Pancreas-specific deletion of mouse Gata4 and Gata6 causes pancreatic agenesis
Xuan, Shouhong; Borok, Matthew J.; Decker, Kimberly J.; Battle, Michele A.; Duncan, Stephen A.; Hale, Michael A.; Macdonald, Raymond J.; Sussel, Lori
2012-01-01
Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis. PMID:23006325
Dissection of the Mouse Pancreas for Histological Analysis and Metabolic Profiling.
Veite-Schmahl, Michelle J; Regan, Daniel P; Rivers, Adam C; Nowatzke, Joseph F; Kennedy, Michael A
2017-08-19
We have been investigating the pancreas specific transcription factor, 1a cre-recombinase; lox-stop-lox- Kristen rat sarcoma, glycine to aspartic acid at the 12 codon (Ptf1a cre/+ ;LSL-Kras G12D/+ ) mouse strain as a model of human pancreatic cancer. The goal of our current studies is to identify novel metabolic biomarkers of pancreatic cancer progression. We have performed metabolic profiling of urine, feces, blood, and pancreas tissue extracts, as well as histological analyses of the pancreas to stage the cancer progression. The mouse pancreas is not a well-defined solid organ like in humans, but rather is a diffusely distributed soft tissue that is not easily identified by individuals unfamiliar with mouse internal anatomy or by individuals that have little or no experience performing mouse organ dissections. The purpose of this article is to provide a detailed step-wise visual demonstration to guide novices in the removal of the mouse pancreas by dissection. This article should be especially valuable to students and investigators new to research that requires harvesting of the mouse pancreas by dissection for metabolic profiling or histological analyses.
Yoshimura, Masashi; Ono, Masahiro; Watanabe, Hiroyuki; Kimura, Hiroyuki; Saji, Hideo
2016-06-15
While islet amyloid deposition comprising amylin is one of pathological hallmarks of type 2 diabetes mellitus (T2DM), no useful amylin-imaging probe has been reported. In this study, we evaluated two (99m)Tc-labeled pyridyl benzofuran derivatives as novel amylin-imaging probes using the newly established islet amyloid model mouse. Binding experiments in vitro demonstrated that [(99m)Tc]1 displayed a higher affinity for amylin aggregates than [(99m)Tc]2. Autoradiographic studies using human pancreas sections with T2DM revealed that [(99m)Tc]1 clearly labeled islet amyloid in T2DM pancreatic sections, while [(99m)Tc]2 did not. Although the initial uptake of [(99m)Tc]1 by the normal mouse pancreas was low (0.74%ID/g at 2 min post-injection), [(99m)Tc]1 showed higher retention in the model mouse pancreas than that of the normal mouse, and exhibited strong binding to amylin aggregates in the living pancreas of the model mice. These results suggest that [(99m)Tc]1 is a potential imaging probe targeting islet amyloids in the T2DM pancreas.
Hendley, Audrey M.; Provost, Elayne; Bailey, Jennifer M.; Wang, Yue J.; Cleveland, Megan H.; Blake, Danielle; Bittman, Ross W.; Roeser, Jeffrey C.; Maitra, Anirban; Reynolds, Albert B.; Leach, Steven D.
2015-01-01
The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, β-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120f/f pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development. PMID:25523391
Zebrafish pancreas development.
Tiso, Natascia; Moro, Enrico; Argenton, Francesco
2009-11-27
An accurate understanding of the molecular events governing pancreas development can have an impact on clinical medicine related to diabetes, obesity and pancreatic cancer, diseases with a high impact in public health. Until 1996, the main animal models in which pancreas formation and differentiation could be studied were mouse and, for some instances related to early development, chicken and Xenopus. Zebrafish has penetrated this field very rapidly offering a new model of investigation; by joining functional genomics, genetics and in vivo whole mount visualization, Danio rerio has allowed large scale and fine multidimensional analysis of gene functions during pancreas formation and differentiation.
Hendley, Audrey M; Provost, Elayne; Bailey, Jennifer M; Wang, Yue J; Cleveland, Megan H; Blake, Danielle; Bittman, Ross W; Roeser, Jeffrey C; Maitra, Anirban; Reynolds, Albert B; Leach, Steven D
2015-03-01
The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, β-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120(f/f) pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development. Copyright © 2014 Elsevier Inc. All rights reserved.
RNA isolation from mouse pancreas: a ribonuclease-rich tissue.
Azevedo-Pouly, Ana Clara P; Elgamal, Ola A; Schmittgen, Thomas D
2014-08-02
Isolation of high-quality RNA from ribonuclease-rich tissue such as mouse pancreas presents a challenge. As a primary function of the pancreas is to aid in digestion, mouse pancreas may contain as much a 75 mg of ribonuclease. We report modifications of standard phenol/guanidine thiocyanate lysis reagent protocols to isolate RNA from mouse pancreas. Guanidine thiocyanate is a strong protein denaturant and will effectively disrupt the activity of ribonuclease under most conditions. However, critical modifications to standard protocols are necessary to successfully isolate RNA from ribonuclease-rich tissues. Key steps include a high lysis reagent to tissue ratio, removal of undigested tissue prior to phase separation and inclusion of a ribonuclease inhibitor to the RNA solution. Using these and other modifications, we routinely isolate RNA with RNA Integrity Number (RIN) greater than 7. The isolated RNA is of suitable quality for routine gene expression analysis. Adaptation of this protocol to isolate RNA from ribonuclease rich tissues besides the pancreas should be readily achievable.
Isolating and Analyzing Cells of the Pancreas Mesenchyme by Flow Cytometry.
Epshtein, Alona; Sakhneny, Lina; Landsman, Limor
2017-01-28
The pancreas is comprised of epithelial cells that are required for food digestion and blood glucose regulation. Cells of the pancreas microenvironment, including endothelial, neuronal, and mesenchymal cells were shown to regulate cell differentiation and proliferation in the embryonic pancreas. In the adult, the function and mass of insulin-producing cells were shown to depend on cells in their microenvironment, including pericyte, immune, endothelial, and neuronal cells. Lastly, changes in the pancreas microenvironment were shown to regulate pancreas tumorigenesis. However, the cues underlying these processes are not fully defined. Therefore, characterizing the different cell types that comprise the pancreas microenvironment and profiling their gene expression are crucial to delineate the tissue development and function under normal and diseased states. Here, we describe a method that allows for the isolation of mesenchymal cells from the pancreas of embryonic, neonatal, and adult mice. This method utilizes the enzymatic digestion of mouse pancreatic tissue and the subsequent fluorescence-activated cell sorting (FACS) or flow-cytometric analysis of labeled cells. Cells can be labeled by either immunostaining for surface markers or by the expression of fluorescent proteins. Cell isolation can facilitate the characterization of genes and proteins expressed in cells of the pancreas mesenchyme. This protocol was successful in isolating and culturing highly enriched mesenchymal cell populations from the embryonic, neonatal, and adult mouse pancreas.
Identification of Newly Committed Pancreatic Cells in the Adult Mouse Pancreas.
Socorro, Mairobys; Criscimanna, Angela; Riva, Patricia; Tandon, Manuj; Prasadan, Krishna; Guo, Ping; Humar, Abhinav; Husain, Sohail Z; Leach, Steven D; Gittes, George K; Esni, Farzad
2017-12-13
Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1 + /CD90 - /Ecad - cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).
Hippo Signaling Regulates Pancreas Development through Inactivation of Yap
Day, Caroline E.; Boerner, Brian P.; Johnson, Randy L.; Sarvetnick, Nora E.
2012-01-01
The mammalian pancreas is required for normal metabolism, with defects in this vital organ commonly observed in cancer and diabetes. Development must therefore be tightly controlled in order to produce a pancreas of correct size, cell type composition, and physiologic function. Through negative regulation of Yap-dependent proliferation, the Hippo kinase cascade is a critical regulator of organ growth. To investigate the role of Hippo signaling in pancreas biology, we deleted Hippo pathway components in the developing mouse pancreas. Unexpectedly, the pancreas from Hippo-deficient offspring was reduced in size, with defects evident throughout the organ. Increases in the dephosphorylated nuclear form of Yap are apparent throughout the exocrine compartment and correlate with increases in levels of cell proliferation. However, the mutant exocrine tissue displays extensive disorganization leading to pancreatitis-like autodigestion. Interestingly, our results suggest that Hippo signaling does not directly regulate the pancreas endocrine compartment as Yap expression is lost following endocrine specification through a Hippo-independent mechanism. Altogether, our results demonstrate that Hippo signaling plays a crucial role in pancreas development and provide novel routes to a better understanding of pathological conditions that affect this organ. PMID:23071096
Hoffman, Robert M
2014-01-01
We have developed a transgenic green fluorescent protein (GFP) nude mouse with ubiquitous GFP expression. The GFP nude mouse was obtained by crossing nontransgenic nude mice with the transgenic C57/B6 mouse in which the β-actin promoter drives GFP expression in essentially all tissues. In the adult mice, many organs brightly expressed GFP, including the spleen, heart, lungs, spleen, pancreas, esophagus, stomach, and duodenum as well as the circulatory system. The liver expressed GFP at a lesser level. The red fluorescent protein (RFP) transgenic nude mouse was obtained by crossing non-transgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives RFP (DsRed2) expression in essentially all tissues. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, liver, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. The cyan fluorescent protein (CFP) nude mouse was developed by crossing nontransgenic nude mice with the transgenic CK/ECFP mouse in which the β-actin promoter drives expression of CFP in almost all tissues. In the CFP nude mice, the pancreas and reproductive organs displayed the strongest fluorescence signals of all internal organs, which vary in intensity. The GFP, RFP, and CFP nude mice when transplanted with cancer cells of another color are powerful models for color-coded imaging of the tumor microenvironment (TME) at the cellular level.
Stabilization of beta-catenin impacts pancreas growth.
Heiser, Patrick W; Lau, Janet; Taketo, Makoto M; Herrera, Pedro L; Hebrok, Matthias
2006-05-01
A recent study has shown that deletion of beta-catenin within the pancreatic epithelium results in a loss of pancreas mass. Here, we show that ectopic stabilization of beta-catenin within mouse pancreatic epithelium can have divergent effects on both organ formation and growth. Robust stabilization of beta-catenin during early organogenesis drives changes in hedgehog and Fgf10 signaling and induces a loss of Pdx1 expression in early pancreatic progenitor cells. Together, these perturbations in early pancreatic specification culminate in a severe reduction of pancreas mass and postnatal lethality. By contrast, inducing the stabilized form of beta-catenin at a later time point in pancreas development causes enhanced proliferation that results in a dramatic increase in pancreas organ size. Taken together, these data suggest a previously unappreciated temporal/spatial role for beta-catenin signaling in the regulation of pancreas organ growth.
NASA Technical Reports Server (NTRS)
Spooner, B. S.; Hardman, P.; Paulsen, A.
1994-01-01
Organ culture of embryonic mouse lung and pancreas rudiments has been used to investigate development and differentiation, and to assess the effects of microgravity on culture differentiation, during orbital spaceflight of the shuttle Endeavour (mission STS-54). Lung rudiments continue to grow and branch during spaceflight, an initial result that should allow future detailed study of lung morphogenesis in microgravity. Cultured embryonic pancreas undergoes characteristic exocrine acinar tissue and endocrine islet tissue differentiation during spaceflight, and in ground controls. The rudiments developing in the microgravity environment of spaceflight appear to grow larger than their ground counterparts, and they may have differentiated more rapidly than controls, as judged by exocrine zymogen granule presence.
Tourlakis, Marina E; Zhong, Jian; Gandhi, Rikesh; Zhang, Siyi; Chen, Lingling; Durie, Peter R; Rommens, Johanna M
2012-08-01
Shwachman-Diamond syndrome (SDS) is the second leading cause of hereditary exocrine pancreatic dysfunction. More than 90% of patients with SDS have biallelic loss-of-function mutations in the Shwachman-Bodian Diamond syndrome (SBDS) gene, which encodes a factor involved in ribosome function. We investigated whether mutations in Sbds lead to similar pancreatic defects in mice. Pancreas-specific knock-out mice were generated using a floxed Sbds allele and bred with mice carrying a null or disease-associated missense Sbds allele. Cre recombinase, regulated by the pancreatic transcription factor 1a promoter, was used to disrupt Sbds specifically in the pancreas. Models were assessed for pancreatic dysfunction and growth impairment. Disruption of Sbds in the mouse pancreas was sufficient to recapitulate SDS phenotypes. Pancreata of mice with Sbds mutations had decreased mass, fat infiltration, but general preservation of ductal and endocrine compartments. Pancreatic extracts from mutant mice had defects in formation of the 80S ribosomal complex. The exocrine compartment of mutant mice was hypoplastic and individual acini produced few zymogen granules. The null Sbds allele resulted in an earlier onset of phenotypes as well as endocrine impairment. Mutant mice had reduced serum levels of digestive enzymes and overall growth impairment. We developed a mouse model of SDS with pancreatic phenotypes similar to those of the human disease. This model could be used to investigate organ-specific consequences of Sbds-associated ribosomopathy. Sbds genotypes correlated with phenotypes. Defects developed specifically in the pancreata of mice, reducing growth of mice and production of digestive enzymes. SBDS therefore appears to be required for normal pancreatic development and function. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Prostaglandin E2 Regulates Liver versus Pancreas Cell Fate Decisions and Endodermal Outgrowth
Nissim, Sahar; Sherwood, Richard I.; Wucherpfennig, Julia; Saunders, Diane; Harris, James M.; Esain, Virginie; Carroll, Kelli J.; Frechette, Gregory M.; Kim, Andrew J.; Hwang, Katie L.; Cutting, Claire C.; Elledge, Susanna; North, Trista E.; Goessling, Wolfram
2014-01-01
SUMMARY The liver and pancreas arise from common endodermal progenitors. How these distinct cell fates are specified is poorly understood. Here, we describe prostaglandin E2 (PGE2) as a regulator of endodermal fate specification during development. Modulating PGE2 activity has opposing effects on liver-versus-pancreas specification in zebrafish embryos as well as mouse endodermal progenitors. The PGE2 synthetic enzyme cox2a and receptor ep2a are patterned such that cells closest to PGE2 synthesis acquire a liver fate whereas more distant cells acquire a pancreas fate. PGE2 interacts with the bmp2b pathway to regulate fate specification. At later stages of development, PGE2 acting via the ep4a receptor promotes outgrowth of both the liver and pancreas. PGE2 remains important for adult organ growth, as it modulates liver regeneration. This work provides in vivo evidence that PGE2 may act as a morphogen to regulate cell fate decisions and outgrowth of the embryonic endodermal anlagen. PMID:24530296
Vascular development in the vertebrate pancreas
Azizoglu, D. Berfin; Chong, Diana C.; Villasenor, Alethia; Magenheim, Judith; Barry, David M.; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine
2016-01-01
The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. PMID:27789228
Kim, So Yoon; Rane, Sushil G.
2011-01-01
Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060
Zhang, Yiwei; Zeng, Shelya X; Hao, Qian; Lu, Hua
2017-03-01
Although p53 is not essential for normal embryonic development, it plays a pivotal role in many biological and pathological processes, including cell fate determination-dependent and independent events and diseases. The expression and activity of p53 largely depend on its two biological inhibitors, MDM2 and MDMX, which have been shown to form a complex in order to tightly control p53 to an undetectable level during early stages of embryonic development. However, more delicate studies using conditional gene-modification mouse models show that MDM2 and MDMX may function separately or synergistically on p53 regulation during later stages of embryonic development and adulthood in a cell and tissue-specific manner. Here, we report the role of the MDM2/MDMX-p53 pathway in pancreatic islet morphogenesis and functional maintenance, using mouse lines with specific deletion of MDM2 or MDMX in pancreatic endocrine progenitor cells. Interestingly, deletion of MDM2 results in defects of embryonic endocrine pancreas development, followed by neonatal hyperglycemia and lethality, by inducing pancreatic progenitor cell apoptosis and inhibiting cell proliferation. However, unlike MDM2-knockout animals, mice lacking MDMX in endocrine progenitor cells develop normally. But, surprisingly, the survival rate of adult MDMX-knockout mice drastically declines compared to control mice, as blockage of neonatal development of endocrine pancreas by inhibition of cell proliferation and subsequent islet dysfunction and hyperglycemia eventually lead to type 1 diabetes-like disease with advanced diabetic nephropathy. As expected, both MDM2 and MDMX deletion-caused pancreatic defects are completely rescued by loss of p53, verifying the crucial role of the MDM2 and/or MDMX in regulating p53 in a spatio-temporal manner during the development, functional maintenance, and related disease progress of endocrine pancreas. Also, our study suggests a possible mouse model of advanced diabetic nephropathy, which is complementary to other established diabetic models and perhaps useful for the development of anti-diabetes therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
Hartwig, N. R.; Kalmbach, N.; Klietz, M.; Anlauf, M.; Eiden, L. E.; Weihe, E.
2014-01-01
Aims/hypothesis Imaging of beta cell mass (BCM) is a major challenge in diabetes research. The vesicular monoamine transporter 2 (VMAT2) is abundantly expressed in human beta cells. Radiolabelled analogues of tetrabenazine (TBZ; a low-molecular-weight, cell-permeant VMAT2-selective ligand) have been employed for pancreatic islet imaging in humans. Since reports on TBZ-based VMAT2 imaging in rodent pancreas have been fraught with confusion, we compared VMAT2 gene expression patterns in the mouse, rat, pig and human pancreas, to identify appropriate animal models with which to further validate and optimise TBZ imaging in humans. Methods We used a panel of highly sensitive VMAT2 antibodies developed against equivalently antigenic regions of the transporter from each species in combination with immunostaining for insulin and species-specific in situ hybridisation probes. Individual pancreatic islets were obtained by laser-capture microdissection and subjected to analysis of mRNA expression of VMAT2. Results The VMAT2 protein was not expressed in beta cells in the adult pancreas of common mouse or rat laboratory strains, in contrast to its expression in beta cells (but not other pancreatic endocrine cell types) in the pancreas of pigs and humans. VMAT2- and tyrosine hydroxylase co-positive (catecholaminergic) innervation was less abundant in humans than in rodents. VMAT2-positive mast cells were identified in the pancreas of all species. Conclusions/interpretation Primates and pigs are suitable models for TBZ imaging of beta cells. Rodents, because of a complete lack of VMAT2 expression in the endocrine pancreas, are a ‘null’ model for assessing interference with BCM measurements by VMAT2-positive mast cells and sympathetic innervation in the pancreas. PMID:23404442
Arregi, Igor; Climent, Maria; Iliev, Dobromir; Strasser, Jürgen; Gouignard, Nadège; Johansson, Jenny K; Singh, Tania; Mazur, Magdalena; Semb, Henrik; Artner, Isabella; Minichiello, Liliana; Pera, Edgar M
2016-12-01
Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon + and insulin + cells. During the secondary transition, the reduction of Neurogenin3 + endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.
Martinelli, Paola; Cañamero, Marta; del Pozo, Natalia; Madriles, Francesc; Zapata, Agustín; Real, Francisco X
2013-10-01
Previous studies have suggested an important role of the transcription factor Gata6 in endocrine pancreas, while GATA6 haploinsufficient inactivating mutations cause pancreatic agenesis in humans. We aimed to analyse the effects of Gata6 inactivation on pancreas development and function. We deleted Gata6 in all epithelial cells in the murine pancreas at the onset of its development. Acinar proliferation, apoptosis, differentiation and exocrine functions were assessed using reverse transcriptase quantitative PCR (RT-qPCR), chromatin immunoprecipitation, immunohistochemistry and enzyme assays. Adipocyte transdifferentiation was assessed using electron microscopy and genetic lineage tracing. Gata6 is expressed in all epithelial cells in the adult mouse pancreas but it is only essential for exocrine pancreas homeostasis: while dispensable for pancreatic development after e10.5, it is required for complete acinar differentiation, for establishment of polarity and for the maintenance of acinar cells in the adult. Gata6 regulates directly the promoter of genes coding for digestive enzymes and the transcription factors Rbpjl and Mist1. Upon pancreas-selective Gata6 inactivation, massive loss of acinar cells and fat replacement take place. This is accompanied by increased acinar apoptosis and proliferation, acinar-to-ductal metaplasia and adipocyte transdifferentiation. By contrast, the endocrine pancreas is spared. Our data show that Gata6 is required for the complete differentiation of acinar cells through multiple transcriptional regulatory mechanisms. In addition, it is required for the maintenance of the adult acinar cell compartment. Our studies suggest that GATA6 alterations may contribute to diseases of the human adult exocrine pancreas.
Chronology of endocrine differentiation and beta-cell neogenesis.
Miyatsuka, Takeshi
2016-01-01
Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.
Vascular development in the vertebrate pancreas.
Azizoglu, D Berfin; Chong, Diana C; Villasenor, Alethia; Magenheim, Judith; Barry, David M; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine
2016-12-01
The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time in-depth cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.
Mirus, Justin E; Zhang, Yuzheng; Hollingsworth, Michael A; Solan, Joell L; Lampe, Paul D; Hingorani, Sunil R
2014-12-01
Pancreas cancer, or pancreatic ductal adenocarcinoma, is the deadliest of solid tumors, with a five-year survival rate of <5%. Detection of resectable disease improves survival rates, but access to tissue and other biospecimens that could be used to develop early detection markers is confounded by the insidious nature of pancreas cancer. Mouse models that accurately recapitulate the human condition allow disease tracking from inception to invasion and can therefore be useful for studying early disease stages in which surgical resection is possible. Using a highly faithful mouse model of pancreas cancer in conjunction with a high-density antibody microarray containing ∼2500 antibodies, we interrogated the pancreatic tissue proteome at preinvasive and invasive stages of disease. The goal was to discover early stage tissue markers of pancreas cancer and follow them through histologically defined stages of disease using cohorts of mice lacking overt clinical signs and symptoms and those with end-stage metastatic disease, respectively. A panel of seven up-regulated proteins distinguishing pancreas cancer from normal pancreas was validated, and their levels were assessed in tissues collected at preinvasive, early invasive, and moribund stages of disease. Six of the seven markers also differentiated pancreas cancer from an experimental model of chronic pancreatitis. The levels of serine/threonine stress kinase 4 (STK4) increased between preinvasive and invasive stages, suggesting its potential as a tissue biomarker, and perhaps its involvement in progression from precursor pancreatic intraepithelial neoplasia to pancreatic ductal adenocarcinoma. Immunohistochemistry of STK4 at different stages of disease revealed a dynamic expression pattern further implicating it in early tumorigenic events. Immunohistochemistry of a panel of human pancreas cancers confirmed that STK4 levels were increased in tumor epithelia relative to normal tissue. Overall, this integrated approach yielded several tissue markers that could serve as signatures of disease stage, including early (resectable), and therefore clinically meaningful, stages. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
PNA lectin for purifying mouse acinar cells from the inflamed pancreas.
Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z; Gittes, George K
2016-02-17
Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer.
PNA lectin for purifying mouse acinar cells from the inflamed pancreas
Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z.; Gittes, George K.
2016-01-01
Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer. PMID:26884345
Opposing actions of Arx and Pax4 in endocrine pancreas development
Collombat, Patrick; Mansouri, Ahmed; Hecksher-Sørensen, Jacob; Serup, Palle; Krull, Jens; Gradwohl, Gerard; Gruss, Peter
2003-01-01
Genes encoding homeodomain-containing proteins potentially involved in endocrine pancreas development were isolated by combined in silico and nested-PCR approaches. One such transcription factor, Arx, exhibits Ngn3-dependent expression throughout endocrine pancreas development in α, β-precursor, and δ cells. We have used gene targeting in mouse embryonic stem cells to generate Arx loss-of-function mice. Arx-deficient animals are born at the expected Mendelian frequency, but develop early-onset hypoglycemia, dehydration, and weakness, and die 2 d after birth. Immunohistological analysis of pancreas from Arx mutants reveals an early-onset loss of mature endocrine α cells with a concomitant increase in β-and δ-cell numbers, whereas islet morphology remains intact. Our study indicates a requirement of Arx for α-cell fate acquisition and a repressive action on β-and δ-cell destiny, which is exactly the opposite of the action of Pax4 in endocrine commitment. Using multiplex reverse transcriptase PCR (RT-PCR), we demonstrate an accumulation of Pax4 and Arx transcripts in Arx and Pax4 mutant mice, respectively. We propose that the antagonistic functions of Arx and Pax4 for proper islet cell specification are related to the pancreatic levels of the respective transcripts. PMID:14561778
Opposing actions of Arx and Pax4 in endocrine pancreas development.
Collombat, Patrick; Mansouri, Ahmed; Hecksher-Sorensen, Jacob; Serup, Palle; Krull, Jens; Gradwohl, Gerard; Gruss, Peter
2003-10-15
Genes encoding homeodomain-containing proteins potentially involved in endocrine pancreas development were isolated by combined in silico and nested-PCR approaches. One such transcription factor, Arx, exhibits Ngn3-dependent expression throughout endocrine pancreas development in alpha, beta-precursor, and delta cells. We have used gene targeting in mouse embryonic stem cells to generate Arx loss-of-function mice. Arx-deficient animals are born at the expected Mendelian frequency, but develop early-onset hypoglycemia, dehydration, and weakness, and die 2 d after birth. Immunohistological analysis of pancreas from Arx mutants reveals an early-onset loss of mature endocrine alpha cells with a concomitant increase in beta-and delta-cell numbers, whereas islet morphology remains intact. Our study indicates a requirement of Arx for alpha-cell fate acquisition and a repressive action on beta-and delta-cell destiny, which is exactly the opposite of the action of Pax4 in endocrine commitment. Using multiplex reverse transcriptase PCR (RT-PCR), we demonstrate an accumulation of Pax4 and Arx transcripts in Arx and Pax4 mutant mice, respectively. We propose that the antagonistic functions of Arx and Pax4 for proper islet cell specification are related to the pancreatic levels of the respective transcripts.
Stefan, Mihaela; Simmons, Rebecca A; Bertera, Suzanne; Trucco, Massimo; Esni, Farzad; Drain, Peter; Nicholls, Robert D
2011-05-01
Prader-Willi syndrome (PWS) is a multisystem disorder caused by genetic loss of function of a cluster of imprinted, paternally expressed genes. Neonatal failure to thrive in PWS is followed by childhood-onset hyperphagia and obesity among other endocrine and behavioral abnormalities. PWS is typically assumed to be caused by an unknown hypothalamic-pituitary dysfunction, but the underlying pathogenesis remains unknown. A transgenic deletion mouse model (TgPWS) has severe failure to thrive, with very low levels of plasma insulin and glucagon in fetal and neonatal life prior to and following onset of progressive hypoglycemia. In this study, we tested the hypothesis that primary deficits in pancreatic islet development or function may play a fundamental role in the TgPWS neonatal phenotype. Major pancreatic islet hormones (insulin, glucagon) were decreased in TgPWS mice, consistent with plasma levels. Immunohistochemical analysis of the pancreas demonstrated disrupted morphology of TgPWS islets, with reduced α- and β-cell mass arising from an increase in apoptosis. Furthermore, in vivo and in vitro studies show that the rate of insulin secretion is significantly impaired in TgPWS β-cells. In TgPWS pancreas, mRNA levels for genes encoding all pancreatic hormones, other secretory factors, and the ISL1 transcription factor are upregulated by either a compensatory response to plasma hormone deficiencies or a primary effect of a deleted gene. Our findings identify a cluster of imprinted genes required for the development, survival, coordinate regulation of genes encoding hormones, and secretory function of pancreatic endocrine cells, which may underlie the neonatal phenotype of the TgPWS mouse model.
Smith, Jill P; Cooper, Timothy K; McGovern, Christopher O; Gilius, Evan L; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A; Gutkind, J Silvio; Matters, Gail L
2014-10-01
Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved in the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-Kras transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK receptor antagonist (proglumide, 0.1 mg/mL). Pancreas from the mice were removed and examined histologically for number and grade of PanINs after 1, 2, or 4 months of antagonist therapy. Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed, and progression to advanced lesions arrested in mice treated with proglumide compared with the controls (P = 0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared with vehicle (P < 0.001). These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. The use of CCK receptor antagonists may have a role in cancer prophylaxis in high-risk subjects and may reduce fibrosis in the microenvironment.
Smith, Jill P.; Cooper, Timothy K.; McGovern, Christopher O.; Gilius, Evan L.; Zhong, Qing; Liao, Jiangang; Molinolo, Alfredo A.; Gutkind, J. Silvio; Matters, Gail L.
2014-01-01
Objectives Exogenous administration of cholecystokinin (CCK) induces hypertrophy and hyperplasia of the pancreas with an increase in DNA content. We hypothesized that endogenous CCK is involved with the malignant progression of pancreatic intraepithelial neoplasia (PanIN) lesions and the fibrosis associated with pancreatic cancer. Methods The presence of CCK receptors in early PanIN lesions was examined by immunohistochemistry in mouse and human pancreas. Pdx1-Cre/LSL-KrasG12D transgenic mice were randomized to receive either untreated drinking water or water supplemented with a CCK-receptor antagonist (proglumide, 0.1mg/ml). Pancreas from mice were removed and examined histologically for number and grade of PanINs after 1, 2 or 4 months of antagonist therapy. Results Both CCK-A and CCK-B receptors were identified in early stage PanINs from mouse and human pancreas. The grade of PanIN lesions was reversed and progression to advanced lesions arrested in mice treated with proglumide compared to controls (p=0.004). Furthermore, pancreatic fibrosis was significantly reduced in antagonist-treated animals compared to vehicle (pitalic>0.001). Conclusions These findings demonstrate that endogenous CCK is in part responsible for the development and progression of pancreatic cancer. Use of CCK-receptor antagonists may have a role in cancer prophylaxis in high risk subjects, and may reduce fibrosis in the microenvironment. PMID:25058882
Rodríguez-Seguel, Elisa; Mah, Nancy; Naumann, Heike; Pongrac, Igor M.; Cerdá-Esteban, Nuria; Fontaine, Jean-Fred; Wang, Yongbo; Chen, Wei; Andrade-Navarro, Miguel A.; Spagnoli, Francesca M.
2013-01-01
Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. PMID:24013505
Isolation of zymogen granules from rat pancreas.
Rindler, Michael J
2006-01-01
This unit describes methods for preparing zymogen granules from rat pancreas. Zymogen granules are storage organelles in pancreatic acinar cells containing digestive enzymes that are released into the pancreatic duct. The protocols in this unit take advantage of the large size (up to 1 microm diameter) and high density (>1.20 g/cm(3) on sucrose gradients) of the granules as compared to other cellular organelles. They use a combination of differential sedimentation and density gradient separation to accomplish the purification. Similar procedures can be used to isolate zymogen granules from mouse pancreas and canine pancreas. A protocol for preparing zymogen granules from dog pancreas is also included.
Roman, Heather B.; Hirschberger, Lawrence L.; Krijt, Jakub; Valli, Alessandro; Kožich, Viktor
2013-01-01
Abstract Aims: To define the consequences of loss of cysteine dioxygenase (CDO) on cysteine metabolism at the tissue level, we determined levels of relevant metabolites and enzymes and evidence of H2S/HS− (gaseous hydrogen sulfide and its conjugate base) toxicity in liver, pancreas, kidney, and lung of CDO−/− mice that were fed either a taurine-free or taurine-supplemented diet. Results: CDO−/− mice had low tissue and serum taurine and hypotaurine levels and high tissue levels of cysteine, consistent with the loss of CDO. CDO−/− mice had elevated urinary excretion of thiosulfate, high tissue and serum cystathionine and lanthionine levels, and evidence of inhibition and destabilization of cytochrome c oxidase, which is consistent with excess production of H2S/HS−. Accumulation of cystathionine and lanthionine appeared to result from cystathionine β-synthase (CBS)-mediated cysteine desulfhydration. Very high levels of hypotaurine in pancreas of wild-type mice and very high levels of cystathionine and lanthionine in pancreas of CDO−/− mice were observed, suggesting a unique cysteine metabolism in the pancreas. Innovation: The CDO−/− mouse model provides new insights into tissue-specific cysteine metabolism, particularly the role of pancreas in metabolism of excess cysteine by CBS-catalyzed reactions, and will be a useful model for studying the effects of excess endogenous production of H2S/HS−. Conclusion: The CDO−/− mouse clearly demonstrates that H2S/HS− production in tissues can exceed the capacity of the animal to oxidize sulfide to sulfate and demonstrates that pancreas and lung are more susceptible to toxicity from endogenous H2S/HS−production than are liver and kidney. Antioxid. Redox Signal. 19, 1321–1336. PMID:23350603
Prox1-Heterozygosis Sensitizes the Pancreas to Oncogenic Kras-Induced Neoplastic Transformation.
Drosos, Yiannis; Neale, Geoffrey; Ye, Jianming; Paul, Leena; Kuliyev, Emin; Maitra, Anirban; Means, Anna L; Washington, M Kay; Rehg, Jerold; Finkelstein, David B; Sosa-Pineda, Beatriz
2016-03-01
The current paradigm of pancreatic neoplastic transformation proposes an initial step whereby acinar cells convert into acinar-to-ductal metaplasias, followed by progression of these lesions into neoplasias under sustained oncogenic activity and inflammation. Understanding the molecular mechanisms driving these processes is crucial to the early diagnostic and prevention of pancreatic cancer. Emerging evidence indicates that transcription factors that control exocrine pancreatic development could have either, protective or facilitating roles in the formation of preneoplasias and neoplasias in the pancreas. We previously identified that the homeodomain transcription factor Prox1 is a novel regulator of mouse exocrine pancreas development. Here we investigated whether Prox1 function participates in early neoplastic transformation using in vivo, in vitro and in silico approaches. We found that Prox1 expression is transiently re-activated in acinar cells undergoing dedifferentiation and acinar-to-ductal metaplastic conversion. In contrast, Prox1 expression is largely absent in neoplasias and tumors in the pancreas of mice and humans. We also uncovered that Prox1-heterozygosis markedly increases the formation of acinar-to-ductal-metaplasias and early neoplasias, and enhances features associated with inflammation, in mouse pancreatic tissues expressing oncogenic Kras. Furthermore, we discovered that Prox1-heterozygosis increases tissue damage and delays recovery from inflammation in pancreata of mice injected with caerulein. These results are the first demonstration that Prox1 activity protects pancreatic cells from acute tissue damage and early neoplastic transformation. Additional data in our study indicate that this novel role of Prox1 involves suppression of pathways associated with inflammatory responses and cell invasiveness. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Structural similarities and differences between the human and the mouse pancreas
Dolenšek, Jurij; Rupnik, Marjan Slak; Stožer, Andraž
2015-01-01
Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident and only recently described differences in organization of the acinar and ductal exocrine tissue, as well as in the distribution, composition, and architecture of the endocrine islets of Langerhans. Furthermore, the differences in arterial, venous, and lymphatic vessels, as well as innervation are potentially important. In this article, the structure of the human and the mouse pancreas, together with the similarities and differences between them are reviewed in detail in the light of conceivable repercussions for basic research and clinical application. PMID:26030186
Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard
2012-01-15
During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3(+) progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3(CreERT/+)) and Neurog3-deficient (Neurog3(CreERT/CreERT)) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition, endocrine progenitor cells arise from bipotent precursors already committed to the duct/endocrine lineages and not from domain of cells having distinct potentialities. Copyright © 2011 Elsevier Inc. All rights reserved.
Beucher, Anthony; Martín, Mercè; Spenle, Caroline; Poulet, Martine; Collin, Caitlin; Gradwohl, Gérard
2011-01-01
SUMMARY During mouse pancreas development, the transient expression of Neurogenin3 (Neurog3) in uncommitted pancreas progenitors is required to determine endocrine destiny. However it has been reported that Neurog3-expressing cells can eventually adopt acinar or ductal fates and that Neurog3 levels were important to secure the islet destiny. It is not known whether the competence of Neurog3-induced cells to give rise to non-endocrine lineages is an intrinsic property of these progenitors or depends on pancreas developmental stage. Using temporal genetic labeling approaches we examined the dynamic of endocrine progenitor differentiation and explored the plasticity of Neurog3-induced cells throughout development. We found that Neurog3+ progenitors develop into hormone-expressing cells in a fast process taking less then 10h. Furthermore, fate-mapping studies in heterozygote (Neurog3CreERT/+) and Neurog3-deficient (Neurog3CreERT/CreERT) embryos revealed that Neurog3-induced cells have different potential over time. At the early bud stage, failed endocrine progenitors can adopt acinar or ductal fate, whereas later in the branching pancreas they do not contribute to the acinar lineage but Neurog3-deficient cells eventually differentiate into duct cells. Thus these results provide evidence that the plasticity of Neurog3-induced cells becomes restricted during development. Furthermore these data suggest that during the secondary transition endocrine progenitor cells arise from single bipotent progenitor already committed to the duct/endocrine lineages and not from domain of cells having both potentialities. PMID:22056785
Kobayashi, Toshihiro; Kato-Itoh, Megumi; Nakauchi, Hiromitsu
2015-01-15
Generation of functional organs from patients' own cells is one of the ultimate goals of regenerative medicine. As a novel approach to creation of organs from pluripotent stem cells (PSCs), we employed blastocyst complementation in organogenesis-disabled animals and successfully generated PSC-derived pancreas and kidneys. Blastocyst complementation, which exploits the capacity of PSCs to participate in forming chimeras, does not, however, exclude contribution of PSCs to the development of tissues-including neural cells or germ cells-other than those specifically targeted by disabling of organogenesis. This fact provokes ethical controversy if human PSCs are to be used. In this study, we demonstrated that forced expression of Mix-like protein 1 (encoded by Mixl1) can be used to guide contribution of mouse embryonic stem cells to endodermal organs after blastocyst injection. We then succeeded in applying this method to generate functional pancreas in pancreatogenesis-disabled Pdx1 knockout mice using a newly developed tetraploid-based organ-complementation method. These findings hold promise for targeted organ generation from patients' own PSCs in livestock animals.
Mullin, Anne E; Soukatcheva, Galina; Verchere, C Bruce; Chantler, Janet K
2006-05-01
A technique to isolate high-quality intact RNA from murine pancreas is described. This technique involves in situ ductal perfusion of the pancreas with an RNase inhibitor prior to removal of the organ for RNA extraction. In this way, the pancreatic RNases are inhibited in situ allowing good yields of intact RNA, suitable for studies on pancreatic gene transcription by real-time PCR or microarray analysis, to be obtained in a reliable way.
2013-01-01
Background Metabolic alteration is one of the hallmarks of carcinogenesis. We aimed to identify certain metabolic biomarkers for the early detection of pancreatic cancer (PC) using the transgenic PTEN-null mouse model. Pancreas-specific deletion of PTEN in mouse caused progressive premalignant lesions such as highly proliferative ductal metaplasia. We imaged the mitochondrial redox state of the pancreases of the transgenic mice approximately eight months old using the redox scanner, i.e., the nicotinamide adenine dinucleotide/oxidized flavoproteins (NADH/Fp) fluorescence imager at low temperature. Two different approaches, the global averaging of the redox indices without considering tissue heterogeneity along tissue depth and the univariate analysis of multi-section data using tissue depth as a covariate were adopted for the statistical analysis of the multi-section imaging data. The standard deviations of the redox indices and the histogram analysis with Gaussian fit were used to determine the tissue heterogeneity. Results All methods show consistently that the PTEN deficient pancreases (Pdx1-Cre;PTENlox/lox) were significantly more heterogeneous in their mitochondrial redox state compared to the controls (PTENlox/lox). Statistical analysis taking into account the variations of the redox state with tissue depth further shows that PTEN deletion significantly shifted the pancreatic tissue to an overall more oxidized state. Oxidization of the PTEN-null group was not seen when the imaging data were analyzed by global averaging without considering the variation of the redox indices along tissue depth, indicating the importance of taking tissue heterogeneity into account for the statistical analysis of the multi-section imaging data. Conclusions This study reveals a possible link between the mitochondrial redox state alteration of the pancreas and its malignant transformation and may be further developed for establishing potential metabolic biomarkers for the early diagnosis of pancreatic cancer. PMID:24252270
Using pancreas tissue slices for in situ studies of islet of Langerhans and acinar cell biology.
Marciniak, Anja; Cohrs, Christian M; Tsata, Vasiliki; Chouinard, Julie A; Selck, Claudia; Stertmann, Julia; Reichelt, Saskia; Rose, Tobias; Ehehalt, Florian; Weitz, Jürgen; Solimena, Michele; Slak Rupnik, Marjan; Speier, Stephan
2014-12-01
Studies on the cellular function of the pancreas are typically performed in vitro on its isolated functional units, the endocrine islets of Langerhans and the exocrine acini. However, these approaches are hampered by preparation-induced changes of cell physiology and the lack of an intact surrounding. We present here a detailed protocol for the preparation of pancreas tissue slices. This procedure is less damaging to the tissue and faster than alternative approaches, and it enables the in situ study of pancreatic endocrine and exocrine cell physiology in a conserved environment. Pancreas tissue slices facilitate the investigation of cellular mechanisms underlying the function, pathology and interaction of the endocrine and exocrine components of the pancreas. We provide examples for several experimental applications of pancreas tissue slices to study various aspects of pancreas cell biology. Furthermore, we describe the preparation of human and porcine pancreas tissue slices for the validation and translation of research findings obtained in the mouse model. Preparation of pancreas tissue slices according to the protocol described here takes less than 45 min from tissue preparation to receipt of the first slices.
Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis
Huch, Meritxell; Bonfanti, Paola; Boj, Sylvia F; Sato, Toshiro; Loomans, Cindy J M; van de Wetering, Marc; Sojoodi, Mozhdeh; Li, Vivian S W; Schuijers, Jurian; Gracanin, Ana; Ringnalda, Femke; Begthel, Harry; Hamer, Karien; Mulder, Joyce; van Es, Johan H; de Koning, Eelco; Vries, Robert G J; Heimberg, Harry; Clevers, Hans
2013-01-01
Lgr5 marks adult stem cells in multiple adult organs and is a receptor for the Wnt-agonistic R-spondins (RSPOs). Intestinal, stomach and liver Lgr5+ stem cells grow in 3D cultures to form ever-expanding organoids, which resemble the tissues of origin. Wnt signalling is inactive and Lgr5 is not expressed under physiological conditions in the adult pancreas. However, we now report that the Wnt pathway is robustly activated upon injury by partial duct ligation (PDL), concomitant with the appearance of Lgr5 expression in regenerating pancreatic ducts. In vitro, duct fragments from mouse pancreas initiate Lgr5 expression in RSPO1-based cultures, and develop into budding cyst-like structures (organoids) that expand five-fold weekly for >40 weeks. Single isolated duct cells can also be cultured into pancreatic organoids, containing Lgr5 stem/progenitor cells that can be clonally expanded. Clonal pancreas organoids can be induced to differentiate into duct as well as endocrine cells upon transplantation, thus proving their bi-potentiality. PMID:24045232
Discovery of the porcine NGN3 gene and testing its endocrine function in the pig
USDA-ARS?s Scientific Manuscript database
Neurogenin 3 (NGN3) is a member of the basic helix-loop-helix transcription factor family. NGN3 is both necessary and sufficient to drive endocrine differentiation in the developing pancreas in mouse and humans. Until now, the sequence for NGN3 eluded discovery despite completion of the pig genome a...
Fielitz, Kathrin; Althoff, Kristina; De Preter, Katleen; Nonnekens, Julie; Ohli, Jasmin; Elges, Sandra; Hartmann, Wolfgang; Klöppel, Günter; Knösel, Thomas; Schulte, Marc; Klein-Hitpass, Ludger; Beisser, Daniela; Reis, Henning; Eyking, Annette; Cario, Elke; Schulte, Johannes H; Schramm, Alexander; Schüller, Ulrich
2016-11-15
Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.
Nizze, H
1975-01-01
Repeated intraperitoneal injections of anti-mouse pancreas rabbit serum or of anti-mouse pancreas guinea pig serum produce a chronical sclerotizing pancreatitis. This study has the aim to contribute to the further elucidation of the changes which occur in the acinar cells, as well as to the etiology and pathogenesis of immune pancreatitis, by means of immunohistological, enzyme histochemical and electron microscopic studies. Anti-mouse pancreas rabbit serum was obtained by sensitization of rabbits with an admixture of AB-mouse pancreas extract (100,000 g - supernatant) and complete Freund's adjuvant [details see NIZZE, Exp. Path. (1975a)]. The presence of precipitating mouse pancreas antibodies in the rabbit serum was ascertained by the agargel diffusion test according to Duchterlony (1958). The experiments were performed with 54 adult male white mice (AB colony strain) of 22 to 30 g.b.s. (averagely 26 g). The animals were divided into 4 groups which were treated as follows: 1. 24 mice with anti-mouse pancreas rabbit serum, 2. 12 mice with rabbit normal serum, 3. 12 mice with physiological saline, 4. 6 mice remained untreated (controls) Always 4 animals of the group 1 as well as each 2 of the groups 2 and 3 were administered in total 1, 3, 5, 9, 17 or 33 intraperitoneal injections of 0.3 ml of the correspondent serum or with physiological saline within 3 hours, 1, 2, 4, 8 or 16 days. The last injection was regularly applied 3 hours before sacrification by decapitation. The time of sacrification was always at 11.00 o'clock a.m. For immunohistological and enzyme histochemical investigations 10 mum thick cryostat sections were prepared consisting of pancreatic specimens piled up to a bloc. In each case the tissue samples were taken from the experimental animals and from one control animal sacrificed at the same day. The sections were incubated in FITC-labelled anti-rabbit globulin goat serum at room temperature for 30 min in a moist chamber. For control of specificity were employed: a) initial incubation of equal sections with unlabelled anti-rabbit globulin goat serum for 30 min ("blocking test''), b) pancreatic tissue specimens of each one untreated control animal present in the cryostat sections and thus incubated like the pancreatic tissue of the experimental animals, c) native nonincubated cryostat sections from the same bloc to exclude nonspecific autofluorescence. Evaluation of the sections was done in a Zeiss-Lg-microscope with HBO-50 high pressure mercury lamp. Exciter filters were UG 1/3.5 and 1/1.5, the eyepiece was screened with a GG 9/1 filter photographs were taken on ORWO X-ray film RS 2 (VEB Filmfabrik Wolfen). The enzyme histochemical studies were performed on cryostat sections of the same tissue bloc using the following methods: lead nitrate- or calcium-Co-method after GOMORI (1952) for demonstration of acid and alkaline phosphatase, naphthylacetate method (NACHLAS and SELIGMAN 1945) for nonspecific esterase, MTT-co-method (PEARSE et al...
José, Anabel; Sobrevals, Luciano; Miguel Camacho-Sánchez, Juan; Huch, Meritxell; Andreu, Núria; Ayuso, Eduard; Navarro, Pilar; Alemany, Ramon; Fillat, Cristina
2013-01-01
Gene-based anticancer therapies delivered by adenoviruses are limited by the poor viral distribution into the tumor. In the current work we have explored the feasibility of targeting pancreatic tumors through a loco-regional route. We have taken advantage of the ductal network in the pancreas to retrogradelly inject adenoviruses through the common bile duct in two different mouse models of pancreatic carcinogenesis: The transgenic Ela-myc mice that develop mixed neoplasms displaying both acinar-like and duct-like neoplastic cells affecting the whole pancreas; and mice bearing PANC-1 and BxPC-3 orthotopic xenografts that constitute a model of localized human neoplastic tumors. We studied tumor targeting and the anticancer effects of newly thymidine kinase-engineered adenoviruses both in vitro and in vivo, and conducted comparative studies between intraductal or intravenous administration. Our data indicate that the intraductal delivery of adenovirus efficiently targets pancreatic tumors in the two mouse models. The in vivo application of AduPARTKT plus ganciclovir (GCV) treatment induced tumor regression in Ela-myc mice. Moreover, the intraductal injection of ICOVIR15-TKT oncolytic adenoviruses significantly improved mean survival of mice bearing PANC-1 and BxPC-3 pancreatic xenografts from 30 to 52 days and from 20 to 68 days respectively (p less than 0.0001) when combined with GCV. Of notice, both AduPARTKT and ICOVIR15-TKT antitumoral responses were stronger by ductal viral application than intravenously, in line with the 38-fold increase in pancreas transduction observed upon ductal administration. In summary our data show that cytotoxic adenoviruses retrogradelly injected to the pancreas can be a feasible approach to treat localized pancreatic tumors.
Zhang, Lixin; Ju, Xiaofang; Wang, Fa; Guo, Zhiwei; Piao, Shanhua; Teng, Chunbo
2008-04-01
Pancreas is an important mixed gland having both endocrine and exocrine functions, and has been proven regeneration after injury. To explore the cell lineage tracing methods in pancreas in vivo and the regenerate cells source, we used pseudo-type retrovirus to transfect adult mouse pancreas which had been partially pancreatectomized by rubbing the kerf using a cotton stick saturated with retrovirus suspension then injecting 100 microL retrovirus suspension into pancreas, injecting 100 microL retrovirus by caudal vein, or interperitoneally injecting retrovirus respectively. The results showed that the method of rubbing the kerf then injection of retrovirus suspension into pancreas could more effectively mark the pancreatic cells than the caudal vein injection and the intraperitoneal injection did in vivo. Furthermore, this study also found that some acinus cells could accept injury stimulus signals to regenerate through resuming mitosis after pancreatic injury. This study establishes a cell lineage tracing method in pancreas in vivo using retrovirus and offers a clue for gene therapy of pancreatic diseases using retrovirus vectors.
Warth, R; Garcia Alzamora, M; Kim, J K; Zdebik, A; Nitschke, R; Bleich, M; Gerlach, U; Barhanin, J; Kim, S J
2002-03-01
KCNE1 (IsK, minK) co-assembles with KCNQ1 (KvLQT1) to form voltage-dependent K(+) channels. Both KCNQ1 and KCNE1 are expressed in epithelial cells of gut and exocrine pancreas. We examined the role of KCNQ1/KCNE1 in Cl(-) secretion in small and large intestine and exocrine pancreas using the KCNE1 knockout mouse. Immunofluorescence revealed a similar basolateral localization of KCNQ1 in jejunum and colon of KCNE1 wild-type and knockout mice. Electrogenic Cl(-) secretion in the colon was not affected by gene disruption of KCNE1; in jejunum forskolin-induced short-circuit current was some 40% smaller but without being significantly different. Inhibition of KCNQ1 channels by 293B (IC(50) 1 micromol l(-1)) and by IKS224 (IC(50) 14 nmol l(-1)) strongly diminished intestinal Cl(-) secretion. In exocrine pancreas of wild-type mice, KCNQ1 was predominantly located at the basolateral membrane. In KCNE1 knockout mice, however, the basolateral staining was less pronounced and the distribution of secretory granules was irregular. A slowly activating and 293B-sensitive K(+) current was activated via cholinergic stimulation in pancreatic acinar cells of wild-type mice. In KCNE1 knockout mice this K(+) current was strongly reduced. In conclusion intestinal Cl(-) secretion is independent from KCNE1 but requires KCNQ1. In mouse pancreatic acini KCNQ1 probably co-assembled with KCNE1 leads to a voltage-dependent K(+) current that might be of importance for electrolyte and enzyme secretion.
Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds.
Nieto, Margarita; Hevia, Pedro; Garcia, Enrique; Klein, Dagmar; Alvarez-Cubela, Silvia; Bravo-Egana, Valia; Rosero, Samuel; Damaris Molano, R; Vargas, Nancy; Ricordi, Camillo; Pileggi, Antonello; Diez, Juan; Domínguez-Bendala, Juan; Pastori, Ricardo L
2012-01-01
MicroRNAs regulate gene expression by inhibiting translation or inducing target mRNA degradation. MicroRNAs regulate organ differentiation and embryonic development, including pancreatic specification and islet function. We showed previously that miR-7 is highly expressed in human pancreatic fetal and adult endocrine cells. Here we determined the expression profile of miR-7 in the mouse-developing pancreas by RT-PCR and in situ hybridization. MiR-7 expression was low between embryonic days e10.5 and e11.5, then began to increase at e13.5 through e14.5, and eventually decreased by e18. In situ hybridization and immunostaining analysis showed that miR-7 colocalizes with endocrine marker Isl1, suggesting that miR-7 is expressed preferentially in endocrine cells. Whole-mount in situ hybridization shows miR-7 highly expressed in the embryonic neural tube. To investigate the role of miR-7 in development of the mouse endocrine pancreas, antisense miR-7 morpholinos (MO) were delivered to the embryo at an early developmental stage (e10.5 days) via intrauterine fetal heart injection. Inhibition of miR-7 during early embryonic life results in an overall downregulation of insulin production, decreased β-cell numbers, and glucose intolerance in the postnatal period. This phenomenon is specific for miR-7 and possibly due to a systemic effect on pancreatic development. On the other hand, the in vitro inhibition of miR-7 in explanted pancreatic buds leads to β-cell death and generation of β-cells expressing less insulin than those in MO control. Therefore, in addition to the potential indirect effects on pancreatic differentiation derived from its systemic downregulation, the knockdown of miR-7 appears to have a β-cell-specific effect as well. These findings suggest that modulation of miR-7 expression could be utilized in the development of stem cell therapies to cure diabetes.
