catalase activity may be a determinant of teratological risk.« less

  1. Oxygen regulates amino acid turnover and carbohydrate uptake during the preimplantation period of mouse embryo development.

    PubMed

    Wale, Petra L; Gardner, David K

    2012-07-01

    Oxygen is a powerful regulator of preimplantation embryo development, affecting gene expression, the proteome, and energy metabolism. Even a transient exposure to atmospheric oxygen can have a negative impact on embryo development, which is greatest prior to compaction, and subsequent postcompaction culture at low oxygen cannot alleviate this damage. In spite of this evidence, the majority of human in vitro fertilization is still performed at atmospheric oxygen. One of the physiological parameters shown to be affected by the relative oxygen concentration, carbohydrate metabolism, is linked to the ability of the mammalian embryo to develop in culture and remain viable after transfer. The aim of this study was, therefore, to determine the effect of oxygen concentration on the ability of mouse embryos to utilize both amino acids and carbohydrates both before and after compaction. Metabolomic and fluorometric analysis of embryo culture media revealed that when embryos were exposed to atmospheric oxygen during the cleavage stages, they exhibited significantly greater amino acid utilization and pyruvate uptake than when cultured under 5% oxygen. In contrast, postcompaction embryos cultured in atmospheric oxygen showed significantly lower mean amino acid utilization and glucose uptake. These metabolic changes correlated with developmental compromise because embryos grown in atmospheric oxygen at all stages showed significantly lower blastocyst formation and proliferation. These findings confirm the need to consider both embryo development and metabolism in establishing optimal human embryo growth conditions and prognostic markers of viability, and further highlight the impact of oxygen on such vital parameters.

  2. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip

    PubMed Central

    Huang, Hong-Yuan; Shen, Hsien-Hua; Tien, Chang-Hung; Li, Chin-Jung; Fan, Shih-Kang; Liu, Cheng-Hsien; Hsu, Wen-Syang; Yao, Da-Jeng

    2015-01-01

    Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application. PMID:25933003

  3. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip.

    PubMed

    Huang, Hong-Yuan; Shen, Hsien-Hua; Tien, Chang-Hung; Li, Chin-Jung; Fan, Shih-Kang; Liu, Cheng-Hsien; Hsu, Wen-Syang; Yao, Da-Jeng

    2015-01-01

    Current human fertilization in vitro (IVF) bypasses the female oviduct and manually inseminates, fertilizes and cultivates embryos in a static microdrop containing appropriate chemical compounds. A microfluidic microchannel system for IVF is considered to provide an improved in-vivo-mimicking environment to enhance the development in a culture system for an embryo before implantation. We demonstrate a novel digitalized microfluidic device powered with electrowetting on a dielectric (EWOD) to culture an embryo in vitro in a single droplet in a microfluidic environment to mimic the environment in vivo for development of the embryo and to culture the embryos with good development and live births. Our results show that the dynamic culture powered with EWOD can manipulate a single droplet containing one mouse embryo and culture to the blastocyst stage. The rate of embryo cleavage to a hatching blastocyst with a dynamic culture is significantly greater than that with a traditional static culture (p<0.05). The EWOD chip enhances the culture of mouse embryos in a dynamic environment. To test the reproductive outcome of the embryos collected from an EWOD chip as a culture system, we transferred embryos to pseudo-pregnant female mice and produced live births. These results demonstrate that an EWOD-based microfluidic device is capable of culturing mammalian embryos in a microfluidic biological manner, presaging future clinical application.

  4. Development of a security system for assisted reproductive technology (ART).

    PubMed

    Hur, Yong Soo; Ryu, Eun Kyung; Park, Sung Jin; Yoon, Jeong; Yoon, San Hyun; Yang, Gi Deok; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho

    2015-01-01

    In the field of assisted reproductive technology (ART), medical accidents can result in serious legal and social consequences. This study was conducted to develop a security system (called IVF-guardian; IG) that could prevent mismatching or mix-ups in ART. A software program was developed in collaboration with outside computer programmers. A quick response (QR) code was used to identify the patients, gametes and embryos in a format that was printed on a label. There was a possibility that embryo development could be affected by volatile organic components (VOC) in the printing material and adhesive material in the label paper. Further, LED light was used as the light source to recognize the QR code. Using mouse embryos, the effects of the label paper and LED light were examined. The stability of IG was assessed when applied in clinical practice after developing the system. A total of 104 cycles formed the study group, and 82 cycles (from patients who did not want to use IG because of safety concerns and lack of confidence in the security system) to which IG was not applied comprised the control group. Many of the label paper samples were toxic to mouse embryo development. We selected a particular label paper (P touch label) that did not affect mouse embryo development. The LED lights were non-toxic to the development of the mouse embryos under any experimental conditions. There were no differences in the clinical pregnancy rates between the IG-applied group and the control group (40/104 = 38.5 % and 30/82 = 36.6 %, respectively). The application of IG in clinical practice did not affect human embryo development or clinical outcomes. The use of IG reduces the misspelling of patient names. Using IG, there was a disadvantage in that each treatment step became more complicated, but the medical staff improved and became sufficiently confident in ART to offset this disadvantage. Patients who received treatment using the IG system also went through a somewhat tedious process, but there were no complaints. These patients gained further confidence in the practitioners over the course of treatment.

  5. Efficient vitrification of mouse embryos using the Kitasato Vitrification System as a novel vitrification device.

    PubMed

    Momozawa, Kenji; Matsuzawa, Atsushi; Tokunaga, Yukio; Abe, Shiori; Koyanagi, Yumi; Kurita, Miho; Nakano, Marina; Miyake, Takao

    2017-04-24

    Currently, the cryopreservation of embryos and oocytes is essential for assisted reproductive technology (ART) laboratories worldwide. This study aimed to evaluate the efficacy of the Kitasato Vitrification System (KVS) as a vitrification device for the cryopreservation of mouse embryos to determine whether this novel device can be adapted to the field of ART. In Experiment 1, blastocysts were vitrified using the KVS. Vitrified blastocysts were warmed and subsequently cultured for 72 h. In Experiment 2, 2-cell-stage embryos were vitrified using the KVS, and vitrified embryos were warmed and subsequently cultured for 96 h. In Experiment 3, we evaluated the in vivo developmental potential of vitrified 2-cell-stage embryos using the KVS, and in Experiment 4, we evaluated the cooling and warming rates for these devices using a numerical simulation. In Experiment 1, there were no significant differences between the survival rates of the KVS and a control device. However, re-expanded (100%) and hatching (91.8%) rates were significantly higher for blastocysts vitrified using the KVS. In Experiment 2, there were no significant differences between the survival rates, or rates of development to the blastocyst stage, of vitrified and fresh embryos. In Experiment 3, after embryo transfer, 41% of the embryos developed into live offspring. In Experiment 4, the cooling and warming rates of the KVS were 683,000 and 612,000 °C/min, respectively, exceeding those of the control device. Our study clearly demonstrates that the KVS is a novel vitrification device for the cryopreservation of mouse embryos at the blastocyst and 2-cell stage.

  6. Transcriptional and epigenetic control in mouse pluripotency: lessons from in vivo and in vitro studies.

    PubMed

    Habibi, Ehsan; Stunnenberg, Hendrik G

    2017-10-01

    Pluripotent cells were first derived from mouse blastocysts several decades ago. Since then, our knowledge of the molecular events that occur in the pre-implantation embryo has been vastly progressing. The emergence of epigenetics has revolutionized stem cell and developmental biology and further deepened our understanding of the underlying molecular mechanisms controlling the early embryo development. In particular, the emergence of massive parallel sequencing technologies has opened new avenues and became indispensable tools in modern biology. Additionally, development of new and exciting techniques for genome manipulation (TALEN and CRISPR/Cas9) and in vivo imaging provide unique opportunities to perturb and trace biological systems at very high resolution. Finally, recent single-cell - omics combined with sophisticated computational methodologies allow accurate, quantitative measurements for deconvolution of cellular variation in complex cell populations. Collectively, these achievements enabled the detailed characterization and monitoring of various cell states and trajectories during early stages of embryonic development. Here we review recent studies of the transcriptional and epigenetic changes during very early stages of mouse embryo development and compare these with pluripotent cells grown in vitro under different culture conditions. We discuss whether the in vitro cell states have an 'epi-phenocopy' in the embryo and refine our understanding of the circuitries controlling pluripotency and lineage commitment during early stages of mouse development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes.

    PubMed

    Morovic, Martin; Strejcek, Frantisek; Nakagawa, Shoma; Deshmukh, Rahul S; Murin, Matej; Benc, Michal; Fulka, Helena; Kyogoku, Hirohisa; Pendovski, Lazo; Fulka, Josef; Laurincik, Jozef

    2017-12-01

    It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.

  8. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy

    PubMed Central

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Borri, Paola

    2016-01-01

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. PMID:27151947

  9. Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy.

    PubMed

    Bradley, Josephine; Pope, Iestyn; Masia, Francesco; Sanusi, Randa; Langbein, Wolfgang; Swann, Karl; Borri, Paola

    2016-06-15

    Mammalian oocytes contain lipid droplets that are a store of fatty acids, whose metabolism plays a substantial role in pre-implantation development. Fluorescent staining has previously been used to image lipid droplets in mammalian oocytes and embryos, but this method is not quantitative and often incompatible with live cell imaging and subsequent development. Here we have applied chemically specific, label-free coherent anti-Stokes Raman scattering (CARS) microscopy to mouse oocytes and pre-implantation embryos. We show that CARS imaging can quantify the size, number and spatial distribution of lipid droplets in living mouse oocytes and embryos up to the blastocyst stage. Notably, it can be used in a way that does not compromise oocyte maturation or embryo development. We have also correlated CARS with two-photon fluorescence microscopy simultaneously acquired using fluorescent lipid probes on fixed samples, and found only a partial degree of correlation, depending on the lipid probe, clearly exemplifying the limitation of lipid labelling. In addition, we show that differences in the chemical composition of lipid droplets in living oocytes matured in media supplemented with different saturated and unsaturated fatty acids can be detected using CARS hyperspectral imaging. These results demonstrate that CARS microscopy provides a novel non-invasive method of quantifying lipid content, type and spatial distribution with sub-micron resolution in living mammalian oocytes and embryos. © 2016. Published by The Company of Biologists Ltd.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S

    Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using themore » methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)« less

  11. Regulation of cAMP on the first mitotic cell cycle of mouse embryos.

    PubMed

    Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi

    2008-03-01

    Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.

  12. Functional analysis of lysosomes during mouse preimplantation embryo development.

    PubMed

    Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Ohta, Yuki; Wada, Ayako; Ishida, Yuka; Kito, Seiji; Nishikawa, Tetsu; Minami, Naojiro; Sato, Ken; Kokubo, Toshiaki

    2013-01-01

    Lysosomes are acidic and highly dynamic organelles that are essential for macromolecule degradation and many other cellular functions. However, little is known about lysosomal function during early embryogenesis. Here, we found that the number of lysosomes increased after fertilization. Lysosomes were abundant during mouse preimplantation development until the morula stage, but their numbers decreased slightly in blastocysts. Consistently, the protein expression level of mature cathepsins B and D was high from the one-cell to morula stages but low in the blastocyst stage. One-cell embryos injected with siRNAs targeted to both lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) were developmentally arrested at the two-cell stage. Pharmacological inhibition of lysosomes also caused developmental retardation, resulting in accumulation of lipofuscin. Our findings highlight the functional changes in lysosomes in mouse preimplantation embryos.

  13. Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening.

    PubMed

    Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David

    2013-05-01

    Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.

  14. Comparison of embryo development between intracytoplasmic and Piezo-assisted sperm injection after treating mouse sperms by Ca2+ ionophore.

    PubMed

    Shahverdi, Abdolhossein; Movahedin, Mansoureh; Rezazadeh Valojerdi, Mojtaba; Kazemi Ashtiani, Saeid

    2007-10-01

    The purpose of this study was to evaluate the efficiency of intracytoplasmic sperm injection (ICSI) and Piezo-assisted sperm injection after pretreatment with calcium ionophore (CaI) on the mouse embryo development. In this study, the conventional ICSI and Piezo-ICSI procedures were used. The efficacy of the methods was examined after mouse matured oocytes were fertilized with or without CaI-treated sperms. Piezo-ICSI demonstrated significantly more favorable results, with a fertilization rate of 64% (conventional ICSI: 42%, P<0.001) and a cleavage rate of 73% (conventional ICSI: 58%, P<0.05). When the Piezo-ICSI procedure was performed with CaI-pretreated sperms, the cleavage rate significantly increased (92% vs. 73%, P<0.05). However, the fertilization rate did not change significantly (64% vs. 56%). The Piezo-ICSI accompanies with CaI-treated sperms is more efficient than the conventional ICSI method for fertilizing and thus obtaining more mouse embryos.

  15. Axial elongation in mouse embryos involves mediolateral cell intercalation behavior in the paraxial mesoderm

    NASA Astrophysics Data System (ADS)

    Yen, WeiWei; Burdsal, Carol; Periasamy, Ammasi; Sutherland, Ann E.

    2006-02-01

    The cell mechanical and signaling pathways involved in gastrulation have been studied extensively in invertebrates and amphibians, such as Xenopus, and more recently in non-mammalian vertebrates such as zebrafish and chick. However, because culturing mouse embryos extra-utero is very difficult, this fundamental process has been least characterized in the mouse. As the primary mammalian model for genetics, biochemistry, and the study of human disease and birth defects, it is important to investigate how gastrulation proceeds in murine embryos. We have developed a method of using 4D multiphoton excitation microscopy and extra-utero culture to visualize and characterize the morphogenetic movements in mouse embryos dissected at 8.5 days of gestation. Cells are labeled by expression of an X chromosome-linked enhanced green fluorescent protein (EGFP) transgene. This method has provided a unique approach, where, for the first time, patterns of cell behavior in the notochord and surrounding paraxial mesoderm can be visualized and traced quantitatively. Our observations of mouse embryos reveal both distinct differences as well as striking similarities in patterned cell motility relative to other vertebrate models such as Xenopus, where axial extension is driven primarily by mediolateral oriented cell behaviors in the notochord and paraxial somitic mesoderm. Unlike Xenopus, the width of the mouse notochord remains the same between 4-somite stage and 8-somite stage embryos. This implies the mouse notochord plays a lesser role in driving axial extension compared to Xenopus, although intercalation may occur where the anterior region of the node becomes notochordal plate. In contrast, the width of mouse paraxial mesoderm narrows significantly during this period and cells within the paraxial mesoderm are both elongated and aligned perpendicular to the midline. In addition, these cells are observed to intercalate, consistent with a role for paraxial mesoderm in driving convergence and extension. These cell behaviors are similar to those characterized in the axial mesoderm of frog embryos during convergence and extension[1], and suggests that tissues may play different roles in axial elongation between the frog and the mouse.

  16. Metabolic and mitochondrial dysfunction in early mouse embryos following maternal dietary protein intervention.

    PubMed

    Mitchell, Megan; Schulz, Samantha L; Armstrong, David T; Lane, Michelle

    2009-04-01

    Dietary supply of nutrients, both periconception and during pregnancy, influence the growth and development of the fetus and offspring and their health into adult life. Despite the importance of research efforts surrounding the developmental origins of health and disease hypothesis, the biological mechanisms involved remain elusive. Mitochondria are of major importance in the oocyte and early embryo, particularly as a source of ATP generation, and perturbations in their function have been related to reduced embryo quality. The present study examined embryo development following periconception exposure of females to a high-protein diet (HPD) or a low-protein diet (LPD) relative to a medium-protein diet (MPD; control), and we hypothesized that perturbed mitochondrial metabolism in the mouse embryo may be responsible for the impaired embryo and fetal development reported by others. Although the rate of development to the blastocyst stage did not differ between diets, both the HPD and LPD reduced the number of inner cell mass cells in the blastocyst-stage embryo. Furthermore, mitochondrial membrane potential was reduced and mitochondrial calcium levels increased in the 2-cell embryo. Embryos from HPD females had elevated levels of reactive oxygen species and ADP concentrations, indicative of metabolic stress and, potentially, the uncoupling of oxidative phosphorylation, whereas embryos from LPD females had reduced mitochondrial clustering around the nucleus, suggestive of an overall quietening of metabolism. Thus, although periconception dietary supply of different levels of protein is permissive of development, mitochondrial metabolism is altered in the early embryo, and the nature of the perturbation differs between HPD and LPD exposure.

  17. Effect of sperm entry on blastocyst development after in vitro fertilization and intracytoplasmic sperm injection - mouse model.

    PubMed

    Piotrowska-Nitsche, Karolina; Chan, Anthony W S

    2013-01-01

    To investigate whether in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), influence the embryo's development and its quality using the mouse as a model. Assisted fertilization was performed using ICSI and IVF. Fluorescent beads were adhered to the fertilization cone or place of previous sperm injection in the natural mated (NM), IVF and ICSI embryos, respectively. Embryo examination was carried out at the two-cell and blastocyst stage to determine the position of fluorescent bead. Protein expression was detected by fluorescence immunocytochemical staining and confocal microscopic imaging of blastocysts. IVF and ICSI embryos developed at rates comparable to NM group. Embryos show similar expression patterns of two transcription factors, Oct4 and Cdx2. The most preferred place for spermatozoa attachment was the equatorial site of the egg, whether fertilization occurred in vitro or under natural conditions. We also link the sperm entry position (SEP) to embryo morphology and the number of cells at the blastocyst stage, with no influence of the method of fertilization. IVF and ICSI, do not compromise in vitro pre-implantation development. Additional data, related to sperm entry, could offer further criteria to predict embryos that will implant successfully. Based on embryo morphology, developmental rate and protein expression level of key transcription factors, our results support the view that ART techniques, such as IVF and ICSI, do not perturb embryonic development or quality.

  18. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells

    PubMed Central

    van den Brink, Susanne C.; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A.; Martinez Arias, Alfonso

    2014-01-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’. PMID:25371360

  19. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.

    PubMed

    van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso

    2014-11-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'. © 2014. Published by The Company of Biologists Ltd.

  20. Development, glycolytic activity, and viability of preimplantation mouse embryos subjected to different periods of glucose starvation.

    PubMed

    Leppens-Luisier, G; Sakkas, D

    1997-03-01

    After compaction, the preimplantation mouse embryo switches to a glucose-based metabolism, whereas for the 2- to 4-cell stage embryo, glucose can be inhibitory. In this study, we investigated the adaptability of preimplantation embryos to different periods of glucose starvation by culturing in vitro fertilized (IVF) and in vivo-fertilized 1-cell OF1 mouse embryos. Blastocysts obtained from exposure to glucose starvation for different periods of time were examined for the number of cells in the trophectoderm and inner cell mass, and for glycolytic activity and viability. A high percentage of blastocysts was obtained when 1-cell embryos fertilized in vitro or in vivo were cultured in M16 until the 2-cell stage, were transferred to M16 without glucose (M16-G) until the 4- or 8-cell stage, and then were transferred to fresh M16-G. When in vivo-fertilized 1-cell embryos were cultured to the 2-cell stage and then left in M16, less than 5% formed blastocysts compared to 26% of those transferred into M16-G. Blastocysts obtained when in vivo-fertilized 1-cell embryos were left in M16-G after the 2-cell stage, however, showed a significantly elevated glycolytic activity compared to those transferred to fresh M16 or M16-G medium at the 4- or 8-cell stage. Interestingly, even though these embryos displayed elevated glycolytic activity, they did not exhibit differences in the numbers of inner cell mass and trophectoderm cells or in viability compared to embryos cultured according to other protocols. Blastocysts from all cultured protocols had a significantly lower total cell number and a lower trophectoderm, but not inner cell mass, cell number compared to blastocysts developed in vivo. This study documents the metabolic adaptability of the preimplantation embryo by highlighting its ability to proceed with development and retain viability when challenged with glucose starvation at different periods.

  1. Endometrial signals improve embryo outcome: functional role of vascular endothelial growth factor isoforms on embryo development and implantation in mice.

    PubMed

    Binder, N K; Evans, J; Gardner, D K; Salamonsen, L A; Hannan, N J

    2014-10-10

    Does vascular endothelial growth factor (VEGF) have important roles during early embryo development and implantation? VEGF plays key roles during mouse preimplantation embryo development, with beneficial effects on time to cavitation, blastocyst cell number and outgrowth, as well as implantation rate and fetal limb development. Embryo implantation requires synchronized dialog between maternal cells and those of the conceptus. Following ovulation, secretions from endometrial glands increase and accumulate in the uterine lumen. These secretions contain important mediators that support the conceptus during the peri-implantation phase. Previously, we demonstrated a significant reduction of VEGFA in the uterine cavity of women with unexplained infertility. Functional studies demonstrated that VEGF significantly enhanced endometrial epithelial cell adhesive properties and embryo outgrowth. Human endometrial lavages (n = 6) were obtained from women of proven fertility. Four-week old Swiss mice were superovulated and mated with Swiss males to obtain embryos for treatment with VEGF in vitro. Preimplantation embryo development was assessed prior to embryo transfer (n = 19-30/treatment group/output). Recipient F1 female mice (8-12 weeks of age) were mated with vasectomized males to induce pseudopregnancy and embryos were transferred. On Day 14.5 of pregnancy, uterine horns were collected for analysis of implantation rates as well as placental and fetal development (n = 14-19/treatment). Lavage fluid was assessed by western immunoblot analysis to determine the VEGF isoforms present. Mouse embryos were treated with either recombinant human (rh)VEGF, or VEGF isoforms 121 and 165. Preimplantation embryo development was quantified using time-lapse microscopy. Blastocysts were (i) stained for cell number, (ii) transferred to wells coated with fibronectin to examine trophoblast outgrowth or (iii) transferred to pseudo pregnant recipients to analyze implantation rates, placental and fetal development. Western blot analysis revealed the presence of VEGF121 and 165 isoforms in human uterine fluid. Time-lapse microscopy analysis revealed that VEGF (n = 22) and VEGF121 (n = 23) treatment significantly reduced the preimplantation mouse embryo time to cavitation (P < 0.05). VEGF and VEGF165 increased both blastocyst cell number (VEGF n = 27; VEGF165 n = 24: P < 0.001) and outgrowth (n = 15/treatment: 66 h, P < 0.001; 74, 90, 98 and 114 h, P < 0.01) on fibronectin compared with control. Furthermore, rhVEGF improved implantation rates and enhanced fetal limb development (P < 0.05). Due to the nature of this work, embryo development and implantation was only examined in the mouse. The absence or reduction in levels of VEGF during the preimplantation period likely affects key events during embryo development, implantation and placentation. The potential for improvement of clinical IVF outcomes by the addition of VEGF to human embryo culture media needs further investigation. This study was supported by a University of Melbourne Early Career Researcher Grant #601040, the NHMRC (L.A.S., Program grant #494802; Fellowship #1002028; N.J.H., Fellowship # 628927; J.E.; project grant #1047756) and L.A.S., Monash IVF Research and Education Foundation. N.K.B. was supported by an Australian Postgraduate Award. Work at PHI-MIMR Institute was also supported by the Victorian Government's Operational Infrastructure Support Program. There are no conflicts of interest to declare. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Microdrop preparation factors influence culture-media osmolality, which can impair mouse embryo preimplantation development.

    PubMed

    Swain, J E; Cabrera, L; Xu, X; Smith, G D

    2012-02-01

    Because media osmolality can impact embryo development, the effect of conditions during microdrop preparation on osmolality was examined. Various sizes of microdrops were prepared under different laboratory conditions. Drops were pipetted directly onto a dish and covered by oil (standard method) or pipetted on the dish, overlaid with oil before removing the underlying media and replaced with fresh media (wash-drop method). Drops were made at 23°C or on a heated stage (37°C) and with or without airflow. Osmolality was assessed at 5 min and 24h. The biological impact of osmolality change was demonstrated by culturing 1-cell mouse embryos in media with varying osmolality. Reduced drop volume, increased temperature and standard method were associated with a significant increase in osmolality at both 5 min and 24h (P-values <0.001, <0.0001 and <0.0001, respectively). There was a significant interaction between airflow, decreased volume, increased temperature and standard method that caused a significant increase in osmolality (40mOsm/kg) compared with controls (P<0.04). There was no significant change in osmolality over time. Mouse embryo development was significantly reduced in media with elevated osmolality (>310mOsm/kg; P<0.05). Procedures in the IVF laboratory can alter osmolality and impact embryo development. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  3. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods

    PubMed Central

    González, Sheyla; Ibáñez, Elena

    2010-01-01

    Purpose The aim of the present study is to compare three previously described mouse embryonic stem cell derivation methods to evaluate the influence of culture conditions, number of isolated blastomeres and embryonic stage in the derivation process. Methods Three embryonic stem cell derivation methods: standard, pre-adhesion and defined culture medium method, were compared in the derivation from isolated blastomeres and whole embryos at 4- and 8-cell stages. Results A total of 200 embryonic stem cell lines were obtained with an efficiency ranging from 1.9% to 72%. Conclusions Using either isolated blastomeres or whole embryos, the highest rates of mouse embryonic stem cell establishment were achieved with the defined culture medium method and efficiencies increased as development progressed. Using isolated blastomeres, efficiencies increased in parallel to the proportion of the embryo volume used to start the derivation process. PMID:20862536

  4. Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality

    PubMed Central

    Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang

    1999-01-01

    Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658

  5. Rhein Induces Oxidative Stress and Apoptosis in Mouse Blastocysts and Has Immunotoxic Effects during Embryonic Development.

    PubMed

    Huang, Chien-Hsun; Chan, Wen-Hsiung

    2017-09-20

    Rhein, a glucoside chemical compound found in a traditional Chinese medicine derived from the roots of rhubarb, induces cell apoptosis and is considered to have high potential as an antitumor drug. Several previous studies showed that rhein can inhibit cell proliferation and trigger mitochondria-related or endoplasmic reticulum (ER) stress-dependent apoptotic processes. However, the side effects of rhein on pre- and post-implantation embryonic development remain unclear. Here, we show that rhein has cytotoxic effects on blastocyst-stage mouse embryos and induces oxidative stress and immunotoxicity in mouse fetuses. Blastocysts incubated with 5-20 μM rhein showed significant cell apoptosis, as well as decreases in their inner cell mass cell numbers and total cell numbers. An in vitro development assay showed that rhein affected the developmental potentials of both pre- and post-implantation embryos. Incubation of blastocysts with 5-20 μM rhein was associated with increased resorption of post-implantation embryos and decreased fetal weight in an embryo transfer assay. Importantly, in an in vivo model, intravenous injection of dams with rhein (1, 3, and 5 mg/kg body weight/day) for four days resulted in apoptosis of blastocyst-stage embryos, early embryonic developmental injury, and decreased fetal weight. Intravenous injection of dams with 5 mg/kg body weight/day rhein significantly increased the total reactive oxygen species (ROS) content of fetuses and the transcription levels of antioxidant proteins in fetal livers. Additional work showed that rhein induced apoptosis through ROS generation, and that prevention of apoptotic processes effectively rescued the rhein-induced injury effects on embryonic development. Finally, the transcription levels of the innate-immunity related genes, CXCL1 , IL-1 β and IL-8 , were down-regulated in the fetuses of dams that received intravenous injections of rhein. These results collectively show that rhein has the potential to induce embryonic cytotoxicity and induce oxidative stress and immunotoxicity during the development of mouse embryos.

  6. Parental genetic material and oxygen concentration affect hatch dynamics of mouse embryo in vitro.

    PubMed

    Zhan, Shaoquan; Cao, Shanbo; Du, Hongzi; Sun, Yuan; Li, Li; Ding, Chenhui; Zheng, Haiyan; Huang, Junjiu

    2018-04-21

    Hatching is crucial for mammalian embryo implantation, since difficulties during this process can lead to implantation failure, ectopic pregnancy and consequent infertility. Despite years of intensive researches, how internal and external factors affecting embryo hatch are still largely unclear. The effects of parental genetic material and oxygen concentration on hatch process were examined. Fertilized and parthenogenetic mouse preimplantation embryos were cultured in vitro under 5 and 20% oxygen for 120 h. Zona pellucida drilling by Peizo micromanipulation were performed to resemble the breach by sperm penetration. Firstly, parthenogenetic embryos had similarly high blastocyst developmental efficiency as fertilized embryos, but significantly higher hatch ratio than fertilized embryos in both O 2 concentrations. 5% O 2 reduced the hatch rate of fertilized embryos from 58.2 to 23.8%, but increased that of parthenogenetic embryos from 81.2 to 90.8% significantly. Analogously, 5% O 2 decreased the ratio of Oct4-positive cells in fertilized blastocysts, whereas increased that in parthenogenetic blastocysts. Additionally, 5% O 2 increased the total embryonic cell number in both fertilized and parthegenetic embryos, when compared to 20% O 2 , and the total cell number of fertilized embryos was also higher than that of parthegenetic embryos, despite O 2 concentration. Real-time PCR revealed that the expression of key genes involving in MAPK pathway and superoxide dismutase family might contribute to preimplantation development and consequent blastocyst hatch in vitro. Finally, we showed that fertilized and parthenogenetic embryos have diverse hatch dynamics in vitro, although the zona pellucida integrity is not the main reason for their mechanistic differences. Both parental genetic material and O 2 concentration, as the representative of intrinsic and extrinsic factors respectively, have significant impacts on mouse preimplantation development and subsequent hatch dynamics, probably by regulating the gene expression involving in MAPK pathway and superoxide dismutase family to control embryonic cell proliferation and allocation of ICM cells.

  7. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    PubMed

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-03-29

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.

  8. A novel embryo culture media supplement that improves pregnancy rates in mice.

    PubMed

    Highet, A R; Bianco-Miotto, T; Pringle, K G; Peura, A; Bent, S; Zhang, J; Nottle, M B; Thompson, J G; Roberts, C T

    2017-03-01

    The preimplantation embryo in vivo is exposed to numerous growth factors in the female reproductive tract, which are not recapitulated in embryo culture media in vitro The IGF2 and plasminogen activator systems facilitate blastocyst development. We hypothesized that the addition of IGF2 in combination with urokinase plasminogen activator (uPA) and plasminogen could improve rates of blastocyst hatching and implantation in mice. B6BcF1 and CBAB6F2 mouse embryos were divided into one of four supplemented culture media treatment groups: (1) control (media only); (2) 12.5 nM IGF2; (3) 10 µg/mL uPA and 5 µg/mL plasminogen; or (4) a combination of IGF2, uPA and plasminogen treatments. Embryo development to blastocyst stage and hatching were assessed before transfer to pseudopregnant recipient females and implantation, pregnancy rates and postnatal growth were assessed. After 90.5 h of culture, IGF2 + U + P treatment increased the percentage of B6BcF1 embryos that were hatching/hatched and percentage developing to blastocyst stage compared with controls (P < 0.02). Following B6BcF1 embryo transfer, IGF2 + U + P treatment increased implantation sites at day 8 of pregnancy compared with controls (P < 0.05). Replication in the CBAB6F2 mouse strain showed significant improvements in pregnancy rates at days 8 and 18 but not in blastocyst development. No adverse effects were seen on gestational age, litter size or birthweight, or the reproductive capacity of offspring of IGF2 + U + P treated embryos. For embryos susceptible to detrimental effects of in vitro culture, IGF2, uPA and plasminogen supplementation of culture media can improve pregnancy success, but the effect of treatment is dependent on the mouse strain. © 2017 Society for Reproduction and Fertility.

  9. Non-destructive monitoring of mouse embryo development and its qualitative evaluation at the molecular level using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishigaki, Mika; Hashimoto, Kosuke; Sato, Hidetoshi; Ozaki, Yukihiro

    2017-03-01

    Current research focuses on embryonic development and quality not only by considering fundamental biology, but also by aiming to improve assisted reproduction technologies, such as in vitro fertilization. In this study, we explored the development of mouse embryo and its quality based on molecular information, obtained nondestructively using Raman spectroscopy. The detailed analysis of Raman spectra measured in situ during embryonic development revealed a temporary increase in protein content after fertilization. Proteins with a β-sheet structure—present in the early stages of embryonic development—are derived from maternal oocytes, while α-helical proteins are additionally generated by switching on a gene after fertilization. The transition from maternal to embryonic control during development can be non-destructively profiled, thus facilitating the in situ assessment of structural changes and component variation in proteins generated by metabolic activity. Furthermore, it was indicated that embryos with low-grade morphology had high concentrations of lipids and hydroxyapatite. This technique could be used for embryo quality testing in the future.

  10. Live dynamic OCT imaging of cardiac structure and function in mouse embryos with 43 Hz direct volumetric data acquisition

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Singh, Manmohan; Lopez, Andrew L.; Wu, Chen; Raghunathan, Raksha; Schill, Alexander; Li, Jiasong; Larin, Kirill V.; Larina, Irina V.

    2016-03-01

    Efficient phenotyping of cardiac dynamics in live mouse embryos has significant implications on understanding of early mammalian heart development and congenital cardiac defects. Recent studies established optical coherence tomography (OCT) as a powerful tool for live embryonic heart imaging in various animal models. However, current four-dimensional (4D) OCT imaging of the beating embryonic heart largely relies on gated data acquisition or postacquisition synchronization, which brings errors when cardiac cycles lack perfect periodicity and is time consuming and computationally expensive. Here, we report direct 4D OCT imaging of the structure and function of cardiac dynamics in live mouse embryos achieved by employing a Fourier domain mode-locking swept laser source that enables ~1.5 MHz A-line rate. Through utilizing both forward and backward scans of a resonant mirror, we obtained a ~6.4 kHz frame rate, which allows for a direct volumetric data acquisition speed of ~43 Hz, around 20 times of the early-stage mouse embryonic heart rate. Our experiments were performed on mouse embryos at embryonic day 9.5. Time-resolved 3D cardiodynamics clearly shows the heart structure in motion. We present analysis of cardiac wall movement and its velocity from the primitive atrium and ventricle. Our results suggest that the combination of ultrahigh-speed OCT imaging with live embryo culture could be a useful embryonic heart phenotyping approach for mouse mutants modeling human congenital heart diseases.

  11. Successful development of viable blastocysts from enhanced green fluorescent protein transgene-microinjected mouse embryos: comparison of culture media.

    PubMed

    Devgan, Vikram; Seshagiri, Polani B

    2003-07-01

    To improve efficiency of transgenesis, we compared M16 and CZB embryo culture media, supporting development to blastocysts of FVB/N mouse pronuclear-eggs, microinjected with enhanced green fluorescent protein (EGFP) transgene. When EGFP-injected-eggs were cultured (120 hr), blastocyst development was significantly (P < 0.03) higher in M16 medium (72.5 +/- 2.4%) than that in CZB (13.2 +/- 4.3%) or CZBG (CZB with 5.6 mM glucose at 48 hr culture) (62.1 +/- 3.7%) media. Blastocyst development of noninjected embryos was higher in M16 (92.0 +/- 2.6%) and CZBG (83.9 +/- 3.9%) media than in CZB (31.9 +/- 2.8%) medium (P < 0.0001). However, percentages of morulae at 72 hr were comparable in all treatments. Developed blastocysts were better in M16 than in CZB or CZBG media. Consistent with this, mean cell number per blastocyst, developed from injected embryos, was significantly (P < 0.002) higher in M16 medium (79.6), than those in CZB (31.3) or CZBG media (60.7); similar with noninjected embryos. Cell allocation to trophectoderm (TE) and inner cell mass (ICM), i.e., TE:ICM ratio, for injected blastocysts in M16 (3.0) was less than (P < 0.05) those in CZB (4.2) and CZBG (4.4) media; similar with noninjected blastocysts. Moreover, blastocysts, developed in M16 and CZBG media, hatched, attached, and exhibited trophoblast outgrowth; 18% of them showed EGFP-expression. Importantly, blastocysts from M16 medium produced live transgenic "green" pups (11%) following embryo transfer. Taken together, our results indicate that supplementation of glucose, at 48 hr of culture (CZBG), is required for morula to blastocyst transition; M16 medium, containing glucose from the beginning of culture, is superior to CZB or CZBG for supporting development of biologically viable blastocysts from EGFP-transgene-injected mouse embryos. Copyright 2003 Wiley-Liss, Inc.

  12. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture.

    PubMed

    Miller-Pinsler, Lutfiya; Wells, Peter G

    2015-09-15

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat(b)/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug=GD 1), exposed for 24h to 2 or 4mg/mL EtOH or vehicle, and evaluated for functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p<0.001). Maternal pretreatment of C57BL/6 WT dams with 50kU/kg PEG-catalase (PEG-cat) 8h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p<0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p<0.01), and trends for reduced anterior neuropore closure, turning and crown-rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p<0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Role of glucose in mouse preimplantation embryo development.

    PubMed

    Martin, K L; Leese, H J

    1995-04-01

    Mouse preimplantation embryos consume pyruvate preferentially during the early developmental stages, before glucose becomes the predominant energy substrate in the blastocyst. To investigate the importance of the switch to glucose utilization at the later developmental stages, mouse embryos from F1 hybrid mice (CBA/Ca x C57BL/6) were cultured from the one- and two-cell stages (22 and 46 h post hCG, respectively) for 5 days in a modified medium, M16, containing 0.33 mM pyruvate and 5 or 23 mM D + L-lactate, in the presence and absence of 1 mM glucose (M16 + G and M16 - G, respectively). Nutrient uptakes were also determined over this time. Some embryos cultured in M16 - G were transferred to M16 + G at 94 or 118 h post hCG. Embryos cultured from the two-cell stage in M16 + G exhibited the characteristic fall in pyruvate consumption between the morula and the blastocyst stage; those cultured from the two-cell stage in M16 - G compensated for the lack of glucose by consuming increasing amounts of pyruvate, from 2.78 pmol/embryo/h at 58 h post hCG to 5.21 pmol/embryo/h at 154 h post hCG. However, the percentage of embryos developing to the blastocyst stage, the hatching rate, and blastocyst cell numbers (50.6 +/- 2.5 [28] vs. 105 +/- 3.8 [37]) were all lower in this group. When exposed to glucose at 94 or 118 h post hCG, embryos cultured from the two-cell stage in M16 - G readily consumed glucose in preference to pyruvate, although the characteristic fall in pyruvate consumption was not observed. One-cell embryos cultured continuously in M16 - G were only able to develop to the morula stage, after which time they degenerated. In these embryos pyruvate was readily consumed between 22 and 94 h post hCG, before falling from 2.77 pmol/embryo/h at 83 h post hCG to 0.045 pmol/embryo/h at 130 h post hCG. Transfer of these embryos to M16 + G at 94 and 118 h post hCG did not support development to the hatching blastocyst stage.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Glucocorticoid teratogenesis in mouse whole embryo culture.

    PubMed

    Pratt, R M; Perry, E L; Chapman, L M; Goulding, E H

    1984-08-01

    Glucocorticoids, such as triamcinolone acetonide (TAC-A) and triamcinolone hexacetonide (TAC-HA), are potent inducers of cleft palate in vivo in various mouse strains when administered on day 11 of gestation, whereas they are poor or ineffective inducers of cleft lip when given on day 7. The purpose of the present study was to determine whether glucocorticoids are capable of interfering with early embryonic development in culture. CD-1 mouse embryos were cultured for 48 hours starting either on day 8 (plug day 0) with the embryo inside the yolk sac, or on day 10 with the embryo exteriorized from its functional yolk sac. At the end of the culture period, embryos were examined grossly for malformations and biochemically for altered DNA and protein levels. With the day 8 cultures, TAC-A produced a dose-dependent inhibition of growth along with malformations consisting of cardiac irregularities, abnormal rotation, and irregular neural tube closure. With the day 10 cultures, these malformations were not observed, presumably due to the advanced stage of development when the embryos were exposed to TAC-A; however, TAC-A did produce growth inhibition along with cleft lip. When TAC-HA was administered in vivo to pregnant donor females on day 7, in combination with TAC-A added on day 10 to the culture medium, there was a dramatic increase in the frequency of cleft lip along with other alterations in craniofacial appearance. Our results demonstrate that glucocorticoids are capable of directly affecting embryonic growth and development during the early stages of organogenesis.

  15. Cloning and expression of sheep DNA methyltransferase 1 and its development-specific isoform.

    PubMed

    Taylor, Jane; Moore, Hannah; Beaujean, Nathalie; Gardner, John; Wilmut, Ian; Meehan, Richard; Young, Lorraine

    2009-05-01

    Unlike the mouse embryo, where loss of DNA methylation in the embryonic nucleus leaves cleavage stage embryos globally hypomethylated, sheep preimplantation embryos retain high levels of methylation until the blastocyst stage. We have cloned and sequenced sheep Dnmt1 and found it to be highly conserved with both the human and mouse homologues. Furthermore, we observed that the transcript normally expressed in adult somatic tissues is highly abundant in sheep oocytes. Throughout sheep preimplantation development the protein is retained in the cytoplasm whereas Dnmt1 transcript production declines after the embryonic genome activation at the 8-16 cell stage. Attempts to clone oocyte-specific 5' regions of Dnmt1, known to be present in the mouse and human gene, were unsuccessful. However, a novel ovine Dnmt1 exon, theoretically encoding 13 amino acids, was found to be expressed in sheep oocytes, preimplantation embryos and early fetal lineages, but not in the adult tissue. RNAi-mediated knockdown of this novel transcript resulted in embryonic developmental arrest at the late morula stage, suggesting an essential role for this isoform in sheep blastocyst formation. (c) 2008 Wiley-Liss, Inc.

  16. Assessment of the developmental totipotency of neural cells in the cerebral cortex of mouse embryo by nuclear transfer

    PubMed Central

    Yamazaki, Yukiko; Makino, Hatsune; Hamaguchi-Hamada, Kayoko; Hamada, Shun; Sugino, Hidehiko; Kawase, Eihachiro; Miyata, Takaki; Ogawa, Masaharu; Yanagimachi, Ryuzo; Yagi, Takeshi

    2001-01-01

    When neural cells were collected from the entire cerebral cortex of developing mouse fetuses (15.5–17.5 days postcoitum) and their nuclei were transferred into enucleated oocytes, 5.5% of the reconstructed oocytes developed into normal offspring. This success rate was the highest among all previous mouse cloning experiments that used somatic cells. Forty-four percent of live embryos at 10.5 days postcoitum were morphologically normal when premature and early-postmitotic neural cells from the ventricular side of the cortex were used. In contrast, the majority (95%) of embryos were morphologically abnormal (including structural abnormalities in the neural tube) when postmitotic-differentiated neurons from the pial side of the cortex were used for cloning. Whereas 4.3% of embryos cloned with ventricular-side cells developed into healthy offspring, only 0.5% of those cloned with differentiated neurons in the pial side did so. These facts seem to suggest that the nuclei of neural cells in advanced stages of differentiation had lost their developmental totipotency. The underlying mechanism for this developmental limitation could be somatic DNA rearrangements in differentiating neural cells. PMID:11698647

  17. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning

    PubMed Central

    Morgani, Sophie M; Metzger, Jakob J; Nichols, Jennifer

    2018-01-01

    During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species. PMID:29412136

  18. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos

    EPA Science Inventory

    Confocal laser scanning microscopy combined with a vital stain has been used to study apoptosis in organogenesis-stage mouse embryos. In order to achieve optical sectioning through embryos, it was necessary to use low power objectives and to prepare the sample appropriately. Mous...

  19. Development of teeth in chick embryos after mouse neural crest transplantations.

    PubMed

    Mitsiadis, Thimios A; Chéraud, Yvonnick; Sharpe, Paul; Fontaine-Pérus, Josiane

    2003-05-27

    Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.

  20. In vitro studies on normal and pathological preimplantation development. I. Events of normal mouse preimplantation development as revealed by microcinematography.

    PubMed

    Checiu, M; Schlechta, B; Checiu, I; Sandor, S

    1990-01-01

    After briefly presenting the main historical data of in vitro culture of preimplantation mouse embryos and their filming, the first own observations on normal preimplantation development made by using microcinematography are presented: development from two-cell to eight-cell embryos; compaction and cavitation. The timing and the duration of various developmental events were recorded. Own observations were compared with previous cinematographic data reported by other authors. Some processes needing further investigations are evidenced: rotation within the zona pellucida, penetration of cytoplasmic emissions through the zona, contraction and reexpansion.

  1. In vitro culture of individual mouse preimplantation embryos: the role of embryo density, microwells, oxygen, timing and conditioned media.

    PubMed

    Kelley, Rebecca L; Gardner, David K

    2017-05-01

    Single embryo culture is suboptimal compared with group culture, but necessary for embryo monitoring, and culture systems should be improved for single embryos. Pronucleate mouse embryos were used to assess the effect of culture conditions on single embryo development. Single culture either before or after compaction reduced cell numbers (112.2 ± 3.1; 110.2 ± 3.5) compared with group culture throughout (127.0 ± 3.4; P < 0.05). Reduction of media volume from 20 µl to 2 µl increased blastocyst cell numbers in single embryos cultured in 5% oxygen (84.4 ± 3.2 versus 97.8 ± 2.8; P < 0.05), but not in 20% oxygen (55.2 ± 2.9 versus 57.1 ± 2.8). Culture in microwell plates for the EmbryoScope and Primo Vision time-lapse systems changed cleavage timings and increased inner cell mass cell number (24.1 ± 1.0; 23.4 ± 1.2) compared with a 2 µl microdrop (18.4 ± 1.0; P < 0.05). Addition of embryo-conditioned media to single embryos increased hatching rate and blastocyst cell number (91.5 ± 4.7 versus 113.1 ± 4.4; P < 0.01). Single culture before or after compaction is therefore detrimental; oxygen, media volume and microwells influence single embryo development; and embryo-conditioned media may substitute for group culture. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  2. Ice nucleating agents allow embryo freezing without manual seeding.

    PubMed

    Teixeira, Magda; Buff, Samuel; Desnos, Hugo; Loiseau, Céline; Bruyère, Pierre; Joly, Thierry; Commin, Loris

    2017-12-01

    Embryo slow freezing protocols include a nucleation induction step called manual seeding. This step is time consuming, manipulator dependent and hard to standardize. It requires access to samples, which is not always possible within the configuration of systems, such as differential scanning calorimeters or cryomicroscopes. Ice nucleation can be induced by other methods, e.g., by the use of ice nucleating agents. Snomax is a commercial preparation of inactivated proteins extracted from Pseudomonas syringae. The aim of our study was to investigate if Snomax can be an alternative to manual seeding in the slow freezing of mouse embryos. The influence of Snomax on the pH and osmolality of the freezing medium was evaluated. In vitro development (blastocyst formation and hatching rates) of fresh embryos exposed to Snomax and embryo cryopreserved with and without Snomax was assessed. The mitochondrial activity of frozen-thawed blastocysts was assessed by JC-1 fluorescent staining. Snomax didn't alter the physicochemical properties of the freezing medium, and did not affect embryo development of fresh embryos. After cryopreservation, the substitution of manual seeding by the ice nucleating agent (INA) Snomax did not affect embryo development or embryo mitochondrial activity. In conclusion, Snomax seems to be an effective ice nucleating agent for the slow freezing of mouse embryos. Snomax can also be a valuable alternative to manual seeding in research protocols in which manual seeding cannot be performed (i.e., differential scanning calorimetry and cryomicroscopy). Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Mechanical control of notochord morphogenesis by extra-embryonic tissues in mouse embryos.

    PubMed

    Imuta, Yu; Koyama, Hiroshi; Shi, Dongbo; Eiraku, Mototsugu; Fujimori, Toshihiko; Sasaki, Hiroshi

    2014-05-01

    Mammalian embryos develop in coordination with extraembryonic tissues, which support embryonic development by implanting embryos into the uterus, supplying nutrition, providing a confined niche, and also providing patterning signals to embryos. Here, we show that in mouse embryos, the expansion of the amniotic cavity (AC), which is formed between embryonic and extraembryonic tissues, provides the mechanical forces required for a type of morphogenetic movement of the notochord known as convergent extension (CE) in which the cells converge to the midline and the tissue elongates along the antero-posterior (AP) axis. The notochord is stretched along the AP axis, and the expansion of the AC is required for CE. Both mathematical modeling and physical simulation showed that a rectangular morphology of the early notochord caused the application of anisotropic force along the AP axis to the notochord through the isotropic expansion of the AC. AC expansion acts upstream of planar cell polarity (PCP) signaling, which regulates CE movement. Our results highlight the importance of extraembryonic tissues as a source of the forces that control the morphogenesis of embryos. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Hes1 Is Required for Appropriate Morphogenesis and Differentiation during Mouse Thyroid Gland Development

    PubMed Central

    Carre, Aurore; Rachdi, Latif; Tron, Elodie; Richard, Bénédicte; Castanet, Mireille; Schlumberger, Martin; Bidart, Jean-Michel

    2011-01-01

    Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis). To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1 −/− mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p<0.05) at E9.5 and at E11.5. Moreover, Hes1 −/− mouse embryos showed a significantly smaller total thyroid surface area (−40 to −60%) compared to wild type mice at all study time points (E9.5−E16.5). In both Hes1 −/− and wild type mouse embryos, most Nkx2-1-positive thyroid cells expressed the cell cycle inhibitor p57 at E9.5 in correlation with low proliferation index. In Hes1 −/− mouse embryos, fusion of the median anlage with the ultimobranchial bodies was delayed by 3 days (E16.5 vs. E13.5 in wild type mice). After fusion of thyroid anlages, hypoplastic Hes1 −/− thyroids revealed a significantly decreased labelling area for T4 (−78%) and calcitonin (−65%) normalized to Nkx2-1 positive cells. Decreased T4-synthesis might be due to reduced Nis labelling area (−69%). These findings suggest a dual role of Hes1 during thyroid development: first, control of the number of both thyrocyte and C-cell progenitors, via a p57-independent mechanism; second, adequate differentiation and endocrine function of thyrocytes and C-cells. PMID:21364918

  5. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    PubMed

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  6. RBP-Jκ-Dependent Notch Signaling Is Dispensable for Mouse Early Embryonic Development

    PubMed Central

    Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-01-01

    The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion. PMID:16782866

  7. RBP-Jkappa-dependent notch signaling is dispensable for mouse early embryonic development.

    PubMed

    Souilhol, Céline; Cormier, Sarah; Tanigaki, Kenji; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-07-01

    The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.

  8. TRAF4 and Castration Resistant Prostate Cancer

    DTIC Science & Technology

    2016-10-01

    Generation of TRAF4 mouse This minigene was then inserted into the Rosa 26 locus in the mouse embryonic stem cells. After embryo injection, we...were delayed in the Major Task 3 subtask 2 and 3. The problem was we did not get germline transmission after embryo injection. The embryo injection...was performed in the Genetically Engineered Mouse Core at Baylor College of Medicine. Similar problem was also reported with other PIs’ embryo

  9. Rapid and simple method for in vivo ex utero development of mouse embryo explants.

    PubMed

    Gonçalves, André B; Thorsteinsdóttir, Sólveig; Deries, Marianne

    2016-01-01

    The in utero development of mammals drastically reduces the accessibility of the mammalian embryo and therefore limits the range of experimental manipulation that can be done to study functions of genes or signaling pathways during embryo development. Over the past decades, tissue and organ-like culture methods have been developed with the intention of reproducing in vivo situations. Developing accessible and simple techniques to study and manipulate embryos is an everlasting challenge. Herein, we describe a reliable and quick technique to culture mid-gestation explanted mouse embryos on top of a floating membrane filter in a defined medium. Viability of the cultured tissues was assessed by apoptosis and proliferation analysis showing that cell proliferation is normal and there is only a slight increase in apoptosis after 12h of culture compared to embryos developing in utero. Moreover, differentiation and morphogenesis proceed normally as assessed by 3D imaging of the transformation of the myotome into deep back muscles. Not only does muscle cell differentiation occur as expected, but so do extracellular matrix organization and the characteristic splitting of the myotome into the three epaxial muscle groups. Our culture method allows for the culture and manipulation of mammalian embryo explants in a very efficient way, and it permits the manipulation of in vivo developmental events in a controlled environment. Explants grown under these ex utero conditions simulate real developmental events that occur in utero. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  10. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller-Pinsler, Lutfiya; Wells, Peter G., E-mail: pg.wells@utoronto.ca; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario

    Reactive oxygen species (ROS) have been implicated in the mechanism of ethanol (EtOH) teratogenicity, but the protective role of the embryonic antioxidative enzyme catalase is unclear, as embryonic activity is only about 5% of maternal levels. We addressed this question in a whole embryo culture model. C57BL/6 mouse embryos expressing human catalase (hCat) or their wild-type (C57BL/6 WT) controls, and C3Ga.Cg-Cat{sup b}/J catalase-deficient, acatalasemic (aCat) mouse embryos or their wild-type C3HeB/FeJ (C3H WT) controls, were explanted on gestational day (GD) 9 (plug = GD 1), exposed for 24 h to 2 or 4 mg/mL EtOH or vehicle, and evaluated formore » functional and morphological changes. hCat and C57BL/6 WT vehicle-exposed embryos developed normally, while EtOH was embryopathic in C57BL/6 WT embryos, evidenced by decreases in anterior neuropore closure, somites developed, turning and head length, whereas hCat embryos were protected (p < 0.001). Maternal pretreatment of C57BL/6 WT dams with 50 kU/kg PEG-catalase (PEG-cat) 8 h prior to embryo culture, which increases embryonic catalase activity, blocked all EtOH embryopathies (p < 0.001). Vehicle-exposed aCat mouse embryos had lower yolk sac diameters compared to WT controls, suggesting that endogenous ROS are embryopathic. EtOH was more embryopathic in aCat embryos than WT controls, evidenced by reduced head length and somite development (p < 0.01), and trends for reduced anterior neuropore closure, turning and crown–rump length. Maternal pretreatment of aCat dams with PEG-Cat blocked all EtOH embryopathies (p < 0.05). These data suggest that embryonic catalase is a determinant of risk for EtOH embryopathies. - Highlights: • Ethanol (EtOH) exposure causes structural embryopathies in embryo culture. • Genetically enhanced catalase (hCat) protects against EtOH embryopathies. • Genetically deficient catalase (aCat) exacerbates EtOH embryopathies. • Embryonic catalase is developmentally important. • EtOH developmental toxicity involves reactive oxygen species formation.« less

  11. The Effect of Vitrification and in vitro Culture on the Adenosine Triphosphate Content and Mitochondrial Distribution of Mouse Pre-Implantation Embryos

    PubMed Central

    Amoushahi, Mahboobeh; Salehnia, Mojdeh; HosseinKhani, Saman

    2013-01-01

    Background: The mitochondria are an important source of adenosine triphosphate (ATP) production in pre-implantation embryo. Therefore, the objective of this study was to investigate the effect of vitrification and in vitro culture of mouse embryos on their mitochondrial distribution and ATP content. Methods: The embryos at 2-PN, 4-cell and blastocyst stages were collected from the oviduct of stimulated pregnant mice and uterine horns. Then, the embryos were vitrified with the cryotop method using ethylene glycol and dimethylsulphoxide. After evaluating the survival rates of vitrified embryos, their development to hatching stages were assessed. The ATP content of collected in vivo and in vitro embryos at different stages was measured by luciferin-luciferase bioluminescence assay. The distribution of mitochondria was studied using Mito-tracker green staining under a fluorescent microscope. Results: The survival rates of vitrified embryos at 2-PN, 4-cell and early blastocyst stages were 84.3, 87.87 and 89.89%, respectively. The hatching rates in previous developmental stages in vitrified group were 57.44, 66.73 and 70.89% and in non-vitrified group were 66.32, 73.25 and 75.89%, respectively (P>0.05). The ATP content of in vivo or in vitro collected embryos was not significantly different in both vitrified and non-vitrified groups (P>0.05). Mitochondrial distribution of vitrified and non-vitrified 2-PN embryos was similar, but some clampings or large aggregation of mitochondria within the vitrified 4-cell embryos was prominent. Conclusions: Vitrification method did not affect the mouse embryo ATP content. Also, the cellular stress was not induced by this procedure and the safety of vitrification was shown. PMID:23748889

  12. Development of whole and demi-embryos of mice in culture and in vivo after supercooled storage.

    PubMed

    Fuku, E; Fiser, P S; Marcus, G J; Sasada, H; Downey, B R

    1993-12-01

    Demi-embryos (produced by destroying 1 or 2 blastomeres of 2- or 4-cell embryos, respectively) and intact mouse embryos were cultured to the blastocyst stage, stored at -5 degrees C for 48 h, then cultured for 24 h and transferred into pseudopregnant recipients. Supercooled storage did not impair the developmental potential of whole or demi-embryos in vitro, nor was there a difference between whole and demi-embryos with respect to growth in vitro. Similarly, there was no effect of supercooling on development of intact or demi embryos after transfer into pseudopregnant recipient mice, but fewer recipients of demi-embryos remained pregnant (P < 0.05). This was considered to be partly due to the lesser ability of demi-embryos to maintain luteal function and establish pregnancy.

  13. In vivo photoacoustic imaging of mouse embryos

    NASA Astrophysics Data System (ADS)

    Laufer, Jan; Norris, Francesca; Cleary, Jon; Zhang, Edward; Treeby, Bradley; Cox, Ben; Johnson, Peter; Scambler, Pete; Lythgoe, Mark; Beard, Paul

    2012-06-01

    The ability to noninvasively image embryonic vascular anatomy in mouse models is an important requirement for characterizing the development of the normal cardiovascular system and malformations in the heart and vascular supply. Photoacoustic imaging, which can provide high resolution non invasive images of the vasculature based upon optical absorption by endogenous hemoglobin, is well suited to this application. In this study, photoacoustic images of mouse embryos were obtained ex vivo and in vivo. The images show intricate details of the embryonic vascular system to depths of up to 10 mm, which allowed whole embryos to be imaged in situ. To achieve this, an all-optical photoacoustic scanner and a novel time reversal image reconstruction algorithm, which provide deep tissue imaging capability while maintaining high spatial resolution and contrast were employed. This technology may find application as an imaging tool for preclinical embryo studies in developmental biology as well as more generally in preclinical and clinical medicine for studying pathologies characterized by changes in the vasculature.