Dorrell, Craig; Tarlow, Branden; Wang, Yuhan; Canaday, Pamela S; Haft, Annelise; Schug, Jonathan; Streeter, Philip R; Finegold, Milton J; Shenje, Lincoln T; Kaestner, Klaus H; Grompe, Markus
2014-01-01
Pancreatic Lgr5 expression has been associated with organoid-forming epithelial progenitor populations but the identity of the organoid-initiating epithelial cell subpopulation has remained elusive. Injury causes the emergence of an Lgr5+ organoid-forming epithelial progenitor population in the adult mouse liver and pancreas. Here, we define the origin of organoid-initiating cells from mouse pancreas and liver prior to Lgr5 activation. This clonogenic population was defined as MIC1-1C3+/CD133+/CD26− in both tissues and the frequency of organoid initiation within this population was approximately 5% in each case. The transcriptomes of these populations overlapped extensively and showed enrichment of epithelial progenitor-associated regulatory genes such as Sox9 and FoxJ1. Surprisingly, pancreatic organoid cells also had the capacity to generate hepatocyte-like cells upon transplantation to Fah-/- mice, indicating a differentiation capacity similar to hepatic organoids. Although spontaneous endocrine differentiation of pancreatic progenitors was not observed in culture, adenoviral delivery of fate-specifying factors Pdx1, Neurog3 and MafA induced insulin expression without glucagon or somatostatin. Pancreatic organoid cultures therefore preserve many key attributes of progenitor cells while allowing unlimited expansion, facilitating the study of fate determination. PMID:25151611
De Groef, Sofie; Leuckx, Gunter; Van Gassen, Naomi; Staels, Willem; Cai, Ying; Yuchi, Yixing; Coppens, Violette; De Leu, Nico; Heremans, Yves; Baeyens, Luc; Van de Casteele, Mark; Heimberg, Harry
2015-01-01
Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories. PMID:26273954
Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification
Xu, Cheng-Ran; Li, Lin-Chen; Donahue, Greg; Ying, Lei; Zhang, Yu-Wei; Gadue, Paul; Zaret, Kenneth S
2014-01-01
Endoderm cells undergo sequential fate choices to generate insulin-secreting beta cells. Ezh2 of the PRC2 complex, which generates H3K27me3, modulates the transition from endoderm to pancreas progenitors, but the role of Ezh2 and H3K27me3 in the next transition to endocrine progenitors is unknown. We isolated endoderm cells, pancreas progenitors, and endocrine progenitors from different staged mouse embryos and analyzed H3K27me3 genome-wide. Unlike the decline in H3K27me3 domains reported during embryonic stem cell differentiation in vitro, we find that H3K27me3 domains increase in number during endocrine progenitor development in vivo. Genes that lose the H3K27me3 mark typically encode transcriptional regulators, including those for pro-endocrine fates, whereas genes that acquire the mark typically are involved in cell biology and morphogenesis. Deletion of Ezh2 at the pancreas progenitor stage enhanced the production of endocrine progenitors and beta cells. Inhibition of EZH2 in embryonic pancreas explants and in human embryonic stem cell cultures increased endocrine progenitors in vitro. Our studies reveal distinct dynamics in H3K27me3 targets in vivo and a means to modulate beta cell development from stem cells. PMID:25107471
NASA Astrophysics Data System (ADS)
Samkoe, Kimberley S.; Davis, Scott C.; Srinivasan, Subhadra; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.
2009-06-01
Over the last several decades little progress has been made in the therapy and treatment monitoring of pancreas adenocarcinoma, a devastating and aggressive form of cancer that has a 5-year patient survival rate of 3%. Currently, investigations for the use of interstitial Verteporfin photodynamic therapy (PDT) are being undertaken in both orthotopic xenograft mouse models and in human clinical trials. In the mouse models, magnetic resonance (MR) imaging has been used as a measure of surrogate response to Verteporfin PDT; however, MR imaging alone lacks the molecular information required to assess the metabolic function and growth rates of the tumor immediately after treatment. We propose the implementation of MR-guided fluorescence tomography in conjunction with a fluorescently labeled (IR-Dye 800 CW, LI-COR) epidermal growth factor (EGF) as a molecular measure of surrogate response. To demonstrate the effectiveness of MR-guided diffuse fluorescence tomography for molecular imaging, we have used the AsPC-1 (+EGFR) human pancreatic adenocarcinoma in an orthotopic mouse model. EGF IRDye 800CW was injected 48 hours prior to imaging. MR image sequences were collected simultaneously with the fluorescence data using a MR-coupled diffuse optical tomography system. Image reconstruction was performed multiple times with varying abdominal organ segmentation in order to obtain a optimal tomographic image. It is shown that diffuse fluorescence tomography of the orthotopic pancreas model is feasible, with consideration of confounding fluorescence signals from the multiple organs and tissues surrounding the pancreas. MR-guided diffuse fluorescence tomography will be used to monitor EGF response after photodynamic therapy. Additionally, it provide the opportunity to individualize subsequent therapies based on response to PDT as well as to evaluate the success of combination therapies, such as PDT with chemotherapy, antibody therapy or even radiation.
Chen, Min; Zheng, Jiashuo; Liu, Guohao; Xu, En; Wang, Junzhuo; Fuqua, Brie K; Vulpe, Chris D; Anderson, Gregory J; Chen, Huijun
2018-05-31
Little is known about the iron efflux from the pancreas, but it is likely that multicopper ferroxidases (MCFs) are involved in this process. We thus used hephaestin (Heph) and ceruloplasmin (Cp) single-knockout mice and Heph/Cp double-knockout mice to investigate the roles of MCFs in pancreatic iron homeostasis. We found that both HEPH and CP were expressed in the mouse pancreas, and that ablation of either MCF had limited effect on the pancreatic iron levels. However, ablation of both MCFs together led to extensive pancreatic iron deposition and severe oxidative damage. Perls' Prussian blue staining revealed that this iron deposition was predominantly in the exocrine pancreas, while the islets were spared. Consistent with these results, plasma lipase and trypsin were elevated in Heph/Cp knockout mice, indicating damage to the exocrine pancreas, while insulin secretion was not affected. These data indicate that HEPH and CP play mutually compensatory roles in facilitating iron efflux from the exocrine pancreas, and show that MCFs are able to protect the pancreas against iron-induced oxidative damage. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Ethanol Administration Impairs Pancreatic Repair Following Injury
Mahan Schneider, Katrina J.; Scheer, Marc; Suhr, Mallory; Clemens, Dahn L.
2012-01-01
Objectives Alcohol abuse is one of the most common factors associated with acute and chronic pancreatitis. Although it is evident that alcohol abuse can have an important role in the development of pancreatitis, it does not appear that alcohol abuse alone is responsible for this disease. We investigated the involvement of ethanol in impairment of pancreatic repair after induction of pancreatitis. Methods A biologically relevant mouse model of alcoholic pancreatitis, combining chronic ethanol consumption and coxsackievirus infection, was used to investigate the effects of ethanol on pancreatic regeneration. Tissues were harvested and analyzed by RT-PCR and immunoblot. Results These studies demonstrate that chronic ethanol consumption impairs the structural repair of the exocrine pancreas. This is accompanied by a delay in the restitution of lipase expression. Additionally, impaired expression of the critical pancreatic transcription factors, PDX1 and PTF1, and the mediator of Notch signaling, HES1, were observed. Conclusions Chronic ethanol consumption impairs the structural repair and functional restitution of the pancreas after severe injury. These impairments may, in part, be explained by impaired expression of factors important in the development and maintenance of the exocrine pancreas. Impaired pancreatic regeneration may have a role in the pathogenesis of alcoholic pancreatitis. PMID:22617711
Prkar1a gene knockout in the pancreas leads to neuroendocrine tumorigenesis.
Saloustros, Emmanouil; Salpea, Paraskevi; Starost, Matthew; Liu, Sissi; Faucz, Fabio R; London, Edra; Szarek, Eva; Song, Woo-Jin; Hussain, Mehboob; Stratakis, Constantine A
2017-01-01
Carney complex (CNC) is a rare disease associated with multiple neoplasias, including a predisposition to pancreatic tumors; it is caused most frequently by the inactivation of the PRKAR1A gene, a regulator of the cyclic AMP (cAMP)-dependent kinase (PKA). The method used was to create null alleles of prkar1a in mouse cells expressing pdx1 (Δ-Prkar1a). We found that these mice developed endocrine or mixed endocrine/acinar cell carcinomas with 100% penetrance by the age of 4-5 months. Malignant behavior of the tumors was seen as evidenced by stromal invasion and metastasis to locoregional lymph nodes. Histologically, most tumors exhibited an organoid pattern as seen in the islet-cell tumors. Biochemically, the lesions exhibited high PKA activity, as one would expect from deleting prkar1a The primary neuroendocrine nature of these tumor cells was confirmed by immunohistochemical staining and electron microscopy, the latter revealing the characteristic granules. Although the Δ-Prkar1a mice developed hypoglycemia after overnight fasting, insulin and glucagon levels in the plasma were normal. Negative immunohistochemical staining for the most commonly produced peptides (insulin, c-peptide, glucagon, gastrin and somatostatin) suggested that these tumors were non-functioning. We hypothesize that the recently identified multipotent pdx1+/insulin- cell in adult pancreas, gives rise to endocrine or mixed endocrine/acinar pancreatic malignancies with complete prkar1a deficiency. In conclusion, this mouse model supports the role of prkar1a as a tumor suppressor gene in the pancreas and points to the PKA pathway as a possible therapeutic target for these lesions. © 2017 Society for Endocrinology.
Li, Dan; Peng, Shi-yun; Zhang, Zhen-wu; Feng, Rui-cheng; Li, Lu; Liang, Jie; Tai, Sheng; Teng, Chun-bo
2013-01-01
The in vitro isolation and analysis of pancreatic stem/progenitor cells are necessary for understanding their properties and function; however, the preparation of high-quality single-cell suspensions from adult pancreas is prerequisite. In this study, we applied a cold trypsin-ethylenediaminetetraacetic acid (EDTA) digestion method to disassociate adult mouse pancreata into single cells. The yield of single cells and the viability of the harvested cells were much higher than those obtained via the two commonly used warm digestion methods. Flow cytometric analysis showed that the ratio of ductal or BCRP1-positive cells in cell suspensions prepared through cold digestion was consistent with that found in vivo. Cell culture tests showed that pancreatic epithelial cells prepared by cold digestion maintained proliferative capacity comparable to those derived from warm collagenase digestion. These results indicate that cold trypsin-EDTA digestion can effectively disassociate an adult mouse pancreas into viable single cells with minimal cell loss, and can be used for the isolation and analysis of pancreatic stem/progenitor cells. PMID:23825145
2011-01-01
Optical projection tomography (OPT) imaging is a powerful tool for three-dimensional imaging of gene and protein distribution patterns in biomedical specimens. We have previously demonstrated the possibility, by this technique, to extract information of the spatial and quantitative distribution of the islets of Langerhans in the intact mouse pancreas. In order to further increase the sensitivity of OPT imaging for this type of assessment, we have developed a protocol implementing a computational statistical approach: contrast limited adaptive histogram equalization (CLAHE). We demonstrate that this protocol significantly increases the sensitivity of OPT imaging for islet detection, helps preserve islet morphology and diminish subjectivity in thresholding for tomographic reconstruction. When applied to studies of the pancreas from healthy C57BL/6 mice, our data reveal that, at least in this strain, the pancreas harbors substantially more islets than has previously been reported. Further, we provide evidence that the gastric, duodenal and splenic lobes of the pancreas display dramatic differences in total and relative islet and β-cell mass distribution. This includes a 75% higher islet density in the gastric lobe as compared to the splenic lobe and a higher relative volume of insulin producing cells in the duodenal lobe as compared to the other lobes. Altogether, our data show that CLAHE substantially improves OPT based assessments of the islets of Langerhans and that lobular origin must be taken into careful consideration in quantitative and spatial assessments of the pancreas. PMID:21633198
Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas
Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.
2013-01-01
We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043
Proteomic analysis of mouse islets after multiple low-dose streptozotocin injection.
Xie, Xiaolei; Li, Shuai; Liu, Siyu; Lu, Yan; Shen, Pingping; Ji, Jianguo
2008-02-01
The islets of Langerhans are scattered throughout the pancreas and play a major role in the control of metabolic fuel homeostasis. To get a better understanding of the mechanisms underlying type 1 diabetes mellitus, we have generated a mouse model by injections of multiple low-dose streptozotocin. The islets in the mouse pancreas were handpicked and proteins from the islets were then isolated and separated by two-dimensional gel electrophoresis. Seven proteins were found to be altered significantly at expression level. Among the seven proteins, four were up-regulated and three were down-regulated in diabetic mice as compared with controls. These proteins were successfully identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and the changes of selected protein expression were further validated by quantitative real time PCR and Western blotting. Voltage-dependent anion-selective channel protein 1 and peroxiredoxin-4 were found for the first time to be associated with type 1 diabetes mellitus in mouse islets in the current study. These results suggest that glucose transport, beta cell proliferation/death, and oxidative stress play important roles in maintaining the balance of glucose level. Our study also provides novel insight into the mechanism of type 1 diabetes mellitus.
Xu, X; Ehdaie, B; Ohara, N; Yoshino, T; Deng, C-X
2010-02-04
Mutations of SMAD4/DPC4 are found in about 60% of human invasive pancreatic ductal adenocarcinomas (PDACs); yet, the manner in which SMAD4 deficiency enhances tumorigenesis remains elusive. Using a Cre-LoxP approach, we generated a mutant mouse carrying a targeted deletion of Smad4 in the pancreas. We showed that the absence of Smad4 alone did not trigger pancreas tumor formation; however, it increased the expression of an inactivated form of Pten, suggesting a role of Pten in preventing Smad4-/- cells from undergoing malignancy. To investigate this, we disrupted both Pten and Smad4. We showed that Pten deficiency initiated widespread premalignant lesions, and a low tumor incidence that was significantly accelerated by Smad4-deficiency. The absence of Smad4 in a Pten-mutant background enhanced cell proliferation and triggered transdifferentiation from acinar, centroacinar and islet cells, accompanied by activation of Notch1 signaling. We showed that all tumors developed in the Smad4/Pten-mutant pancreas exhibited high levels of pAKT and mTOR, and that about 50 and 83% of human pancreatic cancers examined showed increased pAKT and pmTOR, respectively. Besides the similarity in gene expression, the pAKT and/or pmTOR-positive human PDACs and mouse pancreatic tumors also shared some histopathological similarities. These observations indicate that Smad4/Pten-mutant mice mimic the tumor progression of human pancreatic cancers that are driven by activation of the AKT-mTOR pathway, and uncovered a synergistic action of Smad4 and Pten in repressing pancreatic tumorigenesis.
Cai, Qing; Bonfanti, Paola; Sambathkumar, Rangarajan; Vanuytsel, Kim; Vanhove, Jolien; Gysemans, Conny; Debiec-Rychter, Maria; Raitano, Susanna; Heimberg, Harry; Ordovas, Laura; Verfaillie, Catherine M
2014-04-01
Pancreatic endocrine progenitors obtained from human embryonic stem cells (hESCs) represent a promising source to develop cell-based therapies for diabetes. Although endocrine pancreas progenitor cells have been isolated from mouse pancreata on the basis of Ngn3 expression, human endocrine progenitors have not been isolated yet. As substantial differences exist between human and murine pancreas biology, we investigated whether it is possible to isolate pancreatic endocrine progenitors from differentiating hESC cultures by lineage tracing of NGN3. We targeted the 3' end of NGN3 using zinc finger nuclease-mediated homologous recombination to allow selection of NGN3eGFP(+) cells without disrupting the coding sequence of the gene. Isolated NGN3eGFP(+) cells express PDX1, NKX6.1, and chromogranin A and differentiate in vivo toward insulin, glucagon, and somatostatin single hormone-expressing cells but not to ductal or exocrine pancreatic cells or other endodermal, mesodermal, or ectodermal lineages. This confirms that NGN3(+) cells represent pancreatic endocrine progenitors in humans. In addition, this hESC reporter line constitutes a unique tool that may aid in gaining insight into the developmental mechanisms underlying fate choices in human pancreas and in developing cell-based therapies.
Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting.
Suzuki, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki
2004-08-01
During pancreatic development, neogenesis, and regeneration, stem cells might act as a central player to generate endocrine, acinar, and duct cells. Although these cells are well known as pancreatic stem cells (PSCs), indisputable proof of their existence has not been reported. Identification of phenotypic markers for PSCs leads to their prospective isolation and precise characterization to clear whether stem cells exist in the pancreas. By combining flow cytometry and clonal analysis, we show here that a possible pancreatic stem or progenitor cell candidate that resides in the developing and adult mouse pancreas expresses the receptor for the hepatocyte growth factor (HGF) c-Met, but does not express hematopoietic and vascular endothelial antigens such as CD45, TER119, c-Kit, and Flk-1. These cells formed clonal colonies in vitro and differentiated into multiple pancreatic lineage cells from single cells. Some of them could largely expand with self-renewing cell divisions in culture, and, following cell transplantation, they differentiated into pancreatic endocrine and acinar cells in vivo. Furthermore, they produced cells expressing multiple markers of nonpancreatic organs including liver, stomach, and intestine in vitro. Our data strongly suggest that c-Met/HGF signaling plays an important role in stem/progenitor cell function in both developing and adult pancreas. By using this antigen, PSCs could be isolated prospectively, enabling a detailed investigation of stem cell markers and application toward regenerative therapies for diabetes.
Retinoid Signaling in Pancreatic Cancer, Injury and Regeneration
Colvin, Emily K.; Susanto, Johana M.; Kench, James G.; Ong, Vivienna N.; Mawson, Amanda; Pinese, Mark; Chang, David K.; Rooman, Ilse; O'Toole, Sandra A.; Segara, Davendra; Musgrove, Elizabeth A.; Sutherland, Robert L.; Apte, Minoti V.; Scarlett, Christopher J.; Biankin, Andrew V.
2011-01-01
Background Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC). These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC. Methodology/Principal Findings We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1), a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A). However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies. Conclusions/Significance In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1. PMID:22220202
Flanagan, Sarah E.; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M.; Edge, Julie A.; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A.L.; Edghill, Emma L.; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T.
2014-01-01
Summary Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. PMID:24411943
Caveats and considerations for performing pancreas-specific gene manipulations in the mouse.
Magnuson, M A; Burlison, J S
2007-11-01
Conditional gene targeting using the Cre/loxP strategy has proven to be very useful for studies of glucose homeostasis, tissue function and dysfunction in diabetes, and pancreas development. However, use of this strategy over the past decade has revealed a variety of experimental caveats, many of which are a direct consequence of the procedures used to generate Cre-driver lines. We discuss frequently encountered experimental artefacts, the advantages of using bacterial artificial chromosome-derived transgenes or performing a Cre knockin for improving the specificity of expression, and systems for regulating Cre activity. In addition, recent studies indicate that high amounts of Cre in the pancreatic beta-cell may cause glucose intolerance and impaired insulin secretion. However, these findings, while serving as a reminder for simple experimental controls, are unlikely to diminish utilization of this very powerful and useful technology.
Cano, David A; Murcia, Noel S; Pazour, Gregory J; Hebrok, Matthias
2004-07-01
Polycystic kidney disease (PKD) includes a group of disorders that are characterized by the presence of cysts in the kidney and other organs, including the pancreas. Here we show that in orpk mice, a model system for PKD that harbors a mutation in the gene that encodes the polaris protein, pancreatic defects start to occur at the end of gestation, with an initial expansion of the developing pancreatic ducts. Ductal dilation continues rapidly after birth and results in the formation of large, interconnected cysts. Expansion of pancreatic ducts is accompanied by apoptosis of neighboring acinar cells, whereas endocrine cell differentiation and islet formation appears to be unaffected. Polaris has been shown to co-localize with primary cilia, and these structures have been implicated in the formation of renal cysts. In the orpk pancreas, cilia numbers are reduced and cilia length is decreased. Expression of polycystin-2, a protein involved in PKD, is mislocalized in orpk mice. Furthermore, the cellular localization of beta-catenin, a protein involved in cell adhesion and Wnt signaling, is altered. Thus, polaris and primary cilia function are required for the maturation and maintenance of proper tissue organization in the pancreas.
LatY136F knock-in mouse model for human IgG4-related disease.
Yamada, Kazunori; Zuka, Masahiko; Ito, Kiyoaki; Mizuguchi, Keishi; Kakuchi, Yasushi; Onoe, Tamehito; Suzuki, Yasunori; Yamagishi, Masakazu; Izui, Shozo; Malissen, Marie; Malissen, Bernard; Kawano, Mitsuhiro
2018-01-01
The adaptor protein Linker for activation of T cell (LAT) is a key signaling hub used by the T cell antigen receptor. Mutant mice expressing loss-of-function mutations affecting LAT and including a mutation in which tyrosine 136 is replaced by a phenylalanine (LatY136F) develop lymphoproliferative disorder involving T helper type 2 effector cells capable of triggering a massive polyclonal B cell activation that leads to hypergammaglobulinemia G1 and E and to non-resolving inflammation and autoimmunity. The purpose of this study was to evaluate whether the phenotypes of LatY136F knock-in mice resemble the immunohistopathological features of immunoglobulin G4-related disease (IgG4-RD). LatY136F knock-in mice were sacrificed at 4-20 weeks of age, and pancreas, kidney, salivary gland and lung were obtained. All organs were stained with hematoxylin-eosin and with Azan for estimation of collagen in fibrosis, and the severity scores of inflammation and fibrosis were evaluated. Immunostainings were performed to analyze the types of infiltrating cells. In addition, the effects of corticosteroid treatment on the development of tissue lesions and serum levels of IgG1 were assessed. Tissue lesions characterized by inflammatory mononuclear cell infiltration and fibrosis were detected in pancreas, kidney, and salivary gland starting from 6 weeks of age. Immunostainings showed pronounced infiltration of plasma cells, CD4-positive T cells, and macrophages. Infiltrating plasma cells predominantly expressed IgG1. The extent of inflammation in pancreas and salivary glands was markedly reduced by corticosteroid treatment. LatY136F knock-in mice displayed increased production of Th2-type IgG1 (a homologue of human IgG4) and developed multiple organ tissue lesions reminiscent of those seen in patients with IgG4-RD. Moreover, the development of these tissue lesions was highly sensitive to corticosteroid treatment like in IgG4-RD. For these reasons we consider the LatY136F knock-in mouse strain to represent a promising model for human IgG4-RD.
Sox9: A Master Regulator of the Pancreatic Program
Seymour, Philip A.
2014-01-01
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed. PMID:25148367
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells. PMID:29535635
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.
Mouse Models of Hrs Nf2 Interaction
2008-01-01
heterozygotes also showed hepatocellular carcinoma or nuclear hyperplasia, again abnormalities that were not identified in any of the other mouse lines...Lung Liver Kidney Pancreas 4 +/- +/- ND ND ND ND 23 +/- +/- Adenocarcinoma N N N 26 +/- +/- Adenocarcinoma Hepatocellular Carcinoma N N 27...F3-59 wt +/- N Granuloma N N F3-60 wt +/- N N N N F4-16 wt +/- Adenocarcinoma N N N F4-19 wt +/- N Hepatocellular Carcinoma Hydronephrosis Islets
Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.
Lockridge, Amber D; Baumann, Daniel C; Akhaphong, Brian; Abrenica, Alleah; Miller, Robert F; Alejandro, Emilyn U
2016-11-01
NMDA receptors (NMDARs) have recently been discovered as functional regulators of pancreatic β-cell insulin secretion. While these excitatory receptor channels have been extensively studied in the brain for their role in synaptic plasticity and development, little is known about how they work in β-cells. In neuronal cells, NMDAR activation requires the simultaneous binding of glutamate and a rate-limiting co-agonist, such as D-serine. D-serine levels and availability in most of the brain rely on endogenous synthesis by the enzyme serine racemase (Srr). Srr transcripts have been reported in human and mouse islets but it is not clear whether Srr is functionally expressed in β-cells or what its role in the pancreas might be. In this investigation, we reveal that Srr protein is highly expressed in primary human and mouse β-cells. Mice with whole body deletion of Srr (Srr KO) show improved glucose tolerance through enhanced insulin secretory capacity, possibly through Srr-mediated alterations in islet NMDAR expression and function. We observed elevated insulin sensitivity in some animals, suggesting Srr metabolic regulation in other peripheral organs as well. Srr expression in neonatal and embryonic islets, and adult deficits in Srr KO pancreas weight and islet insulin content, point toward a potential role for Srr in pancreatic development. These data reveal the first evidence that Srr may regulate glucose homeostasis in peripheral tissues and provide circumstantial evidence that D-serine may be an endogenous islet NMDAR co-agonist in β-cells.
Role of Pancreatic Cancer-derived Exosomes in Salivary Biomarker Development*
Lau, Chang; Kim, Yong; Chia, David; Spielmann, Nadine; Eibl, Guido; Elashoff, David; Wei, Fang; Lin, Yi-Ling; Moro, Aune; Grogan, Tristan; Chiang, Samantha; Feinstein, Eric; Schafer, Christopher; Farrell, James; Wong, David T. W.
2013-01-01
Recent studies have demonstrated that discriminatory salivary biomarkers can be readily detected upon the development of systemic diseases such as pancreatic cancer, breast cancer, lung cancer, and ovarian cancer. However, the utility of salivary biomarkers for the detection of systemic diseases has been undermined due to the absence of the biological and mechanistic rationale as to why distal diseases from the oral cavity would lead to the development of discriminatory biomarkers in saliva. Here, we examine the hypothesis that pancreatic tumor-derived exosomes are mechanistically involved in the development of pancreatic cancer-discriminatory salivary transcriptomic biomarkers. We first developed a pancreatic cancer mouse model that yielded discriminatory salivary biomarkers by implanting the mouse pancreatic cancer cell line Panc02 into the pancreas of the syngeneic host C57BL/6. The role of pancreatic cancer-derived exosomes in the development of discriminatory salivary biomarkers was then tested by engineering a Panc02 cell line that is suppressed for exosome biogenesis, implanting into the C56BL/6 mouse, and examining whether the discriminatory salivary biomarker profile was ablated or disrupted. Suppression of exosome biogenesis results in the ablation of discriminatory salivary biomarker development. This study supports that tumor-derived exosomes provide a mechanism in the development of discriminatory biomarkers in saliva and distal systemic diseases. PMID:23880764
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.
Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan
2013-01-01
Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842
Jin, Liang; Feng, Tao; Chai, Jing; Ghazalli, Nadiah; Gao, Dan; Zerda, Ricardo; Li, Zhuo; Hsu, Jasper; Mahdavi, Alborz; Tirrell, David A.; Riggs, Arthur D.; Ku, Hsun Teresa
2014-01-01
In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed “Dark” colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133+CD49flowCD107blow phenotype, while pancreatic CFU-Dark are CD133-. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth. PMID:25148366
Anonymous sources: where do adult β cells come from?
German, Michael S.
2013-01-01
Evidence that the pool of insulin-producing β cells in the pancreas is reduced in both major forms of diabetes mellitus has led to efforts to understand β cell turnover in the adult pancreas. Unfortunately, previous studies have reached opposing conclusions regarding the source of new β cells during regeneration in the adult pancreas. In this issue of the JCI, Xiao et al. use a novel mouse model for detecting new β cells derived from non–β cells to demonstrate the absence of β cell neogenesis from non–β cells during normal postnatal growth and in models of β cell regeneration. This work adds to mounting evidence that in most physiological and pathological conditions, β cell neogenesis may not make large contributions to the postnatal β cell pool — at least not in rodents. PMID:23619356
Kahraman, Sevim; Dirice, Ercument; De Jesus, Dario F.; Hu, Jiang
2014-01-01
Studies in both humans and rodents suggest that maternal diabetes leads to a higher risk of the fetus developing impaired glucose tolerance and obesity during adulthood. However, the impact of hyperinsulinemia in the mother on glucose homeostasis in the offspring has not been fully explored. We aimed to determine the consequences of maternal insulin resistance on offspring metabolism and endocrine pancreas development using the LIRKO mouse model, which exhibits sustained hyperinsulinemia and transient increase in blood glucose concentrations during pregnancy. We examined control offspring born to either LIRKO or control mothers on embryonic days 13.5, 15.5, and 17.5 and postpartum days 0, 4, and 10. Control offspring born to LIRKO mothers displayed low birth weights and subsequently rapidly gained weight, and their blood glucose and plasma insulin concentrations were higher than offspring born to control mothers in early postnatal life. In addition, concentrations of plasma leptin, glucagon, and active GLP-1 were higher in control pups from LIRKO mothers. Analyses of the endocrine pancreas revealed significantly reduced β-cell area in control offspring of LIRKO mothers shortly after birth. β-Cell proliferation and total islet number were also lower in control offspring of LIRKO mothers during early postnatal days. Together, these data indicate that maternal hyperinsulinemia and the transient hyperglycemia impair endocrine pancreas development in the control offspring and induce multiple metabolic alterations in early postnatal life. The relatively smaller β-cell mass/area and β-cell proliferation in these control offspring suggest cell-autonomous epigenetic mechanisms in the regulation of islet growth and development. PMID:25249504
Transcription factors in pancreatic development. Animal models.
Martin, Merce; Hauer, Viviane; Messmer, Mélanie; Orvain, Christophe; Gradwohl, Gérard
2007-01-01
Through the analysis of genetically modified mice a hierarchy of transcription factors regulating pancreas specification, endocrine destiny as well as endocrine subtype specification and differentiation has been established. In addition to conventional approaches such as transgenic technologies and gene targeting, recombinase fate mapping in mice has been key in establishing the lineage relationship between progenitor cells and their progeny in understanding pancreas formation. Moreover, the design of specific mouse models to conditionally express transcription factors in different populations of progenitor cells has revealed to what extent transcription factors required for islet cell development are also sufficient to induce endocrine differentiation and the importance of the competence of progenitor cells to respond to the genetic program implemented by these factors. Taking advantage of this basic science knowledge acquired in rodents, immature insulin-producing cells have recently been differentiated in vitro from human embryonic stem cells. Taken together these major advances emphasize the need to gain further in-depth knowledge of the molecular and cellular mechanisms controlling beta-cell differentiation in mice to generate functional beta-cells in the future that could be used for cell therapy in diabetes.
Rovira, Meritxell; Scott, Sherri-Gae; Liss, Andrew S.; Jensen, Jan; Thayer, Sarah P.; Leach, Steven D.
2009-01-01
The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing “pancreatospheres” in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas. PMID:20018761
Flanagan, Sarah E; De Franco, Elisa; Lango Allen, Hana; Zerah, Michele; Abdul-Rasoul, Majedah M; Edge, Julie A; Stewart, Helen; Alamiri, Elham; Hussain, Khalid; Wallis, Sam; de Vries, Liat; Rubio-Cabezas, Oscar; Houghton, Jayne A L; Edghill, Emma L; Patch, Ann-Marie; Ellard, Sian; Hattersley, Andrew T
2014-01-07
Understanding transcriptional regulation of pancreatic development is required to advance current efforts in developing beta cell replacement therapies for patients with diabetes. Current knowledge of key transcriptional regulators has predominantly come from mouse studies, with rare, naturally occurring mutations establishing their relevance in man. This study used a combination of homozygosity analysis and Sanger sequencing in 37 consanguineous patients with permanent neonatal diabetes to search for homozygous mutations in 29 transcription factor genes important for murine pancreatic development. We identified homozygous mutations in 7 different genes in 11 unrelated patients and show that NKX2-2 and MNX1 are etiological genes for neonatal diabetes, thus confirming their key role in development of the human pancreas. The similar phenotype of the patients with recessive mutations and mice with inactivation of a transcription factor gene support there being common steps critical for pancreatic development and validate the use of rodent models for beta cell development. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
The fetal/neonatal mouse liver exhibits transcriptional features of the adult pancreas.
Metabolic homeostasis of the organism is maintained by the liver’s ability to detoxify and eliminate xenobiotics through the expression of xenobiotic metabolism enxymes (XME). The fetus and neonate have been hypothesized to exhibit increased sensitivity to xenobiotic toxicity. T...
Collombat, Patrick; Xu, Xiaobo; Ravassard, Philippe; Sosa-Pineda, Beatriz; Dussaud, Sébastien; Billestrup, Nils; Madsen, Ole D; Serup, Palle; Heimberg, Harry; Mansouri, Ahmed
2009-08-07
We have previously reported that the loss of Arx and/or Pax4 gene activity leads to a shift in the fate of the different endocrine cell subtypes in the mouse pancreas, without affecting the total endocrine cell numbers. Here, we conditionally and ectopically express Pax4 using different cell-specific promoters and demonstrate that Pax4 forces endocrine precursor cells, as well as mature alpha cells, to adopt a beta cell destiny. This results in a glucagon deficiency that provokes a compensatory and continuous glucagon+ cell neogenesis requiring the re-expression of the proendocrine gene Ngn3. However, the newly formed alpha cells fail to correct the hypoglucagonemia since they subsequently acquire a beta cell phenotype upon Pax4 ectopic expression. Notably, this cycle of neogenesis and redifferentiation caused by ectopic expression of Pax4 in alpha cells is capable of restoring a functional beta cell mass and curing diabetes in animals that have been chemically depleted of beta cells.
AUTONOMIC AXONS IN THE HUMAN ENDOCRINE PANCREAS SHOW UNIQUE INNERVATION PATTERNS
Rodriguez-Diaz, Rayner; Abdulreda, Midhat H.; Formoso, Alexander L.; Gans, Itai; Ricordi, Camillo; Berggren, Per-Olof; Caicedo, Alejandro
2011-01-01
SUMMARY The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, and thus impacts glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are not known, particularly in human islets. Here we demonstrate that the innervation of human islets is different from that of mouse islets and that it does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, in contrast to mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream. PMID:21723503
Expression of the Diabetes-Associated Gene TCF7L2 in Adult Mouse Brain
LEE, SYANN; LEE, CHARLOTTE E.; ELIAS, CAROL F.; ELMQUIST, JOEL K.
2014-01-01
Polymorphisms of the gene TCF7L2 (transcription factor 7-like 2) are strongly associated with the development and progression of type 2 diabetes. TCF7L2 is important in the development of peripheral organs such as adipocytes, pancreas, and the intestine. However, very little is known about its expression elsewhere. In this study we used in situ hybridization histochemistry to show that TCF7L2 has a unique expression pattern in the mouse brain. TCF7L2 is expressed in two distinct populations. First, it is highly ex pressed in thalamic and tectal structures. Additionally, TCF7L2 mRNA is expressed at moderate to low levels in specific cells of the hypothalamus, preoptic nucleus, and circumventricular organs. Collectively, these patterns of expression suggest that TCF7L2 has distinct functions within the brain, with a general role in the development and maintenance of thalamic and midbrain neurons, and then a distinct role in autonomic homeostasis. PMID:19845015
Duprat, F; Girard, C; Jarretou, G; Lazdunski, M
2005-01-01
This study firstly shows with in situ hybridization on human pancreas that TALK-1 and TALK-2, two members of the 2P domain potassium channel (K2P) family, are highly and specifically expressed in the exocrine pancreas and absent in Langherans islets. On the contrary, expression of TASK-2 in mouse pancreas is found both in the exocrine pancreas and in the Langherans islets. This study also shows that TALK-1 and TALK-2 channels, expressed in Xenopus oocytes, are strongly and specifically activated by nitric oxide (obtained with a mixture of sodium nitroprussate (SNP) and dithiothreitol (DTT)), superoxide anion (obtained with xanthine and xanthine oxidase) and singlet oxygen (obtained upon photoactivation of rose bengal, and with chloramine T). Other nitric oxide and reactive oxygen species (NOS and ROS) donors, as well as reducing conditions were found to be ineffective on TALK-1, TALK-2 and TASK-2 (sin-1, angeli's salt, SNP alone, tBHP, H2O2, and DTT). These results suggest that, in the exocrine pancreas, specific members of the NOS and ROS families could act as endogenous modulators of TALK channels with a role in normal secretion as well as in disease states such as acute pancreatitis and apoptosis. PMID:15513946
Stem cells and regenerative medicine for diabetes mellitus.
Sumi, Shoichiro; Gu, Yuanjun; Hiura, Akihito; Inoue, Kazutomo
2004-10-01
A profound knowledge of the development and differentiation of pancreatic tissues, especially islets of Langerhans, is necessary for developing regenerative therapy for severe diabetes mellitus. A recent developmental study showed that PTF-1a is expressed in almost all parts of pancreatic tissues, in addition to PDX-1, a well-known transcription factor that is essential for pancreas development. Another study suggested that alpha cells and beta cells individually, but not sequentially, differentiated from neurogenin-3--expressing precursor cells. Under strong induction of pancreas regeneration, it is likely that pancreatic duct cells dedifferentiate to grow, express PDX-1, and re-differentiate toward other cell types including islet cells. Duct epithelium-like cells can be cultivated from crude pancreatic exocrine cells and can be induced to differentiate toward islet-like cell clusters under some culture conditions. These cell clusters made from murine pancreas have been shown to control hyperglycemia when transplanted into diabetic mice. Liver-derived oval cells and their putative precursor H-CFU-C have been shown to differentiate toward pancreatic cells. Furthermore, extrapancreatic cells contained in bone marrow and amniotic membrane are reported to become insulin-producing cells. However, their exact characterization and relationship between these cell types remain to be elucidated. Our recent study has shown that islet-like cell clusters can be differentiated from mouse embryonic stem cells. Transplantation of these clusters could ameliorate hyperglycemia of STZ-induced diabetic mice without forming teratomas. Interestingly, these cells expressed several genes specific to exocrine pancreatic tissue in addition to islet-related genes, suggesting that stable and efficient differentiation toward certain tissues can only be achieved through a process mimicking normal development of the tissue. Perhaps recent developments in these fields may rapidly lead to an established regenerative therapy for diabetes mellitus.
Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression.
Jeannot, Pauline; Callot, Caroline; Baer, Romain; Duquesnes, Nicolas; Guerra, Carmen; Guillermet-Guibert, Julie; Bachs, Oriol; Besson, Arnaud
2015-11-03
p27Kip1 (p27) is a negative regulator of proliferation and a tumor suppressor via the inhibition of cyclin-CDK activity in the nucleus. p27 is also involved in the regulation of other cellular processes, including transcription by acting as a transcriptional co-repressor. Loss of p27 expression is frequently observed in pancreatic adenocarcinomas in human and is associated with decreased patient survival. Similarly, in a mouse model of K-Ras-driven pancreatic cancer, loss of p27 accelerates tumor development and shortens survival, suggesting an important role for p27 in pancreatic tumorigenesis. Here, we sought to determine how p27 might contribute to early events leading to tumor development in the pancreas. We found that K-Ras activation in the pancreas causes p27 mislocalization at pre-neoplastic stages. Moreover, loss of p27 or expression of a mutant p27 that does not bind cyclin-CDKs causes the mislocalization of several acinar polarity markers associated with metaplasia and induces the nuclear expression of Sox9 and Pdx1 two transcription factors involved in acinar-to-ductal metaplasia. Finally, we found that p27 directly represses transcription of Sox9, but not that of Pdx1. Thus, our results suggest that K-Ras activation, the earliest known event in pancreatic carcinogenesis, may cause loss of nuclear p27 expression which results in derepression of Sox9, triggering reprogramming of acinar cells and metaplasia.
NASA Astrophysics Data System (ADS)
Samkoe, Kimberley S.; Davis, Scott C.; Srinivasan, Subhadra; Isabelle, Martin E.; O'Hara, Julia; Hasan, Tayyaba; Pogue, Brian W.
2010-02-01
Verteporfin photodynamic therapy (PDT) is a promising adjuvant therapy for pancreas cancer and investigations for its use are currently underway in both orthotopic xenograft mouse models and in human clinical trials. The mouse models have been studied extensively using magnetic resonance (MR) imaging as a measure of surrogate response to verteporfin PDT and it was found that tumor lines with different levels of aggression respond with varying levels to PDT. MR imaging was successful in determining the necrotic volume caused by PDT but there was difficultly in distinguishing inflamed tissues and regions of surviving tumor. In order to understand the molecular changes within the tumor immediately post-PDT we propose the implementation of MR-guided fluorescence molecular tomography (FMT) in conjunction with an exogenously administered fluorescently labeled epidermal growth factor (EGF-IRDye800CW, LI-COR Biosciences). We have previously shown that MR-guided FMT is feasible in the mouse abdomen when multiple regions of fluorescence are considered from contributing internal organs. In this case the highly aggressive AsPC-1 (+EGFR) orthotopic tumor was implanted in SCID mice, interstitial verteporfin PDT (1mg/kg, 20J/cm) was performed when the tumor reached ~60mm3 and both tumor volume and EGF binding were followed with MR-guided FMT.
Chen, A C H; Lee, Y L; Fong, S W; Wong, C C Y; Ng, E H Y; Yeung, W S B
2017-06-01
Exposure to maternal diabetes during fetal growth is a risk factor for the development of type II diabetes (T2D) in later life. Discovery of the mechanisms involved in this association should provide valuable background for therapeutic treatments. Early embryogenesis involves epigenetic changes including histone modifications. The bivalent histone methylation marks H3K4me3 and H3K27me3 are important for regulating key developmental genes during early fetal pancreas specification. We hypothesized that maternal hyperglycemia disrupted early pancreas development through changes in histone bivalency. A human embryonic stem cell line (VAL3) was used as the cell model for studying the effects of hyperglycemia upon differentiation into definitive endoderm (DE), an early stage of the pancreatic lineage. Hyperglycemic conditions significantly down-regulated the expression levels of DE markers SOX17, FOXA2, CXCR4 and EOMES during differentiation. This was associated with retention of the repressive histone methylation mark H3K27me3 on their promoters under hyperglycemic conditions. The disruption of histone methylation patterns was observed as early as the mesendoderm stage, with Wnt/β-catenin signaling being suppressed during hyperglycemia. Treatment with Wnt/β-catenin signaling activator CHIR-99021 restored the expression levels and chromatin methylation status of DE markers, even in a hyperglycemic environment. The disruption of DE development was also found in mouse embryos at day 7.5 post coitum from diabetic mothers. Furthermore, disruption of DE differentiation in VAL3 cells led to subsequent impairment in pancreatic progenitor formation. Thus, early exposure to hyperglycemic conditions hinders DE development with a possible relationship to the later impairment of pancreas specification.
A Dimeric Mutant of Human Pancreatic Ribonuclease with Selective Cytotoxicity toward Malignant Cells
NASA Astrophysics Data System (ADS)
Piccoli, Renata; di Gaetano, Sonia; de Lorenzo, Claudia; Grauso, Michela; Monaco, Carmen; Spalletti-Cernia, Daniela; Laccetti, Paolo; Cinatl, Jaroslav; Matousek, Josef; D'Alessio, Giuseppe
1999-07-01
Monomeric human pancreatic RNase, devoid of any biological activity other than its RNA degrading ability, was engineered into a dimeric protein with a cytotoxic action on mouse and human tumor cells, but lacking any appreciable toxicity on mouse and human normal cells. This dimeric variant of human pancreas RNase selectively sensitizes to apoptotic death cells derived from a human thyroid tumor. Because of its selectivity for tumor cells, and because of its human origin, this protein represents a potentially very attractive, novel tool for anticancer therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Pei; Li, Li; Qi, Hui
2012-02-10
Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas thatmore » expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.« less
Nie, Jia; Lilley, Brendan N; Pan, Y Albert; Faruque, Omar; Liu, Xiaolei; Zhang, Weiping; Sanes, Joshua R; Han, Xiao; Shi, Yuguang
2013-07-01
Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic β cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet β cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca(2+)-dependent signaling pathways in islet β cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet β cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet β cells.
SAD-A kinase controls islet β-cell size and function as a mediator of mTORC1 signaling
Nie, Jia; Liu, Xiaolei; Lilley, Brendan N.; Zhang, Hai; Pan, Y. Albert; Kimball, Scot R.; Zhang, Jun; Zhang, Weiping; Wang, Li; Jefferson, Leonard S.; Sanes, Joshua R.; Han, Xiao; Shi, Yuguang
2013-01-01
The mammalian target of rapamycin (mTOR) plays an important role in controlling islet β-cell function. However, the underlying molecular mechanisms remain poorly elucidated. Synapses of amphids defective kinase-A (SAD-A) is a 5′ adenosine monophosphate-activated protein kinase-related protein kinase that is exclusively expressed in pancreas and brain. In this study, we investigated a role of the kinase in regulating pancreatic β-cell morphology and function as a mediator of mTOR complex 1 (mTORC1) signaling. We show that global SAD-A deletion leads to defective glucose-stimulated insulin secretion and petite islets, which are reminiscent of the defects in mice with global deletion of ribosomal protein S6 kinase 1, a downstream target of mTORC1. Consistent with these findings, selective deletion of SAD-A in pancreas decreased islet β-cell size, whereas SAD-A overexpression significantly increased the size of mouse insulinomas cell lines β-cells. In direct support of SAD-A as a unique mediator of mTORC1 signaling in islet β-cells, we demonstrate that glucose dramatically stimulated SAD-A protein translation in isolated mouse islets, which was potently inhibited by rapamycin, an inhibitor of mTORC1. Moreover, the 5′-untranslated region of SAD-A mRNA is highly structured and requires mTORC1 signaling for its translation initiation. Together, these findings identified SAD-A as a unique pancreas-specific effector protein of mTORC1 signaling. PMID:23922392
SAD-A kinase controls islet β-cell size and function as a mediator of mTORC1 signaling.
Nie, Jia; Liu, Xiaolei; Lilley, Brendan N; Zhang, Hai; Pan, Y Albert; Kimball, Scot R; Zhang, Jun; Zhang, Weiping; Wang, Li; Jefferson, Leonard S; Sanes, Joshua R; Han, Xiao; Shi, Yuguang
2013-08-20
The mammalian target of rapamycin (mTOR) plays an important role in controlling islet β-cell function. However, the underlying molecular mechanisms remain poorly elucidated. Synapses of amphids defective kinase-A (SAD-A) is a 5' adenosine monophosphate-activated protein kinase-related protein kinase that is exclusively expressed in pancreas and brain. In this study, we investigated a role of the kinase in regulating pancreatic β-cell morphology and function as a mediator of mTOR complex 1 (mTORC1) signaling. We show that global SAD-A deletion leads to defective glucose-stimulated insulin secretion and petite islets, which are reminiscent of the defects in mice with global deletion of ribosomal protein S6 kinase 1, a downstream target of mTORC1. Consistent with these findings, selective deletion of SAD-A in pancreas decreased islet β-cell size, whereas SAD-A overexpression significantly increased the size of mouse insulinomas cell lines β-cells. In direct support of SAD-A as a unique mediator of mTORC1 signaling in islet β-cells, we demonstrate that glucose dramatically stimulated SAD-A protein translation in isolated mouse islets, which was potently inhibited by rapamycin, an inhibitor of mTORC1. Moreover, the 5'-untranslated region of SAD-A mRNA is highly structured and requires mTORC1 signaling for its translation initiation. Together, these findings identified SAD-A as a unique pancreas-specific effector protein of mTORC1 signaling.
Nie, Jia; Lilley, Brendan N.; Pan, Y. Albert; Faruque, Omar; Liu, Xiaolei; Zhang, Weiping; Sanes, Joshua R.
2013-01-01
Type 2 diabetes is characterized by defective glucose-stimulated insulin secretion (GSIS) from pancreatic β cells, which can be restored by glucagon-like peptide 1 (GLP-1), an incretin hormone commonly used for the treatment of type 2 diabetes. However, molecular mechanisms by which GLP-1 affects glucose responsiveness in islet β cells remain poorly understood. Here we investigated a role of SAD-A, an AMP-activated protein kinase (AMPK)-related kinase, in regulating GSIS in mice with conditional SAD-A deletion. We show that selective deletion of SAD-A in pancreas impaired incretin's effect on GSIS, leading to glucose intolerance. Conversely, overexpression of SAD-A significantly enhanced GSIS and further potentiated GLP-1's effect on GSIS from isolated mouse islets. In support of SAD-A as a mediator of incretin response, SAD-A is expressed exclusively in pancreas and brain, the primary targeting tissues of GLP-1 action. Additionally, SAD-A kinase is activated in response to stimulation by GLP-1 through cyclic AMP (cAMP)/Ca2+-dependent signaling pathways in islet β cells. Furthermore, we identified Thr443 as a key autoinhibitory phosphorylation site which mediates SAD-A's effect on incretin response in islet β cells. Consequently, ablation of Thr443 significantly enhanced GLP-1's effect on GSIS from isolated mouse islets. Together, these findings identified SAD-A kinase as a pancreas-specific mediator of incretin response in islet β cells. PMID:23629625
Preclinical fluorescent mouse models of pancreatic cancer
NASA Astrophysics Data System (ADS)
Bouvet, Michael; Hoffman, Robert M.
2007-02-01
Here we describe our cumulative experience with the development and preclinical application of several highly fluorescent, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of the bioluminescent green fluorescent (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time visualization of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Alternatively, transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor-host interaction between the pancreatic tumor fragments and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate human pancreatic cancer and therapeutic strategies directed against it.
Majumder, Kaustav; Arora, Nivedita; Modi, Shrey; Chugh, Rohit; Nomura, Alice; Giri, Bhuwan; Dawra, Rajinder; Ramakrishnan, Sundaram; Banerjee, Sulagna; Saluja, Ashok; Dudeja, Vikas
2017-01-01
A valid preclinical tumor model should recapitulate the tumor microenvironment. Immune and stromal components are absent in immunodeficient models of pancreatic cancer. While these components are present in genetically engineered models such as KrasG12D; Trp53R172H; Pdx-1Cre (KPC), immense variability in development of invasive disease makes them unsuitable for evaluation of novel therapies. We have generated a novel mouse model of pancreatic cancer by implanting tumor fragments from KPC mice into the pancreas of wild type mice. Three-millimeter tumor pieces from KPC mice were implanted into the pancreas of C57BL/6J mice. Four to eight weeks later, tumors were harvested, and stromal and immune components were evaluated. The efficacy of Minnelide, a novel compound which has been shown to be effective against pancreatic cancer in a number of preclinical murine models, was evaluated. In our model, consistent tumor growth and metastases were observed. Tumors demonstrated intense desmoplasia and leukocytic infiltration which was comparable to that in the genetically engineered KPC model and significantly more than that observed in KPC tumor-derived cell line implantation model. Minnelide treatment resulted in a significant decrease in the tumor weight and volume. This novel model demonstrates a consistent growth rate and tumor-associated mortality and recapitulates the tumor microenvironment. This convenient model is a valuable tool to evaluate novel therapies. PMID:26582596
MUC1-specific CTLs are non-functional within a pancreatic tumor microenvironment.
Mukherjee, P; Ginardi, A R; Madsen, C S; Tinder, T L; Jacobs, F; Parker, J; Agrawal, B; Longenecker, B M; Gendler, S J
2001-01-01
Pancreatic cancer is a highly aggressive, treatment refractory disease and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas over-express altered forms of a tumor-associated antigen, MUC1 (an epithelial mucin glycoprotein), which is a target for immunotherapy. Using a clinically relevant mouse model of pancreas cancer that demonstrates peripheral and central tolerance to human MUC1 and develops spontaneous tumors of the pancreas, we have previously reported the presence of functionally active, low affinity, MUC1-specific precursor cytotoxic T cells (pCTLs). Hypothesis for this study is that MUC1-based immunization may enhance the low level MUC1-specific immunity that may lead to an effective anti-tumor response. Data demonstrate that MUC1 peptide-based immunization elicits mature MUC1-specific CTLs in the peripheral lymphoid organs. The mature CTLs secrete IFN-gamma and are cytolytic against MUC1-expressing tumor cells in vitro. However, active CTLs that infiltrate the pancreas tumor microenvironment become cytolytically anergic and are tolerized to MUC1 antigen, allowing the tumor to grow. We demonstrate that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation. The pancreas tumor cells secrete immunosuppressive cytokines, including IL-10 and TGF-beta that are partly responsible for the down-regulation of CTL activity. In addition, they down-regulate their MHC class I molecules to avoid immune recognition. CD4+ CD25+ T regulatory cells, which secrete IL-10, were also found in the tumor environment. Together these data indicate the use of several immune evasion mechanisms by tumor cells to evade CTL killing. Thus altering the tumor microenvironment to make it more conducive to CTL killing may be key in developing a successful anti-cancer immunotherapy.
Liu, Shi-He; Rao, Donald D.; Nemunaitis, John; Senzer, Neil; Zhou, Guisheng; Dawson, David; Gingras, Marie-Claude; Wang, Zhaohui; Gibbs, Richard; Norman, Michael; Templeton, Nancy S.; DeMayo, Francesco J.; O'Malley, Bert; Sanchez, Robbi; Fisher, William E.; Brunicardi, F. Charles
2012-01-01
Pancreatic and duodenal homeobox-1 (PDX-1) is a transcription factor that regulates insulin expression and islet maintenance in the adult pancreas. Our recent studies demonstrate that PDX-1 is an oncogene for pancreatic cancer and is overexpressed in pancreatic cancer. The purpose of this study was to demonstrate that PDX-1 is a therapeutic target for both hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Immunohistochemistry of human pancreatic and islet neoplasia specimens revealed marked PDX-1 overexpression, suggesting PDX-1 as a “drugable” target within these diseases. To do so, a novel RNA interference effector platform, bifunctional shRNAPDX-1, was developed and studied in mouse and human cell lines as well as in mouse models of pancreatic cancer, insulinoma and islet neoplasia. Systemic delivery of bi-shRNAhumanPDX-1 lipoplexes resulted in marked reduction of tumor volume and improved survival in a human pancreatic cancer xenograft mouse model. bi-shRNAmousePDX-1 lipoplexes prevented death from hyperinsulinemia and hypoglycemia in an insulinoma mouse model. shRNAmousePDX-1 lipoplexes reversed hyperinsulinemia and hypoglycemia in an immune-competent mouse model of islet neoplasia. PDX-1 was overexpressed in pancreatic neuroendocrine tumors and nesidioblastosis. These data demonstrate that PDX-1 RNAi therapy controls hormonal symptoms and tumor volume in mouse models of pancreatic cancer, insulinoma and islet neoplasia, therefore, PDX-1 is a potential therapeutic target for these pancreatic diseases. PMID:22905092
Ræder, Helge; Vesterhus, Mette; El Ouaamari, Abdelfattah; Paulo, Joao A; McAllister, Fiona E; Liew, Chong Wee; Hu, Jiang; Kawamori, Dan; Molven, Anders; Gygi, Steven P; Njølstad, Pål R; Kahn, C Ronald; Kulkarni, Rohit N
2013-01-01
CEL-MODY is a monogenic form of diabetes with exocrine pancreatic insufficiency caused by mutations in CARBOXYL-ESTER LIPASE (CEL). The pathogenic processes underlying CEL-MODY are poorly understood, and the global knockout mouse model of the CEL gene (CELKO) did not recapitulate the disease. We therefore aimed to create and phenotype a mouse model specifically over-expressing mutated CEL in the pancreas. We established a monotransgenic floxed (flanking LOX sequences) mouse line carrying the human CEL mutation c.1686delT and crossed it with an elastase-Cre mouse to derive a bitransgenic mouse line with pancreas-specific over-expression of CEL carrying this disease-associated mutation (TgCEL). Following confirmation of murine pancreatic expression of the human transgene by real-time quantitative PCR, we phenotyped the mouse model fed a normal chow and compared it with mice fed a 60% high fat diet (HFD) as well as the effects of short-term and long-term cerulein exposure. Pancreatic exocrine function was normal in TgCEL mice on normal chow as assessed by serum lipid and lipid-soluble vitamin levels, fecal elastase and fecal fat absorption, and the normoglycemic mice exhibited normal pancreatic morphology. On 60% HFD, the mice gained weight to the same extent as controls, had normal pancreatic exocrine function and comparable glucose tolerance even after resuming normal diet and follow up up to 22 months of age. The cerulein-exposed TgCEL mice gained weight and remained glucose tolerant, and there were no detectable mutation-specific differences in serum amylase, islet hormones or the extent of pancreatic tissue inflammation. In this murine model of human CEL-MODY diabetes, we did not detect mutation-specific endocrine or exocrine pancreatic phenotypes, in response to altered diets or exposure to cerulein.
Cellular and molecular mechanisms coordinating pancreas development.
Bastidas-Ponce, Aimée; Scheibner, Katharina; Lickert, Heiko; Bakhti, Mostafa
2017-08-15
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer. © 2017. Published by The Company of Biologists Ltd.
Bush, Sean P.; Wen, Xianjie; Cao, Wei; Chan, Lawrence
2017-01-01
Mutations of GLI-similar 3 (GLIS3) underlie a neonatal diabetes syndrome. Genome-wide association studies revealed that GLIS3 variants are associated with both common type 1 and type 2 diabetes. Global Glis3-deficient (Glis3−/−) mice die of severe diabetes shortly after birth. GLIS3 controls islet differentiation by transactivating neurogenin 3 (Ngn3). To unravel the function of Glis3 in adults, we generated inducible global Glis3-deficient mice (Glis3fl/fl/RosaCreERT2). Tamoxifen (TAM)-treated Glis3fl/fl/RosaCreERT2 mice developed severe diabetes, which was reproduced in TAM-treated β cell–specific Glis3fl/fl/Pdx1CreERT mice, but not in TAM-treated Glis3fl/fl/MipCreERT mice. Furthermore, we generated constitutive β cell– or pancreas-specific Glis3-deficient mice using either RipCre (Glis3fl/fl/RipCre) or Pdx1Cre (Glis3fl/fl/Pdx1Cre) coexpressing mice. We observed that, remarkably, neither type of β cell– or pancreas-specific Glis3-deficient mice phenocopied the lethal neonatal diabetes observed in Glis3−/− mice. All Glis3fl/fl/RipCre mice survived to adulthood with normal glucose tolerance. Thirty percent of Glis3fl/fl/Pdx1Cre mice developed severe diabetes at 3 to 4 weeks of age, whereas 55% of them developed mild diabetes with age. In contrast to the >90% reduction of Ngn3 and near-total absence of insulin (Ins) in the embryonic pancreas of Glis3−/− mice, we found only 75%–80% reduction of Ngn3 and Ins messenger RNA or protein expression in the fetal pancreas of Glis3fl/fl/Pdx1Cre mice. The expression levels of Ngn3 and Ins correlated negatively with the extent of Cre-mediated Glis3 deletion. These mouse models are powerful tools to decipher Glis3 gene dosage effects and the role of GLIS3 mutations/variants in a spectrum of β cell dysfunction in people. PMID:27813676
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Haiyan; Korzh, Svitlana; Li Zhen
2006-05-15
In contrast to what we know on development of endocrine pancreas, the formation of exocrine pancreas remains poorly understood. To create an animal model that allows observation of exocrine cell differentiation, proliferation, and morphogenesis in living animals, we used the zebrafish elastaseA (elaA) regulatory sequence to develop transgenic zebrafish that display highly specific exocrine pancreas expression of GFP in both larvae and adult. By following GFP expression, we found that the pancreas in early development was a relatively compact organ and later extended posterior along the intestine. By transferring the elaA:gfp transgene into slow muscle omitted mutant that is deficientmore » in receiving Hedgehog signals, we further showed that Hedgehog signaling is required for exocrine morphogenesis but not for cell differentiation. We also applied the morpholino knockdown and toxin-mediated cell ablation approaches to this transgenic line. We showed that the development of exocrine pancreas is Islet-1 dependent. Injection of the diphtheria toxin A (DTA) construct under the elastaseA promoter resulted in selective ablation of exocrine cells while the endocrine cells and other endodermal derivatives (liver and intestine) were not affected. Thus, our works demonstrated the new transgenic line provided a useful experimental tool in analyzing exocrine pancreas development.« less
Tourlakis, Marina E.; Zhang, Siyi; Ball, Heather L.; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S.; Guidos, Cynthia J.; Durie, Peter R.; Rommens, Johanna M.
2015-01-01
Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15Ink4b and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to be p53-dependent. Our findings therefore point to cell/tissue-specific responses to p53-activation that include distinction between apoptosis and senescence pathways, in the context of translation disruption. PMID:26057580
Tourlakis, Marina E; Zhang, Siyi; Ball, Heather L; Gandhi, Rikesh; Liu, Hongrui; Zhong, Jian; Yuan, Julie S; Guidos, Cynthia J; Durie, Peter R; Rommens, Johanna M
2015-06-01
Genetic models of ribosome dysfunction show selective organ failure, highlighting a gap in our understanding of cell-type specific responses to translation insufficiency. Translation defects underlie a growing list of inherited and acquired cancer-predisposition syndromes referred to as ribosomopathies. We sought to identify molecular mechanisms underlying organ failure in a recessive ribosomopathy, with particular emphasis on the pancreas, an organ with a high and reiterative requirement for protein synthesis. Biallelic loss of function mutations in SBDS are associated with the ribosomopathy Shwachman-Diamond syndrome, which is typified by pancreatic dysfunction, bone marrow failure, skeletal abnormalities and neurological phenotypes. Targeted disruption of Sbds in the murine pancreas resulted in p53 stabilization early in the postnatal period, specifically in acinar cells. Decreased Myc expression was observed and atrophy of the adult SDS pancreas could be explained by the senescence of acinar cells, characterized by induction of Tgfβ, p15(Ink4b) and components of the senescence-associated secretory program. This is the first report of senescence, a tumour suppression mechanism, in association with SDS or in response to a ribosomopathy. Genetic ablation of p53 largely resolved digestive enzyme synthesis and acinar compartment hypoplasia, but resulted in decreased cell size, a hallmark of decreased translation capacity. Moreover, p53 ablation resulted in expression of acinar dedifferentiation markers and extensive apoptosis. Our findings indicate a protective role for p53 and senescence in response to Sbds ablation in the pancreas. In contrast to the pancreas, the Tgfβ molecular signature was not detected in fetal bone marrow, liver or brain of mouse models with constitutive Sbds ablation. Nevertheless, as observed with the adult pancreas phenotype, disease phenotypes of embryonic tissues, including marked neuronal cell death due to apoptosis, were determined to be p53-dependent. Our findings therefore point to cell/tissue-specific responses to p53-activation that include distinction between apoptosis and senescence pathways, in the context of translation disruption.
Shibata, Wataru; Kinoshita, Hiroto; Hikiba, Yohko; Sato, Takeshi; Ishii, Yasuaki; Sue, Soichiro; Sugimori, Makoto; Suzuki, Nobumi; Sakitani, Kosuke; Ijichi, Hideaki; Mori, Ryutaro; Endo, Itaru; Maeda, Shin
2018-04-18
Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5% and is the sixth leading cause of cancer death. Although KRAS mutations are one of the major driver mutations in PDA, KRAS mutation alone is not sufficient to induce invasive pancreatic cancer in mice model. HER2, also known as ERBB2, is a receptor tyrosine kinase, and overexpression of HER2 is associated with poor clinical outcomes in pancreatic cancer. However, no report has shown whether HER2 and its downstream signaling contributes to the pancreatic cancer development. By immunohistochemical analysis in human cases, HER2 protein expression was detected in 40% of PDAs and 29% of intraductal papillary mucinous carcinomas, another type of pancreatic cancer. In a mouse model, we showed overexpression of activated HER2 (HER2 NT ) in the pancreas, in which cystic neoplastic lesions resembling intraductal papillary mucinous neoplasm-like lesions in humans had developed. We also found that HER2 NT cooperated with oncogenic Kras to accelerate the development of pancreatic intraepithelial neoplasms. In addition, using pancreatic organoids in 3D cultures, we found that organoids cultured from HER2 NT /Kras double transgenic mice showed proliferative potential and tumorigenic ability cooperatively. HER2-signaling inhibition was suggested to be an new therapeutic target in some types of PDAs.
Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A.; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T.; Simbolo, Michele; Asara, John M.; Bläker, Hendrik; Cantley, Lewis C.; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas
2016-01-01
Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation–enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. SIGNIFICANCE This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. PMID:26446169
Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T; Simbolo, Michele; Asara, John M; Bläker, Hendrik; Cantley, Lewis C; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas
2015-12-01
Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation-enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. ©2015 American Association for Cancer Research.
Mohseni-Salehi-Monfared, Seyed Sajad; Habibollahzadeh, Ebad; Sadeghi, Hooman; Baeeri, Maryam
2010-01-01
Introduction The aim of this study was to evaluate the effects and mechanisms of Setarud (IMOD™) as a multi-herbal medicinal formula on a mouse model of type 1 diabetes. Meterial and methods Autoimmune diabetes was induced by multiple low-dose intraperitoneal injection of 40 mg/kg of streptozotocin (STZ) for five consecutive days. IMOD™ was administered at an effective dose of 20 mg/kg/day for 21 days. After 21 days of treatment, the pancreases of the animals were separated and homogenized. In the pancreas tissue, the level of lipid peroxidation as thiobarbituric acid reactive substances (TBARS), total antioxidant power as ferric reducing ability of pancreas (FRAP), myeloperoxidase (MPO), and the concentrations of interleukin-1 (IL-1β) and tumour necrosis factor-α (TNF-α) were evaluated. Glucose changes were tested in the blood. Microscopic changes in the pancreas were followed by histological examinations. Results No significant difference was found between IMOD™ and diabetic control groups in blood glucose pattern. STZ-exposed mice showed a significant increase in pancreatic TBARS, MPO, IL-1β, and TNF-α levels, along with a significant decrease in FRAP value. Co-administration of IMOD™ significantly improved all the mentioned parameters disrupted by STZ administration except for blood glucose and histological changes. Conclusion IMOD™ could ameliorate oxidative and immunological distresses of type-1 immunogenic diabetes but could not normalize blood glucose. Further studies are recommended to clarify the effects of IMOD™ on immunological factors to address whether this new agent could be applied in diabetes prevention or therapy. PMID:22419922
Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes.
Wen, Xianjie; Yang, Yisheng
2017-02-01
GLI-similar 3 (GLIS3), a member of the Krüppel-like zinc finger protein subfamily, is predominantly expressed in the pancreas, thyroid and kidney. Glis3 mRNA can be initially detected in mouse pancreas at embryonic day 11.5 and is largely restricted to β cells, pancreatic polypeptide-expressing cells, as well as ductal cells at later stage of pancreas development. Mutations in GLIS3 cause a neonatal diabetes syndrome, characterized by neonatal diabetes, congenital hypothyroidism and polycystic kidney. Importantly, genome-wide association studies showed that variations of GLIS3 are strongly associated with both type 1 diabetes (T1D) and type 2 diabetes (T2D) in multiple populations. GLIS3 cooperates with pancreatic and duodenal homeobox 1 (PDX1), v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (MAFA), as well as neurogenic differentiation 1 (NEUROD1) and potently controls insulin gene transcription. GLIS3 also plays a role in β cell survival and likely in insulin secretion. Any perturbation of these functions may underlie all three forms of diabetes. GLIS3, synergistically with hepatocyte nuclear factor 6 (HNF6) and forkhead box A2 (FOXA2), controls fetal islet differentiation via transactivating neurogenin 3 (NGN3) and impairment of this function leads to neonatal diabetes. In addition, GLIS3 is also required for the compensatory β cell proliferation and mass expansion in response to insulin resistance, which if disrupted may predispose to T2D. The increasing understanding of the mechanisms of GLIS3 in β cell development, survival and function maintenance will provide new insights into disease pathogenesis and potential therapeutic target identification to combat diabetes. © 2017 Society for Endocrinology.
Beta-Cell Replacement: Pancreas and Islet Cell Transplantation.
Niclauss, Nadja; Meier, Raphael; Bédat, Benoît; Berishvili, Ekaterine; Berney, Thierry
2016-01-01
Pancreas and islet transplantation are 2 types of beta-cell replacement therapies for type 1 diabetes mellitus. Since 1966, when pancreas transplantation was first performed, it has evolved to become a highly efficient procedure with high success rates, thanks to advances in surgical technique and immunosuppression. Pancreas transplantation is mostly performed as simultaneous pancreas-kidney transplantation in patients with end-stage nephropathy secondary to diabetes. In spite of its efficiency, pancreas transplantation is still a major surgical procedure burdened by high morbidity, which called for the development of less invasive and hazardous ways of replacing beta-cell function in the past. Islet transplantation was developed in the 1970s as a minimally invasive procedure with initially poor outcomes. However, since the report of the 'Edmonton protocol' in 2000, the functional results of islet transplantation have substantially and constantly improved and are about to match those of whole pancreas transplantation. Islet transplantation is primarily performed alone in nonuremic patients with severe hypoglycemia. Both pancreas transplantation and islet transplantation are able to abolish hypoglycemia and to prevent or slow down the development of secondary complications of diabetes. Pancreas transplantation and islet transplantation should be seen as two complementary, rather than competing, therapeutic approaches for beta-cell replacement that are able to optimize organ donor use and patient care. © 2016 S. Karger AG, Basel.
Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim
2013-09-01
Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.
Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim
2013-01-01
Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. PMID:23834399
Induction of insulin-producing cells from human pancreatic progenitor cells.
Noguchi, H; Naziruddin, B; Shimoda, M; Fujita, Y; Chujo, D; Takita, M; Peng, H; Sugimoto, K; Itoh, T; Tamura, Y; Olsen, G S; Kobayashi, N; Onaca, N; Hayashi, S; Levy, M F; Matsumoto, S
2010-01-01
We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we sought to identify and isolate human pancreatic stem/progenitor cells. We also tested whether growth factors and protein transduction of pancreatic and duodenal homeobox factor-1 (PDX-1) and BETA2/NeuroD into human pancreatic stem/progenitor cells induced insulin or pancreas-related gene expressions. Human pancreata from brain-dead donors were used for islet isolation with the standard Ricordi technique modified by the Edmonton protocol. The cells from a duct-rich population were cultured in several media, based on those designed for mouse pancreatic or for human embryonic stem cells. To induce cell differentiation, cells were cultured for 2 weeks with exendin-4, nicotinamide, keratinocyte growth factor, PDX-1 protein, or BETA2/NeuroD protein. The cells in serum-free media showed morphologies similar to a mouse pancreatic stem cell line, while the cells in the medium for human embryonic stem cells formed fibroblast-like morphologies. The nucleus/cytoplasm ratios of the cells in each culture medium decreased during the culture. The cells stopped dividing after 30 days, suggesting that they had entered senescence. The cells treated with induction medium differentiated into insulin-producing cells, expressing pancreas-related genes. Duplications of cells from a duct-rich population were limited. Induction therapy with several growth factors and transduction proteins might provide a potential new strategy for induction of transplantable insulin-producing cells. Copyright 2010 Elsevier Inc. All rights reserved.
Characterization of human pancreatic progenitor cells.
Noguchi, Hirofumi; Naziruddin, Bashoo; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Chujo, Daisuke; Takita, Morihito; Kobayashi, Naoya; Onaca, Nicholas; Hayashi, Shuji; Levy, Marlon F; Matsumoto, Shinichi
2010-01-01
β-Cell replacement therapy via islet transplantation is an effective treatment for diabetes mellitus, but its widespread use is severely limited by the shortage of donor organs. Because pancreatic stem/progenitor cells are abundantly available in the pancreas of these patients and in donor organs, the cells could become a useful target for β-cell replacement therapy. We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we used the techniques to identify and isolate human pancreatic stem/progenitor cells. The cells from a duct-rich population were cultured in 23 kinds of culture media, based on media for mouse pancreatic stem cells or for human embryonic stem cells. The cells in serum-free media formed "cobblestone" morphologies, similar to a mouse pancreatic stem cell line. On the other hand, the cells in serum-containing medium and the medium for human embryonic stem cells formed "fibroblast-like" morphologies. The cells divided actively until day 30, and the population doubling level (PDL) was 6-10. However, the cells stopped dividing after 30 days in any culture conditions. During the cultures, the nucleus/cytoplasm (N/C) ratio decreased, suggesting that the cells entered senescence. Exendin-4 treatment and transduction of PDX-1 and NeuroD proteins by protein transduction technology into the cells induced insulin and pancreas-related gene expression. Although the duplications of these cells were limited, this approach could provide a potential new source of insulin-producing cells for transplantation.
Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development.
Nissim, Sahar; Weeks, Olivia; Talbot, Jared C; Hedgepeth, John W; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E; Amacher, Sharon L; Goessling, Wolfram
2016-10-01
The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic vs. pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Iterative use of nuclear receptor Nr5a2 regulates multiple stages of liver and pancreas development
Nissim, Sahar; Weeks, Olivia; Talbot, Jared C.; Hedgepeth, John W.; Wucherpfennig, Julia; Schatzman-Bone, Stephanie; Swinburne, Ian; Cortes, Mauricio; Alexa, Kristen; Megason, Sean; North, Trista E.; Amacher, Sharon L.; Goessling, Wolfram
2016-01-01
The stepwise progression of common endoderm progenitors into differentiated liver and pancreas organs is regulated by a dynamic array of signals that are not well understood. The nuclear receptor subfamily 5, group A, member 2 gene nr5a2, also known as Liver receptor homolog-1 (Lrh-1) is expressed in several tissues including the developing liver and pancreas. Here, we interrogate the role of Nr5a2 at multiple developmental stages using genetic and chemical approaches and uncover novel pleiotropic requirements during zebrafish liver and pancreas development. Zygotic loss of nr5a2 in a targeted genetic null mutant disrupted the development of the exocrine pancreas and liver, while leaving the endocrine pancreas intact. Loss of nr5a2 abrogated exocrine pancreas markers such as trypsin, while pancreas progenitors marked by ptf1a or pdx1 remained unaffected, suggesting a role for Nr5a2 in regulating pancreatic acinar cell differentiation. In the developing liver, Nr5a2 regulates hepatic progenitor outgrowth and differentiation, as nr5a2 mutants exhibited reduced hepatoblast markers hnf4α and prox1 as well as differentiated hepatocyte marker fabp10a. Through the first in vivo use of Nr5a2 chemical antagonist Cpd3, the iterative requirement for Nr5a2 for exocrine pancreas and liver differentiation was temporally elucidated: chemical inhibition of Nr5a2 function during hepatopancreas progenitor specification was sufficient to disrupt exocrine pancreas formation and enhance the size of the embryonic liver, suggesting that Nr5a2 regulates hepatic versus pancreatic progenitor fate choice. Chemical inhibition of Nr5a2 at a later time during pancreas and liver differentiation was sufficient to block the formation of mature acinar cells and hepatocytes. These findings define critical iterative and pleiotropic roles for Nr5a2 at distinct stages of pancreas and liver organogenesis, and provide novel perspectives for interpreting the role of Nr5a2 in disease. PMID:27474396
Bijelić, Nikola; Belovari, Tatjana; Tolušić Levak, Maja; Baus Lončar, Mirela
2017-08-20
Trefoil factor family (TFF) peptides are involved in the maintenance of epithelial integrity and epithelial restitution. Mature epithelial tissues originate from different embryonic germ layers. The objective of this research was to explore the presence and localization of TFF3 peptide in mouse embryonic epithelia and to examine if the occurrence of TFF3 peptide is germ layer-dependent. Mouse embryos (14-18 days old) were fixed in 4% paraformaldehyde and embedded in paraffin. Immunohistochemistry was performed with affinity purified rabbit anti-TFF3 antibody, goat anti-rabbit biotinylated secondary antibody and streptavidin-horseradish peroxidase, followed by 3,3'-diaminobenzidine. TFF3 peptide was present in the gastric and intestinal mucosa, respiratory mucosa in the upper and lower airways, pancreas, kidney tubules, epidermis, and oral cavity. The presence and localization of TFF3 peptide was associated with the embryonic stage and tissue differentiation. TFF3 peptide distribution specific to the germ layers was not observed. The role of TFF3 peptide in cell migration and differentiation, immune response, and apoptosis might be associated with specific embryonic epithelial cells. TFF3 peptide may also be considered as a marker for mucosal maturation.
Advanced EUS Guided Tissue Acquisition Methods for Pancreatic Cancer
Kandel, Pujan; Wallace, Michael B.
2018-01-01
Pancreas cancer is a lethal cancer as the majority patients are diagnosed at an advanced incurable stage. Despite improvements in diagnostic modalities and management strategies, including surgery and chemotherapies, the outcome of pancreas cancer remains poor. Endoscopic ultrasound (EUS) is an important imaging tool for pancreas cancer. For decades, resected pancreas cancer and other cancer specimens have been used to identify tissue biomarkers or genomics for precision therapy; however, only 20% of patients undergo surgery, and thus, this framework is not useful for unresectable pancreas cancer. With advancements in needle technologies, tumor specimens can be obtained at the time of tissue diagnosis. Tumor tissue can be used for development of personalized cancer treatment, such as performing whole exome sequencing and global genomic profiling of pancreas cancer, development of tissue biomarkers, and targeted mutational assays for precise chemotherapy treatment. In this review, we discuss the recent advances in tissue acquisition of pancreas cancer. PMID:29463004
Goh, Saik-Kia; Bertera, Suzanne; Olsen, Phillip; Candiello, Joe; Halfter, Willi; Uechi, Guy; Balasubramani, Manimalha; Johnson, Scott; Sicari, Brian; Kollar, Elizabeth; Badylak, Stephen F.; Banerjee, Ipsita
2013-01-01
Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches. PMID:23787110
Usatin, D J; Perito, E R; Posselt, A M; Rosenthal, P
2016-05-01
Despite a high prevalence of pancreatic endocrine and exocrine insufficiency in cystic fibrosis (CF), pancreas transplantation is rarely reported. United Network for Organ Sharing (UNOS) data were used to examine utilization of pancreas transplant and posttransplant outcomes in CF patients. Between 1987-2014, CF patients (N = 4600) underwent 17 liver-pancreas, three lung-pancreas, one liver-lung pancreas, four kidney-pancreas, and three pancreas-only transplants. Of the 303 CF patients who received liver transplantation, 20% had CF-related diabetes (CFRD) before transplantation, and nine of those received a liver-pancreas transplant. Of 4241 CF patients who underwent lung transplantation, 33% had CFRD before transplantation, and three of those received a pancreas transplant. Of 49 CF patients who received a liver-lung transplant, 57% had CFRD before transplantation and one received a pancreas transplant. Posttransplantation diabetes developed in 7% of CF pancreas transplant recipients versus 24% of CF liver and 29% of CF lung recipients. UNOS has no data on pancreas exocrine insufficiency. Two-year posttransplantation survival was 88% after liver-pancreas transplant, 33% after lung-pancreas transplant, and 100% after pancreas-kidney and pancreas-only transplants. Diabetes is common pretransplantation and posttransplantation in CF solid organ transplant recipients, but pancreas transplantation remains rare. Further consideration of pancreas transplant in CF patients undergoing other solid organ transplant may be warranted. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Yamamoto, T; Yamato, E; Taniguchi, H; Shimoda, M; Tashiro, F; Hosoi, M; Sato, T; Fujii, S; Miyazaki, J-I
2006-10-01
Duct cells of the pancreas are thought to include latent progenitors of islet endocrine cells that can be induced to differentiate by appropriate morphogens. Here we developed a method for isolating pancreatic ductal epithelial cells from adult mice that overcomes the shortcomings of previous methods. Pancreatic ductal cells were grown in serum-free DMEM/F12 medium in the presence of cholera toxin or 8-bromo-cyclic adenosine monophosphate, which is known to be an intracellular cAMP generator. Single cell cloning was performed by limiting dilution in serum-free medium. The isolated clonal cells expressed high levels of cytokeratin and Ipf1 (formerly known as Pdx-1). Adenovirus-mediated expression of ngn3 (also known as Neurog3) and Ptf1a in these cells induced expression of insulin and somatostatin, and of carboxypeptidase A, respectively. Furthermore, albumin production was induced by dexamethasone or by long-term culture in serum-containing medium. Stimulation of the cAMP-dependent signalling allowed us to isolate clonal pancreatic ductal cells from adult mice. These cells are able to partially differentiate into endocrine cells, exocrine cells and hepatocyte-like cells and are therefore considered to have the characteristics of endodermal progenitor cells.
Pancreas and gallbladder agenesis in a newborn with semilobar holoprosencephaly, a case report.
Hilbrands, Robert; Keymolen, Kathelijn; Michotte, Alex; Marichal, Miriam; Cools, Filip; Goossens, Anieta; Veld, Peter In't; De Schepper, Jean; Hattersley, Andrew; Heimberg, Harry
2017-05-19
Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.
Dynamic landscape of pancreatic carcinogenesis reveals early molecular networks of malignancy.
Kong, Bo; Bruns, Philipp; Behler, Nora A; Chang, Ligong; Schlitter, Anna Melissa; Cao, Jing; Gewies, Andreas; Ruland, Jürgen; Fritzsche, Sina; Valkovskaya, Nataliya; Jian, Ziying; Regel, Ivonne; Raulefs, Susanne; Irmler, Martin; Beckers, Johannes; Friess, Helmut; Erkan, Mert; Mueller, Nikola S; Roth, Susanne; Hackert, Thilo; Esposito, Irene; Theis, Fabian J; Kleeff, Jörg; Michalski, Christoph W
2018-01-01
The initial steps of pancreatic regeneration versus carcinogenesis are insufficiently understood. Although a combination of oncogenic Kras and inflammation has been shown to induce malignancy, molecular networks of early carcinogenesis remain poorly defined. We compared early events during inflammation, regeneration and carcinogenesis on histological and transcriptional levels with a high temporal resolution using a well-established mouse model of pancreatitis and of inflammation-accelerated Kras G12D -driven pancreatic ductal adenocarcinoma. Quantitative expression data were analysed and extensively modelled in silico. We defined three distinctive phases-termed inflammation, regeneration and refinement-following induction of moderate acute pancreatitis in wild-type mice. These corresponded to different waves of proliferation of mesenchymal, progenitor-like and acinar cells. Pancreas regeneration required a coordinated transition of proliferation between progenitor-like and acinar cells. In mice harbouring an oncogenic Kras mutation and challenged with pancreatitis, there was an extended inflammatory phase and a parallel, continuous proliferation of mesenchymal, progenitor-like and acinar cells. Analysis of high-resolution transcriptional data from wild-type animals revealed that organ regeneration relied on a complex interaction of a gene network that normally governs acinar cell homeostasis, exocrine specification and intercellular signalling. In mice with oncogenic Kras, a specific carcinogenic signature was found, which was preserved in full-blown mouse pancreas cancer. These data define a transcriptional signature of early pancreatic carcinogenesis and a molecular network driving formation of preneoplastic lesions, which allows for more targeted biomarker development in order to detect cancer earlier in patients with pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Kowalska, Magdalena; Hermyt, Mateusz; Rupik, Weronika
2017-04-01
The aim of this study was to evaluate two research hypotheses: H 0 -the embryonic pancreas in grass snakes develops in the same manner as in all previously investigated amniotes (from three buds) and its topographical localization within the adult body has no relation to its development; H 1 -the pancreas develops in a different manner and is related to the different topography of internal organs in snakes. For the evaluation of these hypotheses we used histological methods and three-dimensional (3D) reconstructions of the position of the pancreatic buds and surrounding organs at particular developmental stages and of the final position and shape of the pancreatic gland. Our results indicate that the pancreas primordium in the grass snake is formed by only two buds - a dorsal and a ventral one - that are not connected until the end of stage II. This differs from the majority of vertebrates investigated so far. The gall bladder of the grass snake embryos is connected with the liver only by a thin cystic duct, which also differs from many other vertebrates. Our histological study also indicates a different distribution of the endocrine cells in the embryonic pancreas of the grass snake because the first endocrine cells appeared in the dorsal part of the pancreas in a region located close to the spleen. During the entire developmental period no evidence of these cells was found in the ventral part of the pancreas. The endocrine cells form elongated, large and irregular-shaped islets. They can also form structures resembling "inverted acini". Such an arrangement is characteristic of snakes only. The differentiating pancreas penetrates the ventral part of the developing spleen and divides it into three separate parts at developmental stage IX. This is unique among vertebrates. At the end of the embryonic development (stage XI), the pancreas, the spleen and the gall bladder are located in close proximity and form the so-called triad. Our results suggest that the untypical topography of the organ systems in snakes may determine the unique development of the pancreas in these animals. Copyright © 2016 Elsevier GmbH. All rights reserved.
Glucose-Stimulated Calcium Dynamics in Islets of Langerhans in Acute Mouse Pancreas Tissue Slices
Stožer, Andraž; Dolenšek, Jurij; Rupnik, Marjan Slak
2013-01-01
In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future. PMID:23358454
In vivo biodistribution of CNTs using a BALB/c mouse experimental model.
Fufă, Mariana Oana Mihaela; Mihaiescu, Dan Eduard; Mogoantă, Laurenţiu; Bălşeanu, Tudor Adrian; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Bolocan, Alexandra
2015-01-01
Due to their unique behaviors, carbon nanotubes (CNTs)-based systems meet essential requirements for modern applications, such as electronics, optics, photovoltaics, fuel cells, aerospace engineering, military and biomedical applications. CNTs biocompatibility and toxic effects were assessed both in vitro and in vivo, in terms of hemocompatibility, cytocompatibility, immunoreactions and genetic behavior. The aim of this paper is to evaluate the in vivo biodistribution and biocompatibility of carbon nanopowder synthesized by plasma processing, using a BALB/c mouse experimental model. Three months old BALB/c mice were aseptically injected with 100 μL of 1 mg/mL dispersions. The obtained carbon-based nano-systems were dispersed in saline solution and subsequently sterilized by using a 30 minutes treatment with UV irradiation. The reference mice were injected with 100 μL of saline. The mice were kept under standard conditions of light, temperature, humidity, food and water (ad libitum) before the vital organ harvest. The animal welfare was daily monitored. At two and 10 days after the inoculation, the animals were euthanized under general anesthesia, for the sampling of internal organs (brain, myocardium, pancreas, liver, lung, kidney and spleen). No animal died during the experiment. Brain, myocardium and pancreas were histologically normal, with no tissue damage, inflammatory infiltrate or inorganic deposits. CNTs were evidenced only in hepatic, renal, pulmonary and spleen tissue samples. Increased amounts of inorganic granular structures were reported after 10 days of treatment, when compared to the short-term (two days) inoculation. Our BALB/c mouse experimental model was found to be useful for the in vivo assessment of biodistribution and biocompatibility of CNTs.
Lu, Qing-Yi; Zhang, Lifeng; Moro, Aune; Chen, Monica C.; Harris, Diane M.; Eibl, Guido; Go, Vay-Liang W.
2011-01-01
Objectives Scutellaria baicalensis has been a subject of research interests due to its potential multiple therapeutic benefits. This study was to examine the distribution of baicalein, wogonin, oroxylin A and their glucuronide/sulfate conjugated metabolites in plasma, colon, small intestine, lung, liver, pancreas, kidney, and prostate tissues and in pancreatic tumor in a xenograft animal model. In addition, we examined metabolic stability of baicalin in these tissues. Methods A mouse xenograft model was prepared by injection of 3×106 human pancreatic cancer MiaPaCa-2 cells subcutaneously into nude mice. Mice were randomly allocated to control diet (AIN76A) and 1% SB diet (n=8 per group) for 13 weeks. Levels of baicalein, wogonin, oroxylin A, and their conjugates in mouce tissues were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. Results A substantial amount of baicalin (34–63%) was methylated to oroxylin A and its conjugates in various organs during absorption. While plasma contained predominantly conjugates of baicalein, wogonin, and oroxylin A, both aglycones and conjugates were found in all other tissues investigated and in tumor. Conclusions Substantial accumulation of bioactive metabolites are found in target tissues, suggesting strong potential for SB use as a preventive or adjuvant supplement for pancreatic cancer. PMID:22158070
Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse
Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose
2017-01-01
Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS. PMID:28273875
Characterization of ACE and ACE2 Expression within Different Organs of the NOD Mouse.
Roca-Ho, Heleia; Riera, Marta; Palau, Vanesa; Pascual, Julio; Soler, Maria Jose
2017-03-05
Renin angiotensin system (RAS) is known to play a key role in several diseases such as diabetes, and renal and cardiovascular pathologies. Its blockade has been demonstrated to delay chronic kidney disease progression and cardiovascular damage in diabetic patients. In this sense, since local RAS has been described, the aim of this study is to characterize angiotensin converting enzyme (ACE) and ACE2 activities, as well as protein expression, in several tissues of the non-obese diabetic (NOD) mice model. After 21 or 40 days of diabetes onset, mouse serums and tissues were analyzed for ACE and ACE2 enzyme activities and protein expression. ACE and ACE2 enzyme activities were detected in different tissues. Their expressions vary depending on the studied tissue. Thus, whereas ACE activity was highly expressed in lungs, ACE2 activity was highly expressed in pancreas among the studied tissues. Interestingly, we also observed that diabetes up-regulates ACE mainly in serum, lung, heart, and liver, and ACE2 mainly in serum, liver, and pancreas. In conclusion, we found a marked serum and pulmonary alteration in ACE activity of diabetic mice, suggesting a common regulation. The increase of ACE2 activity within the circulation in diabetic mice may be ascribed to a compensatory mechanism of RAS.
NASA Astrophysics Data System (ADS)
Fei, Jiangfeng
2013-03-01
In 2006, JDRF launched the Artificial Pancreas Project (APP) to accelerate the development of a commercially-viable artificial pancreas system to closely mimic the biological function of the pancreas individuals with insulin-dependent diabetes, particularly type 1 diabetes. By automating detection of blood sugar levels and delivery of insulin in response to those levels, an artificial pancreas has the potential to transform the lives of people with type 1 diabetes. The 6-step APP development pathway serves as JDRF's APP strategic funding plan and defines the priorities of product research and development. Each step in the plan represents incremental advances in automation beginning with devices that shut off insulin delivery to prevent episodes of low blood sugar and progressing ultimately to a fully automated ``closed loop'' system that maintains blood glucose at a target level without the need to bolus for meals or adjust for exercise.
GLUT4 in the endocrine pancreas--indicating an impact in pancreatic islet cell physiology?
Bähr, I; Bazwinsky-Wutschke, I; Wolgast, S; Hofmann, K; Streck, S; Mühlbauer, E; Wedekind, D; Peschke, E
2012-06-01
The glucose transporter GLUT4 is well known to facilitate the transport of blood glucose into insulin-sensitive muscle and adipose tissue. In this study, molecular, immunohistochemical, and Western blot investigations revealed evidence that GLUT4 is also located in the mouse, rat, and human endocrine pancreas. In addition, high glucose decreased and insulin elevated the GLUT4 expression in pancreatic α-cells. In contrast, high glucose increased GLUT4 expression, whereas insulin led to a reduced expression level of the glucose transporter in pancreatic β-cells. In vivo experiments showed that in pancreatic tissue of type 2 diabetic rats as well as type 2 diabetic patients, the GLUT4 expression is significantly increased compared to the nondiabetic control group. Furthermore, type 1 diabetic rats exhibited reduced GLUT4 transcript levels in pancreatic tissue, whereas insulin treatment of type 1 diabetic animals enhanced the GLUT4 expression back to control levels. These data provide evidence for the existence of GLUT4 in the endocrine pancreas and indicate a physiological relevance of this glucose transporter as well as characteristic changes in diabetic disease. © Georg Thieme Verlag KG Stuttgart · New York.
Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice
Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C.; Zhou, Qiao
2016-01-01
Aims/hypothesis Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Methods Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. Results We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue’s response to clear the pancreas from insufficiently reprogrammed cells. Conclusions/interpretation Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications. PMID:26693711
Hyperglycaemia attenuates in vivo reprogramming of pancreatic exocrine cells to beta cells in mice.
Cavelti-Weder, Claudia; Li, Weida; Zumsteg, Adrian; Stemann-Andersen, Marianne; Zhang, Yuemei; Yamada, Takatsugu; Wang, Max; Lu, Jiaqi; Jermendy, Agnes; Bee, Yong Mong; Bonner-Weir, Susan; Weir, Gordon C; Zhou, Qiao
2016-03-01
Reprogramming of pancreatic exocrine to insulin-producing cells by viral delivery of the genes encoding transcription factors neurogenin-3 (Ngn3), pancreas/duodenum homeobox protein 1 (Pdx1) and MafA is an efficient method for reversing diabetes in murine models. The variables that modulate reprogramming success are currently ill-defined. Here, we assess the impact of glycaemia on in vivo reprogramming in a mouse model of streptozotocin-induced beta cell ablation, using subsequent islet transplantation or insulin pellet implantation for creation of groups with differing levels of glycaemia before viral delivery of transcription factors. We observed that hyperglycaemia significantly impaired reprogramming of exocrine to insulin-producing cells in their quantity, differentiation status and function. With hyperglycaemia, the reprogramming of acinar towards beta cells was less complete. Moreover, inflammatory tissue changes within the exocrine pancreas including macrophage accumulation were found, which may represent the tissue's response to clear the pancreas from insufficiently reprogrammed cells. Our findings shed light on normoglycaemia as a prerequisite for optimal reprogramming success in a diabetes model, which might be important in other tissue engineering approaches and disease models, potentially facilitating their translational applications.
Control of Cell Identity in Pancreas Development and Regeneration
Stanger, Ben Z.; Hebrok, Matthias
2013-01-01
The endocrine and exocrine cells in the adult pancreas are not static, but can change differentiation state in response to injury or stress. This concept of cells in flux means that there may be ways to generate certain types of cells (such as insulin-producing β-cells) and prevent formation of others (such as transformed, neoplastic cells). We review different aspects of cell identity in the pancreas, discussing how cells achieve their identity during embryonic development and maturation, and how this identity remains plastic, even in the adult pancreas. PMID:23622126
A Review of Safety and Design Requirements of the Artificial Pancreas.
Blauw, Helga; Keith-Hynes, Patrick; Koops, Robin; DeVries, J Hans
2016-11-01
As clinical studies with artificial pancreas systems for automated blood glucose control in patients with type 1 diabetes move to unsupervised real-life settings, product development will be a focus of companies over the coming years. Directions or requirements regarding safety in the design of an artificial pancreas are, however, lacking. This review aims to provide an overview and discussion of safety and design requirements of the artificial pancreas. We performed a structured literature search based on three search components-type 1 diabetes, artificial pancreas, and safety or design-and extended the discussion with our own experiences in developing artificial pancreas systems. The main hazards of the artificial pancreas are over- and under-dosing of insulin and, in case of a bi-hormonal system, of glucagon or other hormones. For each component of an artificial pancreas and for the complete system we identified safety issues related to these hazards and proposed control measures. Prerequisites that enable the control algorithms to provide safe closed-loop control are accurate and reliable input of glucose values, assured hormone delivery and an efficient user interface. In addition, the system configuration has important implications for safety, as close cooperation and data exchange between the different components is essential.
[Fibroblast growth factors and their effects in pancreas organogenesis].
Gnatenko, D A; Kopantzev, E P; Sverdlov, E D
2017-05-01
Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.
ARX/Arx is expressed in germ cells during spermatogenesis in both marsupial and mouse.
Yu, Hongshi; Pask, Andrew J; Hu, Yanqiu; Shaw, Geoff; Renfree, Marilyn B
2014-03-01
The X-linked aristaless gene, ARX, is essential for the development of the gonads, forebrain, olfactory bulb, pancreas, and skeletal muscle in mice and humans. Mutations cause neurological diseases, often accompanied by ambiguous genitalia. There are a disproportionately high number of testis and brain genes on the human and mouse X chromosomes. It is still unknown whether the X chromosome accrued these genes during its evolution or whether genes that find themselves on the X chromosome evolve such roles. ARX was originally autosomal in mammals and remains so in marsupials, whereas in eutherian mammals it translocated to the X chromosome. In this study, we examined autosomal ARX in tammars and compared it with the X-linked Arx in mice. We detected ARX mRNA in the neural cells of the forebrain, midbrain and hindbrain, and olfactory bulbs in developing tammars, consistent with the expression in mice. ARX was detected by RT-PCR and mRNA in situ hybridization in the developing tammar wallaby gonads of both sexes, suggestive of a role in sexual development as in mice. We also detected ARX/Arx mRNA in the adult testis in both tammars and mice, suggesting a potential novel role for ARX/Arx in spermiogenesis. ARX transcripts were predominantly observed in round spermatids. Arx mRNA localization distributions in the mouse adult testis suggest that it escaped meiotic sex chromosome inactivation during spermatogenesis. Our findings suggest that ARX in the therian mammal ancestor already played a role in male reproduction before it was recruited to the X chromosome in eutherians.
... costs will be covered. What is an artificial pancreas? A CGM is one part of the “artificial pancreas” systems that are beginning to reach people with ... has played an important role in developing artificial pancreas technology. An artificial pancreas replaces manual blood glucose ...
Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.
2014-01-01
The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008
Assessing the secretory capacity of pancreatic acinar cells.
Geron, Erez; Schejter, Eyal D; Shilo, Ben-Zion
2014-08-28
Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.
Kivilevitch, Zvi; Achiron, Reuven; Perlman, Sharon; Gilboa, Yinon
2017-10-01
The aim of the study was to assess the sonographic feasibility of measuring the fetal pancreas and its normal development throughout pregnancy. We conducted a cross-sectional prospective study between 19 and 36 weeks' gestation. The study included singleton pregnancies with normal pregnancy follow-up. The pancreas circumference was measured. The first 90 cases were tested to assess feasibility. Two hundred ninety-seven fetuses of nondiabetic mothers were recruited during a 3-year period. The overall satisfactory visualization rate was 61.6%. The intraobserver and interobserver variability had high interclass correlation coefficients of of 0.964 and 0.967, respectively. A cubic polynomial regression described best the correlation of pancreas circumference with gestational age (r = 0.744; P < .001) and significant correlations also with abdominal circumference and estimated fetal weight (Pearson r = 0.829 and 0.812, respectively; P < .001). Modeled pancreas circumference percentiles for each week of gestation were calculated. During the study period, we detected 2 cases with overgrowth syndrome and 1 case with an annular pancreas. In this study, we assessed the feasibility of sonography for measuring the fetal pancreas and established a normal reference range for the fetal pancreas circumference throughout pregnancy. This database can be helpful when investigating fetomaternal disorders that can involve its normal development. © 2017 by the American Institute of Ultrasound in Medicine.
Leal, Ana S.; Sporn, Michael B.; Pioli, Patricia A.; Liby, Karen T.
2016-01-01
Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-KrasG12D/+;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4–8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations. PMID:27659181
Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.
2015-01-01
Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179
Anti-Podocalyxin Monoclonal Antibody 47-mG2a Detects Lung Cancers by Immunohistochemistry.
Yamada, Shinji; Itai, Shunsuke; Kaneko, Mika K; Kato, Yukinari
2018-04-01
Lung cancer is one of the leading causes of cancer-related deaths in the world. Regardless of the advances in lung cancer treatments, the prognosis is still poor. Podocalyxin (PODXL) is a highly glycosylated type I transmembrane protein that is expressed in normal tissues, including the heart, pancreas, and breast. It is also found and used as a diagnostic marker in many cancers, such as renal, brain, breast, oral, and lung cancers. We previously developed specific and sensitive anti-PODXL monoclonal antibodies, PcMab-47 (mouse IgG 1 , kappa) and its mouse IgG 2a -type (47-mG 2a ), both of which were suitable for immunohistochemical analyses of oral cancers. In this study, we investigated the utility of PcMab-47 and 47-mG 2a for the immunohistochemical analyses of lung cancers. PcMab-47 stained 51/70 (72.9%) cases of lung cancer, whereas 47-mG 2a stained 59/70 (84.3%) cases, indicating that the latter antibody is more sensitive and is useful for detecting PODXL in lung cancers.
Protective Effects of Lithospermum erythrorhizon Against Cerulein-Induced Acute Pancreatitis.
Choi, Sun Bok; Bae, Gi-Sang; Jo, Il-Joo; Seo, Seung-Hee; Kim, Dong-Goo; Shin, Joon-Yeon; Hong, Seung-Heon; Choi, Byung-Min; Park, Sang-Hyun; Song, Ho-Joon; Park, Sung-Joo
2015-01-01
We aimed to evaluate the anti-inflammatory and inhibitory effects of Lithospermum erythrorhizon (LE) on cerulein-induced acute pancreatitis (AP) in a mouse model. Acute pancreatitis was induced via intraperitoneal injection of cerulein (50 μg/kg) every hour for 6 times. In the LE, water extract (100, 250, or 500 mg/kg) was administered intraperitoneally 1 hour before the first injection of cerulein. Six hours after AP, blood, the pancreas, and the lung were harvested for further examination. In addition, pancreatic acinar cells were isolated using a collagenase method, and then, we investigated the acinar cell viability and cytokine productions. Treatment with LE reduced pancreatic damage and AP-associated lung injury and attenuated the severity of AP, as evidenced by the reduction in neutrophil infiltration, serum amylase and lipase levels, trypsin activity, and proinflammatory cytokine expression. In addition, treatment with LE inhibited high mobility group box 1 expression in the pancreas during AP. In accordance with in vivo data, LE inhibited the cerulein-induced acinar cell death, cytokine productions, and high-mobility group box 1 expression. Furthermore, LE also inhibited the activation of p38 mitogen-activated protein kinases. These results suggest that LE plays a protective role during the development of AP by inhibiting the activation of p38.
Protective Effects of Lithospermum erythrorhizon Against Cerulein-Induced Acute Pancreatitis
Choi, Sun Bok; Bae, Gi-Sang; Jo, Il-Joo; Seo, Seung-Hee; Kim, Dong-Goo; Shin, Joon-Yeon; Hong, Seung-Heon; Choi, Byung-Min; Park, Sang-Hyun; Song, Ho-Joon; Park, Sung-Joo
2015-01-01
Objectives We aimed to evaluate the anti-inflammatory and inhibitory effects of Lithospermum erythrorhizon (LE) on cerulein-induced acute pancreatitis (AP) in a mouse model. Methods Acute pancreatitis was induced via intraperitoneal injection of cerulein (50 μg/kg) every hour for 6 times. In the LE, water extract (100, 250, or 500 mg/kg) was administered intraperitoneally 1 hour before the first injection of cerulein. Six hours after AP, blood, the pancreas, and the lung were harvested for further examination. In addition, pancreatic acinar cells were isolated using a collagenase method, and then, we investigated the acinar cell viability and cytokine productions. Results Treatment with LE reduced pancreatic damage and AP-associated lung injury and attenuated the severity of AP, as evidenced by the reduction in neutrophil infiltration, serum amylase and lipase levels, trypsin activity, and proinflammatory cytokine expression. In addition, treatment with LE inhibited high mobility group box 1 expression in the pancreas during AP. In accordance with in vivo data, LE inhibited the cerulein-induced acinar cell death, cytokine productions, and high-mobility group box 1 expression. Furthermore, LE also inhibited the activation of p38 mitogen-activated protein kinases. Conclusions These results suggest that LE plays a protective role during the development of AP by inhibiting the activation of p38. PMID:25102438
Nolte, Thomas; Brander-Weber, Patricia; Dangler, Charles; Deschl, Ulrich; Elwell, Michael R; Greaves, Peter; Hailey, Richard; Leach, Michael W; Pandiri, Arun R; Rogers, Arlin; Shackelford, Cynthia C; Spencer, Andrew; Tanaka, Takuji; Ward, Jerrold M
2016-01-01
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) project is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature and diagnostic criteria for nonproliferative and proliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and diagnostic criteria for classifying lesions in the digestive system including the salivary glands and the exocrine pancreas of laboratory rats and mice. Most lesions are illustrated by color photomicrographs. The standardized nomenclature, the diagnostic criteria, and the photomicrographs are also available electronically on the Internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and age related lesions as well as lesions induced by exposure to test items. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature and diagnostic criteria for the digestive system will decrease misunderstandings among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists.
Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro
2011-01-01
Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896
Jesnowski, R; Zubakov, Dmitri; Faissner, Ralf; Ringel, Jörg; Hoheisel, Jörg D; Lösel, Ralf; Schnölzer, Martina; Löhr, Matthias
2007-01-01
Abstract Pancreatic carcinoma has an extremely bad prognosis due to lack of early diagnostic markers and lack of effective therapeutic strategies. Recently, we have established an in vitro model recapitulating the first steps in the carcinogenesis of the pancreas. SV40 large T antigen-immortalized bovine pancreatic duct cells formed intrapancreatic adenocarcinoma tumors on k-rasmut transfection after orthotopic injection in the nude mouse pancreas. Here we identified genes and proteins differentially expressed in the course of malignant transformation using reciprocal suppression subtractive hybridization and 2D gel electrophoresis and mass spectrometry, respectively. We identified 34 differentially expressed genes, expressed sequence tags, and 15 unique proteins. Differential expression was verified for some of the genes or proteins in samples from pancreatic carcinoma. Among these genes and proteins, the majority had already been described either to be influenced by a mutated ras or to be differentially expressed in pancreatic adenocarcinoma, thus proving the feasibility of our model. Other genes and proteins (e.g., BBC1, GLTSCR2, and rhoGDIα), up to now, have not been implicated in pancreatic tumor development. Thus, we were able to establish an in vitro model of pancreatic carcinogenesis, which enabled us to identify genes and proteins differentially expressed during the early steps of malignant transformation. PMID:17356710
Nolte, Thomas; Brander-Weber, Patricia; Dangler, Charles; Deschl, Ulrich; Elwell, Michael R.; Greaves, Peter; Hailey, Richard; Leach, Michael W.; Pandiri, Arun R.; Rogers, Arlin; Shackelford, Cynthia C.; Spencer, Andrew; Tanaka, Takuji; Ward, Jerrold M.
2016-01-01
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) project is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature and diagnostic criteria for nonproliferative and proliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature and diagnostic criteria for classifying lesions in the digestive system including the salivary glands and the exocrine pancreas of laboratory rats and mice. Most lesions are illustrated by color photomicrographs. The standardized nomenclature, the diagnostic criteria, and the photomicrographs are also available electronically on the Internet (http://www.goreni.org/). Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous and age related lesions as well as lesions induced by exposure to test items. Relevant infectious and parasitic lesions are included as well. A widely accepted and utilized international harmonization of nomenclature and diagnostic criteria for the digestive system will decrease misunderstandings among regulatory and scientific research organizations in different countries and provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists. PMID:26973378
Tissue-specific deletion of c-Jun in the pancreas has limited effects on pancreas formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Kaoru; Miyatsuka, Takeshi; Tanaka, Ayako
2007-11-30
It is well known that activating protein-1 (AP-1) is involved in a variety of cellular functions such as proliferation, differentiation, apoptosis, and oncogenesis. AP-1 is a dimer complex consisting of different subunits, and c-Jun is known to be one of its major components. In addition, it has been shown that mice lacking c-Jun are embryonic lethal and that c-Jun is essential for liver and heart development. However, the role of c-Jun in the pancreas is not well known. The aim of this study was to examine the possible role of c-Jun in the pancreas. First, c-Jun was strongly expressed inmore » pancreatic duct-like structures at an embryonic stage, while a lower level of expression was observed in some part of the adult pancreas, implying that c-Jun might play a role during pancreas development. Second, to address this point, we generated pancreas-specific c-Jun knock-out mice (Ptf1a-Cre; c-Jun{sup flox/flox} mice) by crossing Ptf1a-Cre knock-in mice with c-Jun floxed mice. Ptf1a is a pancreatic transcription factor and its expression is confined to pancreatic stem/progenitor cells, which give rise to all three types of pancreatic tissue: endocrine, exocrine, and duct. Contrary to our expectation, however, there was no morphological difference in the pancreas between Ptf1a-Cre; c-Jun{sup flox/flox} and control mice. In addition, there was no difference in body weight, pancreas weight, and the expression of various pancreas-related factors (insulin, glucagon, cytokeratin, and amylase) between the two groups. Furthermore, there was no difference in glucose tolerance between Ptf1a-Cre; c-Jun{sup flox/flox} and control mice. Taken together, although we cannot exclude the possibility that c-Jun ablation is compensated by some unknown factors, c-Jun appears to be dispensable for pancreas development at least after ptf1a gene promoter is activated.« less
Zibari, Gazi B; Fallahzadeh, Mohammad Kazem; Hamidian Jahromi, Alireza; Zakhary, Joseph; Dies, David; Wellman, Greg; Singh, Neeraj; Shokouh-Amiri, Hosein
2014-01-01
The aim of this study is to report our six-year experience with portal-endocrine and gastric-exocrine drainage technique of pancreatic transplantation, which was first developed and implemented at our center in 2007. In this study, the outcomes of all patients at our center who had pancreas transplantation with portal-endocrine and gastric-exocrine drainage technique were evaluated. From October 2007 to November 2013, 38 patients had pancreas transplantation with this technique - 31 simultaneous kidney pancreas and seven pancreas alone. Median duration of follow-up was 3.8 years. One-, three-, and five-year patient and graft survival rates were 94%, 87%, 70% and 83%, 65%, 49%, respectively. For pancreas allograft dysfunction evaluation, 51 upper endoscopies were performed in 14 patients; donor duodenal biopsies were successfully obtained in 45 (88%). We detected nine episodes of acute rejection (eight patients) and seven episodes of cytomegalovirus (CMV) duodenitis (six patients). No patient developed any complication due to upper endoscopy. Portal-endocrine and gastric-exocrine drainage technique of pancreas transplantation provides lifelong easy access to the transplanted duodenum for evaluation of pancreatic allograft dysfunction.