  14. Maternally Contributed Folate Receptor 1 Is Expressed in Ovarian Follicles and Contributes to Preimplantation Development

    PubMed Central

    Strandgaard, Trine; Foder, Solveig; Heuck, Anders; Ernst, Erik; Nielsen, Morten S.; Lykke-Hartmann, Karin

    2017-01-01

    Folates have been shown to play a crucial role for proper development of the embryo as folate deficiency has been associated with reduced developmental capacity such as increased risk of fetal neural tube defects and spontanous abortion. Transcripts encoding the reduced folate carrier RFC1 (SLC19A1 protein) and the high-affinity folate receptor FOLR1 are expressed in oocytes and preimplantation embryos, respectively. In this study, we observed maternally contributed FOLR1 protein during mouse and human ovarian follicle development, and 2-cell mouse embryos. In mice, FOLR1 was highly enriched in oocytes from primary, secondary and tertiary follicles, and in the surrounding granulosa cells. Interestingly, during human follicle development, we noted a high and specific presence of FOLR1 in oocytes from primary and intermediate follicles, but not in the granulosa cells. The distribution of FOLR1 in follicles was noted as membrane-enriched but also seen in the cytoplasm in oocytes and granulosa cells. In 2-cell embryos, FOLR1-eGFP fusion protein was detected as cytoplasmic and membrane-associated dense structures, resembling the distribution pattern observed in ovarian follicle development. Knock-down of Folr1 mRNA function was accomplished by microinjection of short interference (si)RNA targeting Folr1, into mouse pronuclear zygotes. This revealed a reduced capacity of Folr1 siRNA-treated embryos to develop to blastocyst compared to the siRNA-scrambled control group, indicating that maternally contributed protein and zygotic transcripts sustain embryonic development combined. In summary, maternally contributed FOLR1 protein appears to maintain ovarian functions, and contribute to preimplantation development combined with embryonically synthesized FOLR1. PMID:29034232

  15. Culture medium, gas atmosphere and MAPK inhibition affect regulation of RNA-binding protein targets during mouse preimplantation development.

    PubMed

    Calder, Michele D; Watson, Patricia H; Watson, Andrew J

    2011-11-01

    During oogenesis, mammalian oocytes accumulate maternal mRNAs that support the embryo until embryonic genome activation. RNA-binding proteins (RBP) may regulate the stability and turnover of maternal and embryonic mRNAs. We hypothesised that varying embryo culture conditions, such as culture medium, oxygen tension and MAPK inhibition, affects regulation of RBPs and their targets during preimplantation development. STAU1, ELAVL1, KHSRP and ZFP36 proteins and mRNAs were detected throughout mouse preimplantation development, whereas Elavl2 mRNA decreased after the two-cell stage. Potential target mRNAs of RBP regulation, Gclc, Slc2a1 and Slc7a1 were detected during mouse preimplantation development. Gclc mRNA was significantly elevated in embryos cultured in Whitten's medium compared with embryos cultured in KSOMaa, and Gclc mRNA was elevated under high-oxygen conditions. Inhibition of the p38 MAPK pathway reduced Slc7a1 mRNA expression while inhibition of ERK increased Slc2a1 mRNA expression. The half-lives of the potential RBP mRNA targets are not regulated in parallel; Slc2a1 mRNA displayed the longest half-life. Our results indicate that mRNAs and proteins encoding five RBPs are present during preimplantation development and more importantly, demonstrate that expression of RBP target mRNAs are regulated by culture medium, gas atmosphere and MAPK pathways.

  16. Generation of monoclonal antibodies specific for cell surface molecules expressed on early mouse endoderm.

    PubMed

    Gadue, Paul; Gouon-Evans, Valerie; Cheng, Xin; Wandzioch, Ewa; Zaret, Kenneth S; Grompe, Markus; Streeter, Philip R; Keller, Gordon M

    2009-09-01

    The development of functional cell populations such as hepatocytes and pancreatic beta cells from embryonic stem cell (ESC) is dependent on the efficient induction of definitive endoderm early in the differentiation process. To monitor definitive endoderm formation in mouse ESC differentiation cultures in a quantitative fashion, we generated a reporter cell line that expresses human CD25 from the Foxa3 locus and human CD4 from the Foxa2 locus. Induction of these reporter ESCs with high concentrations of activin A led to the development of a CD25-Foxa3+CD4-Foxa2+ population within 4-5 days of culture. Isolation and characterization of this population showed that it consists predominantly of definitive endoderm that is able to undergo hepatic specification under the appropriate conditions. To develop reagents that can be used for studies on endoderm development from unmanipulated ESCs, from induced pluripotent stem cells, and from the mouse embryo, we generated monoclonal antibodies against the CD25-Foxa3+CD4-Foxa2+ population. With this approach, we identified two antibodies that react specifically with endoderm from ESC cultures and from the early embryo. The specificity of these antibodies enables one to quantitatively monitor endoderm development in ESC differentiation cultures, to study endoderm formation in the embryo, and to isolate pure populations of culture- or embryo-derived endodermal cells.

  17. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.

    PubMed

    Khosla, S; Dean, W; Brown, D; Reik, W; Feil, R

    2001-03-01

    Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.

  18. Biopsy of embryos produced by in vitro fertilization affects development in C57BL/6 mouse strain

    PubMed Central

    Sugawara, Atsushi; Ward, Monika A.

    2012-01-01

    Preimplantation genetic diagnosis (PGD) is considered highly successful in respect to its accuracy in detecting genetic anomalies but the effects of embryo biopsy on embryonic/fetal growth and development are less known, particularly in conjunction with in vitro fertilization (IVF). Here, we compared biopsied (B) and non-biopsied (NB) mouse embryos for their developmental competence. Embryos C57BL/6 (B6) and B6D2F2 (F2) generated by IVF were subjected to single blastomere biopsy at the 4-cell stage, and were either cultured for 120 h and subjected to differential inner cell mass (ICM) and trophoblast (T) staining, or were transferred into the uterine tubes of surrogate mothers after 72 h of culture, to examine their pre- and post-implantation development, respectively. Non-biopsied embryos from the same IVF cohorts served as controls. Embryo biopsy negatively affected preimplantation development to blastocyst in C57BL/6 (69 vs 79%, P<0.01) but not in B6D2F1 mice (89 vs 91%, P=NS). Although B6 embryos had lower total cell number than F2 (B6: 47 and 61 vs. F1: 53 and 70; B and NB, respectively, P<0.05) there were no differences between B and NB blastocysts in %ICM (B6: 19.8 vs 19.8; F2: 20.9 vs 20.4, P=NS) and ICM:T ratio (B6: 4.7 vs 4.7; F2: 4.4 vs. 4.7) in both mouse strains. Post-implantation development to live fetuses of B embryos as compared to NB counterparts was impaired in C57BL/6 (6 vs 18%, P<0.001) but not in B6D2F1 mice (26 vs 35%, P=NS). We conclude that blastomere biopsy impairs embryonic/fetal development in mice known to be sensitive to in vitro culture and manipulations. Such mice model infertile couples with poor quality gametes seeking help in assisted reproduction technologies (ART) clinics. PMID:23174776

  19. Sexually Dimorphic Expression of Secreted Frizzled-Related (SFRP) Genes in the Developing Mouse Müllerian Duct

    PubMed Central

    COX, SAM; SMITH, LEE; BOGANI, DEBORA; CHEESEMAN, MICHAEL; SIGGERS, PAM; GREENFIELD, ANDY

    2007-01-01

    In developing male embryos, the female reproductive tract primordia (Müllerian ducts) regress due to the production of testicular anti-Müllerian hormone (AMH). Because of the association between secreted frizzled-related proteins (SFRPs) and apoptosis, their reported developmental expression patterns and the role of WNT signaling in female reproductive tract development, we examined expression of Sfrp2 and Sfrp5 during development of the Müllerian duct in male (XY) and female (XX) mouse embryos. We show that expression of both Sfrp2 and Sfrp5 is dynamic and sexually dimorphic. In addition, the male-specific expression observed for both genes prior to the onset of regression is absent in mutant male embryos that fail to undergo Müllerian duct regression. We identified ENU-induced point mutations in Sfrp5 and Sfrp2 that are predicted to severely disrupt the function of these genes. Male embryos and adults homozygous for these mutations, both individually and in combination, are viable and apparently fertile with no overt abnormalities of reproductive tract development. PMID:16700072

  20. Efficient mouse genome engineering by CRISPR-EZ technology.

    PubMed

    Modzelewski, Andrew J; Chen, Sean; Willis, Brandon J; Lloyd, K C Kent; Wood, Joshua A; He, Lin

    2018-06-01

    CRISPR/Cas9 technology has transformed mouse genome editing with unprecedented precision, efficiency, and ease; however, the current practice of microinjecting CRISPR reagents into pronuclear-stage embryos remains rate-limiting. We thus developed CRISPR ribonucleoprotein (RNP) electroporation of zygotes (CRISPR-EZ), an electroporation-based technology that outperforms pronuclear and cytoplasmic microinjection in efficiency, simplicity, cost, and throughput. In C57BL/6J and C57BL/6N mouse strains, CRISPR-EZ achieves 100% delivery of Cas9/single-guide RNA (sgRNA) RNPs, facilitating indel mutations (insertions or deletions), exon deletions, point mutations, and small insertions. In a side-by-side comparison in the high-throughput KnockOut Mouse Project (KOMP) pipeline, CRISPR-EZ consistently outperformed microinjection. Here, we provide an optimized protocol covering sgRNA synthesis, embryo collection, RNP electroporation, mouse generation, and genotyping strategies. Using CRISPR-EZ, a graduate-level researcher with basic embryo-manipulation skills can obtain genetically modified mice in 6 weeks. Altogether, CRISPR-EZ is a simple, economic, efficient, and high-throughput technology that is potentially applicable to other mammalian species.

  1. High-Frequency Ultrasound for the Study of Early Mouse Embryonic Cardiovascular System.

    PubMed

    Greco, Adelaide; Coda, Anna Rita Daniela; Albanese, Sandra; Ragucci, Monica; Liuzzi, Raffaele; Auletta, Luigi; Gargiulo, Sara; Lamagna, Francesco; Salvatore, Marco; Mancini, Marcello

    2015-12-01

    An accurate diagnosis of congenital heart defects during fetal development is critical for interventional planning. Mice can be used to generate animal models with heart defects, and high-frequency ultrasound (HFUS) imaging enables in utero imaging of live mouse embryos. A wide range of physiological measurements is possible using Doppler-HFUS imaging; limitations of any single measurement warrant a multiparameter approach to characterize cardiovascular function. Doppler-HFUS was used to explore the embryonic (heart, aorta) and extraembryonic (umbilical blood flow) circulatory systems to create a database in normal mouse embryos between 9.5 and 16.5 days of gestation. Multivariate analyses were performed to explore correlations between gestational age and embryo echocardiographic parameters. Heart rate and peak velocity in the aorta were positively correlated with gestational time, whereas cardiac cycle length, isovolumetric relaxation time, myocardial performance index, and arterial deceleration time of the umbilical cord were negatively correlated with it. Doppler-HFUS facilitated detailed characterization of the embryonic mouse circulation and represents a useful tool for investigation of the early mouse embryonic cardiovascular system. © The Author(s) 2015.

  2. Ultrasound covers and sonographic gels are embryo-toxic and could be replaced by non-toxic polyethylene bags and paraffin oil.

    PubMed

    Van der Auwera, I; D'Hooghe, T M

    1998-08-01

    The objective of this study was to test the hypothesis that ultrasound covers and sonographic gels, used during vaginal ultrasound, are toxic for mouse embryonic development in vitro. A prospective randomized design was used on pronucleate ova of F1 hybrid CBA x C57Bl female mice. The mice were superovulated with pregnant mare's serum gonadotrophin and human chorionic gonadotrophin and mated with CBA x C57Bl males. The pronucleate ova were randomly divided between culture media with the addition of commercially available ultrasound covers and sonographic gels in different concentrations. As controls and potential alternatives, plastic polyethylene bags and paraffin oil were tested simultaneously. Embryo-toxicity was assessed by documenting cleavage capacity, blastocyst formation and embryo degeneration in vitro. Exposure of culture medium to the ultrasound covers and sonographic gels tested resulted in a severely reduced cleavage capacity, a high incidence of embryo degeneration and absent or impaired blastocyst formation. This toxic effect could be reduced by high dilutions in vitro. In contrast, plastic polyethylene bags and paraffin oil had no influence on in-vitro development of mouse ova. We conclude that commercially available ultrasound latex covers and sonographic gels are toxic for mouse embryos and can potentially influence embryonic development during infertility treatment. It is safer to perform vaginal ultrasonic measurements using non-toxic paraffin oil (as contact fluid) and plastic polyethylene bags (as ultrasonic cover).

  3. De novo formation of nucleoli in developing mouse embryos originating from enucleolated zygotes.

    PubMed

    Kyogoku, Hirohisa; Fulka, Josef; Wakayama, Teruhiko; Miyano, Takashi

    2014-06-01

    The large, compact oocyte nucleoli, sometimes referred to as nucleolus precursor bodies (NPBs), are essential for embryonic development in mammals; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygote or embryo, leading to developmental failure. It has been convincingly documented that zygotes inherit the oocyte nucleolar material and form NPBs again in pronuclei. It is commonly accepted that during early embryonic development, the original compact zygote NPBs gradually transform into reticulated nucleoli of somatic cells. Here, we show that zygote NPBs are not required for embryonic and full-term development in the mouse. When NPBs were removed from late-stage zygotes by micromanipulation, the enucleolated zygotes developed to the blastocyst stage and, after transfer to recipients, live pups were obtained. We also describe de novo formation of nucleoli in developing embryos. After removal of NPBs from zygotes, they formed new nucleoli after several divisions. These results indicate that the zygote NPBs are not used in embryonic development and that the nucleoli in developing embryos originate from de novo synthesized materials. © 2014. Published by The Company of Biologists Ltd.

  4. Expression profiling of the mouse early embryo: Reflections and Perspectives

    PubMed Central

    Ko, Minoru S. H.

    2008-01-01

    Laboratory mouse plays important role in our understanding of early mammalian development and provides invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over last two decades, have provided even more advantages to mouse models. Here the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells are reviewed and the future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, which include: bird’s-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks. PMID:16739220

  5. Progesterone is critical for the development of mouse embryos.

    PubMed

    Zhang, Cong; Murphy, Bruce D

    2014-08-01

    Infertility affects approximately 10-15 % of reproductive-aged couples, and embryo loss due to preimplantation death is common to many mammals. Previous studies showed that a complex series of interactive molecular events are associated with this process, especially hormones (progesterone and estrogens) and growth factors, and are important for the cleavage and differentiation of the blastocysts. Yet, the mechanism of preimplantation embryo development is unclear. Using conditional knockout mice (CKO), we showed the development of blastocyst is tightly controlled by the level of progesterone (P4); furthermore, we found that the time when P4 should increase is also crucial for the formation of blastocysts. In CKO mice whose Lrh1 (liver receptor homolog 1) is deleted under the expression of Cre recombinase driven by progesterone receptor promoter, which reduced P4 synthesis, few of their embryos can reach blastocyst stage. When these CKO mice were supplied with P4 in the afternoon of dpc 1 (day post copulation), most of the embryos can form blastocysts; when CKO mice were supplied with P4 from the morning of dpc1, one-third of the embryos can reach blastocyst stage; however, the supplement of P4 in the morning of dpc 2 made very few of the embryos become blastocysts. We conclude that early exposure to P4 is essential for timely progression of early embryogenesis in the mouse.

  6. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavone, Luigi Michele; Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Naples; Spina, Anna

    2008-12-12

    Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT{sup Cre/+};ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventriclemore » and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.« less

  7. Effects of in vitro fertilization and embryo culture on TRP53 and Bax expression in B6 mouse embryos.

    PubMed

    Chandrakanthan, Vashe; Li, Aiqing; Chami, Omar; O'Neill, Christopher

    2006-11-21

    In the mouse, embryo culture results in a characteristic phenotype of retarded embryo preimplantation development and reduced numbers of cells within embryos. The expression of TRP53 is central to the regulation of the cell's capacity to proliferate and survive. In this study we found that Trp53 mRNA is expressed throughout the preimplantation stage of development. Levels of TRP53 protein expression were low during the cleavage stages and increased at the morula and blastocyst stages in B6 embryos collected from the reproductive tract. Embryos collected at the zygote stage and cultured for 96 h also showed low levels of TRP53 expression at precompaction stages. There were higher levels of TRP53 in cultured morula and the level in cultured blastocysts was clearly increased above blastocysts collected directly from the uterus. Immunolocalization of TRP53 showed that its increased expression in cultured blastocysts corresponded with a marked accumulation of TRP53 within the nuclei of embryonic cells. This pattern of expression was enhanced in embryos produced by in vitro fertilization and subjected to culture. The TRP53 was transcriptionally active since culture also induced increased expression of Bax, yet this did not occur in embryos lacking Trp53 (Trp53-/-). The rate of development of Trp53-/- zygotes to the blastocyst stage was not different to wildtype controls when embryos were cultured in groups of ten but was significantly faster when cultured individually. The results show that zygote culture resulted in the accumulation of transcription activity of TRP53 in the resulting blastocysts. This accounts for the adverse effects of culture of embryos individually, but does not appear to be the sole cause of the retarded preimplantation stage growth phenotype associated with culture in vitro.

  8. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells.

    PubMed

    Masaki, Hideki; Kato-Itoh, Megumi; Umino, Ayumi; Sato, Hideyuki; Hamanaka, Sanae; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Nishimura, Ken; Ohtaka, Manami; Nakanishi, Mahito; Nakauchi, Hiromitsu

    2015-09-15

    Functional assay limitations are an emerging issue in characterizing human pluripotent stem cells (PSCs). With rodent PSCs, chimera formation using pre-implantation embryos is the gold-standard assay of pluripotency (competence of progeny to differentiate into all three germ layers). In human PSCs (hPSCs), however, this can only be monitored via teratoma formation or in vitro differentiation, as ethical concerns preclude generation of human-human or human-animal chimeras. To circumvent this issue, we developed a functional assay utilizing interspecific blastocyst injection and in vitro culture (interspecies in vitro chimera assay) that enables the development and observation of embryos up to headfold stage. The assay uses mouse pre-implantation embryos and rat, monkey and human PSCs to create interspecies chimeras cultured in vitro to the early egg-cylinder stage. Intra- and interspecific chimera assays with rodent PSC lines were performed to confirm the consistency of results in vitro and in vivo. The behavior of chimeras developed in vitro appeared to recapitulate that of chimeras developed in vivo; that is, PSC-derived cells survived and were integrated into the epiblast of egg-cylinder-stage embryos. This indicates that the interspecific in vitro chimera assay is useful in evaluating the chimera-forming ability of rodent PSCs. However, when human induced PSCs (both conventional and naïve-like types) were injected into mouse embryos and cultured, some human cells survived but were segregated; unlike epiblast-stage rodent PSCs, they never integrated into the epiblast of egg-cylinder-stage embryos. These data suggest that the mouse-human interspecies in vitro chimera assay does not accurately reflect the early developmental potential/process of hPSCs. The use of evolutionarily more closely related species as host embryos might be necessary to evaluate the developmental potency of hPSCs. © 2015. Published by The Company of Biologists Ltd.

  9. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    PubMed

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  10. Embryo density and medium volume effects on early murine embryo development.

    PubMed

    Canseco, R S; Sparks, A E; Pearson, R E; Gwazdauskas, F C

    1992-10-01

    One-cell mouse embryos were used to determine the effects of drop size and number of embryos per drop for optimum development in vitro. Embryos were collected from immature C57BL6 female mice superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin and mated by CD1 males. Groups of 1, 5, 10, or 20 embryos were cultured in 5-, 10-, 20-, or 40-microliters drops of CZB under silicon oil at 37.5 degrees C in a humidified atmosphere of 5% CO2 and 95% air. Development score for embryos cultured in 10 microliters was higher than that of embryos cultured in 20 or 40 microliters. Embryos cultured in groups of 5, 10, or 20 had higher development scores than embryos cultured singly. The highest development score was obtained by the combination of 5 embryos per 10-microliters drop. The percentage of live embryos in 20 or 40 microliters was lower than that of embryos cultured in 10 microliters. Additionally, the percentage of live embryos cultured singly was lower than that of embryos cultured in groups. Our results suggest that a stimulatory interaction occurs among embryos possibly exerted through the secretion of growth factors. This effect can be diluted if the embryos are cultured in large drops or singly.

  11. Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development

    PubMed Central

    Vacaru, Andrei M.; Vitale, Joseph; Nieves, Johnathan; Baron, Margaret H.

    2015-01-01

    During the development of the hematopoietic system, at least 8 distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal. PMID:25064110

  12. The novel use of modified pig zygotic medium for the efficient culture of the preimplantation mouse embryos.

    PubMed

    Amarnath, Dasari; Wakayama, Sayaka; Zhu, Jie; Moawad, Adel R; Wakayama, Teruhiko; Campbell, Keith H S

    2011-12-01

    A high potassium concentration in culture media is considered detrimental to in vitro culture of mouse embryos. Here we show that pig zygotic medium (PZM) containing a higher concentration of potassium, and modified to contain 0.2 mM glucose and 0.01 mM EDTA, supported efficient pre- and post-implantation development of mouse zygotes to blastocysts and live pups, respectively. At first, modified PZM (mPZM) was compared with other culture media such as M16, CZB and KSOM-AA for its ability to support development of in vivo mouse zygotes to the blastocyst stage. The proportions of zygotes reaching 2-cell (94-99%) and blastocyst (90-96%) stages in mPZM and other media were not different. However, hatching rates of blastocysts were different (P < 0.05); whereas more than 90% of the blastocysts were hatching in mPZM or KSOM-AA, only 60% of the blastocysts did in M16 or CZB media (P < 0.05). Next we compared post-implantation development of in vitro fertilized zygotes developed to blastocysts in mPZM and KSOM-AA. The proportion of blastocysts developing into live pups was not different between mPZM (49%) and KSOM-AA (44%). Finally, we evaluated whether mPZM could be also used as a fertilization medium. Modified PZM containing 5.56 mM of glucose and 0.4% BSA efficiently supported IVF of mouse gametes. The percent of zygotes cleaving to 2-cell (94-98%) and blastocysts (91-93%) stage was not different from zygotes fertilized in human tubal fluid medium. We concluded that modified pig zygotic medium containing a higher potassium concentration than any other commonly used mouse media supported not only culture of mouse embryos, but also efficient IVF of mouse gametes. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Effects of the histone deacetylase inhibitor 'Scriptaid' on the developmental competence of mouse embryos generated through round spermatid injection.

    PubMed

    Kong, Pengcheng; Yin, Mingru; Chen, Dongbao; Li, Shangang; Li, Yao; Xing, Fengying; Jiang, Manxi; Fang, Zhenfu; Lyu, Qifeng; Chen, Xuejin

    2017-01-01

    Can the histone deacetylase inhibitor Scriptaid improve the efficiency of the development of round spermatid injection (ROSI)-fertilized embryos in a mouse model? Treatment of ROSI mouse zygotes with Scriptaid increased the expression levels of several development-related genes at the blastocyst stage, resulting in more efficient in vitro development of the blastocyst and an increased birth rate of ROSI-derived embryos. The full-term development of embryos derived through ROSI is significantly lower than that following ICSI in humans and other species. Oocytes, spermatozoa and round spermatids were collected from BDF1 (C57BL/6 × DBA/2) mice. For in vitro development experiments, mouse ROSI-derived zygotes were treated with Scriptaid at different concentrations (0, 125, 250, 500 and 1000 nM) and for different exposure times (0, 6, 10, 16 or 24 h). Next, blastocysts of the optimal Scriptaid-treated group and the non-treated ROSI group were separately transferred into surrogate ICR mice to compare in vivo development with the ICSI group (control). Each experiment was repeated at least three times. Metaphase II (MII) oocytes, spermatozoa and round spermatids were obtained from sexually mature BDF1 female or male mice. The developmental potential of embryos among the three groups (the ICSI, ROSI and optimal Scriptaid-treated ROSI groups) was assessed based on the rates of obtaining zygotes, two-cell stage embryos, four-cell stage embryos, blastocysts and full-term offspring. In addition, the expression levels of development-related genes (Oct4, Nanog, Klf4 and Sox2) were analysed using real-time PCR, and the methylation states of imprinted genes (H19 and Snrpn) in these three groups were detected using methylation-specific PCR (MS-PCR) sequencing following bisulfite treatment. The in vitro experiments revealed that treating ROSI-derived zygotes with 250 nM Scriptaid for 10 h significantly improved the blastocyst formation rate (59%) compared with the non-treated group (38%) and further increased the birth rates of ROSI-derived embryos from 21% to 40% in vivo. Moreover, in ROSI-derived embryos, the expression of the Oct4, Nanog and Sox2 genes at the blastocyst stage was decreased, but the optimal Scriptaid treatment restored expression to a level similar to their ICSI counterparts. In addition, Scriptaid treatment moderately repaired the abnormal DNA methylation pattern in the imprinting control regions (ICRs) of H19 and Snrpn. N/A LIMITATIONS, REASONS FOR CAUTION: Because of the ethics regarding the use of human gametes for ROSI studies, the mouse model was used as an approach to explore the effects of Scriptaid on the developmental potential of ROSI-derived embryos. However, to determine whether these findings can be applied to humans, further investigation will be required. Scriptaid treatment provides a new means of improving the efficiency and safety of clinical human ROSI. The study was financially supported through grants from the National Key Research Program of China (No. 2016YFC1304800); the National Natural Science Foundation of China (Nos: 81170756, 81571486); the Natural Science Foundation of Shanghai (Nos: 15140901700, 15ZR1424900) and the Programme for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. There are no conflicts of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Inverted light-sheet microscope for imaging mouse pre-implantation development.

    PubMed

    Strnad, Petr; Gunther, Stefan; Reichmann, Judith; Krzic, Uros; Balazs, Balint; de Medeiros, Gustavo; Norlin, Nils; Hiiragi, Takashi; Hufnagel, Lars; Ellenberg, Jan

    2016-02-01

    Despite its importance for understanding human infertility and congenital diseases, early mammalian development has remained inaccessible to in toto imaging. We developed an inverted light-sheet microscope that enabled us to image mouse embryos from zygote to blastocyst, computationally track all cells and reconstruct a complete lineage tree of mouse pre-implantation development. We used this unique data set to show that the first cell fate specification occurs at the 16-cell stage.

  15. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse

    PubMed Central

    Franco, Heather L.; Dai, Daisy; Lee, Kevin Y.; Rubel, Cory A.; Roop, Dennis; Boerboom, Derek; Jeong, Jae-Wook; Lydon, John P.; Bagchi, Indrani C.; Bagchi, Milan K.; DeMayo, Francesco J.

    2011-01-01

    WNT4, a member of the Wnt family of ligands, is critical for the development of the female reproductive tract. Analysis of Wnt4 expression in the adult uterus during pregnancy indicates that it may play a role in the regulation of endometrial stromal cell proliferation, survival, and differentiation, which is required to support the developing embryo. To investigate the role of Wnt4 in adult uterine physiology, conditional ablation of Wnt4 using the PRcre mouse model was accomplished. Ablation of Wnt4 rendered female mice subfertile due to a defect in embryo implantation and subsequent defects in endometrial stromal cell survival, differentiation, and responsiveness to progesterone signaling. In addition to altered stromal cell function, the uteri of PRcre/+Wnt4f/f (Wnt4d/d) mice displayed altered epithelial differentiation characterized by a reduction in the number of uterine glands and the emergence of a p63-positive basal cell layer beneath the columnar luminal epithelial cells. The altered epithelial cell phenotype was further escalated by chronic estrogen treatment, which caused squamous cell metaplasia of the uterine epithelium in the Wnt4d/d mice. Thus, WNT4 is a critical regulator not only of proper postnatal uterine development, but also embryo implantation and decidualization.—Franco, H. L., Dai, D., Lee, K. Y., Rubel, C. S., Roop, D., Boerboom, D., Jeong, J.-W., Lydon, J.-P., Bagchi, I. C., Bagchi, M. K., DeMayo, F. J. WNT4 is a key regulator of normal postnatal uterine development and progesterone signaling during embryo implantation and decidualization in the mouse. PMID:21163860

  16. Semi-thin sections of epoxy resin-embedded mouse embryos in morphological analysis of whole mount in situ RNA hybridization.

    PubMed

    Mitrecić, D; Cunko, V F; Gajović, S

    2008-12-01

    Descriptive morphological studies are often combined with gene expression pattern analyses. Unembedded vibratome or cryotome sections are compatible with in situ RNA hybridization, but spatial resolution is rather low for precise microscopic studies necessary in embryology. Therefore, use of plastic embedding media, which allow semi-thin and ultra-thin sectioning for light and electron microscopy, could be an important advantage. This work suggested a new approach based on the whole mount hybridization of mouse embryos and subsequent epoxy resin embedding. Epoxy resin allowed serial sectioning of semi-thin sections with preserved in situ RNA hybridization signal, which was a necessary prerequisite for precise morphological analysis of embryo development.

  17. Relative biological effectiveness of fast neutrons compared with X-rays: Prenatal mortality in the mouse

    NASA Technical Reports Server (NTRS)

    Friedberg, W.; Hanneman, G. D.; Faulkner, D. N.; Darden, E. B., Jr.

    1972-01-01

    The effects of fission neutrons and of X-rays on the mouse zygote are discussed. Seven-week-old virgin mice were allowed a 12-hour mating opportunity beginning at 7:00 P.M. Between 1:30 and 4:00 P.M., except where indicated otherwise, the females which had mated (vaginal plug) during the night were either irradiated or sham-irradiated. At the time of irradiation the zygotes were in a pronuclear stage. Sixteen days later the mice were killed and the uteri dissected. The number of dead embryos, live embryos, and gross anomalies were determined. Dead embryos were classified as to stage of development.

  18. Genetics and imaging to assess oocyte and preimplantation embryo health.

    PubMed

    Warner, C M; Newmark, J A; Comiskey, M; De Fazio, S R; O'Malley, D M; Rajadhyaksha, M; Townsend, D J; McKnight, S; Roysam, B; Dwyer, P J; DiMarzio, C A

    2004-01-01

    Two major criteria are currently used in human assisted reproductive technologies (ART) to evaluate oocyte and preimplantation embryo health: (1) rate of preimplantation embryonic development; and (2) overall morphology. A major gene that regulates the rate of preimplantation development is the preimplantation embryo development (Ped) gene, discovered in our laboratory. In mice, presence of the Ped gene product, Qa-2 protein, results in a fast rate of preimplantation embryonic development, compared with a slow rate of preimplantation embryonic development for embryos that are lacking Qa-2 protein. Moreover, mice that express Qa-2 protein have an overall reproductive advantage that extends beyond the preimplantation period, including higher survival to birth, higher birthweight, and higher survival to weaning. Data are presented that suggest that Qa-2 increases the rate of development of early embryos by acting as a cell-signalling molecule and that phosphatidylinositol-32 kinase is involved in the cell-signalling pathway. The most likely human homologue of Qa-2 has recently been identified as human leukocyte antigen (HLA)-G. Data are presented which show that HLA-G, like Qa-2, is located in lipid rafts, implying that HLA-G also acts as a signalling molecule. In order to better evaluate the second criterion used in ART (i.e. overall morphology), a unique and innovative imaging microscope has been constructed, the Keck 3-D fusion microscope (Keck 3DFM). The Keck 3DFM combines five different microscopic modes into a single platform, allowing multi-modal imaging of the specimen. One of the modes, the quadrature tomographic microscope (QTM), creates digital images of non-stained transparent cells by measuring changes in the index of refraction. Quadrature tomographic microscope images of oocytes and preimplantation mouse embryos are presented for the first time. The digital information from the QTM images should allow the number of cells in a preimplantation embryo to be counted non-invasively. The Keck 3DFM is also being used to assess mitochondrial distribution in mouse oocytes and embryos by using the k-means clustering algorithm. Both the number of cells in preimplantation embryos and mitochondrial distribution are related to oocyte and embryo health. New imaging data obtained from the Keck 3DFM, combined with genetic and biochemical approaches, have the promise of being able to distinguish healthy from unhealthy oocytes and embryos in a non-invasive manner. The goal is to apply the information from our mouse model system to the clinic in order to identify one and only one healthy embryo for transfer back to the mother undergoing an ART procedure. This approach has the potential to increase the success rate of ART and to decrease the high, and undesirable, multiple birth rate presently associated with ART.

  19. Cinemicrographic study of the cell movement in the primitive-streak-stage mouse embryo.

    PubMed

    Nakatsuji, N; Snow, M H; Wylie, C C

    1986-07-01

    Migration of the mesoderm cells in the primitive-streak-stage mouse embryo was directly studied by cinemicrography using whole embryo culture and Nomarski differential interference contrast optics. Relative transparency and small size of the early mouse embryos enabled direct observation of the individual cells and their cell processes. Seven-day-old mouse embryos were isolated and cultured in a small chamber in a medium consisting of 50% rat serum and 50% Dulbecco's modified minimum essential medium. The mesoderm cells move away from the primitive streak in both anterior and antimesometrial (distal) directions at a mean velocity of 46 micron h-1. They extend cell processes and constantly change cell shape. They do not translocate extensively as isolated single cells, but usually maintain attachment to other mesoderm cells. They show frequent cell division preceded by rounding up of the cell bodies, and accompanied by vigorous blebbing before and after cytokinesis. This study shows that it is possible to examine the motility of embryonic cells inside the mammalian embryo by direct observation if the embryo is small and transparent enough for the use of the Nomarski optics.

  20. DPPA3 prevents cytosine hydroxymethylation of the maternal pronucleus and is required for normal development in bovine embryos.

    PubMed

    Bakhtari, Azizollah; Ross, Pablo J

    2014-09-01

    Dppa3 has been described in mice as an important maternal factor contributed by the oocyte that participates in protecting the maternal genome from oxidation of methylated cytosines (5mC) to hydroxymethylated cytosines (5hmC). Dppa3 is also required for normal mouse preimplantation development. This gene is poorly conserved across mammalian species, with less than 32% of protein sequence shared between mouse, cow and human. RNA-seq analysis of bovine oocytes and preimplantation embryos revealed that DPPA3 transcripts are some of the most highly abundant mRNAs in the oocyte, and their levels gradually decrease toward the time of embryonic genome activation (EGA). Knockdown of DPPA3 by injection of siRNA in germinal vesicle (GV) stage oocytes was used to assess its role in epigenetic remodeling and embryo development. DPPA3 knockdown resulted in increased intensity of 5hmC staining in the maternal pronucleus (PN), demonstrating a role for this factor in the asymmetric remodeling of the maternal and paternal PN in bovine zygotes. Also, DPPA3 knockdown decreased the developmental competence of parthenogenetic and in vitro fertilized embryos. Finally, DPPA3 knockdown embryos that reached the blastocyst stage had significantly fewer ICM cells as compared with control embryos. We conclude that DPPA3 is a maternal factor important for correct epigenetic remodeling and normal embryonic development in cattle, indicating that the role of DPPA3 during early development is conserved between species.

  1. Mutants in the mouse NuRD/Mi2 component P66alpha are embryonic lethal.

    PubMed

    Marino, Susan; Nusse, Roel

    2007-06-13

    The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66alpha and p66beta. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. We made loss of function mutants in the mouse p66alpha gene (mp66alpha, official name Gatad2a, MGI:2384585). We found that mp66alpha is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66alpha in gene silencing. mp66alpha is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing.

  2. Safety, efficacy and efficiency of laser-assisted IVF in subfertile mutant mouse strains

    PubMed Central

    Li, Ming-Wen; Kinchen, Kristy L; Vallelunga, Jadine M; Young, Diana L; Wright, Kaleb D K; Gorano, Lisa N; Wasson, Katherine; Lloyd, K C Kent

    2013-01-01

    In the present report we studied the safety, efficacy and efficiency of using an infrared laser to facilitate IVF by assessing fertilization, development and birth rates after laser-zona drilling (LZD) in 30 subfertile genetically modified (GM) mouse lines. We determined that LZD increased the fertilization rate four to ten times that of regular IVF, thus facilitating the derivation of 26 of 30 (86.7%) GM mouse lines. Cryopreserved two-cell stage embryos derived by LZD-assisted IVF were recovered and developed to blastocysts in vitro at the same rate as frozen–thawed embryos derived by regular IVF. Surprisingly after surgical transfer to pseudopregnant recipients the birth rate of embryos derived by LZD-assisted IVF was significantly lower than that of embryos derived by regular IVF. However this result could be completely mitigated by the addition of 0.25 M sucrose to the culture medium during LZD which caused the oocyte to shrink in volume relative to the perivitelline space. By increasing the distance from the laser target site on the zona pellucida, we hypothesize that the hyperosmotic effect of sucrose reduced the potential for laser-induced cytotoxic thermal damage to the underlying oocytes. With appropriate preparation and cautious application, our results indicate that LZD-assisted IVF is a safe, efficacious and efficient assisted reproductive technology for deriving mutant mouse lines with male factor infertility and subfertility caused by sperm–zona penetration defects. PMID:23315689

  3. Characterisation of the dynamic behaviour of lipid droplets in the early mouse embryo using adaptive harmonic generation microscopy.

    PubMed

    Watanabe, Tomoko; Thayil, Anisha; Jesacher, Alexander; Grieve, Kate; Debarre, Delphine; Wilson, Tony; Booth, Martin; Srinivas, Shankar

    2010-06-03

    Lipid droplets (LD) are organelles with an important role in normal metabolism and disease. The lipid content of embryos has a major impact on viability and development. LD in Drosophila embryos and cultured cell lines have been shown to move and fuse in a microtubule dependent manner. Due to limitations in current imaging technology, little is known about the behaviour of LD in the mammalian embryo. Harmonic generation microscopy (HGM) allows one to image LD without the use of exogenous labels. Adaptive optics can be used to correct aberrations that would otherwise degrade the quality and information content of images. We have built a harmonic generation microscope with adaptive optics to characterise early mouse embryogenesis. At fertilization, LD are small and uniformly distributed, but in the implanting blastocyst, LD are larger and enriched in the invading giant cells of the trophectoderm. Time-lapse studies reveal that LD move continuously and collide but do not fuse, instead forming aggregates that subsequently behave as single units. Using specific inhibitors, we show that the velocity and dynamic behaviour of LD is dependent not only on microtubules as in other systems, but also on microfilaments. We explore the limits within which HGM can be used to study living embryos without compromising viability and make the counterintuitive finding that 16 J of energy delivered continuously over a period of minutes can be less deleterious than an order of magnitude lower energy delivered dis-continuously over a period of hours. LD in pre-implantation mouse embryos show a previously unappreciated complexity of behaviour that is dependent not only on microtubules, but also microfilaments. Unlike LD in other systems, LD in the mouse embryo do not fuse but form aggregates. This study establishes HGM with adaptive optics as a powerful tool for the study of LD biology and provides insights into the photo-toxic effects of imaging embryos.

  4. ALTERED TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BISINDOLYLMALEIMIDE (BIS L)

    EPA Science Inventory

    Altered transcriptional responses in mouse embryos exposed to bisindolylmaleimide I (Bis I) in whole embryo culture

    Edward D. Karoly?*, Judith E. Schmid*, Maria R. Blanton*and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, ...

  5. Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models

    PubMed Central

    MATSUMOTO, Hiromichi

    2017-01-01

    The success of implantation is an interactive process between the blastocyst and the uterus. Synchronized development of embryos with uterine differentiation to a receptive state is necessary to complete pregnancy. The period of uterine receptivity for implantation is limited and referred to as the “implantation window”, which is regulated by ovarian steroid hormones. Implantation process is complicated due to the many signaling molecules in the hierarchical mechanisms with the embryo-uterine dialogue. The mouse is widely used in animal research, and is uniquely suited for reproductive studies, i.e., having a large litter size and brief estrous cycles. This review first describes why the mouse is the preferred model for implantation studies, focusing on uterine morphology and physiological traits, and then highlights the knowledge on uterine receptivity and the hormonal regulation of blastocyst implantation in mice. Our recent study revealed that selective proteolysis in the activated blastocyst is associated with the completion of blastocyst implantation after embryo transfer. Furthermore, in the context of blastocyst implantation in the mouse, this review discusses the window of uterine receptivity, hormonal regulation, uterine vascular permeability and angiogenesis, the delayed-implantation mouse model, morphogens, adhesion molecules, crosslinker proteins, extracellular matrix, and matricellular proteins. A better understanding of uterine and blastocyst biology during the peri-implantation period should facilitate further development of reproductive technology. PMID:28638003

  6. Deciphering the mechanisms of developmental disorders: phenotype analysis of embryos from mutant mouse lines

    PubMed Central

    Wilson, Robert; McGuire, Christina; Mohun, Timothy

    2016-01-01

    The Deciphering the Mechanisms of Developmental Disorders (DMDD) consortium is a research programme set up to identify genes in the mouse, which if mutated (or knocked-out) result in embryonic lethality when homozygous, and initiate the study of why disruption of their function has such profound effects on embryo development and survival. The project uses a combination of comprehensive high resolution 3D imaging and tissue histology to identify abnormalities in embryo and placental structures of embryonic lethal lines. The image data we have collected and the phenotypes scored are freely available through the project website (http://dmdd.org.uk). In this article we describe the web interface to the images that allows the embryo data to be viewed at full resolution in different planes, discuss how to search the database for a phenotype, and our approach to organising the data for an embryo and a mutant line so it is easy to comprehend and intuitive to navigate. PMID:26519470

  7. Cytoskeleton-associated protein 5 and clathrin heavy chain binding regulates spindle assembly in mouse oocytes

    PubMed Central

    Wang, Dong-Hui; Han, Zhe; Kong, Xiang-Wei; Ma, Yu-Zhen; Yun, Zhi-Zhong; Liang, Cheng-Guang

    2017-01-01

    Mammalian oocyte meiotic maturation is the precondition of early embryo development. Lots of microtubules (MT)-associated proteins participate in oocyte maturation process. Cytoskeleton-associated protein 5 (CKAP5) is a member of the XMAP215 family that regulates microtubule dynamics during mitosis. However, its role in meiosis has not been fully studied. Here, we investigated the function of CKAP5 in mouse oocyte meiotic maturation and early embryo development. Western blot showed that CKAP5 expression increased from GVBD, maintaining at high level at metaphase, and decreased after late 1-cell stage. Confocal microscopy showed there is no specific accumulation of CKAP5 at interphase (GV, PN or 2-cell stage). However, once cells enter into meiotic or mitotic division, CKAP5 was localized at the whole spindle apparatus. Treatment of oocytes with the tubulin-disturbing reagents nocodazole (induces MTs depolymerization) or taxol (prevents MTs depolymerization) did not affect CKAP5 expression but led to a rearrangement of CKAP5. Further, knock-down of CKAP5 resulted in a failure of first polar body extrusion, serious defects in spindle assembly, and failure of chromosome alignment. Loss of CKAP5 also decreased early embryo development potential. Furthermore, co-immunoprecipitation showed that CKAP5 bound to clathrin heavy chain 1 (CLTC). Taken together, our results demonstrate that CKAP5 is important in oocyte maturation and early embryo development, and CKAP5 might work together with CLTC in mouse oocyte maturation. PMID:28177917

  8. The Effects of Di-(2-ethylhexyl)-phthalate Exposure on Fertilization and Embryonic Development In Vitro and Testicular Genomic Mutation In Vivo

    PubMed Central

    Gu, Yi-Hua; Liu, Miao; Xu, Yan; Yuan, Yao; Sun, Fei; Zhang, Hui-Qin; Shi, Hui-Juan

    2012-01-01

    The present study was undertaken to determine the reproductive hazards of Di-(2-ethylhexyl)-phthalate (DEHP) on mouse spermatozoa and embryos in vitro and genomic changes in vivo. Direct low-level DEHP exposure (1 μg/ml) on spermatozoa and embryos was investigated by in vitro fertilization (IVF) process, culture of preimplanted embryos in DEHP-supplemented medium and embryo transfer to achieve full term development. Big Blue® transgenic mouse model was employed to evaluate the mutagenesis of testicular genome with in vivo exposure concentration of DEHP (500 mg/kg/day). Generally, DEHP-treated spermatozoa (1 μg/ml, 30 min) presented reduced fertilization ability (P<0.05) and the resultant embryos had decreased developmental potential compared to DMSO controls (P<0.05). Meanwhile, the transferred 2-cell stage embryos derived from treated spermatozoa also exhibited decreased birth rate than that of control (P<0.05). When fertilized oocytes or 2-cell stage embryos were recovered by in vivo fertilization (without treatment) and then exposed to DEHP, the subsequent development proceed to blastocysts was different, fertilized oocytes were significantly affected (P<0.05) whereas developmental progression of 2-cell stage embryos was similar to controls (P>0.05). Testes of the Big Blue® transgenic mice treated with DEHP for 4 weeks indicated an approximately 3-fold increase in genomic DNA mutation frequency compared with controls (P<0.05). These findings unveiled the hazardous effects of direct low-level exposure of DEHP on spermatozoa's fertilization ability as well as embryonic development, and proved that in vivo DEHP exposure posed mutagenic risks in the reproductive organ – at least in testes, are of great concern to human male reproductive health. PMID:23226291

  9. The effects of Di-(2-ethylhexyl)-phthalate exposure on fertilization and embryonic development in vitro and testicular genomic mutation in vivo.

    PubMed

    Huang, Xue-Feng; Li, Yan; Gu, Yi-Hua; Liu, Miao; Xu, Yan; Yuan, Yao; Sun, Fei; Zhang, Hui-Qin; Shi, Hui-Juan

    2012-01-01

    The present study was undertaken to determine the reproductive hazards of Di-(2-ethylhexyl)-phthalate (DEHP) on mouse spermatozoa and embryos in vitro and genomic changes in vivo. Direct low-level DEHP exposure (1 μg/ml) on spermatozoa and embryos was investigated by in vitro fertilization (IVF) process, culture of preimplanted embryos in DEHP-supplemented medium and embryo transfer to achieve full term development. Big Blue® transgenic mouse model was employed to evaluate the mutagenesis of testicular genome with in vivo exposure concentration of DEHP (500 mg/kg/day). Generally, DEHP-treated spermatozoa (1 μg/ml, 30 min) presented reduced fertilization ability (P<0.05) and the resultant embryos had decreased developmental potential compared to DMSO controls (P<0.05). Meanwhile, the transferred 2-cell stage embryos derived from treated spermatozoa also exhibited decreased birth rate than that of control (P<0.05). When fertilized oocytes or 2-cell stage embryos were recovered by in vivo fertilization (without treatment) and then exposed to DEHP, the subsequent development proceed to blastocysts was different, fertilized oocytes were significantly affected (P<0.05) whereas developmental progression of 2-cell stage embryos was similar to controls (P>0.05). Testes of the Big Blue® transgenic mice treated with DEHP for 4 weeks indicated an approximately 3-fold increase in genomic DNA mutation frequency compared with controls (P<0.05). These findings unveiled the hazardous effects of direct low-level exposure of DEHP on spermatozoa's fertilization ability as well as embryonic development, and proved that in vivo DEHP exposure posed mutagenic risks in the reproductive organ - at least in testes, are of great concern to human male reproductive health.

  10. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy.

    PubMed

    Flores, Luis E; Hildebrandt, Thomas B; Kühl, Anja A; Drews, Barbara

    2014-05-10

    Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9-11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert's membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and ultimately cessation of heart beat. Corresponding histology showed apoptotic cells in the embryo while the placenta was still intact. In the subsequent resorption process first the embryo and then its membranes disappeared. Our results provide a temporal time course of embryo resorption. With this method, animals exhibiting embryo resorption can be targeted, enabling the investigation of underlying mechanisms before the onset of total embryo disintegration.

  11. Evaluation of RNA quality in fixed and unembedded mouse embryos by different methods.

    PubMed

    Mu, Yuan; Zhou, Hong; Li, Wenyan; Hu, Lichao; Zhang, Yiting

    2013-10-01

    Many miRNAs are highly expressed in spatiotemporal and precise tissue-specific patterns in development. Thus it is necessary to examine their expression pattern in mouse embryos. However, embryos from one pregnant mouse are more than enough for expression analysis such as RT-qPCR, which results in reluctant disposal of remaining embryos. Due to the limitation of short sampling time, it is vitally important to quickly preserve samples to ensure the RNA quality. Thus, it is necessary to develop appropriate methods to fix samples in advance. In this study, two fixatives [methanol/DMSO (4:1) and paraformaldehyde] were applied for embryo (12.5 dpc) fixation and two preservatives (methanol and 30% sucrose) were used for fixed embryo preservation. After storage for one month, the skin, skeletal muscle and brain tissues were dissected from the fixed and unembedded embryos. Total RNAs were extracted by TRIzol® reagent and measured by a spectrophotometer, then were subjected to amplify Actb, Hprt, Gapdh, Rnu6, Snord68 and miR-206-3p by RT-qPCR. Embryos fixed in methanol/DMSO and preserved in 100% methanol at -20°C were able to yield at least 349 bp amplifiable RNA. Although paraformaldehyde fixation and 30% sucrose preservation method only yielded amplicons less than 156 bp, it showed a remarkable ability in preserving small RNAs. Snord68 was expressed stably across skin, skeletal muscle and brain tissues like Rnu6, making its possibility as an internal control for qPCR data normalization. Using Snord68 and/or Rnu6 as internal control, we found that the miR-206-3p expression level in skin was about one quarter of its highest level in the skeletal muscle. Therefore, the techniques in this study would be useful for us to reasonably utilize and preserve precious samples. © 2013.

  12. Localization and expression of peroxiredoxin II in the mouse ovary, oviduct, uterus, and preimplantation embryo.

    PubMed

    Wang, Shie; Huang, Weiquan; Shi, Hexiu; Lin, Cuiying; Xie, Meirong; Wang, Jianxin

    2010-02-01

    Peroxiredoxin (Prx) II belongs to a recently discovered family of peroxidases that play important roles in antioxidation and signal transduction. In this study, we aimed to study the localization and expression of Prx II in the mouse ovary, oviduct, and uterus, and preimplantation embryos. Immunohistochemical staining analysis showed that, in the ovary, Prx II was expressed in the oocyte cytoplasm of the primary follicle, the secondary follicle, and the premature follicle; Prx II was expressed in germinal vesicle-intact oocytes (GV oocytes) and metaphase II eggs (MII eggs), as well as at various stages in early embryos. Reverse transcription polymerase chain reaction (RT-PCR) results indicated that the Prx II mRNA was expressed at a high level in GV eggs, slightly lower levels in MII eggs, and had no detectable expression in four-cell embryos and early blastocysts. In the oviduct, Prx II was expressed in the epithelia, while in the uterus Prx II was mainly distributed in the endometrial stroma. Taken together, our results suggest that Prx II plays a key antioxidation role in the maturation of oocytes and development of early embryos, thus providing crucial experimental evidence for further exploring the function of Prx II in the development of oocytes and preimplantation embryos. 2009 Wiley-Liss, Inc.

  13. EMAGE mouse embryo spatial gene expression database: 2010 update

    PubMed Central

    Richardson, Lorna; Venkataraman, Shanmugasundaram; Stevenson, Peter; Yang, Yiya; Burton, Nicholas; Rao, Jianguo; Fisher, Malcolm; Baldock, Richard A.; Davidson, Duncan R.; Christiansen, Jeffrey H.

    2010-01-01

    EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∼19 000 gene) ‘EURExpress’ dataset into EMAGE. PMID:19767607

  14. Laser-assisted zona pellucida thinning does not facilitate hatching and may disrupt the in vitro hatching process: a morphokinetic study in the mouse.

    PubMed

    Schimmel, Tim; Cohen, Jacques; Saunders, Helen; Alikani, Mina

    2014-12-01

    Does laser-assisted zona thinning of cleavage stage mouse embryos facilitate hatching in vitro? No, unlike laser zona opening, zona thinning does not facilitate embryo hatching. Artificial opening of the zona pellucida facilitates hatching of mouse and human embryos. Laser-assisted zona thinning has also been used for the purpose of assisted hatching of human embryos but it has not been properly investigated in an animal model; thinning methods have produced inconsistent clinical results. Time-lapse microscopy was used to study the hatching process in the mouse after zona opening and zona thinning; a control group of embryos was not zona-manipulated but exposed to the same laser energy. Eight-cell CB6F1/J mouse embryos were pooled and allocated to three groups (n = 56 per group): A control group of embryos that were exposed to a dose of laser energy focused outside the zona pellucida (zona intact); one experimental group of embryos in which the zona pellucida was opened by complete ablation using the same total number of pulses as the control group; a second experimental group of embryos in which the zona pellucida was thinned to establish a smooth lased area using the same number of pulses as used in the other two groups. The width of the zona opening was 25 μm and width of the thinned area was 35 μm. Development was monitored by time-lapse microscopy. Overall treatment differences for continuous variables were analyzed by analysis of variance and pairwise comparisons using the Student t-test allowing for unequal variances, while for categorical data, a standard chi-squared test was utilized for all pairwise comparisons. The frequency of complete hatching was 33.9% in the control group, 94.4% after zona opening, and 39.3% after zona thinning (overall group comparison, P < 0.0001). Overall, 60.7% of the zona-thinned embryos did not complete the hatching process and remained trapped within the zona; when they did hatch, they did not necessarily hatch from the zona-thinned area. Hatching in about one-third of the zona-intact embryos began with breaches at multiple sites by small groups of cells. Likewise, 53.6% of zona-thinned embryos had multiple breaches, always involving an area outside the thinned zone. Zona opening decreased multiple breaching and led to blastocyst escape an average of 14 h earlier than zona-thinned embryos and 5.5 h before control embryos (P = 0.0003). The experiments presented here were limited to in vitro experiments performed in the mouse. Whether human embryos would behave the same way under similar circumstances is unknown. We postulate that zona thinning is not beneficial in human embryos. The experiments demonstrate that zona thinning is not equivalent to zona opening for assisted hatching. The study provides reason for systematic reviews of assisted hatching trials to take the method of assisted hatching into consideration and not combine the results of zona thinning and zona opening procedures. Institutional funds were used for the study. No competing interests are declared. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  15. Embryos aggregation improves development and imprinting gene expression in mouse parthenogenesis.

    PubMed

    Bai, Guang-Yu; Song, Si-Hang; Wang, Zhen-Dong; Shan, Zhi-Yan; Sun, Rui-Zhen; Liu, Chun-Jia; Wu, Yan-Shuang; Li, Tong; Lei, Lei

    2016-04-01

    Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4-cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4-cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post-implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP-a4 PgESCs which derived from GFP-4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5-day fetus totally derived from GFP-a4 PgESCs with germline contribution by 8-cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4 PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study. © 2016 Japanese Society of Developmental Biologists.

  16. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research.

    PubMed

    Syed, Saba H; Coughlin, Andrew J; Garcia, Monica D; Wang, Shang; West, Jennifer L; Larin, Kirill V; Larina, Irina V

    2015-05-01

    The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research.

  17. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research

    PubMed Central

    Syed, Saba H.; Coughlin, Andrew J.; Garcia, Monica D.; Wang, Shang; West, Jennifer L.; Larin, Kirill V.; Larina, Irina V.

    2015-01-01

    Abstract. The ability to conduct highly localized delivery of contrast agents, viral vectors, therapeutic or pharmacological agents, and signaling molecules or dyes to live mammalian embryos is greatly desired to enable a variety of studies in the field of developmental biology, such as investigating the molecular regulation of cardiovascular morphogenesis. To meet such a demand, we introduce, for the first time, the concept of employing optical coherence tomography (OCT)-guide microinjections in live mouse embryos, which provides precisely targeted manipulation with spatial resolution at the micrometer scale. The feasibility demonstration is performed with experimental studies on cultured live mouse embryos at E8.5 and E9.5. Additionally, we investigate the OCT-guided microinjection of gold–silica nanoshells to the yolk sac vasculature of live cultured mouse embryos at the stage when the heart just starts to beat, as a potential approach for dynamic assessment of cardiovascular form and function before the onset of blood cell circulation. Also, the capability of OCT to quantitatively monitor and measure injection volume is presented. Our results indicate that OCT-guided microinjection could be a useful tool for mouse embryonic research. PMID:25581495

  18. Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Bishop, Jack; Lowe, Xiu

    2008-10-14

    Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cellmore » embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.« less

  19. Trichostatin A specifically improves the aberrant expression of transcription factor genes in embryos produced by somatic cell nuclear transfer

    PubMed Central

    Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo

    2015-01-01

    Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394

  20. Mouse embryo attachment to substratum and interaction of trophoblast with cultured cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glass, R.H.; Spindle, A.I.; Pedersen, R.A.

    1979-06-01

    Hatching, attachment, and trophoblast outgrowth of mouse embryos in vitro were examined as a model for implantation. Mouse embryos attached and grew out on glass cover slips that were partially covered with cultured mouse cells (L cells, liver cells, transformed JLS-V11 cells, and teratocarcinoma cells). Scanning electron microscopy showed that processes of these cells made contact with trophoblast, but there was no evidence of cell lysis or of phagocytosis of the cells by trophoblast. Time-lapse cinematography showed that after contact the cultured mouse cells retracted from the trophoblast, which then spread into the areas vacated by those cells. This suggestsmore » a means by which the trophoblast gains entry into the endometrium without destruction of maternal cells. Neuraminidase (100 or 250 units/ml) had no effect on attachment of mouse embryos to glass. However, attachment was inhibited by trypsin at concentrations of 0.25%, 0.025%, and 0.0025%. Treatment of early blastocysts with diazooxo-norleucine, an inhibitor of glycoprotein synthesis, decreased the number of embryos hatching from the zona pellucida; treatment at the late blastocyst stage decreased hatching to a lesser extent. Among the late blastocysts that did hatch, the number forming trophoblast outgrowths was lower than in controls. These results suggest that glycoproteins may be of importance for embryo hatching, attachment, and outgrowth.« less

  1. Mammalian Cardiovascular Patterning as Determined by Hemodynamic Forces and Blood Vessel Genetics

    NASA Astrophysics Data System (ADS)

    Anderson, Gregory Arthur

    Cardiovascular development is a process that involves the timing of multiple molecular events, and numerous subtle three-dimensional conformational changes. Traditional developmental biology techniques have provided large quantities of information as to how these complex organ systems develop. However, the major drawback of the majority of current developmental biological imaging is that they are two-dimensional in nature. It is now well recognized that circulation of blood is required for normal patterning and remodeling of blood vessels. Normal blood vessel formation is dependent upon a complex network of signaling pathways, and genetic mutations in these pathways leads to impaired vascular development, heart failure, and lethality. As such, it is not surprising that mutant mice with aberrant cardiovascular patterning are so common, since normal development requires proper coordination between three systems: the heart, the blood, and the vasculature. This thesis describes the implementation of a three-dimensional imaging technique, optical projection tomography (OPT), in conjunction with a computer-based registration algorithm to statistically analyze developmental differences in groups of wild-type mouse embryos. Embryos that differ by only a few hours' gestational time are shown to have developmental differences in blood vessel formation and heart development progression that can be discerned. This thesis describes how we analyzed mouse models of cardiovascular perturbation by OPT to detect morphological differences in embryonic development in both qualitative and quantitative ways. Both a blood vessel specific mutation and a cardiac specific mutation were analyzed, providing evidence that developmental defects of these types can be quantified. Finally, we describe the implementation of OPT imaging to identify statistically significant phenotypes from three different mouse models of cardiovascular perturbation across a range of developmental time points. Image registration methods, combined with intensity- and deformation-based analyses are described and utilized to fully characterize myosin light chain 2a (Mlc2a), delta-like ligand 4 (Dll4), and Endoglin (Eng) mutant mouse embryos. We show that Eng mutant embryos are statistically similar to the Mlc2a phenotype, confirming that these mouse mutants suffer from a primary cardiac developmental defect. Thus, a loss of hemodynamic force caused by defective pumping of the heart is the primary developmental defect affecting these mice.