Shawuti, Alimujiang; Miyaki, Takayoshi; Saito, Toshiyuki; Itoh, Masahiro
2009-11-01
To get the full understanding of the arterial distribution to the pancreas, the analysis of the distribution of the variety of monkey species would be helpful. In this study, we studied the layout of the pancreatic artery in anthropoids (1 gorilla, 3 chimpanzees and 2 white-handed gibbons), in catarrhine monkeys (1 hamadryas baboon, 2 anubid baboons, 10 savannah monkeys) and in platyrrhine monkeys (6 squirrel monkeys). The pancreas of the monkeys was supplied by the arteries originating from the celiac trunk and/or superior mesenteric artery. There were three patterns in the arterial distribution; (1) the celiac artery supplied the major area of the pancreas. (2) the superior mesenteric artery supplied the major area of the pancreas. (3) the celiac artery supplied the whole pancreas. The pattern of the arterial distribution to the monkey pancreas had a wide variety. The result would be helpful for the elucidation of the development of the vascular distribution in the pancreas.
Mouse Model of Human Hereditary Pancreatitis
2016-09-01
NUMBER Miklos Sahin-Toth 5e. TASK NUMBER E -Mail: miklos@bu.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...PERFORMING ORGANIZATION REPORT NUMBER Trustees of Boston University 85 E Newton St M-921 Boston MA 02118-2340 9. SPONSORING / MONITORING AGENCY NAME(S) AND...Histologically (H& E staining) the pancreas of 2-week old mice looks normal while at 3 weeks of age acini show a more disorganized architecture with acinar
Schulte, B A; Spicer, S S
1983-12-01
Mouse salivary glands and pancreases were stained with a battery of ten horseradish peroxidase-conjugated lectins. Lectin staining revealed striking differences in the structure of oligosaccharides of stored intracellular secretory glycoproteins and glycoconjugates associated with the surface of epithelial cells lining excretory ducts. The percentage of acinar cells containing terminal alpha-N-acetylgalactosamine residues varied greatly in submandibular glands of 30 male mice, but all submandibular acinar cells contained oligosaccharides with terminal sialic acid and penultimate beta-galactose residues. The last named dimer was abundant in secretory glycoprotein of all mucous acinar cells in murine sublingual glands and an additional 20-50% of these cells in all glands contained terminal N-acetylglucosamine residues. In contrast, terminal alpha-N-acetylgalactosamine was abundant in sublingual serous demilune secretions. Serous acinar cells in the exorbital lacrimal gland, posterior lingual gland, parotid gland and pancreas exhibited a staining pattern unique to each organ. In contrast, the apical cytoplasm and surface of striated duct epithelial cells in the submandibular, sublingual, parotid and exorbital lacrimal gland stained similarly. A comparison of staining with conjugated lectins reported biochemically to have very similar carbohydrate binding specificity has revealed some remarkable differences in their reactivity, suggesting different binding specificity for the same terminal sugars having different glycosidic linkages or with different penultimate sugar residues.
Functional Connectivity in Islets of Langerhans from Mouse Pancreas Tissue Slices
Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Perc, Matjaž; Marhl, Marko; Rupnik, Marjan Slak; Korošak, Dean
2013-01-01
We propose a network representation of electrically coupled beta cells in islets of Langerhans. Beta cells are functionally connected on the basis of correlations between calcium dynamics of individual cells, obtained by means of confocal laser-scanning calcium imaging in islets from acute mouse pancreas tissue slices. Obtained functional networks are analyzed in the light of known structural and physiological properties of islets. Focusing on the temporal evolution of the network under stimulation with glucose, we show that the dynamics are more correlated under stimulation than under non-stimulated conditions and that the highest overall correlation, largely independent of Euclidean distances between cells, is observed in the activation and deactivation phases when cells are driven by the external stimulus. Moreover, we find that the range of interactions in networks during activity shows a clear dependence on the Euclidean distance, lending support to previous observations that beta cells are synchronized via calcium waves spreading throughout islets. Most interestingly, the functional connectivity patterns between beta cells exhibit small-world properties, suggesting that beta cells do not form a homogeneous geometric network but are connected in a functionally more efficient way. Presented results provide support for the existing knowledge of beta cell physiology from a network perspective and shed important new light on the functional organization of beta cell syncitia whose structural topology is probably not as trivial as believed so far. PMID:23468610
Lhoste, E F; Aprahamian, M; Balboni, G; Damgé, C
1989-01-01
The present work studied the effect of chronic bombesin on the mouse pancreas and analyzed whether or not this effect was direct. Bombesin administered s.c. 3 times daily for 4 days at various concentrations (0.1, 1, 10, 20 micrograms/kg b. wt.) induced pancreatic growth in a dose-dependent manner. This growth was characterized by an increase in pancreatic weight, its protein and RNA contents suggesting cellular hypertrophy. Pancreatic enzyme content was also increased, especially for amylase (14-fold) and at a lesser degree for chymotrypsin and lipase (2.5-fold). The DNA content of the gland increased significantly after a 1 microgram/kg bombesin treatment suggesting hyperplasia. [3H]thymidine incorporation into DNA increased slightly from 24 h after the first bombesin injection and more obviously at 72 and 96 h indicating DNA synthesis. To determine the direct effect of bombesin on pancreatic acinar cell growth cells were cultured as monolayers on collagen gels in media lacking added hormones and containing 2.5% FBS with or without bombesin (1 microM-1 nM) or caerulein (10 nM). [3H]thymidine incorporation into DNA was increased by caerulein (10 nM) and bombesin (100 nM and 1 microM). Therefore, it is concluded that bombesin is a pancreaticotrophic peptide in mice. Moreover, it is suggested that this effect occurs directly on pancreatic cells.
Kishikawa, Takahiro; Otsuka, Motoyuki; Suzuki, Tatsunori; Seimiya, Takahiro; Sekiba, Kazuma; Ishibashi, Rei; Tanaka, Eri; Ohno, Motoko; Yamagami, Mari; Koike, Kazuhiko
2018-05-10
Highly repetitive tandem arrays such as satellite sequences in the centromeric and pericentromeric regions of chromosomes, which were previously considered to be silent, are actively transcribed in various biological processes, including cancers. In the pancreas, this aberrant expression occurs even in Kras-mutated pancreatic intraepithelial neoplasia (PanIN) tissues, which are precancerous lesions. To determine the biological role of satellite RNAs in carcinogenesis in vivo , we constructed mouse major satellite (MajSAT) RNA-expressing transgenic mice. However, these transgenic mice did not show spontaneous malignant tumor formation under normal breeding. Importantly, however, DNA damage was increased in pancreatic tissues induced by caerulein treatment or high-fat diet, which may be due to impaired nuclear localization of Y-Box Binding Protein 1 (YBX1), a component of the DNA damage repair machinery. In addition, when crossed with pancreas-specific Kras-mutant mice, MajSAT RNA expression resulted in an earlier increase in PanIN formation. These results suggest that aberrant MajSAT RNA expression accelerates oncogenesis by increasing the probability of a second driver mutation, thus accelerating cells to exit from the breakthrough phase to the expansion phase. Implications: Aberrant expression of satellite RNAs accelerates oncogenesis through a mechanism involving increased DNA damage. Mol Cancer Res; 1-8. ©2018 AACR. ©2018 American Association for Cancer Research.
De novo malignancy after pancreas transplantation in Japan.
Tomimaru, Y; Ito, T; Marubashi, S; Kawamoto, K; Tomokuni, A; Asaoka, T; Wada, H; Eguchi, H; Mori, M; Doki, Y; Nagano, H
2015-04-01
Long-term immunosuppression is associated with an increased risk of cancer. Especially, the immunosuppression in pancreas transplantation is more intensive than that in other organ transplantation because of its strong immunogenicity. Therefore, it suggests that the risk of post-transplant de novo malignancy might increase in pancreas transplantation. However, there have been few studies of de novo malignancy after pancreas transplantation. The aim of this study was to analyze the incidence of de novo malignancy after pancreas transplantation in Japan. Post-transplant patients with de novo malignancy were surveyed and characterized in Japan. Among 107 cases receiving pancreas transplantation in Japan between 2001 and 2010, de novo malignancy developed in 9 cases (8.4%): post-transplant lymphoproliferative disorders in 6 cases, colon cancer in 1 case, renal cancer in 1 case, and brain tumor in 1 case. We clarified the incidence of de novo malignancy after pancreas transplantation in Japan. Copyright © 2015 Elsevier Inc. All rights reserved.
Deng, Mi; Chen, Pei-Chao; Xie, Sisi; Zhao, Junqiong; Gong, Lili; Liu, Jinping; Zhang, Lan; Sun, Shuming; Liu, Jiao; Ma, Haili; Batra, Surinder K; Li, David Wan-Cheng
2010-01-01
The small heat shock protein alphaA-crystallin is a structural protein in the ocular lens. In addition, recent studies have also revealed that it is a molecular chaperone, an autokinase and a strong anti-apoptotic regulator. Besides its lenticular distribution, a previous study demonstrates that a detectable level of alphaA-crystallin is found in other tissues including thymus and spleen. In the present study, we have re-examined the distribution of alphaA-crystallin in various normal human and mouse tissues and found that the normal pancreas expresses a moderate level of alphaA-crystallin. Moreover, alphaA-crystallin is found significantly downregulated in 60 cases of pancreatic carcinoma of different types than it is in 11 normal human pancreas samples. In addition, we demonstrate that alphaA-crystallin can enhance the activity of the activating protein-1 (AP-1) through modulating the function of the MAP kinase, and also upregulates components of TGFbeta pathway. Finally, expression of alphaA-crystallin in a pancreatic cancer cell line, MiaPaCa, results in retarded cell migration. Together, these results suggest that alphaA-crystallin seems to negatively regulate pancreatic carcinogenesis. Copyright 2010 Elsevier B.V. All rights reserved.
Skoudy, Anouchka; Rovira, Meritxell; Savatier, Pierre; Martin, Franz; León-Quinto, Trinidad; Soria, Bernat; Real, Francisco X
2004-01-01
Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells. By using conditioned media of cultured foetal pancreatic rudiments, we demonstrate that ES cells can respond in vitro to signalling pathways involved in exocrine development and differentiation. In particular, modulation of the hedgehog, transforming growth factor beta, retinoid, and fibroblast growth factor pathways in ES cell-derived embryoid bodies (EB) resulted in increased levels of transcripts encoding pancreatic transcription factors and cytodifferentiation markers, as demonstrated by RT-PCR. In EB undergoing spontaneous differentiation, expression of the majority of the acinar genes (i.e. amylase, carboxypeptidase A and elastase) was induced after the expression of endocrine genes, as occurs in vivo during development. These data indicate that ES cells can undergo exocrine pancreatic differentiation with a kinetic pattern of expression reminiscent of pancreas development in vivo and that ES cells can be coaxed to express an acinar phenotype by activation of signalling pathways known to play a role in pancreatic development and differentiation. PMID:14733613
Immunogenicity of Anti-HLA Antibodies in Pancreas and Islet Transplantation.
Chaigne, Benjamin; Geneugelijk, Kirsten; Bédat, Benoît; Ahmed, Mohamed Alibashe; Hönger, Gideon; De Seigneux, Sophie; Demuylder-Mischler, Sandrine; Berney, Thierry; Spierings, Eric; Ferrari-Lacraz, Sylvie; Villard, Jean
2016-11-01
The aim of the current study was to characterize the anti-HLA antibodies before and after pancreatic islet or pancreas transplantation. We assessed the risk of anti-donor-specific antibody (DSA) sensitization in a single-center, retrospective clinical study at Geneva University Hospital. Data regarding clinical characteristics, graft outcome, HLA mismatch, donor HLA immunogenicity, and anti-HLA antibody characteristics were collected. Between January 2008 and July 2014, 18 patients received islet transplants, and 26 patients received a pancreas transplant. Eleven out of 18 patients (61.1%) in the islet group and 12 out of 26 patients (46.2%) in the pancreas group had anti-HLA antibodies. Six patients (33.3%) developed DSAs against HLA of the islets, and 10 patients (38.4%) developed DSAs against HLA of the pancreas. Most of the DSAs were at a low level. Several parameters such as gender, number of times cells were transplanted, HLA mismatch, eplet mismatch and PIRCHE-II numbers, rejection, and infection were analyzed. Only the number of PIRCHE-II was associated with the development of anti-HLA class II de novo DSAs. Overall, the development of de novo DSAs did not influence graft survival as estimated by insulin independence. Our results indicated that pretransplant DSAs at low levels do not restrict islet or pancreas transplantation [especially islet transplantation (27.8% vs. 15.4.%)]. De novo DSAs do occur at a similar rate in both pancreas and islet transplant recipients (mainly of class II), and the immunogenicity of donor HLA is a parameter that should be taken into consideration. When combined with an immunosuppressive regimen and close follow-up, development of low levels of DSAs was not found to result in reduced graft survival or graft function in the current study.
Dawson, David W; Hertzer, Kathleen; Moro, Aune; Donald, Graham; Chang, Hui-Hua; Go, Vay Liang; Pandol, Steven J; Lugea, Aurelia; Gukovskaya, Anna S; Li, Gang; Hines, Oscar J; Rozengurt, Enrique; Eibl, Guido
2013-10-01
There is epidemiologic evidence that obesity increases the risk of cancers. Several underlying mechanisms, including inflammation and insulin resistance, are proposed. However, the driving mechanisms in pancreatic cancer are poorly understood. The goal of the present study was to develop a model of diet-induced obesity and pancreatic cancer development in a state-of-the-art mouse model, which resembles important clinical features of human obesity, for example, weight gain and metabolic disturbances. Offspring of Pdx-1-Cre and LSL-KrasG12D mice were allocated to either a high-fat, high-calorie diet (HFCD; ∼4,535 kcal/kg; 40% of calories from fats) or control diet (∼3,725 kcal/kg; 12% of calories from fats) for 3 months. Compared with control animals, mice fed with the HFCD significantly gained more weight and developed hyperinsulinemia, hyperglycemia, hyperleptinemia, and elevated levels of insulin-like growth factor I (IGF-I). The pancreas of HFCD-fed animals showed robust signs of inflammation with increased numbers of infiltrating inflammatory cells (macrophages and T cells), elevated levels of several cytokines and chemokines, increased stromal fibrosis, and more advanced PanIN lesions. Our results show that a diet high in fats and calories leads to obesity and metabolic disturbances similar to humans and accelerates early pancreatic neoplasia in the conditional KrasG12D mouse model. This model and findings will provide the basis for more robust studies attempting to unravel the mechanisms underlying the cancer-promoting properties of obesity, as well as to evaluate dietary- and chemopreventive strategies targeting obesity-associated pancreatic cancer development.
Identification of embryonic pancreatic genes using Xenopus DNA microarrays.
Hayata, Tadayoshi; Blitz, Ira L; Iwata, Nahoko; Cho, Ken W Y
2009-06-01
The pancreas is both an exocrine and endocrine endodermal organ involved in digestion and glucose homeostasis. During embryogenesis, the anlagen of the pancreas arise from dorsal and ventral evaginations of the foregut that later fuse to form a single organ. To better understand the molecular genetics of early pancreas development, we sought to isolate markers that are uniquely expressed in this tissue. Microarray analysis was performed comparing dissected pancreatic buds, liver buds, and the stomach region of tadpole stage Xenopus embryos. A total of 912 genes were found to be differentially expressed between these organs during early stages of organogenesis. K-means clustering analysis predicted 120 of these genes to be specifically enriched in the pancreas. Of these, we report on the novel expression patterns of 24 genes. Our analyses implicate the involvement of previously unsuspected signaling pathways during early pancreas development. Developmental Dynamics 238:1455-1466, 2009. (c) 2009 Wiley-Liss, Inc.
Identification of Annexin A4 as a hepatopancreas factor involved in liver cell survival
Zhang, Danhua; Golubkov, Vladislav S.; Han, Wenlong; Correa, Ricardo G.; Zhou, Ying; Lee, Sunyoung; Strongin, Alex Y.; Dong, P. Duc Si
2014-01-01
To gain insight into liver and pancreas development, we investigated the target of 2F11, a monoclonal antibody of unknown antigen, widely used in zebrafish studies for labeling hepatopancreatic ducts. Utilizing mass spectrometry and in vivo assays, we determined the molecular target of 2F11 to be Annexin A4 (Anxa4), a calcium binding protein. We further found that in both zebrafish and mouse endoderm, Anxa4 is broadly expressed in the developing liver and pancreas, and later becomes more restricted to the hepatopancreatic ducts and pancreatic islets, including the insulin producing β-cells. Although Anxa4 is a known target of several monogenic diabetes genes and its elevated expression is associated with chemoresistance in malignancy, its in vivo role is largely unexplored. Knockdown of Anxa4 in zebrafish leads to elevated expression of caspase 8 and Δ113p53, and liver bud specific activation of Caspase 3 and apoptosis. Mosaic knockdown reveal that Anxa4 is required cell-autonomously in the liver bud for cell survival. This finding is further corroborated with mosaic anxa4 knockout studies using the CRISPR/Cas9 system. Collectively, we identify Anxa4 as a new, evolutionarily conserved hepatopancreatic factor that is required in zebrafish for liver progenitor viability, through inhibition of the extrinsic apoptotic pathway. A role for Anxa4 in cell survival may have implications for the mechanism of diabetic β-cell apoptosis and cancer cell chemoresistance. PMID:25176043
Loganathan, Gopalakrishnan; Subhashree, Venugopal; Breite, Andrew G; Tucker, William W; Narayanan, Siddharth; Dhanasekaran, Maheswaran; Mokshagundam, SriPrakash; Green, Michael L; Hughes, Michael G; Williams, Stuart K; Dwulet, Francis E; McCarthy, Robert C; Balamurugan, Appakalai N
2018-02-01
A high number of human islets can be isolated by using modern purified tissue dissociation enzymes; however, this requires the use of >20 Wunsch units (WU)/g of pancreas for digestion. Attempts to reduce this dose have resulted in pancreas underdigestion and poor islet recovery but improved islet function. In this study, we achieved a high number of functional islets using a low dose of recombinant collagenase enzyme mixture (RCEM-1200 WU rC2 and 10 million collagen-degrading activity [CDA] U of rC1 containing about 209 mg of collagenase to digest a 100-g pancreas). The collagenase dose used in these isolations is about 42% of the natural collagenase enzyme mixture (NCEM) dose commonly used to digest a 100-g pancreas. Low-dose RCEM was efficient in digesting entire pancreases to obtain higher yield (5535 ± 830 and 2582 ± 925 islet equivalent/g, P < .05) and less undigested tissue (16.7 ± 5% and 37.8 ± 3%, P < .05) compared with low-dose NCEM (12WU/g). Additionally, low-dose RCEM islets retained better morphology (confirmed with scanning electron microscopy) and higher in vitro basal insulin release (2391 ± 1342 and 1778 ± 978 μU/mL; P < .05) compared with standard-dose NCEM. Nude mouse bioassay demonstrated better islet function for low-dose RCEM (area under the curve [AUC] 24 968) compared with low-dose (AUC-38 225) or standard-dose NCEM (AUC-38 685), P < .05. This is the first report indicating that islet function can be improved by using low-dose rC1rC2 (RCEM). © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.
2014-01-01
Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904
Sheth, Sunil G.; Conwell, Darwin L.; Whitcomb, David C.; Alsante, Matthew; Anderson, Michelle A.; Barkin, Jamie; Brand, Randall; Cote, Gregory A.; Freedman, Steven D.; Gelrud, Andres; Gorelick, Fred; Lee, Linda S.; Morgan, Katherine; Pandol, Stephen; Singh, Vikesh K.; Yadav, Dhiraj; Mel Wilcox, C.; Hart, Phil A.
2017-01-01
Chronic pancreatitis (CP) is a progressive inflammatory disease, which leads to loss of pancreatic function and other disease-related morbidities. A group of academic physicians and scientists developed comprehensive guidance statements regarding the management of CP that include its epidemiology, diagnosis, medical treatment, surgical treatment, and screening. The statements were developed through literature review, deliberation, and consensus opinion. These statements were ultimately used to develop a conceptual framework for the multidisciplinary management of chronic pancreatitis referred to as an academic pancreas center of excellence (APCOE). PMID:28268158
MiR-495 and miR-218 regulate the expression of the Onecut transcription factors HNF-6 and OC-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simion, Alexandru; Laudadio, Ilaria; Prevot, Pierre-Paul
2010-01-01
MicroRNAs are small, non-coding RNAs that posttranscriptionally regulate gene expression mainly by binding to the 3'UTR of their target mRNAs. Recent data revealed that microRNAs have an important role in pancreas and liver development and physiology. Using cloning and microarray profiling approaches, we show that a unique repertoire of microRNAs is expressed at the onset of liver and pancreas organogenesis, and in pancreas and liver at key stages of cell fate determination. Among the microRNAs that are expressed at these stages, miR-495 and miR-218 were predicted to, respectively, target the Onecut (OC) transcription factors Hepatocyte Nuclear Factor-6 (HNF-6/OC-1) and OC-2,more » two important regulators of liver and pancreas development. MiR-495 and miR-218 are dynamically expressed in developing liver and pancreas, and by transient transfection, we show that they target HNF-6 and OC-2 3'UTRs. Moreover, when overexpressed in cultured cells, miR-495 and miR-218 decrease the endogenous levels of HNF-6 and OC-2 mRNA. These results indicate that the expression of regulators of liver and pancreas development is modulated by microRNAs. They also suggest a developmental role for miR-495 and miR-218.« less
Global expression analysis of gene regulatory pathways during endocrine pancreatic development.
Gu, Guoqiang; Wells, James M; Dombkowski, David; Preffer, Fred; Aronow, Bruce; Melton, Douglas A
2004-01-01
To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.
Pancreas preservation for pancreas and islet transplantation
Iwanaga, Yasuhiro; Sutherland, David E.R.; Harmon, James V.; Papas, Klearchos K.
2010-01-01
Purpose of review To summarize advances and limitations in pancreas procurement and preservation for pancreas and islet transplantation, and review advances in islet protection and preservation. Recent findings Pancreases procured after cardiac death, with in-situ regional organ cooling, have been successfully used for islet transplantation. Colloid-free Celsior and histidine-tryptophan-ketoglutarate preservation solutions are comparable to University of Wisconsin solution when used for cold storage before pancreas transplantation. Colloid-free preservation solutions are inferior to University of Wisconsin solution for pancreas preservation prior to islet isolation and transplantation. Clinical reports on pancreas and islet transplants suggest that the two-layer method may not offer significant benefits over cold storage with the University of Wisconsin solution: improved oxygenation may depend on the graft size; benefits in experimental models may not translate to human organs. Improvements in islet yield and quality occurred from pancreases treated with inhibitors of stress-induced apoptosis during procurement, storage, isolation or culture. Pancreas perfusion may be desirable before islet isolation and transplantation and may improve islet yields and quality. Methods for real-time, noninvasive assessment of pancreas quality during preservation have been implemented and objective islet potency assays have been developed and validated. These innovations should contribute to objective evaluation and establishment of improved pancreas preservation and islet isolation strategies. Summary Cold storage may be adequate for preservation before pancreas transplants, but insufficient when pancreases are processed for islets or when expanded donors are used. Supplementation of cold storage solutions with cytoprotective agents and perfusion may improve pancreas and islet transplant outcomes. PMID:18685343
Farkona, Sofia; Soosaipillai, Antoninus; Filippou, Panagiota; Korbakis, Dimitrios; Serra, Stefano; Rückert, Felix; Diamandis, Eleftherios P; Blasutig, Ivan M
2017-12-01
CUB and zona pellucida-like domain-containing protein 1 (CUZD1) was identified as a pancreas-specific protein and was proposed as a candidate biomarker for pancreatic related disorders. CUZD1 protein levels in tissues and biological fluids have not been extensively examined. The purpose of the present study was to generate specific antibodies targeting CUZD1 to assess CUZD1 expression within tissues and biological fluids. Mouse monoclonal antibodies against CUZD1 were generated and used to perform immunohistochemical analyses and to develop a sensitive and specific enzyme-linked immunosorbent assay (ELISA). CUZD1 protein expression was assessed in various human tissue extracts and biological fluids and in gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant protein. Immunohistochemical staining of CUZD1 in pancreatic tissue showed that the protein is localized to the acinar cells and the lumen of the acini. Western blot analysis detected the protein in pancreatic tissue extract and pancreatic juice. The newly developed ELISA measured CUZD1 in high levels in pancreas and in much lower but detectable levels in several other tissues. In the biological fluids tested, CUZD1 expression was detected exclusively in pancreatic juice. The analysis of gel filtration chromatography-derived fractions of pancreatic tissue extract, pancreatic juice and recombinant CUZD1 suggested that the protein exists in high molecular weight protein complexes. This study describes the development of tools targeting CUZD1 protein, its tissue expression pattern and levels in several biological fluids. These new tools will facilitate future investigations aiming to delineate the role of CUZD1 in physiology and pathobiology. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model.
Koopman, F A; Vosters, J L; Roescher, N; Broekstra, N; Tak, P P; Vervoordeldonk, M J
2015-10-01
Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's syndrome and type 1 diabetes. The alpha-7 nicotinic acetylcholine receptor (α7nAChR) was stimulated with AR-R17779 or nicotine in NOD mice. In a second study, unilateral cervical vagotomy was performed. α7nAChR expression, focus scores, and salivary flow were evaluated in salivary glands (SG) and insulitis score in the pancreas. Cytokines were measured in serum and SG. α7nAChR was expressed on myoepithelial cells in SG. Monocyte chemotactic protein-1 levels were reduced in SG after AR-R17779 treatment and tumor necrosis factor production was increased in the SG of the vagotomy group compared to controls. Focus score and salivary flow were unaffected. NOD mice developed diabetes more rapidly after vagotomy, but at completion of the study there were no statistically significant differences in number of mice that developed diabetes or in insulitis scores. Intervention of the CAP in NOD mice leads to minimal changes in inflammatory cytokines, but did not affect overall inflammation and function of SG or development of diabetes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorek, Daniel L.J., E-mail: dthorek1@jhmi.edu; Kramer, Robin M.; Chen, Qing
2015-10-01
Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Micemore » could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.« less
Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy.
Yan, Ziying; Stewart, Zoe A; Sinn, Patrick L; Olsen, John C; Hu, Jim; McCray, Paul B; Engelhardt, John F
2015-03-01
Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies.
Scavuzzo, Marissa A; Teaw, Jessica; Yang, Diane; Borowiak, Malgorzata
2018-06-02
The pancreas is a complex organ composed of many different cell types that work together to regulate blood glucose homeostasis and digestion. These cell types include enzyme-secreting acinar cells, an arborized ductal system responsible for the transportation of enzymes to the gut, and hormone-producing endocrine cells. Endocrine beta-cells are the sole cell type in the body that produce insulin to lower blood glucose levels. Diabetes, a disease characterized by a loss or the dysfunction of beta-cells, is reaching epidemic proportions. Thus, it is essential to establish protocols to investigate beta-cell development that can be used for screening purposes to derive the drug and cell-based therapeutics. While the experimental investigation of mouse development is essential, in vivo studies are laborious and time-consuming. Cultured cells provide a more convenient platform for screening; however, they are unable to maintain the cellular diversity, architectural organization, and cellular interactions found in vivo. Thus, it is essential to develop new tools to investigate pancreatic organogenesis and physiology. Pancreatic epithelial cells develop in the close association with mesenchyme from the onset of organogenesis as cells organize and differentiate into the complex, physiologically competent adult organ. The pancreatic mesenchyme provides important signals for the endocrine development, many of which are not well understood yet, thus difficult to recapitulate during the in vitro culture. Here, we describe a protocol to culture three-dimensional, cellular complex mouse organoids that retain mesenchyme, termed pancreatoids. The e10.5 murine pancreatic bud is dissected, dissociated, and cultured in a scaffold-free environment. These floating cells self-assemble with mesenchyme enveloping the developing pancreatoid and a robust number of endocrine beta-cells developing along with the acinar and the duct cells. This system can be used to study the cell fate determination, structural organization, and morphogenesis, cell-cell interactions during organogenesis, or for the drug, small molecule, or genetic screening.
Exploring the metabolic syndrome: Nonalcoholic fatty pancreas disease
Catanzaro, Roberto; Cuffari, Biagio; Italia, Angelo; Marotta, Francesco
2016-01-01
After the first description of fatty pancreas in 1933, the effects of pancreatic steatosis have been poorly investigated, compared with that of the liver. However, the interest of research is increasing. Fat accumulation, associated with obesity and the metabolic syndrome (MetS), has been defined as “fatty infiltration” or “nonalcoholic fatty pancreas disease” (NAFPD). The term “fatty replacement” describes a distinct phenomenon characterized by death of acinar cells and replacement by adipose tissue. Risk factors for developing NAFPD include obesity, increasing age, male sex, hypertension, dyslipidemia, alcohol and hyperferritinemia. Increasing evidence support the role of pancreatic fat in the development of type 2 diabetes mellitus, MetS, atherosclerosis, severe acute pancreatitis and even pancreatic cancer. Evidence exists that fatty pancreas could be used as the initial indicator of “ectopic fat deposition”, which is a key element of nonalcoholic fatty liver disease and/or MetS. Moreover, in patients with fatty pancreas, pancreaticoduodenectomy is associated with an increased risk of intraoperative blood loss and post-operative pancreatic fistula. PMID:27678349
Fléjou, J F; Potet, F; Molas, G; Bernades, P; Amouyal, P; Fékété, F
1993-01-01
Ten patients in whom cystic dystrophy developed in a heterotopic pancreas of the duodenal (nine patients) or gastric (one patient) wall are reported. All were young or middle aged white men, only two of whom were alcoholic. The symptoms were caused by intestinal or biliary stenosis, or both, secondary to the inflammation and fibrosis. Only endosonography provided strong evidence for the diagnosis in three patients. All patients underwent surgery: a pancreaticoduodenectomy was performed in eight patients. The surgical specimen showed cystic lesions of the gut wall, occurring in inflammatory and fibrous heterotopic pancreatic tissue. The pancreas proper was normal in all patients. It is suggested that cystic dystrophy is an uncommon and serious complication of heterotopic pancreas. Similar cases associated with chronic pancreatitis of the pancreas have been observed and it is suggested that this process could be responsible for some of the chronic pancreatitis encountered in young, non-alcoholic patients. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8097180
Nam, Hyeyoung; Wang, Chia-Yu; Zhang, Lin; Zhang, Wei; Hojyo, Shintaro; Fukada, Toshiyuki; Knutson, Mitchell D.
2013-01-01
The liver, pancreas, and heart are particularly susceptible to iron-related disorders. These tissues take up plasma iron from transferrin or non-transferrin-bound iron, which appears during iron overload. Here, we assessed the effect of iron status on the levels of the transmembrane transporters, ZRT/IRT-like protein 14 and divalent metal-ion transporter-1, which have both been implicated in transferrin- and non-transferrin-bound iron uptake. Weanling male rats (n=6/group) were fed an iron-deficient, iron-adequate, or iron-overloaded diet for 3 weeks. ZRT/IRT-like protein 14, divalent metal-ion transporter-1 protein and mRNA levels in liver, pancreas, and heart were determined by using immunoblotting and quantitative reverse transcriptase polymerase chain reaction analysis. Confocal immunofluorescence microscopy was used to localize ZRT/IRT-like protein 14 in the liver and pancreas. ZRT/IRT-like protein 14 and divalent metal-ion transporter-1 protein levels were also determined in hypotransferrinemic mice with genetic iron overload. Hepatic ZRT/IRT-like protein 14 levels were found to be 100% higher in iron-loaded rats than in iron-adequate controls. By contrast, hepatic divalent metal-ion transporter-1 protein levels were 70% lower in iron-overloaded animals and nearly 3-fold higher in iron-deficient ones. In the pancreas, ZRT/IRT-like protein 14 levels were 50% higher in iron-overloaded rats, and in the heart, divalent metal-ion transporter-1 protein levels were 4-fold higher in iron-deficient animals. At the mRNA level, ZRT/IRT-like protein 14 expression did not vary with iron status, whereas divalent metal-ion transporter-1 expression was found to be elevated in iron-deficient livers. Immunofluorescence staining localized ZRT/IRT-like protein 14 to the basolateral membrane of hepatocytes and to acinar cells of the pancreas. Hepatic ZRT/IRT-like protein 14, but not divalent metal-ion transporter-1, protein levels were elevated in iron-loaded hypotransferrinemic mice. In conclusion, ZRT/IRT-like protein 14 protein levels are up-regulated in iron-loaded rat liver and pancreas and in hypotransferrinemic mouse liver. Divalent metal-ion transporter-1 protein levels are down-regulated in iron-loaded rat liver, and up-regulated in iron-deficient liver and heart. Our results provide insight into the potential contributions of these transporters to tissue iron uptake during iron deficiency and overload. PMID:23349308
Kaneko, Mika K; Itai, Shunsuke; Yamada, Shinji; Kato, Yukinari
2018-04-09
Esophageal cancer is one of the highly malignant cancers. It comprises two of the most common histological tumor types: squamous cell carcinoma (SCC) and adenocarcinoma. SCC accounts for about 90% of esophageal cancers. Despite developments in treatment strategies, the prognosis and survival rate remain poor. Podocalyxin (PODXL) is a highly glycosylated type-I transmembrane protein. It is expressed in normal tissues such as kidney, heart, breast, and pancreas. Upregulation of PODXL correlates with tumor progression, invasion, and metastasis. Therefore, this glycoprotein could be a potential biomarker for predicting the prognosis of some cancers, for instance, brain, colorectal, oral, lung, bladder, prostate, and ovarian cancers. We previously developed a specific and sensitive anti-PODXL monoclonal antibody (mAb), PcMab-47 (mouse IgG 1 , kappa) and its mouse IgG 2a -type (47-mG 2a ). We showed their utility in immunohistochemical analysis of oral cancers. Herein, we demonstrate that PcMab-47 and 47-mG 2a can also be used to detect esophageal squamous cell carcinoma (ESCC) with this technique. These two antibodies, respectively, stained 123/130 (94.6%) and 127/130 (97.7%) ESCC cases, indicating that they can detect PODXL with high sensitivity in this carcinoma. Of more than 3+ cases, 47-mG 2a was more effective than PcMab-47, respectively, staining 56/127 (44.1%) and 41/123 (33.3%). Therefore, 47-mG 2a can be used for the detection of PODXL in ESCC using immunohistochemical analysis.
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
Cebola, Inês; Rodríguez-Seguí, Santiago A; Cho, Candy H-H; Bessa, José; Rovira, Meritxell; Luengo, Mario; Chhatriwala, Mariya; Berry, Andrew; Ponsa-Cobas, Joan; Maestro, Miguel Angel; Jennings, Rachel E; Pasquali, Lorenzo; Morán, Ignasi; Castro, Natalia; Hanley, Neil A; Gomez-Skarmeta, Jose Luis; Vallier, Ludovic; Ferrer, Jorge
2015-05-01
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.
Insulin Patch Pumps: Their Development and Future in Closed-Loop Systems
Bohannon, Nancy J.V.
2010-01-01
Abstract Steady progress is being made toward the development of a so-called “artificial pancreas,” which may ultimately be a fully automated, closed-loop, glucose control system comprising a continuous glucose monitor, an insulin pump, and a controller. The controller will use individualized algorithms to direct delivery of insulin without user input. A major factor propelling artificial pancreas development is the substantial incidence of—and attendant patient, parental, and physician concerns about—hypoglycemia and extreme hyperglycemia associated with current means of insulin delivery for type 1 diabetes mellitus (T1DM). A successful fully automated artificial pancreas would likely reduce the frequency of and anxiety about hypoglycemia and marked hyperglycemia. Patch-pump systems (“patch pumps”) are likely to be used increasingly in the control of T1DM and may be incorporated into the artificial pancreas systems of tomorrow. Patch pumps are free of tubing, small, lightweight, and unobtrusive. This article describes features of patch pumps that have been approved for U.S. marketing or are under development. Included in the review is an introduction to control algorithms driving insulin delivery, particularly the two major types: proportional integrative derivative and model predictive control. The use of advanced algorithms in the clinical development of closed-loop systems is reviewed along with projected next steps in artificial pancreas development. PMID:20515308
Diabetes and exocrine pancreatic insufficiency in E2F1/E2F2 double-mutant mice.
Iglesias, Ainhoa; Murga, Matilde; Laresgoiti, Usua; Skoudy, Anouchka; Bernales, Irantzu; Fullaondo, Asier; Moreno, Bernardino; Lloreta, José; Field, Seth J; Real, Francisco X; Zubiaga, Ana M
2004-05-01
E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue. Mutant pancreatic cells exhibit increased rates of DNA replication but also of apoptosis, resulting in severe pancreatic atrophy. The expression of genes involved in DNA replication and cell cycle control was upregulated in the E2F1/E2F2 compound-mutant pancreas, suggesting that their expression is repressed by E2F1/E2F2 activities and that the inappropriate cell cycle found in the mutant pancreas is likely the result of the deregulated expression of these genes. Interestingly, the expression of ductal cell and adipocyte differentiation marker genes was also upregulated, whereas expression of pancreatic cell marker genes were downregulated. These results suggest that E2F1/E2F2 activity negatively controls growth of mature pancreatic cells and is necessary for the maintenance of differentiated pancreatic phenotypes in the adult.
May, Randal; Sureban, Sripathi M; Lightfoot, Stan A; Hoskins, Aimee B; Brackett, Daniel J; Postier, Russell G; Ramanujam, Rama; Rao, Chinthalapally V; Wyche, James H; Anant, Shrikant; Houchen, Courtney W
2010-08-01
Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer.
May, Randal; Sureban, Sripathi M.; Lightfoot, Stan A.; Hoskins, Aimee B.; Brackett, Daniel J.; Postier, Russell G.; Ramanujam, Rama; Rao, Chinthalapally V.; Wyche, James H.; Anant, Shrikant
2010-01-01
Stem cells are critical in maintaining adult homeostasis and have been proposed to be the origin of many solid tumors, including pancreatic cancer. Here we demonstrate the expression patterns of the putative intestinal stem cell marker DCAMKL-1 in the pancreas of uninjured C57BL/6 mice compared with other pancreatic stem/progenitor cell markers. We then determined the viability of isolated pancreatic stem/progenitor cells in isotransplantation assays following DCAMKL-1 antibody-based cell sorting. Sorted cells were grown in suspension culture and injected into the flanks of athymic nude mice. Here we report that DCAMKL-1 is expressed in the main pancreatic duct epithelia and islets, but not within acinar cells. Coexpression was observed with somatostatin, NGN3, and nestin, but not glucagon or insulin. Isolated DCAMKL-1+ cells formed spheroids in suspension culture and induced nodule formation in isotransplantation assays. Analysis of nodules demonstrated markers of early pancreatic development (PDX-1), glandular epithelium (cytokeratin-14 and Ep-CAM), and isletlike structures (somatostatin and secretin). These data taken together suggest that DCAMKL-1 is a novel putative stem/progenitor marker, can be used to isolate normal pancreatic stem/progenitors, and potentially regenerates pancreatic tissues. This may represent a novel tool for regenerative medicine and a target for anti-stem cell-based therapeutics in pancreatic cancer. PMID:20522640
Hanazaki, Kazuhiro; Munekage, Masaya; Kitagawa, Hiroyuki; Yatabe, Tomoaki; Munekage, Eri; Shiga, Mai; Maeda, Hiromichi; Namikawa, Tsutomu
2016-09-01
The incidence of diabetes is increasing at an unprecedented pace and has become a serious health concern worldwide during the last two decades. Despite this, adequate glycemic control using an artificial pancreas has not been established, although the 21st century has seen rapid developments in this area. Herein, we review current topics in glycemic control for both the wearable artificial pancreas for type 1 and type 2 diabetic patients and the bedside artificial pancreas for surgical diabetic patients. In type 1 diabetic patients, nocturnal hypoglycemia associated with insulin therapy remains a serious problem that could be addressed by the recent development of a wearable artificial pancreas. This smart phone-like device, comprising a real-time, continuous glucose monitoring system and insulin pump system, could potentially significantly reduce nocturnal hypoglycemia compared with conventional glycemic control. Of particular interest in this space are the recent inventions of a low-glucose suspend feature in the portable systems that automatically stops insulin delivery 2 h following a glucose sensor value <70 mg/dL and a bio-hormonal pump system consisting of insulin and glucagon pumps. Perioperative tight glycemic control using a bedside artificial pancreas with the closed-loop system has also proved safe and effective for not only avoiding hypoglycemia, but also for reducing blood glucose level variability resulting in good surgical outcomes. We hope that a more sophisticated artificial pancreas with closed-loop system will now be taken up for routine use worldwide, providing enormous relief for patients suffering from uncontrolled hyperglycemia, hypoglycemia, and/or variability in blood glucose concentrations.
Yang, Kai-Chiang; Wu, Chang-Chin; Sumi, Shoichiro; Tseng, Ching-Li; Wu, Yueh-Hsiu Steven; Kuo, Tzong-Fu; Lin, Feng-Huei
2010-05-01
This study examined a calcium phosphate cement (CPC) chamber as an immunoisolative device to facilitate the use of xenogeneic cell sources without immunosuppression for the bioartificial pancreas (BAP). Mouse insulinoma cells were encapsulated in agarose gel and then enclosed in a CPC chamber to create a BAP. Bioartificial pancreas were evaluated by cell viability, live-dead cell ratio, and cytokine-mediated cytotoxicity assay and implanted into the peritoneal cavity of diabetic rats. Nonfasting blood glucose and serum insulin levels were analyzed perioperatively; BAPs were also retrieved for histological examination. Insulinoma cells enclosed in the CPC chamber had normal viability, cell survival, and insulin secretion that was even cultured in media with cytokines. The nonfasting blood glucose level of rats was decreased from 460 +/- 50 to 132 +/- 43 mg/dL and maintained euglycemia for 22 days; serum insulin level was increased from 0.34 +/- 0.11 to 1.43 +/- 0.30 microg/dL after operation. Histological examination revealed the fibrous tissue envelopment, and immune-related cells that competed for oxygen resulting in hypoxia could be attributed to the dysfunction of BAPs. This study proved the feasibility for using a CPC chamber as an immunoisolative device for the BAP. An alternative implanted site should be considered to extend the functional longevity of BAPs in further study.
Barbas, Andrew S; Al-Adra, David P; Goldaracena, Nicolas; Dib, Martin J; Selzner, Markus; Sapisochin, Gonzalo; Cattral, Mark S; McGilvray, Ian D
2017-09-01
Although the primary indication for pancreas transplantation is type I diabetes, a small number of patients requires pancreas transplantation to manage combined endocrine and exocrine insufficiency that develops after extensive native pancreatic resection. The objective of this case report was to describe the operative and clinical course in 3 such patients and present an alternative technical approach.
Elebring, Erik; Kuna, Vijay K; Kvarnström, Niclas; Sumitran-Holgersson, Suchitra
2017-01-01
Despite progress in the field of decellularization and recellularization, the outcome for pancreas has not been adequate. This might be due to the challenging dual nature of pancreas with both endocrine and exocrine tissues. We aimed to develop a novel and efficient cold-perfusion method for decellularization of porcine pancreas and recellularize acellular scaffolds with human fetal pancreatic stem cells. Decellularization of whole porcine pancreas at 4°C with sodium deoxycholate, Triton X-100 and DNase efficiently removed cellular material, while preserving the extracellular matrix structure. Furthermore, recellularization of acellular pieces with human fetal pancreatic stem cells for 14 days showed attached and proliferating cells. Both endocrine (C-peptide and PDX1) and exocrine (glucagon and α-amylase) markers were expressed in recellularized tissues. Thus, cold-perfusion can successfully decellularize porcine pancreas, which when recellularized with human fetal pancreatic stem cells shows relevant endocrine and exocrine phenotypes. Decellularized pancreas is a promising biomaterial and might translate to clinical relevance for treatment of diabetes. PMID:29118967
Diabetes Associated Metabolomic Perturbations in NOD Mice
Hwang, Jessica; Poudel, Ananta; Jo, Junghyo; Periwal, Vipul; Fiehn, Oliver; Hara, Manami
2014-01-01
Non-obese diabetic (NOD) mice are a widely-used model oftype1 diabetes (T1D). However, not all animals develop overt diabetes. This study examined the circulating metabolomic profiles of NOD mice progressing or not progressing to T1D. Total beta-cell mass was quantified in the intact pancreas using transgenic NOD mice expressinggreen fluorescent protein under the control of mouse insulin I promoter.While both progressor and non-progressor animals displayed lymphocyte infiltration and endoplasmic reticulum stress in the pancreas tissue;overt T1D did not develop until animals lost ~70% of the total beta-cell mass.Gas chromatography time of flight mass spectrometry (GC-TOF) was used to measure >470 circulating metabolites in male and female progressor and non-progressor animals (n=76) across a wide range of ages (neonates to >40-wk).Statistical and multivariate analyses were used to identify age and sex independent metabolic markers which best differentiated progressor and non-progressor animals’ metabolic profiles. Key T1D-associated perturbations were related with: (1) increased plasma glucose and reduced 1,5-anhydroglucitol markers of glycemic control; (2) increased allantoin, gluconic acid and nitric oxide-derived saccharic acid markers of oxidative stress; (3) reduced lysine, an insulin secretagogue; (4) increased branched-chain amino acids, isoleucine and valine; (5) reduced unsaturated fatty acids including arachidonic acid; and (6)perturbations in urea cycle intermediates suggesting increased arginine-dependent NO synthesis. Together these findings highlight the strength of the unique approach of comparing progressor and non-progressor NOD mice to identify metabolic perturbations involved in T1D progression. PMID:25755629
Kanak, Mazhar A; Shahbazov, Rauf; Yoshimatsu, Gumpei; Levy, Marlon F; Lawrence, Michael C; Naziruddin, Bashoo
2017-03-01
The underlying molecular mechanism that leads to development of chronic pancreatitis remains elusive. The aim of this study is to understand the downstream inflammatory signaling involved in progression of chronic pancreatitis, and to use withaferin A (WA), a small molecule inhibitor of nuclear factor κB (NFκB), to prevent progression of chronic pancreatitis. Two different protocols were used to induce pancreatitis in mice: standard and stringent administration of cerulein. The severity of pancreatitis was assessed by means of pancreatic histology and serum amylase levels. Immunohistochemistry and flow-cytometric analysis was performed to visualize immune cell infiltration into the pancreas. Real-time PCR and Western blot were used to analyze the downstream signaling mechanism involved in the development of chronic pancreatitis. The severity of cerulein-induced pancreatitis was reduced significantly by WA, used as either preventive or curative treatment. Immune cell infiltration into the pancreas and acinar cell death were efficiently reduced by WA treatment. Expression of proinflammatory and proapoptotic genes regulated by NFκB activation was increased by cerulein treatment, and WA suppressed these genes significantly. Sustained endoplasmic reticulum stress activation by cerulein administration was reduced. NLRP3 inflammasome activation in cerulein-induced pancreatitis was identified, and this was also potently blocked by WA. The human pancreatitis tissue gene signature correlated with the mouse model. Our data provide evidence for the role of NFκB in the pathogenesis of chronic pancreatitis, and strongly suggest that WA could be used as a potential therapeutic drug to alleviate some forms of chronic pancreatitis.
Yagi, M; Mishina, T; Fujishima, T; Date, K; Saito, H; Suzuki, N
1997-01-01
The acute onset of peritoneal signs and shock in a 7-year-old boy who had been hit in the epigastrium by a log-seesaw mandated surgical treatment. Enhanced computed tomography (CT) demonstrated complete laceration of the pancreas as well as duodenal injury, and a duodenoduodenostomy with distal pancreaticogastrostomy was subsequently performed. Temporary external drainage of the stomach and distal pancreas led to an uneventful recovery in the early postoperative period. Although the patient's postoperative development was appropriate for his age, the orifice of the distal pancreas spontaneously closed 2.5 years following surgery. We present this report to stress the fact that every effort should be made to preserve the pancreas following abdominal injury in children.
Fibrosis of the pancreas: the initial tissue damage and the resulting pattern.
Klöppel, Günter; Detlefsen, Sönke; Feyerabend, Bernd
2004-07-01
Fibrosis in the pancreas is caused by such processes as necrosis/apoptosis, inflammation or duct obstruction. The initial event that induces fibrogenesis in the pancreas is an injury that may involve the interstitial mesenchymal cells, the duct cells and/or the acinar cells. Damage to any one of these tissue compartments of the pancreas is associated with cytokine-triggered transformation of resident fibroblasts/pancreatic stellate cells into myofibroblasts and the subsequent production and deposition of extracellular matrix. Depending on the site of injury in the pancreas and the involved tissue compartment, predominantly inter(peri)lobular fibrosis (as in alcoholic chronic pancreatitis), periductal fibrosis (as in hereditary pancreatitis), periductal and interlobular fibrosis (as in autoimmune pancreatitis) or diffuse inter- and intralobular fibrosis (as in obstructive chronic pancreatitis) develops.
Deconstructing Pancreas Developmental Biology
Benitez, Cecil M.; Goodyer, William R.
2012-01-01
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development. PMID:22587935
Clinical significance of circumportal pancreas, a rare congenital anomaly, in pancreatectomy.
Ohtsuka, Takao; Mori, Yasuhisa; Ishigami, Kousei; Fujimoto, Takaaki; Miyasaka, Yoshihiro; Nakata, Kohei; Ohuchida, Kenoki; Nagai, Eishi; Oda, Yoshinao; Shimizu, Shuji; Nakamura, Masafumi
2017-08-01
Circumportal pancreas is a rare congenital pancreatic anomaly. The aim of this study was to clarify the clinical characteristics of patients with circumportal pancreases undergoing pancreatectomy. The medical records of 508 patients who underwent pancreatectomy were retrospectively reviewed. The prevalence of circumportal pancreas and related anatomical variations were assessed. Surgical procedures and postoperative outcomes were compared in patients with and without circumportal pancreas. Circumportal pancreas was observed in 9 of the 508 patients (1.7%). In all nine patients, the portal vein was completely encircled by the pancreatic parenchyma above the level of the splenoportal junction, and the main pancreatic duct ran dorsal to the portal vein. The rate of variant hepatic artery did not differ significantly in patients with and without circumportal pancreas. Pancreatic fistula developed more frequently in patients with than without circumportal pancreas (44% vs. 14%, p = 0.03), but other clinical parameters did not differ significantly in these two groups. Despite being rare, circumportal pancreas may increase the risk of postoperative pancreatic fistula in patients undergoing pancreatectomy. However, a prospective, large-cohort study is necessary to determine the real incidence of relevant anatomical variations and the definitive clinical significance of this rare anomaly. Copyright © 2016 Elsevier Inc. All rights reserved.
A critical review and analysis of ethical issues associated with the artificial pancreas.
Quintal, A; Messier, V; Rabasa-Lhoret, R; Racine, E
2018-04-25
The artificial pancreas combines a hormone infusion pump with a continuous glucose monitoring device, supported by a dosing algorithm currently installed on the pump. It allows for dynamic infusions of insulin (and possibly other hormones such as glucagon) tailored to patient needs. For patients with type 1 diabetes the artificial pancreas has been shown to prevent more effectively hypoglycaemic events and hyperglycaemia than insulin pump therapy and has the potential to simplify care. However, the potential ethical issues associated with the upcoming integration of the artificial pancreas into clinical practice have not yet been discussed. Our objective was to identify and articulate ethical issues associated with artificial pancreas use for patients, healthcare professionals, industry and policymakers. We performed a literature review to identify clinical, psychosocial and technical issues raised by the artificial pancreas and subsequently analysed them through a common bioethics framework. We identified five sensitive domains of ethical issues. Patient confidentiality and safety can be jeopardized by the artificial pancreas' vulnerability to security breaches or unauthorized data sharing. Public and private coverage of the artificial pancreas could be cost-effective and warranted. Patient selection criteria need to ensure equitable access and sensitivity to patient-reported outcomes. Patient coaching and support by healthcare professionals or industry representatives could help foster realistic expectations in patients. Finally, the artificial pancreas increases the visibility of diabetes and could generate issues related to personal identity and patient agency. The timely consideration of these issues will optimize the technological development and clinical uptake of the artificial pancreas. Copyright © 2018. Published by Elsevier Masson SAS.