  2. Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos.

    PubMed

    Fisher, M C; Zeisel, S H; Mar, M H; Sadler, T W

    2001-08-01

    Choline is an essential nutrient in methylation, acetylcholine and phospholipid biosynthesis, and in cell signaling. The demand by an embryo or fetus for choline may place a pregnant woman and, subsequently, the developing conceptus at risk for choline deficiency. To determine whether a disruption in choline uptake and metabolism results in developmental abnormalities, early somite staged mouse embryos were exposed in vitro to either an inhibitor of choline uptake and metabolism, 2-dimethylaminoethanol (DMAE), or an inhibitor of phosphatidylcholine synthesis, 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH(3)). Cell death following inhibitor exposure was investigated with LysoTracker Red and histology. Embryos exposed to 250-750 microM DMAE for 26 hr developed craniofacial hypoplasia and open neural tube defects in the forebrain, midbrain, and hindbrain regions. Embryos exposed to 125-275 microM ET-18-OCH(3) exhibited similar defects or expansion of the brain vesicles. ET-18-OCH(3)-affected embryos also had a distended neural tube at the posterior neuropore. Embryonic growth was reduced in embryos treated with either DMAE (375, 500, and 750 microM) or ET-18-OCH(3) (200 and 275 microM). Whole mount staining with LysoTracker Red and histological sections showed increased areas of cell death in embryos treated with 275 microM ET-18-OCH(3) for 6 hr, but there was no evidence of cell death in DMAE-exposed embryos. Inhibition of choline uptake and metabolism during neurulation results in growth retardation and developmental defects that affect the neural tube and face. Copyright 2001 Wiley-Liss, Inc.

  3. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos.

    PubMed

    Plaza Reyes, Alvaro; Lanner, Fredrik

    2017-01-01

    Developmental biologists have become increasingly aware that the wealth of knowledge generated through genetic studies of pre-implantation mouse development might not easily be translated to the human embryo. Comparative studies have been fueled by recent technological advances in single-cell analysis, allowing in-depth analysis of the human embryo. This field could shortly gain more momentum as novel genome editing technologies might, for the first time, also allow functional genetic studies in the human embryo. In this Spotlight article, we summarize the CRISPR-Cas9 genome editing system and discuss its potential applications and limitations in human pre-implantation embryos, and the ethical considerations thereof. © 2017. Published by The Company of Biologists Ltd.

  4. Surface Antigens Common to Mouse Cleavage Embryos and Primitive Teratocarcinoma Cells in Culture

    PubMed Central

    Artzt, Karen; Dubois, Philippe; Bennett, Dorothea; Condamine, Hubert; Babinet, Charles; Jacob, François

    1973-01-01

    Syngeneic antisera have been produced in mouse strain 129/Sv-CP males against the primitive cells of teratocarcinoma. These sera react specifically with the primitive cells and are negative on various types of differentiated teratoma cells derived from the same original tumor. They are negative on all other mouse cells tested, with the exception of male germ cells and cleavage-stage embryos. Thus, teratoma cells possess cell-surface antigens in common with normal cleavage-stage embryos. Images PMID:4355379

  5. Immunocytochemical localisation of the nucleolar protein fibrillarin and RNA polymerase I during mouse early embryogenesis.

    PubMed

    Cuadros-Fernández, J M; Esponda, P

    1996-02-01

    We have employed immunocytochemical procedures to localise the nucleolar protein fibrillarin and the enzyme RNA polymerase I in the numerous dense fibrillar bodies (nucleolar precursor bodies) which appear in the nuclei of mammalian early embryos. The aim of this study was to search for relationships between the localisation of these proteins, the changes in the structure of the nucleolar precursor bodies and the resumption of rRNA gene transcription during mouse early embryogenesis. Three human autoimmune sera which recognised fibrillarin and a rabbit antiserum created against RNA polymerase I were employed for fluorescence and electron microscopic immunocytochemical assays. A statistical analysis was also applied. Immunocytochemistry revealed that fibrillarin and RNA polymerase I showed the same localisation in the nucleolar precursor bodies. These proteins were immunolocalised only from the late 2-cell stage onward. Fibrillarin was initially detected at the periphery of the nucleolar precursor bodies and the labelling gradually increased until the morula and blastocyst stages, where normally active nucleoli are found. The pattern of increase of fibrillarin during early embryogenesis shows a parallelism with the rise in rRNA gene transcription occurring during these embryonic stages, and a possible correlation between these two phenomena is suggested. Results demonstrated that nucleolar precursor bodies differ in their biochemical composition from the nucleolus and also from the prenucleolar bodies which appear during mitosis. When anti-fibrillarin antibodies were microinjected into the male pronucleus of mouse embryos to analyse the functions of fibrillarin during early development, they partially blocked the early development of mouse embryos and only 23.8% of injected embryos reach the blastocyst stage.

  6. Corticotrophin-releasing hormone and corticosterone impair development of preimplantation embryos by inducing oviductal cell apoptosis via activating the Fas system: an in vitro study.

    PubMed

    Tan, Xiu-Wen; Ji, Chang-Li; Zheng, Liang-Liang; Zhang, Jie; Yuan, Hong-Jie; Gong, Shuai; Zhu, Jiang; Tan, Jing-He

    2017-08-01

    What are the mechanisms by which corticotrophin-releasing hormone (CRH) and corticosterone impair the development of preimplantation embryos in the oviduct. CRH and corticosterone do not affect preimplantation embryos directly, but impair their development indirectly by triggering apoptosis of oviductal epithelial cells (OECs) through activation of the Fas system. Studies report that stress impairs embryo development with facilitated secretion of CRH and glucocorticoids. Although an in vivo study demonstrated that preimplantation stress impaired embryo development in conjunction with oviductal apoptosis and activation of the Fas system, whether CRH or glucocorticoids damage embryos directly or indirectly by way of oviductal cells remains to be clarified. Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in Fas ligand in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female mice were used 8-10 weeks after birth. While some female mice were killed 48 h after being injected with equine CG to collect oviducts and prepare OECs, others were killed to recover zygotes after mating with males following superovulation with eCG and hCG. The zygotes obtained were cultured with or without CRH or corticosterone (CRH/Cort) either in Chatot-Ziomek-Bavister (CZB) medium with or without OECs or in conditioned medium (CM) conditioned with OECs pretreated or not with CRH/Cort. Preimplantation development, levels of redox potential and apoptosis, and expression of CRH receptor 1 (CRHR1), glucocorticoid receptor (GR), Fas and 11β-hydroxysteroid dehydrogenase (HSD) were observed in embryos recovered at different times of in vitro culture. After culture of OECs with or without CRH/Cort, levels of redox potential and apoptosis, mRNA and protein expression of growth factors, and protein expression of CRHR1, GR and Fas were examined in OECs and the level of FasL was measured in CM. The gld mice were used to confirm a role for the Fas system in triggering apoptosis of embryos and oviducts. This study showed that blastocyst development was unaffected when mouse zygotes were cultured in CZB medium containing various concentrations of CRH/Cort but was impaired when embryos were cultured with CRH/Cort plus OECs or in CM conditioned with OECs pretreated with CRH/Cort (treatment CM). Culture in treatment-CM induced oxidative stress and apoptosis in embryos. Preimplantation embryos expressed GR and Fas at all stages and CRHR1 at the blastocyst stage only. Mouse 4-cell embryos and blastocysts expressed HSD2 but not HSD1. Culture of OECs with CRH/Cort increased their oxidative stress, apoptosis, CRHR1, Fas and FasL while decreasing their GR and growth factors. Blastocyst development in treatment-CM conditioned with OECs from gld mice harboring FasL mutations was superior to treatment-CM conditioned with wild-type mouse OECs. The results suggest that CRH/Cort impairs embryo development indirectly by inducing oviductal apoptosis via activating the Fas system. The insensitivity of preimplantation embryos to CRH and corticosterone is due to, respectively, a lack of CRHR and the exclusive expression of HSD2 that inactivate corticosterone. Not applicable. Although significant, the conclusions were drawn from limited results obtained using mice and thus they need further verification in other species. For example, bovine embryos express both HSD1 and HSD2 at all the preimplantation stages whereas mouse preimplantation embryos express HSD2 exclusively without HSD1. The data are important for our understanding of the mechanisms by which stress affects female reproduction in both human and animals, as early stages of pregnancy are considered more vulnerable to stress than the late stages. This study was supported by grants from the National Basic Research Program of China (Nos. 2014CB138503 and 2012CB944403), the China National Natural Science Foundation (Nos. 31272444 and 30972096) and the Animal breeding improvement program of Shandong Province. All authors declare that their participation in the study did not involve factual or potential conflicts of interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Mouse embryonic head as a site for hematopoietic stem cell development.

    PubMed

    Li, Zhuan; Lan, Yu; He, Wenyan; Chen, Dongbo; Wang, Jun; Zhou, Fan; Wang, Yu; Sun, Huayan; Chen, Xianda; Xu, Chunhong; Li, Sha; Pang, Yakun; Zhang, Guangzhou; Yang, Liping; Zhu, Lingling; Fan, Ming; Shang, Aijia; Ju, Zhenyu; Luo, Lingfei; Ding, Yuqiang; Guo, Wei; Yuan, Weiping; Yang, Xiao; Liu, Bing

    2012-11-02

    In the mouse embryo, the aorta-gonad-mesonephros (AGM) region is considered to be the sole location for intraembryonic emergence of hematopoietic stem cells (HSCs). Here we report that, in parallel to the AGM region, the E10.5-E11.5 mouse head harbors bona fide HSCs, as defined by long-term, high-level, multilineage reconstitution and self-renewal capacity in adult recipients, before HSCs enter the circulation. The presence of hemogenesis in the midgestation head is indicated by the appearance of intravascular cluster cells and the blood-forming capacity of a sorted endothelial cell population. In addition, lineage tracing via an inducible VE-cadherin-Cre transgene demonstrates the hemogenic capacity of head endothelium. Most importantly, a spatially restricted lineage labeling system reveals the physiological contribution of cerebrovascular endothelium to postnatal HSCs and multilineage hematopoiesis. We conclude that the mouse embryonic head is a previously unappreciated site for HSC emergence within the developing embryo. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Epigallocatechin gallate promotes the development of mouse 2-cell embryos in vitro by regulating mitochondrial activity and expression of genes related to p53 signalling pathway.

    PubMed

    Zhang, Weiyu; Lv, Junjie; Zhang, Yanqin; Jiang, Yufei; Chu, Chenfeng; Wang, Shie

    2014-11-01

    Preliminary studies have found that the epigallocatechin gallate (EGCG) at proper concentration could promote development of pre-implantation mouse embryos in vitro. However, the underlying mechanisms have not been well understood. In this study, we collected 1-cell embryos from Kunming (KM) mice, cultured them in M16 medium or M16 medium supplemented with 10 μg/mL EGCG and investigated the effects of EGCG on mitochondrial activity and reactive oxygen species (ROS) level of 2-cell embryos. Furthermore, we explored expression differences of genes related to p53 signalling pathway in 2-cell embryos using a PCR array. The results showed that ROS level and mitochondrial membrane potential were significantly lower in embryos cultured in the EGCG group than in the M16 group (p < 0.05), while the adenosine triphosphate content was slightly lower than in the M16 group (p > 0.05). PCR array test results showed that 18 genes were differentially expressed, among which eight genes involving cell growth, cell cycle regulation and mRNA transcription were up-regulated and 10 genes involving apoptosis, cell cycle arrest and DNA repair were down-regulated in the EGCG groups. It is concluded that EGCG could promote the development of 1-cell embryos in vitro possibly due to its ability to scavenge ROS and regulate mitochondrial activity. In addition, EGCG could influence expression of genes related to p53 signalling pathway in 2-cell embryos and promote cell cycle progression. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Modeling of optical quadrature microscopy for imaging mouse embryos

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2008-02-01

    Optical quadrature microscopy (OQM) has been shown to provide the optical path difference through a mouse embryo, and has led to a novel method to count the total number of cells further into development than current non-toxic imaging techniques used in the clinic. The cell counting method has the potential to provide an additional quantitative viability marker for blastocyst transfer during in vitro fertilization. OQM uses a 633 nm laser within a modified Mach-Zehnder interferometer configuration to measure the amplitude and phase of the signal beam that travels through the embryo. Four cameras preceded by multiple beamsplitters record the four interferograms that are used within a reconstruction algorithm to produce an image of the complex electric field amplitude. Here we present a model for the electric field through the primary optical components in the imaging configuration and the reconstruction algorithm to calculate the signal to noise ratio when imaging mouse embryos. The model includes magnitude and phase errors in the individual reference and sample paths, fixed pattern noise, and noise within the laser and detectors. This analysis provides the foundation for determining the imaging limitations of OQM and the basis to optimize the cell counting method in order to introduce additional quantitative viability markers.

  10. Cytotoxic Effects of Dillapiole on Embryonic Development of Mouse Blastocysts in Vitro and in Vivo

    PubMed Central

    Chan, Wen-Hsiung

    2014-01-01

    We examined the cytotoxic effects of dillapiole, a phenylpropanoid with antileishmanial, anti-inflammatory, antifungal, and acaricidal activities, on the blastocyst stage of mouse embryos, subsequent embryonic attachment and outgrowth in vitro, and in vivo implantation via embryo transfer. Blastocysts treated with 2.5–10 μM dillapiole exhibited a significant increase in apoptosis and corresponding decrease in total cell number. Notably, the implantation success rates of blastocysts pretreated with dillapiole were lower than those of their control counterparts. Moreover, in vitro treatment with 2.5–10 μM dillapiole was associated with increased resorption of post-implantation embryos and decreased fetal weight. Our results collectively indicate that dillapiole induces apoptosis and retards early post-implantation development, both in vitro and in vivo. However, the extent to which this organic compound exerts teratogenic effects on early human development is not known at present. Further studies are required to establish effective protection strategies against the cytotoxic effects of dillapiole. PMID:24933639

  11. Intra-spindle Microtubule Assembly Regulates Clustering of Microtubule-Organizing Centers during Early Mouse Development.

    PubMed

    Watanabe, Sadanori; Shioi, Go; Furuta, Yasuhide; Goshima, Gohta

    2016-04-05

    Errors during cell division in oocytes and early embryos are linked to birth defects in mammals. Bipolar spindle assembly in early mouse embryos is unique in that three or more acentriolar microtubule-organizing centers (MTOCs) are initially formed and are then clustered into two spindle poles. Using a knockout mouse and live imaging of spindles in embryos, we demonstrate that MTOC clustering during the blastocyst stage requires augmin, a critical complex for MT-dependent MT nucleation within the spindle. Functional analyses in cultured cells with artificially increased numbers of centrosomes indicate that the lack of intra-spindle MT nucleation, but not loss of augmin per se or overall reduction of spindle MTs, is the cause of clustering failure. These data suggest that onset of mitosis with three or more MTOCs is turned into a typical bipolar division through augmin-dependent intra-spindle MT assembly. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Immunostaining, dehydration, and clearing of mouse embryos for ultramicroscopy.

    PubMed

    Becker, Klaus; Jährling, Nina; Saghafi, Saiedeh; Dodt, Hans-Ulrich

    2013-08-01

    This protocol describes the preparation of mouse embryos for ultramicroscopy (UM), a powerful imaging technique that achieves precise and accurate three-dimensional (3D) reconstructions of intact macroscopic specimens with micrometer resolution. In UM, a specimen in the size range of ∼1-15 mm is illuminated perpendicular to the observation pathway by two thin counterpropagating sheets of laser light. In combination with fluorescein isothiocyanate (FITC) immunostaining, UM allows visualization of somatic motor and sensorial nerve fibers in whole mouse embryos. Even the fine branches of the sensomotoric fibers can be visualized over a distance of up to several millimeters. In this protocol, mouse embryos are fixed and immunostained in preparation for UM. Because UM requires the excitation light sheet to travel throughout the entire horizontal width of the specimen, specimens usually have to be rendered transparent before microscope inspection. Here, the embryos are dehydrated in ethanol and then cleared in a solution of benzyl alcohol and benzyl benzoate.

  13. Cyclin B in mouse oocytes and embryos: importance for human reproduction and aneuploidy.

    PubMed

    Polański, Zbigniew; Homer, Hayden; Kubiak, Jacek Z

    2012-01-01

    Oocyte maturation and early embryo development require precise coordination between cell cycle progression and the developmental programme. Cyclin B plays a major role in this process: its accumulation and degradation is critical for driving the cell cycle through activation and inactivation of the major cell cycle kinase, CDK1. CDK1 activation is required for M-phase entry whereas its inactivation leads to exit from M-phase. The tempo of oocyte meiotic and embryonic mitotic divisions is set by the rate of cyclin B accumulation and the timing of its destruction. By controlling when cyclin B destruction is triggered and by co-ordinating this with the completion of chromosome alignment, the spindle assembly checkpoint (SAC) is a critical quality control system important for averting aneuploidy and for building in the flexibility required to better integrate cell cycle progression with development. In this review we focus on cyclin B metabolism in mouse oocytes and embryos and illustrate how the cell cycle-powered clock (in fact cyclin B-powered clock) controls oocyte maturation and early embryo development, thereby providing important insight into human reproduction and potential causes of Down syndrome.

  14. Initiating head development in mouse embryos: integrating signalling and transcriptional activity.

    PubMed

    Arkell, Ruth M; Tam, Patrick P L

    2012-03-01

    The generation of an embryonic body plan is the outcome of inductive interactions between the progenitor tissues that underpin their specification, regionalization and morphogenesis. The intercellular signalling activity driving these processes is deployed in a time- and site-specific manner, and the signal strength must be precisely controlled. Receptor and ligand functions are modulated by secreted antagonists to impose a dynamic pattern of globally controlled and locally graded signals onto the tissues of early post-implantation mouse embryo. In response to the WNT, Nodal and Bone Morphogenetic Protein (BMP) signalling cascades, the embryo acquires its body plan, which manifests as differences in the developmental fate of cells located at different positions in the anterior-posterior body axis. The initial formation of the anterior (head) structures in the mouse embryo is critically dependent on the morphogenetic activity emanating from two signalling centres that are juxtaposed with the progenitor tissues of the head. A common property of these centres is that they are the source of antagonistic factors and the hub of transcriptional activities that negatively modulate the function of WNT, Nodal and BMP signalling cascades. These events generate the scaffold of the embryonic head by the early-somite stage of development. Beyond this, additional tissue interactions continue to support the growth, regionalization, differentiation and morphogenesis required for the elaboration of the structure recognizable as the embryonic head.

  15. Mutants in the Mouse NuRD/Mi2 Component P66α Are Embryonic Lethal

    PubMed Central

    Marino, Susan; Nusse, Roel

    2007-01-01

    Background The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66α and p66β. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. Methodology We made loss of function mutants in the mouse p66α gene (mp66α, official name Gatad2a, MGI:2384585). We found that mp66α is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66α in gene silencing. Conclusion mp66α is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing. PMID:17565372

  16. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms

    PubMed Central

    Bleyl, Steven B.; Saijoh, Yukio; Bax, Noortje A.M.; Gittenberger-de Groot, Adriana C.; Wisse, Lambertus J.; Chapman, Susan C.; Hunter, Jennifer; Shiratori, Hidetaka; Hamada, Hiroshi; Yamada, Shigehito; Shiota, Kohei; Klewer, Scott E.; Leppert, Mark F.; Schoenwolf, Gary C.

    2010-01-01

    Total anomalous pulmonary venous return (TAPVR) is a congenital heart defect inherited via complex genetic and/or environmental factors. We report detailed mapping in extended TAPVR kindreds and mutation analysis in TAPVR patients that implicate the PDGFRA gene in the development of TAPVR. Gene expression studies in mouse and chick embryos for both the Pdgfra receptor and its ligand Pdgf-a show temporal and spatial patterns consistent with a role in pulmonary vein (PV) development. We used an in ovo function blocking assay in chick and a conditional knockout approach in mouse to knock down Pdgfra expression in the developing venous pole during the period of PV formation. We observed that loss of PDGFRA function in both organisms causes TAPVR with low penetrance (∼7%) reminiscent of that observed in our human TAPVR kindreds. Intermediate inflow tract anomalies occurred in a higher percentage of embryos (∼30%), suggesting that TAPVR occurs at one end of a spectrum of defects. We show that the anomalous pulmonary venous connection seen in chick and mouse is highly similar to TAPVR discovered in an abnormal early stage embryo from the Kyoto human embryo collection. Whereas the embryology of the normal venous pole and PV is becoming understood, little is known about the embryogenesis or molecular pathogenesis of TAPVR. These models of TAPVR provide important insight into the pathogenesis of PV defects. Taken together, these data from human genetics and animal models support a role for PDGF-signaling in normal PV development, and in the pathogenesis of TAPVR. PMID:20071345

  17. Composition of commercial media used for human embryo culture.

    PubMed

    Morbeck, Dean E; Krisher, Rebecca L; Herrick, Jason R; Baumann, Nikola A; Matern, Dietrich; Moyer, Thomas

    2014-09-01

    To determine the composition of commercially available culture media and test whether differences in composition are biologically relevant in a murine model. Experimental laboratory study. University-based laboratory. Cryopreserved hybrid mouse one-cell embryos were used in experiments. Amino acid, organic acid, ions, and metal content were determined for two different lots of media from Cook, In Vitro Care, Origio, Sage, Vitrolife, Irvine CSC, and Global. To determine whether differences in the composition of these media are biologically relevant, mouse one-cell embryos were thawed and cultured for 120 hours in each culture media at 5% and 20% oxygen in the presence or absence of protein in an EmbryoScope time-lapse incubator. The compositions of seven culture media were analyzed for concentrations of 39 individual amino acids, organic acids, ions, and elements. Blastocyst rates and cell cycle timings were calculated at 96 hours of culture, and the experiments were repeated in triplicate. Of the 39 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium were present in variable concentrations, likely reflecting differences in the interpretation of animal studies. Essential trace elements, such as copper and zinc, were not detected. Mouse embryos failed to develop in one culture medium and were differentially affected by oxygen in two other media. Culture media composition varies widely, with differences in pyruvate, lactate, and amino acids especially notable. Blastocyst development was culture media dependent and showed an interaction with oxygen concentration and presence of protein. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Automation and Optimization of Multipulse Laser Zona Drilling of Mouse Embryos During Embryo Biopsy.

    PubMed

    Wong, Christopher Yee; Mills, James K

    2017-03-01

    Laser zona drilling (LZD) is a required step in many embryonic surgical procedures, for example, assisted hatching and preimplantation genetic diagnosis. LZD involves the ablation of the zona pellucida (ZP) using a laser while minimizing potentially harmful thermal effects on critical internal cell structures. Develop a method for the automation and optimization of multipulse LZD, applied to cleavage-stage embryos. A two-stage optimization is used. The first stage uses computer vision algorithms to identify embryonic structures and determines the optimal ablation zone farthest away from critical structures such as blastomeres. The second stage combines a genetic algorithm with a previously reported thermal analysis of LZD to optimize the combination of laser pulse locations and pulse durations. The goal is to minimize the peak temperature experienced by the blastomeres while creating the desired opening in the ZP. A proof of concept of the proposed LZD automation and optimization method is demonstrated through experiments on mouse embryos with positive results, as adequately sized openings are created. Automation of LZD is feasible and is a viable step toward the automation of embryo biopsy procedures. LZD is a common but delicate procedure performed by human operators using subjective methods to gauge proper LZD procedure. Automation of LZD removes human error to increase the success rate of LZD. Although the proposed methods are developed for cleavage-stage embryos, the same methods may be applied to most types LZD procedures, embryos at different developmental stages, or nonembryonic cells.

  19. MRG15 Regulates Embryonic Development and Cell Proliferation

    PubMed Central

    Tominaga, Kaoru; Kirtane, Bhakti; Jackson, James G.; Ikeno, Yuji; Ikeda, Takayoshi; Hawks, Christina; Smith, James R.; Matzuk, Martin M.; Pereira-Smith, Olivia M.

    2005-01-01

    MRG15 is a highly conserved protein, and orthologs exist in organisms from yeast to humans. MRG15 associates with at least two nucleoprotein complexes that include histone acetyltransferases and/or histone deacetylases, suggesting it is involved in chromatin remodeling. To study the role of MRG15 in vivo, we generated knockout mice and determined that the phenotype is embryonic lethal, with embryos and the few stillborn pups exhibiting developmental delay. Immunohistochemical analysis indicates that apoptosis in Mrg15−/− embryos is not increased compared with wild-type littermates. However, the number of proliferating cells is significantly reduced in various tissues of the smaller null embryos compared with control littermates. Cell proliferation defects are also observed in Mrg15−/− mouse embryonic fibroblasts. The hearts of the Mrg15−/− embryos exhibit some features of hypertrophic cardiomyopathy. The increase in size of the cardiomyocytes is most likely a response to decreased growth of the cells. Mrg15−/− embryos appeared pale, and microarray analysis revealed that α-globin gene expression was decreased in null versus wild-type embryos. We determined by chromatin immunoprecipitation that MRG15 was recruited to the α-globin promoter during dimethyl sulfoxide-induced mouse erythroleukemia cell differentiation. These findings demonstrate that MRG15 has an essential role in embryonic development via chromatin remodeling and transcriptional regulation. PMID:15798182

  20. Sequence analysis, expression patterns and transcriptional regulation of mouse Ifrg15 during preimplantation embryonic development.

    PubMed

    Wu, Feng-Rui; Ding, Biao; Qi, Bin; Shang, Ming-Bao; Yang, Xun-Xun; Liu, Yong; Li, Wen-Yong

    2012-10-10

    Ifrg15 is a newly identified interferon alpha responsive gene and is implicated in a wide variety of physiological roles in mammals. In the present study, multiple alignments of the deduced amino acids of 10 eutherian mammalian IFRG15/Ifrg15s isolated from open genomic database revealed that they were highly conserved. Real-time PCR showed that mouse Ifrg15 mRNA was expressed in MII stage oocytes and preimplantation embryos, and its highest value peaked at the stage of mouse blastocysts. To understand the effect of three development-related genes on the promoter activity of mouse Ifrg15, promoter analysis using luciferase assays in COS-7 cells were performed. The results showed that the transcription of mouse Ifrg15 was suppressed by Oct4 and Nanog when transfected with the longest Ifrg15 promoter reporter gene. After the relatively shorter promoters were co-transfected with Oct4, c-Myc and Nanog, the relative luciferase activities of Ifrg15 were gradually increased. These in vitro results data and expression profiles of Ifrg15 as revealed by real-time PCR partly indicated that Ifrg15 transcription might be either potentially regulated or dependent on the post-transcriptional effects of IFN-α mediated by the three genes indirectly. Our data suggested that the mouse Ifrg15 might interact with these key development-related genes and play significant roles on the mouse preimplantation embryos development, especially for the development of mouse blastocysts. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Kid depletion in mouse oocytes associated with multinucleated blastomere formation and inferior embryo development.

    PubMed

    Egashira, Akiyoshi; Yamauchi, Nobuhiko; Islam, Md Rashedul; Yamagami, Kazuki; Tanaka, Asami; Suyama, Hikaru; El-Sayed, El-Sharawy Mohamed; Tabata, Shoji; Kuramoto, Takashi

    2016-08-01

    This study investigated the knockdown (KD) of Kid on maturation developmental competence and multinucleation of mouse germinal vesicle (GV) oocytes after parthenogenetic activation. Data revealed that Kid messenger RNA (mRNA) was expressed in GV and MII stage oocyte and 1- and 2-cell embryos. Additionally, Kid mRNA expression in the Kid KD group decreased by nearly 46% compared to the control small interfering RNA (siRNA) groups. The rate of multinucleated embryos in the Kid KD group (52.4%) was significantly higher (P < 0.05) than the control siRNA group (4.7%). Finally, the developmental rates were significantly lower in the Kid siRNA group at > 4-cell stage (28.6% vs. 53.5%) and the blastocyst stage (2.4% vs. 23.3%) compared to the control siRNA groups. Suppression of Kid using siRNA caused multinucleation in early embryos with high frequency and it may increase 2- to 4-cell arrested embryos and reduce the developmental competence to blastocyst. © 2016 Japanese Society of Animal Science.

  2. Chromatin immunoprecipitation of mouse embryos.

    PubMed

    Voss, Anne K; Dixon, Mathew P; McLennan, Tamara; Kueh, Andrew J; Thomas, Tim

    2012-01-01

    During prenatal development, a large number of different cell types are formed, the vast majority of which contain identical genetic material. The basis of the great variety in cell phenotype and function is the differential expression of the approximately 25,000 genes in the mammalian genome. Transcriptional activity is regulated at many levels by proteins, including members of the basal transcriptional apparatus, DNA-binding transcription factors, and chromatin-binding proteins. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency, with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method to assess if chromatin modifications or proteins are present at a specific locus. ChIP involves the cross linking of DNA and associated proteins and immunoprecipitation using specific antibodies to DNA-associated proteins followed by examination of the co-precipitated DNA sequences or proteins. In the last few years, ChIP has become an essential technique for scientists studying transcriptional regulation and chromatin structure. Using ChIP on mouse embryos, we can document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development. Here, we describe a ChIP technique adapted for mouse embryos.

  3. Regulation of X-chromosome dosage compensation in human: mechanisms and model systems.

    PubMed

    Sahakyan, Anna; Plath, Kathrin; Rougeulle, Claire

    2017-11-05

    The human blastocyst forms 5 days after one of the smallest human cells (the sperm) fertilizes one of the largest human cells (the egg). Depending on the sex-chromosome contribution from the sperm, the resulting embryo will either be female, with two X chromosomes (XX), or male, with an X and a Y chromosome (XY). In early development, one of the major differences between XX female and XY male embryos is the conserved process of X-chromosome inactivation (XCI), which compensates gene expression of the two female X chromosomes to match the dosage of the single X chromosome of males. Most of our understanding of the pre-XCI state and XCI establishment is based on mouse studies, but recent evidence from human pre-implantation embryo research suggests that many of the molecular steps defined in the mouse are not conserved in human. Here, we will discuss recent advances in understanding the control of X-chromosome dosage compensation in early human embryonic development and compare it to that of the mouse.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'. © 2017 The Author(s).

  4. Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro.

    PubMed

    Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko

    2009-06-01

    The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.

  5. MATER protein expression and intracellular localization throughout folliculogenesis and preimplantation embryo development in the bovine

    PubMed Central

    Pennetier, Sophie; Perreau, Christine; Uzbekova, Svetlana; Thélie, Aurore; Delaleu, Bernadette; Mermillod, Pascal; Dalbiès-Tran, Rozenn

    2006-01-01

    Background Mater (Maternal Antigen that Embryos Require), also known as Nalp5 (NACHT, leucine rich repeat and PYD containing 5), is an oocyte-specific maternal effect gene required for early embryonic development beyond the two-cell stage in mouse. We previously characterized the bovine orthologue MATER as an oocyte marker gene in cattle, and this gene was recently assigned to a QTL region for reproductive traits. Results Here we have analyzed gene expression during folliculogenesis and preimplantation embryo development. In situ hybridization and immunohistochemistry on bovine ovarian section revealed that both the transcript and protein are restricted to the oocyte from primary follicles onwards, and accumulate in the oocyte cytoplasm during follicle growth. In immature oocytes, cytoplasmic, and more precisely cytosolic localization of MATER was confirmed by immunohistochemistry coupled with confocal microscopy and immunogold electron microscopy. By real-time PCR, MATER messenger RNA was observed to decrease strongly during maturation, and progressively during the embryo cleavage stages; it was hardly detected in morulae and blastocysts. The protein persisted after fertilization up until the blastocyst stage, and was mostly degraded after hatching. A similar predominantly cytoplasmic localization was observed in blastomeres from embryos up to 8-cells, with an apparent concentration near the nuclear membrane. Conclusion Altogether, these expression patterns are consistent with bovine MATER protein being an oocyte specific maternal effect factor as in mouse. PMID:16753072

  6. Early detection and staging of spontaneous embryo resorption by ultrasound biomicroscopy in murine pregnancy

    PubMed Central

    2014-01-01

    Background Embryo resorption is a major problem in human medicine, agricultural animal production and in conservation breeding programs. Underlying mechanisms have been investigated in the well characterised mouse model. However, post mortem studies are limited by the rapid disintegration of embryonic structures. A method to reliably identify embryo resorption in alive animals has not been established yet. In our study we aim to detect embryos undergoing resorption in vivo at the earliest possible stage by ultra-high frequency ultrasound. Methods In a longitudinal study, we monitored 30 pregnancies of wild type C57BI/6 mice using ultra-high frequency ultrasound (30-70 MHz), so called ultrasound biomicroscopy (UBM). We compared the sonoembryology of mouse conceptuses under spontaneous resorption and neighbouring healthy conceptuses and correlated the live ultrasound data with the respective histology. Results The process of embryo resorption comprised of four stages: first, the conceptus exhibited growth retardation, second, bradycardia and pericardial edema were observed, third, further development ceased and the embryo died, and finally embryo remnants were resorbed by maternal immune cells. In early gestation (day 7 and 8), growth retardation was characterized by a small embryonic cavity. The embryo and its membranes were ill defined or did not develop at all. The echodensity of the embryonic fluid increased and within one to two days, the embryo and its cavity disappeared and was transformed into echodense tissue surrounded by fluid filled caverns. In corresponding histologic preparations, fibrinoid material interspersed with maternal granulocytes and lacunae filled with maternal blood were observed. In later stages (day 9–11) resorption prone embryos were one day behind in their development compared to their normal siblings. The space between Reichert’s membrane and inner yolk sac membrane was enlarged The growth retarded embryos exhibited bradycardia and ultimately cessation of heart beat. Corresponding histology showed apoptotic cells in the embryo while the placenta was still intact. In the subsequent resorption process first the embryo and then its membranes disappeared. Conclusions Our results provide a temporal time course of embryo resorption. With this method, animals exhibiting embryo resorption can be targeted, enabling the investigation of underlying mechanisms before the onset of total embryo disintegration. PMID:24886361

  7. In vitro and in vivo effects of ulipristal acetate on fertilization and early embryo development in mice.

    PubMed

    Gómez-Elías, Matías D; Munuce, María J; Bahamondes, Luis; Cuasnicú, Patricia S; Cohen, Débora J

    2016-01-01

    Does ulipristal acetate (UPA), a selective progesterone receptor modulator used for emergency contraception (EC), interfere with fertilization or early embryo development in vitro and in vivo? At doses similar to those used for EC, UPA does not affect mouse gamete transport, fertilization or embryo development. UPA acts as an emergency contraceptive mainly by inhibiting or delaying ovulation. However, there is little information regarding its effects on post-ovulatory events preceding implantation. This was an in vitro and in vivo experimental study involving the use of mouse gametes and embryos from at least three animals in each set of experiments. For in vitro fertilization experiments, mouse epididymal spermatozoa capacitated in the presence of different concentrations of UPA (0-1000 ng/ml) were used to inseminate cumulus-intact or cumulus-free eggs in the presence or absence of UPA during gamete co-incubation, and the percentage of fertilized eggs was determined. For in vivo fertilization experiments, superovulated females caged with proven fertile males were injected with UPA (40 mg/kg) or vehicle just before or just after mating and the percentage of fertilized eggs recovered from the ampulla was determined. To investigate the effect of UPA on embryo development, zygotes were recovered from mated females, cultured in the presence of UPA (1000 ng/ml) for 4 days and the progression of embryo development was monitored daily. In vitro studies revealed that the presence of UPA during capacitation and/or gamete co-incubation does not affect fertilization. Whereas the in vivo administration of UPA at the same time as hCG injection produced a decrease in the number of eggs ovulated compared with controls (vehicle injected animals, P < 0.05), no effects on fertilization were observed when UPA was administered shortly before or after mating. No differences were observed in either the percentage of cleaved embryos or the cleavage speed when UPA was present during in vitro embryo culture. Considering the ethical and technical limitations inherent to the use of human gametes for fertilization studies, the mouse model was used as an approach for exploring the potential effects of UPA on in vivo sperm transport and fertilization. Nevertheless, the extrapolation of these results to humans requires further investigation. This study presents new evidence on the lack of effect of UPA on gamete interaction and embryo development, providing new insights into the mechanism of action of UPA as an emergency contraceptive method with potential clinical implications. These new findings could contribute to increase the acceptability and proper use of UPA as an emergency contraceptive method. This study was partially supported by a National Agency of Scientific and Technological Promotion (ANPCyT), Argentina grants PICT 2011-061 to D.J.C. and PICT 2011-2023 to P.S.C. None of the authors has any competing interests to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Quantifying Three-Dimensional Morphology and RNA from Individual Embryos

    PubMed Central

    Green, Rebecca M.; Leach, Courtney L.; Hoehn, Natasha; Marcucio, Ralph S.; Hallgrímsson, Benedikt

    2017-01-01

    Quantitative analysis of morphogenesis aids our understanding of developmental processes by providing a method to link changes in shape with cellular and molecular processes. Over the last decade many methods have been developed for 3D imaging of embryos using microCT scanning to quantify the shape of embryos during development. These methods generally involve a powerful, cross-linking fixative such as paraformaldehyde to limit shrinkage during the CT scan. However, the extended time frames that these embryos are incubated in such fixatives prevent use of the tissues for molecular analysis after microCT scanning. This is a significant problem because it limits the ability to correlate variation in molecular data with morphology at the level of individual embryos. Here, we outline a novel method that allows RNA, DNA or protein isolation following CT scan while also allowing imaging of different tissue layers within the developing embryo. We show shape differences early in craniofacial development (E11.5) between common mouse genetic backgrounds, and demonstrate that we are able to generate RNA from these embryos after CT scanning that is suitable for downstream RT-PCR and RNAseq analyses. PMID:28152580

  9. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    PubMed

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.

  10. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  11. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  12. EMG1 is essential for mouse pre-implantation embryo development.

    PubMed

    Wu, Xiaoli; Sandhu, Sumit; Patel, Nehal; Triggs-Raine, Barbara; Ding, Hao

    2010-09-21

    Essential for mitotic growth 1 (EMG1) is a highly conserved nucleolar protein identified in yeast to have a critical function in ribosome biogenesis. A mutation in the human EMG1 homolog causes Bowen-Conradi syndrome (BCS), a developmental disorder characterized by severe growth failure and psychomotor retardation leading to death in early childhood. To begin to understand the role of EMG1 in mammalian development, and how its deficiency could lead to Bowen-Conradi syndrome, we have used mouse as a model. The expression of Emg1 during mouse development was examined and mice carrying a null mutation for Emg1 were generated and characterized. Our studies indicated that Emg1 is broadly expressed during early mouse embryonic development. However, in late embryonic stages and during postnatal development, Emg1 exhibited specific expression patterns. To assess a developmental role for EMG1 in vivo, we exploited a mouse gene-targeting approach. Loss of EMG1 function in mice arrested embryonic development prior to the blastocyst stage. The arrested Emg1-/- embryos exhibited defects in early cell lineage-specification as well as in nucleologenesis. Further, loss of p53, which has been shown to rescue some phenotypes resulting from defects in ribosome biogenesis, failed to rescue the Emg1-/- pre-implantation lethality. Our data demonstrate that Emg1 is highly expressed during mouse embryonic development, and essential for mouse pre-implantation development. The absolute requirement for EMG1 in early embryonic development is consistent with its essential role in yeast. Further, our findings also lend support to the previous study that showed Bowen-Conradi syndrome results from a partial EMG1 deficiency. A complete deficiency would not be expected to be compatible with a live birth.

  13. The role of the proline-rich domain of Ssdp1 in the modular architecture of the vertebrate head organizer

    PubMed Central

    Enkhmandakh, Badam; Makeyev, Alexandr V.; Bayarsaihan, Dashzeveg

    2006-01-01

    Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module. PMID:16864769

  14. The role of the proline-rich domain of Ssdp1 in the modular architecture of the vertebrate head organizer.

    PubMed

    Enkhmandakh, Badam; Makeyev, Alexandr V; Bayarsaihan, Dashzeveg

    2006-08-01

    Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module.

  15. Tild-CRISPR Allows for Efficient and Precise Gene Knockin in Mouse and Human Cells.

    PubMed

    Yao, Xuan; Zhang, Meiling; Wang, Xing; Ying, Wenqin; Hu, Xinde; Dai, Pengfei; Meng, Feilong; Shi, Linyu; Sun, Yun; Yao, Ning; Zhong, Wanxia; Li, Yun; Wu, Keliang; Li, Weiping; Chen, Zi-Jiang; Yang, Hui

    2018-05-21

    The targeting efficiency of knockin sequences via homologous recombination (HR) is generally low. Here we describe a method we call Tild-CRISPR (targeted integration with linearized dsDNA-CRISPR), a targeting strategy in which a PCR-amplified or precisely enzyme-cut transgene donor with 800-bp homology arms is injected with Cas9 mRNA and single guide RNA into mouse zygotes. Compared with existing targeting strategies, this method achieved much higher knockin efficiency in mouse embryos, as well as brain tissue. Importantly, the Tild-CRISPR method also yielded up to 12-fold higher knockin efficiency than HR-based methods in human embryos, making it suitable for studying gene functions in vivo and developing potential gene therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Esrrb-Cre Excises loxP-Flanked Alleles in Early Four-Cell Embryos

    PubMed Central

    Kim, Suyeon; Shaffer, Benjamin; Simerly, Calvin R.; Richard Chaillet, J.; Barak, Yaacov

    2015-01-01

    Among transgenic mice with ubiquitous Cre recombinase activity, all strains to date excise loxP-flanked (floxed) alleles, either at or before the zygote stage or at nondescript stages of development. This manuscript describes a new mouse strain, in which Cre recombinase, integrated into the Esrrb locus, efficiently excises floxed alleles in pre-implantation embryos at the onset of the four-cell stage. By enabling inactivation of genes only after the embryo has undergone two cleavages, this strain should facilitate in vivo studies of genes with essential gametic or zygotic functions. In addition, this study describes a new, highly pluripotent hybrid C57BL/6J × 129S1/SvImJ mouse embryonic stem cell line, HYB12, in which this knock-in and additional targeted alleles have been generated. PMID:26663459

  17. Formation of intestinal atresias in the Fgfr2IIIb-/- mice is not associated with defects in notochord development or alterations in Shh expression.

    PubMed

    Reeder, Amy L; Botham, Robert A; Franco, Marta; Zaremba, Krzysztof M; Nichol, Peter F

    2012-09-01

    The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen, and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacologic animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh), which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and used the fibroblast growth factor receptor 2IIIb homozygous mutant (Fgfr2IIIb-/-) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Wild-type and Fgfr2IIIb-/- mouse embryos were harvested at embryonic day (E) 10.5, E11.5, E12.5, and E13.5. Whole-mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for hematoxylin-eosin staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb-/- embryos at E10.5, then cultured for 48 hours in Matrigel with FGF10 in the presence or absence of exogenous Shh protein. Explants were harvested, fixed in formalin, and photographed. Fgfr2IIIb-/- mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia formation are known to occur. Three-dimensional reconstructions failed to demonstrate any anatomical disruptions in the notochord by discontinuity or excessive branching. Culture of wild-type intestines in the presence of Shh failed to induce atresia formation in either the duodenum or colon. Cultured Fgfr2IIIb-/- intestines developed atresias of the colon in either the presence or absence of Shh protein. Although disruptions in notochord development can be associated with intestinal atresia formation, in the Fgfr2IIIb-/- genetic animal model neither disruptions in notochord development nor the presence of exogenous Shh protein are causative in the formation of these defects. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Formation of Intestinal Atresias in the Fgfr2IIIb−/− Mice is not Associated with Defects in Notochord Development or Alterations in Shh Expression

    PubMed Central

    Reader, Amy L.; Botham, Robert A.; Franco, Marta; Zaremba, Krzysztof M.; Nichol, Peter F.

    2012-01-01

    Purpose The etiology of intestinal atresia remains elusive but has been ascribed to a number of possible events including in utero vascular accidents, failure of recanalization of the intestinal lumen and mechanical compression. Another such event that has been postulated to be a cause in atresia formation is disruption in notochord development. This hypothesis arose from clinical observations of notochord abnormalities in patients with intestinal atresias as well as abnormal notochord development observed in a pharmacological animal model of intestinal atresia. Atresias in this model result from in utero exposure to Adriamycin, wherein notochord defects were noted in up to 80% of embryos that manifested intestinal atresias. Embryos with notochord abnormalities were observed to have ectopic expression of Sonic Hedgehog (Shh) which in turn was postulated to be causative in atresia formation. We were interested in determining whether disruptions in notochord development or Shh expression occurred in an established genetic model of intestinal atresia and utilized the Fibroblast Growth Factor Receptor 2IIIb homozygous mutant (Fgfr2IIIb−/−) mouse model. These embryos develop colonic atresias (100% penetrance) and duodenal atresias (42% penetrance). Methods Wild-type and Fgfr2IIIb−/− mouse embryos were harvested at E10.5, E11.5, E12.5 and E13.5. Whole mount in situ hybridization was performed on E10.5 embryos for Shh. Embryos at each time point were harvested and sectioned for H&E staining. Sections were photographed specifically for the notochord and resulting images reconstructed in 3-D using Amira software. Colons were isolated from wild-type and Fgfr2IIIb−/− embryos at E10.5, then cultured for 48 hours in matrigel with FGF10 in the presence or absence of exogenous SHH protein. Explants were harvested, fixed in formalin and photographed. Results Fgfr2IIIb−/− mouse embryos exhibit no disruptions in Shh expression at E10.5, when the first events in atresia formation are known to occur. Three-dimensional reconstructions failed to demonstrate any anatomical disruptions in the notochord by discontinuity or excessive branching. Culture of wild-type intestines in the presence of Shh failed to induce atresia formation in either the duodenum or colon. Cultured Fgfr2IIIb−/− intestines developed atresias of the colon in either the presence, or absence, of Shh protein. Conclusions Although disruptions in notochord development can be associated with intestinal atresia formation, in the Fgfr2IIIb−/− genetic animal model neither disruptions in notochord development nor the presence of exogenous Shh protein are causative in the formation of these defects. PMID:22572615

  19. Importance of the pluripotency factor LIN28 in the mammalian nucleolus during early embryonic development.

    PubMed

    Vogt, Edgar J; Meglicki, Maciej; Hartung, Kristina Ilka; Borsuk, Ewa; Behr, Rüdiger

    2012-12-01

    The maternal nucleolus is required for proper activation of the embryonic genome (EGA) and early embryonic development. Nucleologenesis is characterized by the transformation of a nucleolar precursor body (NPB) to a mature nucleolus during preimplantation development. However, the function of NPBs and the involved molecular factors are unknown. We uncover a novel role for the pluripotency factor LIN28, the biological significance of which was previously demonstrated in the reprogramming of human somatic cells to induced pluripotent stem (iPS) cells. Here, we show that LIN28 accumulates at the NPB and the mature nucleolus in mouse preimplantation embryos and embryonic stem cells (ESCs), where it colocalizes with the nucleolar marker B23 (nucleophosmin 1). LIN28 has nucleolar localization in non-human primate (NHP) preimplantation embryos, but is cytoplasmic in NHP ESCs. Lin28 transcripts show a striking decline before mouse EGA, whereas LIN28 protein localizes to NPBs at the time of EGA. Following knockdown with a Lin28 morpholino, the majority of embryos arrest between the 2- and 4-cell stages and never develop to morula or blastocyst. Lin28 morpholino-injected embryos arrested at the 2-cell stage were not enriched with nucleophosmin at presumptive NPB sites, indicating that functional NPBs were not assembled. Based on these results, we propose that LIN28 is an essential factor of nucleologenesis during early embryonic development.

  20. DNA methylation dynamics in mouse preimplantation embryos revealed by mass spectrometry.

    PubMed

    Okamoto, Yoshinori; Yoshida, Naoko; Suzuki, Toru; Shimozawa, Nobuhiro; Asami, Maki; Matsuda, Tomonari; Kojima, Nakao; Perry, Anthony C F; Takada, Tatsuyuki

    2016-01-11

    Following fertilization in mammals, paternal genomic 5-methyl-2'-deoxycytidine (5 mC) content is thought to decrease via oxidation to 5-hydroxymethyl-2'-deoxycytidine (5 hmC). This reciprocal model of demethylation and hydroxymethylation is inferred from indirect, non-quantitative methods. We here report direct quantification of genomic 5 mC and 5 hmC in mouse embryos by small scale liquid chromatographic tandem mass spectrometry (SMM). Profiles of absolute 5 mC levels in embryos produced by in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) were almost identical. By 10 h after fertilization, 5 mC levels had declined by ~40%, consistent with active genomic DNA demethylation. Levels of 5 mC in androgenotes (containing only a paternal genome) and parthenogenotes (containing only a maternal genome) underwent active 5 mC loss in the first 6 h, showing that both parental genomes can undergo demethylation independently. We found no evidence for net loss of 5 mC 10-48 h after fertilization, implying that any passive 'demethylation' following DNA replication was balanced by active 5 mC maintenance methylation. However, levels of 5 mC declined during development after 48 h, to 1% (measured as a fraction of G-residues) in blastocysts (~96 h). 5 hmC levels were consistently low (<0.2% of G-residues) throughout development in normal diploid embryos. This work directly quantifies the dynamics of global genomic DNA modification in mouse preimplantation embryos, suggesting that SMM will be applicable to other biomedical situations with limiting sample sizes.

  1. [Expression of neural salient serine/arginine-rich protein 1 (NSSR1) in the development of mouse brain].

    PubMed

    Zhang, Wei; Fan, Li-mei; Li, Lin-lin; Peng, Zheng-yu

    2014-01-01

    To investigate the expression of neural salient serine/arginine-rich protein 1 (NSSR1) in the development of mouse brain. Brain samples were collected from mice with different developmental stages: 9, 12, 14 d before birth (E9, E12, E14) and 1 d, 3 weeks and 3 months after birth. The expression of NSSR1 in mouse brain at different developmental stages was detected by Western blot and the distribution of NSSR1 was analyzed by immunohistochemical staining. The expression and distribution of NSSR1 in mouse brain were compared among embryos, neonatal and adult animals. During embryogenesis, the expression of NSSR1 proteins increases significantly from 0.186(E9) to 0.445(E14) and reached a high level after birth. Immunohistochemical analysis showed that in E12 embryos, NSSR1 was specifically distributed in the marginal and mantle layers. The expression of NSSR1 in hippocampus was very low in neonatal animals but stronger in adults. In cerebellar cortex, NSSR1 was widely expressed in purkinje and granule cells of adult animals, but mainly expressed in Purkinje cells in neonates. The expression of NSSR1 is regulated by the development of mouse brain and presents dynamic changes.

  2. Sensitivity of early mouse embryos to (/sup 3/H)thymidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spindle, A.; Wu, K.; Pedersen, R.A.

    1982-12-01

    Effects of intranuclear radiation on the developmental capacity of early mouse embryos were studied by exposing embryos to (/sup 3/H)thymidine and counting the number of embryos forming blastocysts, trophoblast outgrowths, inner cell masses (ICMs), and two-layer ICMs (differentiated into primary endoderm and ectoderm). When embryos were cultured from the 2-cell stage for 8 days in the continuous presence of (/sup 3/H)thymidine, concentrations as low as 0.2 nCi/ml reduced the number of embryos forming two-layer ICMs. At 1 nCi/ml, the number of both ICMs and two-layer ICMs were reduced, and at 10 nCi/ml the number of embryos developing to all threemore » post-blastocyst endpoints was reduced. Blastocyst formation was not affected even at the highst concentration (/sup 3/H)thymidine and then cultured further in unlabelled medium, the effects were similar to those of 8-day exposure. When embryos were exposed to (/sup 3/H)thymidine for 24 h at various developmental stages, effects were less severe than when they were exposed continuously for 3 or 8 days, and the sensitivity of embryos differed between stages. The 24-h exposure of immunosurgically isolated ICMS to (/sup 3/H)thymidine revealed that the high sensitivity of the ICM to (/sup 3/H)thymidine persists through the late blastocyst stage and declines progressively thereafter. Autoradiography indicated that the change in radiosensitivity of embryos or ICMs is generally related to their ability to incorporate (/sup 3/H)thymidine into the DNA.« less

  3. Evidence for a Stable Intermediate in Leukemia Virus Activation in AKR Mouse Embryo Cells

    PubMed Central

    Ihle, James N.; Kenney, Francis T.; Tennant, Raymond W.

    1974-01-01

    Analysis of the requirement for serum in the activation of the endogenous leukemia virus expression in AKR mouse embryo cells by 5-iododeoxyuridine shows that activation can be dissociated into two discrete serum-dependent events. The first involves incorporation of 5-iododeoxyuridine into DNA and results in the formation of a stable “activation intermediate” resembling the provirus formed during infection of stationary mouse embryo cells with exogenous leukemia virus. The second event, resulting in expression of the activation intermediate as synthesis of virus proteins, requires DNA replication but not 5-iododeoxyuridine. PMID:4604455

  4. Baicalin increases developmental competence of mouse embryos in vitro by inhibiting cellular apoptosis and modulating HSP70 and DNMT expression

    PubMed Central

    QI, Xiaonan; LI, Huatao; CONG, Xia; WANG, Xin; JIANG, Zhongling; CAO, Rongfeng; TIAN, Wenru

    2016-01-01

    Scutellaria baicalensis has been effectively used in Chinese traditional medicine to prevent miscarriages. However, little information is available on its mechanism of action. This study is designed specifically to reveal how baicalin, the main effective ingredient of S. baicalensis, improves developmental competence of embryos in vitro, using the mouse as a model. Mouse pronuclear embryos were cultured in KSOM medium supplemented with (0, 2, 4 and 8 μg/ml) baicalin. The results demonstrated that in vitro culture conditions significantly decreased the blastocyst developmental rate and blastocyst quality, possibly due to increased cellular stress and apoptosis. Baicalin (4 µg/ml) significantly increased 2- and 4-cell cleavage rates, morula developmental rate, and blastocyst developmental rate and cell number of in vitro-cultured mouse embryos. Moreover, baicalin increased the expression of Gja1, Cdh1, Bcl-2, and Dnmt3a genes, decreased the expression of Dnmt1 gene, and decreased cellular stress and apoptosis as it decreased the expression of HSP70, CASP3, and BAX and increased BCL-2 expression in blastocysts cultured in vitro. In conclusion, baicalin improves developmental competence of in vitro-cultured mouse embryos through inhibition of cellular apoptosis and HSP70 expression, and improvement of DNA methylation. PMID:27478062

  5. Dual effects of fluoxetine on mouse early embryonic development.

    PubMed

    Kim, Chang-Woon; Choe, Changyong; Kim, Eun-Jin; Lee, Jae-Ik; Yoon, Sook-Young; Cho, Young-Woo; Han, Sunkyu; Tak, Hyun-Min; Han, Jaehee; Kang, Dawon

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50μM) for different durations. When late 2-cells were incubated with 5μM fluoxetine for 6h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetine (5μM) over 24h showed a reduction in blastocyst formation. The addition of fluoxetine (5μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K(+) channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ~30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos

    PubMed Central

    Wang, Xinyi; Liu, Denghui; He, Dajian; Suo, Shengbao; Xia, Xian; He, Xiechao; Han, Jing-Dong J.; Zheng, Ping

    2017-01-01

    Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey. PMID:28223401

  7. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    PubMed Central

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (P<1.0×10–26). In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1–5% per embryos transferred in our laboratory), because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT. PMID:24146866

  8. Three-dimensional microCT imaging of murine embryonic development from immediate post-implantation to organogenesis: application for phenotyping analysis of early embryonic lethality in mutant animals.

    PubMed

    Ermakova, Olga; Orsini, Tiziana; Gambadoro, Alessia; Chiani, Francesco; Tocchini-Valentini, Glauco P

    2018-04-01

    In this work, we applied three-dimensional microCT imaging to study murine embryogenesis in the range from immediate post-implantation period (embryonic day 5.5) to mid-gestation (embryonic day 12.5) with the resolution up to 1.4 µm/voxel. Also, we introduce an imaging procedure for non-invasive volumetric estimation of an entire litter of embryos within the maternal uterine structures. This method allows for an accurate, detailed and systematic morphometric analysis of both embryonic and extra-embryonic components during embryogenesis. Three-dimensional imaging of unperturbed embryos was performed to visualize the egg cylinder, primitive streak, gastrulation and early organogenesis stages of murine development in the C57Bl6/N mouse reference strain. Further, we applied our microCT imaging protocol to determine the earliest point when embryonic development is arrested in a mouse line with knockout for tRNA splicing endonuclease subunit Tsen54 gene. Our analysis determined that the embryonic development in Tsen54 null embryos does not proceed beyond implantation. We demonstrated that application of microCT imaging to entire litter of non-perturbed embryos greatly facilitate studies to unravel gene function during early embryogenesis and to determine the precise point at which embryonic development is arrested in mutant animals. The described method is inexpensive, does not require lengthy embryos dissection and can be applicable for detailed analysis of mutant mice at laboratory scale as well as for high-throughput projects.