Leal, Ana S; Sporn, Michael B; Pioli, Patricia A; Liby, Karen T
2016-12-01
Because the 5-year survival rate for pancreatic cancer remains under 10%, new drugs are needed for the prevention and treatment of this devastating disease. Patients with chronic pancreatitis have a 12-fold higher risk of developing pancreatic cancer. LSL-Kras G12D/+ ;Pdx-1-Cre (KC) mice replicate the genetics, symptoms and histopathology found in human pancreatic cancer. Immune cells infiltrate into the pancreas of these mice and produce inflammatory cytokines that promote tumor growth. KC mice are particularly sensitive to the effects of lipopolysaccharide (LPS), as only 48% of KC mice survived an LPS challenge while 100% of wildtype (WT) mice survived. LPS also increased the percentage of CD45+ immune cells in the pancreas and immunosuppressive Gr1+ myeloid-derived suppressor cell in the spleen of these mice. The triterpenoid CDDO-imidazolide (CDDO-Im) not only reduced the lethal effects of LPS (71% survival) but also decreased the infiltration of CD45+ cells into the pancreas and the percentage of Gr1+ myeloid-derived suppressor cell in the spleen of KC mice 4-8 weeks after the initial LPS challenge. While the levels of inflammatory cytokine levels were markedly higher in KC mice versus WT mice challenged with LPS, CDDO-Im significantly decreased the production of IL-6, CCL-2, vascular endothelial growth factor and G-CSF in the KC mice. All of these cytokines are prognostic markers in pancreatic cancer or play important roles in the progression of this disease. Disrupting the inflammatory process with drugs such as CDDO-Im might be useful for preventing pancreatic cancer, especially in high-risk populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Overview of exocrine pancreatic pathobiology.
Pandiri, Arun R
2014-01-01
Exocrine pancreas is a source of several enzymes that are essential for the digestive process. The exocrine pancreatic secretion is tightly regulated by the neuroendocrine system. The endocrine pancreas is tightly integrated anatomically and physiologically with the exocrine pancreas and modulates its function. Compound-induced pancreatitis is not a common event in toxicology or drug development, but it becomes a significant liability when encountered. Understanding the species-specific differences in physiology is essential to understand the underlying pathobiology of pancreatic disease in animal models and its relevance to human disease. This review will mainly focus on understanding the morphology and physiology of the pancreas, unique islet-exocrine interactions, and pancreatitis.
Giehl, Klaudia; Bachem, Max; Beil, Michael; Böhm, Bernhard O; Ellenrieder, Volker; Fulda, Simone; Gress, Thomas M; Holzmann, Karlheinz; Kestler, Hans A; Kornmann, Marko; Menke, Andre; Möller, Peter; Oswald, Franz; Schmid, Roland M; Schmidt, Volker; Schirmbeck, Reinhold; Seufferlein, Thomas; von Wichert, Götz; Wagner, Martin; Walther, Paul; Wirth, Thomas; Adler, Guido
2011-05-01
The primary diseases of the pancreas include diabetes mellitus, acute and chronic pancreatitis, as well as pancreatic carcinoma. This review presents findings and emerging questions on the diseases of the pancreas obtained by the consortium of the Collaborative Research Center 518 (SFB 518), "Inflammation, Regeneration, and Transformation in the Pancreas" at the University of Ulm. During the last 12 years, the SFB 518 contributed considerably to the understanding of the cellular and molecular basis of pancreatic diseases and established the basis for the development of new strategies for prevention and causal therapy for diabetes, pancreatitis, and pancreatic cancer.
Development of a Cytokine-Modified Allogeneic Whole Cell Pancreatic Cancer Vaccine
Laheru, Dan; Biedrzycki, Barbara; Jaffee, Elizabeth M.
2015-01-01
Management of patients with pancreatic cancer is a multidisciplinary approach that presents enormous challenges to the clinician. Overall 5-year survival for all patients remains <3%. Symptoms of early pancreas cancer are nonspecific. As such, only a fraction of patients are candidates for surgery. While surgical resection provides the only curative option, most patients will develop tumor recurrence and die of their disease. To date, the clinical benefits of chemotherapy and radiation therapy have been important but have led to modest improvements. Tumor vaccines have the potential to specifically target the needle of pancreas cancer cells amidst the haystack of normal tissue. The discovery of pancreas tumor-specific antigens and the subsequent ability to harness this technology has become an area of intense interest for tumor immunologists and clinicians alike. Without knowledge of specific antigen targets, the whole tumor cell represents the best source of immunizing antigens. This chapter will focus on the development of whole tumor cell vaccine strategies for pancreas cancer. PMID:23359154
Leung, Lisa; Radulovich, Nikolina; Zhu, Chang-Qi; Wang, Dennis; To, Christine; Ibrahimov, Emin; Tsao, Ming-Sound
2013-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer death in North America. Activating KRAS mutations and Smad4 loss occur in approximately 90% and 55% of PDAC, respectively. While their roles in the early stages of PDAC development have been confirmed in genetically modified mouse models, their roles in the multistep malignant transformation of human pancreatic duct cells have not been directly demonstrated. Here, we report that Smad4 represents a barrier in KRAS-mediated malignant transformation of the near normal immortalized human pancreatic duct epithelial (HPDE) cell line model. Marked Smad4 downregulation by shRNA in KRAS G12V expressing HPDE cells failed to cause tumorigenic transformation. However, KRAS-mediated malignant transformation occurred in a new HPDE-TGF-β resistant (TβR) cell line that completely lacks Smad4 protein expression and is resistant to the mito-inhibitory activity of TGF-β. This transformation resulted in tumor formation and development of metastatic phenotype when the cells were implanted orthotopically into the mouse pancreas. Smad4 restoration re-established TGF-β sensitivity, markedly increased tumor latency by promoting apoptosis, and decreased metastatic potential. These results directly establish the critical combination of the KRAS oncogene and complete Smad4 inactivation in the multi-stage malignant transformation and metastatic progression of normal human HPDE cells. PMID:24386371
Measure of pancreas transection and postoperative pancreatic fistula.
Takahashi, Shinichiro; Gotohda, Naoto; Kato, Yuichiro; Konishi, Masaru
2016-05-15
In pancreaticoduodenectomy (PD), a standard protocol for pancreas transection has not been established although the method of pancreas transection might be involved in the occurrence of postoperative pancreatic fistula (POPF). This study aimed to compare whether pancreas transection by ultrasonically activated shears (UAS) or that by scalpel contributed more to POPF development. A prospective database of 171 patients who underwent PD for periampullary tumor at National Cancer Center Hospital East between January 2010 and June 2013 was reviewed. Among the 171 patients, 93 patients with soft pancreas were specifically included in this study. Surgical results and background were compared between patients with pancreas transection by UAS and scalpel to evaluate the effectiveness of UAS on reducing POPF. Body mass index, main pancreatic duct diameter, or other clinicopathologic factors that have been reported as predictive factors for POPF were not significantly different between the two groups. The incidence of all grades of POPF and that of grade B were significantly lower in the scalpel group (52%, 4%) than in the UAS group (74%, 42%). Postoperative complications ≥ grade III were also significantly fewer in the scalpel group. Scalpel transection was less associated with POPF than UAS transection in patients who underwent PD for soft pancreas. The method of pancreas transection plays an important role in the prevention of clinical POPF. Copyright © 2016 Elsevier Inc. All rights reserved.
Advancement of the Artificial Pancreas through the Development of Interoperability Standards
Picton, Peter E.; Yeung, Melanie; Hamming, Nathaniel; Desborough, Lane; Dassau, Eyal; Cafazzo, Joseph A.
2013-01-01
Despite advancements in the development of the artificial pancreas, barriers in the form of proprietary data and communication protocols of diabetes devices have made the integration of these components challenging. The Artificial Pancreas Standards and Technical Platform Project is an initiative funded by the JDRF Canadian Clinical Trial Network with the goal of developing device communication standards for the interoperability of diabetes devices. Stakeholders from academia, industry, regulatory agencies, and medical and patient communities have been engaged in advancing this effort. In this article, we describe this initiative along with the process involved in working with the standards organizations and stakeholders that are key to ensuring effective standards are developed and adopted. Discussion from a special session of the 12th Annual Diabetes Technology Meeting is also provided. PMID:23911190
Expression patterns of epiplakin1 in pancreas, pancreatic cancer and regenerating pancreas.
Yoshida, Tetsu; Shiraki, Nobuaki; Baba, Hideo; Goto, Mizuki; Fujiwara, Sakuhei; Kume, Kazuhiko; Kume, Shoen
2008-07-01
Epiplakin1 (Eppk1) is a plakin family gene with its function remains largely unknown, although the plakin genes are known to function in interconnecting cytoskeletal filaments and anchoring them at plasma membrane-associated adhesive junction. Here we analyzed the expression patterns of Eppk1 in the developing and adult pancreas in the mice. In the embryonic pancreas, Eppk1+/Pdx1+ and Eppk1+/Sox9+ pancreatic progenitor cells were observed in early pancreatic epithelium. Since Pdx1 expression overlapped with that of Sox9 at this stage, these multipotent progenitor cells are Eppk1+/Pdx1+/Sox9+ cells. Then Eppk1 expression becomes confined to Ngn3+ or Sox9+ endocrine progenitor cells, and p48+ exocrine progenitor cells, and then restricted to the duct cells and a cells at birth. In the adult pancreas, Eppk1 is expressed in centroacinar cells (CACs) and in duct cells. Eppk1 is observed in pancreatic intraepithelial neoplasia (PanIN), previously identified as pancreatic ductal adenocarcinoma (PDAC) precursor lesions. In addition, the expansion of Eppk1-positive cells occurs in a caerulein-induced acute pancreatitis, an acinar cell regeneration model. Furthermore, in the partial pancreatectomy (Px) regeneration model using mice, Eppk1 is expressed in "ducts in foci", a tubular structure transiently induced. These results suggest that Eppk1 serves as a useful marker for detecting pancreatic progenitor cells in developing and regenerating pancreas.
Zhang, Lin; Chen, Wei; Dai, Yuee
2016-01-01
Intrauterine growth retardation (IUGR) is a disorder that can result in permanent changes in the physiology and metabolism of the newborn, which increased the risk of disease in adulthood. Evidence supports IUGR as a risk factor for the development of diabetes mellitus, which could reflect changes in pancreas developmental pathways. We sought to characterize the IUGR-induced alterations of the complex pathways of pancreas development in a rat model of IUGR. We analyzed the pancreases of Sprague Dawley rats after inducing IUGR by feeding a maternal low calorie diet from gestational day 1 until term. IUGR altered the pancreatic structure, islet areas, and islet quantities and resulted in abnormal morphological changes during pancreatic development, as determined by HE staining and light microscopy. We identified multiple differentially expressed genes in the pancreas by RT-PCR. The genes of the insulin/FoxO1/Pdx1/MafA signaling pathway were first expressed at embryonic day 14 (E14). The expressions of insulin and MafA increased as the fetus grew while the expressions of FoxO1 and Pdx1 decreased. Compared with the control rats, the expressions of FoxO1, Pdx1, and MafA were lower in the IUGR rats, whereas insulin levels showed no change. Microarray profiling, in combination with quantitative real-time PCR, uncovered a subset of microRNAs that changed in their degree of expression throughout pancreatic development. In conclusion, our data support the hypothesis that IUGR influences the development of the rat pancreas. We also identified new pathways that appear to be programmed by IUGR. PMID:27190278
Sun, Zhen; Gou, Wenyu; Kim, Do-Sung; Dong, Xiao; Strange, Charlie; Tan, Yu; Adams, David B; Wang, Hongjun
2017-11-01
The objective of this study was to assess the capacity of adipose-derived mesenchymal stem cells (ASCs) to mitigate disease progression in an experimental chronic pancreatitis mouse model. Chronic pancreatitis (CP) was induced in C57BL/6 mice by repeated ethanol and cerulein injection, and mice were then infused with 4 × 10 5 or 1 × 10 6 GFP + ASCs. Pancreas morphology, fibrosis, inflammation, and presence of GFP + ASCs in pancreases were assessed 2 weeks after treatment. We found that ASC infusion attenuated pancreatic damage, preserved pancreas morphology, and reduced pancreatic fibrosis and cell death. GFP + ASCs migrated to pancreas and differentiated into amylase + cells. In further confirmation of the plasticity of ASCs, ASCs co-cultured with acinar cells in a Transwell system differentiated into amylase + cells with increased expression of acinar cell-specific genes including amylase and chymoB1. Furthermore, culture of acinar or pancreatic stellate cell lines in ASC-conditioned medium attenuated ethanol and cerulein-induced pro-inflammatory cytokine production in vitro. Our data show that a single intravenous injection of ASCs ameliorated CP progression, likely by directly differentiating into acinar-like cells and by suppressing inflammation, fibrosis, and pancreatic tissue damage. These results suggest that ASC cell therapy has the potential to be a valuable treatment for patients with pancreatitis. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Quirin, Kayla A; Kwon, Jason J; Alioufi, Arafat; Factora, Tricia; Temm, Constance J; Jacobsen, Max; Sandusky, George E; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Mendell, Joshua T; Korc, Murray; Kota, Janaiah
2018-03-16
Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 10 12 viral genomes (vg). Intraductal delivery of 1 × 10 11 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 10 11 vg. In a Kras G12D -driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.
Organoid Models of Human and Mouse Ductal Pancreatic Cancer
Boj, Sylvia F.; Hwang, Chang-Il; Baker, Lindsey A.; Chio, Iok In Christine; Engle, Dannielle D.; Corbo, Vincenzo; Jager, Myrthe; Ponz-Sarvise, Mariano; Tiriac, Hervé; Spector, Mona S.; Gracanin, Ana; Oni, Tobiloba; Yu, Kenneth H.; van Boxtel, Ruben; Huch, Meritxell; Rivera, Keith D.; Wilson, John P.; Feigin, Michael E.; Öhlund, Daniel; Handly-Santana, Abram; Ardito-Abraham, Christine M.; Ludwig, Michael; Elyada, Ela; Alagesan, Brinda; Biffi, Giulia; Yordanov, Georgi N.; Delcuze, Bethany; Creighton, Brianna; Wright, Kevin; Park, Youngkyu; Morsink, Folkert H.M.; Molenaar, I. Quintus; Borel Rinkes, Inne H.; Cuppen, Edwin; Hao, Yuan; Jin, Ying; Nijman, Isaac J.; Iacobuzio-Donahue, Christine; Leach, Steven D.; Pappin, Darryl J.; Hammell, Molly; Klimstra, David S.; Basturk, Olca; Hruban, Ralph H.; Offerhaus, George Johan; Vries, Robert G.J.; Clevers, Hans; Tuveson, David A.
2015-01-01
SUMMARY Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation and exhibit ductal- and disease stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy. PMID:25557080
Hydrogen Treatment Protects Mice Against Chronic Pancreatitis by Restoring Regulatory T Cells Loss.
Chen, Luguang; Ma, Chao; Bian, Yun; Li, Jing; Wang, Tiegong; Su, Li; Lu, Jianping
2017-01-01
Chronic pancreatitis is an inflammatory disease of the pancreas characterized by progressive tissue destruction and fibrogenesis. The development of chronic pancreatitis is associated with immune cell dysregulation. Currently, the specific and effective treatment of chronic pancreatitis remains absent. By using an L-arginine induced chronic pancreatitis mouse model, we tested the therapeutic potential of hydrogen, a strong hydroxyl radicals scavenger, in the chronic pancreatitis model. Tissue inflammation, damage and fibrosis were analyzed on HE, TUNEL, MPO, and sirius staining. Pancreas levels of MDA content, SOD activity, TNF-α , IL-10 cytokine expression and serum amylase and lipase activity were determined by ELISA and absorbance assay. Apoptosis, T cells subtype proportion and intracellular level of reactive oxygen species (ROS) were analyzed by flow cytometry. Tregs adoptive transfer and CD25 neutralization were used to validate the role of Tregs in chronic pancreatitis. We found that hydrogen treatment significantly improved multiple symptoms of chronic pancreatitis. The number of Tregs was reduced in chronic pancreatitis mice, while hydrogen treatment restored the Treg loss by L-arginine administrations. Depletion of Tregs abolished the protective effect of hydrogen treatment in chronic pancreatitis. In vitro study showed that hydrogen blocked ROS generation in Tregs and promoted Tregs survival. Hydrogen treatment showed reliable benefits in controlling the severity of chronic pancreatitis. Our study supported that hydrogen could be used as a novel treatment in chronic pancreatitis patient in the future. © 2017 The Author(s). Published by S. Karger AG, Basel.
Fission of pancreatic islets during postnatal growth of the mouse
Seymour, Philip A; Bennett, William R; Slack, Jonathan M W
2004-01-01
A cell composition analysis was made of the pancreatic islets in postnatal H253 mice. This line has a lacZ insertion on the X chromosome so that in female hemizygotes 50% of cells should be positive for β-galactosidase and 50% negative. Immediately after birth, the islets were of a heterogeneous cell composition. However, by 4 weeks some islets have become homogeneous. This suggests that islets progress towards monoclonality in a similar way to the intestinal crypts and stomach gastric glands. Pancreatic islets may therefore represent ‘structural proliferative units’ in the overall histological organization of the pancreas. Reduction of genetic heterogeneity might arise from cell turnover, fission of islets or both. Analysis of the cell composition of the X-inactivation mosaic mice also provides the first clear evidence for islet fission in pancreatic development. Irregularly shaped islets resembling dumb-bells, with a characteristic neck of α-cells, were observed with decreasing frequency with increasing age. Three-dimensional reconstruction confirmed their resemblance to conjoined islets. The cell composition analysis showed: (1) the relatedness of the two sides of a dumb-bell islet is significantly higher than between two non-dumb-bell islets and (2) the relatedness of two randomly selected islets decreases as the distance between them increases. This suggests that dumb-bell islets are in a state of fission rather than fusion, and that islet fission is a mode of islet production in the postnatal pancreas. PMID:15032917
Progress and challenges of the bioartificial pancreas
NASA Astrophysics Data System (ADS)
Hwang, Patrick T. J.; Shah, Dishant K.; Garcia, Jacob A.; Bae, Chae Yun; Lim, Dong-Jin; Huiszoon, Ryan C.; Alexander, Grant C.; Jun, Ho-Wook
2016-11-01
Pancreatic islet transplantation has been validated as a treatment for type 1 diabetes since it maintains consistent and sustained type 1 diabetes reversal. However, one of the major challenges in pancreatic islet transplantation is the body's natural immune response to the implanted islets. Immunosuppressive drug treatment is the most popular immunomodulatory approach for islet graft survival. However, administration of immunosuppressive drugs gives rise to negative side effects, and long-term effects are not clearly understood. A bioartificial pancreas is a therapeutic approach to enable pancreatic islet transplantation without or with minimal immune suppression. The bioartificial pancreas encapsulates the pancreatic islets in a semi-permeable environment which protects islets from the body's immune responses, while allowing the permeation of insulin, oxygen, nutrients, and waste. Many groups have developed various types of the bioartificial pancreas and tested their efficacy in animal models. However, the clinical application of the bioartificial pancreas still requires further investigation. In this review, we discuss several types of bioartificial pancreases and address their advantages and limitations. We also discuss recent advances in bioartificial pancreas applications with microfluidic or micropatterning technology.
Okamura, Yukiyasu; Fujii, Tsutomu; Kanzaki, Akiyuki; Yamada, Suguru; Sugimoto, Hiroyuki; Nomoto, Shuji; Takeda, Shin; Nakao, Akimasa
2012-05-01
Pancreaticoduodenectomy is performed for pancreatic head cancer that originated from the dorsal or ventral primordium. Although the extent of lymph node (LN) dissection is the same irrespective of the origin, the lymphatic continuities may differ between the 2 primordia. Between March 2003 and September 2010, 152 patients underwent pancreaticoduodenectomy for pancreatic cancer. One hundred six patients were assigned into 2 groups according to tumor location on preoperative computed tomography, and their clinical and pathological features were retrospectively analyzed in view of the embryonic development of the pancreas. Sixty of 106 patients were classified with tumors that were derived from the dorsal pancreas (D group) and 46 from the ventral pancreas (V group). The frequency of LN involvement around the middle colic artery (LN 15) in the D group was higher than in the V group (P = 0.008). The rate of additional resection of the pancreas tended to be higher in the D group (P = 0.067). The present study showed the detailed pattern of spread of pancreatic ductal carcinoma to the LNs and provided important information for determining the optimal surgical strategy.
Pea, Antonio; Yu, Jun; Rezaee, Neda; Luchini, Claudio; He, Jin; Molin, Marco Dal; Griffin, James F.; Fedor, Helen; Fesharakizadeh, Shahriar; Salvia, Roberto; Weiss, Matthew J.; Bassi, Claudio; Cameron, John L.; Zheng, Lei; Scarpa, Aldo; Hruban, Ralph H.; Lennon, Anne Marie; Goggins, Michael
2016-01-01
Objective The aim of this study was to characterize patterns of local progression following resection for pancreatic intraductal papillary mucinous neoplasms (IPMN) using targeted next-generation sequencing (NGS). Background Progression of neoplastic disease in the remnant pancreas following resection of IPMN may include development of a new IPMN or ductal adenocarcinoma (PDAC). However, it is not clear whether this progression represents recurrence of the same neoplasm or an independent second neoplasm. Methods Targeted-NGS on genes commonly mutated in IPMN and PDAC was performed on tumors from (1) 13 patients who developed disease progression in the remnant pancreas following resection of IPMN; and (2) 10 patients who underwent a resection for PDAC and had a concomitant IPMN. Mutations in the tumors were compared in order to determine the relationship between neoplasms. In parallel, clinical and pathological characteristics of 260 patients who underwent resection of noninvasive IPMN were reviewed to identify risk factors associated with local progression. Results We identified 3 mechanisms underlying local progression in the remnant pancreas: (1) residual microscopic disease at the resection margin, (2) intraparenchymal spread of neoplastic cells, leading to an anatomically separate but genetically related recurrence, and (3) multifocal disease with genetically distinct lesions. Analysis of the 260 patients with noninvasive IPMNs showed that family history of pancreatic cancer (P = 0.027) and high-grade dysplasia (HGD) (P = 0.003) were independent risk factors for the development of an IPMN with HGD or an invasive carcinoma in the remnant pancreas. Conclusions Using NGS, we identify distinct mechanisms for development of metachronous or synchronous neoplasms in patients with IPMN. Patients with a primary IPMN with HGD or with positive family history are at an increased risk to develop subsequent high-risk neoplasms in the remnant pancreas. PMID:27433916
Roberts, Edward W.; Deonarine, Andrew; Jones, James O.; Denton, Alice E.; Feig, Christine; Lyons, Scott K.; Espeli, Marion; Kraman, Matthew; McKenna, Brendan; Wells, Richard J.B.; Zhao, Qi; Caballero, Otavia L.; Larder, Rachel; Coll, Anthony P.; O’Rahilly, Stephen; Brindle, Kevin M.; Teichmann, Sarah A.; Tuveson, David A.
2013-01-01
Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP+ cells, we find that they reside in most tissues of the adult mouse. FAP+ cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP+ cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP+ stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia. PMID:23712428
Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy
Yan, Ziying; Stewart, Zoe A.; Sinn, Patrick L.; Olsen, John C.; Hu, Jim; McCray, Paul B.
2015-01-01
Abstract Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies. PMID:25675143
Hassan, Faizule; Lossie, Sarah L; Kasik, Ellen P; Channon, Audrey M; Ni, Shuisong; Kennedy, Michael A
2018-01-01
The HGMA1 architectural transcription factor is highly overexpressed in many human cancers. Because HMGA1 is a hub for regulation of many oncogenes, its overexpression in cancer plays a central role in cancer progression and therefore HMGA1 is gaining increasing attention as a target for development of therapeutic approaches to suppress either its expression or action in cancer cells. We have developed the strategy of introducing decoy hyper binding sites for HMGA1 into the nucleus of cancer cells with the goal of competetively sequestering overexpressed HMGA1 and thus suppressing its oncogenic action. Towards achieving this goal, we have introduced an HMGA1 decoy hyper binding site composed of six copies of a high affinity HMGA1 binding site into the genome of the replication defective adenovirus serotype 5 genome and shown that the engineered virus effectively reduces the viability of human pancreatic and cancer cells. Here we report the first pre-clinical measures of toxicity and biodistribution of the engineered virus in C57BL/6J Black 6 mice. The immune response to exposure of the engineered virus was determined by assaying the serum levels of key cytokines, IL-6 and TNF-α. Toxicity due to exposure to the virus was determined by measuring the serum levels of the liver enzymes aspartate aminotransferase and alanine aminotransferase. Biodistribution was measured following direct injection into the pancreas or liver by quantifying viral loads in the pancreas, liver, spleen and brain.
Klonoff, David C; Zimliki, Charles L; Stevens, LCDR Alan; Beaston, Patricia; Pinkos, Arleen; Choe, Sally Y; Arreaza-Rubín, Guillermo; Heetderks, William
2011-01-01
The Food and Drug Administration in collaboration with the National Institutes of Health presented a public workshop to facilitate medical device innovation in the development of the artificial pancreas (or autonomous system) for the treatment of diabetes mellitus on November 10, 2010 in Gaithersburg, Maryland. The purpose of the workshop was to discuss four aspects of artificial pancreas research and development, including: (1) the current state of device systems for autonomous systems for the treatment of diabetes mellitus; (2) challenges in developing this expert device system using existing technology; (3) clinical expectations for these systems; and (4) development plans for the transition of this device system toward an outpatient setting. The patients discussed how clinical science, system components, and regulatory policies will all need to harmonize in order to achieve the goal of seeing an AP product brought forward to the marketplace for patients to use. PMID:21722597
NASA Astrophysics Data System (ADS)
Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan
2015-06-01
Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats ( p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group, and was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group ( p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.
Chanclón, Belén; Luque, Raúl M; Córdoba-Chacón, José; Gahete, Manuel D; Pozo-Salas, Ana I; Castaño, Justo P; Gracia-Navarro, Francisco; Martínez-Fuentes, Antonio J
2013-01-01
Ghrelin-system components [native ghrelin, In1-ghrelin, Ghrelin-O-acyltransferase enzyme (GOAT) and receptors (GHS-Rs)] are expressed in a wide variety of tissues, including the pancreas, where they exert different biological actions including regulation of neuroendocrine secretions, food intake and pancreatic function. The expression of ghrelin system is regulated by metabolic conditions (fasting/obesity) and is associated with the progression of obesity and insulin resistance. Cortistatin (CORT), a neuropeptide able to activate GHS-R, has emerged as an additional link in gut-brain interplay. Indeed, we recently reported that male CORT deficient mice (cort-/-) are insulin-resistant and present a clear dysregulation in the stomach ghrelin-system. The present work was focused at analyzing the expression pattern of ghrelin-system components at pancreas level in cort-/- mice and their control littermates (cort +/+) under low- or high-fat diet. Our data reveal that all the ghrelin-system components are expressed at the mouse pancreatic level, where, interestingly, In1-ghrelin was expressed at higher levels than native-ghrelin. Thus, GOAT mRNA levels were significantly lower in cort-/- mice compared with controls while native ghrelin, In1-ghrelin and GHS-R transcript levels remained unaltered under normal metabolic conditions. Moreover, under obese condition, a significant increase in pancreatic expression of native-ghrelin, In1-ghrelin and GHS-R was observed in obese cort+/+ but not in cort-/- mice. Interestingly, insulin expression and release was elevated in obese cort+/+, while these changes were not observed in obese cort-/- mice. Altogether, our results indicate that the ghrelin-system expression is clearly regulated in the pancreas of cort+/+ and cort -/- under normal and/or obesity conditions suggesting that this system may play relevant roles in the endocrine pancreas. Most importantly, our data demonstrate, for the first time, that endogenous CORT is essential for the obesity-induced changes in insulin expression/secretion observed in mice, suggesting that CORT is a key regulatory component of the pancreatic function.
Liu, Haoqi; Tang, Wei; Li, Chao; Lv, Pinlei; Wang, Zheng; Liu, Yanlei; Zhang, Cunlei; Bao, Yi; Chen, Haiyan; Meng, Xiangying; Song, Yan; Xia, Xiaoling; Pan, Fei; Cui, Daxiang; Shi, Yongquan
2015-12-01
Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats (p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group which was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.
The Role of a Novel Topological Form of the Prion Protein in Prion Disease
2008-07-01
branes from mouse BW5174.3 cells (24) or from canine pancreas (Pro- mega). After translation, 5-l aliquots of lysate were incubated for 60 min at 4 °C in...in vitro in the presence of either murine thymoma microsomes (constructs 1–18 and 23–28) or canine pancreatic microsomes (constructs 19–22 and 29–32...in PrP 45963 canine pancreatic microsomes are used (Fig. 3B; Table I, lines 19–22). In this system, the percentage of CtmPrP is doubled by introduction
On the coherent behavior of pancreatic beta cell clusters
NASA Astrophysics Data System (ADS)
Loppini, Alessandro; Capolupo, Antonio; Cherubini, Christian; Gizzi, Alessio; Bertolaso, Marta; Filippi, Simonetta; Vitiello, Giuseppe
2014-09-01
Beta cells in pancreas represent an example of coupled biological oscillators which via communication pathways, are able to synchronize their electrical activity, giving rise to pulsatile insulin release. In this work we numerically analyze scale free self-similarity features of membrane voltage signal power density spectrum, through a stochastic dynamical model for beta cells in the islets of Langerhans fine tuned on mouse experimental data. Adopting the algebraic approach of coherent state formalism, we show how coherent molecular domains can arise from proper functional conditions leading to a parallelism with “phase transition” phenomena of field theory.
NASA Astrophysics Data System (ADS)
Ng, Luke; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randolph
2001-04-01
Biological ligands tagged with ^125 I have been used in studies including comparisons between normal and diabetic mice in vivo. In order to enhance the image of the mouse pancreas we have tested a number of pinhole collimators coupled to two types of position sensitive photomultiplier tube. Various shapes of pinhole have been tested. Results will be described and discussed. *Supported in part by The Department of Energy, The National Science Foundation, The American Diabetes Association, The Howard Hughes Foundation, The Virginia Commonwealth Health Research Board and the Thomas F. and Kate Miller Jeffress Memorial Trust.
Zhang, Lin; Chen, Wei; Dai, Yuee; Zhu, Ziyang; Liu, Qianqi
2016-07-01
Intrauterine growth retardation (IUGR) is a disorder that can result in permanent changes in the physiology and metabolism of the newborn, which increased the risk of disease in adulthood. Evidence supports IUGR as a risk factor for the development of diabetes mellitus, which could reflect changes in pancreas developmental pathways. We sought to characterize the IUGR-induced alterations of the complex pathways of pancreas development in a rat model of IUGR. We analyzed the pancreases of Sprague Dawley rats after inducing IUGR by feeding a maternal low calorie diet from gestational day 1 until term. IUGR altered the pancreatic structure, islet areas, and islet quantities and resulted in abnormal morphological changes during pancreatic development, as determined by HE staining and light microscopy. We identified multiple differentially expressed genes in the pancreas by RT-PCR. The genes of the insulin/FoxO1/Pdx1/MafA signaling pathway were first expressed at embryonic day 14 (E14). The expressions of insulin and MafA increased as the fetus grew while the expressions of FoxO1 and Pdx1 decreased. Compared with the control rats, the expressions of FoxO1, Pdx1, and MafA were lower in the IUGR rats, whereas insulin levels showed no change. Microarray profiling, in combination with quantitative real-time PCR, uncovered a subset of microRNAs that changed in their degree of expression throughout pancreatic development. In conclusion, our data support the hypothesis that IUGR influences the development of the rat pancreas. We also identified new pathways that appear to be programmed by IUGR. © 2016 by the Society for Experimental Biology and Medicine.
... Pancreas Function of the Pancreas What is the pancreas? The pancreas is a long flattened gland located ... controller of blood sugar levels. Where is the pancreas? The pancreas is located deep in the abdomen. ...
Optical clearing of the pancreas for visualization of mature β-cells and vessels in mice.
Nishimura, Wataru; Sakaue-Sawano, Asako; Takahashi, Satoru; Miyawaki, Atsushi; Yasuda, Kazuki; Noda, Yasuko
2018-05-04
Glucose metabolism is regulated by insulin, which is produced from β-cells in the pancreas. Because insulin is secreted into vessels in response to blood glucose, vascular structures of the pancreas, especially the relationship between vessels and β-cells, are important for physiological and pathological glucose metabolism. Here, we developed a system to visualize vessels surrounding mature β-cells expressing transcription factor MafA in a three-dimensional manner. Optical clearing of the pancreas prevented light scattering of fluorescence driven by the bacterial artificial chromosome (BAC)-mafA promoter in β-cells. Reconstruction of confocal images demonstrated mature β-cells and the glomerular-like structures of β-cell vasculatures labeled with DyLight 488-conjugated lectin in normal mice as well as in low-dose streptozotocin-injected diabetes model mice with reduced β-cell mass. This technological innovation of organ imaging can be used to investigate morphological changes in vascular structures during transplantation, regeneration and diabetes development.
On the Role IL-4/IL-13 Heteroreceptor Plays in Regulation of Type 1 Diabetes.
Ukah, Tobechukwu K; Cattin-Roy, Alexis N; Chen, Weirong; Miller, Mindy M; Barik, Subhasis; Zaghouani, Habib
2017-08-01
Type 1 diabetes (T1D) manifests when the insulin-producing pancreatic β cells are destroyed as a consequence of an inflammatory process initiated by lymphocytes of the immune system. The NOD mouse develops T1D spontaneously and serves as an animal model for human T1D. The IL-4Rα/IL-13Rα1 heteroreceptor (HR) serves both IL-4 and IL-13 cytokines, which are believed to function as anti-inflammatory cytokines in T1D. However, whether the HR provides a responsive element to environmental (i.e., physiologic) IL-4/IL-13 in the regulation of peripheral tolerance and the development of T1D has yet to be defined. In this study, NOD mice deficient for the HR have been generated by means of IL-13Rα1 gene disruption and used to determine whether such deficiency affects the development of T1D. Surprisingly, the findings indicate that NOD mice lacking the HR (13R -/- ) display resistance to T1D as the rise in blood glucose level and islet inflammation were significantly delayed in these HR-deficient relative to HR-sufficient (13R +/+ ) mice. In fact, the frequency and spleen-to-pancreas dynamics of both Th1 and Th17 cells were affected in 13R -/- mice. This is likely due to an increase in the frequency of mTGFβ + Foxp3 int regulatory T cells and the persistence of CD206 + macrophages in the pancreas as both types of cells confer resistance to T1D upon transfer to 13R +/+ mice. These findings reveal new insights as to the role environmental IL-4/IL-13 and the HR play in peripheral tolerance and the development of T1D. Copyright © 2017 by The American Association of Immunologists, Inc.
An embryonic chick (Gallus domesticus) whole-organ pancreas culture system was developed for use as an in vitro model to study cholinergic regulation of exocrine pancreatic function. The culture system was examined for characteristic exocrine function and viability by measuring e...
Sidenius, Ulrik; Heegaard, Niels H.
2016-01-01
Gluten promotes type 1 diabetes in nonobese diabetic (NOD) mice and likely also in humans. In NOD mice and in non-diabetes-prone mice, it induces inflammation in the pancreatic lymph nodes, suggesting that gluten can initiate inflammation locally. Further, gliadin fragments stimulate insulin secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally and intravenously administered 33-mer and 19-mer gliadin peptide to NOD, BALB/c, and C57BL/6 mice and found that the peptides readily crossed the intestinal barrier in all strains. Several degradation products were found in the pancreas by mass spectroscopy. Notably, the exocrine pancreas incorporated large amounts of radioactive label shortly after administration of the peptides. The study demonstrates that, even in normal animals, large gliadin fragments can reach the pancreas. If applicable to humans, the increased gut permeability in prediabetes and type 1 diabetes patients could expose beta cells directly to gliadin fragments. Here they could initiate inflammation and induce beta cell stress and thus contribute to the development of type 1 diabetes. PMID:27795959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William H.; Hartmann-Siantar, Christine; Fisher, Darrell R.
2005-08-01
Several short-lived, high-energy beta emitters are being proposed as the radionuclide components for molecular-targeted potential cancer therapeutic agents. The laboratory mice used to determine the efficacy of these new agents have organs that are relatively small compared to the ranges of these high-energy particles. The dosimetry model developed by Hui et al. was extended to provide realistic beta-dose estimates for organs in mice that received therapeutic radiopharmaceuticals containing 90Y, 188Re, 166Ho, 149Pm, 64Cu, and 177 Lu. Major organs in this model included the liver, spleen, kidneys, lungs, heart, stomach, small and large bowel, thyroid, pancreas, bone, marrow, carcass, and amore » 0.025-g tumor. The study as reported in this paper verifies their results for 90Y and extends them by using their organ geometry factors combined with newly calculated organ self-absorbed fractions from PEREGRINE and MCNP. PEREGRINE and MCNP agree to within 8% for the worst-case organ with average differences (averaged over all organs) decreasing from 5% for 90Y to 1% for 177Lu. When used with typical biodistribution data, the three different models predict doses that are in agreement to within 5% for the worst-case organ. The beta-absorbed fractions and cross-organ-deposited energy provided in this paper can be used by researchers to predict mouse-organ doses and should contribute to an improved understanding of the relationship between dose and radiation toxicity in mouse models where use of these isotopes is favorable.« less
Dai, Xia; Luo, Zu-Chun; Zhai, Lu; Zhao, Wen-Piao; Huang, Feng
2018-05-09
Insulin injection is the main treatment in patients with type 1 diabetes mellitus (T1DM). Even though continuous glucose monitoring has significantly improved the conditions of these patients, limitations still exist. To further enhance glucose control in patients with T1DM, an artificial pancreas has been developed. We aimed to systematically compare artificial pancreas with its control group during a 24-h basis in patients with T1DM. Electronic databases were carefully searched for English publications comparing artificial pancreas with its control group. Overall daytime and nighttime glucose parameters were considered as the endpoints. Data were evaluated by means of weighted mean differences (WMDs) and 95% confidence intervals (CIs) generated by RevMan 5.3 software. A total number of 354 patients were included. Artificial pancreas significantly maintained a better mean concentration of glucose (WMD - 1.03, 95% CI - 1.32 to - 0.75; P = 0.00001). Time spent in the hypoglycemic phase was also significantly lower (WMD - 1.23, 95% CI - 1.56 to - 0.91; P = 0.00001). Daily insulin requirement also significantly favored artificial pancreas (WMD - 3.43, 95% CI - 4.27 to - 2.59; P = 0.00001). Time spent outside the euglycemic phase and hyperglycemia phase (glucose > 10.0 mmol/L) also significantly favored artificial pancreas. Also, the numbers of hypoglycemic events were not significantly different. Artificial pancreas might be considered an effective and safe alternative to be used during a 24-h basis in patients with T1DM.
Defective prolactin signaling impairs pancreatic β-cell development during the perinatal period
Auffret, Julien; Freemark, Michael; Carré, Nadège; Mathieu, Yves; Tourrel-Cuzin, Cécile; Lombès, Marc; Movassat, Jamileh
2013-01-01
Prolactin (PRL) and placental lactogens stimulate β-cell replication and insulin production in pancreatic islets and insulinoma cells through binding to the PRL receptor (PRLR). However, the contribution of PRLR signaling to β-cell ontogeny and function in perinatal life and the effects of the lactogens on adaptive islet growth are poorly understood. We provide evidence that expansion of β-cell mass during both embryogenesis and the postnatal period is impaired in the PRLR−/− mouse model. PRLR−/− newborns display a 30% reduction of β-cell mass, consistent with reduced proliferation index at E18.5. PRL stimulates leucine incorporation and S6 kinase phosphorylation in INS-1 cells, supporting a role for β-cell mTOR signaling in PRL action. Interestingly, a defect in the development of acini is also observed in absence of PRLR signaling, with a sharp decline in cellular size in both endocrine and exocrine compartments. Of note, a decrease in levels of IGF-II, a PRL target, in the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes, is associated with a lack of PRL-mediated β-cell proliferation in embryonic pancreatic buds. Reduced pancreatic IGF-II expression in both rat and mouse models suggests that this factor may constitute a molecular link between PRL signaling and cell ontogenesis. Together, these results provide evidence that PRL signaling is essential for pancreas ontogenesis during the critical perinatal window responsible for establishing functional β-cell reserve. PMID:24064341
Radi, M; Gaubert, J; Cristol-Gaubert, R; Baecker, V; Travo, P; Prudhomme, M; Godlewski, G; Prat-Pradal, D
2010-01-01
The goal in this paper was to rebuild a three dimensional (3D) reconstruction of the dorsal and ventral pancreatic buds, in the human embryos, at Carnegie stages 15-23. The early development of the pancreas is studied by tissue observation and reconstruction by a computer-assisted method, using a light micrograph images from consecutive serial sagittal sections (diameter 7 microm) of ten human embryos ranging from Carnegie stages 15-23, CRL 7-27 mm, fixed, dehydrated and embedded in paraffin, were stained alternately with haematoxylin-eosin or Heindenhain'Azan. The images were digitalized by Canon Camera 350 EOS D. The serial views were aligned automatically by software, manual alignment was performed, the data were analysed following segmentation and threshold. The two buds were clearly identified at stage 15. In stage 16, both pancreatic buds were in final position, and begin to merge in stage 17. From stage 18 to the stage 23, surrounding connective tissue differentiated. In the stage 23, the morphology of the pancreas was definitive. The superior portion of the anterior face of the pancreas's head was arising from the dorsal bud. The rest of the head including the uncinate process emanated from the ventral bud. The 3D computer-assisted reconstruction of the human pancreas visualized the relationships between the two pancreatic buds. This explains the disposition and the modality of the components fusion. This embryologic development permits a better understanding of congenital abnormalities.
Implication of epigenetics in pancreas development and disease.
Quilichini, Evans; Haumaitre, Cécile
2015-12-01
Pancreas development is controlled by a complex interaction of signaling pathways and transcription factor networks that determine pancreatic specification and differentiation of exocrine and endocrine cells. Epigenetics adds a new layer of gene regulation. DNA methylation, histone modifications and non-coding RNAs recently appeared as important epigenetic factors regulating pancreas development. In this review, we report recent findings obtained by analyses in model organisms as well as genome-wide approaches that demonstrate the role of these epigenetic regulators in the control of exocrine and endocrine cell differentiation, identity, function, proliferation and regeneration. We also highlight how altered epigenetic processes contribute to pancreatic disorders: diabetes and pancreatic cancer. Uncovering these epigenetic events can help to better understand these diseases, provide novel therapeutical targets for their treatment, and improve cell-based therapies for diabetes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kilic, Gamze; Alvarez-Mercado, Ana I; Zarrouki, Bader; Opland, Darren; Liew, Chong Wee; Alonso, Laura C; Myers, Martin G; Jonas, Jean-Christophe; Poitout, Vincent; Kulkarni, Rohit N; Mauvais-Jarvis, Franck
2014-01-01
The female steroid, 17β-estradiol (E2), is important for pancreatic β-cell function and acts via at least three estrogen receptors (ER), ERα, ERβ, and the G-protein coupled ER (GPER). Using a pancreas-specific ERα knockout mouse generated using the Cre-lox-P system and a Pdx1-Cre transgenic line (PERαKO ⁻/⁻), we previously reported that islet ERα suppresses islet glucolipotoxicity and prevents β-cell dysfunction induced by high fat feeding. We also showed that E2 acts via ERα to prevent β-cell apoptosis in vivo. However, the contribution of the islet ERα to β-cell survival in vivo, without the contribution of ERα in other tissues is still unclear. Using the PERαKO ⁻/⁻ mouse, we show that ERα mRNA expression is only decreased by 20% in the arcuate nucleus of the hypothalamus, without a parallel decrease in the VMH, making it a reliable model of pancreas-specific ERα elimination. Following exposure to alloxan-induced oxidative stress in vivo, female and male PERαKO ⁻/⁻ mice exhibited a predisposition to β-cell destruction and insulin deficient diabetes. In male PERαKO ⁻/⁻ mice, exposure to E2 partially prevented alloxan-induced β-cell destruction and diabetes. ERα mRNA expression was induced by hyperglycemia in vivo in islets from young mice as well as in cultured rat islets. The induction of ERα mRNA by hyperglycemia was retained in insulin receptor-deficient β-cells, demonstrating independence from direct insulin regulation. These findings suggest that induction of ERα expression acts to naturally protect β-cells against oxidative injury.
He, Chuan; Myers, Mark A; Forbes, Briony E; Grützner, Frank
2015-01-01
Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution. PMID:25682842
He, Chuan; Myers, Mark A; Forbes, Briony E; Grützner, Frank
2015-04-01
Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution. © 2015 Anatomical Society.
Mohammadi Ayenehdeh, Jamal; Niknam, Bahareh; Hashemi, Seyed Mahmoud; Rahavi, Hossein; Rezaei, Nima; Soleimani, Masoud; Tajik, Nader
2017-07-01
Islet transplantation could be an ideal alternative treatment to insulin therapy for type 1 diabetes Mellitus (T1DM). This clinical and experimental field requires a model that covers problems such as requiring a large number of functional and viable islets, the optimal transplantation site, and the prevention of islet dispersion. Hence, the methods of choice for isolation of functional islets and transplantation are crucial. The present study has introduced an experimental model that overcomes some critical issues in islet transplantation, including in situ pancreas perfusion by digestive enzymes through common bile duct. In comparison with conventional methods, we inflated the pancreas in Petri dishes with only 1 ml collagenase type XI solution, which was followed by hand-picking isolation or Ficoll gradient separation to purify the islets. Then we used a hydrogel composite in which the islets were embedded and transplanted into the peritoneal cavity of the streptozotocin-induced diabetic C57BL/6 mice. As compared to the yield of the classical methods, in our modified technique, the mean yield of isolation was about 130-200 viable islets/mouse pancreas. In vitro glucose-mediated insulin secretion assay indicated an appropriate response in isolated islets. In addition, data from in vivo experiments revealed that the allograft remarkably maintained blood glucose levels under 400 mg/dl and hydrogel composite prevents the passage of immune cells. In the model presented here, the rapid islet isolation technique and the application of biomimetic hydrogel wrapping of islets could facilitate islet transplantation procedures.
Mathew, Esha; Collins, Meredith A; Fernandez-Barrena, Maite G; Holtz, Alexander M; Yan, Wei; Hogan, James O; Tata, Zachary; Allen, Benjamin L; Fernandez-Zapico, Martin E; di Magliano, Marina Pasca
2014-10-03
Pancreatic cancer, one of the deadliest human malignancies, is almost uniformly associated with a mutant, constitutively active form of the oncogene Kras. Studies in genetically engineered mouse models have defined a requirement for oncogenic KRAS in both the formation of pancreatic intraepithelial neoplasias, the most common precursor lesions to pancreatic cancer, and in the maintenance and progression of these lesions. Previous work using an inducible model allowing tissue-specific and reversible expression of oncogenic Kras in the pancreas indicates that inactivation of this GTPase at the pancreatic intraepithelial neoplasia stage promotes pancreatic tissue repair. Here, we extend these findings to identify GLI1, a transcriptional effector of the Hedgehog pathway, as a central player in pancreatic tissue repair upon Kras inactivation. Deletion of a single allele of Gli1 results in improper stromal remodeling and perdurance of the inflammatory infiltrate characteristic of pancreatic tumorigenesis. Strikingly, this partial loss of Gli1 affects activated fibroblasts in the pancreas and the recruitment of immune cells that are vital for tissue recovery. Analysis of the mechanism using expression and chromatin immunoprecipitation assays identified a subset of cytokines, including IL-6, mIL-8, Mcp-1, and M-csf (Csf1), as direct GLI1 target genes potentially mediating this phenomenon. Finally, we demonstrate that canonical Hedgehog signaling, a known regulator of Gli1 activity, is required for pancreas recovery. Collectively, these data delineate a new pathway controlling tissue repair and highlight the importance of GLI1 in regulation of the pancreatic microenvironment during this cellular process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
SEL1L Regulates Adhesion, Proliferation and Secretion of Insulin by Affecting Integrin Signaling
Diaferia, Giuseppe R.; Cirulli, Vincenzo; Biunno, Ida
2013-01-01
SEL1L, a component of the endoplasmic reticulum associated degradation (ERAD) pathway, has been reported to regulate the (i) differentiation of the pancreatic endocrine and exocrine tissue during the second transition of mouse embryonic development, (ii) neural stem cell self-renewal and lineage commitment and (iii) cell cycle progression through regulation of genes related to cell-matrix interaction. Here we show that in the pancreas the expression of SEL1L is developmentally regulated, such that it is readily detected in developing islet cells and in nascent acinar clusters adjacent to basement membranes, and becomes progressively restricted to the islets of Langherans in post-natal life. This peculiar expression pattern and the presence of two inverse RGD motifs in the fibronectin type II domain of SEL1L protein indicate a possible interaction with cell adhesion molecules to regulate islets architecture. Co-immunoprecipitation studies revealed SEL1L and ß1-integrin interaction and, down-modulation of SEL1L in pancreatic ß-cells, negatively influences both cell adhesion on selected matrix components and cell proliferation likely due to altered ERK signaling. Furthermore, the absence of SEL1L protein strongly inhibits glucose-stimulated insulin secretion in isolated mouse pancreatic islets unveiling an important role of SEL1L in insulin trafficking. This phenotype can be rescued by the ectopic expression of the ß1-integrin subunit confirming the close interaction of these two proteins in regulating the cross-talk between extracellular matrix and insulin signalling to create a favourable micro-environment for ß-cell development and function. PMID:24324549
Altered Volume, Morphology and Composition of the Pancreas in Type 2 Diabetes
Macauley, Mavin; Percival, Katie; Thelwall, Peter E.; Hollingsworth, Kieren G.; Taylor, Roy
2015-01-01
Objective Although impairment in pancreatic insulin secretion is known to precede the clinical diagnosis of type 2 diabetes by up to a decade, fasting blood glucose concentration only rises abnormally once the impairment reaches a critical threshold. Despite its centrality to the pathogenesis of type 2 diabetes, the pancreas is the least studied organ due to its inaccessible anatomical position. Previous ultrasound and CT studies have suggested a possible decrease in pancreatic volume in type 2 diabetes. However, ultrasound techniques are relatively insensitive while CT uses ionizing radiation, making these modalities unsuitable for precise, longitudinal studies designed to explore the underlying mechanisms of type 2 diabetes. Hence there is a need to develop a non-invasive, safe and precise method to quantitate pancreas volume. Methods We developed and applied magnetic resonance imaging at 3.0T to obtain balanced turbo field echo (BTFE) structural images of the pancreas, together with 3-point Dixon images to quantify pancreatic triglyceride content. Pancreas volume, morphology and triglyceride content was quantified in a group of 41 subjects with well-controlled type 2 diabetes (HbA1c ≤ 7.6%) taking only metformin (duration of T2DM 5.7±0.7years), and a control group of 14 normal glucose tolerance subjects matched for age, weight and sex. Results The mean pancreatic volume was found to be 33% less in type 2 diabetes than in normal glucose tolerant subjects (55.5±2.8 vs. 82.6±4.8cm3; p<0.0001). Pancreas volume was positively correlated with HOMA-β in the type 2 diabetes subjects (r = 0.31; p = 0.03) and controls (r = 0.46; p = 0.05) considered separately; and in the whole population studied (r = 0.37; p = 0.003). In type 2 diabetes, the pancreas was typically involuted with a serrated border. Pancreatic triglyceride content was 23% greater (5.4±0.3 vs. 4.4±0.4%; p = 0.02) in the type 2 diabetes group. Conclusion This study describes for the first time gross abnormalities of the pancreas in early type 2 diabetes and quantifies the decrease in pancreas size, the irregular morphology and increase in fat content. PMID:25950180
Cao, Y C; Yang, X J; Guo, L; Zheng, C; Wang, D D; Cai, C J; Liu, S M; Yao, J H
2018-05-01
This study aimed to investigate the effect of dietary supplementation with leucine and phenylalanine on pancreas development, enzyme activity, and related gene expression in male Holstein calves. Twenty male Holstein calves [1 d of age, 38 ± 3 kg of body weight (BW)] were randomly assigned to 1 of the following 4 treatment groups with 5 calves in each group: control, leucine supplementation (1.435 g/L of milk), phenylalanine supplementation (0.725 g/L of milk), and leucine and phenylalanine (1.435 + 0.725 g/L of milk). The diets were made isonitrogenous with the inclusion of alanine in each respective treatment. The feeding trial lasted for 8 wk, including 1 wk for adaption and 7 wk for the feeding experiment. Leucine tended to increase the concentration of total pancreatic protein (mg/kg of BW). Phenylalanine increased the concentrations of plasma insulin, cholecystokinin, and pancreatic DNA (mg/g) and the expression of trypsin gene but decreased the pancreatic protein:DNA ratio and tended to decrease the pancreas weight (g/kg of BW). No differences were observed in total pancreatic DNA (mg/pancreas and mg/kg of BW), pancreatic protein (mg/pancreas), or activities of α-amylase, trypsin, and lipase. The relative expression levels of the genes encoding α-amylase and lipase did not differ among the 4 groups. The supplementation of both leucine and phenylalanine showed an interaction on the pancreas weight (g and g/kg of BW) and a tendency of an interaction on the pancreatic protein concentration (mg/g of pancreas and mg/kg of BW) and the plasma glucose concentration. Leucine tended to increase the size of the pancreatic cells, whereas phenylalanine tended to increase the number of pancreatic cells. However, neither AA affected the activities of the pancreatic enzymes of the calves. These results indicate that leucine and phenylalanine supplementation in milk-fed Holstein calves differentially affect pancreatic growth and development. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mohankumar, Suresh K; O'Shea, Tim; McFarlane, James R
2012-05-07
Pterocarpus marsupium Roxb. (PM) is an Ayurvedic traditional medicine well known for its antidiabetic potential. To fractionate the antidiabetic constituent(s) of the aqueous of extract of PM hardwood (PME). Bio-assay methods including, insulin secretion from mouse pancreas and glucose uptake by mouse skeletal muscle, were used to determine and fractionate the antidiabetic activity of PME. Results obtained from the in vitro experiments were then verified by examining the effect of PME on glucose clearance in normoglycemic, non-diabetic sheep in vivo. Exposure of mouse pancreatic and muscle tissues to PME stimulated the insulin secretion and glucose uptake, respectively, in a concentration-dependent manner. PME-mediated muscle glucose uptake was not potentiated in the presence of insulin indicating that PME acts via pathways which are utilized by insulin. Bio-assay-guided fractionation of PME yielded a high molecular weight fraction which had potent antidiabetic properties in vitro, and in in vivo. Our findings, we believe for the first time, provide novel insights for the antidiabetic constituents of PM and demonstrate that a high molecular weight constituent(s) of PM has potent insulinotrophic and insulin-like properties. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Culturing primary mouse pancreatic ductal cells.
Reichert, Maximilian; Rhim, Andrew D; Rustgi, Anil K
2015-06-01
The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles ductal cells morphologically. To study pancreatic ductal cell (PDC) and pancreatic intraepithelial neoplasia (PanIN)/PDAC biology, it is essential to have reliable in vitro culture conditions. Here we describe a methodology to isolate, culture, and passage PDCs and duct-like cells from the mouse pancreas. It can be used to isolate cells from genetically engineered mouse models (GEMMs), providing a valuable tool to study disease models in vitro to complement in vivo findings. The culture conditions allow epithelial cells to outgrow fibroblast and other "contaminating" cell types within a few passages. However, the resulting cultures, although mostly epithelial, are not completely devoid of fibroblasts. Regardless, this protocol provides guidelines for a robust in vitro culture system to isolate, maintain, and expand primary pancreatic ductal epithelial cells. It can be applied to virtually all GEMMs of pancreatic disease and other diseases and cancers that arise from ductal structures. Because most carcinomas resemble ductal structures, this protocol has utility in the study of other cancers in addition to PDAC, such as breast and prostate cancers. © 2015 Cold Spring Harbor Laboratory Press.
Yao, Jun; Zhang, Lu-Lin; Huang, Xu-Mei; Li, Wen-Yao; Gao, She-Gan
2017-06-07
To detect the expression of pleiotrophin (PTN) and N-syndecan in pancreatic cancer and analyze their association with tumor progression and perineural invasion (PNI). An orthotopic mouse model of pancreatic cancer was created by injecting tumor cells subcapsularly in a root region of the pancreas beneath the spleen. Pancreatic cancer tissues were taken from 36 mice that survived for more than 90 d. PTN and N-syndecan proteins were detected by immunohistochemistry and analyzed for their correlation with pathological features, PNI, and prognosis. The expression rates of PTN and N-syndecan proteins were 66.7% and 61.1%, respectively, in cancer tissue. PTN and N-syndecan expression was associated with PNI ( P = 0.019 and P = 0.032, respectively). High PTN expression was closely associated with large bloody ascites ( P = 0.009), liver metastasis ( P = 0.035), and decreased survival time ( P = 0.022). N-syndecan expression was significantly associated with tumor size ( P = 0.025), but not with survival time ( P = 0.539). High PTN and N-syndecan expression was closely associated with metastasis and poor prognosis, suggesting that they may promote tumor progression and PNI in the orthotopic mouse model of pancreatic cancer.
Lee, Jonghyeob; Snyder, Emily R.; Liu, Yinghua; Gu, Xueying; Wang, Jing; Flowers, Brittany M.; Kim, Yoo Jung; Park, Sangbin; Szot, Gregory L.; Hruban, Ralph H.; Longacre, Teri A.; Kim, Seung K.
2017-01-01
Development of systems that reconstitute hallmark features of human pancreatic intraepithelial neoplasia (PanINs), the precursor to pancreatic ductal adenocarcinoma, could generate new strategies for early diagnosis and intervention. However, human cell-based PanIN models with defined mutations are unavailable. Here, we report that genetic modification of primary human pancreatic cells leads to development of lesions resembling native human PanINs. Primary human pancreas duct cells harbouring oncogenic KRAS and induced mutations in CDKN2A, SMAD4 and TP53 expand in vitro as epithelial spheres. After pancreatic transplantation, mutant clones form lesions histologically similar to native PanINs, including prominent stromal responses. Gene expression profiling reveals molecular similarities of mutant clones with native PanINs, and identifies potential PanIN biomarker candidates including Neuromedin U, a circulating peptide hormone. Prospective reconstitution of human PanIN development from primary cells provides experimental opportunities to investigate pancreas cancer development, progression and early-stage detection. PMID:28272465
Russ, Holger A; Landsman, Limor; Moss, Christopher L; Higdon, Roger; Greer, Renee L; Kaihara, Kelly; Salamon, Randy; Kolker, Eugene; Hebrok, Matthias
2016-01-01
Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation.
Russ, Holger A.; Landsman, Limor; Moss, Christopher L.; Higdon, Roger; Greer, Renee L.; Kaihara, Kelly; Salamon, Randy; Kolker, Eugene; Hebrok, Matthias
2016-01-01
Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation. PMID:26681951
An analysis of predictors of morbidity after stab wounds of the pancreas in 78 consecutive injuries
Kotze, UK; Sayed, R; Navsaria, PH; Nicol, AJ
2014-01-01
Introduction Penetrating injuries of the pancreas may result in serious complications. This study assessed the factors influencing morbidity after stab wounds of the pancreas. Methods A retrospective univariate cohort analysis was carried out of 78 patients (74 men) with a median age of 26 years (range: 16–62 years) with stab wounds of the pancreas between 1982 and 2011. Results The median revised trauma score (RTS) was 7.8 (range: 2.0–7.8). Injuries involved the body (n=36), tail (n=24), head/uncinate process (n=16) and neck (n=2) of the pancreas. All 78 patients underwent a laparotomy. Sixty-five patients had AAST (American Association for the Surgery of Trauma) grade I or II pancreatic injuries and thirteen had grade III, IV or V injuries. Eight patients (10.3%) had an initial damage control operation. Sixty-nine patients (84.6%) had drainage of the pancreas only, six had a distal pancreatectomy and one had a pancreaticoduodenectomy. Most pancreas related complications occurred in patients with AAST grade III injuries; eight patients (10.2%) developed a pancreatic fistula. Four patients (5.1%) died. Grade of pancreatic injury (AAST grade I–II vs grade III–V injuries, p<0.001), RTS (odds ratio [OR]: 5.01, 95% confidence interval [CI]: 1.46–17.19, p<0.007), presence of shock on admission (OR: 3.31, 95% CI: 1.16–9.42, p=0.022), need for a blood transfusion (OR: 6.46, 95% CI: 2.40–17.40, p<0.001) and repeat laparotomy (p<0.001) had a significant influence on the development of general complications. Conclusions Although mortality was low after a pancreatic stab wound, morbidity was high. Increasing AAST grade of injury, high RTS, shock on admission to hospital, need for blood transfusion and repeat laparotomy were significant factors related to morbidity. PMID:25198973
Isolation and culture of human multipotent stromal cells from the pancreas.
Seeberger, Karen L; Eshpeter, Alana; Korbutt, Gregory S
2011-01-01
Mesenchymal stem cells, also termed multipotent mesenchymal stromal cells (MSCs), can be isolated from most adult tissues. Although the exact origin of MSCs expanded from the human pancreas has not been resolved, we have developed protocols to isolate and expand MSCs from human pancreatic tissue that remains after islet procurement. Similar to techniques used to isolate MSCs from bone marrow, pancreatic MSCs are isolated based on their cell adherence, expression of several cell surface antigens, and multilineage differentiation. The protocols for isolating, characterizing, and differentiating MSCs from the pancreas are presented in this chapter.
Gruessner, Angelika C; Gruessner, Rainer W G
2018-06-01
Successful pancreas transplantation is still the only method to restore short-term and long-term insulin independence and good metabolic control for patients with diabetes. Since the first transplant in 1966, tremendous progress in outcome was made; however, transplant numbers have declined since 2004. This article describes the development and risk factors of pancreas transplantation with or without a kidney graft between 2001 and 2016. Patient survival and graft function improved significantly owing to careful recipient and donor selection, which reduced technical failure and immunologic graft loss rates. Published by Elsevier Inc.
Jennings, Rachel E; Berry, Andrew A; Strutt, James P; Gerrard, David T; Hanley, Neil A
2015-09-15
A wealth of data and comprehensive reviews exist on pancreas development in mammals, primarily mice, and other vertebrates. By contrast, human pancreatic development has been less comprehensively reviewed. Here, we draw together those studies conducted directly in human embryonic and fetal tissue to provide an overview of what is known about human pancreatic development. We discuss the relevance of this work to manufacturing insulin-secreting β-cells from pluripotent stem cells and to different aspects of diabetes, especially permanent neonatal diabetes, and its underlying causes. © 2015. Published by The Company of Biologists Ltd.
Brundu, Serena; Nencioni, Lucia; Celestino, Ignacio; Coluccio, Paolo; Palamara, Anna Teresa; Fraternale, Alessandra
2016-01-01
A depletion of reduced glutathione (GSH) has been observed in pathological conditions and in aging. Measuring GSH in tissues using mouse models is an excellent way to assess GSH depletion and the potential therapeutic efficacy of drugs used to maintain and/or restore cellular redox potential. A high performance liquid chromatography (HPLC) method for the simultaneous determination of GSH and cysteine (Cys) in mouse organs was validated according to USA and European standards. The method was based on separation coupled with ultraviolet detection and precolumn derivatization with 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB). The required validation parameters, that are, selectivity, linearity, lower limit of quantification, precision, accuracy, recovery, and stability, were studied for spleen, lymph nodes, pancreas, and brain. The results showed that the lower limits of quantification were 0.313 μM and 1.25 μM for Cys and GSH, respectively. Intraday and interday precisions were less than 11% and 14%, respectively, for both compounds. The mean extraction recoveries of Cys and GSH from all organs were more than 93% and 86%, respectively. Moreover, the stability of both analytes during sample preparation and storage was demonstrated. The method was accurate, reliable, consistent, and reproducible and it was useful to determine Cys and GSH in the organs of different mouse strains. PMID:26885246
Digimouse: a 3D whole body mouse atlas from CT and cryosection data
Dogdas, Belma; Stout, David; Chatziioannou, Arion F; Leahy, Richard M
2010-01-01
We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html. PMID:17228106
Gorczyca, Janusz; Tomaszewski, Krzysztof A; Henry, Brandon Michael; Pękala, Przemysław Andrzej; Pasternak, Artur; Mizia, Ewa; Walocha, Jerzy A
2017-01-01
Detailed knowledge on the development of the pancreas is required to understand the variability in its blood supply. The aim of our study was to use the corrosion casting method combined with scanning electron microscopy to study the organization of the pancreatic microcirculation in human fetuses. The study was conducted on 28 human fetuses aged 18 to 25 gestational weeks. The fetal vasculature was appropriately prepared and then perfused with a low-viscosity Mercox CL-2R resin. The prepared vascular casts of the surface of the fetal pancreas were then examined in scanning electron microscopy and digitally analyzed. The lobular structure of the pancreas has a strong impact on the organization of the microvasculature. The lobular networks were supplied by the interlobular arteries and drained by the interlobular veins. The vascular system of fetal human pancreas has many portal connections, including islet-lobule and islet-duct portal circulations, which likely play a key role in the coordination of both endocrine and exocrine pancreatic functions. The organization of the microvascular network of the human pancreas in fetuses aged 18 to 25 gestational weeks is very similar to that of an adult but with more prominent features suggesting active processes of angiogenesis and vascular remodeling.
Transcriptional regulation of pancreas development and β-cell function [Review].
Fujitani, Yoshio
2017-05-30
A small number of cells in the adult pancreas are endocrine cells. They are arranged in clusters called islets of Langerhans. The islets make insulin, glucagon, and other endocrine hormones, and release them into the blood circulation. These hormones help control the level of blood glucose. Therefore, a dysfunction of endocrine cells in the pancreas results in impaired glucose homeostasis, or diabetes mellitus. The pancreas is an organ that originates from the evaginations of pancreatic progenitor cells in the epithelium of the foregut endoderm. Pancreas organogenesis and maturation of the islets of Langerhans occurs via a coordinated and complex interplay of transcriptional networks and signaling molecules, which guide a stepwise and repetitive process of the propagation of progenitor cells and their maturation, eventually resulting in a fully functional organ. Increasing our understanding of the extrinsic, as well as intrinsic mechanisms that control these processes should facilitate the efforts to generate surrogate β cells from ES or iPS cells, or to reactivate the function of important cell types within pancreatic islets that are lost in diabetes.
The Role of Tobacco-Derived Carcinogens in Pancreas Cancer
Lochan, Rajiv; Reeves, Helen L.; Daly, Anne K.; Charnley, Richard M.
2011-01-01
The extremely poor outcome from pancreas cancer is well known. However, its aetiology less well appreciated, and the molecular mechanisms underlying this are poorly understood. Tobacco usage is one of the strongest risk factors for this disease, and this is a completely avoidable hazard. In addition, there are well described hereditary diseases which predispose, and familial pancreas cancer. We have sought here to summarise the role of tobacco-derived carcinogens and the mode of their tumorigenic action on the pancreas. There is compelling evidence from animal and human studies (laboratory including cell line studies and epidemiologic) that tobacco derived carcinogens cause pancreas cancer. However, the manner in which they do so is not entirely apparent. There is also compelling evidence that synergism with genetic and other life-style factors—like diet obesity—results in a multifactorial causation of the disease. Ascertaining the role of tobacco carcinogens in the development of this cancer and their interaction with other risk factors will enable novel therapeutic and preventative strategies to improve outcome from this appalling malignancy. PMID:22084727
Long-term Outcomes for Living Pancreas Donors in the Modern Era.
Kirchner, Varvara A; Finger, Erik B; Bellin, Melena D; Dunn, Ty B; Gruessner, Rainer W G; Hering, Bernhard J; Humar, Abhinav; Kukla, Aleksandra K; Matas, Arthur J; Pruett, Timothy L; Sutherland, David E R; Kandaswamy, Raja
2016-06-01
Living donor segmental pancreas transplants (LDSPTx) have been performed selectively to offer a preemptive transplant option for simultaneous pancreas-kidney recipients and to perform a single operation decreasing the cost of pancreas after kidney transplant. For solitary pancreas transplants, this option historically provided a better immunologic match. Although short-term donor outcomes have been documented, there are no long-term studies. We studied postdonation outcomes in 46 segmental pancreas living donors. Surgical complications, risk factors (RF) for development of diabetes mellitus (DM) and quality of life were studied. A risk stratification model (RSM) for DM was created using predonation and postdonation RFs. Recipient outcomes were analyzed. Between January 1, 1994 and May 1, 2013, 46 LDSPTx were performed. Intraoperatively, 5 (11%) donors received transfusion. Overall, 9 (20%) donors underwent splenectomy. Postoperative complications included: 6 (13%) peripancreatic fluid collections and 2 (4%) pancreatitis episodes. Postdonation, DM requiring oral hypoglycemics was diagnosed in 7 (15%) donors and insulin-dependent DM in 5 (11%) donors. RSM with three predonation RFs (oral glucose tolerance test, basal insulin, fasting plasma glucose) and 1 postdonation RF, greater than 15% increase in body mass index from preoperative (Δ body mass index >15), predicted 12 (100%) donors that developed postdonation DM. Quality of life was not significantly affected by donation. Mean graft survival was 9.5 (±4.4) years from donors without and 9.6 (±5.4) years from donors with postdonation DM. LDSPTx can be performed with good recipient outcomes. The donation is associated with donor morbidity including impaired glucose control. Donor morbidity can be minimized by using RSM and predonation counseling on life style modifications postdonation.
Ultra-high sensitivity imaging of cancer using SERRS nanoparticles
NASA Astrophysics Data System (ADS)
Kircher, Moritz F.
2016-05-01
"Surface-enhanced Raman spectroscopy" (SERS) nanoparticles have gained much attention in recent years for in silico, in vitro and in vivo sensing applications. Our group has developed novel generations of biocompatible "surfaceenhanced resonance Raman spectroscopy" (SERRS) nanoparticles as novel molecular imaging agents. Via rigorous optimization of the different variables contributing to the Raman enhancement, we were able to design SERRS nanoparticles with so far unprecedented sensitivity of detection under in vivo imaging conditions (femto-attomolar range). This has resulted in our ability to visualize, with a single nanoparticle, many different cancer types (after intravenous injection) in mouse models. The cancer types we have tested so far include brain, breast, esophagus, stomach, pancreas, colon, sarcoma, and prostate cancer. All mouse models used are state-of-the-art and closely mimic the tumor biology in their human counterparts. In these animals, we were able to visualize not only the bulk tumors, but importantly also microscopic extensions and locoregional satellite metastases, thus delineating for the first time the true extent of tumor spread. Moreover, the particles enable the detection of premalignant lesions. Given their inert composition they are expected to have a high chance for clinical translation, where we envision them to have an impact in various scenarios ranging from early detection, image-guidance in open or minimally invasive surgical procedures, to noninvasive imaging in conjunction with spatially offset (SESORS) Raman detection devices.
Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes
Gunawardana, Subhadra C.; Benninger, Richard K. P.; Piston, David W.
2009-01-01
Islet transplantation is a promising therapeutic approach for type 1 diabetes. However, current success rates are low due to progressive graft failure in the long term and inability to monitor graft development in vivo. Other limitations include the necessity of initial invasive surgery and continued immunosuppressive therapy. We report an alternative transplantation strategy with the potential to overcome these problems. This technique involves transplantation of embryonic pancreatic tissue into recipients’ subcutaneous space, eliminating the need for invasive surgery and associated risks. Current results in mouse models of type 1 diabetes show that embryonic pancreatic transplants in the subcutaneous space can normalize blood glucose homeostasis and achieve extensive endocrine differentiation and vascularization. Furthermore, modern imaging techniques such as two-photon excitation microscopy (TPEM) can be employed to monitor transplants through the intact skin in a completely noninvasive manner. Thus, this strategy is a convenient alternative to islet transplantation in diabetic mice and has the potential to be translated to human clinical applications with appropriate modifications. PMID:19066321
Strasberg, Steven M; Sanchez, Luis A; Hawkins, William G; Fields, Ryan C; Linehan, David C
2012-05-01
Tumors of the neck of the pancreas may involve the superior mesenteric and portal veins as well as the termination of the splenic vein. This presents a difficult problem since the pancreas cannot be transected through the neck as is standard in a Whipple procedure. Here, we present our method of resecting such tumors, which we term "Whipple at the Splenic Artery (WATSA)". The superior mesenteric and portal veins are isolated below and above the pancreas, respectively. The pancreas and splenic vein are divided just to the right of the point that the splenic artery contacts the superior border of the pancreas. This plane of transection is approximately 2 cm to the left of the pancreatic neck and away from the tumor. The superior mesenteric artery is cleared from the left side of the patient. With the specimen remaining attached only by the superior mesenteric and portal veins, these structures are clamped and divided. Reconstruction is performed with or without a superficial femoral vein graft. The splenic vein is not reconstructed. Ten cases have been performed to date without mortality. We have previously shown that the pattern of venous collateral development following occlusion of the termination of the splenic vein in the manner described is not similar to that of cases of sinistral (left sided) portal hypertension. Whipple at the splenic artery (WATSA) is a safe method for resection of tumors of the neck of the pancreas with vein involvement. It should be performed in high-volume pancreatic surgery centers.
Garcia-Carracedo, Dario; Yu, Chih-Chieh; Akhavan, Nathan; Fine, Stuart A.; Schönleben, Frank; Maehara, Naoki; Karg, Dillon C.; Xie, Chuangao; Qiu, Wanglong; Fine, Robert L.; Remotti, Helen E.; Su, Gloria H.
2015-01-01
Aims While overexpression of TGFα has been reported in human pancreatic ductal adenocarcinoma (PDAC), mice with overexpressed TGFα develop premalignant pancreatic acinar-to-ductal metaplasia (ADM) but not PDAC. TGF-β signaling pathway is pivotal to the development of PDAC and tissue fibrosis. Here we sought to investigate the interplay between TGFα and TGF-β signaling in pancreatic tumorigenesis and fibrosis, namely via Smad4 inactivation. Methods The MT-TGFα mouse was crossed with a new Smad4 conditional knock-out mouse (Smad4flox/flox;p48-Cre or S4) to generate Smad4flox/flox;MT-TGFα;p48-Cre (STP). After TGFα overexpression was induced with zinc sulfate water for eight months, the pancreata of the STP, MT-TGFα, and S4 mice were examined for tumor development and fibrotic responses. PanIN lesions and number of ducts were counted, and proliferation was measured by Ki67 immunohistochemistry (IHC). Qualitative analysis of fibrosis was analyzed by Trichrome Masson and Sirius Red staining, while vimentin was used for quantification. Expression analyses of fibrosis, pancreatitis, or desmoplasia associated markers (α-SMA, Shh, COX-2, Muc6, Col1a1, and Ctgf) were performed by IHC and/or qRT-PCR. Results Our STP mice exhibited advanced ADM, increased fibrosis, increased numbers of PanIN lesions, overexpression of chronic pancreatitis-related marker Muc6, and elevated expression of desmoplasia-associated marker Col1A1, compared to the MT-TGFα mice. The inactivation of Smad4 in the exocrine compartment was responsible for both the enhanced PanIN formation and fibrosis in the pancreas. The phenotype of the STP mice represents a transient state from ADMs to PanINs, closely mimicking the interface area seen in human chronic pancreatitis associated with PDAC. Conclusion We have documented a novel mouse model, the STP mice, which displayed histologic presentations reminiscent to those of human chronic pancreatitis with signs of early tumorigenesis. The STP mice could be a suitable animal model for interrogating the transition of chronic pancreatitis to pancreatic cancer. PMID:25803032
[Pancreas divisum--a rare cause of chronic pancreatitis].
Vasile, D; Grigoriu, M; Turcu, Fl; Ilco, Al; Tenovici, G; Vasile, Raluca
2007-01-01
Pancreas divisum (P.D.) is a congenital anatomic variant, characterized by the nonunion of dorsal and ventral pancreatic ducts. A 20 years old man followed for 8 years with reccurent abdominal pain and relapsing acute pancreatitis develope chronic calcific pancreatitis. He was diagnosed with P.D. on endoscopic retrograde pancreatography and operative pancreatography. The patient was treated with longitudinal pancreatico-jejunostomy (PUESTOW-GILLESBY procedure). His pain resolved following surgical drainage of the pancreatic duct. Evaluation of the clinical course of this patient and critical review of other such cases in the literature support the role of compromised ductal drainage of the pancreas in the pathogenesis of chronic pancreatitis in P.D.
Webster, Angela C; Hedley, James; Patekar, Abhijit; Robertson, Paul; Kelly, Patrick J
2017-01-01
Abstract This is a registry report from the Australia and New Zealand Islet and Pancreas Transplant Registry. We report data for all solid organ pancreas transplant activity from inception in 1984 to end of 2016. Data analysis was performed using Stata Software version 14 (StataCorp, College Station, Tex). From 1984 to 2016 a total of 756 solid organ pancreas transplants have been performed in Australia and New Zealand, in 738 individuals. In 2016, 55 people received a pancreas transplant. These transplants were performed in Auckland (4), Monash (22), and Westmead (29). In 2016, 50 transplants were simultaneous pancreas kidney, 4 were pancreas after kidney, and 1 was a pancreas transplant alone. PMID:29026874
Pancreas transplantation: review
Meirelles, Roberto Ferreira; Salvalaggio, Paolo; Pacheco-Silva, Alvaro
2015-01-01
ABSTRACT Vascularized pancreas transplantation is the only treatment that establishes normal glucose levels and normalizes glycosylated hemoglobin levels in type 1 diabetic patients. The first vascularized pancreas transplant was performed by William Kelly and Richard Lillehei, to treat a type 1 diabetes patient, in December 1966. In Brazil, Edison Teixeira performed the first isolated segmental pancreas transplant in 1968. Until the 1980s, pancreas transplants were restricted to a few centers of the United States and Europe. The introduction of tacrolimus and mycophenolate mofetil in 1994, led to a significant outcome improvement and consequently, an increase in pancreas transplants in several countries. According to the International Pancreas Transplant Registry, until December 31st, 2010, more than 35 thousand pancreas transplants had been performed. The one-year survival of patients and pancreatic grafts exceeds 95 and 83%, respectively. The better survival of pancreatic (86%) and renal (93%) grafts in the first year after transplantation is in the simultaneous pancreas-kidney transplant group of patients. Immunological loss in the first year after transplant for simultaneous pancreas-kidney, pancreas after kidney, and pancreas alone are 1.8, 3.7, and 6%, respectively. Pancreas transplant has 10 to 20% surgical complications requiring laparotomy. Besides enhancing quality of life, pancreatic transplant increases survival of uremic diabetic patient as compared to uremic diabetic patients on dialysis or with kidney transplantation alone. PMID:26154551
Beamish, Christine A; Strutt, Brenda J; Arany, Edith J; Hill, David J
2016-04-18
Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7, P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP(+/+) mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture, but remaining HPAP(+) cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP(+)Ck19(+) cells had derived from insulin-positive, glucose-transporter-2-low (Ins(+)Glut2(LO)) cells, representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin(+)Glut2(LO) cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin(+)Glut2(+) cells at P7, were retained into adulthood, and a subset differentiated into endocrine, ductal, and neural lineages, illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins(+)Glut2(LO) cells may represent a resident population of cells capable of forming new, functional β-cells, and which may be potentially exploited for regenerative therapies in the future.
Beamish, Christine A.; Strutt, Brenda J.; Arany, Edith J.; Hill, David J.
2016-01-01
ABSTRACT Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7, P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP+/+ mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture, but remaining HPAP+ cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP+Ck19+ cells had derived from insulin-positive, glucose-transporter-2-low (Ins+Glut2LO) cells, representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin+Glut2LO cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin+Glut2+ cells at P7, were retained into adulthood, and a subset differentiated into endocrine, ductal, and neural lineages, illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins+Glut2LO cells may represent a resident population of cells capable of forming new, functional β-cells, and which may be potentially exploited for regenerative therapies in the future. PMID:27010375
Prtenjaca, Anita; Tarnowski, Heather E; Marr, Alison M; Heney, Melanie A; Creamer, Laura; Sathiamoorthy, Sarmitha; Hill, Kathleen A
2014-01-01
With few exceptions, spontaneous mutation frequency and pattern are similar across tissue types and relatively constant in young to middle adulthood in wild type mice. Underrepresented in surveys of spontaneous mutations across murine tissues is the diversity of epithelial tissues. For the first time, spontaneous mutations were detected in pancreas and submaxillary gland and compared with kidney, lung, and male germ cells from five adult male Big Blue® mice. Mutation load was assessed quantitatively through measurement of mutant and mutation frequency and qualitatively through identification of mutations and characterization of recurrent mutations, multiple mutations, mutation pattern, and mutation spectrum. A total of 9.6 million plaque forming units were screened, 226 mutants were collected, and 196 independent mutations were identified. Four novel mutations were discovered. Spontaneous mutation frequency was low in pancreas and high in the submaxillary gland. The submaxillary gland had multiple recurrent mutations in each of the mice and one mutant had two independent mutations. Mutation patterns for epithelial tissues differed from that observed in male germ cells with a striking bias for G:C to A:T transitions at CpG sites. A comprehensive review of lacI spontaneous mutation patterns in young adult mice and rats identified additional examples of this mutational bias. An overarching observation about spontaneous mutation frequency in adult tissues of the mouse remains one of stability. A repeated observation in certain epithelial tissues is a higher rate of G:C to A:T transitions at CpG sites and the underlying mechanisms for this bias are not known. Copyright © 2013 Wiley Periodicals, Inc.
Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish
2011-01-01
Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for the formation of duct-associated, second wave endocrine cells. We further reveal an unexpectedly low mitotic activity in these progenitor cells, indicating that they are set aside early in development. PMID:22034951
Wang, J X; Li, P; Zhang, X T; Ye, L X
2017-09-01
Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor (GHS-R), is produced by multiple cell types and affects feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells that are immunoreactive to ghrelin vary. However, little was known about its distribution and developmental changes in the pancreas of African ostrich chicks (Struthio camelus). In the present study, the distribution, morphological characteristics, and developmental changes of ghrelin-immunopositive (ghrelin-ip) cells in the pancreas of African ostrich chicks were investigated using immunohistochemistry. Ghrelin-ip cells were found in both the pancreatic islets and acinar cell regions. The greatest number of ghrelin-ip cells were found in the pancreatic islets, and were primarily observed at the periphery of the islets; some ghrelin-ip cells were also located in the central portion of the pancreatic islets. Interestingly, from postnatal d 1 to d 90, there was a steady decrease in the number of ghrelin-ip cells in the pancreatic islets and acinar cell regions. These results clearly demonstrated that ghrelin-ip cells exist and decreased with age in the African ostrich pancreas from postnatal d 1 to d90. Thus, these findings indicated that ghrelin may be involved in the development of the pancreas in the African ostrich. © 2017 Poultry Science Association Inc.
Sugimoto, Motokazu; Takahashi, Shinichiro; Kojima, Motohiro; Kobayashi, Tatsushi; Gotohda, Naoto; Konishi, Masaru
2017-05-01
This study sought to characterize soft and hard pancreatic textures radiologically and histologically, and to identify specific risks in a soft pancreas associated with postoperative pancreatic fistula (POPF) formation after pancreaticoduodenectomy (PD). Consecutive 145 patients who underwent PD at a single institution between January 2010 and May 2013 were studied. Pancreatic consistency was intraoperatively judged as soft or hard. Pancreatic configuration was assessed using preoperative CT. Histologic components of the pancreatic stump were evaluated using a morphometric analysis. Clinicopathologic parameters were then analyzed for the risk of clinically relevant POPF. Compared with patients with a hard pancreas (n = 66), those with a soft pancreas (n = 79) had a smaller main pancreatic duct (MPD) diameter and a larger parenchymal thickness on CT, had a smaller fibrosis ratio and a larger lobular ratio histologically, and developed clinically relevant POPF more frequently (P < 0.001 for all). In patients with a soft pancreas, an MPD diameter <2 mm, a parenchymal thickness ≥10 mm, a lobular ratio <75%, and a fat ratio ≥20% were independently associated with clinically relevant POPF (P < 0.010 for all). In patients with a soft pancreas, a thick parenchyma, a small MPD, and fatty infiltration were strongly associated with clinically relevant POPF after PD.
Chronology of Islet Differentiation Revealed By Temporal Cell Labeling
Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.
2009-01-01
OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145
Umehara, Yutaka; Umehara, Minoru; Tokura, Tomohisa; Yachi, Takafumi; Takahashi, Kenichi; Morita, Takayuki; Hakamada, Kenichi
2015-10-01
A 26-year-old woman presented to our department with a diagnosis of multiple nonfunctioning pancreatic neuroendocrine tumors. She had a family history of pheochromocytoma and a medical history of bilateral adrenalectomy for pheochromocytoma at the age of 25 years. During follow-up treatment for adrenal insufficiency after the surgery, highly enhanced tumors in the pancreas were detected on contrast-enhanced CT. Other examinations found that the patient did not satisfy the clinical criteria for von Hippel-Lindau (VHL) disease. Considering her age and risk of developing multiple heterotopic and heterochronous tumors, we performed a duodenum-preserving resection of the head of the pancreas and spleen-preserving resection of the tail of the pancreas with informed consent. The histopathological findings revealed that all of the tumors were NET G1. She underwent genetic testing postoperatively and was diagnosed with VHL disease. This diagnosis meant that we were able to create an optimal treatment plan for the patient. If a tumor predisposition syndrome is suspected, VHL disease should be borne in mind and genetic testing after genetic counseling should be duly considered.
Exocrine drainage in vascularized pancreas transplantation in the new millennium
El-Hennawy, Hany; Stratta, Robert J; Smith, Fowler
2016-01-01
The history of vascularized pancreas transplantation largely parallels developments in immunosuppression and technical refinements in transplant surgery. From the late-1980s to 1995, most pancreas transplants were whole organ pancreatic grafts with insulin delivery to the iliac vein and diversion of the pancreatic ductal secretions to the urinary bladder (systemic-bladder technique). The advent of bladder drainage revolutionized the safety and improved the success of pancreas transplantation. However, starting in 1995, a seismic change occurred from bladder to bowel exocrine drainage coincident with improvements in immunosuppression, preservation techniques, diagnostic monitoring, general medical care, and the success and frequency of enteric conversion. In the new millennium, pancreas transplants are performed predominantly as pancreatico-duodenal grafts with enteric diversion of the pancreatic ductal secretions coupled with iliac vein provision of insulin (systemic-enteric technique) although the systemic-bladder technique endures as a preferred alternative in selected cases. In the early 1990s, a novel technique of venous drainage into the superior mesenteric vein combined with bowel exocrine diversion (portal-enteric technique) was designed and subsequently refined over the next ≥ 20 years to re-create the natural physiology of the pancreas with first-pass hepatic processing of insulin. Enteric drainage usually refers to jejunal or ileal diversion of the exocrine secretions either with a primary enteric anastomosis or with an additional Roux limb. The portal-enteric technique has spawned a number of newer and revisited techniques of enteric exocrine drainage including duodenal or gastric diversion. Reports in the literature suggest no differences in pancreas transplant outcomes irrespective of type of either venous or exocrine diversion. The purpose of this review is to examine the literature on exocrine drainage in the new millennium (the purported “enteric drainage” era) with special attention to technical variations and nuances in vascularized pancreas transplantation that have been proposed and studied in this time period. PMID:27358771
Yao, Jun; Zhang, Lu-Lin; Huang, Xu-Mei; Li, Wen-Yao; Gao, She-Gan
2017-01-01
AIM To detect the expression of pleiotrophin (PTN) and N-syndecan in pancreatic cancer and analyze their association with tumor progression and perineural invasion (PNI). METHODS An orthotopic mouse model of pancreatic cancer was created by injecting tumor cells subcapsularly in a root region of the pancreas beneath the spleen. Pancreatic cancer tissues were taken from 36 mice that survived for more than 90 d. PTN and N-syndecan proteins were detected by immunohistochemistry and analyzed for their correlation with pathological features, PNI, and prognosis. RESULTS The expression rates of PTN and N-syndecan proteins were 66.7% and 61.1%, respectively, in cancer tissue. PTN and N-syndecan expression was associated with PNI (P = 0.019 and P = 0.032, respectively). High PTN expression was closely associated with large bloody ascites (P = 0.009), liver metastasis (P = 0.035), and decreased survival time (P = 0.022). N-syndecan expression was significantly associated with tumor size (P = 0.025), but not with survival time (P = 0.539). CONCLUSION High PTN and N-syndecan expression was closely associated with metastasis and poor prognosis, suggesting that they may promote tumor progression and PNI in the orthotopic mouse model of pancreatic cancer. PMID:28638231
Li, Daneng; Capanu, Marinela; Yu, Kenneth H.; Lowery, Maeve A.; Kelsen, David P.; O’Reilly, Eileen M.
2016-01-01
Studies on the treatment patterns and outcomes of elderly patients with metastatic pancreas cancer remain limited. Therefore, an analysis of systemic therapy use, clinical trial participation, and outcomes in elderly patients with metastatic pancreas cancer was performed at our institution. Elderly patients who received systemic therapy had a longer survival compared with those who did not. However, therapeutic clinical trial participation was low and should be encouraged Background Pancreas adenocarcinoma has a median age at diagnosis of 71 years. Limited studies have focused on the treatment of elderly patients with pancreas cancer. Patients and Methods An analysis of systemic therapy use, clinical trial participation, and overall outcomes of 237 patients with metastatic pancreas adenocarcinoma ≥ 75 years of age evaluated at Memorial Sloan-Kettering Cancer Center between 2005 and 2013 was undertaken. Results Median overall survival was 7 months for the entire study population. A total of 197 (83%) patients received systemic therapy, which was significantly associated with longer overall survival (P < .01). No significant difference was detected in survival between age groups 75 to 79, 80 to 84, and ≥ 85 years of age among those who received systemic therapy (P = .49). Seventy-seven (32%) patients participated in a clinical trial of whom 13 (5%) patients were enrolled in a therapeutic trial, including no patients aged ≥ 85 years. Multivariate analysis demonstrated that presence of liver metastases (P < .001), performance status (P < .001), and number of systemic agents (P < .001) were significantly associated with survival. Conclusion Receipt of systemic therapy was associated with longer survival in elderly patients ≥ 75 years of age with metastatic pancreas adenocarcinoma. Therapeutic clinical trial participation among these patients was low and future development of prognostic models for appropriate patient selection is warranted. PMID:26072442
Mixed Donor Chimerism Following Simultaneous Pancreas-Kidney Transplant.
Rashidi, Armin; Brennan, Daniel C; Amarillo, Ina E; Wellen, Jason R; Cashen, Amanda
2018-06-01
Graft-versus-host disease after solid-organ transplant is exceedingly rare. Although the precise pathogenetic mechanisms are unknown, a progressive increase in donor chimerism is a requirement for its development. The incidence of mixed donor chimerism and its timeline after simultaneous pancreas-kidney transplant is unknown. After encountering 2 cases of graft-versus-host disease after simultaneous pancreas-kidney transplant at our institution over a period of < 2 years, a collaborative pilot study was conducted by the bone marrow transplant, nephrology, and abdominal transplant surgery teams. We enrolled all consecutive patients undergoing sex-mismatched simultaneous pancreas-kidney transplant over 1 year and longitudinally monitored donor chimerism using fluorescence in situ hybridization for sex chromosomes. We found no evidence for chimerism in our 7 patients. In a comprehensive literature review, we found a total of 25 previously reported cases of graft-versus-host disease after kidney, pancreas, and simultaneous pancreas-kidney transplants. The median onset of graft-versus-host disease was approximately 5 weeks after transplant, with a median of about 2 weeks of delay between first presentation and diagnosis. Skin, gut, and bone marrow were almost equally affected at initial presentation, and fever of unknown origin occurred in more than half of patients. The median survival measured from the first manifestation of graft-versus-host disease was only 48 days. Within the limitations related to small sample size, our results argue against an unusually high risk of graft-versus-host disease after simultaneous pancreas-kidney transplant. Collaboration between solid-organ and stem cell transplant investigators can be fruitful and can improve our understanding of the complications that are shared between the 2 fields.
Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João
2016-03-01
Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.
VEGF-A/VEGFR-2 signaling plays an important role for the motility of pancreas cancer cells.
Doi, Yosuke; Yashiro, Masakazu; Yamada, Nobuya; Amano, Ryosuke; Noda, Satoru; Hirakawa, Kosei
2012-08-01
Pancreatic cancer is one of the most lethal solid tumors. Vascular endothelial growth factor receptors (VEGFRs) are expressed not only by endothelial cells but also by pancreatic cancer cells. VEGFRs might play an important role for the development of pancreatic cancer cells. The purpose of this study was to evaluate the efficacy of VEGF/VEGFR-2-targeted therapy in pancreatic carcinoma. Five pancreatic carcinoma cell lines were used. The expression level of VEGFR-2 of cancer cells was examined by RT-PCR and Western blot. The effects of VEGFs, bevacizumab as an anti-VEGF antibody, sunitinib as a tyrosine kinase inhibitor against VEGFRs, and VEGF-R2 siRNA on the motility activity of pancreatic cancer cells were examined by invasion assay and wound healing assay. The effect of VEGF, bevacizumab, and sunitinib on the phosphorylation of VEGFR-2 and downstream effecter molecules, MAPK and PI3K, was examined by western blot. Pancreatic cancer cell lines expressed VEGFR-2. VEGF-A significantly increased the motility of pancreas cancer cells, which was inhibited by VEGFR-2 siRNA. Conditioned medium from pancreas cancer cells significantly stimulated the motility of pancreas cancer cells. VEGF/VEGFR inhibitors, bevacizumab and sunitinib, significantly decreased the motility of pancreas cancer cells. VEGFR-2 phosphorylation level of pancreas cancer cells was increased by VEGF-A. Bevacizumab and sunitinib decreased the level of VEGFR-2 phosphorylation, p-ERK, and p-Akt expression. VEGF-A decreased zonula occludens (ZO-1) or ZO-2 expression in pancreas cancer cells. VEGF-A/VEGFR-2 signaling plays an important role in inducing invasion and migration of pancreatic cancer cells.
Phenotypic screening of hepatocyte nuclear factor (HNF) 4-{gamma} receptor knockout mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdin, Anna Karin; Surve, Vikas V.; Joensson, Marie
2006-10-20
Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-{gamma}. HNF4-{gamma} is expressed in the kidneys,more » gut, pancreas, and testis. First level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-{gamma}{sup +/+}), the HNF4-{gamma} knockout (HNF4-{gamma}{sup -/-}) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-{gamma}{sup -/-} mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Jung-Il; Cho, Young Keun; Cho, Seong-Keun
The potential medical applications of animal cloning include xenotransplantation, but the complex molecular cascades that control porcine organ development are not fully understood. Still, it has become apparent that organs derived from cloned pigs may be suitable for transplantation into humans. In this study, we examined the pancreas of an adult cloned pig developed through somatic cell nuclear transfer (SCNT) using two-dimensional electrophoresis (2-DE) and Western blotting. Proteomic analysis revealed 69 differentially regulated proteins, including such apoptosis-related species as annexins, lamins, and heat shock proteins, which were unanimously upregulated in the SCNT sample. Among the downregulated proteins in SCNT pancreasmore » were peroxiredoxins and catalase. Western blot results indicate that several antioxidant enzymes and the anti-apoptotic protein were downregulated in SCNT pancreas, whereas several caspases were upregulated. Together, these data suggest that the accumulation of reactive oxygen species (ROS) in the pancreas of an adult cloned pig leads to apoptosis.« less
Functional significance of SPINK1 promoter variants in chronic pancreatitis.
Derikx, Monique H M; Geisz, Andrea; Kereszturi, Éva; Sahin-Tóth, Miklós
2015-05-01
Chronic pancreatitis is a progressive inflammatory disorder of the pancreas, which often develops as a result of genetic predisposition. Some of the most frequently identified risk factors affect the serine protease inhibitor Kazal type 1 (SPINK1) gene, which encodes a trypsin inhibitor responsible for protecting the pancreas from premature trypsinogen activation. Recent genetic and functional studies indicated that promoter variants in the SPINK1 gene might contribute to disease risk in carriers. Here, we investigated the functional effects of 17 SPINK1 promoter variants using luciferase reporter gene expression assay in four different cell lines, including three pancreatic acinar cell lines (rat AR42J with or without dexamethasone-induced differentiation and mouse 266-6) and human embryonic kidney 293T cells. We found that most variants caused relatively small changes in promoter activity. Surprisingly, however, we observed significant variations in the effects of the promoter variants in the different cell lines. Only four variants exhibited consistently reduced promoter activity in all acinar cell lines, confirming previous reports that variants c.-108G>T, c.-142T>C, and c.-147A>G are risk factors for chronic pancreatitis and identifying c.-52G>T as a novel risk variant. In contrast, variant c.-215G>A, which is linked with the disease-associated splice-site mutation c.194 + 2T>C, caused increased promoter activity, which may mitigate the overall effect of the pathogenic haplotype. Our study lends further support to the notion that sequence evaluation of the SPINK1 promoter region in patients with chronic pancreatitis is justified as part of the etiological investigation. Copyright © 2015 the American Physiological Society.
Long-Term Effects of Stem Cells on Total-Body Irradiated Mice
NASA Astrophysics Data System (ADS)
Vyalkina, M. V.; Alchinova, I. B.; Yakovenko, E. N.; Medvedeva, Yu S.; Saburina, I. N.; Karganov, M. Yu
2017-01-01
C57Bl/6 mice were exposed to γ-radiation in a sublethal dose of 7.5 Gy. In 3 hours injection 106/mouse of bone marrow multipotent mesenchymal stromal cells stem cells intravenously to experimental group was done. Methods used: body weight measurement, open field behavior, subfraction composition of blood serum (laser correlation spectroscopy, LCS), histological examination of the spleen, liver, and pancreas, count of T and B cells, white blood formula. After 1.5 and 3 months the general trend towards intermediate position of the parameters observed in the experimental between those in intact and irradiated controls attests to partial protective/restorative effects of the injected cells.
Animal model of alcoholic pancreatitis: role of viral infections.
Jerrells, Thomas R; Chapman, Nora; Clemens, Dahn L
2003-11-01
Pancreatitis is clearly associated with alcohol abuse, but only a relatively small percentage of people who abuse alcohol develops obvious pancreatitis. These observations have led to the concept that the development of alcoholic pancreatitis requires cofactors. Although diet and smoking have been studied, a clear cofactor has not been identified. The study results presented in this paper were obtained to determine whether viral infection of the pancreas would be a cofactor for alcoholic pancreatitis similar to the role of hepatitis virus infections in the development of alcoholic liver disease. To test this hypothesis, mice were fed ethanol with a liquid diet protocol and infected with coxsackievirus B3 (CVB3). It was found that consumption of alcohol alone did not result in pancreatitis as determined by serum levels of amylase or histologic changes in the pancreas. Two strains of CVB3 that are tropic for the pancreas were used; a virulent and an avirulent strain. Infection of alcohol-fed animals with the virulent CVB3 strain 28 resulted in a more severe pancreatitis than the pancreatitis noted in control animals. Alcohol-fed mice infected with the avirulent strain (GA) showed severe pancreatitis, whereas the infection of control mice did not result in obvious pathologic effects in the pancreas. This model allows mechanistic studies to define the role of viral infection as a cofactor for alcoholic pancreatitis.
Laparoscopic robot-assisted pancreas transplantation: first world experience.
Boggi, Ugo; Signori, Stefano; Vistoli, Fabio; D'Imporzano, Simone; Amorese, Gabriella; Consani, Giovanni; Guarracino, Fabio; Marchetti, Piero; Focosi, Daniele; Mosca, Franco
2012-01-27
Surgical complications are a major disincentive to pancreas transplantation, despite the undisputed benefits of restored insulin independence. The da Vinci surgical system, a computer-assisted electromechanical device, provides the unique opportunity to test whether laparoscopy can reduce the morbidity of pancreas transplantation. Pancreas transplantation was performed by robot-assisted laparoscopy in three patients. The first patient received a pancreas after kidney transplant, the second a simultaneous pancreas kidney transplantation, and the third a pancreas transplant alone. Operations were carried out through an 11-mm optic port, two 8-mm operative ports, and a 7-cm midline incision. The latter was used to introduce the grafts, enable vascular cross-clamping, and create exocrine drainage into the jejunum. The two solitary pancreas transplants required an operating time of 3 and 5 hr, respectively; the simultaneous pancreas kidney transplantation took 8 hr. Mean warm ischemia time of the pancreas graft was 34 min. All pancreatic transplants functioned immediately, and all recipients became insulin independent. The kidney graft, revascularized after 35 min of warm ischemia, also functioned immediately. No patient had complications during or after surgery. At the longer follow-up of 10, 8, and 6 months, respectively, all recipients are alive with normal graft function. We have shown the feasibility of laparoscopic robot-assisted solitary pancreas and simultaneous pancreas and kidney transplantation. If the safety and feasibility of this procedure can be confirmed by larger series, laparoscopic robot-assisted pancreas transplantation could become a new option for diabetic patients needing beta-cell replacement.
Jo, Il-Joo; Bae, Gi-Sang; Park, Kyoung-Chel; Choi, Sun Bok; Jung, Won-Seok; Jung, Su-Young; Cho, Jung-Hee; Choi, Mee-Ok; Song, Ho-Joon; Park, Sung-Joo
2013-03-14
To evaluate the inhibitory effects of Scolopendra subspinipes mutilans (SSM) on cerulein-induced acute pancreatitis (AP) in a mouse model. SSM water extract (0.1, 0.5, or 1 g/kg) was administrated intraperitoneally 1 h prior to the first injection of cerulein. Once AP developed, the stable cholecystokinin analogue, cerulein was injected hourly, over a 6 h period. Blood samples were taken 6 h later to determine serum amylase, lipase, and cytokine levels. The pancreas and lungs were rapidly removed for morphological examination, myeloperoxidase assay, and real-time reverse transcription polymerase chain reaction. To specify the role of SSM in pancreatitis, the pancreatic acinar cells were isolated using collagenase method. Then the cells were pre-treated with SSM, then stimulated with cerulein. The cell viability, cytokine productions and high-mobility group box protein-1 (HMGB-1) were measured. Furthermore, the regulating mechanisms of SSM action were evaluated. The administration of SSM significantly attenuated the severity of pancreatitis and pancreatitis associated lung injury, as was shown by the reduction in pancreatic edema, neutrophil infiltration, vacuolization and necrosis. SSM treatment also reduced pancreatic weight/body weight ratio, serum amylase, lipase and cytokine levels, and mRNA expression of multiple inflammatory mediators such as tumor necrosis factor-α and interleukin-1β. In addition, treatment with SSM inhibited HMGB-1 expression in the pancreas during AP. In accordance with in vivo data, SSM inhibited the cerulein-induced acinar cell death, cytokine, and HMGB-1 release. SSM also inhibited the activation of c-Jun NH2-terminal kinase, p38 and nuclear factor (NF)-κB. These results suggest that SSM plays a protective role during the development of AP and pancreatitis associated lung injury via deactivating c-Jun NH2-terminal kinase, p38 and NF-κB.
Jo, Il-Joo; Bae, Gi-Sang; Park, Kyoung-Chel; Choi, Sun Bok; Jung, Won-Seok; Jung, Su-Young; Cho, Jung-Hee; Choi, Mee-Ok; Song, Ho-Joon; Park, Sung-Joo
2013-01-01
AIM: To evaluate the inhibitory effects of Scolopendra subspinipes mutilans (SSM) on cerulein-induced acute pancreatitis (AP) in a mouse model. METHODS: SSM water extract (0.1, 0.5, or 1 g/kg) was administrated intraperitoneally 1 h prior to the first injection of cerulein. Once AP developed, the stable cholecystokinin analogue, cerulein was injected hourly, over a 6 h period. Blood samples were taken 6 h later to determine serum amylase, lipase, and cytokine levels. The pancreas and lungs were rapidly removed for morphological examination, myeloperoxidase assay, and real-time reverse transcription polymerase chain reaction. To specify the role of SSM in pancreatitis, the pancreatic acinar cells were isolated using collagenase method. Then the cells were pre-treated with SSM, then stimulated with cerulein. The cell viability, cytokine productions and high-mobility group box protein-1 (HMGB-1) were measured. Furthermore, the regulating mechanisms of SSM action were evaluated. RESULTS: The administration of SSM significantly attenuated the severity of pancreatitis and pancreatitis associated lung injury, as was shown by the reduction in pancreatic edema, neutrophil infiltration, vacuolization and necrosis. SSM treatment also reduced pancreatic weight/body weight ratio, serum amylase, lipase and cytokine levels, and mRNA expression of multiple inflammatory mediators such as tumor necrosis factor-α and interleukin-1β. In addition, treatment with SSM inhibited HMGB-1 expression in the pancreas during AP. In accordance with in vivo data, SSM inhibited the cerulein-induced acinar cell death, cytokine, and HMGB-1 release. SSM also inhibited the activation of c-Jun NH2-terminal kinase, p38 and nuclear factor (NF)-κB. CONCLUSION: These results suggest that SSM plays a protective role during the development of AP and pancreatitis associated lung injury via deactivating c-Jun NH2-terminal kinase, p38 and NF-κB. PMID:23539679
Huang, Xiao-Ting; Yue, Shao-Jie; Li, Chen; Guo, Jia; Huang, Yan-Hong; Han, Jian-Zhong; Feng, Dan-Dan; Luo, Zi-Qiang
2017-05-01
Intrauterine growth retardation (IUGR) is closely related to the later development of type 2 diabetes in adulthood. Excessive activation of N-methly-D-aspartate receptors (NMDARs) causes excitatory neurotoxicity, resulting in neuronal injury or death. Inhibition of NMDARs enhances the glucose-stimulated insulin secretion and survival of islet cells in type 2 diabetic mouse and human islets. Here, we examined whether antenatal blockade of NMDARs by Memantine could decrease the risk of diabetes induced by a high-fat (HF) diet at adulthood in IUGR rats. Pregnant SD rats were assigned to four groups: control, IUGR, Memantine, and Memantine + IUGR. The pregnant rats were exposed to hypoxic conditions (FiO2 = 0.105) for 8 h/day (IUGR group) or given a daily Memantine injection (5 mg/kg, i.p.) before hypoxia exposure from embryonic day (E) 14.5 to E 20.5 (Memantine + IUGR). The offspring were fed an HF diet with 60% of the calories from age 4 to 12 weeks. We found that NMDAR mRNAs were expressed in the fetal rat pancreas. An HF diet resulted in a high rate of diabetes at adulthood in the IUGR group. Antenatal Memantine treatment decreased the risk of diabetes at adulthood of rats with IUGR, which was associated with rescued glucose tolerance, increased insulin release, improved the insulin sensitivity, and increased expression of genes related to beta-cell function in the pancreas. Together, our results suggest that antenatal blockade of NMDARs by Memantine in pregnant rats improves fetal development and reduces the susceptibility to diabetes at adulthood in offspring. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wisel, S A; Gardner, J M; Roll, G R; Harbell, J; Freise, C E; Feng, S; Kang, S M; Hirose, R; Kaufman, D B; Posselt, A M; Stock, P G
2017-09-01
Islet transplantation offers a minimally invasive approach for β cell replacement in diabetic patients with hypoglycemic unawareness. Attempts at insulin independence may require multiple islet reinfusions from distinct donors, increasing the risk of allogeneic sensitization. Currently, solid organ pancreas transplant is the only remaining surgical option following failed islet transplantation in the United States; however, the immunologic impact of repeated exposure to donor antigens on subsequent pancreas transplantation is unclear. We describe a case series of seven patients undergoing solid organ pancreas transplant following islet graft failure with long-term follow-up of pancreatic graft survival and renal function. Despite highly variable panel reactive antibody levels prior to pancreas transplant (mean 27 ± 35%), all seven patients achieved stable and durable insulin independence with a mean follow-up of 6.7 years. Mean hemoglobin A1c values improved significantly from postislet, prepancreas levels (mean 8.1 ± 1.5%) to postpancreas levels (mean 5.3 ± 0.1%; p = 0.0022). Three patients experienced acute rejection episodes that were successfully managed with thymoglobulin and methylprednisolone, and none of these preuremic type 1 diabetic recipients developed stage 4 or 5 chronic kidney disease postoperatively. These results support pancreas-after-islet transplantation with aggressive immunosuppression and protocol biopsies as a viable strategy to restore insulin independence after islet graft failure. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Ventura-Aguiar, Pedro; Ferrer, Joana; Revuelta, Ignacio; Paredes, David; de Sousa-Amorim, Erika; Rovira, Jordi; Esmatjes, Enric; Garcia-Valdecasas, Juan Carlos; Campistol, Josep M; Oppenheimer, Federico; Diekmann, Fritz; Ricart, Maria José
2018-06-08
Pancreas outcomes in pancreas after kidney transplantation (PAK) patients have been reported as being inferior to those of patients who receive simultaneous pancreas and kidney transplantation (SPK). The influence of the kidney donor (i.e. living versus deceased) has never been previously addressed. We retrospectively analysed all pancreas transplants performed in a single centre since 2007 and compared the outcomes between those patients who had previously received a living-donor kidney transplant (pancreas transplantation after living-donor kidney transplantation, PAldK; n = 18) or a deceased-donor kidney transplant (pancreas transplantation after deceased-donor kidney transplantation, PAddK; n = 28), using SPK (n = 139) recipients as a reference. Pancreas survival was similar between all groups, but inferior for PAldK when including only those with a functioning graft at day 90 post-transplantation (P = 0.004). Pancreas acute rejection was significantly increased in PAldK (67%; 1.8 ± 1.4 episodes/graft) when compared with PAddK (25%) and SPK (32%) (P < 0.05) patients. In a multivariate Cox regression model including known risk factors for pancreas rejection, PAldK was the only predictor of acute rejection (hazard ratio 6.82, 95% confidence interval 1.51-30.70, P < 0.05). No association was found between donor-recipient HLA mismatches and graft rejection. Repeated HLA mismatches between kidney and pancreas donors (0 versus 1-6) did not correlate with pancreas graft rejection or survival in either PAK transplantation group (P > 0.05). Pancreas graft outcomes are worse for PAldK when compared with PAddK and SPK patients.