  9. Dynamic changes in leptin distribution in the progression from ovum to blastocyst of the pre-implantation mouse embryo

    PubMed Central

    Schulz, Laura C.; Roberts, R. Michael

    2011-01-01

    The hormone leptin, which is primarily produced by adipose tissue, is a critical permissive factor for multiple reproductive events in the mouse, including implantation. In the CD1 strain, maternally-derived leptin from the oocyte becomes differentially distributed among blastomeres of pre-implantation embryos to create a polarized pattern, a feature consistent with a model of development in which blastomeres are biased towards a particular fate as early as the 2-cell stage. Here, we have confirmed that embryonic leptin is of maternal origin and re-examined leptin distribution in two distinct strains in which embryos were derived after either normal ovulation or superovulation. A polarized pattern of leptin distribution was found in the majority of both CD1 and CF1 embryos (79.1 % and 76.9 %, respectively) collected following superovulation, but was reduced, particularly in CF1 embryos (29.8 %; p < 0.0001), after natural ovulation. The difference in leptin asymmetries in the CF1 strain arose between ovulation and the first cleavage division, and was not affected by removal of the zona pellucida. Presence or absence of leptin polarization was not linked to differences in ability of embryos to develop normally to blastocyst. In the early blastocyst, leptin was confined subcortically to trophectoderm but upon blastocoel expansion it was lost from cells. Throughout development leptin co-localized with LRP2, a multi-ligand transport protein, and its patterning resembled that noted for the maternal-effect proteins OOEP, NLRP5, and PADI6, suggesting that it is a component of the subcortical maternal complex with as yet unknown significance in pre-implantation development. PMID:21444625

  10. Mouse Sperm Cryopreservation and Recovery using the I·Cryo Kit

    PubMed Central

    Liu, Ling; Sansing, Steven R.; Morse, Iva S.; Pritchett-Corning, Kathleen R.

    2011-01-01

    Thousands of new genetically modified (GM) strains of mice have been created since the advent of transgenesis and knockout technologies. Many of these valuable animals exist only as live animals, with no backup plan in case of emergency. Cryopreservation of embryos can provide this backup, but is costly, can be a lengthy procedure, and generally requires a large number of animals for success. Since the discovery that mouse sperm can be successfully cryopreserved with a basic cryoprotective agent (CPA) consisting of 18% raffinose and 3% skim milk, sperm cryopreservation has become an acceptable and cost-effective procedure for archiving, distributing and recovery of these valuable strains. Here we demonstrate a newly developed I•Cryo kit for mouse sperm cryopreservation. Sperm from five commonly-used strains of inbred mice were frozen using this kit and then recovered. Higher protection ratios of sperm motility (> 60%) and rapid progressive motility (> 45%) compared to the control (basic CPA) were seen for sperm frozen with this kit in 5 inbred mouse strains. Two cell stage embryo development after IVF with the recovered sperm was improved consistently in all 5 mouse strains examined. Over a 1.5 year period, 49 GM mouse lines were archived by sperm cryopreservation with the I•Cryo kit and later recovered by IVF. PMID:22214993

  11. FACS selection of valuable mutant mouse round spermatids and strain rescue via round spermatid injection.

    PubMed

    Zhu, Lian; Zhou, Wei; Kong, Peng-Cheng; Wang, Mei-Shan; Zhu, Yan; Feng, Li-Xin; Chen, Xue-Jin; Jiang, Man-Xi

    2015-06-01

    Round spermatid injection (ROSI) into mammalian oocytes can result in the development of viable embryos and offspring. One current limitation to this technique is the identification of suitable round spermatids. In the current paper, round spermatids were selected from testicular cells with phase contrast microscopy (PCM) and fluorescence-activated cell sorting (FACS), and ROSI was performed in two strains of mice. The rates of fertilization, embryonic development and offspring achieved were the same in all strains. Significantly, round spermatids selected by PCM and FACS were effectively used to rescue the infertile Pten-null mouse. The current results indicate that FACS selection of round spermatids can not only provide high-purity and viable round spermatids for use in ROSI, but also has no harmful effects on the developmental capacity of subsequently fertilized embryos. It was concluded that round spermatids selected by FACS are useful for mouse strain rederivation and rescue of infertile males; ROSI should be considered as a powerful addition to the armamentarium of assisted reproduction techniques applicable in the mouse.

  12. TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BROMOCHLOROACETIC ACID

    EPA Science Inventory

    Transcriptional responses of mouse embryo cultures exposed to bromochloroacetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductive Tox...

  13. Injurious effects of curcumin on maturation of mouse oocytes, fertilization and fetal development via apoptosis.

    PubMed

    Chen, Chia-Chi; Chan, Wen-Hsiung

    2012-01-01

    Curcumin, a common dietary pigment and spice, is a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa. Previously, we reported a cytotoxic effect of curcumin on mouse embryonic stem cells and blastocysts and its association with defects in subsequent development. In the present study, we further investigated the effects of curcumin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, curcumin induced a significant reduction in the rate of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with curcumin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments with an in vivo mouse model disclosed that consumption of drinking water containing 40 μM curcumin led to decreased oocyte maturation and in vitro fertilization as well as early embryonic developmental injury. Finally, pretreatment with a caspase-3-specific inhibitor effectively prevented curcumin-triggered injury effects, suggesting that embryo impairment by curcumin occurs mainly via a caspase-dependent apoptotic process.

  14. Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos.

    PubMed

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.

  15. A medium-chain fatty acid as an alternative energy source in mouse preimplantation development.

    PubMed

    Yamada, Mitsutoshi; Takanashi, Kazumi; Hamatani, Toshio; Hirayama, Akiyoshi; Akutsu, Hidenori; Fukunaga, Tomoko; Ogawa, Seiji; Sugawara, Kana; Shinoda, Kosaku; Soga, Tomoyoshi; Umezawa, Akihiro; Kuji, Naoaki; Yoshimura, Yasunori; Tomita, Masaru

    2012-01-01

    To further optimize the culturing of preimplantation embryos, we undertook metabolomic analysis of relevant culture media using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). We detected 28 metabolites: 23 embryo-excreted metabolites including 16 amino acids and 5 media-derived metabolites (e.g., octanoate, a medium-chain fatty acid (MCFA)). Due to the lack of information on MCFAs in mammalian preimplantation development, this study examined octanoate as a potential alternative energy source for preimplantation embryo cultures. No embryos survived in culture media lacking FAs, pyruvate, and glucose, but supplementation of octanoate rescued the embryonic development. Immunoblotting showed significant expression of acyl-CoA dehydrogenase and hydroxyacyl-CoA dehydrogenase, important enzymes for ß-oxidation of MCFAs, in preimplantation embryo. Furthermore, CE-TOFMS traced [1-(13)C(8)] octanoate added to the culture media into intermediate metabolites of the TCA cycle via ß-oxidation in mitochondria. These results are the first demonstration that octanoate could provide an efficient alternative energy source throughout preimplantation development.

  16. Determination of the reactivity of cytotoxic immune cells with preimplantation mouse embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewoldsen, M.A.

    1987-01-01

    Cytotoxic immune cells were used in an assay, MELIA (mixed embryo leukocyte interaction assay) to test the ability of the cells to kill blastocyst stage embryos. The cytotoxic immune cells generated for use in this study, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and lymphokine activated killer (LAK) cells were shown to have phenotypic and cytolytic characteristics similar to those reported by other investigators. The lysis of the blastocysts in the MELIA was determined by measuring the inhibition of blastocoel retention and/or by the inhibition of incorporation of tritiated thymidine (/sup 3/H-TdR) into embryonic DNA. Blastocysts which possess ormore » lack their zonae pellucidae were tested to determine whether the zona pellucida plays an immunoprotective role in preimplantation development. The results indicated that CTLs only lysed embryonic cells when the zona pellucida was absent, but NK and LAK cells lysed embryonic cells whether the zona pellucida was present or absent. The results suggest that the zona pellucida may protect the preimplantation mouse embryo from lysis by CTLs but what protects the embryo from lysis by NK and LAK cells is unclear.« less

  17. HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    HALOACETIC ACIDS PERTURB PROTEIN PHOSPHORYLATION IN MOUSE EMBRYOS IN VITRO. MR Blanton and ES Hunter. Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA.
    Sponsor: JM Rogers.
    Haloacetic Acids (HAAs) formed during the disinfection process are present in drin...

  18. Endoderm-specific deletion of Tbx1 reveals an FGF-independent role for Tbx1 in pharyngeal apparatus morphogenesis

    PubMed Central

    Jackson, Abigail; Kasah, Sahrunizam; Mansour, Suzanne L.; Morrow, Bernice; Basson, M. Albert

    2015-01-01

    Background The T-box transcription factor Tbx1, is essential for the normal development of multiple organ systems in the embryo. One of the most striking phenotypes in Tbx1−/− embryos is the failure of the caudal pharyngeal pouches to evaginate from the foregut endoderm. Despite considerable interest in the role of Tbx1 in development, the mechanisms whereby Tbx1 controls caudal pouch formation have remained elusive. In particular, the question as to how Tbx1 expression in the pharyngeal endoderm regulates pharyngeal pouch morphogenesis in the mouse embryo is not known. Results To address this question, we produced mouse embryos in which Tbx1 was specifically deleted from the pharyngeal endoderm and as expected, embryos failed to form caudal pharyngeal pouches. To determine the molecular mechanism, we examined expression of Fgf3 and Fgf8 ligands and downstream effectors. Although Fgf8 expression is greatly reduced in Tbx1-deficient endoderm, FGF signaling levels are unaffected. Furthermore, pouch morphogenesis is only partially perturbed by the loss of both Fgf3 and Fgf8 from the endoderm, indicating that neither are required for pouch formation. Conclusions Tbx1 deletion from the pharyngeal endoderm is sufficient to cause caudal pharyngeal arch segmentation defects by FGF-independent effectors that remain to be identified. PMID:24812002

  19. Embryo developmental capacity of oocytes fertilised by sperm of mouse exposed to forced swimming stress.

    PubMed

    Ghasem, Saki; Majid, Jasemi; Shiva, Razi

    2013-07-01

    To assess developmental capacity of fertilised oocytes by sperm of mouse exposed to forced swimming stress. The experimental study was conducted at the Physiology Research Center of Ahvaz Jundishapur University of Medical Sciences, from August 2011 to January 2012. It comprised 20 adult male and 10 female mice. The male mice were randomly divided into two equal groups (n=10): control and experimental. Animals of the experimental group were submitted to forced swimming stress. All male mice were euthanised and the cauda epididymis removed before contents were squeezed out. A pre-incubated capacitated sperm was gently added to the freshly collected ova of the two groups of study. The combined sperm-oocyte suspension was incubated for 4-6 hours under a condition of 5% Carbon dioxide and 37 degreeC temperature. The ova were then washed through several changes of medium and finally incubated. Fertilisation was assessed by recording the number of 1-cell embryos 4-6 hours after insemination. The 1-cell embryos were allowed to further develop in vitro for about 120 hours. Development of embryos everyday and during 5 days of culture was observed by using inverted microscope. SPSS 13.0.1 was used for statistical analysis. The percentage of oocytes fertilised was 75:96 (78.12+/-4.8%) and 50:10 (49.5+/-3.9%) in the control and experimental groups, respectively. The difference was significant (p <0.001). At 24 hours after insemination, 70:75 (93.33+/-2.7%) and 39:50 (78+/-3.5%)of fertilized oocytes developed to two=cell embryos in control and experimental groups respectively.The difference was significant (p <0.02).There were not significant differences (p>0.05) between the two groups in terms of speed and developmental capacity of blastocysts. Fertilisation capacity of male mice affected by forced swimming stress and also the developmental capacity of oocyte fertilised by sperm of mouse exposed to forced swimming stress decreased.

  20. Dual effects of fluoxetine on mouse early embryonic development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chang-Woon; Department of Obstetrics and Gynecology, Samsung Changwon Hospital, Sungkyunkwan University, Changwon 630-723; Choe, Changyong

    2012-11-15

    Fluoxetine, a selective serotonin reuptake inhibitor, regulates a variety of physiological processes, such as cell proliferation and apoptosis, in mammalian cells. Little is known about the role of fluoxetine in early embryonic development. This study was undertaken to investigate the effect of fluoxetine during mouse early embryonic development. Late two-cell stage embryos (2-cells) were cultured in the presence of various concentrations of fluoxetine (1 to 50 μM) for different durations. When late 2-cells were incubated with 5 μM fluoxetine for 6 h, the percentage that developed into blastocysts increased compared to the control value. However, late 2-cells exposed to fluoxetinemore » (5 μM) over 24 h showed a reduction in blastocyst formation. The addition of fluoxetine (5 μM) together with KN93 or KN62 (calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitors) failed to increase blastocyst formation. Fluoxetine treatment inhibited TREK-1 and TREK-2, members of the two-pore domain K{sup +} channel family expressed in mouse embryos, activities, indicating that fluoxetine-induced membrane depolarization in late 2-cells might have resulted from TREK inhibition. In addition, long-term exposure to fluoxetine altered the TREK mRNA expression levels. Furthermore, injection of siRNA targeting TREKs significantly decreased blastocyst formation by ∼ 30% compared to injection of scrambled siRNA. Long-term exposure of fluoxetine had no effect on blastocyst formation of TREK deficient embryos. These results indicate that low-dose and short-term exposures of late 2-cells to fluoxetine probably increase blastocyst formation through activation of CaMKII-dependent signal transduction pathways, whereas long-term exposure decreases mouse early embryonic development through inhibition of TREK channel gating. Highlights: ► Short-term exposure of 2-cells to fluoxetine enhances mouse blastocyst formation. ► The enhancive effect of fluoxetine is resulted from CaMKII activation. ► Long-term exposure of 2-cells to fluoxetine decreases mouse blastocyst formation. ► The inhibitory effect of fluoxetine is mediated through TREK channel gating.« less

  1. Electroporation of Postimplantation Mouse Embryos In Utero.

    PubMed

    Huang, Cheng-Chiu; Carcagno, Abel

    2018-02-01

    Gene transfer by electroporation is possible in mouse fetuses within the uterus. As described in this protocol, the pregnant female is anesthetized, the abdominal cavity is opened, and the uterus with the fetuses is exteriorized. A solution of plasmid DNA is injected through the uterine wall directly into the fetus, typically into a cavity like the brain ventricle, guided by fiber optic illumination. Electrodes are positioned on the uterus around the region of the fetus that was injected, and electrical pulses are delivered. The uterus is returned to the abdominal cavity, the body wall is sutured closed, and the female is allowed to recover. The manipulated fetuses can then be collected and analyzed at various times after the electroporation. This method allows experimental access to later-stage developing mouse embryos. © 2018 Cold Spring Harbor Laboratory Press.

  2. cDNA cloning and characterization of mouse DTEF-1 and ETF, members of the TEA/ATTS family of transcription factors.

    PubMed

    Yockey, C E; Shimizu, N

    1998-02-01

    Members of the TEA/ATTS family of transcription factors have been found in most representative eukaryotic organisms. In vertebrates, the TEA family contains at least four members, which share overlapping DNA-binding specificity and have similar transcriptional activation properties. In this article, we describe the cDNA cloning and characterization of the murine TEA proteins DTEF-1 (mDTEF-1) and ETF. Using in situ hybridization analysis of mouse embryos, we found that mDTEF-1 and ETF transcript distributions substantially overlap. ETF is expressed throughout the embryo except in the myocardium early in development, whereas late in development, it is enriched in lung and neuroectoderm. Mouse DTEF-1 is expressed at a much lower level throughout development and is substantially enriched in ectoderm and skin, as well as in the developing pituitary at midgestation. Northern blot analysis of adult mouse tissue total RNA showed that both ETF and mDTEF-1 are abundant in uterus and lung relative to other tissues. Using gel mobility shift assays and GAL4-fusion protein analysis, we demonstrated that the full coding sequences of ETF and mDTEF-1 encode M-CAT/GT-IIC-binding proteins containing activation domains.

  3. Effects of Simulated Weightlessness on Mammalian Development. Part 2: Meiotic Maturation of Mouse Oocytes During Clinostat Rotation

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1985-01-01

    In order to understand the role of gravity in basic cellular processes that are important during development, the effects of a simulated microgravity environment on mammalian gametes and early embryos cultured in vitro are examined. A microgravity environment is simulated by use of a clinostat, which essentially reorients cells relative to the gravity vector. Initial studies have focused on assessing the effects of clinostat rotation on the meiotic progression of mouse oocytes. Modifications centered on providing the unique in vitro culture of the clinostat requirements of mammalian oocytes and embryos: 37 C temperature, constant humidity, and a 5% CO2 in air environment. The oocytes are observed under the dissecting microscope for polar body formation and gross morphological appearance. They are then processed for cytogenetic analysis.

  4. INCREASED APOPTOSIS IN ORGANOGENESIS-STAGED MOUSE EMBRYOS INDUCED BY DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Increased apoptosis in organogenesis-staged mouse embryos induced by disinfection by-products. Sid Hunter1,2, Ellen Rogers1 and Keith Ward2, 1 Developmental Biology Branch, Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC; 2 Curriculum in Toxicology, UNC Chapel Hill, Cha...

  5. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  6. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  7. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  8. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  9. 21 CFR 884.6100 - Assisted reproduction needles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...

  10. Generation of embryos directly from embryonic stem cells by tetraploid embryo complementation reveals a role for GATA factors in organogenesis.

    PubMed

    Duncan, S A

    2005-12-01

    Gene targeting in ES (embryonic stem) cells has been used extensively to study the role of proteins during embryonic development. In the traditional procedure, this requires the generation of chimaeric mice by introducing ES cells into blastocysts and allowing them to develop to term. Once chimaeric mice are produced, they are bred into a recipient mouse strain to establish germline transmission of the allele of interest. Although this approach has been used very successfully, the breeding cycles involved are time consuming. In addition, genes that are essential for organogenesis often have roles in the formation of extra-embryonic tissues that are essential for early stages of post-implantation development. For example, mice lacking the GATA transcription factors, GATA4 or GATA6, arrest during gastrulation due to an essential role for these factors in differentiation of extra-embryonic endoderm. This lethality has frustrated the study of these factors during the development of organs such as the liver and heart. Extraembryonic defects can, however, be circumvented by generating clonal mouse embryos directly from ES cells by tetraploid complementation. Here, we describe the usefulness and efficacy of this approach using GATA factors as an example.

  11. Injurious Effects of Emodin on Maturation of Mouse Oocytes, Fertilization and Fetal Development via Apoptosis

    PubMed Central

    Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung

    2012-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20–40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process. PMID:23203041

  12. Injurious effects of emodin on maturation of mouse oocytes, fertilization and fetal development via apoptosis.

    PubMed

    Chang, Mei-Hui; Chang, Shao-Chung; Chan, Wen-Hsiung

    2012-10-29

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of rhubarb, has a wide range of therapeutic applications. Previous studies have established that emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and leads to decreased embryonic development and viability, indicating a role as an injury risk factor for normal embryonic development. However, the mechanisms underlying its hazardous effects have yet to be characterized. In the current study, we further investigated the effects of emodin on oocyte maturation and subsequent pre- and post-implantation development, both in vitro and in vivo. Notably, emodin induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse model disclosed that consumption of drinking water containing 20-40 μM emodin led to decreased oocyte maturation and in vitro fertilization, as well as early embryonic developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively prevented emodin-triggered injury effects, suggesting that impairment of embryo development occurs via a caspase-dependent apoptotic process.

  13. Berberine impairs embryonic development in vitro and in vivo through oxidative stress-mediated apoptotic processes.

    PubMed

    Huang, Chien-Hsun; Huang, Zi-Wei; Ho, Feng-Ming; Chan, Wen-Hsiung

    2018-03-01

    Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines, has been shown to suppress growth and induce apoptosis in some tumor cell lines. However, berberine has also been reported to attenuate H 2 O 2 -induced oxidative injury and apoptosis. The basis for these ambiguous effects of berberine-triggering or preventing apoptosis-has not been well characterized to date. In the current investigation, we examined whether berberine exerts cytotoxic effects on mouse embryos at the blastocyst stage and affects subsequent embryonic development in vitro and in vivo. Treatment of blastocysts with berberine (2.5-10 μM) induced a significant increase in apoptosis and a corresponding decrease in trophectoderm cell number. Moreover, the implantation success rate of blastocysts pretreated with berberine was lower than that of their control counterparts. Pretreatment with berberine was also associated with increased resorption of postimplantation embryos and decreased fetal weight. In an animal model, intravenous injection of berberine (2, 4, or 6 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst cells and early embryonic developmental injury. Berberine-induced injury of mouse blastocysts appeared to be attributable to oxidative stress-triggered intrinsic apoptotic signaling processes that impaired preimplantation and postimplantation embryonic development. Taken together, our results clearly demonstrate that berberine induces apoptosis and retards early preimplantation and postimplantation development of mouse embryos, both in vitro and in vivo. © 2017 Wiley Periodicals, Inc.

  14. TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells.

    PubMed

    Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su

    2011-02-18

    TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.

  15. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons.

    PubMed

    Hendrickson, Peter G; Doráis, Jessie A; Grow, Edward J; Whiddon, Jennifer L; Lim, Jong-Won; Wike, Candice L; Weaver, Bradley D; Pflueger, Christian; Emery, Benjamin R; Wilcox, Aaron L; Nix, David A; Peterson, C Matthew; Tapscott, Stephen J; Carrell, Douglas T; Cairns, Bradley R

    2017-06-01

    To better understand transcriptional regulation during human oogenesis and preimplantation development, we defined stage-specific transcription, which highlighted the cleavage stage as being highly distinctive. Here, we present multiple lines of evidence that a eutherian-specific multicopy retrogene, DUX4, encodes a transcription factor that activates hundreds of endogenous genes (for example, ZSCAN4, KDM4E and PRAMEF-family genes) and retroviral elements (MERVL/HERVL family) that define the cleavage-specific transcriptional programs in humans and mice. Remarkably, mouse Dux expression is both necessary and sufficient to convert mouse embryonic stem cells (mESCs) into 2-cell-embryo-like ('2C-like') cells, measured here by the reactivation of '2C' genes and repeat elements, the loss of POU5F1 (also known as OCT4) protein and chromocenters, and the conversion of the chromatin landscape (as assessed by transposase-accessible chromatin using sequencing (ATAC-seq)) to a state strongly resembling that of mouse 2C embryos. Thus, we propose mouse DUX and human DUX4 as major drivers of the cleavage or 2C state.

  16. Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo

    PubMed Central

    Isern, Joan; He, Zhiyong; Fraser, Stuart T.; Nowotschin, Sonja; Ferrer-Vaquer, Anna; Moore, Rebecca; Hadjantonakis, Anna-Katerina; Schulz, Vincent; Tuck, David; Gallagher, Patrick G.

    2011-01-01

    Primitive erythroid (EryP) progenitors are the first cell type specified from the mesoderm late in gastrulation. We used a transgenic reporter to image and purify the earliest blood progenitors and their descendants from developing mouse embryos. EryP progenitors exhibited remarkable proliferative capacity in the yolk sac immediately before the onset of circulation, when these cells comprise nearly half of all cells of the embryo. Global expression profiles generated at 24-hour intervals from embryonic day 7.5 through 2.5 revealed 2 abrupt changes in transcript diversity that coincided with the entry of EryPs into the circulation and with their late maturation and enucleation, respectively. These changes were paralleled by the expression of critical regulatory factors. Experiments designed to test predictions from these data demonstrated that the Wnt-signaling pathway is active in EryP progenitors, which display an aerobic glycolytic profile and the numbers of which are regulated by transforming growth factor-β1 and hypoxia. This is the first transcriptome assembled for a single hematopoietic lineage of the embryo over the course of its differentiation. PMID:21263157

  17. (14)C METHANOL INCORPORATION INTO DNA AND SPECIFIC PROTEINS OF ORGANOGENESIS STAGE MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    Methanol (MeOH), a widely used industrial solvent and alternative motor fuel, has been shown to be mutagenic and teratogenic. We have demonstrated that methanol is teratogenic in mice in vivo and causes dysmorphogenesis in cultured organogenesis stage mouse embryos. Methanol is ...

  18. PFOA INDUCES DYSMORPHOGENESIS IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    PFOA Induces Dysmorphogenesis In Mouse Whole Embryo Culture.

    MR Blanton1, JM Padowski2, ES Hunter1, JM Rogers1, and C Lau1. 1Reproductive Toxicology Division, NHEERL, ORD, US EPA, RTP, NC, USA. 2Curriculum in Toxicology, UNC, Chapel Hill, NC, USA

    Perfluorooctanoa...

  19. COMPARATIVE PATHOGENESIS OF HALOACETIC ACID AND PROTEIN KINASE INHIBITOR EMBRYOTOXICITY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    Comparative pathogenesis of haloacetic acid and protein kinase inhibitor embryotoxicity in mouse whole embryo culture.

    Ward KW, Rogers EH, Hunter ES 3rd.

    Curriculum in Toxicology, University of North Carolina at Chapel Hill, 27599-7270, USA.

    Haloacetic acids ...

  20. MAP KINASE ERK 1/2 INHIBITORS INDUCE DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    ROSEN, M.B. and E. S. HUNTER. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina. MAP kinase Erk1/2 inhibitors induce dysmorphology in mouse whole embryo culture.

    MAP Kinase signal transduction is associated with a variety ...

  1. Femtosecond laser surgery of two-cell mouse embryos: effect on viability, development, and tetraploidization

    NASA Astrophysics Data System (ADS)

    Osychenko, Alina A.; Zalessky, Alexandr D.; Kostrov, Andrey N.; Ryabova, Anastasia V.; Krivokharchenko, Alexander S.; Nadtochenko, Viktor A.

    2017-12-01

    The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion.

  2. In utero mouse embryonic imaging with OCT for ophthalmologic research

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.

    2011-03-01

    Live imaging of an eye during embryonic development in mammalian model is important for understanding dynamic aspects of normal and abnormal eye morphogenesis. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) for live structural imaging of mouse embryonic eye through the uterine wall. The eye structure was reconstructed in mouse embryos at 13.5 to 17.5 days post coitus (dpc). Despite the limited imaging depth of OCT in turbid tissues, we were able to visualize the whole eye globe at these stages. These results suggest that live in utero OCT imaging is a useful tool to study embryonic eye development in the mouse model.

  3. Metabolite Profiling of Whole Murine Embryos Reveals Metabolic Perturbations Associated with Maternal Valproate-Induced Neural Tube Closure Defects

    PubMed Central

    Akimova, Darya; Wlodarczyk, Bogdan J.; Lin, Ying; Ross, M. Elizabeth; Finnell, Richard H.; Chen, Qiuying; Gross, Steven S.

    2016-01-01

    Background Valproic Acid (VPA) is prescribed therapeutically for multiple conditions, including epilepsy. When taken during pregnancy, VPA is teratogenic, increasing the risk of several birth and developmental defects including neural tube defects (NTDs). The mechanism by which VPA causes NTDs remains controversial and how VPA interacts with folic acid, a vitamin commonly recommended for the prevention of NTDs, remains uncertain. We sought to address both questions by applying untargeted metabolite profiling analysis to neural tube closure stage mouse embryos. Methods Pregnant SWV dams on either a 2ppm or 10ppm folic acid (FA) supplemented diet were injected with a single dose of VPA on gestational day E8.5. On day E9.5, the mouse embryos were collected and evaluated for neural tube closure status. LC/MS metabolomics analysis was performed to compare metabolite profiles of NTD-affected VPA-exposed whole mouse embryos to profiles from embryos that underwent normal neural tube closure from control dams. Results NTDs were observed in all embryos from VPA-treated dams and penetrance was not diminished by dietary folic acid supplementation. The most profound metabolic perturbations were found in the 10ppm FA VPA-exposed mouse embryos, compared to the other three treatment groups. Affected metabolites included amino acids, nucleobases and related phosphorylated nucleotides, lipids, and carnitines. Conclusions Maternal VPA treatment markedly perturbed purine and pyrimidine metabolism in E9.5 embryos. In combination with a high folic acid diet, VPA treatment resulted in gross metabolic changes, likely caused by a multiplicity of mechanisms, including an apparent disruption of mitochondrial beta-oxidation. PMID:27860192

  4. Use of the Coelomic Grafting Technique for Prolonged ex utero Cultivation of Late Preprimitive Streak-Stage Rabbit Embryos.

    PubMed

    Püschel, Bernd; Männer, Jörg

    2016-01-01

    Due to its morphological similarity with the early human embryo, the pregastrulation-stage rabbit may represent an appropriate mammalian model for studying processes involved in early human development. The usability of mammalian embryos for experimental studies depends on the availability of whole embryo culture methods facilitating prolonged ex utero development. While currently used culture methods yield high success rates for embryos from primitive streak stages onward, the success rate of extended cultivation of preprimitive streak-stage mammalian embryos is low for all previously established methods and for all studied species. This limits the usability of preprimitive streak-stage rabbit embryos in experimental embryology. We have tested whether the extraembryonic coelom of 4-day-old chick embryos may be used for prolonged ex utero culture of preprimitive streak-stage rabbit embryos (stage 2, 6.2 days post coitum). We found that, within this environment, stage 2 rabbit blastocysts can be cultured at decreasing success rates (55% after 1 day, 35% after 2 days, 15% after 3 days) up to a maximum of 72 h. Grafted blastocysts can continue development from the onset of gastrulation to early organogenesis and thereby form all structures characterizing age-matched controls (e.g. neural tube, somites, beating heart). Compared to normal controls, successfully cultured embryos developed at a slower rate and finally showed some structural and gross morphological anomalies. The method presented here was originally developed for whole embryo culture of mouse embryos by Gluecksohn-Schoenheimer in 1941. It is a simple and inexpensive method that may represent a useful extension to presently available ex utero culture systems for rabbit embryos. © 2016 S. Karger AG, Basel.

  5. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  6. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  7. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  8. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  9. 21 CFR 884.6110 - Assisted reproduction catheters.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... procedures to introduce or remove gametes, zygote(s), preembryo(s), and/or embryo(s) into or from the body..., and component parts. (b) Classification. Class II (special controls) (mouse embryo assay information...

  10. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation

    PubMed Central

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P.; Zhou, Feng C.

    2009-01-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88 mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10 and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p < 0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in gene expression, which together may contribute to the observed abnormal fetal development. PMID:20009564

  11. Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.

    PubMed

    Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C

    2009-10-01

    Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in gene expression, which together may contribute to the observed abnormal fetal development.

  12. Fiber optic light-scattering measurement system for evaluation of embryo viability: light-scattering characteristics from live mouse embryo

    NASA Astrophysics Data System (ADS)

    Itoh, Harumi; Arai, Tsunenori; Kikuchi, Makoto

    1997-06-01

    We measured angular distribution of the light scattering from live mouse embryo with 632.8nm in wavelength to evaluate the embryo viability. We aim to measure the mitochondrial density in human embryo which have relation to the embryo viability. We have constructed the light scattering measurement system to detect the mitochondrial density non-invasively. We have employed two optical fibers for the illumination and sensing to change the angle between these fibers. There were two dips on the scattering angular distribution from the embryo. These dips existed on 30 and 85 deg. We calculated the scattering angular pattern by Mie theory to fit the measured scattering estimated scattering size and density. The best fitting was obtained when the particle size and density were 0.9 micrometers and 1010 particles per ml, respectively. These values coincided with the approximated values of mitochondrial in the embryo. The measured light scattering may mainly originated from mitochondria in spite of the existence of the various scattering particles in the embryo. Since our simple scattering measurement may offer the mitochondrial density in the embryo, it might become the practical method of human embryo on in vitro fertilization-embryo transfer.

  13. Human Stem Cells Can Differentiate in Post-implantation Mouse Embryos.

    PubMed

    Tam, Patrick P L

    2016-01-07

    The potency of human pluripotent stem cells (hPSCs) to differentiate into germ layer derivatives is conventionally assessed by teratoma induction and in vitro differentiation. In this issue of Cell Stem Cell, Mascetti and Pedersen (2016) demonstrate that the human-mouse post-implantation chimera offers an efficient avenue to test the germ layer differentiation potential of hPSCs in mouse embryos ex vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A genetic and developmental pathway from STAT3 to the OCT4–NANOG circuit is essential for maintenance of ICM lineages in vivo

    PubMed Central

    Do, Dang Vinh; Ueda, Jun; Messerschmidt, Daniel M.; Lorthongpanich, Chanchao; Zhou, Yi; Feng, Bo; Guo, Guoji; Lin, Peiyu J.; Hossain, Md Zakir; Zhang, Wenjun; Moh, Akira; Wu, Qiang; Robson, Paul; Ng, Huck Hui; Poellinger, Lorenz; Knowles, Barbara B.; Solter, Davor; Fu, Xin-Yuan

    2013-01-01

    Although it is known that OCT4–NANOG are required for maintenance of pluripotent cells in vitro, the upstream signals that regulate this circuit during early development in vivo have not been identified. Here we demonstrate, for the first time, signal transducers and activators of transcription 3 (STAT3)-dependent regulation of the OCT4–NANOG circuitry necessary to maintain the pluripotent inner cell mass (ICM), the source of in vitro-derived embryonic stem cells (ESCs). We show that STAT3 is highly expressed in mouse oocytes and becomes phosphorylated and translocates to the nucleus in the four-cell and later stage embryos. Using leukemia inhibitory factor (Lif)-null embryos, we found that STAT3 phosphorylation is dependent on LIF in four-cell stage embryos. In blastocysts, interleukin 6 (IL-6) acts in an autocrine fashion to ensure STAT3 phosphorylation, mediated by janus kinase 1 (JAK1), a LIF- and IL-6-dependent kinase. Using genetically engineered mouse strains to eliminate Stat3 in oocytes and embryos, we firmly establish that STAT3 is essential for maintenance of ICM lineages but not for ICM and trophectoderm formation. Indeed, STAT3 directly binds to the Oct4 and Nanog distal enhancers, modulating their expression to maintain pluripotency of mouse embryonic and induced pluripotent stem cells. These results provide a novel genetic model of cell fate determination operating through STAT3 in the preimplantation embryo and pluripotent stem cells in vivo. PMID:23788624

  15. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    PubMed Central

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  16. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    PubMed Central

    Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.

    2017-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  17. Protective effect of [6]-gingerol on the ethanol-induced teratogenesis of cultured mouse embryos.

    PubMed

    Yon, Jung-Min; Baek, In-Jeoung; Lee, Se-Ra; Kim, Mi-Ra; Hong, Jin Tae; Yong, Hwanyul; Lee, Beom Jun; Yun, Young Won; Nam, Sang-Yoon

    2012-01-01

    Excessive ethanol consumption during pregnancy causes fetal alcohol syndrome. We investigated the effect of [6]-gingerol on ethanol-induced embryotoxicity using a whole embryo culture system. The morphological changes of embryos and the gene expression patterns of the antioxidant enzymes cytosolic glutathione peroxidase (cGPx), cytoplasmic Cu/Zn superoxide dismutase (SOD1), and Mn-SOD (SOD2), and SOD activity were examined in the cultured mouse embryos exposed to ethanol (5 μL/3 mL) and/or [6]-gingerol (1×10(-8) or 1×10(-7) μg/mL) for 2 days. In ethanol-exposed embryos, the standard morphological score of embryos was significantly decreased compared with those of the control (vehicle) group. However, cotreatment of embryos with [6]-gingerol and ethanol significantly improved all of the developmental parameters except crownrump length and head length, compared with those of the ethanol alone group. The mRNA expression levels of cGPx and SOD2, not SOD1, were decreased consistently, SOD activity were significantly decreased compared with the control group. However, the decreases in mRNA levels of antioxidant enzymes and SOD activity were significantly restored to the control levels by [6]-gingerol supplement. These results indicate that [6]-gingerol has a protective effect against ethanol-induced teratogenicity during mouse embryogenesis.

  18. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors.

    PubMed Central

    Paria, B C; Dey, S K

    1990-01-01

    We have established a model that shows cooperative interaction among preimplantation embryos and the role of growth factors on their development and growth. Two-cell mouse embryos cultured singly in 25-microliters microdrops had inferior development to blastocysts and lower cell numbers per blastocyst compared with those cultured in groups of 5 or 10. The inferior development of singly cultured embryos was markedly improved by addition of epidermal growth factor (EGF) or transforming growth factor alpha or beta 1 (TGF-alpha or TGF-beta 1) to the culture medium. The stage of embryonic development, primarily affected by these treatments, was between eight-cell/morula and blastocyst. Furthermore, blastocysts developed from eight-cell embryos cultured in groups or singly in the presence of EGF showed a higher incidence of zona hatching compared with those cultured singly in the absence of EGF. Detection of EGF receptors on the embryonic cell surface at eight-cell/morula and blastocyst stages suggests beneficial effects of EGF or TGF-alpha on preimplantation embryo development and blastocyst functions. Insulin-like growth factor I (IGF-I) had no influence on embryo development. To further document the cooperative interactions among embryos, the volume of the culture medium was doubled to 50 microliters. This increase in culture volume was even more detrimental to the development of singly cultured embryos. However, this detrimental effect was significantly reversed by EGF and reversed even more markedly by a combination of EGF and TGF-beta 1 but not by TGF-beta 1 alone. Although TGF-beta 1 plus IGF-I caused a modest improvement of embryo development, the response was not as great as shown by EGF alone. Furthermore, IGF-I had no additive effect on EGF-induced embryonic development. The study presents clear evidence that specific growth factors of embryonic and/or reproductive tract origin participate in preimplantation embryo development and blastocyst functions in an autocrine/paracrine manner. Images PMID:2352946

  19. Developmental Arrest and Mouse Antral Not-Surrounded Nucleolus Oocytes1

    PubMed Central

    Monti, Manuela; Zanoni, Mario; Calligaro, Alberto; Ko, Minoru S.H.; Mauri, Pierluigi; Redi, Carlo Alberto

    2013-01-01

    ABSTRACT The antral compartment in the ovary consists of two populations of oocytes that differ by their ability to resume meiosis and to develop to the blastocyst stage. For reasons still not entirely clear, antral oocytes termed surrounded nucleolus (SN; 70% of the population of antral oocytes) develop to the blastocyst stage, whereas those called not-surrounded nucleolus (NSN) arrest at two cells. We profiled transcriptomic, proteomic, and morphological characteristics of antral oocytes and observed that NSN oocyte arrest is associated with lack of cytoplasmic lattices coincident with reduced expression of MATER and ribosomal proteins. Cytoplasmic lattices have been shown to store maternally derived mRNA and ribosomes in mammalian oocytes and embryos, and MATER has been shown to be required for cytoplasmic lattice formation. Thus, we isolated antral oocytes from a Matertm/tm mouse and we observed that 84% of oocytes are of the NSN type. Our results provide the first molecular evidence to account for inability of NSN-derived embryos to progress beyond the two-cell stage; these results may be relevant to naturally occurring preimplantation embryo demise in mammals. PMID:23136301

  20. Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken.

    PubMed

    Yokoyama, Shigetoshi; Hashimoto, Megumi; Shimizu, Hirohito; Ueno-Kudoh, Hiroe; Uchibe, Kenta; Kimura, Ichiro; Asahara, Hiroshi

    2008-02-01

    The Caenorhabditis elegans heterochronic gene lin-28 regulates developmental timing in the nematode trunk. We report the dynamic expression patterns of Lin-28 homologues in mouse and chick embryos. Whole mount in situ hybridization revealed specific and intriguing expression patterns of Lin-28 in the developing mouse and chick limb bud. Mouse Lin-28 expression was detected in both the forelimb and hindlimb at E9.5, but disappeared from the forelimb at E10.5, and finally from the forelimb and hindlimb at E11.5. Chicken Lin-28, which was first detected in the limb primordium at stage 15/16, was also downregulated as the stage proceeded. The amino acid sequences of mouse and chicken Lin-28 genes are highly conserved and the similar expression patterns of Lin-28 during limb development in mouse and chicken suggest that this heterochronic gene is also conserved during vertebrate limb development.

  1. Lack of centrioles and primary cilia in STIL−/− mouse embryos

    PubMed Central

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474

  2. Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.

    PubMed

    David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin

    2014-01-01

    Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.

  3. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye

    PubMed Central

    López-Escobar, Beatriz; Cano, David A.; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A.; Henderson, Deborah; Ybot-González, Patricia

    2015-01-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1gt/gt and Daam1gt/+ embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1gt/+ mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. PMID:25540130

  4. Epidermal growth factor-like domain 7 is a marker of the endothelial lineage and active angiogenesis.

    PubMed

    Bambino, Kathryn; Lacko, Lauretta A; Hajjar, Katherine A; Stuhlmann, Heidi

    2014-07-01

    Epidermal growth factor-like domain 7 (Egfl7) expression in the developing embryo is largely restricted to sites of mesodermal progenitors of angioblasts/hemangioblasts and the vascular endothelium. We hypothesize that Egfl7 marks the endothelial lineage during embryonic development, and can be used to define the emergence of endothelial progenitor cells, as well as to visualize newly-forming vasculature in the embryo and during the processes of physiologic and pathologic angiogenesis in the adult. We have generated a transgenic mouse strain that expresses enhanced green fluorescent protein (eGFP) under the control of a minimal Egfl7 regulatory sequence (Egfl7:eGFP). Expression of the transgene recapitulated that of endogenous Egfl7 at sites of vasculogenesis and angiogenesis in the allantois, yolk sac, and in the embryo proper. The transgene was not expressed in the quiescent endothelium of most adult organs. However, the uterus and ovary, which undergo vascular growth and remodeling throughout the estrus cycle, expressed high levels of Egfl7:eGFP. Importantly, expression of the Egfl7:eGFP transgene was induced in adult neovasculature. We also found that increased Egfl7 expression contributed to pathologic revascularization in the mouse retina. To our knowledge, this is the first mouse model that enables monitoring of endothelial cells at sites of active vasculogenesis and angiogenesis. This model also facilitated the isolation and characterization of EGFL7(+) endothelial cell populations by fluorescence activated cell sorting (FACS). Together, our results demonstrate that the Egfl7:eGFP reporter mouse is a valuable tool that can be used to elucidate the mechanisms by which blood vessels form during development and under pathologic circumstances. © 2014 Wiley Periodicals, Inc.

  5. Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos

    PubMed Central

    Fauque, Patricia; Jouannet, Pierre; Lesaffre, Corinne; Ripoche, Marie-Anne; Dandolo, Luisa; Vaiman, Daniel; Jammes, Hélène

    2007-01-01

    Background In the last few years, an increase in imprinting anomalies has been reported in children born from Assisted Reproductive Technology (ART). Various clinical and experimental studies also suggest alterations of embryo development after ART. Therefore, there is a need for studying early epigenetic anomalies which could result from ART manipulations, especially on single embryos. In this study, we evaluated the impact of superovulation, in vitro fertilization (IVF) and embryo culture conditions on proper genomic imprinting and blastocyst development in single mouse embryos. In this study, different experimental groups were established to obtain embryos from superovulated and non-superovulated females, either from in vivo or in vitro fertilized oocytes, themselves grown in vitro or not. The embryos were cultured either in M16 medium or in G1.2/G2.2 sequential medium. The methylation status of H19 Imprinting Control Region (ICR) and H19 promoter was assessed, as well as the gene expression level of H19, in individual blastocysts. In parallel, we have evaluated embryo cleavage kinetics and recorded morphological data. Results We show that: 1. The culture medium influences early embryo development with faster cleavage kinetics for culture in G1.2/G2.2 medium compared to M16 medium. 2. Epigenetic alterations of the H19 ICR and H19 PP are influenced by the fertilization method since methylation anomalies were observed only in the in vitro fertilized subgroup, however to different degrees according to the culture medium. 3. Superovulation clearly disrupted H19 gene expression in individual blastocysts. Moreover, when embryos were cultured in vitro after either in vivo or in vitro fertilization, the percentage of blastocysts which expressed H19 was higher in G1.2/G2.2 medium compared to M16. Conclusion Compared to previous reports utilizing pools of embryos, our study enables us to emphasize a high individual variability of blastocysts in the H19 ICR and H19 promoter methylation and H19 gene expression, with a striking effect of each manipulation associated to ART practices. Our results suggest that H19 could be used as a sensor of the epigenetic disturbance of the utilized techniques. PMID:17949482

  6. Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos.

    PubMed

    Fauque, Patricia; Jouannet, Pierre; Lesaffre, Corinne; Ripoche, Marie-Anne; Dandolo, Luisa; Vaiman, Daniel; Jammes, Hélène

    2007-10-18

    In the last few years, an increase in imprinting anomalies has been reported in children born from Assisted Reproductive Technology (ART). Various clinical and experimental studies also suggest alterations of embryo development after ART. Therefore, there is a need for studying early epigenetic anomalies which could result from ART manipulations, especially on single embryos. In this study, we evaluated the impact of superovulation, in vitro fertilization (IVF) and embryo culture conditions on proper genomic imprinting and blastocyst development in single mouse embryos. In this study, different experimental groups were established to obtain embryos from superovulated and non-superovulated females, either from in vivo or in vitro fertilized oocytes, themselves grown in vitro or not. The embryos were cultured either in M16 medium or in G1.2/G2.2 sequential medium. The methylation status of H19 Imprinting Control Region (ICR) and H19 promoter was assessed, as well as the gene expression level of H19, in individual blastocysts. In parallel, we have evaluated embryo cleavage kinetics and recorded morphological data. We show that: 1. The culture medium influences early embryo development with faster cleavage kinetics for culture in G1.2/G2.2 medium compared to M16 medium. 2. Epigenetic alterations of the H19 ICR and H19 PP are influenced by the fertilization method since methylation anomalies were observed only in the in vitro fertilized subgroup, however to different degrees according to the culture medium. 3. Superovulation clearly disrupted H19 gene expression in individual blastocysts. Moreover, when embryos were cultured in vitro after either in vivo or in vitro fertilization, the percentage of blastocysts which expressed H19 was higher in G1.2/G2.2 medium compared to M16. Compared to previous reports utilizing pools of embryos, our study enables us to emphasize a high individual variability of blastocysts in the H19 ICR and H19 promoter methylation and H19 gene expression, with a striking effect of each manipulation associated to ART practices. Our results suggest that H19 could be used as a sensor of the epigenetic disturbance of the utilized techniques.

  7. Vitrification of mouse embryos using the thin plastic strip method

    PubMed Central

    Hur, Yong Soo; Ann, Ji Young; Maeng, Ja Young; Park, Miji; Park, Jeong Hyun; Yoon, Jung; Yoon, San Hyun; Hur, Chang Young; Lee, Won Don; Lim, Jin Ho

    2012-01-01

    Objective The aim of this study was to compare vitrification optimization of mouse embryos using electron microscopy (EM) grid, cryotop, and thin plastic strip (TPS) containers by evaluating developmental competence and apoptosis rates. Methods Mouse embryos were obtained from superovulated mice. Mouse cleavage-stage, expanded, hatching-stage, and hatched-stage embryos were cryopreserved in EM grid, cryotop, and TPS containers by vitrification in 15% ethylene glycol, 15% dimethylsulfoxide, 10 µg/mL Ficoll, and 0.65 M sucrose, and 20% serum substitute supplement (SSS) with basal medium, respectively. For the three groups in which the embryos were thawed in the EM grid, cryotop, and TPS containers, the thawing solution consisted of 0.25 M sucrose, 0.125 M sucrose, and 20% SSS with basal medium, respectively. Rates of survival, re-expansion, reaching the hatched stage, and apoptosis after thawing were compared among the three groups. Results Developmental competence after thawing of vitrified expanded and hatching-stage blastocysts using cryotop and TPS methods were significantly higher than survival using the EM grid (p<0.05). Also, apoptosis positive nuclei rates after thawing of vitrified expanded blastocysts using cryotop and TPS were significantly lower than when using the EM grid (p<0.05). Conclusion The TPS vitrification method has the advantages of achieving a high developmental ability and effective preservation. PMID:23346525

  8. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    PubMed Central

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  9. Can a genetically-modified organism-containing diet influence embryo development? A preliminary study on pre-implantation mouse embryos.

    PubMed

    Cisterna, B; Flach, F; Vecchio, L; Barabino, S M L; Battistelli, S; Martin, T E; Malatesta, M; Biggiogera, M

    2008-01-01

    In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM) soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in pre-mRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development.

  10. Mouse Mix gene is activated early during differentiation of ES and F9 stem cells and induces endoderm in frog embryos.

    PubMed

    Mohn, Deanna; Chen, Siming W; Dias, Dora Campos; Weinstein, Daniel C; Dyer, Michael A; Sahr, Kenneth; Ducker, Charles E; Zahradka, Elizabeth; Keller, Gordon; Zaret, Kenneth S; Gudas, Lorraine J; Baron, Margaret H

    2003-03-01

    In frog and zebrafish, the Mix/Bix family of paired type homeodomain proteins play key roles in specification and differentiation of mesendoderm. However, in mouse, only a single Mix gene (mMix) has been identified to date and its function is unknown. We have analyzed the expression of mouse Mix RNA and protein in embryos, embryoid bodies formed from embryonic stem cells and F9 teratocarcinoma cells, as well as several differentiated cell types. Expression in embryoid bodies in culture mirrors that in embryos, where Mix is transcribed transiently in primitive (visceral) endoderm (VE) and in nascent mesoderm. In F9 cells induced by retinoic acid to differentiate to VE, mMix is coordinately expressed with three other endodermal transcription factors, well before AFP, and its protein product is localized to the nucleus. In a subpopulation of nascent mesodermal cells from embryonic stem cell embryoid bodies, mMix is coexpressed with Brachyury. Intriguingly, mMix mRNA is detected in a population (T+Flk1+) of cells which may contain hemangioblasts, before the onset of hematopoiesis and activation of hematopoietic markers. In vitro and in vivo, mMix expression in nascent mesoderm is rapidly down-regulated and becomes undetectable in differentiated cell types. In the region of the developing gut, mMix expression is confined to the mesoderm of mid- and hindgut but is absent from definitive endoderm. Injection of mouse mMix RNA into early frog embryos results in axial truncation of developing tadpoles and, in animal cap assays, mMix alone is sufficient to activate expression of several endodermal (but not mesodermal) markers. Although these observations do not exclude a possible cell-autonomous function for mMix in mesendodermal progenitor cells, they do suggest an additional, non-cell autonomous role in nascent mesoderm in the formation and/or patterning of adjacent definitive endoderm. Copyright 2003 Wiley-Liss, Inc.

  11. Cdk2 Phosphorylation on Threonine39 by AKT and Its Implication on Cyclin Binding, Cellular Localization, and Cell Cycle Progression

    DTIC Science & Technology

    2008-10-01

    cell cycle progression in most cell types. Mouse embryos develop normally until mid gestation without all interphase Cdks 28. Pertinent to the...Ciemerych and P. Sicinski, "Cell cycle in mouse development ," 24(17), 2877 (2005). Ref Type: Journal 5 K. Coulonval, et al., "Phosphorylations of...34 Development 135(20), 3389 (2008). Ref Type: Journal 30 J. P. Tassan, et al., "Cell cycle analysis of the activity, subcellular localization, and subunit

  12. The Role of Xist in X-Chromosome Dosage Compensation.

    PubMed

    Sahakyan, Anna; Yang, Yihao; Plath, Kathrin

    2018-06-14

    In each somatic cell of a female mammal one X chromosome is transcriptionally silenced via X-chromosome inactivation (XCI), initiating early in development. Although XCI events are conserved in mouse and human postimplantation development, regulation of X-chromosome dosage in preimplantation development occurs differently. In preimplantation development, mouse embryos undergo imprinted form of XCI, yet humans lack imprinted XCI and instead regulate gene expression of both X chromosomes by dampening transcription. The long non-coding RNA Xist/XIST is expressed in mouse and human preimplantation and postimplantation development to orchestrate XCI, but its role in dampening is unclear. In this review, we discuss recent advances in our understanding of the role of Xist in X chromosome dosage compensation in mouse and human. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Laser-assisted in vitro fertilization facilitates fertilization of vitrified-warmed C57BL/6 mouse oocytes with fresh and frozen-thawed spermatozoa, producing live pups.

    PubMed

    Woods, Stephanie E; Qi, Peimin; Rosalia, Elizabeth; Chavarria, Tony; Discua, Allan; Mkandawire, John; Fox, James G; García, Alexis

    2014-01-01

    The utility of cryopreserved mouse gametes for reproduction of transgenic mice depends on development of assisted reproductive technologies, including vitrification of unfertilized mouse oocytes. Due to hardening of the zona pellucida, spermatozoa are often unable to penetrate vitrified-warmed (V-W) oocytes. Laser-assisted in vitro fertilization (LAIVF) facilitates fertilization by allowing easier penetration of spermatozoa through a perforation in the zona. We investigated the efficiency of V-W C57BL/6NTac oocytes drilled by the XYClone laser, compared to fresh oocytes. By using DAP213 for cryoprotection, 83% (1,470/1,762) of vitrified oocytes were recovered after warming and 78% were viable. Four groups were evaluated for two-cell embryo and live offspring efficiency: 1) LAIVF using V-W oocytes, 2) LAIVF using fresh oocytes, 3) conventional IVF using V-W oocytes and 4) conventional IVF using fresh oocytes. First, the groups were tested using fresh C57BL/6NTac spermatozoa (74% motile, 15 million/ml). LAIVF markedly improved the two-cell embryo efficiency using both V-W (76%, 229/298) and fresh oocytes (69%, 135/197), compared to conventional IVF (7%, 12/182; 6%, 14/235, respectively). Then, frozen-thawed C57BL/6NTac spermatozoa (35% motile, 15 million/ml) were used and LAIVF was again found to enhance fertilization efficiency, with two-cell embryo rates of 87% (298/343) using V-W oocytes (P<0.05, compared to fresh spermatozoa), and 73% (195/266) using fresh oocytes. Conventional IVF with frozen-thawed spermatozoa using V-W (6%, 10/168) and fresh (5%, 15/323) oocytes produced few two-cell embryos. Although live offspring efficiency following embryo transfer was greater with conventional IVF (35%, 18/51; LAIVF: 6%, 50/784), advantage was seen with LAIVF in live offspring obtained from total oocytes (5%, 50/1,010; conventional IVF: 2%, 18/908). Our results demonstrated that zona-drilled V-W mouse oocytes can be used for IVF procedures using both fresh and frozen-thawed spermatozoa, producing live pups. The ability to cryopreserve mouse gametes for LAIVF may facilitate management of large-scale transgenic mouse production facilities.

  14. The Application of a Chemical Determination of N-Homocysteinylation Levels in Developing Mouse Embryos: Implication for Folate Responsive Birth Defects

    PubMed Central

    Fathe, Kristin; Person, Maria D.; Finnell, Richard H.

    2014-01-01

    Elevated homocysteine levels have long been associated with various disease states, including cardiovascular disease and birth defects, including neural tube defects (NTDs). One hypothesis regarding the strong correlation between these various disorders and high levels of homocysteine is that a reactive form of this small molecule can attach to mammalian proteins in a phenomenon known as homocysteinylation. These posttranslational modifications may become antigenic, or may even directly disrupt certain protein function. It remains to be determined whether dietary influences that can cause globally increased levels of circulating homocysteine confer negative effects maternally, or may otherwise negatively and materially impact the metabolic balance in developing embryos. Herein we present the application of a chemical method of determination of N-homocysteinylation to a set of neural tube closure stage mouse embryos and their mothers. We explore the uses of this newly-described technique to investigate levels of maternal and embryonic N-homocysteinylation using dietary manipulations of onecarbon metabolism with two known folate responsive neural tube defect mouse models. The data presented reveals that although diet appeared to have significant effects on the maternal metabolic status, those effects did not directly correlate to the embryonic folate or N-homocysteinylation status. Our studies indicate that maternal diet and embryonic genotype most significantly affected the embryonic developmental outcome. PMID:25620692

  15. Nuclear Reprogramming: Kinetics of Cell Cycle and Metabolic Progression as Determinants of Success

    PubMed Central

    Balbach, Sebastian Thomas; Esteves, Telma Cristina; Houghton, Franchesca Dawn; Siatkowski, Marcin; Pfeiffer, Martin Johannes; Tsurumi, Chizuko; Kanzler, Benoit; Fuellen, Georg; Boiani, Michele

    2012-01-01

    Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development. PMID:22530006

  16. Dynamic Imaging of Mouse Embryos and Cardiodynamics in Static Culture.

    PubMed

    Lopez, Andrew L; Larina, Irina V

    2018-01-01

    The heart is a dynamic organ that quickly undergoes morphological and mechanical changes through early embryonic development. Characterizing these early moments is important for our understanding of proper embryonic development and the treatment of heart disease. Traditionally, tomographic imaging modalities and fluorescence-based microscopy are excellent approaches to visualize structural features and gene expression patterns, respectively, and connect aberrant gene programs to pathological phenotypes. However, these approaches usually require static samples or fluorescent markers, which can limit how much information we can derive from the dynamic and mechanical changes that regulate heart development. Optical coherence tomography (OCT) is unique in this circumstance because it allows for the acquisition of three-dimensional structural and four-dimensional (3D + time) functional images of living mouse embryos without fixation or contrast reagents. In this chapter, we focus on how OCT can visualize heart morphology at different stages of development and provide cardiodynamic information to reveal mechanical properties of the developing heart.

  17. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.

    PubMed

    Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena

    2017-04-14

    Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos. Copyright © 2017, American Association for the Advancement of Science.

  18. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  19. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    PubMed Central

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  20. Tissue morphodynamics shaping the early mouse embryo.

    PubMed

    Sutherland, Ann E

    2016-07-01

    Generation of the elongated vertebrate body plan from the initially radially symmetrical embryo requires comprehensive changes to tissue form. These shape changes are generated by specific underlying cell behaviors, coordinated in time and space. Major principles and also specifics are emerging, from studies in many model systems, of the cell and physical biology of how region-specific cell behaviors produce regional tissue morphogenesis, and how these, in turn, are integrated at the level of the embryo. New technical approaches have made it possible more recently, to examine the morphogenesis of the mouse embryo in depth, and to elucidate the underlying cellular mechanisms. This review focuses on recent advances in understanding the cellular basis for the early fundamental events that establish the basic form of the embryo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. HSPC117 deficiency in cloned embryos causes placental abnormality and fetal death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingying; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080; Graduate University of Chinese Academy of Sciences, Beijing 100049

    2010-07-02

    Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilizedmore » embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo.« less

  2. Effects of embryo culture media do not persist after implantation: a histological study in mice.

    PubMed

    Hemkemeyer, Sandra A; Schwarzer, Caroline; Boiani, Michele; Ehmcke, Jens; Le Gac, Séverine; Schlatt, Stefan; Nordhoff, Verena

    2014-02-01

    Is post-implantation embryonic development after blastocyst transfer affected by exposure to different assisted reproduction technology (ART) culture media? Fetal development and placental histology of ART embryos cultured in vitro in different ART media was not impaired compared with embryos grown in vivo. The application of different in vitro culture (IVC) media for human ART has an effect on birthweight of newborns. In the mouse model, differences in blastocyst formation were reported after culture in different ART media. Moreover, abnormalities in the liver and heart have been detected as a result of suboptimal IVC conditions. Fertilized oocytes from inbred and outbred breeding schemes were retrieved and either immediately transferred to foster mothers or incubated in control or human ART culture media up to the blastocyst stage prior to transfer. Placental and fetal anatomy and particularly bone development were evaluated. B6C3F1 female mice were used as oocyte donors after ovulation induction. C57Bl/6 and CD1 males were used for mating and CD1 females as foster mothers for embryo transfer. Fertilized oocytes were recovered from mated females and incubated in sequential human ART media (ISM1/ISM2 and HTF/Multiblast), in control media [KSOM(aa) and Whitten's medium] or grown in utero without IVC (zygote control). As in vivo, control B6C3F1 females were superovulated and left untreated. Fetuses and placentae were isolated by Caesarean section and analysed at 18.5 days post-coitum (dpc) for placenta composition and at 15.5 dpc for body weight, crown-rump length (CRL), fetal organ development, morphological development, total bone length and extent of bone ossification. No major differences in the number of implantation sites or in histological appearance of the placentae were detected. CRL of KSOM(aa) fetuses was higher compared with zygote control and Whitten's medium. Histological analysis of tissue sections revealed no gross morphological differences compared with the in vitro groups or in vivo controls. Furthermore, no changes in skeletal development and degree of ossification were observed. However, fibula and tibia of ISM1/ISM2 fetuses were longer than the respective ones from in vivo fetuses. Findings in the mouse embryo and fetus may not be fully transferable to humans. In addition to skeletal development and placentation, there may be other parameters, e.g. on the molecular level which respond to IVC in ART media. Some comparisons have limited statistical power. Our data suggest that once implantation is achieved, subsequent post-implantation development unfolds normally, resulting in healthy fetuses. With mouse models, we gather information for the safety of human ART culture media. Our mouse study is reassuring for the safety of ART conditions on human embryonic development, given the lack of bold detrimental effects observed in the mouse model. This work was supported by the Deutsche Forschungsgemeinschaft (BO 2540/4-1 and SCHL 394/9-1) and by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (S.L.G.); Bilateral grant NWO-DFG 63-258. None of the authors has any conflict of interest to declare. Not applicable.

  3. Selective loss of mouse embryos due to the expression of transgenic major histocompatibility class I molecules early in embryogenesis.

    PubMed

    Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C

    1998-05-01

    Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.

  4. Femtosecond laser surgery of two-cell mouse embryos: effect on viability, development, and tetraploidization.

    PubMed

    Osychenko, Alina A; Zalessky, Alexandr D; Kostrov, Andrey N; Ryabova, Anastasia V; Krivokharchenko, Alexander S; Nadtochenko, Viktor A

    2017-12-01

    The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. Confocal imaging of whole vertebrate embryos reveals novel insights into molecular and cellular mechanisms of organ development

    NASA Astrophysics Data System (ADS)

    Hadel, Diana M.; Keller, Bradley B.; Sandell, Lisa L.

    2014-03-01

    Confocal microscopy has been an invaluable tool for studying cellular or sub-cellular biological processes. The study of vertebrate embryology is based largely on examination of whole embryos and organs. The application of confocal microscopy to immunostained whole mount embryos, combined with three dimensional (3D) image reconstruction technologies, opens new avenues for synthesizing molecular, cellular and anatomical analysis of vertebrate development. Optical cropping of the region of interest enables visualization of structures that are morphologically complex or obscured, and solid surface rendering of fluorescent signal facilitates understanding of 3D structures. We have applied these technologies to whole mount immunostained mouse embryos to visualize developmental morphogenesis of the mammalian inner ear and heart. Using molecular markers of neuron development and transgenic reporters of neural crest cell lineage we have examined development of inner ear neurons that originate from the otic vesicle, along with the supporting glial cells that derive from the neural crest. The image analysis reveals a previously unrecognized coordinated spatial organization between migratory neural crest cells and neurons of the cochleovestibular nerve. The images also enable visualization of early cochlear spiral nerve morphogenesis relative to the developing cochlea, demonstrating a heretofore unknown association of neural crest cells with extending peripheral neurite projections. We performed similar analysis of embryonic hearts in mouse and chick, documenting the distribution of adhesion molecules during septation of the outflow tract and remodeling of aortic arches. Surface rendering of lumen space defines the morphology in a manner similar to resin injection casting and micro-CT.

  6. Effects of lead on the male mouse as investigated by in vitro fertilization and blastocyst culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansson, L.; Sjoeblom, P.; Wide, M.

    1987-02-01

    Long-term exposure of male mice to inorganic lead (lead chloride, 1 g/liter) in the drinking water reduces their fertility. The cause of this reduction, expressed as a decrease in the number of mated females showing inplantations, was investigated, using an in vivo fertilization method. It was found that spermatozoa from lead-exposed males had a significantly lower ability to fertilize mouse eggs than those from unexposed males. Preimplantation embryos, isolated from uterine horns of mice mated with lead-exposed males. Preimplantation embryos, isolated from uterine horns of mice mated with lead-exposed males, were examined. No morphologically abnormal embryos were found. However, whenmore » cultured in vitro over the implantation period, blastocysts of the group mated with lead-exposed males showed an increased frequency of delayed hatching from the zona pellucida or an inability to hatch. Among blastocysts from this group a decreased frequency of inner cell mass development was also found.« less

  7. STUDIES ON THE DEVELOPMENT OF MOUSE EMBRYOS IN VITRO

    PubMed Central

    BRINSTER, RALPH L.

    2016-01-01

    Summary The interactions of a number of possible energy sources for in-vitro development of 2-cell mouse ova were examined using statistical experimental designs. These experiments indicated that glucose has no beneficial effect on development when employed with the optimum concentration of pyruvate. Optimum concentrations of pyruvate and oxaloacetate when employed together resulted in a significantly lower response than when either compound was employed alone. It was found that the best medium for the development of 2-cell mouse ova into blastocysts contained 2·5 to 5·0 × 10−4 M-pyruvate + 2·5 to 5·0 × 10−2 M-lactate. PMID:5836270

  8. The influence of serum substituents on serum-free Vero cell conditioned culture media manufactured from Dulbecco's modified Eagle medium in mouse embryo culture.

    PubMed

    Lee, Jong-Seon; Kim, Ju-Hwan; Seo, Young-Seok; Yang, Jung-Bo; Kim, Yong-Il; Kim, Hye-Jin; Lee, Ki-Hwan

    2013-09-01

    This study was conducted to examine the influences of supplementation of the serum substituents and available period of serum-free Vero cell conditioned media (SF-VCM) manufactured from Dulbecco's modified Eagle medium cultured with Vero cells for in vitro development of mouse preimplantation embryos. A total of 1,099 two-cell embryos collected from imprinting control region mice were cultured in SF-VCM with 10% and 20% human follicular fluid (hFF), serum substitute supplement (SSS), and serum protein substitute (SPS). Development of embryos was observed every 24 hours. Results between different groups were analyzed by chi-square test, and considered statistically significant when P-value was less than 0.05. The rates of embryonic development cultured in SF-VCM supplemented with serum substituents were significantly higher compare with serum-free group (P < 0.05). The rates of embryonic development after 48 hours (morula≤) and 96 hours (blastocyst≤) were significantly higher in 20% SSS and 10% SPS than in 20% hFF supplementation (P < 0.05). And the rates of embryonic development after 96 hours (hatching blastocyst≤) were significantly higher in 10% SPS (94.5%) than in 20% SSS (82.6%) and 20% hFF supplementation (68.5%). The rates of embryonic development according to storage period of the SF-VCM supplemented with 10% SPS showed no significant difference between control, 2 weeks and 4 weeks group. However developmental rate in 6 weeks storage group was significantly lower than other groups. The rate of embryonic development after 96 hours (hatching blastocyst≤) was significantly higher in SF-VCM supplemented with 10% SPS. And storage period of media up to 4 weeks did not affect on embryonic development.

  9. No turning, a mouse mutation causing left-right and axial patterning defects.

    PubMed

    Melloy, P G; Ewart, J L; Cohen, M F; Desmond, M E; Kuehn, M R; Lo, C W

    1998-01-01

    Patterning along the left/right axes helps establish the orientation of visceral organ asymmetries, a process which is of fundamental importance to the viability of an organism. A linkage between left/right and axial patterning is indicated by the finding that a number of genes involved in left/right patterning also play a role in anteroposterior and dorsoventral patterning. We have recovered a spontaneous mouse mutation causing left/right patterning defects together with defects in anteroposterior and dorsoventral patterning. This mutation is recessive lethal and was named no turning (nt) because the mutant embryos fail to undergo embryonic turning. nt embryos exhibit cranial neural tube closure defects and malformed somites and are caudally truncated. Development of the heart arrests at the looped heart tube stage, with cardiovascular defects indicated by ballooning of the pericardial sac and the pooling of blood in various regions of the embryo. Interestingly, in nt embryos, the direction of heart looping was randomized. Nodal and lefty, two genes that are normally expressed only in the left lateral plate mesoderm, show expression in the right and left lateral plate mesoderm. Lefty, which is normally also expressed in the floorplate, is not found in the prospective floor plate of nt embryos. This suggests the possibility of notochordal defects. This was confirmed by histological analysis and the examination of sonic hedgehog, Brachyury, and HNF-3 beta gene expression. These studies showed that the notochord is present in the early nt embryo, but degenerates as development progresses. Overall, these findings support the hypothesis that the notochord plays an active role in left/right patterning. Our results suggest that nt may participate in this process by modulating the notochordal expression of HNF-3 beta.

  10. Dysfunction in gap junction intercellular communication induces aberrant behavior of the inner cell mass and frequent collapses of expanded blastocysts in mouse embryos.

    PubMed

    Togashi, Kazue; Kumagai, Jin; Sato, Emiko; Shirasawa, Hiromitsu; Shimoda, Yuki; Makino, Kenichi; Sato, Wataru; Kumazawa, Yukiyo; Omori, Yasufumi; Terada, Yukihiro

    2015-06-01

    We investigated the role of gap junctions (GJs) in embryological differentiation, and observed the morphological behavior of the inner cell mass (ICM) by time-lapse movie observation (TLM) with gap junction inhibitors (GJis). ICR mouse embryos were exposed to two types of GJis in CZB medium: oleamide (0 to 50 μM) and 1-heptanol (0 to 10 mM). We compared the rate of blastocyst formation at embryonic day 4.5 (E4.5) with E5.5. We also observed and evaluated the times from the second cleavage to each embryonic developing stage by TLM. We investigated embryonic distribution of DNA, Nanog protein, and Connexin 43 protein with immunofluorescent staining. In the comparison of E4.5 with E5.5, inhibition of gap junction intercellular communication (GJIC) delayed embryonic blastocyst formation. The times from the second cleavage to blastocyst formation were significantly extended in the GJi-treated embryos (control vs with oleamide, 2224 ± 179 min vs 2354 ± 278 min, p = 0.013). Morphological differences were traced in control versus GJi-treated embryos until the hatching stage. Oleamide induced frequent severe collapses of expanded blastocysts (77.4 % versus 26.3 %, p = 0.0001) and aberrant ICM divisions connected to sticky strands (74.3 % versus 5.3 %, p = 0.0001). Immunofluorescent staining indicated Nanog-positive cells were distributed in each divided ICM. GJIC plays an important role in blastocyst formation, collapses of expanded blastocysts, and the ICM construction in mouse embryos.

  11. Ultrasound-guided microinjection into the mouse forebrain in utero at E9.5.

    PubMed

    Pierfelice, Tarran J; Gaiano, Nicholas

    2010-11-13

    In utero survival surgery in mice permits the molecular manipulation of gene expression during development. However, because the uterine wall is opaque during early embryogenesis, the ability to target specific parts of the embryo for microinjection is greatly limited. Fortunately, high-frequency ultrasound imaging permits the generation of images that can be used in real time to guide a microinjection needle into the embryonic region of interest. Here we describe the use of such imaging to guide the injection of retroviral vectors into the ventricular system of the mouse forebrain at embryonic day (E) 9.5. This method uses a laparotomy to permit access to the uterine horns, and a specially designed plate that permits host embryos to be bathed in saline while they are imaged and injected. Successful surgeries often result in most or all of the injected embryos surviving to any subsequent time point of interest (embryonically or postnatally). The principles described here can be used with slight modifications to perform injections into the amnionic fluid of E8.5 embryos (thereby permitting infection along the anterior posterior extent of the neural tube, which has not yet closed), or into the ventricular system of the brain at E10.5/11.5. Furthermore, at mid-neurogenic ages (~E13.5), ultrasound imaging can be used direct injection into specific brain regions for viral infection or cell transplantation. The use of ultrasound imaging to guide in utero injections in mice is a very powerful technique that permits the molecular and cellular manipulation of mouse embryos in ways that would otherwise be exceptionally difficult if not impossible.

  12. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?

    PubMed

    Wakayama, Teruhiko

    2007-02-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.

  13. Phenotype detection in morphological mutant mice using deformation features.

    PubMed

    Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S

    2013-01-01

    Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.

  14. The effect of adriamycin exposure on the notochord of mouse embryos.

    PubMed

    Hajduk, Piotr; May, Alison; Puri, Prem; Murphy, Paula

    2012-04-01

    The notochord has important structural and signaling properties during vertebrate development with key roles in patterning surrounding tissues, including the foregut. The adriamycin mouse model is an established model of foregut anomalies where exposure of embryos in utero to the drug adriamycin leads to malformations including oesophageal atresia and tracheoesophageal fistula. In addition to foregut abnormalities, treatment also causes branching, displacement, and hypertrophy of the notochord. Here, we explore the hypothesis that the notochord may be a primary target of disruption leading to abnormal patterning of the foregut by examining notochord position and structure in early embryos following adriamycin exposure. Treated (n = 46) and control (n = 30) embryos were examined during the crucial period when the notochord normally delaminates away from the foregut endoderm (6-28 somite pairs). Transverse sections were derived from the anterior foregut and analyzed by confocal microscopy following immunodetection of extracellular matrix markers E-cadherin and Laminin. In adriamycin-treated embryos across all stages, the notochord was abnormally displaced ventrally with prolonged attachment to the foregut endoderm. While E-cadherin was normally detected in the foregut endoderm with no expression in the notochord of control embryos, treated embryos up to 24 somites showed ectopic notochordal expression indicating a change in characteristics of the tissue; specifically an increase in intracellular adhesiveness, which may be instrumental in structural changes, affecting mechanical and signaling properties. This is consistent with disruption of the notochord leading to altered signaling to the foregut causing abnormal patterning and congenital foregut malformations. © 2012 Wiley Periodicals, Inc.

  15. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos.

    PubMed

    Hirate, Yoshikazu; Hirahara, Shino; Inoue, Ken-Ichi; Kiyonari, Hiroshi; Niwa, Hiroshi; Sasaki, Hiroshi

    2015-10-01

    In preimplantation mouse embryos, the Hippo signaling pathway plays a central role in regulating the fates of the trophectoderm (TE) and the inner cell mass (ICM). In early blastocysts with more than 32 cells, the Par-aPKC system controls polarization of the outer cells along the apicobasal axis, and cell polarity suppresses Hippo signaling. Inactivation of Hippo signaling promotes nuclear accumulation of a coactivator protein, Yap, leading to induction of TE-specific genes. However, whether similar mechanisms operate at earlier stages is not known. Here, we show that slightly different mechanisms operate in 16-cell stage embryos. Similar to 32-cell stage embryos, disruption of the Par-aPKC system activated Hippo signaling and suppressed nuclear Yap and Cdx2 expression in the outer cells. However, unlike 32-cell stage embryos, 16-cell stage embryos with a disrupted Par-aPKC system maintained apical localization of phosphorylated Ezrin/Radixin/Moesin (p-ERM), and the effects on Yap and Cdx2 were weak. Furthermore, normal 16-cell stage embryos often contained apolar cells in the outer position. In these cells, the Hippo pathway was strongly activated and Yap was excluded from the nuclei, thus resembling inner cells. Dissociated blastomeres of 8-cell stage embryos form polar-apolar couplets, which exhibit different levels of nuclear Yap, and the polar cell engulfed the apolar cell. These results suggest that cell polarization at the 16-cell stage is regulated by both Par-aPKC-dependent and -independent mechanisms. Asymmetric cell division is involved in cell polarity control, and cell polarity regulates cell positioning and most likely controls Hippo signaling. © The Authors Development, Growth & Differentiation published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Developmental Biologists.

  16. A step-wise approach for analysis of the mouse embryonic heart using 17.6 Tesla MRI

    PubMed Central

    Gabbay-Benziv, Rinat; Reece, E. Albert; Wang, Fang; Bar-Shir, Amnon; Harman, Chris; Turan, Ozhan M.; Yang, Peixin; Turan, Sifa

    2018-01-01

    Background The mouse embryo is ideal for studying human cardiac development. However, laboratory discoveries do not easily translate into clinical findings partially because of histological diagnostic techniques that induce artifacts and lack standardization. Aim To present a step-wise approach using 17.6 T MRI, for evaluation of mice embryonic heart and accurate identification of congenital heart defects. Subjects 17.5-embryonic days embryos from low-risk (non-diabetic) and high-risk (diabetic) model dams. Study design Embryos were imaged using 17.6 Tesla MRI. Three-dimensional volumes were analyzed using ImageJ software. Outcome measures Embryonic hearts were evaluated utilizing anatomic landmarks to locate the four-chamber view, the left- and right-outflow tracts, and the arrangement of the great arteries. Inter- and intra-observer agreement were calculated using kappa scores by comparing two researchers’ evaluations independently analyzing all hearts, blinded to the model, on three different, timed occasions. Each evaluated 16 imaging volumes of 16 embryos: 4 embryos from normal dams, and 12 embryos from diabetic dams. Results Inter-observer agreement and reproducibility were 0.779 (95% CI 0.653–0.905) and 0.763 (95% CI 0.605–0.921), respectively. Embryonic hearts were structurally normal in 4/4 and 7/12 embryos from normal and diabetic dams, respectively. Five embryos from diabetic dams had defects: ventricular septal defects (n = 2), transposition of great arteries (n = 2) and Tetralogy of Fallot (n = 1). Both researchers identified all cardiac lesions. Conclusion A step-wise approach for analysis of MRI-derived 3D imaging provides reproducible detailed cardiac evaluation of normal and abnormal mice embryonic hearts. This approach can accurately reveal cardiac structure and, thus, increases the yield of animal model in congenital heart defect research. PMID:27569369

  17. Two-cell embryos are more sensitive than blastocysts to AMPK-dependent suppression of anabolism and stemness by commonly used fertility drugs, a diet supplement, and stress.

    PubMed

    Bolnick, Alan; Abdulhasan, Mohammed; Kilburn, Brian; Xie, Yufen; Howard, Mindie; Andresen, Paul; Shamir, Alexandra M; Dai, Jing; Puscheck, Elizabeth E; Secor, Eric; Rappolee, Daniel A

    2017-12-01

    This study tests whether metformin or diet supplement BR-DIM-induced AMP-activated protein kinase (AMPK) mediated effects on development are more pronounced in blastocysts or 2-cell mouse embryos. Culture mouse zygotes to two-cell embryos and test effects after 0.5-1 h AMPK agonists' (e.g., Met, BR-DIM) exposure on AMPK-dependent ACCser79P phosphorylation and/or Oct4 by immunofluorescence. Culture morulae to blastocysts and test for increased ACCser79P, decreased Oct4 and for AMPK dependence by coculture with AMPK inhibitor compound C (CC). Test whether Met or BR-DIM decrease growth rates of morulae cultured to blastocyst by counting cells. Aspirin, metformin, and hyperosmotic sorbitol increased pACC ser79P ~ 20-fold, and BR-DIM caused a ~ 30-fold increase over two-cell embryos cultured for 1 h in KSOMaa but only 3- to 6-fold increase in blastocysts. We previously showed that these stimuli decreased Oct4 40-85% in two-cell embryos that was ~ 60-90% reversible by coculture with AMPK inhibitor CC. However, Oct4 decreased only 30-50% in blastocysts, although reversibility of loss by CC was similar at both embryo stages. Met and BR-DIM previously caused a near-complete cell proliferation arrest in two-cell embryos and here Met caused lower CC-reversible growth decrease and AMPK-independent BR-DIM-induced blastocyst growth decrease. Inducing drug or diet supplements decreased anabolism, growth, and stemness have a greater impact on AMPK-dependent processes in two-cell embryos compared to blastocysts.

  18. Effects of American Ginseng on Preimplantation Development and Pregnancy in Mice.

    PubMed

    Belanger, Danyka; Calder, Michele D; Gianetto-Berruti, Alessandra; Lui, Edmund M; Watson, Andrew J; Feyles, Valter

    2016-01-01

    In North America, a high proportion of pregnant women use herbal medications including North American ginseng. This medicinal plant contains high amounts of triterpene saponins (ginsenosides), which are the main bioactive compounds. It is important to assess ginseng's impact on all reproductive functions to ensure the safety of pregnant women and fetuses. In this study, we defined the concentration-responsive effects of North American alcoholic and aqueous ginseng extracts on preimplantation development in vitro and on pregnancy and post-partum development in the mouse. Two-cell mouse embryos were cultured with 5 different concentrations of whole ginseng root extracts, or ginsenosides Rb1, Rg1 and Re alone, a combinatorial ginsenoside solution and a crude polysaccharide fraction solution. Embryonic development and recovery from each treatment was assessed. To investigate the in vivo effects of ginseng extracts, female mice were gavaged with 50[Formula: see text]mg/kg/day, 500[Formula: see text]mg/kg/day or 2000[Formula: see text]mg/kg/day of either extract (treatment) or water (sham) for 2 weeks prior to mating and throughout gestation. Gestation period, litter size, pup growth and pup sex ratio were evaluated. Oral ginseng consumption did not significantly affect fertility or pregnancy in the mouse. High doses of ginseng (2000[Formula: see text]mg/kg/day) decreased maternal weight gain. Direct treatment of preimplantation embryos in vitro demonstrated that ALC and AQ extract treatment reduced development in a concentration responsive manner, while only ALC extract effects were largely reversible. Treatments with individual or combinatorial ginsenosides, or the polysaccharide fraction solution alone did not impair preimplantation development, in vitro. In conclusion, maternal oral consumption of ginseng has little negative impact on pregnancy in the mouse, however, direct exposure to ginseng extract during mouse preimplantation development in vitro is detrimental.

  19. Distinct Spatiotemporal Expression of Serine Proteases Prss23 and Prss35 in Periimplantation Mouse Uterus and Dispensable Function of Prss35 in Fertility

    PubMed Central

    Diao, Honglu; Xiao, Shuo; Li, Rong; Zhao, Fei; Ye, Xiaoqin

    2013-01-01

    PRSS23 and PRSS35 are homologous proteases originally identified in mouse ovaries. In the periimplantation mouse uterus, Prss23 was highly expressed in the preimplantation gestation day 3.5 (D3.5) uterine luminal epithelium (LE). It disappeared from the postimplantation LE and reappeared in the stromal compartment next to the myometrium on D6.5. It was undetectable in the embryo from D4.5 to D6.5 but highly expressed in the embryo on D7.5. Prss35 became detectable in the uterine stromal compartment surrounding the embryo on D4.5 and shifted towards the mesometrial side of the stromal compartment next to the embryo from D5.5 to D7.5. In the ovariectomized uterus, Prss23 was moderately and Prss35 was dramatically downregulated by progesterone and 17β-estradiol. Based on the expression of Prss35 in granulosa cells and corpus luteum of the ovary and the early pregnant uterus, we hypothesized that PRSS35 might play a role in female reproduction, especially in oocyte development, ovulation, implantation, and decidualization. This hypothesis was tested in Prss35(−/−) mice, which proved otherwise. Between wild type (WT) and Prss35(−/−) mice, superovulation of immature females produced comparable numbers of cumulus-oocyte complexes; there were comparable numbers of implantation sites detected on D4.5 and D7.5; there were no obvious differences in the expression of implantation and decidualization marker genes in D4.5 or D7.5 uteri. Comparable mRNA expression levels of a few known protease-related genes in the WT and Prss35(−/−) D4.5 uteri indicated no compensatory upregulation. Comparable litter sizes from WT × WT and Prss35 (−/−)× Prss35 (−/−) crosses suggested that Prss35 gene was unessential for fertility and embryo development. Prss35 gene has been linked to cleft lip/palate in humans. However, no obvious such defects were observed in Prss35(−/−) mice. This study demonstrates the distinct expression of Prss23 and Prss35 in the periimplantation uterus and the dispensable role of Prss35 in fertility and embryo development. PMID:23451081

  20. Pluripotency maintenance in mouse somatic cell nuclear transfer embryos and its improvement by treatment with the histone deacetylase inhibitor TSA.

    PubMed

    Hai, Tang; Hao, Jie; Wang, Liu; Jouneau, Alice; Zhou, Qi

    2011-02-01

    Reprogramming of somatic cells to pluripotency can be achieved by nuclear transfer into enucleated oocytes (SCNT). A key event of this process is the demethylation of the Oct4 gene and its temporally and spatially regulated expression. Different studies have shown that it occurs abnormally in some SCNT embryos. TSA is a histone deacetylase inhibitor known to increase the efficiency of development to term of SCNT embryos, but its impact on the developmental features of SCNT embryos is poorly understood. Here, we have followed the fate of the pluripotent cells within SCNT embryos, from the late blastocyst to the early epiblast prior to gastrulation. Our data show a delay in development correlated with a defect in forming and maintaining a correct number of Oct4 expressing ICM and epiblast cells in SCNT embryos. As a consequence, during the outgrowth phase of embryonic stem cell derivation as well as during diapause in vivo, part of the SCNT blastocysts completely lose their ICM cells. Meanwhile, the others display a correctly reprogrammed ICM compatible with the derivation of ES cells and development of the epiblast. Our data also indicate that TSA favors the establishment of pluripotency in SCNT embryos.

  1. Role of kinase-independent and -dependent functions of FAK in endothelial cell survival and barrier function during embryonic development.

    PubMed

    Zhao, Xiaofeng; Peng, Xu; Sun, Shaogang; Park, Ann Y J; Guan, Jun-Lin

    2010-06-14

    Focal adhesion kinase (FAK) is essential for vascular development as endothelial cell (EC)-specific knockout of FAK (conditional FAK knockout [CFKO] mice) leads to embryonic lethality. In this study, we report the differential kinase-independent and -dependent functions of FAK in vascular development by creating and analyzing an EC-specific FAK kinase-defective (KD) mutant knockin (conditional FAK knockin [CFKI]) mouse model. CFKI embryos showed apparently normal development through embryonic day (E) 13.5, whereas the majority of CFKO embryos died at the same stage. Expression of KD FAK reversed increased EC apoptosis observed with FAK deletion in embryos and in vitro through suppression of up-regulated p21. However, vessel dilation and defective angiogenesis of CFKO embryos were not rescued in CFKI embryos. ECs without FAK or expressing KD FAK showed increased permeability, abnormal distribution of vascular endothelial cadherin (VE-cadherin), and reduced VE-cadherin Y658 phosphorylation. Together, our data suggest that kinase-independent functions of FAK can support EC survival in vascular development through E13.5 but are insufficient for maintaining EC function to allow for completion of embryogenesis.

  2. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    PubMed

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  3. A role for Lin28 in primordial germ cell development and germ cell malignancy

    PubMed Central

    West, Jason A.; Viswanathan, Srinivas R.; Yabuuchi, Akiko; Cunniff, Kerianne; Takeuchi, Ayumu; Park, In-Hyun; Sero, Julia E.; Zhu, Hao; Perez-Atayde, Antonio; Frazier, A. Lindsay; Surani, M. Azim; Daley, George Q.

    2009-01-01

    The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwarts efforts to investigate molecular mechanisms of germ cell specification. Stella marks the minute founder population of the germ lineage1,2. Here we differentiate mouse embryonic stem cells (ESCs) carrying a Stella transgenic reporter into putative PGCs in vitro. The Stella+ cells possess a transcriptional profile similar to embryo-derived PGCs, and like their counterparts in vivo, lose imprints in a time-dependent manner. Using inhibitory RNAs to screen candidate genes for effects on the development of Stella+ cells in vitro, we discovered that Lin28, a negative regulator of let-7 microRNA processing3-6, is essential for proper PGC development. We further show that Blimp1, a let-7 target and a master regulator of PGC specification7-9, can rescue the effect of Lin28-deficiency during PGC development, thereby establishing a mechanism of action for Lin28 during PGC specification. Over-expression of Lin28 promotes formation of Stella+ cells in vitro and PGCs in chimeric embryos, and is associated with human germ cell tumours. The differentiation of putative PGCs from ESCs in vitro recapitulates the early stages of gamete development in vivo, and provides an accessible system for discovering novel genes involved in germ cell development and malignancy. PMID:19578360

  4. Individual blastomeres of 16- and 32-cell mouse embryos are able to develop into foetuses and mice.

    PubMed

    Tarkowski, Andrzej K; Suwińska, Aneta; Czołowska, Renata; Ożdżeński, Wacław

    2010-12-15

    Cell and developmental studies have clarified how, by the time of implantation, the mouse embryo forms three primary cell lineages: epiblast (EPI), primitive endoderm (PE), and trophectoderm (TE). However, it still remains unknown when cells allocated to these three lineages become determined in their developmental fate. To address this question, we studied the developmental potential of single blastomeres derived from 16- and 32-cell stage embryos and supported by carrier, tetraploid blastomeres. We were able to generate singletons, identical twins, triplets, and quadruplets from individual inner and outer cells of 16-cell embryos and, sporadically, foetuses from single cells of 32-cell embryos. The use of embryos constitutively expressing GFP as the donors of single diploid blastomeres enabled us to identify their cell progeny in the constructed 2n↔4n blastocysts. We showed that the descendants of donor blastomeres were able to locate themselves in all three first cell lineages, i.e., epiblast, primitive endoderm, and trophectoderm. In addition, the application of Cdx2 and Gata4 markers for trophectoderm and primitive endoderm, respectively, showed that the expression of these two genes in the descendants of donor blastomeres was either down- or up-regulated, depending on the cell lineage they happened to occupy. Thus, our results demonstrate that up to the early blastocysts stage, the destiny of at least some blastomeres, although they have begun to express markers of different lineage, is still labile. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. The effect of maternal diabetes on the Wnt-PCP pathway during embryogenesis as reflected in the developing mouse eye.

    PubMed

    López-Escobar, Beatriz; Cano, David A; Rojas, Anabel; de Felipe, Beatriz; Palma, Francisco; Sánchez-Alcázar, José A; Henderson, Deborah; Ybot-González, Patricia

    2015-02-01

    Embryopathies that develop as a consequence of maternal diabetes have been studied intensely in both experimental and clinical scenarios. Accordingly, hyperglycaemia has been shown to downregulate the expression of elements in the non-canonical Wnt-PCP pathway, such as the Dishevelled-associated activator of morphogenesis 1 (Daam1) and Vangl2. Daam1 is a formin that is essential for actin polymerization and for cytoskeletal reorganization, and it is expressed strongly in certain organs during mouse development, including the eye, neural tube and heart. Daam1(gt/gt) and Daam1(gt/+) embryos develop ocular defects (anophthalmia or microphthalmia) that are similar to those detected as a result of hyperglycaemia. Indeed, studying the effects of maternal diabetes on the Wnt-PCP pathway demonstrated that there was strong association with the Daam1 genotype, whereby the embryopathy observed in Daam1(gt/+) mutant embryos of diabetic dams was more severe. There was evidence that embryonic exposure to glucose in vitro diminishes the expression of genes in the Wnt-PCP pathway, leading to altered cytoskeletal organization, cell shape and cell polarity in the optic vesicle. Hence, the Wnt-PCP pathway appears to influence cell morphology and cell polarity, events that drive the cellular movements required for optic vesicle formation and that, in turn, are required to maintain the fate determination. Here, we demonstrate that the Wnt-PCP pathway is involved in the early stages of mouse eye development and that it is altered by diabetes, provoking the ocular phenotype observed in the affected embryos. © 2015. Published by The Company of Biologists Ltd.

  6. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos.

    PubMed

    Kong, Qingran; Banaszynski, Laura A; Geng, Fuqiang; Zhang, Xiaolei; Zhang, Jiaming; Zhang, Heng; O'Neill, Claire L; Yan, Peidong; Liu, Zhonghua; Shido, Koji; Palermo, Gianpiero D; Allis, C David; Rafii, Shahin; Rosenwaks, Zev; Wen, Duancheng

    2018-03-09

    Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. In-vitro developmental potential of individual mouse blastomeres cultured with and without zona pellucida: future implications for human assisted reproduction.

    PubMed

    Illmensee, K; Kaskar, K; Zavos, P M

    2006-08-01

    This study was designed to compare the developmental potential of individual blastomeres derived from 2-, 4-, 6- and 8-cell mouse embryos cultured with and without zona pellucida (ZP). In the first series, one, three, five and seven blastomeres were biopsied from 2-, 4-, 6- and 8-cell embryos respectively, and inserted individually into empty ZP recipients, leaving the remaining blastomere within its original ZP. In the second series, the same protocol was used except that the biopsied blastomeres were cultured without ZP and compared with the remaining blastomere within its original ZP. For the first series, individual blastomeres derived from 2-, 4-, 6- and 8-cell embryos cultured with ZP showed blastocyst development of 82.4, 68.6, 44.4 and 23.1% respectively, with corresponding hatching rates of 70.6, 60.0, 25.9 and 7.7%. For the second series, individual blastomeres cultured without ZP progressed with blastocyst development of 73.3, 64.5, 35.7 and 22.7% respectively. Blastocyst multiplication was achieved most efficiently when using individual blastomeres from 4- and 6-cell embryos. This is the first report on comparative in-vitro propagation of single blastomeres derived from various cleavage stages in a mammalian species. Blastomere cloning with its multiple applications may be envisaged for human assisted reproductive technologies.

  8. The Chromatin Regulator Brpf1 Regulates Embryo Development and Cell Proliferation*

    PubMed Central

    You, Linya; Yan, Kezhi; Zou, Jinfeng; Zhao, Hong; Bertos, Nicholas R.; Park, Morag; Wang, Edwin; Yang, Xiang-Jiao

    2015-01-01

    With hundreds of chromatin regulators identified in mammals, an emerging issue is how they modulate biological and pathological processes. BRPF1 (bromodomain- and PHD finger-containing protein 1) is a unique chromatin regulator possessing two PHD fingers, one bromodomain and a PWWP domain for recognizing multiple histone modifications. In addition, it binds to the acetyltransferases MOZ, MORF, and HBO1 (also known as KAT6A, KAT6B, and KAT7, respectively) to promote complex formation, restrict substrate specificity, and enhance enzymatic activity. We have recently showed that ablation of the mouse Brpf1 gene causes embryonic lethality at E9.5. Here we present systematic analyses of the mutant animals and demonstrate that the ablation leads to vascular defects in the placenta, yolk sac, and embryo proper, as well as abnormal neural tube closure. At the cellular level, Brpf1 loss inhibits proliferation of embryonic fibroblasts and hematopoietic progenitors. Molecularly, the loss reduces transcription of a ribosomal protein L10 (Rpl10)-like gene and the cell cycle inhibitor p27, and increases expression of the cell-cycle inhibitor p16 and a novel protein homologous to Scp3, a synaptonemal complex protein critical for chromosome association and embryo survival. These results uncover a crucial role of Brpf1 in controlling mouse embryo development and regulating cellular and gene expression programs. PMID:25773539

  9. 21 CFR 884.6130 - Assisted reproduction microtools.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... embryos for assisted hatching, intracytoplasmic sperm injection (ICSI), or other assisted reproduction methods. (b) Classification. Class II (special controls) (mouse embryo assay information, endotoxin...

  10. 21 CFR 884.6130 - Assisted reproduction microtools.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... embryos for assisted hatching, intracytoplasmic sperm injection (ICSI), or other assisted reproduction methods. (b) Classification. Class II (special controls) (mouse embryo assay information, endotoxin...

  11. 21 CFR 884.6130 - Assisted reproduction microtools.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... embryos for assisted hatching, intracytoplasmic sperm injection (ICSI), or other assisted reproduction methods. (b) Classification. Class II (special controls) (mouse embryo assay information, endotoxin...

  12. 21 CFR 884.6130 - Assisted reproduction microtools.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... embryos for assisted hatching, intracytoplasmic sperm injection (ICSI), or other assisted reproduction methods. (b) Classification. Class II (special controls) (mouse embryo assay information, endotoxin...

  13. 21 CFR 884.6130 - Assisted reproduction microtools.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... embryos for assisted hatching, intracytoplasmic sperm injection (ICSI), or other assisted reproduction methods. (b) Classification. Class II (special controls) (mouse embryo assay information, endotoxin...

  14. Defining the molecular pathologies in cloaca malformation: similarities between mouse and human

    PubMed Central

    Runck, Laura A.; Method, Anna; Bischoff, Andrea; Levitt, Marc; Peña, Alberto; Collins, Margaret H.; Gupta, Anita; Shanmukhappa, Shiva; Wells, James M.; Guasch, Géraldine

    2014-01-01

    Anorectal malformations are congenital anomalies that form a spectrum of disorders, from the most benign type with excellent functional prognosis, to very complex, such as cloaca malformation in females in which the rectum, vagina and urethra fail to develop separately and instead drain via a single common channel into the perineum. The severity of this phenotype suggests that the defect occurs in the early stages of embryonic development of the organs derived from the cloaca. Owing to the inability to directly investigate human embryonic cloaca development, current research has relied on the use of mouse models of anorectal malformations. However, even studies of mouse embryos lack analysis of the earliest stages of cloaca patterning and morphogenesis. Here we compared human and mouse cloaca development and retrospectively identified that early mis-patterning of the embryonic cloaca might underlie the most severe forms of anorectal malformation in humans. In mouse, we identified that defective sonic hedgehog (Shh) signaling results in early dorsal-ventral epithelial abnormalities prior to the reported defects in septation. This is manifested by the absence of Sox2 and aberrant expression of keratins in the embryonic cloaca of Shh knockout mice. Shh knockout embryos additionally develop a hypervascular stroma, which is defective in BMP signaling. These epithelial and stromal defects persist later, creating an indeterminate epithelium with molecular alterations in the common channel. We then used these animals to perform a broad comparison with patients with mild-to-severe forms of anorectal malformations including cloaca malformation. We found striking parallels with the Shh mouse model, including nearly identical defective molecular identity of the epithelium and surrounding stroma. Our work strongly suggests that early embryonic cloacal epithelial differentiation defects might be the underlying cause of severe forms of anorectal malformations in humans. Moreover, deranged Shh and BMP signaling is correlated with severe anorectal malformations in both mouse and humans. PMID:24524909

  15. Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by promoting early expression of Foxg1a and repressing Wnt signaling.

    PubMed

    Carlin, Dan; Sepich, Diane; Grover, Vandana K; Cooper, Michael K; Solnica-Krezel, Lilianna; Inbal, Adi

    2012-07-01

    Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway.

  16. Six3 cooperates with Hedgehog signaling to specify ventral telencephalon by promoting early expression of Foxg1a and repressing Wnt signaling

    PubMed Central

    Carlin, Dan; Sepich, Diane; Grover, Vandana K.; Cooper, Michael K.; Solnica-Krezel, Lilianna; Inbal, Adi

    2012-01-01

    Six3 exerts multiple functions in the development of anterior neural tissue of vertebrate embryos. Whereas complete loss of Six3 function in the mouse results in failure of forebrain formation, its hypomorphic mutations in human and mouse can promote holoprosencephaly (HPE), a forebrain malformation that results, at least in part, from abnormal telencephalon development. However, the roles of Six3 in telencephalon patterning and differentiation are not well understood. To address the role of Six3 in telencephalon development, we analyzed zebrafish embryos deficient in two out of three Six3-related genes, six3b and six7, representing a partial loss of Six3 function. We found that telencephalon forms in six3b;six7-deficient embryos; however, ventral telencephalic domains are smaller and dorsal domains are larger. Decreased cell proliferation or excess apoptosis cannot account for the ventral deficiency. Instead, six3b and six7 are required during early segmentation for specification of ventral progenitors, similar to the role of Hedgehog (Hh) signaling in telencephalon development. Unlike in mice, we observe that Hh signaling is not disrupted in embryos with reduced Six3 function. Furthermore, six3b overexpression is sufficient to compensate for loss of Hh signaling in isl1- but not nkx2.1b-positive cells, suggesting a novel Hh-independent role for Six3 in telencephalon patterning. We further find that Six3 promotes ventral telencephalic fates through transient regulation of foxg1a expression and repression of the Wnt/β-catenin pathway. PMID:22736245

  17. IN VITRO CULTURE OF POSTIMPLANTATION HAMSTER EMBRYOS

    EPA Science Inventory

    In vitro culture of intact rat and mouse embryos has been described extensively, but information on the culture of other species is sparse. The present study examined some culture requirements of early somite stage hamster embryos and assessed the embryotoxic effects of sodium sa...

  18. Expression and localization of components of the histone deacetylases multiprotein repressory complexes in the mouse preimplantation embryo.

    PubMed

    Kantor, Boris; Makedonski, Kirill; Shemer, Ruth; Razin, Aharon

    2003-12-01

    DNA methylation had been implicated in the assembly of multiprotein repressory complexes that affect chromatin architecture thereby rendering genes inactive. Proteins containing methyl binding domains (MBDs) are major components of these complexes. MBD3 is a component of the HDAC associated chromatin remodeling complex Mi2/NuRD. The addition of MBD2 to the Mi2/NuRD complex creates MeCP1, a complex that is known to inactivate methylated promoters. The undermethylated state of the mouse preimplantation embryo prompted us to investigate the known repressory complexes at this developmental stage. We found individual components of Mi2/NuRD: MBD3, Mi2, HDAC1 and HDAC2 to be expressed from a very early stage of embryo development and to localize in close proximity with each other and with constitutive heterochromatin by the blastula stage. Expression of MBD2, a component of MeCP1, starts in the blastula stage. Then it is also found to be in proximity with heterochromatin (based on DAPI staining) and with MBD3, Mi2 and HDAC1. In contrast, expression of MeCP2, an MBD containing component of a third repressory complex (MeCP2/Sin3A), is not seen in the preimplantation embryo. Our results suggest that both Mi2/NuRD and MeCP1 complexes are already present at the very early stages of embryo development, while a MeCP2 complex is added to the arsenal of repressory complexes post-implantation at a stage when DNA methylation takes place.

  19. Visualization of early post-implantation mouse embryogenesis using 3D imaging modality (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-Wei; Le, Henry H.; Li-Villarreal, Nanbing; Piazza, Victor G.; Kalaga, Sowmya; Dickinson, Mary E.

    2017-02-01

    Hemodynamic force is vital to cardiovascular remodeling in the early post-implantation mouse embryo. Here, we present work using microCT and lightsheet microscopy to establish the critical sequence of developmental events required for forming functional vasculature and circulation in the embryo, yolk sac, and placenta in the context of normal and impaired flow. A flow impaired model, Mlc2a+/- will be used to determine how hemodynamic force affects the specific events during embryonic development and vascular remodeling between the 4 and 29-somite stage using microCT. We have recently established high-resolution methods for the generation of 3D image volumes from the whole embryo within the deciduum (Hsu et al., in revision). This method enables the careful characterization of 3D images of vitelline and umbilical vessel remodeling to define how poor blood flow impacts both vitelline and umbilical vessel remodeling. Novel lightsheet live imaging techniques will be used to determine the consequence of impaired blood flow on yolk sac vasculature remodeling and formation of umbilical vessels using transgenic reporters: Flk-myr::mCherry, Flk1-H2B::YFP, or ɛGlobin-GFP. High-resolution 3D imaging of fixed and ScaleA2-cleared whole mount embryos labeled with Ki67 and Caspase3 will also be performed using lightsheet microscopy to quantify the proliferation and apoptotic indexes of early post-implanted embryos and yolk sac. This multi-modality approach is aimed at revealing further information about the cellular mechanisms required for proper vessel remodeling and the initial stages in placentation during early post-implantation development.

  20. The ribosome-inactivating, antiproliferative and teratogenic activities and immunoreactivities of a protein from seeds of Luffa aegyptiaca (Cucurbitaceae).

    PubMed

    Ng, T B; Chan, W Y; Yeung, H W

    1993-05-01

    1. The protein isolated from Luffa aegyptiaca seeds was capable of inhibiting protein synthesis in a rabbit reticulocyte lysate system and [3H]thymidine uptake by mouse melanoma (B16) cells. 2. It also adversely affected the development of mouse embryos in culture. 3. In enzyme-linked immunosorbent assay it reacted with antisera raised against other ribosome-inactivating proteins.

  1. Deficiency of Suppressor Enhancer Lin12 1 Like (SEL1L) in Mice Leads to Systemic Endoplasmic Reticulum Stress and Embryonic Lethality*

    PubMed Central

    Francisco, Adam B.; Singh, Rajni; Li, Shuai; Vani, Anish K.; Yang, Liu; Munroe, Robert J.; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C.; Long, Qiaoming

    2010-01-01

    Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development. PMID:20197277

  2. Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality.

    PubMed

    Francisco, Adam B; Singh, Rajni; Li, Shuai; Vani, Anish K; Yang, Liu; Munroe, Robert J; Diaferia, Giuseppe; Cardano, Marina; Biunno, Ida; Qi, Ling; Schimenti, John C; Long, Qiaoming

    2010-04-30

    Stress in the endoplasmic reticulum (ER) plays an important causal role in the pathogenesis of several chronic diseases such as Alzheimer, Parkinson, and diabetes mellitus. Insight into the genetic determinants responsible for ER homeostasis will greatly facilitate the development of therapeutic strategies for the treatment of these debilitating diseases. Suppressor enhancer Lin12 1 like (SEL1L) is an ER membrane protein and was thought to be involved in the quality control of secreted proteins. Here we show that the mice homozygous mutant for SEL1L were embryonic lethal. Electron microscopy studies revealed a severely dilated ER in the fetal liver of mutant embryos, indicative of alteration in ER homeostasis. Consistent with this, several ER stress responsive genes were significantly up-regulated in the mutant embryos. Mouse embryonic fibroblast cells deficient in SEL1L exhibited activated unfolded protein response at the basal state, impaired ER-associated protein degradation, and reduced protein secretion. Furthermore, markedly increased apoptosis was observed in the forebrain and dorsal root ganglions of mutant embryos. Taken together, our results demonstrate an essential role for SEL1L in protein quality control during mouse embryonic development.

  3. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule

    NASA Astrophysics Data System (ADS)

    Tesařová, M.; Zikmund, T.; Kaucká, M.; Adameyko, I.; Jaroš, J.; Paloušek, D.; Škaroupka, D.; Kaiser, J.

    2016-03-01

    Imaging of increasingly complex cartilage in vertebrate embryos is one of the key tasks of developmental biology. This is especially important to study shape-organizing processes during initial skeletal formation and growth. Advanced imaging techniques that are reflecting biological needs give a powerful impulse to push the boundaries of biological visualization. Recently, techniques for contrasting tissues and organs have improved considerably, extending traditional 2D imaging approaches to 3D . X-ray micro computed tomography (μCT), which allows 3D imaging of biological objects including their internal structures with a resolution in the micrometer range, in combination with contrasting techniques seems to be the most suitable approach for non-destructive imaging of embryonic developing cartilage. Despite there are many software-based ways for visualization of 3D data sets, having a real solid model of the studied object might give novel opportunities to fully understand the shape-organizing processes in the developing body. In this feasibility study we demonstrated the full procedure of creating a real 3D object of mouse embryo nasal capsule, i.e. the staining, the μCT scanning combined by the advanced data processing and the 3D printing.

  4. The mushroom ribosome-inactivating protein lyophyllin exerts deleterious effects on mouse embryonic development in vitro.

    PubMed

    Chan, W Y; Ng, T B; Lam, Joyce S Y; Wong, Jack H; Chu, K T; Ngai, P H K; Lam, S K; Wang, H X

    2010-01-01

    Earlier investigations disclose that some plant ribosome-inactivating proteins (RIPs) adversely affect mouse embryonic development. In the present study, a mushroom RIP, namely lyophyllin from Lyophyllum shimeji, was isolated, partially sequenced, and its translation inhibitory activity determined. Its teratogenicity was studied by using a technique entailing microinjection and postimplantation whole-embryo culture. It was found that embryonic abnormalities during the period of organogenesis from E8.5 to E9.5 were induced by lyophyllin at a concentration as low as 50 microg/ml, and when the lyophyllin concentration was raised, the number of abnormal embryos increased, the final somite number decreased, and the abnormalities increased in severity. The affected embryonic structures included the cranial neural tube, forelimb buds, branchial arches, and body axis, while optic and otic placodes were more resistant. Lyophyllin at a concentration higher than 500 microg/ml also induced forebrain blisters within the cranial mesenchyme. When the abnormal embryos were examined histologically, an increase of cell death was found to be associated with abnormal structures, indicating that cell death may be one of the underlying causes of teratogenicity of the mushroom RIP. This constitutes the first report on the teratogenicity of a mushroom RIP.

  5. Nepro is localized in the nucleolus and essential for preimplantation development in mice.

    PubMed

    Hashimoto, Masakazu; Sato, Tatsuya; Muroyama, Yuko; Fujimura, Lisa; Hatano, Masahiko; Saito, Tetsuichiro

    2015-09-01

    We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2-cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria-associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus-associated protein, and its loss leads to the apoptosis before blastocyst formation in mice. © 2015 Japanese Society of Developmental Biologists.

  6. Paternal Diet-Induced Obesity Retards Early Mouse Embryo Development, Mitochondrial Activity and Pregnancy Health

    PubMed Central

    Binder, Natalie K.; Hannan, Natalie J.; Gardner, David K.

    2012-01-01

    Worldwide, 48% of adult males are overweight or obese. An association between infertility and excessive body weight is now accepted, although focus remains primarily on females. It has been shown that parental obesity results in compromised embryo development, disproportionate changes in embryo metabolism and reduced blastocyst cell number. The aim of this study was to determine whether paternal obesity has negative effects on the resultant embryo. Specifically, using in vitro fertilisation (IVF), we wanted to isolate the functional effects of obesity on sperm by examining the subsequent embryo both pre- and post-implantation. Epididymal sperm was collected from age matched normal and obese C57BL/6 mice and cryopreserved for subsequent IVF with oocytes collected from Swiss females (normal diet/weight). Obesity was induced in male mice by feeding a high fat diet of 22% fat for 10 weeks. Resultant embryos were cultured individually and development monitored using time-lapse microscopy. Paternal obesity resulted in a significant delay in preimplantation embryo development as early as syngamy (P<0.05). Metabolic parameters were measured across key developmental stages, demonstrating significant reduction in mitochondrial membrane potential (P<0.01). Blastocysts were stained to determine trophectoderm (TE) and inner cell mass (ICM) cell numbers, revealing significant differences in the ratio of cell allocation to TE and ICM lineages (P<0.01). Functional studies examining blastocyst attachment, growth and implantation demonstrated that blastocysts derived from sperm of obese males displayed significantly reduced outgrowth on fibronectin in vitro (P<0.05) and retarded fetal development in vivo following embryo transfer (P<0.05). Taken together, these data clearly demonstrate that paternal obesity has significant negative effects on the embryo at a variety of key early developmental stages, resulting in delayed development, reduced placental size and smaller offspring. PMID:23300638

  7. Experimental embryology of mammals at the Jastrzebiec Institute of Genetics and Animal Breeding.

    PubMed

    Karasiewicz, Jolanta; Andrzej-Modlinski, Jacek

    2008-01-01

    Our Department of Experimental Embryology originated from The Laboratory of Embryo Biotechnology, which was organized and directed by Dr. Maria Czlonkowska until her premature death in 1991. Proving successful international transfer of frozen equine embryos and generation of an embryonic sheep-goat chimaera surviving ten years were outstanding achievements of her term. In the 1990s, we produced advanced fetuses of mice after reconstructing enucleated oocytes with embryonic stem (ES) cells, as well as mice originating entirely from ES cells by substitution of the inner cell mass with ES cells. Attempts at obtaining ES cells in sheep resulted in the establishment of embryo-derived epithelioid cell lines from Polish Heatherhead and Polish Merino breeds, producing overt chimaeras upon blastocyst injection. Successful re-cloning was achieved from 8-cell rabbit embryos, and healthy animals were born from the third generation of cloned embryos. Recently mice were born after transfer of 8-cell embryonic nuclei into selectively enucleated zygotes, and mouse blastocysts were produced from selectively enucleated germinal vesicle oocytes surrounded by follicular cells, upon their reconstruction with 2-cell nuclei and subsequent activation. Embryonic-somatic chimaeras were born after transfer of foetal fibroblasts into 8-cell embryos (mouse) and into morulae and blastocysts (sheep). We also regularly perform the following applications: in vitro production of bovine embryos from slaughterhouse oocytes or those recovered by ovum pick up; cryopreservation of oocytes and embryos (freezing: mouse, rabbit, sheep, goat; vitrification: rabbit, cow); and banking of somatic cells from endangered wild mammalian species (mainly Cervidae).

  8. Animal models for studying neural crest development: is the mouse different?

    PubMed

    Barriga, Elias H; Trainor, Paul A; Bronner, Marianne; Mayor, Roberto

    2015-05-01

    The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems. © 2015. Published by The Company of Biologists Ltd.

  9. Adrenocorticotropic hormone affects nonapoptotic cell death of undifferentiated germ cells in the fetal mouse testis: in vivo study by exo utero transplantation of corticotropic tumor cells into embryos.

    PubMed

    Nimura, Masayuki; Udagawa, Jun; Otani, Hiroki

    2008-06-01

    Adrenocorticotropic hormone (ACTH) has been suggested to have possible roles in the fetal testes, one of the organs that express its specific receptors, melanocortin type 2 and 5 receptors (MC2R and MC5R), during the fetal period. We investigated the effect of ACTH on the cells in the testis cord of the fetal mouse testis by inducing ACTH-secreting AtT20 tumor cells in mouse fetuses. We first identified that mouse testicular germ cells at embryonic day (E) 16.5 and E18.5 spermatogonia were entirely CDH1 (E-cadherin)-positive by immunohistochemistry. We next performed AtT20-cell transplantation into the mouse fetus at E12.5, and analyzed ACTH effects on the development of fetal male mouse germ cells that express MC2R and MC5R at E16.5 and E18.5. The spermatogonia in the testis of AtT20-implanted embryos exhibited morphological changes, including pyknotic nuclei and swollen cytoplasm. In the AtT20-implanted embryos, the number of spermatogonia per unit area of the testis cord was significantly lower, but there were more pyknotic spermatogonia than in the controls. Single-stranded DNA-positive (apoptotic) and histone H3-positive (mitotic) spermatogonia were rarely observed and their numbers did not significantly differ in the two groups. Anti-Müllerian hormone (AMH)-positive Sertoli cells, another cell type that constitutes the fetal testis cord but does not express MC2R or MC5R, showed no apparent morphological changes compared with controls, nor were their numbers in the two groups significantly different between the two groups. These results suggest that ACTH, via MC2R and/or MC5R, may be involved in the nonapoptotic cell death of fetal mouse spermatogonia that is observed during the normal perinatal period.

  10. Analysis of Hippo and TGFβ signaling in polarizing epithelial cells and mouse embryos.

    PubMed

    Narimatsu, Masahiro; Labibi, Batool; Wrana, Jeffrey L; Attisano, Liliana

    2016-01-01

    The Hippo signaling pathway is involved in numerous biological events ranging from early development to organogenesis and when disrupted, impacts various human diseases including cancer. The Hippo pathway also interacts with and controls the activity of other signaling pathways such as the TGFβ/Smad pathway, in which Hippo pathway activity influences the subcellular localization of Smad transcription factors. Here, we describe techniques for examining crosstalk between Hippo and TGFβ signaling in polarizing mammary epithelial cells. In addition, we provide detailed methods for analyzing the subcellular localization of the Hippo pathway effectors, Taz and Yap using both in vitro cultured epithelial cells and in vivo in pregastrulation mouse embryos. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  11. AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED CU,ZN-SOD AND MN-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO

    EPA Science Inventory

    AMELIORATION OF ETHANOL-INDUCED DYSMORPHOGENESIS BY ADENOVIRAL-MEDIATED Cu,Zn-SOD AND Mn-SOD EXPRESSION IN NEURULATION STAGED MOUSE EMBRYOS IN VITRO. JB Smith1, PC Hartig3, MR Blanton3, KK Sulik1,2, and ES Hunter3. 1Department of Cell and Developmental Biology and 2Bowles Cente...

  12. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...

  13. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...

  14. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...

  15. 21 CFR 884.6160 - Assisted reproduction labware.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...

  16. Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching

    PubMed Central

    Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Miura, Masayuki

    2017-01-01

    Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. PMID:28049690

  17. Insights from imaging the implanting embryo and the uterine environment in three dimensions

    PubMed Central

    Arora, Ripla; Fries, Adam; Oelerich, Karina; Marchuk, Kyle; Sabeur, Khalida; Giudice, Linda C.