Yuan, Hao; Wu, Pengfei; Chen, Jianmin; Lu, Zipeng; Chen, Lei; Wei, Jishu; Guo, Feng; Cai, Baobao; Yin, Jie; Xu, Dong; Jiang, Kuirong; Miao, Yi
2017-12-01
Portal annular pancreas is a rare anatomic variation, where the uncinated process of the pancreas connects with the dorsal pancreas and the pancreas tissue encases the portal vein (PV), superior mesenteric vein (SMV) or splenic vein (SV). Malignancies are quite uncommon in the patients, who have an annular pancreas especially portal annular pancreas. Ectopic common hepatic artery and absence of the celiac trunk (CT) are the other infrequent abnormalities. A 74-year-old man suffered from upper abdominal and back pain. Contrast enhanced computed tomography indicated a low-density mass in the body of the pancreas. Pathological report showed adenocarcinoma of the body of pancreas after radical antegrade modular pancreatosplenectomy (RAMPS). In the operation, we found the superior vein and portal vein was surrounded by the pancreatic tissue. The left gastric artery and splenic artery originated respectively from abdominal aorta, and celiac trunk was not viewed. In addition, the common hepatic artery was a branch from the superior mesenteric artery. In general, this is a novel clinical case of pancreatic carcinoma happening in the portal annular pancreas which was accompanied with aberrant hepatic artery and absence of the celiac trunk at the same time. Confronted with the pancreatic neoplasms, the possibility of coexistent annular pancreas and arterial variations should be considered.
Use of the Electronic Medical Record to Assess Pancreas Size in Type 1 Diabetes
Virostko, John; Hilmes, Melissa; Eitel, Kelsey; Moore, Daniel J.; Powers, Alvin C.
2016-01-01
Aims This study harnessed the electronic medical record to assess pancreas volume in patients with type 1 diabetes (T1D) and matched controls to determine whether pancreas volume is altered in T1D and identify covariates that influence pancreas volume. Methods This study included 25 patients with T1D and 25 age-, sex-, and weight-matched controls from the Vanderbilt University Medical Center enterprise data warehouse. Measurements of pancreas volume were made from medical imaging studies using magnetic resonance imaging (MRI) or computed tomography (CT). Results Patients with T1D had a pancreas volume 47% smaller than matched controls (41.16 ml vs. 77.77 ml, P < 0.0001) as well as pancreas volume normalized by subject body weight, body mass index, or body surface area (all P < 0.0001). Pancreatic volume was smaller with a longer duration of T1D across the patient population (N = 25, P = 0.04). Additionally, four individual patients receiving multiple imaging scans displayed progressive declines in pancreas volume over time (~ 6% of volume/year), whereas five controls scanned a year apart did not exhibit a decline in pancreas size (P = 0.03). The pancreas was uniformly smaller on the right and left side of the abdomen. Conclusions Pancreas volume declines with disease duration in patients with T1D, suggesting a protracted pathological process that may include the exocrine pancreas. PMID:27391588
Pancreas Transplantation: Solid Organ and Islet
Mittal, Shruti; Johnson, Paul; Friend, Peter
2014-01-01
Transplantation of the pancreas, either as a solid organ or as isolated islets of Langerhans, is indicated in a small proportion of patients with insulin-dependent diabetes in whom severe complications develop, particularly severe glycemic instability and progressive secondary complications (usually renal failure). The potential to reverse diabetes has to be balanced against the morbidity of long-term immunosuppression. For a patient with renal failure, the treatment of choice is often a simultaneous transplant of the pancreas and kidney (SPK), whereas for a patient with glycemic instability, specifically hypoglycemic unawareness, the choice between a solid organ and an islet transplant has to be individual to the patient. Results of SPK transplantation are comparable to other solid-organ transplants (kidney, liver, heart) and there is evidence of improved quality of life and life expectancy, but the results of solitary pancreas transplantation and islets are inferior with respect to graft survival. There is some evidence of benefit with respect to the progression of secondary diabetic complications in patients with functioning transplants for several years. PMID:24616200
Possible neoplastic effects of acrylamide on rat exocrine pancreas.
Yener, Y; Kalipci, E; Öztaş, H; Aydin, A D; Yildiz, H
2013-01-01
We investigated whether the acrylamide formed during cooking carbohydrate-rich foods at high temperatures causes neoplastic changes in rat pancreas. Azaserine, which is an amino acid derivative that has the ability to initiate neoplastic changes in rat pancreas, was injected into 14-day-old male rats once a week for three weeks. Acrylamide was given to both azaserine-injected and non-injected rats at doses of 5 and 10 mg/kg/day in drinking water for 16 weeks after which tissue slides were prepared from the pancreata. Pancreas weights and body weights of rats treated with azaserine and acrylamide together increased significantly compared to the other groups. Moreover, the size, average diameter and volume of atypical acinar cell foci that developed in the pancreata of rats treated with azaserine and acrylamide together increased significantly compared to rats treated with either azaserine or acrylamide alone and control groups. Atypical acinar cell adenoma or adenocarcinoma was not observed in the pancreata of rats in any group.
Kim-Fuchs, Corina; Le, Caroline P.; Pimentel, Matthew A.; Shackleford, David; Ferrari, Davide; Angst, Eliane; Hollande, Frédéric; Sloan, Erica K.
2014-01-01
Pancreatic cancer cells intimately interact with a complex microenvironment that influences pancreatic cancer progression. The pancreas is innervated by fibers of the sympathetic nervous system (SNS) and pancreatic cancer cells have receptors for SNS neurotransmitters which suggests that pancreatic cancer may be sensitive to neural signaling. In vitro and non-orthotopic in vivo studies showed that neural signaling modulates tumour cell behavior. However the effect of SNS signaling on tumor progression within the pancreatic microenvironment has not previously been investigated. To address this, we used in vivo optical imaging to non-invasively track growth and dissemination of primary pancreatic cancer using an orthotopic mouse model that replicates the complex interaction between pancreatic tumor cells and their microenvironment. Stress-induced neural activation increased primary tumor growth and tumor cell dissemination to normal adjacent pancreas. These effects were associated with increased expression of invasion genes by tumor cells and pancreatic stromal cells. Pharmacological activation of β-adrenergic signaling induced similar effects to chronic stress, and pharmacological β-blockade reversed the effects of chronic stress on pancreatic cancer progression. These findings indicate that neural β-adrenergic signaling regulates pancreatic cancer progression and suggest β-blockade as a novel strategy to complement existing therapies for pancreatic cancer. PMID:24650449
Sirt1 Regulates Insulin Secretion by Repressing UCP2 in Pancreatic β Cells
Bordone, Laura; Jhala, Ulupi S; Apfeld, Javier; McDonagh, Thomas; Lemieux, Madeleine; McBurney, Michael; Szilvasi, Akos; Easlon, Erin J; Lin, Su-Ju; Guarente, Leonard
2006-01-01
Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion. PMID:16366736
The pancreas is a gland behind your stomach and in front of your spine. It produces the juices that ... hormones that help control blood sugar levels. A pancreas transplant is surgery to place a healthy pancreas ...
Pancreas preserving total duodenectomy for complex duodenal injury.
Wig, Jai Dev; Kudari, Ashwinikumar; Yadav, Thakur Deen; Doley, Rudra Prasad; Bharathy, Kishore Gurumoorthy Subramanya; Kalra, Naveen
2009-07-06
To assess the feasibility and safety of a pancreas-preserving total duodenectomy in the management of severe duodenal injury caused by abdominal trauma. Two patients with both extensive injury of the duodenum and diffuse peritonitis underwent pancreas preserving total duodenectomy at our tertiary care centre. These two young male patients (age 20 and 22 years) presented 2 days and 6 hours respectively following blunt abdominal trauma. The duodenum was almost completely separated from the pancreas. Ampulla was seen as a button on the pancreas. Following total duodenectomy, reconstruction was performed by suturing the jejunum to the head of the pancreas anteriorly and posteriorly away from the ampulla (invagination of the pancreas into the jejunum). There were no complications attributable to the procedure. Both patients are well on follow up. A Pancreas-preserving total duodenectomy offers a safe alternative to the Whipple procedure in managing complex duodenal injury. This procedure avoids unnecessary resection of the adjacent pancreas and anastomosis to undilated hepatic and pancreatic ducts.
Rosenlof, L K; Earnhardt, R C; Pruett, T L; Stevenson, W C; Douglas, M T; Cornett, G C; Hanks, J B
1992-01-01
Pancreas transplantation has evolved dramatically since its introduction in 1966. As new centers for transplantation have developed, the evaluation of complications associated with pancreas transplantation has led to advances in surgical technique. Furthermore, surgical alterations of the pancreas resulting from transplantation (systemic release of insulin and denervation) are of unproven consequence on glucose metabolism. Since 1988, the authors have performed 21 transplants (16 combined pancreas/kidney, 3 pancreas alone, which includes 1 retransplantation, 1 pancreas after previous kidney transplant, and 1 "cluster") in 20 patients aged 18 to 49 years; mean, 35 +/- 1 years. Overall patient survival is 95%. Three pancreatic grafts failed within the first year because of technical failure; one additional pancreas was lost to an immunologic event on postoperative day 449, for an overall pancreatic graft survival of 81%. No renal grafts were lost. To evaluate causes of graft failure, demographic data were compared, which included age and sex of the donor and the recipient, operative time, intraoperative blood transfusion, and ischemic time of the graft. No statistically significant differences were found between groups except for ischemic time (11.7 +/- 6.4 hours for the technical success group versus 19.8 +/- 3.7 hours for the technical failure group; p less than 0.05 by unpaired Student's t test). Quadruple immunosuppression was used, which included prednisone, cyclosporine, azathioprine, and antilymphoblast globulin. A mean of 1.2 (range, 0 to 3) rejection episodes per patient occurred. Mean hospital stay was 24 +/- 11 days. Surgical and infectious complications were evaluated by comparing the technical success (TS) group (n = 17) with the technical failure (TF) group. Surgical complications in the TS group revealed a mean of 1.3 episodes per patient, whereas the TF group had 3.7 episodes per patient. The TS also had a reduced incidence of infectious complications compared with the TF (1.7 versus 4.3 episodes per patient). Cytomegalovirus was common in both groups, accounting for 11 infectious episodes, and occurred on a mean postoperative day of 38. Mean postoperative HbA1C levels dropped to 5 +/- 1% from 11 +/- 3%. The authors developed a new technique that incorporates portal drainage of the pancreatic venous effluent in three recipients. Preoperative metabolic studies disclosed a mean fasting glucose of 211 +/- 27 mg/dL and a mean stimulated glucose value of 434 +/- 41 mg/dL for all patients; the mean fasting insulin was 23 +/- 4 microU/mL.(ABSTRACT TRUNCATED AT 400 WORDS) Images FIG. 5. PMID:1632680
... hyphen, e.g. -historical Searches are case-insensitive Pancreas Anatomy Add to My Pictures View /Download : Small: ... 1586x1534 View Download Large: 3172x3068 View Download Title: Pancreas Anatomy Description: Anatomy of the pancreas; drawing shows ...
Yuan, Hao; Wu, Pengfei; Chen, Jianmin; Lu, Zipeng; Chen, Lei; Wei, Jishu; Guo, Feng; Cai, Baobao; Yin, Jie; Xu, Dong; Jiang, Kuirong; Miao, Yi
2017-01-01
Abstract Rationale: Portal annular pancreas is a rare anatomic variation, where the uncinated process of the pancreas connects with the dorsal pancreas and the pancreas tissue encases the portal vein (PV), superior mesenteric vein (SMV) or splenic vein (SV). Malignancies are quite uncommon in the patients, who have an annular pancreas especially portal annular pancreas. Ectopic common hepatic artery and absence of the celiac trunk (CT) are the other infrequent abnormalities. Patient concerns: A 74-year-old man suffered from upper abdominal and back pain. Diagnoses and Interventions: Contrast enhanced computed tomography indicated a low-density mass in the body of the pancreas. Pathological report showed adenocarcinoma of the body of pancreas after radical antegrade modular pancreatosplenectomy (RAMPS). Outcomes: In the operation, we found the superior vein and portal vein was surrounded by the pancreatic tissue. The left gastric artery and splenic artery originated respectively from abdominal aorta, and celiac trunk was not viewed. In addition, the common hepatic artery was a branch from the superior mesenteric artery. Lessons: In general, this is a novel clinical case of pancreatic carcinoma happening in the portal annular pancreas which was accompanied with aberrant hepatic artery and absence of the celiac trunk at the same time. Confronted with the pancreatic neoplasms, the possibility of coexistent annular pancreas and arterial variations should be considered. PMID:29310347
The pancreas, a large gland that sits behind the stomach, produces enzymes that aid digestion and hormones that regulate blood sugar. Pancreatic cancer develops when cells that make up the ducts in the pancreas start to grow out of control. Udo Rudloff, M.D., is leading a clinical trial of a combination immunotherapy regimen to optimally help the immune system attack the tumor.
Dall'Aglio, Cecilia; Polisca, Angela; Cappai, Maria Grazia; Mercati, Francesca; Troisi, Alessandro; Pirino, Carolina; Scocco, Paola; Maranesi, Margherita
2017-03-07
At present, data on the endocannabinoid system expression and distribution in the pancreatic gland appear scarce and controversial as descriptions are limited to humans and laboratory animals. Since the bovine pancreas is very similar to the human in endocrine portion development and control, studies on the fetal gland could prove to be very interesting, as an abnormal maternal condition during late pregnancy may be a predisposing trigger for adult metabolic disorders. The present investigation studied cannabinoid receptor type 2 presence and distribution in the bovine fetal pancreas towards the end of gestation. Histological analyses revealed numerous endocrinal cell clusters or islets which were distributed among exocrine adenomeri in connectival tissue. Immunohistochemistry showed that endocrine-islets contained some CB2-positive cells with a very peculiar localization that is a few primarily localized at the edges of islets and some of them also scattered in the center of the cluster. Characteristically, also the epithelium of the excretory ducts and the smooth muscle layers of the smaller arteries, in the interlobular glandular septa, tested positive for the CB2 endocannabinoid receptor. Conse - quently, the endocannabinoid system, via the cannabinoid receptor type 2, was hypothesized to play a major role in controlling pancreas function from normal fetal development to correct metabolic functioning in adulthood.
Hayashi, Daijuro; Hirooka, Yoshiki; Kawashima, Hiroki; Ohno, Eizaburo; Ishikawa, Takuya; Kuwahara, Takamichi; Kawai, Manabu; Yamamura, Takeshi; Furukawa, Kazuhiro; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Watanabe, Osamu; Ishigami, Masatoshi; Hashimoto, Senju; Goto, Hidemi
The aim of this study is to evaluate a functional correlation between the pancreas and the small intestine and the association of this relationship with nutritional status, using magnifying enteroscopy. The subjects were adults aged 20 years or older who underwent upper gastrointestinal endoscopy. An endoscope was inserted into the jejunum, and 10% glucose was sprayed under magnifying observation to evaluate changes in blood flow in the villous capillary network. Mucosal biopsy was performed before and after spraying to evaluate the incretin response in the jejunal mucosa. A total of 124 patients participated in the study. There was a positive correlation between villous blood flow change and exocrine pancreas function (R = 0.4337, P < 0.0001). Changes of gastric inhibitory polypeptide and glucagon-like peptide messenger RNAs in biopsy samples were positively correlated with endocrine pancreas function in 88 patients without treatment for diabetes (R = 0.4314, P = 0.0012; R = 0.4112, P = 0.0081). In patients with lower villous blood flow change and decreased pancreatic exocrine function, the prognostic nutritional index were significantly lower (P = 0.0098), compared with other patients. This study provides the first evidence of a close functional correlation between the pancreas and the small intestine.
75 FR 30032 - Agency Information Collection Activities: Proposed Collection: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... 66,951 0.5000 33,475.50 Kidney/Pancreas Candidate 143 14 2,002 0.5000 1,001.00 Registration Kidney/Pancreas Registration.... 143 7 1,001 0.9000 900.90 Kidney/Pancreas Follow-up....... 143 85 12,155 0.8500 10,331.75 Pancreas Candidate Registration. 143 7 1,001 0.5000 500.50 Pancreas Registration 143 3 429...
Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav
2012-07-01
Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25-30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10(-6) M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav
2012-01-01
Abstract Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R. PMID:22040127
The physiology of rodent beta-cells in pancreas slices.
Rupnik, M
2009-01-01
Beta-cells in pancreatic islets form complex syncytia. Sufficient cell-to-cell electrical coupling seems to ensure coordinated depolarization pattern and insulin release that can be further modulated by rich innervation. The complex structure and coordinated action develop after birth during fast proliferation of the endocrine tissue. These emergent properties can be lost due to various reasons later in life and can lead to glucose intolerance and diabetes mellitus. Pancreas slice is a novel method of choice to study the physiology of beta-cells still embedded in their normal cellulo-social context. I present major advantages, list drawbacks and provide an overview on recent advances in our understanding of the physiology of beta-cells using the pancreas slice approach.
Defining pancreatic endocrine precursors and their descendants.
White, Peter; May, Catherine Lee; Lamounier, Rodrigo N; Brestelli, John E; Kaestner, Klaus H
2008-03-01
The global incidence of diabetes continues to increase. Cell replacement therapy and islet transplantation offer hope, especially for severely affected patients. Efforts to differentiate insulin-producing beta-cells from progenitor or stem cells require knowledge of the transcriptional programs that regulate the development of the endocrine pancreas. Differentiation toward the endocrine lineage is dependent on the transcription factor Neurogenin 3 (Neurog3, Ngn3). We utilize a Neurog3-enhanced green fluorescent protein knock-in mouse model to isolate endocrine progenitor cells from embryonic pancreata (embryonic day [E]13.5 through E17.5). Using advanced genomic approaches, we generate a comprehensive gene expression profile of these progenitors and their immediate descendants. A total of 1,029 genes were identified as being temporally regulated in the endocrine lineage during fetal development, 237 of which are transcriptional regulators. Through pathway analysis, we have modeled regulatory networks involving these proteins that highlight the complex transcriptional hierarchy governing endocrine differentiation. We have been able to accurately capture the gene expression profile of the pancreatic endocrine progenitors and their descendants. The list of temporally regulated genes identified in fetal endocrine precursors and their immediate descendants provides a novel and important resource for developmental biologists and diabetes researchers alike.
Self-illuminating nanoprobe for in vivo imaging of cancers over-expressing the folate receptor
NASA Astrophysics Data System (ADS)
Miller, Steven C.; Beviglia, Lucia; Yeung, Pete; Bhattacharyya, Sukanta; Sobek, Daniel
2012-03-01
New in vivo imaging reagents with increased sensitivity and penetration depth are needed to advance our understanding of metastases and accelerate the development of therapeutics. The folate receptor (FR) is a promising imaging target that is up-regulated in many human carcinomas, including cancers of the ovary, breast, pancreas, endometrium, lungs, kidneys, colon, brain, and myeloid cells. Zymera has developed a self-illuminating Bioluminescence Resonance Energy Transfer Quantum Dot (BRET-Qdot) nanoprobe conjugated with folate (BQ-Folate) for in vivo imaging of cancers overexpressing FR. BQ-Folate is a novel nanoprobe formed by co-conjugating Renilla reniformis luciferase enzyme and folate to near-infrared (NIR) emitting quantum dots. The luciferase substrate, coelenterazine, activates the BQ-Folate nanoprobe generating luminescence emission in the near-infrared (NIR) region (655 nm) for increased sensitivity and penetration depth. Because BQ-Folate requires no external light source for light emission, it has significant advantages for challenging in vivo preclinical optical imaging applications, such as the detection of early stage metastases. Zymera and OncoMed Pharmaceuticals have demonstrated that in vivo imaging with the BQ-Folate nanoprobe detected the primary tumor and early stage metastases in an orthotopic NOD/SCID mouse model of human pancreatic cancer.
NASA Technical Reports Server (NTRS)
Hardman, P.; Klement, B. J.; Spooner, B. S.
1993-01-01
Embryonic mouse salivary glands, pancreata, and kidneys were isolated from embryos of appropriate gestational age by microdissection, and were cultured on Biopore membrane either non-coated or coated with type I collagen or Matrigel. As expected, use of Biopore membrane allowed high quality photomicroscopy of the living organs. In all organs extensive mesenchymal spreading was observed in the presence of type I collagen or Matrigel. However, differences were noted in the effects of extracellular matrix (ECM) coatings on epithelial growth and morphogenesis: salivary glands were minimally affected, pancreas morphogenesis was adversely affected, and kidney growth and branching apparently was enhanced. It is suggested that these differences in behaviour reflect differences in the strength of interactions between the mesenchymal cells and their surrounding endogenous matrix, compared to the exogenous ECM macromolecules. This method will be useful for culture of these and other embryonic organs. In particular, culture of kidney rudiments on ECM-coated Biopore offers a great improvement over previously used methods which do not allow morphogenesis to be followed in vitro.
Strnad, Pavel; Guldiken, Nurdan; Helenius, Terhi O; Misiorek, Julia O; Nyström, Joel H; Lähdeniemi, Iris A K; Silvander, Jonas S G; Kuscuoglu, Deniz; Toivola, Diana M
2016-01-01
Simple epithelial keratins (SEKs) are the cytoplasmic intermediate filament proteins of single-layered and glandular epithelial cells as found in the liver, pancreas, intestine, and lung. SEKs have broad cytoprotective functions, which are facilitated by dynamic posttranslational modifications and interaction with associated proteins. SEK filaments are composed of obligate heteropolymers of type II (K7, K8) and type I (K18-K20, K23) keratins. The multifaceted roles of SEKs are increasingly appreciated due to findings obtained from transgenic mouse models and human studies that identified SEK variants in several digestive diseases. Reorganization of the SEK network into aggregates called Mallory-Denk bodies (MDBs) is characteristic for specific liver disorders such as alcoholic and nonalcoholic steatohepatitis. To spur further research on SEKs, we here review the methods and potential caveats of their isolation as well as possibilities to study them in cell culture. The existing transgenic SEK mouse models, their advantages and potential drawbacks are discussed. The tools to induce MDBs, ways of their visualization and quantification, as well as the possibilities to detect SEK variants in humans are summarized. Copyright © 2016 Elsevier Inc. All rights reserved.
Contractor, Tanupriya; Kobayashi, Shinta; da Silva, Edaise; Clausen, Richard; Chan, Chang; Vosburgh, Evan; Tang, Laura H; Levine, Arnold J; Harris, Chris R
2016-05-24
In a mouse model for neuroendocrine tumors of the pancreas (PanNETs), liver metastasis occurred at a higher frequency in males. Male mice also had higher serum and intratumoral levels of the innate immunity protein complement C5. In mice that lost the ability to express complement C5, there was a lower frequency of metastasis, and males no longer had a higher frequency of metastasis than females. Treatment with PMX53, a small molecule antagonist of C5aR1/CD88, the receptor for complement C5a, also reduced metastasis. Mice lacking a functional gene for complement C5 had smaller primary tumors, which were less invasive and lacked the CD68+ macrophages that have previously been associated with metastasis in this type of tumor. This is the first report of a gene that causes sexual dimorphism of metastasis in a mouse model. In the human disease, which also shows sexual dimorphism for metastasis, clinically advanced tumors expressed more complement C5 than less advanced tumors.
SAITO, Mikako; KANEDA, Asako; SUGIYAMA, Tae; IIDA, Ryousuke; OTOKUNI, Keiko; KABURAGI, Misako; MATSUOKA, Hideaki
2015-01-01
Exon II of glucokinase (Gk) was deleted to produce a systemic heterozygous Gk knockout (Gk+/−) mouse. The relative expression levels of Gk in the heart, lung, liver, stomach, and pancreas in Gk+/− mice ranged from 0.41–0.68 versus that in wild (Gk+/+) mice. On the other hand, its expression levels in the brain, adipose tissue, and muscle ranged from 0.95–1.03, and its expression levels in the spleen and kidney were nearly zero. Gk knockout caused no remarkable off-target effect on the expression of 7 diabetes causing genes (Shp, Hnf1a, Hnf1b, Irs1, Irs2, Kir6.2, and Pdx1) in 10 organs. The glucose tolerance test was conducted to determine the blood glucose concentrations just after fasting for 24 h (FBG) and at 2 h after high-glucose application (GTT2h). The FBG-GTT2h plots obtained with the wild strain fed the control diet (CD), Gk+/− strain fed the CD, and Gk+/− strain fed the HFD were distributed in separate areas in the FBG-GTT2h diagram. The respective areas could be defined as the normal state, prediabetes state, and diabetes state, respectively. Based on the results, the criteria for prediabetes could be defined for the Gk+/− strain developed in this study. PMID:25765873
Pancreas retransplantation: a second chance for diabetic patients?
Buron, Fanny; Thaunat, Olivier; Demuylder-Mischler, Sandrine; Badet, Lionel; Brunet, Maria; Ber, Charles-Eric; Thivolet, Charles; Martin, Xavier; Berney, Thierry; Morelon, Emmanuel
2013-01-27
If pancreas transplantation is a validated alternative for type 1 diabetic patients with end-stage renal disease, the management of patients who have lost their primary graft is poorly defined. This study aims at evaluating pancreas retransplantation outcome. Between 1976 and 2008, 569 pancreas transplantations were performed in Lyon and Geneva, including 37 second transplantations. Second graft survival was compared with primary graft survival of the same patients and the whole population. Predictive factors of second graft survival were sought. Patient survival and impact on kidney graft function and survival were evaluated. Second pancreas survival of the 17 patients transplanted from 1995 was close to primary graft survival of the whole population (71% vs. 79% at 1 year and 59% vs. 69% at 5 years; P=0.5075) and significantly better than their first pancreas survival (71% vs. 29% at 1 year and 59% vs. 7% at 5 years; P=0.0008) regardless of the cause of first pancreas loss. The same results were observed with all 37 retransplantations. Survival of second simultaneous pancreas and kidney transplantations was better than survival of second pancreas after kidney. Patient survival was excellent (89% at 5 years). Pancreas retransplantation had no impact on kidney graft function and survival (100% at 5 years). Pancreas retransplantation is a safe procedure with acceptable graft survival that should be proposed to diabetic patients who have lost their primary graft.
Niclauss, Nadja; Bédat, Benoît; Morel, Philippe; Andres, Axel; Toso, Christian; Berney, Thierry
2016-05-01
The optimal order of revascularization for pancreas and kidney grafts in simultaneous pancreas-kidney transplantation has not been established. In this study, we investigate the influence of graft implantation order on graft survival in SPK. 12 700 transplantations from the Scientific Registry of Transplant Recipients were analyzed retrospectively. Graft implantation order was determined based on the reported ischemia times of pancreas and kidney grafts. Pancreas and kidney graft survivals were analyzed depending on graft implantation order at 3 months and 5 years using Kaplan-Meier plots. Significance was tested with log-rank test and Cox regression model. In 8454 transplantations, the pancreas was implanted first (PBK), and in 4246 transplantations, the kidney was implanted first (KBP). The proportion of lost pancreas grafts at 3 months was significantly lower in PBK (9.4% vs. 10.8%, P = 0.011). Increasing time lag (>2 h) between kidney and pancreas graft implantation in KBP accentuated the detrimental impact on pancreas graft survival (12.5% graft loss at 3 months, P = 0.001). Technical failure rates were reduced in PBK (5.6 vs. 6.9%, P = 0.005). Graft implantation order had no impact on kidney graft survival. In summary, although observed differences are small, pancreas graft implantation first increases short-term pancreas graft survival and reduces rates of technical failure. © 2016 Steunstichting ESOT.
Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong
2016-01-01
In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1+ pancreatic progenitors, much less is known about the transition toward Ngn3+ pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments. PMID:26834702
Three-dimensional contrasted visualization of pancreas in rats using clinical MRI and CT scanners.
Yin, Ting; Coudyzer, Walter; Peeters, Ronald; Liu, Yewei; Cona, Marlein Miranda; Feng, Yuanbo; Xia, Qian; Yu, Jie; Jiang, Yansheng; Dymarkowski, Steven; Huang, Gang; Chen, Feng; Oyen, Raymond; Ni, Yicheng
2015-01-01
The purpose of this work was to visualize the pancreas in post-mortem rats with local contrast medium infusion by three-dimensional (3D) magnetic resonance imaging (MRI) and computed tomography (CT) using clinical imagers. A total of 16 Sprague Dawley rats of about 300 g were used for the pancreas visualization. Following the baseline imaging, a mixed contrast medium dye called GadoIodo-EB containing optimized concentrations of Gd-DOTA, iomeprol and Evens blue was infused into the distally obstructed common bile duct (CBD) for post-contrast imaging with 3.0 T MRI and 128-slice CT scanners. Images were post-processed with the MeVisLab software package. MRI findings were co-registered with CT scans and validated with histomorphology, with relative contrast ratios quantified. Without contrast enhancement, the pancreas was indiscernible. After infusion of GadoIodo-EB solution, only the pancreatic region became outstandingly visible, as shown by 3D rendering MRI and CT and proven by colored dissection and histological examinations. The measured volume of the pancreas averaged 1.12 ± 0.04 cm(3) after standardization. Relative contrast ratios were 93.28 ± 34.61% and 26.45 ± 5.29% for MRI and CT respectively. We have developed a multifunctional contrast medium dye to help clearly visualize and delineate rat pancreas in situ using clinical MRI and CT scanners. The topographic landmarks thus created with 3D demonstration may help to provide guidelines for the next in vivo pancreatic MRI research in rodents. Copyright © 2015 John Wiley & Sons, Ltd.
Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong
2015-01-01
In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.
Sant, Karilyn E.; Jacobs, Haydee M.; Xu, Jiali; Borofski, Katrina A.; Moss, Larry G.; Moss, Jennifer B.; Timme-Laragy, Alicia R.
2016-01-01
The pancreatic islets, largely comprised of insulin-producing beta cells, play a critical role in endocrine signaling and glucose homeostasis. Because they have low levels of antioxidant defenses and a high perfusion rate, the endocrine islets may be a highly susceptible target tissue of chemical exposures. However, this endpoint, as well as the integrity of the surrounding exocrine pancreas, is often overlooked in studies of developmental toxicology. Disruption of development by toxicants can alter cell fate and migration, resulting in structural alterations that are difficult to detect in mammalian embryo systems, but that are easily observed in the zebrafish embryo model (Danio rerio). Using endogenously expressed fluorescent protein markers for developing zebrafish beta cells and exocrine pancreas tissue, we documented differences in islet area and incidence rates of islet morphological variants in zebrafish embryos between 48 and 96 h post fertilization (hpf), raised under control conditions commonly used in embryotoxicity assays. We identified critical windows for chemical exposures during which increased incidences of endocrine pancreas abnormalities were observed following exposure to cyclopamine (2–12 hpf), Mono-2-ethylhexyl phthalate (MEHP) (3–48 hpf), and Perfluorooctanesulfonic acid (PFOS) (3–48 hpf). Both islet area and length of the exocrine pancreas were sensitive to oxidative stress from exposure to the oxidant tert-butyl hydroperoxide during a highly proliferative critical window (72 hpf). Finally, pancreatic dysmorphogenesis following developmental exposures is discussed with respect to human disease. PMID:28393070
Stabilization of beta-catenin induces pancreas tumor formation.
Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias
2008-10-01
beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.
Xue, Jing; Zhao, Qinglan; Sharma, Vishal; Nguyen, Linh P; Lee, Yvonne N; Pham, Kim L; Edderkaoui, Mouad; Pandol, Stephen J; Park, Walter; Habtezion, Aida
2016-12-01
Cigarette smoke has been identified as an independent risk factor for chronic pancreatitis (CP). Little is known about the mechanisms by which smoking promotes development of CP. We assessed the effects of aryl hydrocarbon receptor (AhR) ligands found in cigarette smoke on immune cell activation in humans and pancreatic fibrosis in animal models of CP. We obtained serum samples from patients with CP treated at Stanford University hospital and healthy individuals (controls) and isolated CD4 + T cells. Levels of interleukin-22 (IL22) were measured by enzyme-linked immunosorbent assay and smoking histories were collected. T cells from healthy nonsmokers and smokers were stimulated and incubated with AhR agonists (2,3,7,8-tetrachlorodibenzo-p-dioxin or benzo[a]pyrene) or antagonists and analyzed by flow cytometry. Mice were given intraperitoneal injections of caerulein or saline, with or without lipopolysaccharide, to induce CP. Some mice were given intraperitoneal injections of AhR agonists at the start of caerulein injection, with or without an antibody against IL22 (anti-IL22) starting 2 weeks after the first caerulein injection, or recombinant mouse IL22 or vehicle (control) intraperitoneally 4 weeks after the first caerulein injection. Mice were exposed to normal air or cigarette smoke for 6 h/d for 7 weeks and expression of AhR gene targets was measured. Pancreata were collected from all mice and analyzed by histology and quantitative reverse transcription polymerase chain reaction. Pancreatic stellate cells and T cells were isolated and studied using immunoblot, immunofluorescence, flow cytometry, and enzyme-linked immunosorbent analyses. Mice given AhR agonists developed more severe pancreatic fibrosis (based on decreased pancreas size, histology, and increased expression of fibrosis-associated genes) than mice not given agonists after caerulein injection. In mice given saline instead of caerulein, AhR ligands did not induce fibrosis. Pancreatic T cells from mice given AhR agonists and caerulein were activated and expressed IL22, but not IL17 or interferon gamma. Human T cells exposed to AhR agonists up-regulated expression of IL22. In mice given anti-IL22, pancreatic fibrosis did not progress, whereas mice given recombinant IL22 had a smaller pancreas and increased fibrosis. Pancreatic stellate cells isolated from mouse and human pancreata expressed the IL22 receptor IL22RA1. Incubation of the pancreatic stellate cells with IL22 induced their expression of the extracellular matrix genes fibronectin 1 and collagen type I α1 chain, but not α2 smooth muscle actin or transforming growth factor-β. Serum samples from smokers had significantly higher levels of IL22 than those from nonsmokers. AhR ligands found in cigarette smoke increase the severity of pancreatic fibrosis in mouse models of pancreatitis via up-regulation of IL22. This pathway might be targeted for treatment of CP and serve as a biomarker of disease. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
A Novel Method of Diagnosing Aberrant Pancreas: Needle-based Confocal Laser Endomicroscopy.
Yasuda, Muneji; Hara, Kazuo; Kurita, Yusuke; Tanaka, Hiroki; Obata, Masahiro; Kuraoka, Naosuke; Matsumoto, Shimpei; Ito, Ayako; Iwaya, Hiromichi; Toriyama, Kazuhiro; Okuno, Nozomi; Kuwahara, Takamichi; Hijioka, Susumu; Mizuno, Nobumasa; Onishi, Sachiyo; Hirayama, Yutaka; Ishihara, Makoto; Tanaka, Tsutomu; Tajika, Masahiro; Niwa, Yasumasa
2018-05-18
Aberrant pancreas is defined as pancreatic tissue present outside of the pancreas and is often found incidentally during esophagogastroduodenoscopy. Obtaining sufficient tissue to differentiate aberrant pancreas from other subepithelial lesions is sometimes difficult. Due to the lack of a definitive diagnosis, patients often undergo unnecessary surgery. We herein report the first case of aberrant pancreas in which the concomitant use of needle-based probe confocal laser endomicroscopy and fine-needle aspiration supported the final diagnosis. Needle-based probe confocal laser endomicroscopy provides a real-time in vivo histopathology evaluation and may be a feasible means of diagnosing aberrant pancreas.
Kushnir, Vladimir M; Wani, Sachin B; Fowler, Kathryn; Menias, Christine; Varma, Rakesh; Narra, Vamsi; Hovis, Christine; Murad, Faris M; Mullady, Daniel K; Jonnalagadda, Sreenivasa S; Early, Dayna S; Edmundowicz, Steven A; Azar, Riad R
2013-04-01
There are limited data comparing imaging modalities in the diagnosis of pancreas divisum. We aimed to: (1) evaluate the sensitivity of endoscopic ultrasound (EUS), magnetic resonance cholangiopancreatography (MRCP), and multidetector computed tomography (MDCT) for pancreas divisum; and (2) assess interobserver agreement (IOA) among expert radiologists for detecting pancreas divisum on MDCT and MRCP. For this retrospective cohort study, we identified 45 consecutive patients with pancreaticobiliary symptoms and pancreas divisum established by endoscopic retrograde pancreatography who underwent EUS and cross-sectional imaging. The control group was composed of patients without pancreas divisum who underwent endoscopic retrograde pancreatography and cross-sectional imaging. The sensitivity of EUS for pancreas divisum was 86.7%, significantly higher than the sensitivity reported in the medical records for MDCT (15.5%) or MRCP (60%) (P < 0.001 for each). On review by expert radiologists, the sensitivity of MDCT increased to 83.3% in cases where the pancreatic duct was visualized, with fair IOA (κ = 0.34). Expert review of MRCPs did not identify any additional cases of pancreas divisum; IOA was moderate (κ = 0.43). Endoscopic ultrasound is a sensitive test for diagnosing pancreas divisum and is superior to MDCT and MRCP. Review of MDCT studies by expert radiologists substantially raises its sensitivity for pancreas divisum.
The vitamin D system is deregulated in pancreatic diseases
Hummel, Doris; Aggarwal, Abhishek; Borka, Katalin; Bajna, Erika; Kállay, Enikö; Horváth, Henrik Csaba
2014-01-01
The vitamin D system is deregulated during development and progression of several cancer types. Data on the expression of the vitamin D system in the diseased pancreas are missing. The aim of this study was to investigate the expression of the vitamin D receptor (VDR), 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1), and the calcium-sensing receptor (CaSR), a vitamin D target gene, in the different regions of the pancreas in patients with chronic pancreatitis (n = 6) and pancreatic ductal adenocarcinomas (PDAC) (n = 17). We analyzed the expression of these genes at mRNA and protein level with quantitative real-time RT-PCR and immunostaining. mRNA expression of CYP24A1 and VDR was significantly increased in tumors compared with the adjacent non-tumorous tissue (p < 0.01), while CaSR mRNA expression decreased. Both the VDR and the CaSR protein were highly expressed in the endocrine compared with the exocrine pancreas. In CP the CYP24A1 expression was highest in the endocrine pancreas, while in PDACs in the transformed ducts. In the PDAC patients CYP24A1 expression in the islets was significantly lower than in CP patients. Our data suggest that during ductal adenocarcinoma development the vitamin D system in the pancreas becomes deregulated on two levels: in the islets CYP24A1 expression decreases weakening the negative feedback regulation of the vitamin D-dependent insulin synthesis/secretion. In the transformed ducts CYP24A1 expression increases, impairing the antiproliferative effect of vitamin D in these cells. PMID:25090635
Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse
2015-01-01
Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.
Endothelial cells are not required for specification of respiratory progenitors
Havrilak, Jamie A.; Melton, Kristin R.; Shannon, John M.
2017-01-01
Crosstalk between mesenchymal and epithelial cells influences organogenesis in multiple tissues, such as lung, pancreas, liver, and the nervous system. Lung mesenchyme comprises multiple cell types, however, and precise identification of the mesenchymal cell type(s) that drives early events in lung development remains unknown. Endothelial cells have been shown to be required for some aspects of lung epithelial patterning, lung stem cell differentiation, and regeneration after injury. Furthermore, endothelial cells are involved in early liver and pancreas development. From these observations we hypothesized that endothelial cells might also be required for early specification of the respiratory field and subsequent lung bud initiation. We first blocked VEGF signaling in E8.5 cultured foreguts with small molecule VEGFR inhibitors and found that lung specification and bud formation were unaltered. However, when we examined E9.5 mouse embryos carrying a mutation in the VEGFR Flk-1, which do not develop endothelial cells, we found that respiratory progenitor specification was impeded. Because the E9.5 embryos were substantially smaller than control littermates, suggesting the possibility of developmental delay, we isolated and cultured foreguts from mutant and control embryos on E8.5, when no size differences were apparent. We found that both specification of the respiratory field and lung bud formation occurred in mutant and control explants. These observations were unaffected by the presence or absence of serum. We also observed that hepatic specification and initiation occurred in the absence of endothelial cells, and that expansion of the liver epithelium in culture did not differ between mutant and control explants. Consistent with previously published results, we also found that pancreatic buds were not maintained in cultured foreguts when endothelial cells were absent. Our observations support the conclusion that endothelial cells are not required for early specification of lung progenitors and bud initiation, and that the diminished lung specification seen in E9.5 Flk−/− embryos is likely due to developmental delay resulting from the insufficient delivery of oxygen, nutrients, and other factors in the absence of a vasculature. PMID:28501476
Herrero-Martin, Griselda; Puri, Sapna; Taketo, Makoto Mark; Rojas, Anabel; Hebrok, Matthias; Cano, David A.
2016-01-01
Organ formation is achieved through the complex interplay between signaling pathways and transcriptional cascades. The canonical Wnt signaling pathway plays multiple roles during embryonic development including patterning, proliferation and differentiation in distinct tissues. Previous studies have established the importance of this pathway at multiple stages of pancreas formation as well as in postnatal organ function and homeostasis. In mice, gain-of-function experiments have demonstrated that activation of the canonical Wnt pathway results in pancreatic hypoplasia, a phenomenon whose underlying mechanisms remains to be elucidated. Here, we show that ectopic activation of epithelial canonical Wnt signaling causes aberrant induction of gastric and intestinal markers both in the pancreatic epithelium and mesenchyme, leading to the development of gut-like features. Furthermore, we provide evidence that β -catenin-induced impairment of pancreas formation depends on Hedgehog signaling. Together, our data emphasize the developmental plasticity of pancreatic progenitors and further underscore the key role of precise regulation of signaling pathways to maintain appropriate organ boundaries. PMID:27736991
The Human Pancreas Proteome Defined by Transcriptomics and Antibody-Based Profiling
Fagerberg, Linn; Hallström, Björn M.; Schwenk, Jochen M.; Uhlén, Mathias; Korsgren, Olle; Lindskog, Cecilia
2014-01-01
The pancreas is composed of both exocrine glands and intermingled endocrine cells to execute its diverse functions, including enzyme production for digestion of nutrients and hormone secretion for regulation of blood glucose levels. To define the molecular constituents with elevated expression in the human pancreas, we employed a genome-wide RNA sequencing analysis of the human transcriptome to identify genes with elevated expression in the human pancreas. This quantitative transcriptomics data was combined with immunohistochemistry-based protein profiling to allow mapping of the corresponding proteins to different compartments and specific cell types within the pancreas down to the single cell level. Analysis of whole pancreas identified 146 genes with elevated expression levels, of which 47 revealed a particular higher expression as compared to the other analyzed tissue types, thus termed pancreas enriched. Extended analysis of in vitro isolated endocrine islets identified an additional set of 42 genes with elevated expression in these specialized cells. Although only 0.7% of all genes showed an elevated expression level in the pancreas, this fraction of transcripts, in most cases encoding secreted proteins, constituted 68% of the total mRNA in pancreas. This demonstrates the extreme specialization of the pancreas for production of secreted proteins. Among the elevated expression profiles, several previously not described proteins were identified, both in endocrine cells (CFC1, FAM159B, RBPJL and RGS9) and exocrine glandular cells (AQP12A, DPEP1, GATM and ERP27). In summary, we provide a global analysis of the pancreas transcriptome and proteome with a comprehensive list of genes and proteins with elevated expression in pancreas. This list represents an important starting point for further studies of the molecular repertoire of pancreatic cells and their relation to disease states or treatment effects. PMID:25546435
Veite-Schmahl, Michelle J.; Rivers, Adam C.; Regan, Daniel P.
2017-01-01
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading forms of cancer related deaths in the United States. With limited treatment options and unreliable diagnostic methods, long-term survival rates following a diagnosis of pancreatic cancer remain poor. Pancreatic intraepithelial neoplasia (PanIN) are precancerous lesions that precede progression towards PDAC. PanIN occur in increasing complexity as the disease progresses and the description of PanIN plays a critical role in describing, staging and diagnosing PDAC. Inconsistencies in PanIN classifications exist even amongst leading pathologists. This has led to debate and confusion among researchers and pathologists involved in pancreatic cancer research, diagnosis and treatment. We have sought to initiate a discussion with leading pathologists with a goal of increasing consensus in the interpretation of PanIN and associated structures within the precancerous pancreas. Toward achieving this goal, we are in the process of conducting an extensive study of over 1000 male and female pancreata in varying stages of PanIN progression isolated from the Ptf1aCre/+;LSL-KrasG12D/+ transgenic mouse model of pancreatic cancer. Using this extensive database, we have established the Mouse Model of Pancreatic Cancer Atlas (MMPCA) to serve as a platform for meaningful and interactive discussion among researchers and pathologists who study pancreatic disease. We hope that the MMPCA will be an effective tool for promoting a more consistent and accurate consensus of PanIN classifications in the future. PMID:29121082
Mazur, Pawel K; Herner, Alexander; Mello, Stephano S; Wirth, Matthias; Hausmann, Simone; Sánchez-Rivera, Francisco J; Lofgren, Shane M; Kuschma, Timo; Hahn, Stephan A; Vangala, Deepak; Trajkovic-Arsic, Marija; Gupta, Aayush; Heid, Irina; Noël, Peter B; Braren, Rickmer; Erkan, Mert; Kleeff, Jörg; Sipos, Bence; Sayles, Leanne C; Heikenwalder, Mathias; Heßmann, Elisabeth; Ellenrieder, Volker; Esposito, Irene; Jacks, Tyler; Bradner, James E; Khatri, Purvesh; Sweet-Cordero, E Alejandro; Attardi, Laura D; Schmid, Roland M; Schneider, Guenter; Sage, Julien; Siveke, Jens T
2016-01-01
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers and shows resistance to any therapeutic strategy used. Here we tested small-molecule inhibitors targeting chromatin regulators as possible therapeutic agents in PDAC. We show that JQ1, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, suppresses PDAC development in mice by inhibiting both MYC activity and inflammatory signals. The histone deacetylase (HDAC) inhibitor SAHA synergizes with JQ1 to augment cell death and more potently suppress advanced PDAC. Finally, using a CRISPR-Cas9–based method for gene editing directly in the mouse adult pancreas, we show that de-repression of p57 (also known as KIP2 or CDKN1C) upon combined BET and HDAC inhibition is required for the induction of combination therapy–induced cell death in PDAC. SAHA is approved for human use, and molecules similar to JQ1 are being tested in clinical trials. Thus, these studies identify a promising epigenetic-based therapeutic strategy that may be rapidly implemented in fatal human tumors. PMID:26390243
The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma
Krah, Nathan M; De La O, Jean-Paul; Swift, Galvin H; Hoang, Chinh Q; Willet, Spencer G; Chen Pan, Fong; Cash, Gabriela M; Bronner, Mary P; Wright, Christopher VE; MacDonald, Raymond J; Murtaugh, L Charles
2015-01-01
Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas. DOI: http://dx.doi.org/10.7554/eLife.07125.001 PMID:26151762
Hayashi, K; Hayashi, M; Jalkanen, M; Firestone, J H; Trelstad, R L; Bernfield, M
1987-10-01
The core protein of the proteoglycan at the cell surface of NMuMG mouse mammary epithelial cells bears both heparan and chondroitin sulfate chains and is recognized by the monoclonal antibody 281-2. Using this antibody and the peroxidase-antiperoxidase staining technique in adult mouse tissues, we found that the antibody recognizes the antigen in a highly restricted distribution, staining a variety of epithelial cells but no cells derived from embryonic mesoderm or neural crest. The antibody fails to stain any stromal (mesenchymal) or neuronal cells, with the exception of plasma cells and Leydig cells. Squamous and transitional epithelia stain intensely over their entire surfaces, whereas cuboidal and columnar epithelia stain moderately and only at the lateral surface of the basal cells. Within squamous and transitional epithelial tissues that undergo physiological regeneration (e.g., epidermis), the most superficial and differentiated cell types fail to stain. Within glandular and branched epithelia (e.g., pancreas), the secretory alveolar cells fail to stain. When evaluated by electron microscopy, granular deposits of stain are seen on the plasma membrane, especially on lateral surfaces, but none are noted within the cells or the basement membrane. These results indicate that in adult tissues the core protein of this heparan sulfate-rich proteoglycan is expressed almost exclusively at epithelial cell surfaces. Expression appears to be lost as the cells become either mature or highly differentiated.
Basarkar, Ashwin; Singh, Jagdish
2009-01-01
Determine the efficiency of cationic nanoparticles prepared by blending poly (lactide-co-glycolide; PLGA) and methacrylate copolymer (Eudragit(R) E100) to deliver a therapeutic gene encoding mouse interleukin-10, in vitro and in vivo. Nanoparticles prepared with PLGA and E100 were evaluated for delivery of plasmid DNA encoding mouse interleukin-10 in vitro and in vivo in mice upon intramuscular injection. Blood-glucose, serum interferon-gamma levels and histology of pancreas were studied to determine therapeutic efficacy. Histological evaluation of skeletal muscle from the injection site was performed to assess the biocompatibility of nanoparticles. PLGA/E100 nanoparticles showed endosomal escape evidenced by confocal microscopy and buffering ability. Transfecting HEK293 cells with plasmid-loaded PLGA/E100 nanoparticles resulted in significantly (p < 0.05) greater expression of interleukin-10 compared to PLGA nanoparticles. Mice treated with PLGA/E100 nanoparticles displayed higher serum levels of interleukin-10 and lower blood glucose levels compared to those treated with interleukin-10 plasmid alone or PLGA nanoparticles. High expression of interleukin-10 facilitated suppression of interferon-gamma levels and reduced islet infiltration. Histology of muscle showed that nanoparticles were biocompatible and did not cause chronic inflammatory response. Nanoparticles prepared by blending PLGA with methacrylate can efficiently and safely deliver plasmid DNA encoding mouse interleukin-10 leading to prevention of autoimmune diabetes.
Minimally Invasive Management of Ectopic Pancreas.
Vitiello, Gerardo A; Cavnar, Michael J; Hajdu, Cristina; Khaykis, Inessa; Newman, Elliot; Melis, Marcovalerio; Pachter, H Leon; Cohen, Steven M
2017-03-01
The management of ectopic pancreas is not well defined. This study aims to determine the prevalence of symptomatic ectopic pancreas and identify those who may benefit from treatment, with a particular focus on robotically assisted surgical management. Our institutional pathology database was queried to identify a cohort of ectopic pancreas specimens. Additional clinical data regarding clinical symptomatology, diagnostic studies, and treatment were obtained through chart review. Nineteen cases of ectopic pancreas were found incidentally during surgery for another condition or found incidentally in a pathologic specimen (65.5%). Eleven patients (37.9%) reported prior symptoms, notably abdominal pain and/or gastrointestinal bleeding. The most common locations for ectopic pancreas were the duodenum and small bowel (31% and 27.6%, respectively). Three out of 29 cases (10.3%) had no symptoms, but had evidence of preneoplastic changes on pathology, while one harbored pancreatic cancer. Over the years, treatment of ectopic pancreas has shifted from open to laparoscopic and more recently to robotic surgery. Our experience is in line with existing evidence supporting surgical treatment of symptomatic or complicated ectopic pancreas. In the current era, minimally invasive and robotic surgery can be used safely and successfully for treatment of ectopic pancreas.