    2016-01-01

    Although much is known about the embryo during implantation, the architecture of the uterine environment in which the early embryo develops is not well understood. We employed confocal imaging in combination with 3D analysis to identify and quantify dynamic changes to the luminal structure of murine uterus in preparation for implantation. When applied to mouse mutants with known implantation defects, this method detected striking peri-implantation abnormalities in uterine morphology that cannot be visualized by histology. We revealed 3D organization of uterine glands and found that they undergo a stereotypical reorientation concurrent with implantation. Furthermore, we extended this technique to generate a 3D rendering of the cycling human endometrium. Analyzing the uterine and embryo structure in 3D for different genetic mutants and pathological conditions will help uncover novel molecular pathways and global structural changes that contribute to successful implantation of an embryo. PMID:27836961

  18. Radiation induced abnormalities in early in vitro mouse embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, J.F.

    1973-08-01

    Female mice were superovulated and mated, and the two-cell embryos were collected and cultured in vitro. The embryos were exposed to x-irradiation (0 to 491 rads) during the two-cell stage before the appearance of the next cleavage plate, placed in new unirradiated culture medium and observed during subsequent development. Morphological abnormalities, which occurred as a result of irradiation, included fragmentation, disintegration, granlation, incomplete cleavage, cleavage cessation, nuclear degeneration and pycnosis and cytoplasmic vacuolization. There was no damage to the zona pellucida. The types of abnormalities indicate an agreement with the results of previous in vivo studies. A distinct correlation existedmore » between morphological abnormalities and embryo death. The greatest number of abnormalities resulted within five hours following irradiation, but increased through 20 hours post-exposure. At doses above 300 rads, the magnitude of damage was greater in the in vitro embryos than that shown in previous in vivo studies. (auth)« less

  19. Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos

    PubMed Central

    Soma, Miki; Fujihara, Yoshitaka; Okabe, Masaru; Ishino, Fumitoshi; Kobayashi, Shin

    2014-01-01

    X-chromosome inactivation (XCI) equalizes gene expression between the sexes by inactivating one of the two X chromosomes in female mammals. Xist has been considered as a major cis-acting factor that inactivates the paternally derived X chromosome (Xp) in preimplantation mouse embryos (imprinted XCI). Ftx has been proposed as a positive regulator of Xist. However, the physiological role of Ftx in female animals has never been studied. We recently reported that Ftx is located in the cis-acting regulatory region of the imprinted XCI and expressed from the inactive Xp, suggesting a role in the imprinted XCI mechanism. Here we examined the effects on imprinted XCI using targeted deletion of Ftx. Disruption of Ftx did not affect the survival of female embryos or expression of Xist and other X-linked genes in the preimplantation female embryos. Our results indicate that Ftx is dispensable for imprinted XCI in preimplantation embryos. PMID:24899465

  20. Ftx is dispensable for imprinted X-chromosome inactivation in preimplantation mouse embryos.

    PubMed

    Soma, Miki; Fujihara, Yoshitaka; Okabe, Masaru; Ishino, Fumitoshi; Kobayashi, Shin

    2014-06-05

    X-chromosome inactivation (XCI) equalizes gene expression between the sexes by inactivating one of the two X chromosomes in female mammals. Xist has been considered as a major cis-acting factor that inactivates the paternally derived X chromosome (Xp) in preimplantation mouse embryos (imprinted XCI). Ftx has been proposed as a positive regulator of Xist. However, the physiological role of Ftx in female animals has never been studied. We recently reported that Ftx is located in the cis-acting regulatory region of the imprinted XCI and expressed from the inactive Xp, suggesting a role in the imprinted XCI mechanism. Here we examined the effects on imprinted XCI using targeted deletion of Ftx. Disruption of Ftx did not affect the survival of female embryos or expression of Xist and other X-linked genes in the preimplantation female embryos. Our results indicate that Ftx is dispensable for imprinted XCI in preimplantation embryos.

  1. Unraveling the association between genetic integrity and metabolic activity in pre-implantation stage embryos

    PubMed Central

    D’Souza, Fiona; Pudakalakatti, Shivanand M.; Uppangala, Shubhashree; Honguntikar, Sachin; Salian, Sujith Raj; Kalthur, Guruprasad; Pasricha, Renu; Appajigowda, Divya; Atreya, Hanudatta S.; Adiga, Satish Kumar

    2016-01-01

    Early development of certain mammalian embryos is protected by complex checkpoint systems to maintain the genomic integrity. Several metabolic pathways are modulated in response to genetic insults in mammalian cells. The present study investigated the relationship between the genetic integrity, embryo metabolites and developmental competence in preimplantation stage mouse embryos with the aim to identify early biomarkers which can predict embryonic genetic integrity using spent medium profiling by NMR spectroscopy. Embryos carrying induced DNA lesions (IDL) developed normally for the first 2.5 days, but began to exhibit a developmental delay at embryonic day 3.5(E3.5) though they were morphologically indistinguishable from control embryos. Analysis of metabolites in the spent medium on E3.5 revealed a significant association between pyruvate, lactate, glucose, proline, lysine, alanine, valine, isoleucine and thymine and the extent of genetic instability observed in the embryos on E4.5. Further analysis revealed an association of apoptosis and micronuclei frequency with P53 and Bax transcripts in IDL embryos on the E4.5 owing to delayed induction of chromosome instability. We conclude that estimation of metabolites on E3.5 in spent medium may serve as a biomarker to predict the genetic integrity in pre-implantation stage embryos which opens up new avenues to improve outcomes in clinical IVF programs. PMID:27853269

  2. Pre-implantation Development of Domestic Animals.

    PubMed

    Piliszek, Anna; Madeja, Zofia E

    2018-01-01

    During the first days following fertilization, cells of mammalian embryo gradually lose totipotency, acquiring distinct identity. The first three lineages specified in the mammalian embryo are pluripotent epiblast, which later gives rise to the embryo proper, and two extraembryonic lineages, hypoblast (also known as primitive endoderm) and trophectoderm, which form tissues supporting development of the fetus in utero. Most of our knowledge regarding the mechanisms of early lineage specification in mammals comes from studies in the mouse. However, the growing body of evidence points to both similarities and species-specific differences. Understanding molecular and cellular mechanisms of early embryonic development in nonrodent mammals expands our understanding of basic mechanisms of differentiation and is essential for the development of effective protocols for assisted reproduction in agriculture, veterinary medicine, and for biomedical research. This review summarizes the current state of knowledge on key events in epiblast, hypoblast, and trophoblast differentiation in domestic mammals. © 2018 Elsevier Inc. All rights reserved.

  3. Effects of chronic centrifugation on mice

    NASA Technical Reports Server (NTRS)

    Janer, L.; Duke, J.

    1984-01-01

    Previous studies have shown that exposure to excess gravity in vitro alters the developmental sequence in embryonic mouse limbs and palates (Duke, Janer and Campbell, 1984; Duke, 1983). The effects of excess gravity on in vivo mammalian development was investigated using a small animal centrifuge. Four-week old female mice exposed to excess gravities of 1.8-3.5 G for eight weeks weighed significantly less than controls. Mice were mated after five weeks of adaptation to excess G, and sacrificed either at gestational day 12 or 18. There were fewer pregnancies in the centrifuged group (4/36) than in controls (9/31), and crown rump lengths (CRL) of embryos developing in the centrifuge were less than CRLs of 1-G embryos. These results show that although immersed in amniotic fluid, embryos are responsive to Delta-G.

  4. rRNA Genes Are Not Fully Activated in Mouse Somatic Cell Nuclear Transfer Embryos*

    PubMed Central

    Zheng, Zhong; Jia, Jia-Lin; Bou, Gerelchimeg; Hu, Li-Li; Wang, Zhen-Dong; Shen, Xing-Hui; Shan, Zhi-Yan; Shen, Jing-Ling; Liu, Zhong-Hua; Lei, Lei

    2012-01-01

    The well known and most important function of nucleoli is ribosome biogenesis. However, the nucleolus showed delayed development and malfunction in somatic cell nuclear transfer (NT) embryos. Previous studies indicated that nearly half rRNA genes (rDNA) in somatic cells were inactive and not transcribed. We compared the rDNA methylation level, active nucleolar organizer region (NORs) numbers, nucleolar proteins (upstream binding factor (UBF), nucleophosmin (B23)) distribution, and nucleolar-related gene expression in three different donor cells and NT embryos. The results showed embryonic stem cells (ESCs) had the most active NORs and lowest rDNA methylation level (7.66 and 6.76%), whereas mouse embryonic fibroblasts (MEFs) were the opposite (4.70 and 22.57%). After the donor cells were injected into enucleated MII oocytes, cumulus cells and MEFs nuclei lost B23 and UBF signals in 20 min, whereas in ESC-NT embryos, B23 and UBF signals could still be detected at 60 min post-NT. The embryos derived from ESCs, cumulus cells, and MEFs showed the same trend in active NORs numbers (7.19 versus 6.68 versus 5.77, p < 0.05) and rDNA methylation levels (6.36 versus 9.67% versus 15.52%) at the 4-cell stage as that in donor cells. However, the MEF-NT embryos displayed low rRNA synthesis/processing potential at morula stage and had an obvious decrease in blastocyst developmental rate. The results presented clear evidences that the rDNA reprogramming efficiency in NT embryos was determined by the rDNA activity in donor cells from which they derived. PMID:22467869

  5. Evaluation of mouse embryos produced in vitro after electromagnetic waves exposure; Morphometric study.

    PubMed

    Rostamzadeh, Ayoob; Mohammadi, Mohsen; Ahmadi, Reza; Nazari, Afshin; Ghaderi, Omar; Anjomshoa, Maryam

    2016-01-01

    Today, the use of electromagnetic waves in medical diagnostic devices, such as magnetic resonance imaging (MRI), has increased, and many of its biological effects have been reported. The aim of the present study was to assess the biological effects of 1.5 Tesla (T) magnetic resonance imaging (MRI) on fertility and reproductive parameters. Eighty adult male and female NMRI mice (NMRI: Naval Medical Research Institute) of age 6-8 weeks were studied and randomly divided into two study and control groups. After confirmation of pregnancy, the mice in the study group were exposed to the MRI (1.5 T) machine's waves over the next three weeks, once a week for 36 minutes. One day and thirty-five days after the last radiation, the mice were killed in order to do the in vitro fertilization (IVF) by neck beads' displacement and the impact on the evolution of embryos, and its quality was studied. Data were analyzed using SPSS version 20 and the significance level of less than 0.05 was considered. Embryo morphometry showed that the total diameter and the cytoplasm diameter of the study group embryos suffered significant reduction compared to the control group, 1 day after the last irradiation (p < 0.05), but the diameter of the perivitelline space of this group's embryos had a significant increase (p < 0.05). The qualitative results during 35 days after irradiation showed that morphologically parameters of the embryos in the study group had no significant differences from the control group. Exposure to MRI irradiation can transiently disturb the development of mouse embryos and fertility, but these effects are reversible 35 days after the last irradiation.

  6. Abnormal notochord branching is associated with foregut malformations in the adriamycin treated mouse model.

    PubMed

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities.

  7. Abnormal Notochord Branching Is Associated with Foregut Malformations in the Adriamycin Treated Mouse Model

    PubMed Central

    Hajduk, Piotr; Sato, Hideaki; Puri, Prem; Murphy, Paula

    2011-01-01

    Oesophageal atresia (OA) and tracheooesophageal fistula (TOF) are relatively common human congenital malformations of the foregut where the oesophagus does not connect with the stomach and there is an abnormal connection between the stomach and the respiratory tract. They require immediate corrective surgery and have an impact on the future health of the individual. These abnormalities are mimicked by exposure of rat and mouse embryos in utero to the drug adriamycin. The causes of OA/TOF during human development are not known, however a number of mouse mutants where different signalling pathways are directly affected, show similar abnormalities, implicating multiple and complex signalling mechanisms. The similarities in developmental outcome seen in human infants and in the adriamycin treated mouse model underline the potential of this model to unravel the early embryological events and further our understanding of the processes disturbed, leading to such abnormalities. Here we report a systematic study of the foregut and adjacent tissues in embryos treated with adriamycin at E7 and E8 and analysed between E9 and E12, comparing morphology in 3D in 149 specimens. We describe a spectrum of 8 defects, the most common of which is ventral displacement and branching of the notochord (in 94% of embryos at E10) and a close spatial correspondence between the site of notochord branching and defects of the foregut. In addition gene expression analysis shows altered dorso-ventral foregut patterning in the vicinity of notochord branches. This study shows a number of features of the adriamycin mouse model not previously reported, implicates the notochord as a primary site of disturbance in such abnormalities and underlines the importance of the model to further address the mechanistic basis of foregut congenital abnormalities. PMID:22132119

  8. Defective ciliogenesis, embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, partially overlapping with the DNA repair gene Med1/Mbd4

    PubMed Central

    Cortellino, Salvatore; Wang, Chengbing; Wang, Baolin; Bassi, Maria Rosaria; Caretti, Elena; Champeval, Delphine; Calmont, Amelie; Jarnik, Michal; Burch, John; Zaret, Kenneth; Larue, Lionel; Bellacosa, Alfonso

    2009-01-01

    Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling. PMID:19000668

  9. Label-free characterization of vitrification-induced morphology changes in single-cell embryos with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zarnescu, Livia; Leung, Michael C.; Abeyta, Michael; Sudkamp, Helge; Baer, Thomas; Behr, Barry; Ellerbee, Audrey K.

    2015-09-01

    Vitrification is an increasingly popular method of embryo cryopreservation that is used in assisted reproductive technology. Although vitrification has high post-thaw survival rates compared to other freezing techniques, its long-term effects on embryo development are still poorly understood. We demonstrate an application of full-field optical coherence tomography (FF-OCT) to visualize the effects of vitrification on live single-cell (2 pronuclear) mouse embryos without harmful labels. Using FF-OCT, we observed that vitrification causes a significant increase in the aggregation of structures within the embryo cytoplasm, consistent with reports in literature based on fluorescence techniques. We quantify the degree of aggregation with an objective metric, the cytoplasmic aggregation (CA) score, and observe a high degree of correlation between the CA scores of FF-OCT images of embryos and of fluorescence images of their mitochondria. Our results indicate that FF-OCT shows promise as a label-free assessment of the effects of vitrification on embryo mitochondria distribution. The CA score provides a quantitative metric to describe the degree to which embryos have been affected by vitrification and could aid clinicians in selecting embryos for transfer.

  10. Embryotrophic factor-3 from human oviductal cells affects the messenger RNA expression of mouse blastocyst.

    PubMed

    Lee, Y L; Lee, K F; Xu, J S; Kwok, K L; Luk, J M; Lee, W M; Yeung, W S B

    2003-02-01

    Our previous results showed that embryotrophic factor-3 (ETF-3) from human oviductal cells increased the size and hatching rate of mouse blastocysts in vitro. The present study investigated the production of ETF-3 by an immortalized human oviductal cell line (OE-E6/E7) and the effects of ETF-3 on the mRNA expression of mouse embryos. The ETF-3 was purified from primary oviductal cell conditioned media using sequential liquid chromatographic systems, and antiserum against ETF-3 was raised. The ETF-3-supplemented Chatot-Ziomek-Bavister medium was used to culture Day 1 MF1 x BALB/c mouse embryos for 4 days. The ETF-3 treatment significantly enhanced the mouse embryo blastulation and hatching rate. The antiserum, at concentrations of 0.03-3%, abolished the embryotrophic effect of ETF-3. Positive ETF-3 immunoreactivity was detected in the primary oviductal cells, OE-E6/E7, and blastocysts derived from ETF-3 treatment. Vero cells (African Green Monkey kidney cell line), fibroblasts, and embryos cultured in control medium did not possess ETF-3 immunoreactivity. The mRNA expression patterns of the treated embryos were studied at the blastocyst stage by mRNA differential display reverse transcription-polymerase chain reaction (DDRT-PCR). The DDRT-PCR showed that some of the mRNAs were differentially expressed after ETF-3 treatment. Twelve of the differentially expressed mRNAs that had high homology with cDNA sequences in the GenBank were selected for further characterization. The differential expression of seven of these mRNAs (ezrin, heat shock 70-kDa protein, cytochrome c oxidase subunit VIIa-L precursor, proteinase-activated receptor 2, eukaryotic translation initiation factor 2beta, cullin 1, and proliferating cell nuclear antigen) was confirmed by semiquantitative RT-PCR. In conclusion, immortalized oviductal cells produce ETF-3, which influences mRNA expression of mouse blastocyst.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ping; Wang, Ningling; Lin, Xianhua

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesiclemore » in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development. - Highlights: • HnRNP K localizes in the nucleus of GV-stage oocyte in a punctate distribution. • HnRNP K strongly accumulates in zygotic pronuclei as condensed spots. • The localization of hnRNP K during oogenesis and embryogenesis is characteristic. • HnRNP K might have an important role in oogenesis and embryonic development.« less

  12. Laboratory Aspects of Biological Warfare Agents

    DTIC Science & Technology

    2016-01-01

    Embryonated chicken egg yolk sacs have typically been the method of choice for culture. They are inoculated when the embryos are 5-7 days old. The... chicken or mouse embryo fibroblasts, J774.16 mouse macrophages, L929 murine fibroblasts, HEL (human embryonic lung) or vero cells are more commonly...the family, Poxviridae, is a legacy of the original grouping of viruses associated with diseases that produced poxes in the skin, however, if

  13. EVALUATION OF BENZO[C]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T1/2CL8 CELLS

    EPA Science Inventory

    EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS

    Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...

  14. CELLULAR TOXICITY IN CHINESE HAMSTER OVARY CELL CULTURES. 2. A STATISTICAL APPRAISAL OF SENSITIVITY WITH THE RABBIT ALVEOLAR MACROPHAGE, SYRIAN HAMSTER EMBRYO, BALB 3T3 MOUSE, AND HUMAN NEONATAL FIBROBLAST CELL SYSTEMS

    EPA Science Inventory

    Chinese hamster ovary, rabbit alveolar macrophage, Syrian Hamster embryo, mouse, and human neonatal fibroblast cells were employed in a statistical evaluation of the relative sensitivity of the cells to toxic substances. The cells were exposed to 1,2,4-trichlorobenzene, 2,4-dimet...

  15. Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakamoto, Youhei; Hara, Kenshiro; Kanai-Azuma, Masami

    Sox7, -17 and -18 constitute the Sox subgroup F (SoxF) of HMG box transcription factor genes, which all are co-expressed in developing vascular endothelial cells in mice. Here we characterized cardiovascular phenotypes of Sox17/Sox18-double and Sox17-single null embryos during early-somite stages. Whole-mount PECAM staining demonstrated the aberrant heart looping, enlarged cardinal vein and mild defects in anterior dorsal aorta formation in Sox17 single-null embryos. The Sox17/Sox18 double-null embryos showed more severe defects in formation of anterior dorsal aorta and head/cervical microvasculature, and in some cases, aberrant differentiation of endocardial cells and defective fusion of the endocardial tube. However, the posteriormore » dorsal aorta and allantoic microvasculature was properly formed in all of the Sox17/Sox18 double-null embryos. The anomalies in both anterior dorsal aorta and head/cervical vasculature corresponded with the weak Sox7 expression sites. This suggests the region-specific redundant activities of three SoxF members along the anteroposterior axis of embryonic vascular network.« less

  16. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.

    PubMed

    Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J

    2016-01-25

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Mouse Embryo Cryopreservation by Rapid Cooling.

    PubMed

    Shaw, Jillian

    2018-05-01

    Embryo cryopreservation has been used to archive mouse strains. Protocols have evolved over this time and now vary considerably in terms of cryoprotectant solution, cooling and warming rates, methods to add and remove cryoprotectant, container or carrier type, volume of cryoprotectant, the stage of preimplantation development, and the use of additional treatments such as blastocyst puncture and microinjection. The rapid cooling methods use concentrated solutions of cryoprotectants to reduce the water content of the cell before cooling commences, thus preventing the formation of ice crystals. Embryos are equilibrated with the cryoprotectants, loaded into a carrier, and then rapidly cooled (e.g., by being plunged directly into LN 2 or onto a surface cooled in LN 2 ). The rapid cooling methods eliminate the need for controlled-rate freezers and seeding procedures. However, they are much more sensitive to minor variations when performing the steps. The rapid-cooling protocol described here is suitable for use with plastic insemination straws. Because it uses relatively large volumes, it is less technically demanding than some other methods that use minivolume devices. © 2018 Cold Spring Harbor Laboratory Press.

  18. Highly efficient targeted mutagenesis in one-cell mouse embryos mediated by the TALEN and CRISPR/Cas systems.

    PubMed

    Yasue, Akihiro; Mitsui, Silvia Naomi; Watanabe, Takahito; Sakuma, Tetsushi; Oyadomari, Seiichi; Yamamoto, Takashi; Noji, Sumihare; Mito, Taro; Tanaka, Eiji

    2014-07-16

    Since the establishment of embryonic stem (ES) cell lines, the combined use of gene targeting with homologous recombination has aided in elucidating the functions of various genes. However, the ES cell technique is inefficient and time-consuming. Recently, two new gene-targeting technologies have been developed: the transcription activator-like effector nuclease (TALEN) system, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system. In addition to aiding researchers in solving conventional problems, these technologies can be used to induce site-specific mutations in various species for which ES cells have not been established. Here, by targeting the Fgf10 gene through RNA microinjection in one-cell mouse embryos with the TALEN and CRISPR/Cas systems, we produced the known limb-defect phenotypes of Fgf10-deficient embryos at the F0 generation. Compared to the TALEN system, the CRISPR/Cas system induced the limb-defect phenotypes with a strikingly higher efficiency. Our results demonstrate that although both gene-targeting technologies are useful, the CRISPR/Cas system more effectively elicits single-step biallelic mutations in mice.

  19. Archiving and Distributing Mouse Lines by Sperm Cryopreservation, IVF, and Embryo Transfer

    PubMed Central

    Takahashi, Hideko; Liu, Chengyu

    2012-01-01

    The number of genetically modified mouse lines has been increasing exponentially in the past few decades. In order to safeguard them from accidental loss and genetic drifting, to reduce animal housing cost, and to efficiently distribute them around the world, it is important to cryopreserve these valuable genetic resources. Preimplantation-stage embryos from thousands of mouse lines have been cryopreserved during the past two to three decades. Although reliable, this method requires several hundreds of embryos, which demands a sizable breeding colony, to safely preserve each line. This requirement imposes significant delay and financial burden for the archiving effort. Sperm cryopreservation is now emerging as the leading method for storing and distributing mouse lines, largely due to the recent finding that addition of a reducing agent, monothioglycerol, into the cryoprotectant can significantly increase the in vitro fertilization (IVF) rate in many mouse strains, including the most widely used C57BL/6 strain. This method is quick, inexpensive, and requires only two breeding age male mice, but it still remains tricky and strain-dependent. A small change in experimental conditions can lead to significant variations in the outcome. In this chapter, we describe in detail our sperm cryopreservation, IVF, and oviduct transfer procedures for storing and reviving genetically modified mouse lines. PMID:20691860

  20. The story of DNase II: a stifled death-wish leads to self-harm.

    PubMed

    Crow, Yanick J

    2010-09-01

    DNase II is an endonuclease which plays a fundamental role in the degradation of DNA from both apoptotic cells, and nuclei extruded from red blood cells during erythropoiesis: important tasks, considering that everyday 10(8)-10(9) cells undergo apoptosis, and 10(11) red blood cells are produced in the adult human. The DNase II-null mouse demonstrates embryonic lethality due to type I interferon-mediated erythroid precursor cell death triggered by undegraded nucleic acids. However, the mechanisms leading to such cytotoxicity are poorly understood. A study in the current issue of the European Journal of Immunology investigates the role of the death ligand TRAIL in this process. Although TRAIL is shown to be dispensable for the interferon-induced apoptosis of erythroid cells in DNAse II(-/-) embryos, the authors have developed a useful strategy for further exploring this question in future studies. Interestingly, earlier studies by the same group showed that crossing the DNase II-null mouse with a mouse deficient for the type I interferon receptor can rescue the lethal anaemia observed in the DNase II-null embryos, but only at the cost of developing autoimmunity.

  1. Induction of autophagy improves embryo viability in cloned mouse embryos

    PubMed Central

    Shen, XingHui; Zhang, Na; Wang, ZhenDong; Bai, GuangYu; Zheng, Zhong; Gu, YanLi; Wu, YanShuang; Liu, Hui; Zhou, DongJie; Lei, Lei

    2015-01-01

    Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT. PMID:26643778

  2. Ethanol impedes embryo transport and impairs oviduct epithelium.

    PubMed

    Xu, Tonghui; Yang, Qiuhong; Liu, Ruoxi; Wang, Wenfu; Wang, Shuanglian; Liu, Chuanyong; Li, Jingxin

    2016-05-16

    Most studies have demonstrated that alcohol consumption is associated with decreased fertility. The aim of this study was to investigate the effects of alcohol on pre-implantation embryo transport and/or early embryo development in the oviduct. We reported here that ethanol concentration-dependently suppressed the spontaneous motility of isolated human oviduct strips (EC50 50±6mM), which was largely attenuated in the present of L-NAME, a classical nitric oxide synthase(NOS) competitive inhibitor. Notably, either acute or chronic alcohol intake delayed egg transport and retarded early development of the embryo in the mouse oviduct, which was largely rescued by co-administration of L-NAME in a acute alcohol intake group but not in chronic alcohol intake group. It is worth mentioning that the oviductal epithelium destruction was verified by scanning electron microscope (SEM) observations in chronic alcohol intake group. In conclusion, alcohol intake delayed egg transport and retarded early development of the embryo in the oviduct by suppressing the spontaneous motility of oviduct and/or impairing oviductal epithelium. These findings suggested that alcohol abuse increases the incident of ectopic pregnancy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin Cmore » treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.« less

  4. Effect on embryos of injection of phosphorothioate-modified oligonucleotides into pregnant mice.

    PubMed

    Gaudette, M F; Hampikian, G; Metelev, V; Agrawal, S; Crain, W R

    1993-01-01

    Phosphorothioate-modified oligonucleotides were injected into pregnant female mice to assess the effect on developing embryos. Injections were carried out during two different time periods, one when embryos were in preimplantation stages of development (about 3.5 days of development) and the other after implantation, when both a fetus and placenta are present (from days 9.5 to 11.5 of development). Three different phosphorothioate-modified oligonucleotides were injected. One, which had a sequence not present in the mouse genome, was used to ask whether nonspecific toxic or teratogenic effects on embryos result from treatment of the mother. A second was complementary to the mRNA of the testis-determining factor gene Sry and was used to ask whether a specific developmental pathway (i.e., sex determination) could be disrupted in embryos in vivo. The third was the complement of the anti-Sry sequence. None of these oligonucleotides reduced the frequency of successful pregnancy after mating or the average litter size from that observed in controls animals. Furthermore, examination of 291 pups or fetuses from all oligonucleotide-injected pregnant females revealed no developmental defects regardless of which sequence was used. It is concluded that injection of phosphorothioate-modified oligonucleotides into pregnant females according to the protocols described here is not toxic or teratogenic to embryos in a nonspecific way. Also, anti-Sry oligonucleotides did not influence sex determination in embryos, although there are several possible explanations for this.

  5. Chromatin Immunoprecipitation in Early Mouse Embryos.

    PubMed

    García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel

    2018-01-01

    Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.

  6. Interspecies chimera between primate embryonic stem cells and mouse embryos: Monkey ESCs engraft into mouse embryos, but not post-implantation fetuses

    PubMed Central

    Simerly, Calvin; McFarland, Dave; Castro, Carlos; Lin, Chih-Cheng; Redinger, Carrie; Jacoby, Ethan; Mich-Basso, Jocelyn; Orwig, Kyle; Mills, Parker; Ahrens, Eric; Navara, Chris; Schatten, Gerald

    2016-01-01

    Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor. PMID:21543277

  7. Insulin and branched-chain amino acid depletion during mouse preimplantation embryo culture programmes body weight gain and raised blood pressure during early postnatal life.

    PubMed

    Velazquez, Miguel A; Sheth, Bhavwanti; Smith, Stephanie J; Eckert, Judith J; Osmond, Clive; Fleming, Tom P

    2018-02-01

    Mouse maternal low protein diet exclusively during preimplantation development (Emb-LPD) is sufficient to programme altered growth and cardiovascular dysfunction in offspring. Here, we use an in vitro model comprising preimplantation culture in medium depleted in insulin and branched-chain amino acids (BCAA), two proposed embryo programming inductive factors from Emb-LPD studies, to examine the consequences for blastocyst organisation and, after embryo transfer (ET), postnatal disease origin. Two-cell embryos were cultured to blastocyst stage in defined KSOM medium supplemented with four combinations of insulin and BCAA concentrations. Control medium contained serum insulin and uterine luminal fluid amino acid concentrations (including BCAA) found in control mothers from the maternal diet model (N-insulin+N-bcaa). Experimental medium (three groups) contained 50% reduction in insulin and/or BCAA (L-insulin+N-bcaa, N-insulin+L-bcaa, and L-insulin+N-bcaa). Lineage-specific cell numbers of resultant blastocysts were not affected by treatment. Following ET, a combined depletion of insulin and BCAA during embryo culture induced a non sex-specific increase in birth weight and weight gain during early postnatal life. Furthermore, male offspring displayed relative hypertension and female offspring reduced heart/body weight, both characteristics of Emb-LPD offspring. Combined depletion of metabolites also resulted in a strong positive correlation between body weight and glucose metabolism that was absent in the control group. Our results support the notion that composition of preimplantation culture medium can programme development and associate with disease origin affecting postnatal growth and cardiovascular phenotypes and implicate two important nutritional mediators in the inductive mechanism. Our data also have implications for human assisted reproductive treatment (ART) practice. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Serotonin Receptor 6 Mediates Defective Brain Development in Monoamine Oxidase A-deficient Mouse Embryos

    PubMed Central

    Wang, Chi Chiu; Man, Gene Chi Wai; Chu, Ching Yan; Borchert, Astrid; Ugun-Klusek, Aslihan; Billett, E. Ellen; Kühn, Hartmut; Ufer, Christoph

    2014-01-01

    Monoamine oxidases A and B (MAO-A and MAO-B) are enzymes of the outer mitochondrial membrane that metabolize biogenic amines. In the adult central nervous system, MAOs have important functions for neurotransmitter homeostasis. Expression of MAO isoforms has been detected in the developing embryo. However, suppression of MAO-B does not induce developmental alterations. In contrast, targeted inhibition and knockdown of MAO-A expression (E7.5–E10.5) caused structural abnormalities in the brain. Here we explored the molecular mechanisms underlying defective brain development induced by MAO-A knockdown during in vitro embryogenesis. The developmental alterations were paralleled by diminished apoptotic activity in the affected neuronal structures. Moreover, dysfunctional MAO-A expression led to elevated levels of embryonic serotonin (5-hydroxytryptamine (5-HT)), and we found that knockdown of serotonin receptor-6 (5-Htr6) expression or pharmacologic inhibition of 5-Htr6 activity rescued the MAO-A knockdown phenotype and restored apoptotic activity in the developing brain. Our data suggest that excessive 5-Htr6 activation reduces activation of caspase-3 and -9 of the intrinsic apoptotic pathway and enhances expression of antiapoptotic proteins Bcl-2 and Bcl-XL. Moreover, we found that elevated 5-HT levels in MAO-A knockdown embryos coincided with an enhanced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and a reduction of proliferating cell numbers. In summary, our findings suggest that excessive 5-HT in MAO-A-deficient mouse embryos triggers cellular signaling cascades via 5-Htr6, which suppresses developmental apoptosis in the brain and thus induces developmental retardations. PMID:24497636

  9. Developmental fate and lineage commitment of singled mouse blastomeres.

    PubMed

    Lorthongpanich, Chanchao; Doris, Tham Puay Yoke; Limviphuvadh, Vachiranee; Knowles, Barbara B; Solter, Davor

    2012-10-01

    The inside-outside model has been invoked to explain cell-fate specification of the pre-implantation mammalian embryo. Here, we investigate whether cell-cell interaction can influence the fate specification of embryonic blastomeres by sequentially separating the blastomeres in two-cell stage mouse embryos and continuing separation after each cell division throughout pre-implantation development. This procedure eliminates information provided by cell-cell interaction and cell positioning. Gene expression profiles, polarity protein localization and functional tests of these separated blastomeres reveal that cell interactions, through cell position, influence the fate of the blastomere. Blastomeres, in the absence of cell contact and inner-outer positional information, have a unique pattern of gene expression that is characteristic of neither inner cell mass nor trophectoderm, but overall they have a tendency towards a 'trophectoderm-like' gene expression pattern and preferentially contribute to the trophectoderm lineage.

  10. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.

    PubMed

    Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio

    2014-01-01

    UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.

  11. μCT of ex-vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry

    PubMed Central

    Larsson, Emanuel; Martin, Sabine; Lazzarini, Marcio; Tromba, Giuliana; Missbach-Guentner, Jeannine; Pinkert-Leetsch, Diana; Katschinski, Dörthe M.; Alves, Frauke

    2017-01-01

    The small size of the adult and developing mouse heart poses a great challenge for imaging in preclinical research. The aim of the study was to establish a phosphotungstic acid (PTA) ex-vivo staining approach that efficiently enhances the x-ray attenuation of soft-tissue to allow high resolution 3D visualization of mouse hearts by synchrotron radiation based μCT (SRμCT) and classical μCT. We demonstrate that SRμCT of PTA stained mouse hearts ex-vivo allows imaging of the cardiac atrium, ventricles, myocardium especially its fibre structure and vessel walls in great detail and furthermore enables the depiction of growth and anatomical changes during distinct developmental stages of hearts in mouse embryos. Our x-ray based virtual histology approach is not limited to SRμCT as it does not require monochromatic and/or coherent x-ray sources and even more importantly can be combined with conventional histological procedures. Furthermore, it permits volumetric measurements as we show for the assessment of the plaque volumes in the aortic valve region of mice from an ApoE-/- mouse model. Subsequent, Masson-Goldner trichrome staining of paraffin sections of PTA stained samples revealed intact collagen and muscle fibres and positive staining of CD31 on endothelial cells by immunohistochemistry illustrates that our approach does not prevent immunochemistry analysis. The feasibility to scan hearts already embedded in paraffin ensured a 100% correlation between virtual cut sections of the CT data sets and histological heart sections of the same sample and may allow in future guiding the cutting process to specific regions of interest. In summary, since our CT based virtual histology approach is a powerful tool for the 3D depiction of morphological alterations in hearts and embryos in high resolution and can be combined with classical histological analysis it may be used in preclinical research to unravel structural alterations of various heart diseases. PMID:28178293

  12. Preimplantation diagnosis of repeated miscarriage due to chromosomal translocations using metaphase chromosomes of a blastomere biopsied from 4- to 6-cell-stage embryos.

    PubMed

    Tanaka, Atsushi; Nagayoshi, Motoi; Awata, Shoichiro; Mawatari, Yoshifumi; Tanaka, Izumi; Kusunoki, Hiroshi

    2004-01-01

    To evaluate the safety and accuracy of karyotyping the blastomere chromosomes at metaphase in the natural cell cycle for preimplantation diagnosis. A pilot study. A private infertility clinic and a university laboratory. Eleven patients undergoing IVF and preimplantation diagnosis. Intact human embryos at the 4- to 6-cell stage and human-mouse heterokaryons were cultured and checked hourly for disappearance of the nuclear envelope. After it disappeared, the metaphase chromosomes were analyzed by fluorescence in situ hybridization. Percentage of analyzable metaphase plates and safety and accuracy of the method. The success rate of electrofusion to form human-mouse heterokaryons was 87.1% (27/31), and analyzable chromosomes were obtained from 77.4% (24/31) of the heterokaryons. On the other hand, disappearance of the nuclear envelope occurred in 89.5% (17/19) of the human embryos and it began earlier than that in the heterokaryons. Analyzable chromosomes were obtained and their translocation sites were identified in all blastomeres biopsied from the 17 embryos. After the biopsy, 67.0% of the embryos could develop to the blastocyst stage. The natural cell cycle method reported herein requires frequent observation, but it is safe, with no artificial effects on the chromosomes and without loss of or damage to blastomeres, which occurred with the electrofusion method. Using the natural cell cycle method, we could perform preimplantation diagnosis with nearly 100% accuracy.

  13. Distinct spatiotemporal expression of ISM1 during mouse and chick development.

    PubMed

    Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain-hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species.

  14. Tetraploid Embryonic Stem Cells Maintain Pluripotency and Differentiation Potency into Three Germ Layers.

    PubMed

    Imai, Hiroyuki; Kano, Kiyoshi; Fujii, Wataru; Takasawa, Ken; Wakitani, Shoichi; Hiyama, Masato; Nishino, Koichiro; Kusakabe, Ken Takeshi; Kiso, Yasuo

    2015-01-01

    Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.

  15. PROTECTION OF THE EMBRYO AGAINST THE CONGENITAL AND LETHAL EFFECTS OF X- IRRADIATION. PART I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, R.; Grupp, E.

    1960-04-01

    The effects of 15 agents, some given before and some after x irradiation to 200 r, have been studied for their effectiveness in protecting the 8.5-day mouse embryo against embryonic or fetal death and the development of the severe cephalic congenital anomaly known as exencephalia (or brain hernia). Some 4979 fetuses were examined. Of the agents studied, only cysteinamine, cystamine, and anoxia proved to be statistically "protective" at all. Cysteinamine and cystamine (both -SH compounds) given I.P. before x irradiation to 200 r allowed 73 to 80% of the 8.5-day embryos to survive to term while the untreated but irradiatedmore » control litters had a survival of only 41%. Funther, there was considerable reduction in bcth uterine death and the congenital anomaly of exencephalia. Anoxia (6% O/sub 2/ + 94% N/sub 2/) aIlowed 71% to come through as ""apparently normal," an increase of 30% over the unprotected irradiated controls. Whether there is long-term damage to the 8.5day embryo from the temporary anoxia alone has not been determined, although the anoxic controls showed 96% " apparently nornnal." Distilled water given I.P. before irradiation, making the milieu of the embryos hypotonic, appeared to be deleterious, causing 2% exencephalia even without x irradiation. When combined with x rays, distilled water reduced the "apparentiy normals" to 31%, or 10% lower than with irradiation alone. Saline in various concentrations was not protective. None of the tissue homogenates (spleen, marrow, liver, or brain of a homologous newborn source) proved to be of any protective value. It is suggested that the protective element in such tissue homogenates may be cellular since the placenta acts as the most efficient filter to allow only the dialyzable substances through to the embryo. However, the fact that the 8.5-day mouse embryo has not yet developed its hematopoietic syatem may explain the failure of homogenates which seem to protect through hematopoietic regeneration. Hypoxia from hypoglycemia following insulin injection was not protective. Insulin or dextrose or the two in combination were -not panticularly harraful to the 8.5-day mouse embryo but when combined with x irradiation were very damaging. "Protection" as used in this study is statistical and relates to the percentage changes in ""apparently normal" fetuses, resorptions, deaths, and congenital anomalies. It does not imply that the surviving mice are without irradiation sequelae. In fact many of the "apparently normals" have eye defects and this might well reveal other and more subtle C. N. 8. damage. On the basis of survival, however, cysteinamine, cystamine, and anoxia did afford some protection. (auth)« less

  16. Live imaging of mouse secondary palate fusion

    PubMed Central

    Kim, Seungil; Prochazka, Jan; Bush, Jeffrey O.

    2017-01-01

    LONG ABSTRACT The fusion of the secondary palatal shelves to form the intact secondary palate is a key process in mammalian development and its disruption can lead to cleft secondary palate, a common congenital anomaly in humans. Secondary palate fusion has been extensively studied leading to several proposed cellular mechanisms that may mediate this process. However, these studies have been mostly performed on fixed embryonic tissues at progressive timepoints during development or in fixed explant cultures analyzed at static timepoints. Static analysis is limited for the analysis of dynamic morphogenetic processes such a palate fusion and what types of dynamic cellular behaviors mediate palatal fusion is incompletely understood. Here we describe a protocol for live imaging of ex vivo secondary palate fusion in mouse embryos. To examine cellular behaviors of palate fusion, epithelial-specific Keratin14-cre was used to label palate epithelial cells in ROSA26-mTmGflox reporter embryos. To visualize filamentous actin, Lifeact-mRFPruby reporter mice were used. Live imaging of secondary palate fusion was performed by dissecting recently-adhered secondary palatal shelves of embryonic day (E) 14.5 stage embryos and culturing in agarose-containing media on a glass bottom dish to enable imaging with an inverted confocal microscope. Using this method, we have detected a variety of novel cellular behaviors during secondary palate fusion. An appreciation of how distinct cell behaviors are coordinated in space and time greatly contributes to our understanding of this dynamic morphogenetic process. This protocol can be applied to mutant mouse lines, or cultures treated with pharmacological inhibitors to further advance understanding of how secondary palate fusion is controlled. PMID:28784960

  17. Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.

    PubMed

    Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki

    2013-11-01

    Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.

  18. The biology and methodology of assisted reproduction in deer mice (Peromyscus maniculatus)

    PubMed Central

    Veres, Monika; Duselis, Amanda R.; Graft, Audrey; Pryor, William; Crossland, Janet; Vrana, Paul B.; Szalai, Gabor

    2011-01-01

    Although laboratory-reared species of the genus Peromyscus - including deer mice - are used as model animals in a wide range of research, routine manipulation of Peromyscus embryogenesis and reproduction has been lagging. The objective of the present study was to optimize conditions for oocyte/embryo retrieval and for in vitro culturing. On average, 6.4 oocytes per mouse were recovered when two doses of 15 IU of PMSG was given 24 h apart, followed by 15 IU of hCG 48 h later. Following this hormone priming, females mated overnight with a fertile male yielded an average of 9.1 two-cell stage embryos. Although two-cell stage embryos developed to 8-cell stage in KSOM media in vitro, but not further, embryos recovered at the 8- to 16-cell stages developed into fully expanded blastocysts when cultured in M16 media in vitro. These blastocysts had full potential to develop into late stage fetuses and possibly into live pups. As a result of the present work, all stages of Peromyscus pre-implantation development are now obtainable in numbers sufficient for molecular or other analyses. These advances provide the opportunity for routine studies involving embryo transfer (e.g. chimeras, transgenics), and preservation of genetic lines by cryopreservation. PMID:21924468

  19. Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device.

    PubMed

    Liu, Jun; Pyne, Derek G; Abdelgawad, Mohamed; Sun, Yu

    2017-01-01

    This chapter introduces a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual microdroplets manipulated on the microfluidic device were used as microvessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  20. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

    PubMed Central

    Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan

    2016-01-01

    Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577

  1. Dynamic transcriptional symmetry-breaking in pre-implantation mammalian embryo development revealed by single-cell RNA-seq.

    PubMed

    Shi, Junchao; Chen, Qi; Li, Xin; Zheng, Xiudeng; Zhang, Ying; Qiao, Jie; Tang, Fuchou; Tao, Yi; Zhou, Qi; Duan, Enkui

    2015-10-15

    During mammalian pre-implantation embryo development, when the first asymmetry emerges and how it develops to direct distinct cell fates remain longstanding questions. Here, by analyzing single-blastomere transcriptome data from mouse and human pre-implantation embryos, we revealed that the initial blastomere-to-blastomere biases emerge as early as the first embryonic cleavage division, following a binomial distribution pattern. The subsequent zygotic transcriptional activation further elevated overall blastomere-to-blastomere biases during the two- to 16-cell embryo stages. The trends of transcriptional asymmetry fell into two distinct patterns: for some genes, the extent of asymmetry was minimized between blastomeres (monostable pattern), whereas other genes, including those known to be lineage specifiers, showed ever-increasing asymmetry between blastomeres (bistable pattern), supposedly controlled by negative or positive feedbacks. Moreover, our analysis supports a scenario in which opposing lineage specifiers within an early blastomere constantly compete with each other based on their relative ratio, forming an inclined 'lineage strength' that pushes the blastomere onto a predisposed, yet flexible, lineage track before morphological distinction. © 2015. Published by The Company of Biologists Ltd.

  2. PDGFRβ regulates craniofacial development through homodimers and functional heterodimers with PDGFRα.

    PubMed

    Fantauzzo, Katherine A; Soriano, Philippe

    2016-11-01

    Craniofacial development is a complex morphogenetic process, disruptions in which result in highly prevalent human birth defects. While platelet-derived growth factor (PDGF) receptor α (PDGFRα) has well-documented functions in this process, the role of PDGFRβ in murine craniofacial development is not well established. We demonstrate that PDGFRα and PDGFRβ are coexpressed in the craniofacial mesenchyme of mid-gestation mouse embryos and that ablation of Pdgfrb in the neural crest lineage results in increased nasal septum width, delayed palatal shelf development, and subepidermal blebbing. Furthermore, we show that the two receptors genetically interact in this lineage, as double-homozygous mutant embryos exhibit an overt facial clefting phenotype more severe than that observed in either single-mutant embryo. We reveal a physical interaction between PDGFRα and PDGFRβ in the craniofacial mesenchyme and demonstrate that the receptors form functional heterodimers with distinct signaling properties. Our studies thus uncover a novel mode of signaling for the PDGF family during vertebrate development. © 2016 Fantauzzo and Soriano; Published by Cold Spring Harbor Laboratory Press.

  3. Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression.

    PubMed

    Hu, Guangwei; Li, Guang; Wang, Hui; Wang, Yiquan

    2017-12-15

    Correct patterning of left-right (LR) asymmetry is essential during the embryonic development of bilaterians. Hedgehog (Hh) signaling is known to play a role in LR asymmetry development of mouse, chicken and sea urchin embryos by regulating Nodal expression. In this study, we report a novel regulatory mechanism for Hh in LR asymmetry development of amphioxus embryos. Our results revealed that Hh -/- embryos abolish Cerberus ( Cer ) transcription, with bilaterally symmetric expression of Nodal , Lefty and Pitx In consequence, Hh -/- mutants duplicated left-side structures and lost right-side characters, displaying an abnormal bilaterally symmetric body plan. These LR defects in morphology and gene expression could be rescued by Hh mRNA injection. Our results indicate that Hh participates in amphioxus LR patterning by controlling Cer gene expression. Curiously, however, upregulation of Hh signaling failed to alter the Cer expression pattern or LR morphology in amphioxus embryos, indicating that Hh might not provide an asymmetric cue for Cer expression. In addition, Hh is required for mouth opening in amphioxus, hinting at a homologous relationship between amphioxus and vertebrate mouth development. © 2017. Published by The Company of Biologists Ltd.

  4. Rewiring of embryonic glucose metabolism via suppression of PFK-1 and aldolase during mouse chorioallantoic branching.

    PubMed

    Miyazawa, Hidenobu; Yamaguchi, Yoshifumi; Sugiura, Yuki; Honda, Kurara; Kondo, Koki; Matsuda, Fumio; Yamamoto, Takehiro; Suematsu, Makoto; Miura, Masayuki

    2017-01-01

    Adapting the energy metabolism state to changing bioenergetic demands is essential for mammalian development accompanying massive cell proliferation and cell differentiation. However, it remains unclear how developing embryos meet the changing bioenergetic demands during the chorioallantoic branching (CB) stage, when the maternal-fetal exchange of gases and nutrients is promoted. In this study, using metabolome analysis with mass-labeled glucose, we found that developing embryos redirected glucose carbon flow into the pentose phosphate pathway via suppression of the key glycolytic enzymes PFK-1 and aldolase during CB. Concomitantly, embryos exhibited an increase in lactate pool size and in the fractional contribution of glycolysis to lactate biosynthesis. Imaging mass spectrometry visualized lactate-rich tissues, such as the dorsal or posterior neural tube, somites and head mesenchyme. Furthermore, we found that the heterochronic gene Lin28a could act as a regulator of the metabolic changes observed during CB. Perturbation of glucose metabolism rewiring by suppressing Lin28a downregulation resulted in perinatal lethality. Thus, our work demonstrates that developing embryos rewire glucose metabolism following CB for normal development. © 2017. Published by The Company of Biologists Ltd.

  5. THE K-REGION DIHYDRODIOL OF BENZO[A]PYRENE INDUCES DNA DAMAGE AND MORPHOLOGICAL CELL TRANSFORMATION IN C3H10T1/2CL8 MOUSE EMBRYO CELLS WITHOUT THE FORMATION OF DETECTABLE STABLE COVALENT DNA ADDUCTS

    EPA Science Inventory

    The K -region dihydrodiol ofbenzo[ a ]pyrene induces DNA damage and morphological cell transformation in C3HlOTY2CL8 mouse embryo cells without the formation of detectable stable covalent DNA adducts

    Benzo[ a ]pyrene (B[ a ]P) is the most thoroughly studied polycyclic aro...

  6. A dual-modality optical coherence tomography and selective plane illumination microscopy system for mouse embryonic imaging

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Ran, Shihao; Le, Henry; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.

    2017-02-01

    Both optical coherence tomography (OCT) and selective plane illumination microscopy (SPIM) are frequently used in mouse embryonic research for high-resolution three-dimensional imaging. However, each of these imaging methods provide a unique and independent advantage: SPIM provides morpho-functional information through immunofluorescence and OCT provides a method for whole-embryo 3D imaging. In this study, we have combined rotational imaging OCT and SPIM into a single, dual-modality device to image E9.5 mouse embryos. The results demonstrate that the dual-modality setup is able to provide both anatomical and functional information simultaneously for more comprehensive tissue characterization.

  7. Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos.

    PubMed

    Kang, Eunju; Wu, Guangming; Ma, Hong; Li, Ying; Tippner-Hedges, Rebecca; Tachibana, Masahito; Sparman, Michelle; Wolf, Don P; Schöler, Hans R; Mitalipov, Shoukhrat

    2014-05-01

    Successful mammalian cloning using somatic cell nuclear transfer (SCNT) into unfertilized, metaphase II (MII)-arrested oocytes attests to the cytoplasmic presence of reprogramming factors capable of inducing totipotency in somatic cell nuclei. However, these poorly defined maternal factors presumably decline sharply after fertilization, as the cytoplasm of pronuclear-stage zygotes is reportedly inactive. Recent evidence suggests that zygotic cytoplasm, if maintained at metaphase, can also support derivation of embryonic stem (ES) cells after SCNT, albeit at low efficiency. This led to the conclusion that critical oocyte reprogramming factors present in the metaphase but not in the interphase cytoplasm are 'trapped' inside the nucleus during interphase and effectively removed during enucleation. Here we investigated the presence of reprogramming activity in the cytoplasm of interphase two-cell mouse embryos (I2C). First, the presence of candidate reprogramming factors was documented in both intact and enucleated metaphase and interphase zygotes and two-cell embryos. Consequently, enucleation did not provide a likely explanation for the inability of interphase cytoplasm to induce reprogramming. Second, when we carefully synchronized the cell cycle stage between the transplanted nucleus (ES cell, fetal fibroblast or terminally differentiated cumulus cell) and the recipient I2C cytoplasm, the reconstructed SCNT embryos developed into blastocysts and ES cells capable of contributing to traditional germline and tetraploid chimaeras. Last, direct transfer of cloned embryos, reconstructed with ES cell nuclei, into recipients resulted in live offspring. Thus, the cytoplasm of I2C supports efficient reprogramming, with cell cycle synchronization between the donor nucleus and recipient cytoplasm as the most critical parameter determining success. The ability to use interphase cytoplasm in SCNT could aid efforts to generate autologous human ES cells for regenerative applications, as donated or discarded embryos are more accessible than unfertilized MII oocytes.

  8. Overexpression of Tet3 in donor cells enhances goat somatic cell nuclear transfer efficiency.

    PubMed

    Han, Chengquan; Deng, Ruizhi; Mao, Tingchao; Luo, Yan; Wei, Biao; Meng, Peng; Zhao, Lu; Zhang, Qing; Quan, Fusheng; Liu, Jun; Zhang, Yong

    2018-05-23

    Ten-eleven translocation 3 (TET3) mediates active DNA demethylation of paternal genomes during mouse embryonic development. However, the mechanism of DNA demethylation in goat embryos remains unknown. In addition, aberrant DNA methylation reprogramming prevalently occurs in embryos cloned by somatic cell nuclear transfer (SCNT). In this study, we reported that TET3 is a key factor in DNA demethylation in goat pre-implantation embryos. Knockdown of Tet3 hindered DNA demethylation at the two- to four-cell stage in goat embryos and decreased Nanog expression in blastocysts. Overexpression of Tet3 in somatic cells can initiate DNA demethylation, reduce 5-methylcytosine level, increase 5-hydroxymethylcytosine level and promote the expression of key pluripotency genes. After SCNT, overexpression of Tet3 in donor cells corrected abnormal DNA hypermethylation of cloned embryos and significantly enhanced in vitro and in vivo developmental rate (P < 0.05). We conclude that overexpression of Tet3 in donor cells significantly improves goat SCNT efficiency. © 2018 Federation of European Biochemical Societies.

  9. Surgical manipulation of mammalian embryos in vitro.

    PubMed

    Naruse, I; Keino, H; Taniguchi, M

    1997-04-01

    Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.

  10. Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development

    PubMed Central

    Yoisungnern, Ton; Choi, Yun-Jung; Woong Han, Jae; Kang, Min-Hee; Das, Joydeep; Gurunathan, Sangiliyandi; Kwon, Deug-Nam; Cho, Ssang-Goo; Park, Chankyu; Kyung Chang, Won; Chang, Byung-Soo; Parnpai, Rangsun; Kim, Jin-Hoi

    2015-01-01

    Silver nanoparticles (AgNPs) have many features that make them attractive as medical devices, especially in therapeutic agents and drug delivery systems. Here we have introduced AgNPs into mouse spermatozoa and then determined the cytotoxic effects of AgNPs on sperm function and subsequent embryo development. Scanning electron microscopy and transmission electron microscopy analyses showed that AgNPs could be internalized into sperm cells. Furthermore, exposure to AgNPs inhibited sperm viability and the acrosome reaction in a dose-dependent manner, whereas sperm mitochondrial copy numbers, morphological abnormalities, and mortality due to reactive oxygen species were significantly increased. Likewise, sperm abnormalities due to AgNPs internalization significantly decreased the rate of oocyte fertilization and blastocyst formation. Blastocysts obtained from AgNPs-treated spermatozoa showed lower expression of trophectoderm-associated and pluripotent marker genes. Overall, we propose that AgNPs internalization into spermatozoa may alter sperm physiology, leading to poor fertilization and embryonic development. Such AgNPs-induced reprotoxicity may be a valuable tool as models for testing the safety and applicability of medical devices using AgNPs. PMID:26054035

  11. Genome editing reveals a role for OCT4 in human embryogenesis.

    PubMed

    Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K

    2017-10-05

    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

  12. Detection of botulinum toxin types A, B, E, and F activity using the quail embryo

    USDA-ARS?s Scientific Manuscript database

    We recently demonstrated an effective new model for the detection of botulinum toxin type A using quail embryos in place of the mouse model. These experiments demonstrated that the Japanese quail embryo at 15 days of incubation was an effective vertebrate animal model to detect the activity of botu...

  13. Surface antigen in early differentiation.

    PubMed Central

    Kemler, R; Babinet, C; Eisen, H; Jacob, F

    1977-01-01

    Addition of Fab fragments from rabbit antiserum to surface antigen F9 to 2-cell stage mouse embryos in culture does not alter cleavage; however, the addition prevents culture does not alter cleavage; however, the addition prevents the formation of compact morulae and blastocysts. A similar effect is observed when Fab fragments are added to already compact 8-cell stage or even older morulae, but disappears at the beginning of blastocoel formation. This effect is reversible: uncompact 30-cell embryos washed free of Fab become compact in a few hours, produce blastocysts, and upon reimplantation into pseudopregnant mothers can produce mice. Development is not altered by divalent anti-F9 antibodies, by Fab fragments from sera directed against other embryo surface antigens, or by succinyl concanavalin A. Images PMID:270688

  14. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification

    PubMed Central

    Majidi Gharenaz, Nasrin; Movahedin, Mansoureh; Mazaheri, Zohreh; Pour beiranvand, Shahram

    2016-01-01

    Background: Nowadays, oocytes and embryos vitrification has become a routine technique. Based on clinical judgment, re-vitrification maybe required. But little is known about re-vitrification impact on genes expression. Objective: The impact of re-vitrification on apoptotic and implanting genes, Bax, Bcl-2 and ErbB4, at compaction stage embryos were evaluated in this study. Materials and Methods: In this experimental study, 8 cell embryos (n=240) were collected from female mature mice, 60-62 hr post HCG injection. The embryos were divided randomly to 3 groups included: fresh (n=80), vitrified at 8 cell stage (n=80), vitrified at 8 cell stage thawed and re-vitrified at compaction stage (n=80). Embryos were vitrified by using cryolock, (open system) described by Kuwayama. Q-PCR was used to examine the expression of Bax, Bcl2 ErbB4 genes in derived blastocysts. Results: Our result showed that expanded blastocyst rate was similar between vitrified and re-vitrified groups, while re-vitrified embryos showed significant decrease in expanded blastocyst rate comparing with fresh embryos (p=0.03). In addition, significant difference was observed on apoptotic gene expression when comparing re-vitrified and fresh embryos (p=0.004), however expression of Bax and Bcl-2 (apoptotic) genes didn't demonstrate a significant difference between re-vitrified and vitrified groups. The expression rate of ErbB4, an implantation gene was decreased in re-vitrified embryos comparing with fresh embryos (p=0.003), but it was similar between re-vitrified and vitrified embryos. Conclusion: Re-vitrification can alter the expression of Bax, Bcl-2 and ErbB4 genes and developmental rate of mouse embryos in compaction stage. PMID:27679826

  15. Mammalian diversity: gametes, embryos and reproduction.

    PubMed

    Behringer, Richard R; Eakin, Guy S; Renfree, Marilyn B

    2006-01-01

    The class Mammalia is composed of approximately 4800 extant species. These mammalian species are divided into three subclasses that include the monotremes, marsupials and eutherians. Monotremes are remarkable because these mammals are born from eggs laid outside of the mother's body. Marsupial mammals have relatively short gestation periods and give birth to highly altricial young that continue a significant amount of 'fetal' development after birth, supported by a highly sophisticated lactation. Less than 10% of mammalian species are monotremes or marsupials, so the great majority of mammals are grouped into the subclass Eutheria, including mouse and human. Mammals exhibit great variety in morphology, physiology and reproduction. In the present article, we highlight some of this remarkable diversity relative to the mouse, one of the most widely used mammalian model organisms, and human. This diversity creates challenges and opportunities for gamete and embryo collection, culture and transfer technologies.

  16. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses.

    PubMed

    Simerly, Calvin; McFarland, Dave; Castro, Carlos; Lin, Chih-Cheng; Redinger, Carrie; Jacoby, Ethan; Mich-Basso, Jocelyn; Orwig, Kyle; Mills, Parker; Ahrens, Eric; Navara, Chris; Schatten, Gerald

    2011-07-01

    Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. 3D confocal reconstruction of gene expression in mouse.

    PubMed

    Hecksher-Sørensen, J; Sharpe, J

    2001-01-01

    Three-dimensional computer reconstructions of gene expression data will become a valuable tool in biomedical research in the near future. However, at present the process of converting in situ expression data into 3D models is a highly specialized and time-consuming procedure. Here we present a method which allows rapid reconstruction of whole-mount in situ data from mouse embryos. Mid-gestation embryos were stained with the alkaline phosphotase substrate Fast Red, which can be detected using confocal laser scanning microscopy (CLSM), and cut into 70 microm sections. Each section was then scanned and digitally reconstructed. Using this method it took two days to section, digitize and reconstruct the full expression pattern of Shh in an E9.5 embryo (a 3D model of this embryo can be seen at genex.hgu.mrc.ac.uk). Additionally we demonstrate that this technique allows gene expression to be studied at the single cell level in intact tissue.

  18. Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization

    PubMed Central

    Tan, Kun; An, Lei; Miao, Kai; Ren, Likun; Hou, Zhuocheng; Tao, Li; Zhang, Zhenni; Wang, Xiaodong; Xia, Wei; Liu, Jinghao; Wang, Zhuqing; Xi, Guangyin; Gao, Shuai; Sui, Linlin; Zhu, De-Sheng; Wang, Shumin; Wu, Zhonghong; Bach, Ingolf; Chen, Dong-bao; Tian, Jianhui

    2016-01-01

    Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications. PMID:26951653

  19. Position- and polarity-dependent Hippo signaling regulates cell fates in preimplantation mouse embryos.

    PubMed

    Sasaki, Hiroshi

    2015-12-01

    During the preimplantation stage, mouse embryos establish two cell lineages by the time of early blastocyst formation: the trophectoderm (TE) and the inner cell mass (ICM). Historical models have proposed that the establishment of these two lineages depends on the cell position within the embryo (e.g., the positional model) or cell polarization along the apicobasal axis (e.g., the polarity model). Recent findings have revealed that the Hippo signaling pathway plays a central role in the cell fate-specification process: active and inactive Hippo signaling in the inner and outer cells promote ICM and TE fates, respectively. Intercellular adhesion activates, while apicobasal polarization suppresses Hippo signaling, and a combination of these processes determines the spatially regulated activation of the Hippo pathway in 32-cell-stage embryos. Therefore, there is experimental evidence in favor of both positional and polarity models. At the molecular level, phosphorylation of the Hippo-pathway component angiomotin at adherens junctions (AJs) in the inner (apolar) cells activates the Lats protein kinase and triggers Hippo signaling. In the outer cells, however, cell polarization sequesters Amot from basolateral AJs and suppresses activation of the Hippo pathway. Other mechanisms, including asymmetric cell division and Notch signaling, also play important roles in the regulation of embryonic development. In this review, I discuss how these mechanisms cooperate with the Hippo signaling pathway during cell fate-specification processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Maternal SENP7 programs meiosis architecture and embryo survival in mouse.

    PubMed

    Huang, Chun-Jie; Wu, Di; Jiao, Xiao-Fei; Khan, Faheem Ahmed; Xiong, Cheng-Liang; Liu, Xiao-Ming; Yang, Jing; Yin, Tai-Lang; Huo, Li-Jun

    2017-07-01

    Understanding the mechanisms underlying abnormal egg production and pregnancy loss is significant for human fertility. SENP7, a SUMO poly-chain editing enzyme, has been regarded as a mitotic regulator of heterochromatin integrity and DNA repair. Herein, we report the roles of SENP7 in mammalian reproductive scenario. Mouse oocytes deficient in SENP7 experienced meiotic arrest at prophase I and metaphase I stages, causing a substantial decrease of mature eggs. Hyperaceylation and hypomethylation of histone H3 and up-regulation of Cdc14B/C accompanied by down-regulation of CyclinB1 and CyclinB2 were further recognized as contributors to defective M-phase entry and spindle assembly in oocytes. The spindle assembly checkpoint activated by defective spindle morphogenesis, which was also caused by mislocalization and ubiquitylation-mediated proteasomal degradation of γ-tubulin, blocked oocytes at meiosis I stage. SENP7-depleted embryos exhibited severely defective maternal-zygotic transition and progressive degeneration, resulting in nearly no blastocyst production. The disrupted epigenetic landscape on histone H3 restricted Rad51C loading onto DNA lesions due to elevated HP1α euchromatic deposition, and reduced DNA 5hmC challenged the permissive status for zygotic DNA repair, which induce embryo death. Our study pinpoints SENP7 as a novel determinant in epigenetic programming and major pathways that govern oocyte and embryo development programs in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The Role of Maternal Nutrition During the Periconceptional Period and Its Effect on Offspring Phenotype.

    PubMed

    Fleming, Tom P; Eckert, Judith J; Denisenko, Oleg

    2017-01-01

    The early preimplantation embryo has been rigorously studied for decades to understand inherent reproductive and developmental mechanisms driving its morphogenesis from before fertilisation through to and beyond implantation. Recent research has demonstrated that this short developmental window is also critical for the embryo's interaction with external, maternal factors, particularly nutritional status. Here, maternal dietary quality has been shown to alter the pattern of development in an enduring way that can influence health throughout the lifetime. Thus, using mouse models, maternal protein restriction exclusively during the preimplantation period with normal nutrition thereafter is sufficient to cause adverse cardiometabolic and neurological outcomes in adult offspring. Evidence for similar effects whereby environmental factors during the periconceptional window can programme postnatal disease risk can be found in human and large animal models and also in response to in vitro conditions such as assisted conception and related infertility treatments. In this review, using mouse malnutrition models, we evaluate the step-by-step mechanisms that lead from maternal poor diet consumption though to offspring disease. We consider how adverse programming within the embryo may be induced, what nutrient factors and signalling pathways may be involved, and how these cues act to change the embryo in distinct ways across placental and foetal lineage paths, leading especially to changes in the growth trajectory which in turn associate with later disease risk. These mechanisms straddle epigenetic, molecular, cellular and physiological levels of biology and suggest, for health outcomes, preimplantation development to be the most important time in our lives.

  2. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  3. miR-135A Regulates Preimplantation Embryo Development through Down-Regulation of E3 Ubiquitin Ligase Seven in Absentia Homolog 1A (SIAH1A) Expression

    PubMed Central

    Leung, Carmen O. N.; Ye, Tian-Min; Kwan, Peter C. K.; Lee, Kai-Fai; Yeung, William S. B.

    2011-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNA molecules capable of regulating transcription and translation. Previously, a cluster of miRNAs that are specifically expressed in mouse zygotes but not in oocytes or other preimplantation stages embryos are identified by multiplex real-time polymerase chain reaction-based miRNA profiling. The functional role of one of these zygote-specific miRNAs, miR-135a, in preimplantation embryo development was investigated. Methodology/Principal Findings Microinjection of miR-135a inhibitor suppressed first cell cleavage in more than 30% of the zygotes. Bioinformatics analysis identified E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (Siah1a) as a predicted target of miR-135a. Western blotting and 3′UTR luciferase functional assays demonstrated that miR-135a down-regulated the expression of Siah1 in HeLa cells and in mouse zygotes. Siah1a was expressed in preimplantation embryos and its expression pattern negatively correlated with that of miR-135a. Co-injection of Siah1a-specific antibody with miR-135a inhibitor partially nullified the effect of miR-135a inhibition. Proteasome inhibition by MG-132 revealed that miR-135a regulated proteasomal degradation and potentially controlled the expression of chemokinesin DNA binding protein (Kid). Conclusions/Significance The present study demonstrated for the first time that zygotic specific miRNA modulates the first cell cleavage through regulating expression of Siah1a. PMID:22132158

  4. Mutation of the XIST gene upregulates expression of X-linked genes but decreases the developmental rates of cloned male porcine embryos.

    PubMed

    Yang, Yang; Wu, Dan; Liu, Dewu; Shi, Junsong; Zhou, Rong; He, Xiaoyan; Quan, Jianping; Cai, Gengyuan; Zheng, Enqin; Wu, Zhenfang; Li, Zicong

    2017-06-01

    XIST is an X-linked, non-coding gene responsible for the cis induction of X-chromosome inactivation (XCI). Knockout of the XIST allele on an active X chromosome abolishes erroneous XCI and enhances the in vivo development of cloned mouse embryos by more than 10-fold. This study aimed to investigate whether a similar manipulation would improve cloning efficiency in pigs. A male, porcine kidney cell line containing an EGFP insert in exon 1 of the XIST gene, resulting in a knockout allele (XIST-KO), was generated by homologous recombination using transcription activator-like effector nucleases (TALENs). The expression of X-linked genes in embryos cloned from the XIST-KO kidney cells was significantly higher than in male embryos cloned from wild-type (WT) kidney cells, but remained lower than that of in vivo fertilization-produced counterparts. The XIST-KO cloned embryos also had a significantly lower blastocyst rate and a reduced full-term development rate compared to cloned WT embryos. These data suggested that while mutation of a XIST gene can partially rescue abnormal XCI, it cannot improve the developmental efficiency of cloned male porcine embryos-a deficiency that may be caused by incomplete rescue of abnormal XCI and/or by long-term drug selection of the XIST-KO nuclear donor cells, which might adversely affect the developmental efficiency of embryos created from them. © 2017 Wiley Periodicals, Inc.

  5. Preimplantation maternal stress impairs embryo development by inducing oviductal apoptosis with activation of the Fas system.

    PubMed

    Zheng, Liang-Liang; Tan, Xiu-Wen; Cui, Xiang-Zhong; Yuan, Hong-Jie; Li, Hong; Jiao, Guang-Zhong; Ji, Chang-Li; Tan, Jing-He

    2016-11-01

    What are the mechanisms by which the preimplantation restraint stress (PIRS) impairs embryo development and pregnancy outcome? PIRS impairs embryo development by triggering apoptosis in mouse oviducts and embryos,and this involves activation of the Fas system. Although it is known that the early stages of pregnancy are more vulnerable than later stages to prenatalstress, studies on the effect of preimplantation stress on embryo developmentare limited. Furthermore, the mechanisms by which psychological stress impairs embryo development are largely unknown. These issues are worth exploring using the mouse PIRS models because restraint of mice is an efficient experimental procedure developed for studies of psychogenic stress. Mice of Kunming strain, the generalized lymphoproliferative disorder (gld) mice with a germline mutation F273L in FasL in a C57BL/6J genomic background and the wild-type C57BL/6J mice were used. Female and male mice were used 8-10 weeks and 10-12 weeks after birth, respectively. Female mice showing vaginal plugs were paired by weight and randomly assigned to restraint treatments or as controls. For restraint treatment, an individual mouse was put in a micro-cage with food and water available. Control mice remained in their cages with food and water during the time treated females were stressed. Female mice were exposed to PIRS for 48 h starting from 16:00 on the day of vaginal plug detection. At the end of PIRS, levels of glucorticoids (GC), corticotropin-releasing hormone (CRH)and redox potential were measured in serum, while levels of GC, GC receptor (GR), CRH, CRH receptor (CRHR), Fas and Fas ligand (FasL) protein, mRNAs for brain derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), oxidative stress (OS) and apoptosis were examined in oviducts. Preimplantation development and levels of GR, Fas, redox potential and apoptosis were observed in embryos recovered at different times after the initiation of PIRS. The gld mice were used to confirm a role for the Fas system in triggering apoptosis of embryos and oviducts. Compared to those in control mice, while the number of blastocysts/mouse (5.0 ± 0.7 versus 11.1 ± 0.5), cell number/blastocyst (49.1 ± 1.3 versus 61.5 ± 0.9), percentages of term pregnancy (37.5% versus 90.9%) and litter size (3.7 ± 0.1versus 9.6 ± 0.6) decreased, blood CRH (560 ± 23 versus 455 ± 37 pg/ml), cortisol (27.3 ± 3.4 versus 5 ± 0.5 ng/ml) and OS index (OSI: 2.8 versus 1.7) increased significantly (all P < 0.05) following PIRS. In the oviduct, while levels of CRH (1175 ± 85 versus 881 ± 33 pg/100 mg), cortisol (28.9 ± 1.7 versus14 ± 4 ng/g), CRHR (2.3 ± 0.3 versus 1.0 ± 0.0), FasL (1.31 ± 0.06 versus 1.08 ± 0.05 ng/g), Fas (1.42 ± 0.13 versus 1.0 ± 0.0) and apoptotic cells (19.1 ± 0.5% versus 8.4 ± 0.4%) increased, levels of GR proteins (0.67 ± 0.14 versus 1.0 ± 0.0) and Igf-1 (0.6 ± 0.09 versus 1.0 ± 0.0) and Bdnf (0.73 ± 0.03 versus 1.0 ± 0.0) mRNAs decreased significantly (all P < 0.05 versus control) after PIRS. Mouse embryos expressed GR and Fas at all stages of preimplantation development and embryo OS (GSH/GSSG ratio: 0.88 ± 0.03 versus 1.19 ± 0.13) and annexin-positive cells (blastocysts: 31.4 ± 3.8% versus 10.96 ± 3.4%) increased significantly (P < 0.05) following PIRS. Furthermore, the detrimental effects of PIRS on embryo development and oviductal apoptosis were much reduced in gld mice. Thus, PIRS triggered apoptosis in oviductal cells with activation of the Fas/FasL system. The apoptotic oviductal cells promoted embryo apoptosis with reduced production of IGF-1 and BDNF and increased production of FasL. Although important, the conclusions were drawn from limited results obtained using a single model in one species and thus they need further verification using other models and/or in other species. Furthermore, as differences in stressed samples were modest and sometimes not significant between gld and wild-type mice whereas differences between control and stressed samples were always present within gld mice, it is deduced that signaling pathways other than the Fas/FasL system might be involved as well in the PIRS-triggered apoptosis of oviducts and embryos. The data are important for studies on the mechanisms by which psychological stress affects female reproduction, as FasL expression has been observed in human oviduct epithelium. Not applicable. This study was supported by grants from the National Basic Research Program of China (Nos. 2014CB138503 and 2012CB944403), the China National Natural Science Foundation (Nos. 31272444 and 30972096) and the Animal breeding improvement program of Shandong Province. All authors declare that their participation in the study did not involve factual or potential conflicts of interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.For Permissions, please email: journals.permissions@oup.com.

  6. Effects of 5HPP-33,an antiangiogenic thalidomide analog, in mouse whole embryo culture

    EPA Science Inventory

    Thalidomide is a well-known example of a teratogen which has been shown to have an inhibitory effect on angiogenesis. As a result of its targeted effect on immature blood vessels, anti-angiogenic specific chemical analogs were developed to maximize this mechanism of thalidomide e...

  7. Survival of mouse embryos after vitrification depending on the cooling rate of the cryoprotectant solution.

    PubMed

    Hredzák, R; Ostró, A; Zdilová, Viera; Maracek, I; Kacmárik, J

    2006-03-01

    The aim of the study was to determine the relationship between the rate of cooling of eight-cell mouse embryos to the temperature of liquid nitrogen (-196 degrees C) and their developmental capacity after thawing on the basis of their ability to leave the zona pellucida ('hatching') during in vitro culturing. Eight-cell embryos were obtained from superovulated female mice and divided into three experimental and one control group. Embryos from the experimental groups were cryopreserved by the vitrification method using ethylene glycol as cryoprotectant. The vitrification protocols used in the study differed in the rate of cooling of the cryoprotectant solution. Embryos from the first group were frozen in conventional 0.25-ml plastic straws, those from the second group in pipetting 'tips', and embryos from the third group, placed in vitrification solution, were introduced dropwise directly into liquid nitrogen. The control group of embryos was cultured in vitro without freezing in a culturing medium in an environment consisting of 95% air and 5% CO2. The developmental capacity of thawed embryos was assessed on the basis of their ability to leave the zona pellucida ('hatching') after three days of in vitro culturing. In the control group 95.1% of embryos 'hatched'. A significantly higher number of embryos that 'hatched' after thawing was observed in the group introduced dropwise directly into liquid nitrogen (60.0%) compared to the group frozen in pipetting 'tips' (37.9%). The group frozen in straws yielded significantly the lowest proportion of 'hatching' embryos (8.1%). These results showed that increasing cooling rates during vitrification of embryos improved their survival.

  8. Progesterone Receptor-Mediated Regulation of N-Acetylneuraminate Pyruvate Lyase (NPL) in Mouse Uterine Luminal Epithelium and Nonessential Role of NPL in Uterine Function

    PubMed Central

    Xiao, Shuo; Li, Rong; Diao, Honglu; Zhao, Fei; Ye, Xiaoqin

    2013-01-01

    N-acetylneuraminate pyruvate lyase (NPL) catalyzes N-acetylneuraminic acid, the predominant sialic acid. Microarray analysis of the periimplantation mouse uterine luminal epithelium (LE) revealed Npl being the most downregulated (35×) gene in the LE upon embryo implantation. In natural pregnant mouse uterus, Npl expression increased 56× from gestation day 0.5 (D0.5) to D2.5. In ovariectomized mouse uterus, Npl was significantly upregulated by progesterone (P4) but downregulated by 17β-estradiol (E2). Progesterone receptor (PR) antagonist RU486 blocked the upregulation of Npl in both preimplantation uterus and P4-treated ovariectomized uterus. Npl was specifically localized in the preimplantation D2.5 and D3.5 uterine LE. Since LE is essential for establishing uterine receptivity, it was hypothesized that NPL might play a critical role in uterine function, especially during embryo implantation. This hypothesis was tested in the Npl (−/−) mice. No significant differences were observed in the numbers of implantation sites on D4.5, gestation periods, litter sizes, and postnatal offspring growth between wild type (WT) and Npl (−/−) females from mating with WT males. Npl (−/−)xNpl (−/−) crosses produced comparable little sizes as that from WTxWT crosses. Comparable mRNA expression levels of several genes involved in sialic acid metabolism were observed in D3.5 uterus and uterine LE between WT and Npl (−/−), indicating no compensatory upregulation in the D3.5 Npl (−/−) uterus and LE. This study demonstrates PR-mediated dynamic expression of Npl in the periimplantation uterus and dispensable role of Npl in uterine function and embryo development. PMID:23741500

  9. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    PubMed Central

    Ding, Jiaxi; Jiang, DeChen; Kurczy, Michael; Nalepka, Jennifer; Dudley, Brian; Merkel, Erin I; Porter, Forbes D; Ewing, Andrew G; Winograd, Nicholas; Burgess, James; Molyneaux, Kathleen

    2008-01-01

    Background Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival. PMID:19117526

  10. Angiogenesis within the developing mouse neural tube is dependent on sonic hedgehog signaling: possible roles of motor neurons.

    PubMed

    Nagase, Takashi; Nagase, Miki; Yoshimura, Kotaro; Fujita, Toshiro; Koshima, Isao

    2005-06-01

    Embryonic morphogenesis of vascular and nervous systems is tightly coordinated, and recent studies revealed that some neurogenetic factors such as Sonic hedgehog (Shh) also exhibit angiogenetic potential. Vascularization within the developing mouse neural tube depends on vessel sprouting from the surrounding vascular plexus. Previous studies implicated possible roles of VEGF/Flk-1 and Angiopoietin-1(Ang-1)/Tie-2 signaling as candidate molecules functioning in this process. Examining gene expressions of these factors at embryonic day (E) 9.5 and 10.5, we unexpectedly found that both VEGF and Ang-1 were expressed in the motor neurons in the ventral neural tube. The motor neurons were indeed located in the close vicinity of the infiltrating vessels, suggesting involvement of motor neurons in the sprouting. To substantiate this possibility, we inhibited induction of the motor neurons in the cultured mouse embryos by cyclopamine, a Shh signaling blocker. The vessel sprouting was dramatically impaired by inhibition of Shh signaling, together with nearly complete loss of the motor neurons. Expression of Ang-1, but not VEGF, within the neural tube was remarkably reduced in the cyclopamine treated embryos. These results suggest that the neural tube angiogenesis is dependent on Shh signaling, and mediated, at least in part, by the Ang-1 positive motor neurons.

  11. Germline competency of parthenogenetic embryonic stem cells from immature oocytes of adult mouse ovary

    PubMed Central

    Liu, Zhong; Hu, Zhe; Pan, Xinghua; Li, Minshu; Togun, Taiwo A.; Tuck, David; Pelizzola, Mattia; Huang, Junjiu; Ye, Xiaoying; Yin, Yu; Liu, Mengyuan; Li, Chao; Chen, Zhisheng; Wang, Fang; Zhou, Lingjun; Chen, Lingyi; Keefe, David L.; Liu, Lin

    2011-01-01

    Parthenogenetic embryonic stem cells (pESCs) have been generated in several mammalian species from parthenogenetic embryos that would otherwise die around mid-gestation. However, previous reports suggest that pESCs derived from in vivo ovulated (IVO) mature oocytes show limited pluripotency, as evidenced by low chimera production, high tissue preference and especially deficiency in germline competence, a critical test for genetic integrity and pluripotency of ESCs. Here, we report efficient generation of germline-competent pESC lines (named as IVM pESCs) from parthenogenetic embryos developed from immature oocytes of adult mouse ovaries following in vitro maturation (IVM) and artificial activation. In contrast, pESCs derived from IVO oocytes show defective germline competence, consistent with previous reports. Further, IVM pESCs resemble more ESCs from fertilized embryos (fESCs) than do IVO pESCs on genome-wide DNA methylation and global protein profiles. In addition, IVM pESCs express higher levels of Blimp1, Lin28 and Stella, relative to fESCs, and in their embryoid bodies following differentiation. This may indicate differences in differentiation potentially to the germline. The mechanisms for acquisition of pluripotency and germline competency of IVM pESCs from immature oocytes remain to be determined. PMID:21239471

  12. Calmodulin binds to inv protein: implication for the regulation of inv function.

    PubMed

    Yasuhiko, Y; Imai, F; Ookubo, K; Takakuwa, Y; Shiokawa, K; Yokoyama, T

    2001-12-01

    Establishment of the left-right asymmetry of internal organs is essential for the normal development of vertebrates. The inv mutant in mice shows a constant reversal of left-right asymmetry and although the inv gene has been cloned, its biochemical and cell biological functions have not been defined. Here, we show that calmodulin binds to mouse inv protein at two sites (IQ1 and IQ2). The binding of calmodulin to the IQ2 site occurs in the absence of Ca(2+) and is not observed in the presence of Ca(2+). Injection of mouse inv mRNA into the right blastomere of Xenopus embryos at the two-cell stage randomized the left-right asymmetry of the embryo and altered the patterns of Xnr-1 and Pitx2 expression. Importantly, inv mRNA that lacked the region encoding the IQ2 site was unable to randomize left-right asymmetry in Xenopus embryos, implying that the IQ2 site is essential for inv to randomize left-right asymmetry in Xenopus. These results suggest that calmodulin binding may regulate inv function. Based on our findings, we propose a model for the regulation of inv function by calcium-calmodulin and discuss its implications.

  13. Maternal Argonaute 2 Is Essential for Early Mouse Development at the Maternal-Zygotic Transition

    PubMed Central

    Lykke-Andersen, Karin; Gilchrist, Michael J.; Grabarek, Joanna B.; Das, Partha; Miska, Eric

    2008-01-01

    Activation of zygotic gene expression in the two-cell mouse embryo is associated with destruction of maternally inherited transcripts, an important process for embryogenesis about which little is understood. We asked whether the Argonaute (Ago)/RNA-induced silencing complex, providing the mRNA “slicer” activity in gene silencing, might contribute to this process. Here we show that Ago2, 3, and 4 transcripts are contributed to the embryo maternally. By systematic knockdown of maternal Ago2, 3, and 4, individually and in combination, we find that only Ago2 is required for development beyond the two-cell stage. Knockdown of Ago2 stabilizes one set of maternal mRNAs and reduces zygotic transcripts of another set of genes. Ago2 is localized in mRNA-degradation P-bodies analogous to those that function in RNAi-like mechanisms in other systems. Profiling the expression of microRNAs throughout preimplantation development identified several candidates that could potentially work with Ago2 to mediate degradation of specific mRNAs. However, their low abundance raises the possibility that other endogenous siRNAs may also participate. Together, our results demonstrate that maternal expression of Ago2 is essential for the earliest stages of mouse embryogenesis and are compatible with the notion that degradation of a proportion of maternal messages involves the RNAi-machinery. PMID:18701707

  14. BMP signaling in the development of the mouse esophagus and forestomach

    PubMed Central

    Rodriguez, Pavel; Da Silva, Susana; Oxburgh, Leif; Wang, Fan; Hogan, Brigid L. M.; Que, Jianwen

    2010-01-01

    The stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26CAG-loxpstoploxp-caBmprIa) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1aflox/flox embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach. PMID:21068065

  15. Distinct spatiotemporal expression of ISM1 during mouse and chick development

    PubMed Central

    Osório, Liliana; Wu, Xuewei; Zhou, Zhongjun

    2014-01-01

    Isthmin 1 (ISM1) constitutes the founder of a new family of secreted proteins characterized by the presence of 2 functional domains: thrombospondin type 1 repeat (TSR1) and adhesion-associated domain in MUC4 and other proteins (AMOP). ISM1 was identified in the frog embryo as a member of the FGF8 synexpression group due to its expression in the brain midbrain–hindbrain boundary (MHB) or isthmus. In zebrafish, ISM1 was described as a WNT- and NODAL-regulated gene. The function of ISM1 remains largely elusive. So far, ISM1 has been described as an angiogenesis inhibitor that has a dual function in endothelial cell survival and cell death. For a better understanding of ISM1 function, we examined its spatiotemporal distribution in mouse and chick using RT-PCR, ISH, and IHC analyses. In the mouse, ISM1 transcripts are found in tissues such as the anterior mesendoderm, paraxial and lateral plate mesoderm, MHB and trunk neural tube, as well as in the somites and dermomyotome. In the newborn and adult, ISM1 is prominently expressed in the lung and brain. In addition to its putative role during embryonic and postnatal development, ISM1 may also be important for organ homeostasis in the adult. In the chick embryo, ISM1 transcripts are strongly detected in the ear, eye, and spinal cord primordia. Remarkable differences in ISM1 spatiotemporal expression were found during mouse and chick development, despite the high homology of ISM1 orthologs in these species. PMID:24675886

  16. Advances in understanding paternally transmitted Chromosomal Abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, F; Sloter, E; Wyrobek, A J

    2001-03-01

    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less

  17. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice.

    PubMed

    Bakker, Elvira R M; Raghoebir, Lalini; Franken, Patrick F; Helvensteijn, Werner; van Gurp, Léon; Meijlink, Frits; van der Valk, Martin A; Rottier, Robbert J; Kuipers, Ernst J; van Veelen, Wendy; Smits, Ron

    2012-09-01

    Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides

    PubMed Central

    Wefers, Benedikt; Meyer, Melanie; Ortiz, Oskar; Hrabé de Angelis, Martin; Hansen, Jens; Wurst, Wolfgang; Kühn, Ralf

    2013-01-01

    The study of genetic disease mechanisms relies mostly on targeted mouse mutants that are derived from engineered embryonic stem (ES) cells. Nevertheless, the establishment of mutant ES cells is laborious and time-consuming, restricting the study of the increasing number of human disease mutations discovered by high-throughput genomic analysis. Here, we present an advanced approach for the production of mouse disease models by microinjection of transcription activator-like effector nucleases (TALENs) and synthetic oligodeoxynucleotides into one-cell embryos. Within 2 d of embryo injection, we created and corrected chocolate missense mutations in the small GTPase RAB38; a regulator of intracellular vesicle trafficking and phenotypic model of Hermansky-Pudlak syndrome. Because ES cell cultures and targeting vectors are not required, this technology enables instant germline modifications, making heterozygous mutants available within 18 wk. The key features of direct mutagenesis by TALENs and oligodeoxynucleotides, minimal effort and high speed, catalyze the generation of future in vivo models for the study of human disease mechanisms and interventions. PMID:23426636

  19. Cytoplasmic asters are required for progression past the first cell cycle in cloned mouse embryos.

    PubMed

    Miki, Hiromi; Inoue, Kimiko; Ogonuki, Narumi; Mochida, Keiji; Nagashima, Hiroshi; Baba, Tadashi; Ogura, Atsuo

    2004-12-01

    Unlike the oocytes of most other animal species, unfertilized murine oocytes contain cytoplasmic asters, which act as microtubule-organizing centers following fertilization. This study examined the role of asters during the first cell cycle of mouse nuclear transfer (NT) embryos. NT was performed by intracytoplasmic injection of cumulus cells. Cytoplasmic asters were localized by staining with an anti-alpha-tubulin antibody. Enucleation of MII oocytes caused no significant change in the number of cytoplasmic asters. The number of asters decreased after transfer of the donor nuclei into these enucleated oocytes, probably because some of the asters participated in the formation of the spindle that anchors the donor chromosomes. The cytoplasmic asters became undetectable within 2 h of oocyte activation, irrespective of the presence or absence of the donor chromosomes. After the standard NT protocol, a spindle-like structure persisted between the pseudopronuclei of these oocytes throughout the pronuclear stage. The asters reappeared shortly before the first mitosis and formed the mitotic spindle. When the donor nucleus was transferred into preactivated oocytes (delayed NT) that were devoid of free asters, the microtubules and microfilaments were distributed irregularly in the ooplasm and formed dense bundles within the cytoplasm. Thereafter, all of the delayed NT oocytes underwent fragmentation and arrested development. Treatment of these delayed NT oocytes with Taxol, which is a microtubule-assembling agent, resulted in the formation of several aster-like structures and reduced fragmentation. Some Taxol-treated oocytes completed the first cell cycle and developed further. This study demonstrates that cytoplasmic asters play a crucial role during the first cell cycle of murine NT embryos. Therefore, in mouse NT, the use of MII oocytes as recipients is essential, not only for chromatin reprogramming as previously reported, but also for normal cytoskeletal organization in reconstructed oocytes.

  20. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    PubMed

    Carracedo, Sergio; Sacher, Frank; Brandes, Gudrun; Braun, Ursula; Leitges, Michael

    2014-01-01

    Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  1. Commonly used fertility drugs, a diet supplement, and stress force AMPK-dependent block of stemness and development in cultured mammalian embryos.

    PubMed

    Bolnick, Alan; Abdulhasan, Mohammed; Kilburn, Brian; Xie, Yufen; Howard, Mindie; Andresen, Paul; Shamir, Alexandra M; Dai, Jing; Puscheck, Elizabeth E; Rappolee, Daniel A

    2016-08-01

    The purpose of the present study is to test whether metformin, aspirin, or diet supplement (DS) BioResponse-3,3'-Diindolylmethane (BR-DIM) can induce AMP-activated protein kinase (AMPK)-dependent potency loss in cultured embryos and whether metformin (Met) + Aspirin (Asa) or BR-DIM causes an AMPK-dependent decrease in embryonic development. The methods used were as follows: culture post-thaw mouse zygotes to the two-cell embryo stage and test effects after 1-h AMPK agonists' (e.g., Met, Asa, BR-DIM, control hyperosmotic stress) exposure on AMPK-dependent loss of Oct4 and/or Rex1 nuclear potency factors, confirm AMPK dependence by reversing potency loss in two-cell-stage embryos with AMPK inhibitor compound C (CC), test whether Met + Asa (i.e., co-added) or DS BR-DIM decreases development of two-cell to blastocyst stage in an AMPK-dependent (CC-sensitive) manner, and evaluate the level of Rex1 and Oct4 nuclear fluorescence in two-cell-stage embryos and rate of two-cell-stage embryo development to blastocysts. Met, Asa, BR-DIM, or hyperosmotic sorbitol stress induces rapid ~50-85 % Rex1 and/or Oct4 protein loss in two-cell embryos. This loss is ~60-90 % reversible by co-culture with AMPK inhibitor CC. Embryo development from two-cell to blastocyst stage is decreased in culture with either Met + Asa or BR-DIM, and this is either >90 or ~60 % reversible with CC, respectively. These experimental designs here showed that Met-, Asa-, BR-DIM-, or sorbitol stress-induced rapid potency loss in two-cell embryos is AMPK dependent as suggested by inhibition of Rex1 and/or Oct4 protein loss with an AMPK inhibitor. The DS BR-DIM or fertility drugs (e.g., Met + Asa) that are used to enhance maternal metabolism to support fertility can also chronically slow embryo growth and block development in an AMPK-dependent manner.

  2. The biology and methodology of assisted reproduction in deer mice (Peromyscus maniculatus).

    PubMed

    Veres, Monika; Duselis, Amanda R; Graft, Audrey; Pryor, William; Crossland, Janet; Vrana, Paul B; Szalai, Gabor

    2012-01-15

    Although laboratory-reared species of the genus Peromyscus-including deer mice-are used as model animals in a wide range of research, routine manipulation of Peromyscus embryogenesis and reproduction has been lagging. The objective of the present study was to optimize conditions for oocyte and/or embryo retrieval and for in vitro culturing. On average, 6.4 oocytes per mouse were recovered when two doses of 15 IU of pregnant mare serum gonadotropin (PMSG) were given 24 h apart, followed by 15 IU of hCG 48 h later. Following this hormone priming, females mated overnight with a fertile male yielded an average of 9.1 two-cell stage embryos. Although two-cell stage embryos developed to 8-cell stage in Potassium Simplex Optimized Medium (KSOM; Millipore-Chemicon, Billerica, MA, USA) in vitro, but not further, embryos recovered at the 8- to 16-cell stages developed into fully expanded blastocysts when cultured in M16 media in vitro. These blastocysts had full potential to develop into late stage fetuses and possibly into live pups. As a result of the present work, all stages of Peromyscus preimplantation development are now obtainable in numbers sufficient for molecular or other analyses. These advances provide the opportunity for routine studies involving embryo transfer (e.g., chimeras, transgenics), and preservation of genetic lines by cryopreservation. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy

    PubMed Central

    Hägerling, René; Pollmann, Cathrin; Andreas, Martin; Schmidt, Christian; Nurmi, Harri; Adams, Ralf H; Alitalo, Kari; Andresen, Volker; Schulte-Merker, Stefan; Kiefer, Friedemann

    2013-01-01

    During mammalian development, a subpopulation of endothelial cells in the cardinal vein (CV) expresses lymphatic-specific genes and subsequently develops into the first lymphatic structures, collectively termed as lymph sacs. Budding, sprouting and ballooning of lymphatic endothelial cells (LECs) have been proposed to underlie the emergence of LECs from the CV, but the exact mechanisms of lymph vessel formation remain poorly understood. Applying selective plane illumination-based ultramicroscopy to entire wholemount-immunostained mouse embryos, we visualized the complete developing vascular system with cellular resolution. Here, we report emergence of the earliest detectable LECs as strings of loosely connected cells between the CV and superficial venous plexus. Subsequent aggregation of LECs resulted in formation of two distinct, previously unidentified lymphatic structures, the dorsal peripheral longitudinal lymphatic vessel (PLLV) and the ventral primordial thoracic duct (pTD), which at later stages formed a direct contact with the CV. Providing new insights into their function, we found vascular endothelial growth factor C (VEGF-C) and the matrix component CCBE1 indispensable for LEC budding and migration. Altogether, we present a significantly more detailed view and novel model of early lymphatic development. PMID:23299940

  4. Clonal analysis identifies hemogenic endothelium as the source of the blood-endothelial common lineage in the mouse embryo

    PubMed Central

    Padrón-Barthe, Laura; Temiño, Susana; Villa del Campo, Cristina; Carramolino, Laura; Isern, Joan

    2014-01-01

    The first blood and endothelial cells of amniote embryos appear in close association in the blood islands of the yolk sac (YS). This association and in vitro lineage analyses have suggested a common origin from mesodermal precursors called hemangioblasts, specified in the primitive streak during gastrulation. Fate mapping and chimera studies, however, failed to provide strong evidence for a common origin in the early mouse YS. Additional in vitro studies suggest instead that mesodermal precursors first generate hemogenic endothelium, which then generate blood cells in a linear sequence. We conducted an in vivo clonal analysis to determine the potential of individual cells in the mouse epiblast, primitive streak, and early YS. We found that early YS blood and endothelial lineages mostly derive from independent epiblast populations, specified before gastrulation. Additionally, a subpopulation of the YS endothelium has hemogenic activity and displays characteristics similar to those found later in the embryonic hemogenic endothelium. Our results show that the earliest blood and endothelial cell populations in the mouse embryo are specified independently, and that hemogenic endothelium first appears in the YS and produces blood precursors with markers related to definitive hematopoiesis. PMID:25139355

  5. Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Larina, Irina V.

    2018-02-01

    Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.

  6. Developmental bias in cleavage-stage mouse blastomeres

    PubMed Central

    Tabansky, Inna; Lenarcic, Alan; Draft, Ryan W.; Loulier, Karine; Keskin, Derin B; Rosains, Jacqueline; Rivera-Feliciano, José; Lichtman, Jeff W.; Livet, Jean; Stern, Joel NH; Sanes, Joshua R.; Eggan, Kevin

    2012-01-01

    Summary Introduction The cleavage stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, as preimplantation genetic diagnosis (PGD) requires removal of blastomeres from the early human embryo. To determine if blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, non-invasive combinatorial fluorescent labeling method for embryonic lineage tracing. Results When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into post-implantation stages, and therefore has relevance for subsequent development. Discussion The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues. PMID:23177476

  7. The murine homeobox gene Msx-3 shows highly restricted expression in the developing neural tube.

    PubMed

    Shimeld, S M; McKay, I J; Sharpe, P T

    1996-04-01

    The mouse homeobox-genes Msx-1 and Msx-2 are expressed in several areas of the developing embryo, including the neural tube, neural crest, facial processes and limb buds. Here we report the characterisation of a third mouse Msx gene, which we designate Msx-3. The embryonic expression of Msx-3 was found to differ from that of Msx-1 and -2 in that it was confined to the dorsal neural tube. In embryos with 5-8 somites a segmental pattern of expression was observed in the hindbrain, with rhombomeres 3 and 5 lacking Msx-3 while other rhombomeres expressed Msx-3. This pattern was transient, however, such that in embryos with 18 or more somites expression was continuous throughout the dorsal hindbrain and anterior dorsal spinal cord. Differentiation of dorsal cell types in the neural tube can be induced by addition of members of the Tgf-beta family. Additionally, Msx-1 and -2 have been shown to be activated by addition of the Tgf-beta family member Bmp-4. To determine if Bmp-4 could activate Msx-3, we incubated embryonic hindbrain explants with exogenous Bmp-4. The dorsal expression of Msx-3 was seen to expand into more ventral regions of the neurectoderm in Bmp-4-treated cultures, implying that Bmp-4 may be able to mimic an in vivo signal that induces Msx-3.

  8. Development of Monozygotic Twin Mouse Embryos from the Time of Blastomere Separation at the Two-Cell Stage to Blastocyst1

    PubMed Central

    Katayama, Mika; Ellersieck, Mark R.; Roberts, R. Michael

    2010-01-01

    The development of blastomeres separated from two-cell stage murine embryos has been compared. Blastomeres were removed from the zona pellucida (ZP) and cultured individually; the twin embryos were compared during their progression to blastocyst in terms of development rate, cell number, morphology, conformation at the four-cell stage, and CDX2 and POU5F1 (also known as OCT4) expression. In general, twin embryos, whether obtained from superovulated or normally bred dams, displayed comparable cell numbers as they advanced. They formed morulae and blastocysts more or less synchronously with each other and with control embryos, although possessing about half of the latter's cell number. Despite this apparent synchrony, the majority of twin blastocysts differed in terms of their relative complements of POU5F1+/CDX2− cells, which represent inner cell mass (ICM), and POU5F1+/CDX2+ cells, which identify trophectoderm (TE). Many, but not all, exhibited a disproportionately small ICM. By contrast, demiembryos retained within their ZP and created by randomly damaging one of the two blastomeres in two-cell stage embryos exhibited a more normal ratio of ICM to TE cells at blastocyst and significantly less variance in ICM cell number. One possible explanation is that ZP-free demiembryos only infrequently adopt the same conformation as their partners, including the favorable tetrahedral form, at the four-cell stage, suggesting that such embryos exhibit a high degree of plasticity with regard to the orientation of their first two cleavage planes and that a significant number likely deviate from paths that provide an optimal geometric progression to blastocyst. These data could explain the difficulty of creating monozygotic twins from two-cell stage embryos. PMID:20181620

  9. Mucin (MUC1) Expression and Function in Prostate Cancer Cells

    DTIC Science & Technology

    2001-09-01

    Interactions at the Cell Surface of Mouse Uterine Epithelial Cells and Periimplantation -Stage Embryos. Trophoblast Res., 4:211-241, 1990. 37. Dutt...and Julian, J. Heparan Sulfate Proteoglycan Expression by Periimplantation Stage Embryos. Dev. Biol. 155:97-106,1993. 56. Rohde, L.H., and Carson...Modulators of Embryo-Uterine Epithelial Cell Attachment. In: S.K. Dey (ed.), Molecular and Cellular Aspects of Periimplantation Processes, Springer

  10. The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but Plays a Nonessential Role in the Developing Mouse Embryo

    PubMed Central

    Bogani, Debora; Morgan, Marc A. J.; Nelson, Andrew C.; Costello, Ita; McGouran, Joanna F.; Kessler, Benedikt M.

    2013-01-01

    Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal. PMID:23918801

  11. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein.

    PubMed

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-07-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.

  12. Impaired Mitotic Progression and Preimplantation Lethality in Mice Lacking OMCG1, a New Evolutionarily Conserved Nuclear Protein†

    PubMed Central

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-01-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037

  13. Reciprocal Expression of lin-41 and the microRNAs let-7 and mir-125 During Mouse Embryogenesis

    PubMed Central

    Schulman, Betsy R. Maller; Esquela-Kerscher, Aurora; Slack, Frank J.

    2008-01-01

    In C. elegans, heterochronic genes control the timing of cell fate determination during development. Two heterochronic genes, let-7 and lin-4, encode microRNAs (miRNAs) that down-regulate a third heterochronic gene lin-41 by binding to complementary sites in its 3’UTR. let-7 and lin-4 are conserved in mammals. Here we report the cloning and sequencing of mammalian lin-41 orthologs. We find that mouse and human lin-41 genes contain predicted conserved complementary sites for let-7 and the lin-4 ortholog, mir-125, in their 3’UTRs. Mouse lin-41 (Mlin-41) is temporally expressed in developing mouse embryos, most dramatically in the limb buds. Mlin-41 is down-regulated during mid-embryogenesis at the time when mouse let-7c and mir-125 RNA levels are up-regulated. Our results suggest that mammalian lin-41 is temporally regulated by miRNAs in order to direct key developmental events such as limb formation. PMID:16247770

  14. Raman spectroscopy analysis of differences in composition of spent culture media of in vitro cultured preimplantation embryos isolated from normal and fat mice dams.

    PubMed

    Fabian, Dušan; Kačmarová, Martina; Kubandová, Janka; Čikoš, Štefan; Koppel, Juraj

    2016-06-01

    The aim of the present study was to compare overall patterns of metabolic activity of in vitro cultured preimplantation embryos isolated from normal and fat mice dams by means of non-invasive profiling of spent culture media using Raman spectroscopy. To produce females with two different types of body condition (normal and fat), a previously established two-generation model was used, based on overfeeding of experimental mice during prenatal and early postnatal development. Embryos were isolated from spontaneously ovulating and naturally fertilized dams at the 2-cell stage of development and cultured to the blastocyst stage in synthetic oviductal medium KSOMaa. Embryos from fat mice (displaying significantly elevated body weight and fat) showed similar developmental capabilities in vitro as embryos isolated from normal control dams (displaying physiological body weight and fat). The results show that alterations in the composition of culture medium caused by the presence of developing mouse preimplantation embryos can be detected using Raman spectroscopy. Metabolic activity of embryos was reflected in evident changes in numerous band intensities in the 1620-1690cm(-1) (amide I) region and in the 1020-1140cm(-1) region of the Raman spectrum for KSOMaa. Moreover, multivariate analysis of spectral data proved that the composition of proteins and other organic compounds in spent samples obtained after the culture of embryos isolated from fat dams was different from that in spent samples obtained after the culture of embryos from control dams. This study demonstrates that metabolic activity of cultured preimplantation embryos might depend on the body condition of their donors. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Quantitative analyses for elucidating mechanisms of cell fate commitment in the mouse blastocyst

    NASA Astrophysics Data System (ADS)

    Saiz, Néstor; Kang, Minjung; Puliafito, Alberto; Schrode, Nadine; Xenopoulos, Panagiotis; Lou, Xinghua; Di Talia, Stefano; Hadjantonakis, Anna-Katerina

    2015-03-01

    In recent years we have witnessed a shift from qualitative image analysis towards higher resolution, quantitative analyses of imaging data in developmental biology. This shift has been fueled by technological advances in both imaging and analysis software. We have recently developed a tool for accurate, semi-automated nuclear segmentation of imaging data from early mouse embryos and embryonic stem cells. We have applied this software to the study of the first lineage decisions that take place during mouse development and established analysis pipelines for both static and time-lapse imaging experiments. In this paper we summarize the conclusions from these studies to illustrate how quantitative, single-cell level analysis of imaging data can unveil biological processes that cannot be revealed by traditional qualitative studies.

  16. Assessment of Mouse Germinal Vesicle Stage Oocyte Quality by Evaluating the Cumulus Layer, Zona Pellucida, and Perivitelline Space

    PubMed Central

    Liu, Ying-Lei; Chen, Ying; Zhou, Cheng-Jie; Wu, Sha-Na; Shen, Jiang-Peng; Liang, Cheng-Guang

    2014-01-01

    To improve the outcome of assisted reproductive technology (ART) for patients with ovulation problems, it is necessary to retrieve and select germinal vesicle (GV) stage oocytes with high developmental potential. Oocytes with high developmental potential are characterized by their ability to undergo proper maturation, fertilization, and embryo development. In this study, we analyzed morphological traits of GV stage mouse oocytes, including cumulus cell layer thickness, zona pellucida thickness, and perivitelline space width. Then, we assessed the corresponding developmental potential of each of these oocytes and found that it varies across the range measured for each morphological trait. Furthermore, by manipulating these morphological traits in vitro, we were able to determine the influence of morphological variation on oocyte developmental potential. Manually altering the thickness of the cumulus layer showed strong effects on the fertilization and embryo development potentials of oocytes, whereas manipulation of zona pellucida thickness effected the oocyte maturation potential. Our results provide a systematic detailed method for selecting GV stage oocytes based on a morphological assessment approach that would benefit for several downstream ART applications. PMID:25144310

  17. Cubilin, a high affinity receptor for fibroblast growth factor 8, is required for cell survival in the developing vertebrate head.

    PubMed

    Cases, Olivier; Perea-Gomez, Aitana; Aguiar, Diego P; Nykjaer, Anders; Amsellem, Sabine; Chandellier, Jacqueline; Umbhauer, Muriel; Cereghini, Silvia; Madsen, Mette; Collignon, Jérôme; Verroust, Pierre; Riou, Jean-François; Creuzet, Sophie E; Kozyraki, Renata

    2013-06-07

    Cubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head. We report that Cubn is a novel, interspecies-conserved Fgf receptor. Epiblast-specific inactivation of Cubn in the mouse embryo as well as Cubn silencing in the anterior head of frog or the cephalic neural crest of chick embryos show that Cubn is required during early somite stages to convey survival signals in the developing vertebrate head. Surface plasmon resonance analysis reveals that fibroblast growth factor 8 (Fgf8), a key mediator of cell survival, migration, proliferation, and patterning in the developing head, is a high affinity ligand for Cubn. Cell uptake studies show that binding to Cubn is necessary for the phosphorylation of the Fgf signaling mediators MAPK and Smad1. Although Cubn may not form stable ternary complexes with Fgf receptors (FgfRs), it acts together with and/or is necessary for optimal FgfR activity. We propose that plasma membrane binding of Fgf8, and most likely of the Fgf8 family members Fgf17 and Fgf18, to Cubn improves Fgf ligand endocytosis and availability to FgfRs, thus modulating Fgf signaling activity.

  18. 8,9-DIHYDROXY-8,9-DIHYDRODIBENZO[A,L]PYRENE IS A POTENT MORPHOLOGICAL CELL-TRANSFORMING AGENT IN C3H10T1/2C18 MOUSE EMBRYO FIBROBLASTS IN THE ABSENCE OF DETECTABLE STABLE COVALENT DNA ADDUCTS

    EPA Science Inventory

    The comparative genotoxic effects of racemic trans-8,9dihydroxy-8,9-dihydrodibenzo[a,l]pyrene (trans- DB[a,l]P8,9-diol), the metabolic K-region dihydrodiol of dibenzo[a,l] pyrene (DB[a,l]P) (dibenzo[def,p]chrysene) and DB[a,l]P in transformable mouse embryo C3HIOT1/2C18 (C3HIOT1/...

  19. A Novel Use of Three-dimensional High-frequency Ultrasonography for Early Pregnancy Characterization in the Mouse.

    PubMed

    Peavey, Mary C; Reynolds, Corey L; Szwarc, Maria M; Gibbons, William E; Valdes, Cecilia T; DeMayo, Francesco J; Lydon, John P

    2017-10-24

    High-frequency ultrasonography (HFUS) is a common method to non-invasively monitor the real-time development of the human fetus in utero. The mouse is routinely used as an in vivo model to study embryo implantation and pregnancy progression. Unfortunately, such murine studies require pregnancy interruption to enable follow-up phenotypic analysis. To address this issue, we used three-dimensional (3-D) reconstruction of HFUS imaging data for early detection and characterization of murine embryo implantation sites and their individual developmental progression in utero. Combining HFUS imaging with 3-D reconstruction and modeling, we were able to accurately quantify embryo implantation site number as well as monitor developmental progression in pregnant C57BL6J/129S mice from 5.5 days post coitus (d.p.c.) through to 9.5 d.p.c. with the use of a transducer. Measurements included: number, location, and volume of implantation sites as well as inter-implantation site spacing; embryo viability was assessed by cardiac activity monitoring. In the immediate post-implantation period (5.5 to 8.5 d.p.c.), 3-D reconstruction of the gravid uterus in both mesh and solid overlay format enabled visual representation of the developing pregnancies within each uterine horn. As genetically engineered mice continue to be used to characterize female reproductive phenotypes derived from uterine dysfunction, this method offers a new approach to detect, quantify, and characterize early implantation events in vivo. This novel use of 3-D HFUS imaging demonstrates the ability to successfully detect, visualize, and characterize embryo-implantation sites during early murine pregnancy in a non-invasive manner. The technology offers a significant improvement over current methods, which rely on the interruption of pregnancies for gross tissue and histopathologic characterization. Here we use a video and text format to describe how to successfully perform ultrasounds of early murine pregnancy to generate reliable and reproducible data with reconstruction of the uterine form in mesh and solid 3-D images.

  20. CUL4B ubiquitin ligase in mouse development: a model for human X-linked mental retardation syndrome?

    PubMed

    Zhao, Yongchao; Sun, Yi

    2012-08-01

    CUL4B, a member of the cullin-RING ubiquitin ligase family, is frequently mutated in X-linked mental retardation (XLMR) patients. The study by Liu et al. showed that Cul4b plays an essential developmental role in the extra-embryonic tissues, while it is dispensable in the embryo proper during mouse embryogenesis. Viable Cul4b-null mice provide the first animal model to study neuronal and behavioral deficiencies seen in human CUL4B XLMR patients.

  1. Estrogen receptor α is required for oviductal transport of embryos

    PubMed Central

    Li, Shuai; O’Neill, Sofia R. S.; Zhang, Yong; Holtzman, Michael J.; Takemaru, Ken-Ichi; Korach, Kenneth S.; Winuthayanon, Wipawee

    2017-01-01

    Newly fertilized embryos spend the first few days within the oviduct and are transported to the uterus, where they implant onto the uterine wall. An implantation of the embryo before reaching the uterus could result in ectopic pregnancy and lead to maternal death. Estrogen is necessary for embryo transport in mammals; however, the mechanism involved in estrogen-mediated cellular function within the oviduct remains unclear. In this study, we show in mouse models that ciliary length and beat frequency of the oviductal epithelial cells are regulated through estrogen receptor α (ESR1) but not estrogen receptor β (ESR2). Gene profiling indicated that transcripts in the WNT/β-catenin (WNT/CTNNB1) signaling pathway were regulated by estrogen in mouse oviduct, and inhibition of this pathway in a whole oviduct culture system resulted in a decreased embryo transport distance. However, selective ablation of CTNNB1 from the oviductal ciliated cells did not affect embryo transport, possibly because of a compensatory mechanism via intact CTNNB1 in the adjacent secretory cells. In summary, we demonstrated that disruption of estrogen signaling in oviductal epithelial cells alters ciliary function and impairs embryo transport. Therefore, our findings may provide a better understanding of etiology of the ectopic pregnancy that is associated with alteration of estrogen signals.—Li, S., O’Neill, S. R. S., Zhang, Y., Holtzman, M. J., Takemaru, K.-I., Korach, K. S., Winuthayanon, W. Estrogen receptor α is required for oviductal transport of embryos. PMID:28082352

  2. Live imaging of fluorescent proteins in chordate embryos: from ascidians to mice.

    PubMed

    Passamaneck, Yale J; Di Gregorio, Anna; Papaioannou, Virginia E; Hadjantonakis, Anna-Katerina

    2006-03-01

    Although we have advanced in our understanding of the molecular mechanisms intrinsic to the morphogenesis of chordate embryos, the question of how individual developmental events are integrated to generate the final morphological form is still unresolved. Microscopic observation is a pivotal tool in developmental biology, both for determining the normal course of events and for contrasting this with the results of experimental and pathological perturbations. Since embryonic development takes place in three dimensions over time, to fully understand the events required to build an embryo we must investigate embryo morphogenesis in multiple dimensions in situ. Recent advances in the isolation of naturally fluorescent proteins, and the refinement of techniques for in vivo microscopy offer unprecedented opportunities to study the cellular and molecular events within living, intact embryos using optical imaging. These technologies allow direct visual access to complex events as they happen in their native environment, and thus provide greater insights into cell behaviors operating during embryonic development. Since most fluorescent protein probes and modes of data acquisition are common across species, we have chosen the mouse and the ascidian, two model organisms at opposite ends of the chordate clade, to review the use of some of the current genetically-encoded fluorescent proteins and their visualization in vivo in living embryos for the generation of high-resolution imaging data. Microsc. Res. Tech. 69:160-167, 2006. (c) 2006 Wiley-Liss, Inc.

  3. A Mouse Geneticist’s Practical Guide to CRISPR Applications

    PubMed Central

    Singh, Priti; Schimenti, John C.; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  4. Localization of trefoil factor family peptide 3 (TFF3) in epithelial tissues originating from the three germ layers of developing mouse embryo.

    PubMed

    Bijelić, Nikola; Belovari, Tatjana; Tolušić Levak, Maja; Baus Lončar, Mirela

    2017-08-20

    Trefoil factor family (TFF) peptides are involved in the maintenance of epithelial integrity and epithelial restitution. Mature epithelial tissues originate from different embryonic germ layers. The objective of this research was to explore the presence and localization of TFF3 peptide in mouse embryonic epithelia and to examine if the occurrence of TFF3 peptide is germ layer-dependent. Mouse embryos (14-18 days old) were fixed in 4% paraformaldehyde and embedded in paraffin. Immunohistochemistry was performed with affinity purified rabbit anti-TFF3 antibody, goat anti-rabbit biotinylated secondary antibody and streptavidin-horseradish peroxidase, followed by 3,3'-diaminobenzidine. TFF3 peptide was present in the gastric and intestinal mucosa, respiratory mucosa in the upper and lower airways, pancreas, kidney tubules, epidermis, and oral cavity. The presence and localization of TFF3 peptide was associated with the embryonic stage and tissue differentiation. TFF3 peptide distribution specific to the germ layers was not observed. The role of TFF3 peptide in cell migration and differentiation, immune response, and apoptosis might be associated with specific embryonic epithelial cells. TFF3 peptide may also be considered as a marker for mucosal maturation.

  5. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos

    PubMed Central

    Auclair, Ghislain; Borgel, Julie; Sanz, Lionel A.; Vallet, Judith; Guibert, Sylvain; Dumas, Michael; Cavelier, Patricia; Girardot, Michael; Forné, Thierry; Feil, Robert; Weber, Michael

    2016-01-01

    The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development. PMID:26576615

  6. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells.

    PubMed

    Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou

    2017-08-01

    Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA methylation dynamics at single-base resolution in early mouse embryos and provides new insights into the heterogeneous yet highly ordered features of epigenomic reprogramming during this process.

  7. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells

    PubMed Central

    Guo, Fan; Li, Lin; Li, Jingyun; Wu, Xinglong; Hu, Boqiang; Zhu, Ping; Wen, Lu; Tang, Fuchou

    2017-01-01

    Single-cell epigenome sequencing techniques have recently been developed. However, the combination of different layers of epigenome sequencing in an individual cell has not yet been achieved. Here, we developed a single-cell multi-omics sequencing technology (single-cell COOL-seq) that can analyze the chromatin state/nucleosome positioning, DNA methylation, copy number variation and ploidy simultaneously from the same individual mammalian cell. We used this method to analyze the reprogramming of the chromatin state and DNA methylation in mouse preimplantation embryos. We found that within < 12 h of fertilization, each individual cell undergoes global genome demethylation together with the rapid and global reprogramming of both maternal and paternal genomes to a highly opened chromatin state. This was followed by decreased openness after the late zygote stage. Furthermore, from the late zygote to the 4-cell stage, the residual DNA methylation is preferentially preserved on intergenic regions of the paternal alleles and intragenic regions of maternal alleles in each individual blastomere. However, chromatin accessibility is similar between paternal and maternal alleles in each individual cell from the late zygote to the blastocyst stage. The binding motifs of several pluripotency regulators are enriched at distal nucleosome depleted regions from as early as the 2-cell stage. This indicates that the cis-regulatory elements of such target genes have been primed to an open state from the 2-cell stage onward, long before pluripotency is eventually established in the ICM of the blastocyst. Genes may be classified into homogeneously open, homogeneously closed and divergent states based on the chromatin accessibility of their promoter regions among individual cells. This can be traced to step-wise transitions during preimplantation development. Our study offers the first single-cell and parental allele-specific analysis of the genome-scale chromatin state and DNA methylation dynamics at single-base resolution in early mouse embryos and provides new insights into the heterogeneous yet highly ordered features of epigenomic reprogramming during this process. PMID:28621329

  8. The fibronectin leucine-rich repeat transmembrane protein Flrt2 is required in the epicardium to promote heart morphogenesis

    PubMed Central

    Müller, Pari-Sima; Schulz, Ramona; Maretto, Silvia; Costello, Ita; Srinivas, Shankar; Bikoff, Elizabeth; Robertson, Elizabeth

    2011-01-01

    The epicardium, the outermost tissue layer that envelops the developing heart and provides essential trophic signals for the myocardium, derives from the pro-epicardial organ (PEO). Two of the three members of the Flrt family of transmembrane glycoproteins, Flrt2 and Flrt3, are strongly co-expressed in the PEO. However, beginning at around day 10 of mouse development, following attachment and outgrowth, Flrt3 is selectively downregulated, and only Flrt2 is exclusively expressed in the fully delaminated epicardium. The present gene-targeting experiments demonstrate that mouse embryos lacking Flrt2 expression arrest at mid-gestation owing to cardiac insufficiency. The defects in integrity of the epicardial sheet and disturbed organization of the underlying basement membrane closely resemble those described in Flrt3-deficient embryos that fail to maintain cell-cell contacts in the anterior visceral endoderm (AVE) signalling centre that normally establishes the A-P axis. Using in vitro and in vivo reconstitution assays, we demonstrate that Flrt2 and Flrt3 are functionally interchangeable. When acting alone, either of these proteins is sufficient to rescue functional activities in the AVE and the developing epicardium. PMID:21350012

  9. Aberrant behavior of mouse embryo development after blastomere biopsy as observed through time-lapse cinematography.

    PubMed

    Ugajin, Tomohisa; Terada, Yukihiro; Hasegawa, Hisataka; Velayo, Clarissa L; Nabeshima, Hiroshi; Yaegashi, Nobuo

    2010-05-15

    To analyze whether blastomere biopsy affects early embryonal growth as observed through time-lapse cinematography. Comparative prospective study between embryos in which a blastomere was removed and embryos in which a blastomere was not removed. An experimental laboratory of the university. We calculated the time between blastocele formation and the end of hatching, the time between the start and end of hatching, the number of contractions and expansions between blastocyst formation and the end of hatching, and the maximum diameter of the expanded blastocyst. In blastomere removal embryos, compaction began at the six-cell stage instead of at the eight-cell stage. We also found that hatching was delayed in these embryos as compared with matched controls. Moreover, the frequency of contraction and expansion movements after blastocyst formation was significantly higher in the blastomere removal group as compared with the control group. Finally, the maximum diameter of the expanded blastocyst just before hatching was not significantly different between both groups. These findings suggested that blastomere removal has an adverse effect on embryonic development around the time of hatching. Thus, future developments in preimplantation genetic diagnosis and screening should involve further consideration and caution in light of the influence of blastomere biopsy on embryonal growth. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Cochleovestibular nerve development is integrated with migratory neural crest cells

    PubMed Central

    Sandell, Lisa L.; Butler Tjaden, Naomi E.; Barlow, Amanda J.; Trainor, Paul A.

    2015-01-01

    The cochleovestibular (CV) nerve, which connects the inner ear to the brain, is the nerve that enables the senses of hearing and balance. The aim of this study was to document the morphological development of the mouse CV nerve with respect to the two embryonic cells types that produce it, specifically, the otic vesicle-derived progenitors that give rise to neurons, and the neural crest cell (NCC) progenitors that give rise to glia. Otic tissues of mouse embryos carrying NCC lineage reporter transgenes were whole mount immunostained to identify neurons and NCC. Serial optical sections were collected by confocal microscopy and were compiled to render the three dimensional (3D) structure of the developing CV nerve. Spatial organization of the NCC and developing neurons suggest that neuronal and glial populations of the CV nerve develop in tandem from early stages of nerve formation. NCC form a sheath surrounding the CV ganglia and central axons. NCC are also closely associated with neurites projecting peripherally during formation of the vestibular and cochlear nerves. Physical ablation of NCC in chick embryos demonstrates that survival or regeneration of even a few individual NCC from ectopic positions in the hindbrain results in central projection of axons precisely following ectopic pathways made by regenerating NCC. PMID:24252775

  11. The effects of triclosan on pluripotency factors and development of mouse embryonic stem cells and zebrafish.

    PubMed

    Chen, Xiaojiao; Xu, Bo; Han, Xiumei; Mao, Zhilei; Chen, Minjian; Du, Guizhen; Talbot, Prue; Wang, Xinru; Xia, Yankai

    2015-04-01

    Triclosan (TCS) poses potential risks to reproduction and development due to its endocrine-disrupting properties. However, the mechanism of TCS's effects on early embryonic development is little known. Embryonic stem cells (ESC) and zebrafish embryos provide valuable models for testing the toxic effects of environmental chemicals on early embryogenesis. In this study, mouse embryonic stem cells (mESC) were acutely exposed to TCS for 24 h, and general cytotoxicity and the effect of TCS on pluripotency were then evaluated. In addition, zebrafish embryos were exposed to TCS from 2- to 24-h post-fertilization (hpf), and their morphology was evaluated. In mESC, alkaline phosphatase staining was significantly decreased after treatment with the highest concentration of TCS (50 μM). Although the expression levels of Sox2 mRNA were not changed, the mRNA levels of Oct4 and Nanog in TCS-treated groups were significantly decreased compared to controls. In addition, the protein levels of Oct4, Sox2 and Nanog were significantly reduced in response to TCS treatment. MicroRNA (miR)-134, an expression inhibitor of pluripotency markers, was significantly increased in TCS-treated mESC. In zebrafish experiments, after 24 hpf of treatment, the controls had developed to the late stage of somitogenesis, while embryos exposed to 300 μg/L of TCS were still at the early stage of somitogenesis, and three genes (Oct4, Sox2 and Nanog) were upregulated in treated groups when compared with the controls. The two models demonstrated that TCS may affect early embryonic development by disturbing the expression of the pluripotency markers (Oct4, Sox2 and Nanog).

  12. Bisphenol A Exposure Disrupts Genomic Imprinting in the Mouse

    PubMed Central

    Susiarjo, Martha; Sasson, Isaac; Mesaros, Clementina; Bartolomei, Marisa S.

    2013-01-01

    Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. PMID:23593014

  13. Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation

    PubMed Central

    Guo, Ailan; Gu, Hongbo; Zhou, Jing; Mulhern, Daniel; Wang, Yi; Lee, Kimberly A.; Yang, Vicky; Aguiar, Mike; Kornhauser, Jon; Jia, Xiaoying; Ren, Jianmin; Beausoleil, Sean A.; Silva, Jeffrey C.; Vemulapalli, Vidyasiri; Bedford, Mark T.; Comb, Michael J.

    2014-01-01

    Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins. PMID:24129315

  14. Expression of the proliferation marker Ki-67 during early mouse development.

    PubMed

    Winking, H; Gerdes, J; Traut, W

    2004-01-01

    In somatic tissues, the mouse Ki-67 protein (pKi-67) is expressed in proliferating cells only. Depending on the stage of the cell cycle, pKi-67 is associated with different nuclear domains: with euchromatin as part of the perichromosomal layer, with centromeric heterochromatin, and with the nucleolus. In gametes, sex-specific expression is evident. Mature MII oocytes contain pKi-67, whereas pKi-67 is not detectable in mature sperm. We investigated the re-establishment of the cell cycle-dependent distribution of pKi-67 during early mouse development. After fertilization, male and female pronuclei exhibited very little or no pKi-67, while polar bodies were pKi-67 positive. Towards the end of the first cell cycle, prophase chromosomes of male and female pronuclei simultaneously got decorated with pKi-67. In 2-cell embryos, the distribution pattern changed, presumably depending on the progress of development of the embryo, from a distribution all over the nucleus to a preferential location in the nucleolus precursor bodies (NPBs). From the 4-cell stage onwards, pKi-67 showed the regular nuclear relocations known from somatic tissues: during mitosis the protein was found covering the chromosome arms as a constituent of the perichromosomal layer, in early G1 it was distributed in the whole nucleus, and for the rest of the cell cycle it was associated with NPBs or with the nucleolus. Copyright 2004 S. Karger AG, Basel

  15. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  16. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis.

    PubMed

    Baltzinger, Mireille; Ori, Michela; Pasqualetti, Massimo; Nardi, Irma; Rijli, Filippo M

    2005-12-01

    The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development. Copyright 2005 Wiley-Liss, Inc.

  18. Intracellular mediators of transforming growth factor beta superfamily signaling localize to endosomes in chicken embryo and mouse lenses in vivo.

    PubMed

    Rajagopal, Ramya; Ishii, Shunsuke; Beebe, David C

    2007-06-25

    Endocytosis is a key regulator of growth factor signaling pathways. Recent studies showed that the localization to endosomes of intracellular mediators of growth factor signaling may be required for their function. Although there is substantial evidence linking endocytosis and growth factor signaling in cultured cells, there has been little study of the endosomal localization of signaling components in intact tissues or organs. Proteins that are downstream of the transforming growth factor-beta superfamily signaling pathway were found on endosomes in chicken embryo and postnatal mouse lenses, which depend on signaling by members of the TGFbeta superfamily for their normal development. Phosphorylated Smad1 (pSmad1), pSmad2, Smad4, Smad7, the transcriptional repressors c-Ski and TGIF and the adapter molecules Smad anchor for receptor activation (SARA) and C184M, localized to EEA-1- and Rab5-positive vesicles in chicken embryo and/or postnatal mouse lenses. pSmad1 and pSmad2 also localized to Rab7-positive late endosomes. Smad7 was found associated with endosomes, but not caveolae. Bmpr1a conditional knock-out lenses showed decreased nuclear and endosomal localization of pSmad1. Many of the effectors in this pathway were distributed differently in vivo from their reported distribution in cultured cells. Based on the findings reported here and data from other signaling systems, we suggest that the localization of activated intracellular mediators of the transforming growth factor-beta superfamily to endosomes is important for the regulation of growth factor signaling.

  19. Studies of teratomas in mice: possibilities for the future production of animal models.

    PubMed Central

    Lehman, J. M.

    1980-01-01

    The murine teratoma-teratocarcinoma has become an interesting model for the study of neoplastic transformation, developmental biology, and possibly a useful system for genetic studies. These tumors arise spontaneously in 129 strain mice and can be induced in other strains by transplanting early embryos or portions of embryos into extrauterine sites. The majority of these tumors are benign, but some are capable of transplantation due to the presence of the stem cell, embryonal carcinoma, which is a multipotential cell able to proliferate and also differentiate into tissues and cell types representative of all the embryonic germ layers. It has been elegantly shown by transplantation of embryonal carcinoma cells into blastocysts which are then placed into a pseudopregnant mouse that a normal mouse is obtained composed of cells from the host blastocyst and also cells from the malignant embryonal carcinoma. Therefore, under this set of circumstances, embryonal carcinoma cells are induced to functionally differentiate into multiple cell and tissue types which are benign and able to contribute to the development of a mouse. The adaptation of the embryonal carcinoma cell to tissue culture has allowed the manipulation of these cells with subsequent selection of mutant cells which can be further transplanted into blastocysts to obtain a mouse which contains these mutant cells. If the mutant cells have populated the germ line, it may be possible to obtain a stock of mice with the lesion present in all cells. This system may be exploitable for studies in neoplasia, developmental biology, and with proper selection procedures, allow the development of new genetic strains of mice. PMID:7457573

  20. A mutation in the tuft mouse disrupts TET1 activity and alters the expression of genes that are crucial for neural tube closure.

    PubMed

    Fong, Keith S K; Hufnagel, Robert B; Khadka, Vedbar S; Corley, Michael J; Maunakea, Alika K; Fogelgren, Ben; Ahmed, Zubair M; Lozanoff, Scott

    2016-05-01

    Genetic variations affecting neural tube closure along the head result in malformations of the face and brain. Neural tube defects (NTDs) are among the most common birth defects in humans. We previously reported a mouse mutant called tuft that arose spontaneously in our wild-type 3H1 colony. Adult tuft mice present midline craniofacial malformations with or without an anterior cephalocele. In addition, affected embryos presented neural tube closure defects resulting in insufficient closure of the anterior neuropore or exencephaly. Here, through whole-genome sequencing, we identified a nonsense mutation in the Tet1 gene, which encodes a methylcytosine dioxygenase (TET1), co-segregating with the tuft phenotype. This mutation resulted in premature termination that disrupts the catalytic domain that is involved in the demethylation of cytosine. We detected a significant loss of TET enzyme activity in the heads of tuft embryos that were homozygous for the mutation and had NTDs. RNA-Seq transcriptome analysis indicated that multiple gene pathways associated with neural tube closure were dysregulated in tuft embryo heads. Among them, the expressions of Cecr2, Epha7 and Grhl2 were significantly reduced in some embryos presenting neural tube closure defects, whereas one or more components of the non-canonical WNT signaling pathway mediating planar cell polarity and convergent extension were affected in others. We further show that the recombinant mutant TET1 protein was capable of entering the nucleus and affected the expression of endogenous Grhl2 in IMCD-3 (inner medullary collecting duct) cells. These results indicate that TET1 is an epigenetic determinant for regulating genes that are crucial to closure of the anterior neural tube and its mutation has implications to craniofacial development, as presented by the tuft mouse. © 2016. Published by The Company of Biologists Ltd.

  1. The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity

    PubMed Central

    Hanai, Jun-ichi; Cao, Peirang; Tanksale, Preeti; Imamura, Shintaro; Koshimizu, Eriko; Zhao, Jinghui; Kishi, Shuji; Yamashita, Michiaki; Phillips, Paul S.; Sukhatme, Vikas P.; Lecker, Stewart H.

    2007-01-01

    Statins inhibit HMG-CoA reductase, a key enzyme in cholesterol synthesis, and are widely used to treat hypercholesterolemia. These drugs can lead to a number of side effects in muscle, including muscle fiber breakdown; however, the mechanisms of muscle injury by statins are poorly understood. We report that lovastatin induced the expression of atrogin-1, a key gene involved in skeletal muscle atrophy, in humans with statin myopathy, in zebrafish embryos, and in vitro in murine skeletal muscle cells. In cultured mouse myotubes, atrogin-1 induction following lovastatin treatment was accompanied by distinct morphological changes, largely absent in atrogin-1 null cells. In zebrafish embryos, lovastatin promoted muscle fiber damage, an effect that was closely mimicked by knockdown of zebrafish HMG-CoA reductase. Moreover, atrogin-1 knockdown in zebrafish embryos prevented lovastatin-induced muscle injury. Finally, overexpression of PGC-1α, a transcriptional coactivator that induces mitochondrial biogenesis and protects against the development of muscle atrophy, dramatically prevented lovastatin-induced muscle damage and abrogated atrogin-1 induction both in fish and in cultured mouse myotubes. Collectively, our human, animal, and in vitro findings shed light on the molecular mechanism of statin-induced myopathy and suggest that atrogin-1 may be a critical mediator of the muscle damage induced by statins. PMID:17992259

  2. Composition of single-step media used for human embryo culture.

    PubMed

    Morbeck, Dean E; Baumann, Nikola A; Oglesbee, Devin

    2017-04-01

    To determine compositions of commercial single-step culture media and test with a murine model whether differences in composition are biologically relevant. Experimental laboratory study. University-based laboratory. Inbred female mice were superovulated and mated with outbred male mice. Amino acid, organic acid, and ions content were determined for single-step culture media: CSC, Global, G-TL, and 1-Step. To determine whether differences in composition of these media are biologically relevant, mouse one-cell embryos were cultured for 96 hours in each culture media at 5% and 20% oxygen in a time-lapse incubator. Compositions of four culture media were analyzed for concentrations of 30 amino acids, organic acids, and ions. Blastocysts at 96 hours of culture and cell cycle timings were calculated, and experiments were repeated in triplicate. Of the more than 30 analytes, concentrations of glucose, lactate, pyruvate, amino acids, phosphate, calcium, and magnesium varied in concentrations. Mouse embryos were differentially affected by oxygen in G-TL and 1-Step. Four single-step culture media have compositions that vary notably in pyruvate, lactate, and amino acids. Blastocyst development was affected by culture media and its interaction with oxygen concentration. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Impaired receptivity and decidualization in DHEA-induced PCOS mice.

    PubMed

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-12-07

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study.

  4. Impaired receptivity and decidualization in DHEA-induced PCOS mice

    PubMed Central

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-01-01

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study. PMID:27924832

  5. Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse.

    PubMed

    Lee, Jeffrey D; Anderson, Kathryn V

    2008-12-01

    Establishment of left-right asymmetry in the mouse embryo depends on leftward laminar fluid flow in the node, which initiates a signaling cascade that is confined to the left side of the embryo. Leftward fluid flow depends on two cellular processes: motility of the cilia that generate the flow and morphogenesis of the node, the structure where the cilia reside. Here, we provide an overview of the current understanding and unresolved questions about the regulation of ciliary motility and node structure. Analysis of mouse mutants has shown that the motile cilia must have a specific structure and length, and that they must point posteriorly to generate the necessary leftward fluid flow. However, the precise structure of the motile cilia is not clear and the mechanisms that position cilia on node cells have not been defined. The mouse node is a teardrop-shaped pit at the distal tip of the early embryo, but the morphogenetic events that create the mature node from cells derived from the primitive streak are only beginning to be characterized. Recent live imaging experiments support earlier scanning electron microscopy (SEM) studies and show that node assembly is a multi-step process in which clusters of node precursors appear on the embryo surface as overlying endoderm cells are removed. We present additional SEM and confocal microscopy studies that help define the transition stages during node morphogenesis. After the initiation of left-sided signaling, the notochordal plate, which is contiguous with the node, generates a barrier at the embryonic midline that restricts the cascade of gene expression to the left side of the embryo. The field is now poised to dissect the genetic and cellular mechanisms that create and organize the specialized cells of the node and midline that are essential for left-right asymmetry. (c) 2008 Wiley-Liss, Inc.

  6. Pax-3, a novel murine DNA binding protein expressed during early neurogenesis.

    PubMed Central

    Goulding, M D; Chalepakis, G; Deutsch, U; Erselius, J R; Gruss, P

    1991-01-01

    We describe the isolation and characterization of Pax-3, a novel murine paired box gene expressed exclusively during embryogenesis. Pax-3 encodes a 479 amino acid protein with an Mr of 56 kd containing both a paired domain and a paired-type homeodomain. The Pax-3 protein is a DNA binding protein that specifically recognizes the e5 sequence present upstream of the Drosophila even-skipped gene. Pax-3 transcripts are first detected in 8.5 day mouse embryos where they are restricted to the dorsal part of the neuroepithelium and to the adjacent segmented dermomyotome. During early neurogenesis, Pax-3 expression is limited to mitotic cells in the ventricular zone of the developing spinal cord and to distinct regions in the hindbrain, midbrain and diencephalon. In 10-12 day embryos, expression of Pax-3 is also seen in neural crest cells of the developing spinal ganglia, the craniofacial mesectoderm and in limb mesenchyme of 10 and 11 day embryos. Images PMID:2022185

  7. Expression of the cytokeratin endo A gene during early mouse embryogenesis.

    PubMed Central

    Duprey, P; Morello, D; Vasseur, M; Babinet, C; Condamine, H; Brûlet, P; Jacob, F

    1985-01-01

    Expression of cytokeratin endo A has been analyzed during mouse blastocyst formation and embryonal carcinoma cell differentiation. To study the regulation of endo A expression, nuclease S1 mapping experiments have been performed on RNA extracted from two-cell to 7.5-day embryos. Low levels of endo A mRNA begin to be detectable in eight-cell embryos. The amount of this mRNA increases at the blastocyst stage, suggesting that endo A expression is regulated at the mRNA level during blastocyst formation. At this stage, in situ hybridization studies show that endo A mRNA is present in the trophectoderm but not in the inner cell mass. In 7.5-day embryos, endo A mRNAs are also detectable in the endoderm layer and in the amnion. Images PMID:2417224

  8. [Effect of TGF-beta1 on embryo implantation and development in mice in vitro].

    PubMed

    Luo, Shan; Yin, Hai-ning; Li, Shang-wei

    2010-03-01

    To investigate the role of TGF-beta1 in embryo implantation and development in vitro in mice. Mouse embryos at 2-cell stage were cultured in the media of M16 with exposure to different levels of TGF-beta1 (0, 1, 10 and 50 ng/mL). The percentage of embryos reaching fixed stages (early blastocyst, expanding blastocyst and hatched blastocyst) was monitored 68 h and 92 h after the culture. The expanding blastocys cultured for 68 h in M16 without TGF-beta1 and those with 10 ng/mL of TGF-beta1 were transferred to pseudopregnant mice. On the 6th day post transfer, the successful rates of implantation were counted. The level of IL-10/IFN-gamma in the serum and maternal-fetus interface of the mice was detected by ELISA on the 6th day post transfer. TGF-beta1 improved embryo growth in vitro. TGF-beta1 at a level of 10 ng/mL had the maximum impact, with 15.6%, 68.09%, 1.42% of embryos reaching early, expanding, and hatched stage, respectively, 68 h after culture, and 6.38%, 28.37%, 53.19% of embryos reaching early, expanding, and hatched stage, respectively, 92 h after culture. The promoting effect declined when TGF-beta1 reached 50 ng/mL. The successful rate of implantation of embryos cultured in M16 with TGF-beta1 was significantly higher than those cultured in M16 without TGF-beta1 (35. 2% vs. 17.19%, P < 0.05). The embryos cultured in M16 with TGF-beta1 had significantly lower level of IFN-gamma in the maternal-fetus interface than those cultured in M16 without TGF-beta1 [(30.89 +/- 11.31) pg/mL vs. (43.23 +/- 18. 09) pg/mL, P < 0.053. TGF-beta1 at an appropriate dose improves embryo implantation in mice in vitro. The mechanism may involve the improvement of the quality of embryos and their development, and decrease of IFN-gamma synthesis in maternal-fetal interface, a chemical that could cause Th2 bias.

  9. The unexpected teratogenicity of RXR antagonist UVI3003 via activation of PPARγ in Xenopus tropicalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jingmin

    2017-01-01

    The RXR agonist (triphenyltin, TPT) and the RXR antagonist (UVI3003) both show teratogenicity and, unexpectedly, induce similar malformations in Xenopus tropicalis embryos. In the present study, we exposed X. tropicalis embryos to UVI3003 in seven specific developmental windows and identified changes in gene expression. We further measured the ability of UVI3003 to activate Xenopus RXRα (xRXRα) and PPARγ (xPPARγ) in vitro and in vivo. We found that UVI3003 activated xPPARγ either in Cos7 cells (in vitro) or Xenopus embryos (in vivo). UVI3003 did not significantly activate human or mouse PPARγ in vitro; therefore, the activation of Xenopus PPARγ by UVI3003more » is novel. The ability of UVI3003 to activate xPPARγ explains why UVI3003 and TPT yield similar phenotypes in Xenopus embryos. Our results indicate that activating PPARγ leads to teratogenic effects in Xenopus embryos. More generally, we infer that chemicals known to specifically modulate mammalian nuclear hormone receptors cannot be assumed to have the same activity in non-mammalian species, such as Xenopus. Rather they must be tested for activity and specificity on receptors of the species in question to avoid making inappropriate conclusions. - Highlights: • UVI3003 is a RXRs antagonist and shows teratogenicity to Xenopus embryos. • UVI3003 activated xPPARγ either in Cos7 cells or Xenopus embryos. • UVI3003 did not activate human or mouse PPARγ in Cos7 cells. • Activating PPARγ leads to teratogenic effects in Xenopus embryos.« less

  10. Transcriptional profiles of bovine in vivo pre-implantation development.

    PubMed

    Jiang, Zongliang; Sun, Jiangwen; Dong, Hong; Luo, Oscar; Zheng, Xinbao; Obergfell, Craig; Tang, Yong; Bi, Jinbo; O'Neill, Rachel; Ruan, Yijun; Chen, Jingbo; Tian, Xiuchun Cindy

    2014-09-04

    During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development.

  11. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    PubMed

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Optical coherence microscopy as a novel, non-invasive method for the 4D live imaging of early mammalian embryos.

    PubMed

    Karnowski, Karol; Ajduk, Anna; Wieloch, Bartosz; Tamborski, Szymon; Krawiec, Krzysztof; Wojtkowski, Maciej; Szkulmowski, Maciej

    2017-06-23

    Imaging of living cells based on traditional fluorescence and confocal laser scanning microscopy has delivered an enormous amount of information critical for understanding biological processes in single cells. However, the requirement for a high numerical aperture and fluorescent markers still limits researchers' ability to visualize the cellular architecture without causing short- and long-term photodamage. Optical coherence microscopy (OCM) is a promising alternative that circumvents the technical limitations of fluorescence imaging techniques and provides unique access to fundamental aspects of early embryonic development, without the requirement for sample pre-processing or labeling. In the present paper, we utilized the internal motion of cytoplasm, as well as custom scanning and signal processing protocols, to effectively reduce the speckle noise typical for standard OCM and enable high-resolution intracellular time-lapse imaging. To test our imaging system we used mouse and pig oocytes and embryos and visualized them through fertilization and the first embryonic division, as well as at selected stages of oogenesis and preimplantation development. Because all morphological and morphokinetic properties recorded by OCM are believed to be biomarkers of oocyte/embryo quality, OCM may represent a new chapter in imaging-based preimplantation embryo diagnostics.

  13. X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells.

    PubMed

    Payer, Bernhard; Lee, Jeannie T; Namekawa, Satoshi H

    2011-08-01

    X-chromosome inactivation is an epigenetic hallmark of mammalian development. Chromosome-wide regulation of the X-chromosome is essential in embryonic and germ cell development. In the male germline, the X-chromosome goes through meiotic sex chromosome inactivation, and the chromosome-wide silencing is maintained from meiosis into spermatids before the transmission to female embryos. In early female mouse embryos, X-inactivation is imprinted to occur on the paternal X-chromosome, representing the epigenetic programs acquired in both parental germlines. Recent advances revealed that the inactive X-chromosome in both females and males can be dissected into two elements: repeat elements versus unique coding genes. The inactive paternal X in female preimplantation embryos is reactivated in the inner cell mass of blastocysts in order to subsequently allow the random form of X-inactivation in the female embryo, by which both Xs have an equal chance of being inactivated. X-chromosome reactivation is regulated by pluripotency factors and also occurs in early female germ cells and in pluripotent stem cells, where X-reactivation is a stringent marker of naive ground state pluripotency. Here we summarize recent progress in the study of X-inactivation and X-reactivation during mammalian reproduction and development as well as in pluripotent stem cells.

  14. Simple Perfusion Apparatus (SPA) for Manipulation, Tracking and Study of Oocytes and Embryos

    PubMed Central

    Angione, Stephanie L.; Oulhen, Nathalie; Brayboy, Lynae M.; Tripathi, Anubhav; Wessel, Gary M.

    2016-01-01

    Objective To develop and implement a device and protocol for oocyte analysis at a single cell level. The device must be capable of high resolution imaging, temperature control, perfusion of media, drugs, sperm, and immunolabeling reagents all at defined flow-rates. Each oocyte and resultant embryo must remain spatially separated and defined. Design Experimental laboratory study Setting University and Academic Center for reproductive medicine. Patients/Animals Women with eggs retrieved for ICSI cycles, adult female FVBN and B6C3F1 mouse strains, sea stars. Intervention Real-time, longitudinal imaging of oocytes following fluorescent labeling, insemination, and viability tests. Main outcome measure(s) Cell and embryo viability, immunolabeling efficiency, live cell endocytosis quantitation, precise metrics of fertilization and embryonic development. Results Single oocytes were longitudinally imaged following significant changes in media, markers, endocytosis quantitation, and development, all with supreme control by microfluidics. Cells remained viable, enclosed, and separate for precision measurements, repeatability, and imaging. Conclusions We engineered a simple device to load, visualize, experiment, and effectively record individual oocytes and embryos, without loss of cells. Prolonged incubation capabilities provide longitudinal studies without need for transfer and potential loss of cells. This simple perfusion apparatus (SPA) provides for careful, precise, and flexible handling of precious samples facilitating clinical in vitro fertilization approaches. PMID:25450296

  15. Entire mitogen activated protein kinase (MAPK) pathway is present in preimplantation mouse embryos.

    PubMed

    Wang, Yingchun; Wang, Fangfei; Sun, Tong; Trostinskaia, Anna; Wygle, Dana; Puscheck, Elizabeth; Rappolee, Daniel A

    2004-09-01

    To understand how mitogenic signals are transduced into the trophoblasts in preimplantation embryos, the expression of mitogen-activated protein kinase (MAPK) pathway molecules was tested. We used immunocytochemical means and reverse transcriptase-polymerase chain reaction to test whether MAPK pathway molecule gene products exist at the protein and phosphoprotein level in the zygote and the RNA level in the egg and zygote. In addition, all antibodies detected the correct-sized major band in Westerns of placental cell lines representing the most prevalent cell type in preimplantation embryos. A majority of mRNA transcripts of MAPK pathway genes were detected in unfertilized eggs, and all were expressed in the zygote. We found that the MAPK pathway protein set consisting of the following gene products was present: FRS2 alpha, GRB2, GAB1, SOS1, Ha-ras, Raf1/RafB, MEK1,2,5, MAPK/ERK1,2, MAPK/ERK5, and RSK1,2,3 (see abbreviations). These proteins were detected in trophoblasts in embryonic day (E) 3.5 embryos when they could mediate mitogenic fibroblast growth factor signals from the embryo or colony stimulating factor-1 signals from the uterus. The phosphorylation state and position of the phosphoproteins in the cells suggested that they might function in mediating mitogenic signals. Interestingly, a subtle transition from maternal MAPK function to zygotic function was suggested by the localization for three MAPK pathway enzymes between E2.5 and E3.5, Raf1 phospho is largely cell membrane-localized at E2.5 and E3.5, and MEK1,2 phospho accumulates in the nucleus on E2.5 and E3.5. However, MAPK phospho shifts from nuclear accumulation at E2.5 to cytoplasmic accumulation at E3.5. This finding is similar to the cytoplasmic MAPK phospho localization reported in fibroblast growth factor signaling fields in postimplantation embryos (Corson et al. [2003] Development 130:4527-4537). This spatial and temporal expression study lays a foundation to plan and analyze perturbation studies aimed at understanding the role of the major mitogenic pathway in preimplantation mouse embryos.

  16. Minimal volume vitrification of epididymal spermatozoa results in successful in vitro fertilization and embryo development in mice

    PubMed Central

    Horta, Fabrizzio; Alzobi, Hamida; Jitanantawittaya, Sutthipat; Catt, Sally; Chen, Penny; Pangestu, Mulyoto; Temple-Smith, Peter

    2017-01-01

    This study compared three cryopreservation protocols on sperm functions, IVF outcomes, and embryo development. Epididymal spermatozoa cryopreserved using slow-cooling (18% w/v raffinose, RS-C) were compared with spermatozoa vitrified using 0.25 M sucrose (SV) or 18% w/v raffinose (RV). The motility, vitality, and DNA damage (TUNEL assay) of fresh control (FC) spermatozoa were compared with post-thawed or warmed RS-C, RV, and SV samples. Mouse oocytes (n = 267) were randomly assigned into three groups for insemination: RV (n = 102), RS-C (n = 86), and FC (n = 79). The number and the proportion of two-cell embryos and blastocysts from each treatment were assessed. Sperm motility (P < 0.01) and vitality (P < 0.05) were significantly reduced after vitrification compared with slow-cooled spermatozoa. However, DNA fragmentation was significantly reduced in spermatozoa vitrified using sucrose (15 ± 1.8% [SV] vs 26 ± 2.8% [RV] and 27 ± 1.2% [RS-C]; P < 0.01). Although the number of two-cell embryos produced by RS-C, RV, and FC spermatozoa was not significantly different, the number of blastocysts produced from two-cell embryos using RV spermatozoa was significantly higher than FC spermatozoa (P = 0.0053). This simple, small volume vitrification protocol and standard insemination method allows successful embryo production from small numbers of epididymal spermatozoa and may be applied clinically to circumvent the need for ICSI, which has the disadvantage of bypassing sperm selection. PMID:27427551

  17. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos

    PubMed Central

    Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde

    2009-01-01

    BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307

  18. [Programmed mouse genome modifications].

    PubMed

    Babinet, C

    1998-02-01

    The availability, in the mouse, of embryonic stem cells (ES cells) which have the ability to colonize the germ line of a developing embryo, has opened entirely new avenues to the genetic approach of embryonic development, physiology and pathology of this animal. Indeed, it is now possible, using homologous recombination in ES cells, to introduce mutations in any gene as long as it has been cloned. Thus, null as well as more subtle mutations can be created. Furthermore, scenarios are currently being derived which will allow one to generate conditional mutations. Taken together, these methods offer a tremendous tool to study gene function in vivo; they also open the way to creating murine models of human genetic diseases.

  19. Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice.

    PubMed

    Pal, Sukumar; Tifrea, Delia F; Zhong, Guangming; de la Maza, Luis M

    2018-01-01

    Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 10 5 C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice ( P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) ( P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 10 4 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 10 5 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed. Copyright © 2017 American Society for Microbiology.

  20. Primary Tumor and MEF Cell Isolation to Study Lung Metastasis.

    PubMed

    Dong, Shengli; Maziveyi, Mazvita; Alahari, Suresh K

    2015-05-20

    In breast tumorigenesis, the metastatic stage of the disease poses the greatest threat to the affected individual. Normal breast cells with altered genotypes now possess the ability to invade and survive in other tissues. In this protocol, mouse mammary tumors are removed and primary cells are prepared from tumors. The cells isolated from this procedure are then available for gene profiling experiments. For successful metastasis, these cells must be able to intravasate, survive in circulation, extravasate to distant organs, and survive in that new organ system. The lungs are the typical target of breast cancer metastasis. A set of genes have been discovered that mediates the selectivity of metastasis to the lung. Here we describe a method of studying lung metastasis from a genetically engineered mouse model.. Furthermore, another protocol for analyzing mouse embryonic fibroblasts (MEFs) from the mouse embryo is included. MEF cells from the same animal type provide a clue of non-cancer cell gene expression. Together, these techniques are useful in studying mouse mammary tumorigenesis, its associated signaling mechanisms and pathways of the abnormalities in embryos.

  1. Three-dimensional imaging of the developing mouse female reproductive organs with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Burton, Jason C.; Wang, Shang; Behringer, Richard R.; Larina, Irina V.

    2016-03-01

    Infertility is a known major health concern and is estimated to impact ~15% of couples in the U.S. The majority of failed pregnancies occur before or during implantation of the fertilized embryo into the uterus. Understanding the mechanisms regulating development by studying mouse reproductive organs could significantly contribute to an improved understanding of normal development of reproductive organs and developmental causes of infertility in humans. Towards this goal, we report a three-dimensional (3D) imaging study of the developing mouse reproductive organs (ovary, oviduct, and uterus) using optical coherence tomography (OCT). In our study, OCT was used for 3D imaging of reproductive organs without exogenous contrast agents and provides micro-scale spatial resolution. Experiments were conducted in vitro on mouse reproductive organs ranging from the embryonic day 14.5 to adult stages. Structural features of the ovary, oviduct, and uterus are presented. Additionally, a comparison with traditional histological analysis is illustrated. These results provide a basis for a wide range of infertility studies in mouse models. Through integration with traditional genetic and molecular biology approaches, this imaging method can improve understanding of ovary, oviduct, and uterus development and function, serving to further contribute to our understanding of fertility and infertility.

  2. Embryonic cholecystitis and defective gallbladder contraction in the Sox17-haploinsufficient mouse model of biliary atresia

    PubMed Central

    Fujino, Ko; Igarashi, Hitomi; Imaimatsu, Kenya; Tsunekawa, Naoki; Hirate, Yoshikazu; Kurohmaru, Masamichi; Saijoh, Yukio; Kanai-Azuma, Masami

    2017-01-01

    The gallbladder excretes cytotoxic bile acids into the duodenum through the cystic duct and common bile duct system. Sox17 haploinsufficiency causes biliary atresia-like phenotypes and hepatitis in late organogenesis mouse embryos, but the molecular and cellular mechanisms underlying this remain unclear. In this study, transcriptomic analyses revealed the early onset of cholecystitis in Sox17+/− embryos, together with the appearance of ectopic cystic duct-like epithelia in their gallbladders. The embryonic hepatitis showed positive correlations with the severity of cholecystitis in individual Sox17+/− embryos. Embryonic hepatitis could be induced by conditional deletion of Sox17 in the primordial gallbladder epithelia but not in fetal liver hepatoblasts. The Sox17+/− gallbladder also showed a drastic reduction in sonic hedgehog expression, leading to aberrant smooth muscle formation and defective contraction of the fetal gallbladder. The defective gallbladder contraction positively correlated with the severity of embryonic hepatitis in Sox17+/− embryos, suggesting a potential contribution of embryonic cholecystitis and fetal gallbladder contraction in the early pathogenesis of congenital biliary atresia. PMID:28432216

  3. Nodal Cilia Dynamics and the Specification of the Left/Right Axis in Early Vertebrate Embryo Development

    PubMed Central

    Buceta, Javier; Ibañes, Marta; Rasskin-Gutman, Diego; Okada, Yasushi; Hirokawa, Nobutaka; Izpisúa-Belmonte, Juan Carlos

    2005-01-01

    Nodal cilia dynamics is a key factor for left/right axis determination in mouse embryos through the induction of a leftward fluid flow. So far it has not been clearly established how such dynamics is able to induce the asymmetric leftward flow within the node. Herein we propose that an asymmetric two-phase nonplanar beating cilia dynamics that involves the bending of the ciliar axoneme is responsible for the leftward fluid flow. We support our proposal with a host of hydrodynamic arguments, in silico experiments and in vivo video microscopy data in wild-type embryos and inv mutants. Our phenomenological modeling approach underscores how the asymmetry and speed of the flow depends on different relevant parameters. In addition, we discuss how the combination of internal and external mechanisms might cause the two-phase beating cilia dynamics. PMID:16040754

  4. Molecular characterization and expression analysis of Zar1 and Zar1-like genes in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Zygote arrest 1 (Zar1) is a maternal effect gene that is essential for early embryonic development. Recently, a novel gene called Zar1-like (Zar1l) was discovered. Functional studies showed that ZAR1L plays an important role in regulating oocyte-to-embryo transition in mouse. The objectives of this ...

  5. Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos.

    PubMed

    Goolam, Mubeen; Scialdone, Antonio; Graham, Sarah J L; Macaulay, Iain C; Jedrusik, Agnieszka; Hupalowska, Anna; Voet, Thierry; Marioni, John C; Zernicka-Goetz, Magdalena

    2016-03-24

    The major and essential objective of pre-implantation development is to establish embryonic and extra-embryonic cell fates. To address when and how this fundamental process is initiated in mammals, we characterize transcriptomes of all individual cells throughout mouse pre-implantation development. This identifies targets of master pluripotency regulators Oct4 and Sox2 as being highly heterogeneously expressed between blastomeres of the 4-cell embryo, with Sox21 showing one of the most heterogeneous expression profiles. Live-cell tracking demonstrates that cells with decreased Sox21 yield more extra-embryonic than pluripotent progeny. Consistently, decreasing Sox21 results in premature upregulation of the differentiation regulator Cdx2, suggesting that Sox21 helps safeguard pluripotency. Furthermore, Sox21 is elevated following increased expression of the histone H3R26-methylase CARM1 and is lowered following CARM1 inhibition, indicating the importance of epigenetic regulation. Therefore, our results indicate that heterogeneous gene expression, as early as the 4-cell stage, initiates cell-fate decisions by modulating the balance of pluripotency and differentiation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Transcription factors in melanocyte development: distinct roles for Pax-3 and Mitf.

    PubMed

    Hornyak, T J; Hayes, D J; Chiu, L Y; Ziff, E B

    2001-03-01

    A transgenic mouse model was used to examine the roles of the murine transcription factors Pax-3 and Mitf in melanocyte development. Transgenic mice expressing beta-galactosidase from the dopachrome tautomerase (Dct) promoter were generated and found to express the transgene in developing melanoblasts as early as embryonic day (E) 9.5. These mice express the transgene in a pattern characteristic of endogenous Dct expression. Transgenic mice were intercrossed with two murine coat color mutants, Splotch (Sp), containing a mutation in the murine Pax3 gene, and Mitf(mi), with a mutation in the basic-helix-loop-helix-leucine zipper gene Mitf. Transgenic heterozygous mutant animals were crossed to generate transgenic embryos for analysis. Examination of beta-galactosidase-expressing melanoblasts in mutant embryos reveals that Mitf is required in vivo for survival of melanoblasts up to the migration staging area in neural crest development. Examination of Mitf(mi)/+ embryos shows that there are diminished numbers of melanoblasts in the heterozygous state early in melanocyte development, consistent with a gene dosage-dependent effect upon cell survival. However, quantification and analysis of melanoblast growth during the migratory phase suggests that melanoblasts then increase in number more rapidly in the heterozygous embryo. In contrast to Mitf(mi)/Mitf(mi) embryos, Sp/Sp embryos exhibit melanoblasts that have migrated to characteristic locations along the melanoblast migratory pathway, but are greatly reduced in number compared to control littermates. Together, these results support a model for melanocyte development whereby Pax3 is required to expand a pool of committed melanoblasts or restricted progenitor cells early in development, whereas Mitf facilitates survival of the melanoblast in a gene dosage-dependent manner within and immediately after emigration from the dorsal neural tube, and may also directly or indirectly affect the rate at which melanoblast number increases during dorsolateral pathway migration.

  7. New gene targets for glucagon-like peptide-1 during embryonic development and in undifferentiated pluripotent cells.

    PubMed

    Sanz, Carmen; Blázquez, Enrique

    2011-09-01

    In humans, glucagon-like peptide (GLP-1) functions during adult life as an incretin hormone with anorexigenic and antidiabetogenic properties. Also, the therapeutic potential of GLP-1 in preventing the adipocyte hyperplasia associated with obesity and in bolstering the maintenance of human mesenchymal stem cell (hMSC) stores by promoting the proliferation and cytoprotection of hMSC seems to be relevant. Since these observations suggest a role for GLP-1 during developmental processes, the aim of the present work was to characterize GLP-1 in early development as well as its gene targets in mouse embryonic stem (mES) cells. Mouse embryos E6, E8, and E10.5 and pluripotent mES were used for the inmunodetection of GLP-1 and GLP-1 receptor. Quantitative real-time PCR was used to determine the expression levels of GLP-1R in several tissues from E12.5 mouse embryos. Additionally, GLP-1 gene targets were studied in mES by multiple gene expression analyses. GLP-1 and its receptors were identified in mES and during embryonic development. In pluripotent mES, GLP-1 modified the expression of endodermal, ectodermal, and mesodermal gene markers as well as sonic hedgehog, noggin, members of the fibroblast and hepatic growth factor families, and others involved in pancreatic development. Additionally, GLP-1 promoted the expression of the antiapoptotic gene bcl2 and at the same time reduced proapoptotic caspase genes. Our results indicate that apart from the effects and therapeutic benefits of GLP-1 in adulthood, it may have additional gene targets in mES cells during embryonic life. Furthermore, the pathophysiological implications of GLP-1 imbalance in adulthood may have a counterpart during development.

  8. Vitrification of mouse embryo-derived ICM cells: a tool for preserving embryonic stem cell potential?

    PubMed

    Desai, Nina; Xu, Jing; Tsulaia, Tamara; Szeptycki-Lawson, Julia; AbdelHafez, Faten; Goldfarb, James; Falcone, Tommaso

    2011-02-01

    Vitrification technology presents new opportunities for preservation of embryo derived stem cells without first establishing a viable ESC line. This study tests the feasibility of cryopreserving ICM cells using vitrification. ICMs from mouse embryos were isolated and vitrified in HSV straws or on cryoloops. Upon warming, the vitrified ICMs were cultured and observed for attachment and morphology. Colonies were passaged every 3-6 days. ICMs and ICM-derived ESC colonies were tested for expression of stem cell specific markers. ICMs vitrified on both the cryoloop and the HSV straw had high survival rates. ICM derived ESCs remained undifferentiated for several passages and demonstrated expression of typical stem cell markers; SSEA-1, Sox-2, Oct 4 and alkaline phosphatase. This is the first report on successful vitrification of isolated ICMs and the subsequent derivation of ESC colonies. Vitrification of isolated ICMs is a novel approach for preservation of the "stem cell source" material.

  9. Rotatin is a novel gene required for axial rotation and left-right specification in mouse embryos.

    PubMed

    Faisst, Anja M; Alvarez-Bolado, Gonzalo; Treichel, Dieter; Gruss, Peter

    2002-04-01

    The genetic cascade that governs left-right (L-R) specification is starting to be elucidated. In the mouse, the lateral asymmetry of the body axis is revealed first by the asymmetric expression of nodal, lefty2 and pitx2 in the left lateral plate mesoderm of the neurulating embryo. Here we describe a novel gene, rotatin, essential for the correct expression of the key L-R specification genes nodal, lefty and Pitx2. Embryos deficient in rotatin show also randomized heart looping and delayed neural tube closure, and fail to undergo the critical morphogenetic step of axial rotation. The amino acid sequence deduced from the cDNA is predicted to contain at least three transmembrane domains. Our results show a novel key player in the genetic cascade that determines L-R specification, and suggest a causal link between this process and axial rotation.

  10. A missing piece: the spiny mouse and the puzzle of menstruating species.

    PubMed

    Bellofiore, Nadia; Cousins, Fiona; Temple-Smith, Peter; Dickinson, Hayley; Evans, Jemma

    2018-07-01

    We recently discovered the first known menstruating rodent. With the exception of four bats and the elephant shrew, the common spiny mouse ( Acomys cahirinus ) is the only species outside the primate order to exhibit menses. There are few widely accepted theories on why menstruation developed as the preferred reproductive strategy of these select mammals, all of which reference the evolution of spontaneous decidualisation prior to menstrual shedding. Though menstruating species share several reproductive traits, there has been no identifiable feature unique to menstruating species. Such a feature might suggest why spontaneous decidualisation, and thus menstruation, evolved in these species. We propose that a ≥3-fold increase in progesterone during the luteal phase of the reproductive cycle is a unique characteristic linking menstruating species. We discuss spontaneous decidualisation as a consequence of high progesterone, and the potential role of prolactin in screening for defective embryos in these species to aid in minimising implantation of abnormal embryos. We further explore the possible impact of nutrition in selecting species to undergo spontaneous decidualisation and subsequent menstruation. We summarise the current knowledge of menstruation, discuss current pre-clinical models of menstruation and how the spiny mouse may benefit advancing our understanding of this rare biological phenomenon. © 2018 Society for Endocrinology.

  11. Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo

    PubMed Central

    Bazzi, Hisham; Anderson, Kathryn V.

    2014-01-01

    Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4−/− mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4−/− embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4−/− p53−/− double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4−/− mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo. PMID:24706806

  12. Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR).

    PubMed

    Jeong, Jae-Kyo; Kang, Min-Hee; Gurunathan, Sangiliyandi; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2014-09-25

    Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied. mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively. These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions.

  13. Increasing levels of estradiol are deleterious to embryonic implantation because they directly affect the embryo.

    PubMed

    Valbuena, D; Martin, J; de Pablo, J L; Remohí, J; Pellicer, A; Simón, C

    2001-11-01

    To investigate whether the deleterious effect of E(2) on embryonic implantation is due to a direct effect on the endometrium, on the embryo, or both. Prospective, controlled in vitro study. Tertiary infertility center. Fertile patients in the luteal phase with histologically normal endometrium who were attending the infertility clinic as oocyte donors (n = 14). E(2) dose-response (0, 10(-8), 10(-7), 10(-6), 10(-5), and 10(-4) M) and time course (day 2 vs. day 5) experiments were performed in an in vitro embryo adhesion assay composed of human polarized endometrial epithelial cells obtained from fertile patients and mouse embryos. Blastocyst formation rate and embryo adhesion rate. Monolayers of polarized endometrial epithelial cells expressed ERalpha at the mRNA level. The E(2) dose response of blastocysts with polarized endometrial epithelial cells (n = 235) demonstrated a progressive reduction in embryonic adhesion that was statistically significant at 10(-6) M. When polarized endometrial epithelial cells were treated alone with increasing doses of E(2) for 3 days and E(2) was then removed and blastocysts added (n = 410), embryonic adhesion was not significantly reduced, except at 10(-4) M. When 2-day mouse embryos (n = 609) were treated with increasing E(2) concentrations until day 5, the rate of blastocyst formation significantly decreased at a concentration >or= 10(-6) M, and embryonic adhesion decreased when blastocysts (n = 400) were obtained at a concentration >or= 10(-7) M. Time course experiments of embryos cultured for 2 days with polarized endometrial epithelial cells (n = 426) showed that the adhesion rate was higher at E(2) levels of 10(-7), 10(-6) and 10(-5) M compared with embryos cultured for 5 days (n = 495). High E(2) levels are deleterious to embryo adhesion in vitro, mainly because they have a direct toxic effect on the embryo that may occur at the cleavage stage.

  14. Characterization of cDNAs encoding the chick retinoic acid receptor gamma 2 and preferential distribution of retinoic acid receptor gamma transcripts during chick skin development.

    PubMed

    Michaille, J J; Blanchet, S; Kanzler, B; Garnier, J M; Dhouailly, D

    1994-12-01

    Retinoic acid receptors alpha, beta and gamma (RAR alpha, beta and gamma) are ligand-inductible transcriptional activators which belong to the steroid/thyroid hormone receptor superfamily. At least two major isoforms (1 and 2) of each RAR arise by differential use of two promoters and alternative splicing. In mouse, the three RAR genes are expressed in stage- and tissue-specific patterns during embryonic development. In order to understand the role of the different RARs in chick, RAR gamma 2 cDNAs were isolated from an 8.5-day (stage 35 of Hamburger and Hamilton) chick embryo skin library. The deduced chick RAR gamma 2 amino acid sequence displays uncommon features such as 21 specific amino acid replacements, 12 of them being clustered in the amino-terminal region (domains A2 and B), and a truncated acidic carboxy-terminal region (F domain). However, the pattern of RAR gamma expression in chick embryo resembles that reported in mouse, particularly in skin where RAR gamma expression occurs in both the dermal and epidermal layers at the beginning of feather formation, and is subsequently restricted to the differentiating epidermal cells. Northern blot analysis suggests that different RAR gamma isoforms could be successively required during chick development.

  15. Preservation of mammalian germ plasm by freezing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, P.

    Embryos of several mammalian species can be frozen to -196/sup 0/C (or below) by procedures that result in the thawed embryos being indistinguishable from their unfrozen counterparts. The survival often exceeds 90%, and in liquid nitrogen it should remain at that high level for centuries. Sublethal biochemical changes are also precluded at -196/sup 0/C. No developmental abnormalities have been detected in mouse offspring derived from frozen-thawed embryos, and, since all the manipulations are carried out on the preimplantation stages, none would be expected.

  16. Effects of Multimodal Analgesia on the Success of Mouse Embryo Transfer Surgery

    PubMed Central

    Parker, John M.; Austin, Jamie; Wilkerson, James; Carbone, Larry

    2011-01-01

    Multimodal analgesia is promoted as the best practice pain management for invasive animal research procedures. Universal acceptance and incorporation of multimodal analgesia requires assessing potential effects on study outcome. The focus of this study was to assess effects on embryo survival after multimodal analgesia comprising an opioid and nonsteroidal antiinflammatory drug (NSAID) compared with opioid-only analgesia during embryo transfer procedures in transgenic mouse production. Mice were assigned to receive either carprofen (5 mg/kg) with buprenorphine (0.1 mg/kg; CB) or vehicle with buprenorphine (0.1 mg/kg; VB) in a prospective, double-blinded placebo controlled clinical trial. Data were analyzed in surgical sets of 1 to 3 female mice receiving embryos chimeric for a shared targeted embryonic stem-cell clone and host blastocyst cells. A total of 99 surgical sets were analyzed, comprising 199 Crl:CD1 female mice and their 996 offspring. Neither yield (pups weaned per embryo implanted in the surgical set) nor birth rate (average number of pups weaned per dam in the set) differed significantly between the CB and VB conditions. Multimodal opioid–NSAID analgesia appears to have no significant positive or negative effect on the success of producing novel lines of transgenic mice by blastocyst transfer. PMID:21838973

  17. Vertebrate homologues of Frodo are dynamically expressed during embryonic development in tissues undergoing extensive morphogenetic movements.

    PubMed

    Hunter, Nina L; Hikasa, Hiroki; Dymecki, Susan M; Sokol, Sergei Y

    2006-01-01

    Frodo has been identified as a protein interacting with Dishevelled, an essential mediator of the Wnt signaling pathway, critical for the determination of cell fate and polarity in embryonic development. In this study, we use specific gene probes to characterize stage- and tissue-specific expression patterns of the mouse Frodo homologue and compare them with Frodo expression patterns in Xenopus embryos. In situ hybridization analysis of mouse Frodo transcripts demonstrates that, similar to Xenopus Frodo, mouse Frodo is expressed in primitive streak mesoderm, neuroectoderm, neural crest, presomitic mesoderm, and somites. In many cases, Frodo expression is confined to tissues undergoing extensive morphogenesis, suggesting that Frodo may be involved in the regulation of cell shape and motility. Highly conserved dynamic expression patterns of Frodo homologues indicate a similar function for these proteins in different vertebrates. 2005 Wiley-Liss, Inc.

  18. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas

    PubMed Central

    Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.

    2015-01-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  19. Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model.

    PubMed

    Kaminen-Ahola, Nina; Ahola, Arttu; Maga, Murat; Mallitt, Kylie-Ann; Fahey, Paul; Cox, Timothy C; Whitelaw, Emma; Chong, Suyinn

    2010-01-15

    Recent studies have shown that exposure to some nutritional supplements and chemicals in utero can affect the epigenome of the developing mouse embryo, resulting in adult disease. Our hypothesis is that epigenetics is also involved in the gestational programming of adult phenotype by alcohol. We have developed a model of gestational ethanol exposure in the mouse based on maternal ad libitum ingestion of 10% (v/v) ethanol between gestational days 0.5-8.5 and observed changes in the expression of an epigenetically-sensitive allele, Agouti viable yellow (A(vy)), in the offspring. We found that exposure to ethanol increases the probability of transcriptional silencing at this locus, resulting in more mice with an agouti-colored coat. As expected, transcriptional silencing correlated with hypermethylation at A(vy). This demonstrates, for the first time, that ethanol can affect adult phenotype by altering the epigenotype of the early embryo. Interestingly, we also detected postnatal growth restriction and craniofacial dysmorphology reminiscent of fetal alcohol syndrome, in congenic a/a siblings of the A(vy) mice. These findings suggest that moderate ethanol exposure in utero is capable of inducing changes in the expression of genes other than A(vy), a conclusion supported by our genome-wide analysis of gene expression in these mice. In addition, offspring of female mice given free access to 10% (v/v) ethanol for four days per week for ten weeks prior to conception also showed increased transcriptional silencing of the A(vy) allele. Our work raises the possibility of a role for epigenetics in the etiology of fetal alcohol spectrum disorders, and it provides a mouse model that will be a useful resource in the continued efforts to understand the consequences of gestational alcohol exposure at the molecular level.

  20. Quantification and visualization of injury and regeneration in the developing ciliated epithelium using quantitative flow imaging and speckle variance optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gamm, Ute A.; Huang, Brendan K.; Mis, Emily K.; Khokha, Mustafa K.; Choma, Michael A.

    2017-02-01

    Premature infants are at a high risk for respiratory diseases owing to an underdeveloped respiratory system that is very susceptible to infection and inflammation. One aspect of respiratory health is the state of the ciliated respiratory epithelium which lines the trachea and bronchi. The ciliated epithelium is responsible for trapping and removing pathogens and pollutants from the lungs and an impairment of ciliary functionality can lead to recurring respiratory infections and subsequent lung damage. Mechanisms of cilia-driven fluid flow itself but also factors influenced by development like ciliary density and flow generation are incompletely understood. Furthermore, medical interventions like intubation and accidental aspiration can lead to focal or diffuse loss of cilia and disruption of flow. In this study we use two animal models, Xenopus embryo and ex vivo mouse trachea, to analyze flow defects in the injured ciliated epithelium. Injury is generated either mechanically with a scalpel or chemically by calcium chloride (CaCl2) shock, which efficiently but reversibly deciliates the embryo skin. In this study we used optical coherence tomography (OCT) and particle tracking velocimetry (PTV) to quantify cilia driven fluid flow over the surface of the Xenopus embryo. We additionally visualized damage to the ciliated epithelium by capturing 3D speckle variance images that highlight beating cilia. Mechanical injury disrupted cilia-driven fluid flow over the injured site, which led to a reduction in cilia-driven fluid flow over the whole surface of the embryo (n=7). The calcium chloride shock protocol proved to be highly effective in deciliating embryos (n=6). 3D speckle variance images visualized a loss of cilia and cilia-driven flow was halted immediately after application. We also applied CaCl2-shock to cultured ex vivo mouse trachea (n=8) and found, similarly to effects in Xenopus embryo, an extensive loss of cilia with resulting cessation of flow. We investigated the regeneration of the ciliated epithelium after an 8 day incubation period, and found that cilia had regrown and flow was completely restored. In conclusion, OCT is a valuable tool to visualize injury of the ciliated epithelium and to quantify reduction of generated flow. This method allows for systematic investigation of focal and diffuse injury of the ciliated epithelium and the assessment of mechanisms to compensate for loss of flow.

Top