Gaber, Lillian W
2007-08-01
Pancreas transplantation has become a therapeutic option for patients with type 1 diabetes mellitus who are in end-stage renal failure. It also is indicated for a subset of nonuremic, insulin-dependent diabetics who experience extreme difficulties in maintaining proper glucose homeostasis by insulin therapy that compromises their productivity and safety. To provide a review of the literature and expert experiences for understanding the histologic findings in pancreas transplantation. The published literature between 1990 and 2005 was reviewed for this report. Additionally, personal files of the author were used, along with biopsy slides that were used for figures. Pancreas transplantation reestablishes the physiologic state of insulin secretion, and pancreas transplant recipients are able to maintain a state of long-term euglycemia and are less likely to be exposed to hyperglycemia and its systemic complications. Key to the success of transplantation is the scrupulous management and close monitoring of the pancreas transplant recipients. To that end, histologic evaluation of pancreas allografts assumed a pivotal role in management of pancreas allograft dysfunction episodes, and in some centers surveillance biopsies are used to monitor immunologically high-risk situations.
Developmental biology of the pancreas: a comprehensive review.
Gittes, George K
2009-02-01
Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.
Wang, He; Dou, Ke-feng; Yang, Xiao-jian; Qin, Wei-jun; Zhang, Geng; Yu, Lei; Kang, Fu-xia; Chen, Shao-yang; Xiong, Li-ze; Song, Zhen-shun; Liu, Zheng-cai
2006-09-12
To study the effect of triple organ transplantation (liver, kidney, and pancreas) in patient of end-stage liver disease with renal failure and diabetes, and to explore the optimal surgical procedure. Simultaneous piggyback orthotopic heterotopic liver, pancreas-duodenum, and kidney transplantation was performed on a 43-year-old male patient with exocrine pancreatic insufficiency and insulin-dependent diabetes related to chronic pancreatitis (CP) who developed hepatic and renal failure. The pancreatic exocrine secretions were drained enterically to the jejunum. Prednisone, tacrolimus, mycophenolate mofetil, and ATG were used as immunosuppression therapy. Good liver and pancreas allograft function recovery was achieved within 7 days after the operation. And the recovery of renal allograft function was delayed. The renal allograft was removed because of break-down of renal blood flow 16 days after the transplantation. A new renal transplantation was performed at the same position. The second kidney graft recovered its normal function 3 days later. Up to the writing of this paper no acute rejection of organs and such complications as pancreatitis, thrombosis, and localized infection occurred. The patient became insulin independent with normal liver and renal function. Simultaneous piggyback orthotopic heterotopic liver, pancreas-duodenum, and kidney transplantation can be a good method for the patients with exocrine pancreatic insufficiency and insulin-dependent diabetes combined with hepatic and renal failure.
Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W
2012-05-01
Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.
Ontogeny of neuro-insular complexes and islets innervation in the human pancreas.
Proshchina, Alexandra E; Krivova, Yulia S; Barabanov, Valeriy M; Saveliev, Sergey V
2014-01-01
The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis.
Ontogeny of Neuro-Insular Complexes and Islets Innervation in the Human Pancreas
Proshchina, Alexandra E.; Krivova, Yulia S.; Barabanov, Valeriy M.; Saveliev, Sergey V.
2014-01-01
The ontogeny of the neuro-insular complexes (NIC) and the islets innervation in human pancreas has not been studied in detail. Our aim was to describe the developmental dynamics and distribution of the nervous system structures in the endocrine part of human pancreas. We used double-staining with antibodies specific to pan-neural markers [neuron-specific enolase (NSE) and S100 protein] and to hormones of pancreatic endocrine cells. NSE and S100-positive nerves and ganglia were identified in the human fetal pancreas from gestation week (gw) 10 onward. Later the density of S100 and NSE-positive fibers increased. In adults, this network was sparse. The islets innervation started to form from gw 14. NSE-containing endocrine cells were identified from gw 12 onward. Additionally, S100-positive cells were detected both in the periphery and within some of the islets starting at gw 14. The analysis of islets innervation has shown that the fetal pancreas contained NIC and the number of these complexes was reduced in adults. The highest density of NIC is detected during middle and late fetal periods, when the mosaic islets, typical for adults, form. The close integration between the developing pancreatic islets and the nervous system structures may play an important role not only in the hormone secretion, but also in the islets morphogenesis. PMID:24795697
Specification of hepatopancreas progenitors in zebrafish by hnf1ba and wnt2bb
Lancman, Joseph J.; Zvenigorodsky, Natasha; Gates, Keith P.; Zhang, Danhua; Solomon, Keely; Humphrey, Rohan K.; Kuo, Taiyi; Setiawan, Linda; Verkade, Heather; Chi, Young-In; Jhala, Ulupi S.; Wright, Christopher V. E.; Stainier, Didier Y. R.; Dong, P. Duc Si
2013-01-01
Although the liver and ventral pancreas are thought to arise from a common multipotent progenitor pool, it is unclear whether these progenitors of the hepatopancreas system are specified by a common genetic mechanism. Efforts to determine the role of Hnf1b and Wnt signaling in this crucial process have been confounded by a combination of factors, including a narrow time frame for hepatopancreas specification, functional redundancy among Wnt ligands, and pleiotropic defects caused by either severe loss of Wnt signaling or Hnf1b function. Using a novel hypomorphic hnf1ba zebrafish mutant that exhibits pancreas hypoplasia, as observed in HNF1B monogenic diabetes, we show that hnf1ba plays essential roles in regulating β-cell number and pancreas specification, distinct from its function in regulating pancreas size and liver specification, respectively. By combining Hnf1ba partial loss of function with conditional loss of Wnt signaling, we uncover a crucial developmental window when these pathways synergize to specify the entire ventrally derived hepatopancreas progenitor population. Furthermore, our in vivo genetic studies demonstrate that hnf1ba generates a permissive domain for Wnt signaling activity in the foregut endoderm. Collectively, our findings provide a new model for HNF1B function, yield insight into pancreas and β-cell development, and suggest a new mechanism for hepatopancreatic specification. PMID:23720049
Kushnir, Vladimir M.; Wani, Sachin B.; Fowler, Kathryn; Menias, Christine; Varma, Rakesh; Narra, Vamsi; Hovis, Christine; Murad, Faris; Mullady, Daniel; Jonnalagadda, Sreenivasa S.; Early, Dayna S.; Edmundowicz, Steven A.; Azar, Riad R.
2014-01-01
OBJECTIVES There are limited data comparing imaging modalities in the diagnosis of pancreas divisum. We aimed to: 1. Evaluate the sensitivity of endoscopic ultrasound (EUS), magnetic resonance cholangiopancreatography (MRCP) and multi-detector computed tomography (MDCT) for pancreas divisum. 2. Assess interobserver agreement (IOA) among expert radiologists for detecting pancreas divisum on MDCT and MRCP. METHODS For this retrospective cohort study, we identified 45 consecutive patients with pancreaticobiliary symptoms and pancreas divisum established by endoscopic retrograde pancreatography (ERP) who underwent EUS and cross-sectional imaging. The control group was composed of patients without pancreas divisum who underwent ERP and cross-sectional imaging. RESULTS The sensitivity of EUS for pancreas divisum was 86.7%, significantly higher than sensitivity reported in the medical records for MDCT (15.5%) or MRCP (60%) [p<0.001 for each]. On review by expert radiologists the sensitivity of MDCT increased to 83.3% in cases where the pancreatic duct was visualized, with fair IOA (қ=0.34). Expert review of MRCPs did not identify any additional cases of pancreas divisum; IOA was moderate (қ=0.43). CONCLUSIONS EUS is a sensitive test for diagnosing pancreas divisum and is superior to MDCT and MRCP. Review of MDCT studies by expert radiologists substantially raises its sensitivity for pancreas divisum. PMID:23211370
Noda, Asao; Suemori, Hirofumi; Hirai, Yuko; Hamasaki, Kanya; Kodama, Yoshiaki; Mitani, Hiroshi; Landes, Reid D; Nakamura, Nori
2015-01-01
It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3' portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation frequency, thus reducing inter-individual variation.
Development of Stable Liquid Glucagon Formulations for Use in Artificial Pancreas
Li, Ming; Krasner, Alan; De Souza, Errol
2014-01-01
Background: A promising approach to treat diabetes is the development of fully automated artificial/bionic pancreas systems that use both insulin and glucagon to maintain euglycemia. A physically and chemically stable liquid formulation of glucagon does not currently exist. Our goal is to develop a glucagon formulation that is stable as a clear and gel-free solution, free of fibrils and that has the requisite long-term shelf life for storage in the supply chain, short-term stability for at least 7 days at 37°C, and pump compatibility for use in a bihormonal pump. Methods: We report the development of two distinct families of stable liquid glucagon formulations which utilize surfactant or surfactant-like excipients (LMPC and DDM) to “immobilize” the glucagon in solution potentially through the formation of micelles and prevention of interaction between glucagon molecules. Results: Data are presented that demonstrate long-term physical and chemical stability (~2 years) at 5°C, short-term stability (up to 1 month) under accelerated 37°C testing conditions, pump compatibility for up to 9 days, and adequate glucose responses in dogs and diabetic swine. Conclusions: These stable glucagon formulations show utility and promise for further development in artificial pancreas systems. PMID:25352634
75 FR 75176 - Gastrointestinal Drugs Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-02
... cystic fibrosis, chronic pancreatitis, pancreatectomy (surgical removal of all or part of the pancreas), or other conditions that may impair or limit function of the pancreas. The pancreas is an organ... by the pancreas. FDA intends to make background material available to the public no later than 2...
Luo, LuGuang; Luo, John Z Q; Jackson, Ivor
2013-02-01
A very small tripeptide amide L-pyroglutamyl-L-histidyl-L-prolineamide (L-PHP, Thyrotropin-Releasing Hormone, TRH), was first identified in the brain hypothalamus area. Further studies found that L-PHP was expressed in pancreas. The biological role of pancreatic L-PHP is still not clear. Growing evidence indicates that L-PHP expression in the pancreas may play a pivotal role for pancreatic development in the early prenatal period. However, the role of L-PHP in adult pancreas still needs to be explored. L-PHP activation of pancreatic β cell Ca2+ flow and stimulation of β-cell insulin synthesis and release suggest that L-PHP involved in glucose metabolism may directly act on the β cell separate from any effects via the central nervous system (CNS). Knockout L-PHP animal models have shown that loss of L-PHP expression causes hyperglycemia, which cannot be reversed by administration of thyroid hormone, suggesting that the absence of L-PHP itself is the cause. L-PHP receptor type-1 has been identified in pancreas which provides a possibility for L-PHP autocrine and paracrine regulation in pancreatic function. During pancreatic damage in adult pancreas, L-PHP may protect beta cell from apoptosis and initiate its regeneration through signal pathways of growth hormone in β cells. L-PHP has recently been discovered to affect a broad array of gene expression in the pancreas including growth factor genes. Signal pathways linked between L-PHP and EGF receptor phosphorylation suggest that L-PHP may be an important factor for adult β-cell regeneration, which could involve adult stem cell differentiation. These effects suggest that L-PHP may benefit pancreatic β cells and diabetic therapy in clinic.
Bofill-De Ros, Xavier; Gironella, Meritxell; Fillat, Cristina
2014-09-01
Oncolytic virotherapy shows promise for pancreatic ductal adenocarcinoma (PDAC) treatment, but there is the need to minimize associated-toxicities. In the current work, we engineered artificial target sites recognized by miR-216a and/or miR-148a to provide pancreatic tumor-selectivity to replication-competent adenoviruses (Ad-miRTs) and improve their safety profile. Expression analysis in PDAC patients identified miR-148a and miR-216a downregulated in resectable (FC(miR-148a) = 0.044, P < 0.05; FC(miR-216a) = 0.017, P < 0.05), locally advanced (FC(miR-148a) = 0.038, P < 0.001; FC(miR-216a) = 0.001, P < 0.001) and metastatic tumors (FC(miR-148a) = 0.041, P < 0.01; FC(miR-216a) = 0.002, P < 0.001). In mouse tissues, miR-216a was highly specific of the exocrine pancreas whereas miR-148a was abundant in the exocrine pancreas, Langerhans islets, and the liver. In line with the miRNA content and the miRNA target site design, we show E1A gene expression and viral propagation efficiently controlled in Ad-miRT-infected cells. Consequently, Ad-miRT-infected mice presented reduced pancreatic and liver damage without perturbation of the endogenous miRNAs and their targets. Interestingly, the 8-miR148aT design showed repressing activity by all miR-148/152 family members with significant detargeting effects in the pancreas and liver. Ad-miRTs preserved their oncolytic activity and triggered strong antitumoral responses. This study provides preclinical evidences of miR-148a and miR-216a target site insertions to confer adenoviral selectivity and proposes 8-miR148aT as an optimal detargeting strategy for genetically-engineered therapies against PDAC.
Kerekes, László; Antal-Szalmás, Péter; Dezso, Balázs; Sipka, Sándor; Furka, Andrea; Mikó, Irén; Sápy, Péter
2005-04-01
Proinflammatory cytokines are elevated during acute pancreatitis. The endotoxins and Phospholipase A2 (PLA2) also have important role in acute pancreatitis. The aim of this study was to determine, what factors are responsible for the tissue damage in acute pancreatitis. The examinations were performed on fixed and frozen sections of healthy dog's pancreas tissue. Direct effects of endotoxins, PLA2, and proinflammatory cytokines together with pancreas enzymes were examined on pancreatic tissue. Pancreas enzymes themselves did not cause any change in the structure of pancreas. The common influence of endotoxins, PLA2 and pancreas enzymes was examined, and finally the effect of proinflammatory cytokines and enzymes was examined on pancreas tissue. Our results show, that besides enzymes many other factors are necessary to inflict tissue damage in acute pancreatitis, but for necrosis the presence of TNF alfa is a must.
Metastatic Renal Cell Carcinoma to the Pancreas: A Review.
Cheng, Shaun Kian Hong; Chuah, Khoon Leong
2016-06-01
The pancreas is an unusual site for tumor metastasis, accounting for only 2% to 5% of all malignancies affecting the pancreas. The more common metastases affecting the pancreas include renal cell carcinomas, melanomas, colorectal carcinomas, breast carcinomas, and sarcomas. Although pancreatic involvement by nonrenal malignancies indicates widespread systemic disease, metastatic renal cell carcinoma to the pancreas often represents an isolated event and is thus amenable to surgical resection, which is associated with long-term survival. As such, it is important to accurately diagnose pancreatic involvement by metastatic renal cell carcinoma on histology, especially given that renal cell carcinoma metastasis may manifest more than a decade after its initial presentation and diagnosis. In this review, we discuss the clinicopathologic findings of isolated renal cell carcinoma metastases of the pancreas, with special emphasis on separating metastatic renal cell carcinoma and its various differential diagnoses in the pancreas.
Stabilization of β-catenin induces pancreas tumor formation
Heiser, Patrick W.; Cano, David A.; Landsman, Limor; Kim, Grace E.; Kench, James G.; Klimstra, David S.; Taketo, Maketo M.; Biankin, Andrew V.; Hebrok, Matthias
2008-01-01
Background & Aims β-catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of β-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is one of the leading causes of cancer death. While activating mutations within β-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of β-catenin signaling in pancreas tumorigenesis. Methods Using Cre/lox technology, we conditionally activated β-catenin in a subset of murine pancreatic cells, in vivo. Results Activation of β-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based upon morphological and immunohistochemical comparisons. Interestingly, stabilization of β-catenin blocks the formation of pancreatic intraepithlelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to pancreatic ductal adenocarcinoma (PDA). Instead, mice in which β-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. Conclusions These results demonstrate that activation of β-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor. PMID:18725219
Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang
2017-09-01
Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.
Comparison of diffusion-weighted MRI acquisition techniques for normal pancreas at 3.0 Tesla.
Yao, Xiu-Zhong; Kuang, Tiantao; Wu, Li; Feng, Hao; Liu, Hao; Cheng, Wei-Zhong; Rao, Sheng-Xiang; Wang, He; Zeng, Meng-Su
2014-01-01
We aimed to optimize diffusion-weighted imaging (DWI) acquisitions for normal pancreas at 3.0 Tesla. Thirty healthy volunteers were examined using four DWI acquisition techniques with b values of 0 and 600 s/mm2 at 3.0 Tesla, including breath-hold DWI, respiratory-triggered DWI, respiratory-triggered DWI with inversion recovery (IR), and free-breathing DWI with IR. Artifacts, signal-to-noise ratio (SNR) and apparent diffusion coefficient (ADC) of normal pancreas were statistically evaluated among different DWI acquisitions. Statistical differences were noticed in artifacts, SNR, and ADC values of normal pancreas among different DWI acquisitions by ANOVA (P <0.001). Normal pancreas imaging had the lowest artifact in respiratory-triggered DWI with IR, the highest SNR in respiratory-triggered DWI, and the highest ADC value in free-breathing DWI with IR. The head, body, and tail of normal pancreas had statistically different ADC values on each DWI acquisition by ANOVA (P < 0.05). The highest image quality for normal pancreas was obtained using respiratory-triggered DWI with IR. Normal pancreas displayed inhomogeneous ADC values along the head, body, and tail structures.
Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines.
Balagué, C; Gambús, G; Carrato, C; Porchet, N; Aubert, J P; Kim, Y S; Real, F X
1994-04-01
Neoplastic transformation of epithelial cells is commonly associated with altered synthesis and structure of mucin glycoproteins. The aim of the study was to determine if altered mucin gene expression takes place in pancreas cancer. To examine mucin gene expression in normal pancreas and pancreas cancer, antibodies detecting the MUC1, MUC2, MUC5B, and MUC5C apomucins were used in immunohistochemical techniques and complementary DNA probes specific for the MUC1-MUC5 genes were used in Northern blots. MUC1 is the major apomucin expressed in normal pancreas, whereas MUC2-MUC5 are weakly expressed or undetectable. In pancreas cancer tissues and cell lines, increased expression of MUC2, MUC4, and MUC5C is shown. The cytoplasmic expression of MUC2 and MUC5C in tumor cells suggests that these apomucins are underglycosylated and abnormally compartmentalized. Enhanced expression of MUC2, MUC4, and MUC5C genes is a frequent event in pancreas cancer and may contribute to the alterations in the biochemical structure of pancreas cancer mucins.
Resection for secondary malignancy of the pancreas.
Hung, Jui-Hsia; Wang, Shin-E; Shyr, Yi-Ming; Su, Cheng-Hsi; Chen, Tien-Hua; Wu, Chew-Wun
2012-01-01
This study tried to clarify the role of pancreatic resection in the treatment of secondary malignancy with metastasis or local invasion to the pancreas in terms of surgical risk and survival benefit. Data of secondary malignancy of the pancreas from our 19 patients and cases reported in the English literature were pooled together for analysis. There were 329 cases of resected secondary malignancy of the pancreas, including 241 cases of metastasis and 88 cases of local invasion. The most common primary tumor metastatic to the pancreas and amenable to resection was renal cell carcinoma (RCC) (73.9%). More than half (52.3%) of the primary cancers with local invasion to the pancreas were colon cancer, and nearly half (40.9%) were stomach cancer. The median metastatic interval was 84 months (7 years) for overall primary tumors and 108 months (9 years) for RCC. The 5-year survival for secondary malignancy of the pancreas after resection was 61.1% for metastasis and 58.9% for local invasion, with 72.8% for RCC metastasis, 69.0% for colon cancer, and 43.8% for stomach cancer with local invasion to the pancreas. Pancreatic resection should not be precluded for secondary malignancy of the pancreas because long-term survival could be achieved with acceptable surgical risk in selected patients.
The tobacco carcinogen NNK is stereoselectively reduced by human pancreatic microsomes and cytosols.
Trushin, Neil; Leder, Gerhard; El-Bayoumy, Karam; Hoffmann, Dietrich; Beger, Hans G; Henne-Bruns, Doris; Ramadani, Marco; Prokopczyk, Bogdan
2008-07-01
Cigarette smoking increases the risk of cancer of the pancreas. The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the only known environmental compound that induces pancreatic cancer in laboratory animals. Concentrations of NNK are significantly higher in the pancreatic juice of smokers than in that of nonsmokers. The chiral NNK metabolite, (R,S)-4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is itself a potent pancreatic carcinogen in rats. The carcinogenicity of NNAL is related to its stereochemistry; (S)-NNAL is a more potent lung tumorigen in the A/J mouse than is (R)-NNAL. In this study, we determined the potential of the human pancreas to convert NNK into NNAL. Human pancreatic microsomes and cytosols were incubated with [5-(3)H]NNK, and the metabolic products were determined by high-performance liquid chromatography (HPLC). (S)-NNAL was the predominant isomer formed in all cytosolic incubations. In ten microsomal samples, NNAL was formed at an average rate of 3.8 +/- 1.6 pmol/mg/min; (R)-NNAL was the predominant isomer in this group. The average rate of NNAL formation in 18 other microsomal samples was significantly lower, 0.13 +/- 0.12 pmol/mg/min (p < 0.001); (S)-NNAL was the predominant isomer formed in this group. In human pancreatic tissues, there is intraindividual variability regarding the capacity for, and stereoselectivity of, carbonyl reduction of NNK.
The role of neutral endopeptidase in caerulein-induced acute pancreatitis.
Koh, Yung-Hua; Moochhala, Shabbir; Bhatia, Madhav
2011-11-15
Substance P (SP) is well known to promote inflammation in acute pancreatitis (AP) by interacting with neurokinin-1 receptor. However, mechanisms that terminate SP-mediated responses are unclear. Neutral endopeptidase (NEP) is a cell-surface enzyme that degrades SP in the extracellular fluid. In this study, we examined the expression and the role of NEP in caerulein-induced AP. Male BALB/c mice (20-25 g) subjected to 3-10 hourly injections of caerulein (50 μg/kg) exhibited reduced NEP activity and protein expression in the pancreas and lungs. Additionally, caerulein (10(-7) M) also downregulated NEP activity and mRNA expression in isolated pancreatic acinar cells. The role of NEP in AP was examined in two opposite ways: inhibition of NEP (phosphoramidon [5 mg/kg] or thiorphan [10 mg/kg]) followed by 6 hourly caerulein injections) or supplementation with exogenous NEP (10 hourly caerulein injections, treatment of recombinant mouse NEP [1 mg/kg] during second caerulein injection). Inhibition of NEP raised SP levels and exacerbated inflammatory conditions in mice. Meanwhile, the severity of AP, determined by histological examination, tissue water content, myeloperoxidase activity, and plasma amylase activity, was markedly better in mice that received exogenous NEP treatment. Our results suggest that NEP is anti-inflammatory in caerulein-induced AP. Acute inhibition of NEP contributes to increased SP levels in caerulein-induced AP, which leads to augmented inflammatory responses in the pancreas and associated lung injury.
Niu, Yunyun; Wang, Hong; Wiktor-Brown, Dominika; Rugo, Rebecca; Shen, Hongmei; Huq, M Saiful; Engelward, Bevin; Epperly, Michael; Greenberger, Joel S
2010-04-01
Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the frequency of homologous recombination (HR) at an integrated transgene in the Fluorescent Yellow Direct Repeat (FYDR) mice, in which an HR event can give rise to a fluorescent signal. Mitochondrial SOD plasmid/liposome complex (MnSOD-PL) was administered to esophageal cells 24 h prior to 29 Gy upper-body irradiation. Single cell suspensions from FYDR, positive control FYDR-REC, and negative control C57BL/6NHsd (wild-type) mouse esophagus, pancreas and bone marrow were evaluated by flow cytometry. Radiation induced a statistically significant increase in HR 7 days after irradiation compared to unirradiated FYDR mice. MnSOD-PL significantly reduced the induction of HR by radiation at day 7 and also reduced the level of HR in the pancreas. Irradiation of the femur and tibial marrow with 8 Gy also induced a significant increase in HR at 7 days. Radioprotection by intraesophageal administration of MnSOD-PL was correlated with a reduced level of radiation-induced HR in esophageal cells. These results demonstrate the efficacy of MnSOD-PL for suppressing radiation-induced HR in vivo.
Saisho, Yoshifumi
2016-01-01
The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better.
Saisho, Yoshifumi
2016-01-01
The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better. PMID:28012279
The pancreas from Aristotle to Galen.
Tsuchiya, Ryoichi; Kuroki, Tamotsu; Eguchi, Susumu
2015-01-01
The first description of the pancreas in literature is found in Aristotle's Historia Animalium, but it is modified by "so-called". Therefore, the origin is pursued more extensively. The Greek-English Lexicon recommends three treatises as a possible original source. These three and Galen's other papers are investigated. In 2005, Sachs et al. suggested an origin of the pancreas might have derived from the intestinal divination using the avian pancreas. This report is evaluated. The avian pancreas which is the intraperitoneal organ, might have been well known by the intestinal divination, and people have called the organ pankreas or kallikreas. Anatomical dissection on human body was not accepted before the Aristotle's time. "So-called pancreas" in Historia must have been interpolated by Theophrastus. He was the most faithful and reliable disciple of Aristotle and succeeded the Aristotle's school. He and Macedonian ruler of Egypt Ptolemy I had known each other and there had been a strong link between them. The contemporary Herophilus performed many public dissections on both human and animal bodies in Alexandria. He named the various parts of the human body and designated the beginning intestine as duodenum. Yet in his extant works, the pancreas is not found. It is surmised that Herophilus may be the first to recognize the human pancreas, which is fixed with retroperitoneal tissue, and he named it "so-called pancreas". Theophrastus might have interpolated Herophilus' designation in Historia Animalium. Galen also uses "so-called pancreas" to designate the human pancreas. Galen's descriptions, that is, "Nature created 'so-called pancreas 'and spread it beneath all vessels" are not generally acceptable but propose the very rare portal vein anomalies. Since the early years of the 20th century, cases with a preduodenal portal vein or a prepancreatic portal vein have been reported. Although the incidence is very rare, its surgical importance is emphasized. Copyright © 2014 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Gruessner, Angelika C.; Gruessner, Rainer W.G.
2016-01-01
This report is an update of pancreas and kidney transplant activities in the US and non-US region in two periods, 2005-2009 and 2010-2014. The aim of the report was to analyze transplant progress and success in the US compared to non-US countries, and to compare trends between the two periods. Between 2005-2009 and 2010-2014, the number of US pancreas transplants declined by over 20%, while the overall number of pancreas transplants performed outside the US has increased. The decline in US numbers is predominantly due to the decline in primary and secondary pancreas after kidney transplants (PAK). During the time period studied, the number of PAK transplants dropped by 50%. In contrast, the number of simultaneous pancreas/kidney transplants (SPK) declined by only 10%, and the number of pancreas transplants alone (PTA) by 20%. Over 90% of pancreas transplants worldwide were performed, with a simultaneous kidney transplant and excellent results. Transplant outcomes in SPK improved significantly because of a decrease in the rates of technical and immunologic graft loss. In 2010-2014 vs. 2005-2009, US SPK transplant patient survival at 1 year post-transplant increased from 95.7% to 97.4%, pancreas graft function from 88.3% to 91.3%, and kidney function from 93.6% to 95.5%. A significant improvement was also noted in PAK transplants. One-year patient survival increased from 96.4% to 97.9% and pancreas graft function from 81.0% to 86.0%. PTA 1-year patient survival remained constant at 97%, and pancreas 1-year graft survival improved from 81.0% to 85.7%. With the decline in the number of transplants, a change towards better pancreas donor selection was observed. In solitary transplants, the donors were primarily young trauma victims, and the pancreas preservation time was relatively short. A general tendency towards transplanting older recipients was noted. In 2010-2014 vs. 2005-2009, PTA recipients 50 years of age or older accounted for 32% vs. 22%, PAK for 28% vs. 22%, and SPK for 22% vs. 20%. This may be due to a relatively lower immunologic graft loss rate, especially in solitary transplants, which historically has been high in young recipients. The number of pancreas transplants in patients with type 2 diabetes and end-stage renal disease has increased, and accounted for 9% of all SPK recipients in 2010-2014. PMID:26982345
Simavorian, P S; Saakian, I L; Gevorkian, D A
1991-04-01
It has been established that the development of acute pancreatitis is accompanied by the reduced activity of glutamate dehydrogenase in the mitochondrial fraction of pancreas, pronounced in the focus of tissue necrosis and less expressed in the reactive inflammation focus. Besides this in the pancreas redistribution of enzyme, activity in the subcellular organelles takes place and enzyme activity emerges in the cytosol and further--in the blood and peritoneum liquid. Sodium thiosulfate has a marked correlation effect.
Thiel, Scott; Mitchell, Jennifer; Williams, Jim
2017-03-01
Diagnosis and treatment of diabetes changed little from the Middle Ages through the early 19th century, when the first chemical test for the condition was developed. In the 20th century, advances in diabetes management gained momentum with home-use diagnostic devices and mass-produced insulin. In the 21st century, technological developments around diabetes are advancing so rapidly that a small, discrete system of medical devices that serve as an artificial pancreas are now possible. In this article, we assert that medical device interoperability and cyber security are necessary preconditions for safe, effective, and reliable widespread use of the artificial pancreas system.
Thiel, Scott; Mitchell, Jennifer; Williams, Jim
2016-01-01
Diagnosis and treatment of diabetes changed little from the Middle Ages through the early 19th century, when the first chemical test for the condition was developed. In the 20th century, advances in diabetes management gained momentum with home-use diagnostic devices and mass-produced insulin. In the 21st century, technological developments around diabetes are advancing so rapidly that a small, discrete system of medical devices that serve as an artificial pancreas are now possible. In this article, we assert that medical device interoperability and cyber security are necessary preconditions for safe, effective, and reliable widespread use of the artificial pancreas system. PMID:27784829
Development of a cylindrical diffusing optical fiber probe for pancreatic cancer therapy
NASA Astrophysics Data System (ADS)
Lee, Sangyeob; Park, Gaye; Park, Jihoon; Yu, Sungkon; Ha, Myungjin; Jang, Seulki; Ouh, Chihwan; Jung, Changhyun; Jung, Byungjo
2017-02-01
Although the patients with cancer on pancreas or pancreaticobiliary duct have been increased, it is very difficult to detect and to treat the pancreatic cancer because of its low accessibility and obtuseness. The pancreatic cancer has been diagnosed using ultrasonography, blood test, CT, endoscopic retrograde cholangiopancreatography (ERCP), endoscopic ultrasonography (EUS) and etc. Normally, light can be delivered to the target by optical fibers through the ERCP or EUS. Diffusing optical fibers have been developed with various methods. However, many of them have mechanical and biological problems in the use of small-bend-radius apparatus or in tissue area. This study developed a therapeutic cylindrical diffusing optical fiber probe (CDOFP) for ERCP and EUS which has moderate flexibility and solidity to treat the cancer on pancreaticobiliary duct or pancreas. The CDOFP consists of a biocompatible Teflon tube and multimode glass fiber which has diffusing area processed with laser and high refractive index resin. The CDOFP was characterized to investigate the clinical feasibility and other applications of light therapy using diffusing optical fiber. The results presented that the CDOFP may be used in clinic by combining with endoscopic method, such as ERCP or EUS, to treat cancer on pancreas and pancreaticobiliary duct.
Getting a New Pancreas: Facts about Pancreas Transplants
... with type 1 diabetes must take daily insulin shots. About 1.7 million people have type 1 diabetes in ... perform a pancreas transplant on patients with type 1 diabetes but not type 2. How Does a Pancreas Transplant Help Diabetes? o You will no longer need insulin shots. o You will be able to eat a ...
Tiedemann, Hendrik B; Schneltzer, Elida; Beckers, Johannes; Przemeck, Gerhard K H; Hrabě de Angelis, Martin
2017-10-07
During pancreas development, Neurog3 positive endocrine progenitors are specified by Delta/Notch (D/N) mediated lateral inhibition in the growing ducts. During neurogenesis, genes that determine the transition from the proneural state to neuronal or glial lineages are oscillating before their expression is sustained. Although the basic gene regulatory network is very similar, cycling gene expression in pancreatic development was not investigated yet, and previous simulations of lateral inhibition in pancreas development excluded by design the possibility of oscillations. To explore this possibility, we developed a dynamic model of a growing duct that results in an oscillatory phase before the determination of endocrine progenitors by lateral inhibition. The basic network (D/N + Hes1 + Neurog3) shows scattered, stable Neurog3 expression after displaying transient expression. Furthermore, we included the Hes1 negative feedback as previously discussed in neurogenesis and show the consequences for Neurog3 expression in pancreatic duct development. Interestingly, a weakened HES1 action on the Hes1 promoter allows the coexistence of stable patterning and oscillations. In conclusion, cycling gene expression and lateral inhibition are not mutually exclusive. In this way, we argue for a unified mode of D/N mediated lateral inhibition in neurogenic and pancreatic progenitor specification. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
McBride, David J.; Buckle, Adam; van Heyningen, Veronica; Kleinjan, Dirk A.
2011-01-01
The PAX6 gene plays a crucial role in development of the eye, brain, olfactory system and endocrine pancreas. Consistent with its pleiotropic role the gene exhibits a complex developmental expression pattern which is subject to strict spatial, temporal and quantitative regulation. Control of expression depends on a large array of cis-elements residing in an extended genomic domain around the coding region of the gene. The minimal essential region required for proper regulation of this complex locus has been defined through analysis of human aniridia-associated breakpoints and YAC transgenic rescue studies of the mouse smalleye mutant. We have carried out a systematic DNase I hypersensitive site (HS) analysis across 200 kb of this critical region of mouse chromosome 2E3 to identify putative regulatory elements. Mapping the identified HSs onto a percent identity plot (PIP) shows many HSs correspond to recognisable genomic features such as evolutionarily conserved sequences, CpG islands and retrotransposon derived repeats. We then focussed on a region previously shown to contain essential long range cis-regulatory information, the Pax6 downstream regulatory region (DRR), allowing comparison of mouse HS data with previous human HS data for this region. Reporter transgenic mice for two of the HS sites, HS5 and HS6, show that they function as tissue specific regulatory elements. In addition we have characterised enhancer activity of an ultra-conserved cis-regulatory region located near Pax6, termed E60. All three cis-elements exhibit multiple spatio-temporal activities in the embryo that overlap between themselves and other elements in the locus. Using a deletion set of YAC reporter transgenic mice we demonstrate functional interdependence of the elements. Finally, we use the HS6 enhancer as a marker for the migration of precerebellar neuro-epithelium cells to the hindbrain precerebellar nuclei along the posterior and anterior extramural streams allowing visualisation of migratory defects in both pathways in Pax6Sey/Sey mice. PMID:22220192
An insulinoma is a tumor in the pancreas that produces too much insulin. ... The pancreas is an organ in the abdomen. The pancreas makes several enzymes and hormones, including the hormone insulin. ...
... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...
Increase of larger-sized islets in C57/black mice during the long-term space flight.
NASA Astrophysics Data System (ADS)
Proshchina, Alexandra; Krivova, Yulia
Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. Metabolic studies during simulated microgravity and true microgravity in flight have shown changes in blood glucose and in insulin and glucagon concentrations. It was suggested that endocrine pancreas undergoes subclinical diabetogenic changes such as alterations in insulin secretion, insulin sensitivity, glucose tolerance in microgravity conditions. In this study, we analyzed pancreata of the C57 black mice in order to estimate the effects of the long-term space flight. 5 mice, which were flown on the “Bion-M1” satellite for 30 days, were served for this study (flight group). Five animals were used as the vivarium ground control and five mice as the delayed synchronous ground control. The mice from synchronous control were put into container, similar to that one of the flight group for 30 days. Interestingly, the mean body weight of researched animals was higher in the flight group than in two control groups. Body weight in synchronous ground control group was higher than in vivarium control. From each mouse, the splenic part of the pancreas was removed and immediately fixed in 4% formaldehyde. Samples were embedded in paraffin, and 10 mcm serial sections were prepared. Double immunohistochemical staining with anti-insulin(Sigma,USA) and anti-glucagon (Thermo Fisher Scientific, USA) antibodies were performed. Signals were visualized using the MultiVision Polymer Detection System (Thermo Fisher Scientific, USA). Stained sections were photographed, using a 10 x objective and morphometrical parameters were examined. The size of each islet in ten non-overlapping observation fields in pancreatic sections of each mouse was measured using Image J software and analyzed. A software statistical package was used (Statistica 6.0, Statsoft Inc., Tusla, USA). A nonparametric tests (Kruskal -Wallis and Mann-Whitney tests) were used, because the islets number in the examined groups are of unequal size. The P-value was considered significant if less than 0.05. The islets in all three groups have a typical for murine pancreas architecture. The insulin-containing cells occupied the central position in pancreatic islets and the glucagon-containing cells were localized at the periphery. Histomorphometric analyses revealed significant increase of islets size in flight group compared with vivarium ground control. Moreover, the islets in group of the delayed synchronous ground control were significant larger then in group of vivarium control. No significant differences were found in islet size between flight and delayed synchronous ground control groups, but analyses indicated the increase of larger-sized islets in mice of flight group compared with synchronous control. Thus the mean islets size correlated with the body weight. The literature data indicates that similar changes are also observed in mice under conditions of an increased demand for insulin such as pregnancy, obesity, diabetes etc. According to the literature data, the researches of activity of pancreas have shown the increase of pancreatic hormones (insulin and C-peptide) in blood of astronauts in the early period after completion of space flights of various durations. In our study, the increase of islets size occurred not only in mice from flight group, but also in synchronous ground control. For this group, the live conditions imitated those of flight group without the factors of spaceflight such as microgravity. Therefore, we supposed that the hypokinesia play an important role in alteration of islets size. Thus, our data confirms the hypothesis of association microgravity and its experimental paradigms with manifestations similar to those of physical inactivity and diabetes.
Gelrud, Andres; Sheth, Sunil; Banerjee, Subhas; Weed, Deborah; Shea, Julie; Chuttani, Ram; Howell, Douglas A; Telford, Jennifer J; Carr-Locke, David L; Regan, Meredith M; Ellis, Lynda; Durie, Peter R; Freedman, Steven D
2004-08-01
The mechanism by which pancreas divisum may lead to recurrent episodes of acute pancreatitis in a subset of individuals is unknown. Abnormalities of the cystic fibrosis gene product (CFTR) have been implicated in the genesis of idiopathic chronic pancreatitis. The aim of this study was to determine if CFTR function is abnormal in patients with pancreas divisum and recurrent acute pancreatitis (PD/RAP). A total of 69 healthy control subjects, 12 patients with PD/RAP, 16 obligate heterozygotes with a single CFTR mutation, and 95 patients with cystic fibrosis were enrolled. CFTR function was analyzed by nasal transepithelial potential difference testing in vivo. The outcomes of the PD/RAP patients following endoscopic and surgical treatments were concomitantly analyzed. Direct measurement of CFTR function in nasal epithelium in response to isoproterenol demonstrated that the values for PD/RAP were intermediate between those observed for healthy controls and cystic fibrosis patients. The median value was 13 mV for PD/RAP subjects, which was statistically different from healthy controls (22 mV, p= 0.001) and cystic fibrosis pancreatic sufficient (-1 mV, p < 0.0001) and pancreatic insufficient (-3 mV, p < 0.0001) patients. These results suggest a link between CFTR dysfunction and recurrent acute pancreatitis in patients with pancreas divisum and may explain why a subset of patients with pancreas divisum develops recurrent acute pancreatitis. Copyright 2004 American College of Gastroenterology
Rogers, Jeffrey; Farney, Alan C.; Al-Geizawi, Samer; Iskandar, Samy S.; Doares, William; Gautreaux, Michael D.; Hart, Lois; Kaczmorski, Scott; Reeves-Daniel, Amber; Winfrey, Stephanie; Ghanta, Mythili; Adams, Patricia L.; Stratta, Robert J.
2011-01-01
This article reviews the outcome of pancreas transplantations in diabetic recipients according to risk factors, surgical techniques, and immunosuppression management that evolved over the course of a decade at Wake Forest Baptist Medical Center. A randomized trial of alemtuzumab versus rabbit anti-thymocyte globulin (rATG) induction in simultaneous kidney-pancreas transplantation (SKPT) at our institution demonstrated lower rates of acute rejection and infection in the alemtuzumab group. Consequently, alemtuzumab induction has been used exclusively in all pancreas transplantations since February 2009. Early steroid elimination has been feasible in the majority of patients. Extensive experience with surveillance pancreas biopsies in solitary pancreas transplantation (SPT) is described. Surveillance pancreas biopsy-directed immunosuppression has contributed to equivalent long-term pancreas graft survival rates in SKPT and SPT recipients at our center, in contrast to recent registry reports of persistently higher rates of immunologic pancreas graft loss in SPT. Furthermore, the impact of donor and recipient selection on outcomes is explored. Excellent results have been achieved with older (extended) donors and recipients, in recipients of organs from donation after cardiac death donors managed with extracorporeal support, and in African-American patients. Type 2 diabetics with detectable C-peptide levels have been transplanted successfully with outcomes comparable to those of insulinopenic diabetics. Our experiences are discussed in the light of findings reported in the literature. PMID:21720669
Rogers, Jeffrey; Farney, Alan C; Al-Geizawi, Samer; Iskandar, Samy S; Doares, William; Gautreaux, Michael D; Hart, Lois; Kaczmorski, Scott; Reeves-Daniel, Amber; Winfrey, Stephanie; Ghanta, Mythili; Adams, Patricia L; Stratta, Robert J
2011-01-01
This article reviews the outcome of pancreas transplantations in diabetic recipients according to risk factors, surgical techniques, and immunosuppression management that evolved over the course of a decade at Wake Forest Baptist Medical Center. A randomized trial of alemtuzumab versus rabbit anti-thymocyte globulin (rATG) induction in simultaneous kidney-pancreas transplantation (SKPT) at our institution demonstrated lower rates of acute rejection and infection in the alemtuzumab group. Consequently, alemtuzumab induction has been used exclusively in all pancreas transplantations since February 2009. Early steroid elimination has been feasible in the majority of patients. Extensive experience with surveillance pancreas biopsies in solitary pancreas transplantation (SPT) is described. Surveillance pancreas biopsy-directed immunosuppression has contributed to equivalent long-term pancreas graft survival rates in SKPT and SPT recipients at our center, in contrast to recent registry reports of persistently higher rates of immunologic pancreas graft loss in SPT. Furthermore, the impact of donor and recipient selection on outcomes is explored. Excellent results have been achieved with older (extended) donors and recipients, in recipients of organs from donation after cardiac death donors managed with extracorporeal support, and in African-American patients. Type 2 diabetics with detectable C-peptide levels have been transplanted successfully with outcomes comparable to those of insulinopenic diabetics. Our experiences are discussed in the light of findings reported in the literature.
Ampullary carcinoma in a patient with agenesis of the dorsal pancreas: a case report.
Mistry, Jitendra H; Yadav, Amitabh; Nundy, Samiran
2015-04-01
The most common congenital anomaly of the pancreas is pancreatic divisum (Tadokoro et al. in Anat Res Int 2011:1-7, 2011). Agenesis of the dorsal pancreas is extremely rare (Schnedl et al. in World J Gastroenterol 15(3):376-377, 2009). We are reporting a case of agenesis of dorsal pancreas presented with ampullary carcinoma.
76 FR 73650 - Agency Information Collection Activities: Proposed Collection: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
............ 132 11 1,452 0.3400 493.68 Liver Follow-up 132 459 60,588 0.5000 30,294.00 Kidney/Pancreas Candidate 144 11 1,584 0.5000 792.00 Registration Kidney/Pancreas Registration.... 144 6 864 0.9000 777.60 Kidney/Pancreas Follow-up....... 144 75 10,800 0.8500 9180.00 Pancreas Candidate Registration. 144 4 576...
Histopathological changes in the pancreas of cattle with abdominal fat necrosis.
Tani, Chikako; Pratakpiriya, Watanyoo; Tani, Mineto; Yamauchi, Takenori; Hirai, Takuya; Yamaguchi, Ryoji; Ano, Hitoshi; Katamoto, Hiromu
2017-01-20
The association between pancreatic disorder and abdominal fat necrosis in cattle remains unclear. The pancreases of 29 slaughtered cattle with or without fat necrosis were collected to investigate pathological changes. Japanese Black (JB) cattle were classified into the FN group (with abdominal fat necrosis; n=9) and N group (without fat necrosis; n=5). The pancreases were also collected from 15 Holstein Friesian (HF) cows. All JB cattle showed high body condition scores. Regarding the pathological findings, fatty pancreas which involves adipocyte infiltration into the pancreas and fat necrosis (saponification) were observed in 25 and 27 cases, respectively. Immunohistochemical staining with anti-Iba-1 antibody showed large numbers of macrophages surrounding the saponified fat in the pancreas. CD3-positive T cells were significantly more common in the pancreas of both the FN and N groups compared with the HF group (P<0.05). Furthermore, fibrosis in the pancreas exhibited a correlative tendency with the formation of necrotic fat mass in the peritoneal cavity (P<0.1). These results indicate that obesity leads to increased severity of pancreatic disorder, including fatty pancreas and pancreatitis. The pathological lesions in the pancreas may play a key role in abdominal fat necrosis through the inflammatory process.
Paulino, J; Martins, A; Vigia, E; Marcelino, P; Nobre, A M; Bicho, L; Filipe, E; Barroso, E
2017-10-01
An innovative technique for pancreas transplantation is described. The main aspect consists of the horizontal positioning of the pancreas, which allows a better venous outflow, thus preventing thrombosis and graft loss. The program of pancreas transplantation in this national reference center for pancreatic and liver surgery was started in 2007; the initial results were considered poor, resulting in the loss of half of the grafts due to venous thrombosis. After analyzing the possible causes, this technique was proposed and successfully implemented, reducing the postoperative complications, particularly the problem of venous thrombosis. A detailed description of the new surgical technique is provided. The main clinical and demographic characteristics of the 56 patients who underwent the surgery are analyzed. The incidence of venous thrombosis was 5.3% (3 patients) and graft loss was 3.5% (2 patients). Due to the good results, this technique became the standard surgery for transplantation of the pancreas in our center. The technique proved to be safe and successful. Due to the unique pancreas graft implantation, we called it "transverse pancreas surgery." Copyright © 2017 Elsevier Inc. All rights reserved.
Monitoring Artificial Pancreas Trials Through Agent-based Technologies
Scarpellini, Stefania; Di Palma, Federico; Toffanin, Chiara; Del Favero, Simone; Magni, Lalo; Bellazzi, Riccardo
2014-01-01
The increase in the availability and reliability of network connections lets envision systems supporting a continuous remote monitoring of clinical parameters useful either for overseeing chronic diseases or for following clinical trials involving outpatients. We report here the results achieved by a telemedicine infrastructure that has been linked to an artificial pancreas platform and used during a trial of the AP@home project, funded by the European Union. The telemedicine infrastructure is based on a multiagent paradigm and is able to deliver to the clinic any information concerning the patient status and the operation of the artificial pancreas. A web application has also been developed, so that the clinic staff and the researchers involved in the design of the blood glucose control algorithms are able to follow the ongoing experiments. Albeit the duration of the experiments in the trial discussed in the article was limited to only 2 days, the system proved to be successful for monitoring patients, in particular overnight when the patients are sleeping. Based on that outcome we can conclude that the infrastructure is suitable for the purpose of accomplishing an intelligent monitoring of an artificial pancreas either during longer trials or whenever that system will be used as a routine treatment. PMID:24876570
Progenitor cell domains in the developing and adult pancreas
Kopp, Janel L; Dubois, Claire L; Hao, Ergeng; Thorel, Fabrizio; Herrera, Pedro L
2011-01-01
Unlike organs with defined stem cell compartments, such as the intestine, the pancreas has limited capacity to regenerate. The question of whether the adult pancreas harbors facultative stem/progenitor cells has been a prime subject of debate. Cumulative evidence from recent genetic lineage tracing studies, in which specific cell populations were marked and traced in adult mice, suggests that endocrine and acinar cells are no longer generated from progenitors in the adult pancreas. These studies further indicate that adult pancreatic ductal cells are not a source for endocrine cells following pancreatic injury, as previously suggested. Our own studies have shown that adult ductal cells reinitiate expression of some endocrine progenitor markers, including Ngn3, after injury by partial duct ligation (PDL), but that these cells do not undergo endocrine cell differentiation. Here, we present additional evidence that endocrine cells do not arise from ducts following β-cell ablation by streptozotocin or by a diphtheria toxin-expressing transgene or when β-cell ablation is combined with PDL. In this review, we discuss findings from recent lineage tracing studies of embryonic and adult pancreatic ductal cells. Based upon the combined evidence from these studies, we propose that multipotency is associated with a specific transcriptional signature. PMID:21558806
Snail1 is required for the maintenance of the pancreatic acinar phenotype
Loubat-Casanovas, Jordina; Peña, Raúl; Gonzàlez, Núria; Alba-Castellón, Lorena; Rosell, Santi; Francí, Clara; Navarro, Pilar; de Herreros, Antonio García
2016-01-01
The Snail1 transcriptional factor is required for correct embryonic development, yet its expression in adult animals is very limited and its functional roles are not evident. We have now conditionally inactivated Snail1 in adult mice and analyzed the phenotype of these animals. Snail1 ablation rapidly altered pancreas structure: one month after Snail1 depletion, acinar cells were markedly depleted, and pancreas accumulated adipose tissue. Snail1 expression was not detected in the epithelium but was in pancreatic mesenchymal cells (PMCs). Snail1 ablation in cultured PMCs downregulated the expression of several β-catenin/Tcf-4 target genes, modified the secretome of these cells and decreased their ability to maintain acinar markers in cultured pancreas cells. Finally, Snail1 deficiency modified the phenotype of pancreatic tumors generated in transgenic mice expressing c-myc under the control of the elastase promoter. Specifically, Snail1 depletion did not significantly alter the size of the tumors but accelerated acinar-ductal metaplasia. These results demonstrate that Snail1 is expressed in PMCs and plays a pivotal role in maintaining acinar cells within the pancreas in normal and pathological conditions. PMID:26735179
β-Cell Hyperplasia Induced by Hepatic Insulin Resistance
Escribano, Oscar; Guillén, Carlos; Nevado, Carmen; Gómez-Hernández, Almudena; Kahn, C. Ronald; Benito, Manuel
2009-01-01
OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A. PMID:19136656
Roles of Commensal Microbiota in Pancreas Homeostasis and Pancreatic Pathologies
Leal-Lopes, Camila; Velloso, Fernando J.; Campopiano, Julia C.; Sogayar, Mari C.; Correa, Ricardo G.
2015-01-01
The pancreas plays a central role in metabolism, allowing ingested food to be converted and used as fuel by the cells throughout the body. On the other hand, the pancreas may be affected by devastating diseases, such as pancreatitis, pancreatic adenocarcinoma (PAC), and diabetes mellitus (DM), which generally results in a wide metabolic imbalance. The causes for the development and progression of these diseases are still controversial; therefore it is essential to better understand the underlying mechanisms which compromise the pancreatic homeostasis. The interest in the study of the commensal microbiome increased extensively in recent years, when many discoveries have illustrated its central role in both human physiology and maintenance of homeostasis. Further understanding of the involvement of the microbiome during the development of pathological conditions is critical for the improvement of new diagnostic and therapeutic approaches. In the present review, we discuss recent findings on the behavior and functions played by the microbiota in major pancreatic diseases and provide further insights into its potential roles in the maintenance of pancreatic steady-state activities. PMID:26347203
... the person a chance to stop taking insulin injections. Description The healthy pancreas is taken from a ... liver cells, where it can be used as fuel. In people with type 1 diabetes , the pancreas ...
Haidar, Ahmad; Legault, Laurent; Messier, Virginie; Mitre, Tina Maria; Leroux, Catherine; Rabasa-Lhoret, Rémi
2015-01-01
The artificial pancreas is an emerging technology for the treatment of type 1 diabetes and two configurations have been proposed: single-hormone (insulin alone) and dual-hormone (insulin and glucagon). We aimed to delineate the usefulness of glucagon in the artificial pancreas system. We did a randomised crossover trial of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy (continuous subcutaneous insulin infusion) in participants aged 12 years or older with type 1 diabetes. Participants were assigned in a 1:1:1:1:1:1 ratio with blocked randomisation to the three interventions and attended a research facility for three 24-h study visits. During visits when the patient used the single-hormone artificial pancreas, insulin was delivered based on glucose sensor readings and a predictive dosing algorithm. During dual-hormone artificial pancreas visits, glucagon was also delivered during low or falling glucose. During conventional insulin pump therapy visits, patients received continuous subcutaneous insulin infusion. The study was not masked. The primary outcome was the time for which plasma glucose concentrations were in the target range (4·0-10·0 mmol/L for 2 h postprandially and 4·0-8·0 mmol/L otherwise). Hypoglycaemic events were defined as plasma glucose concentration of less than 3·3 mmol/L with symptoms or less than 3·0 mmol/L irrespective of symptoms. Analysis was by modified intention to treat, in which we included data for all patients who completed at least two visits. A p value of less than 0·0167 (0·05/3) was regarded as significant. This trial is registered with ClinicalTrials.gov, number NCT01754337. The mean proportion of time spent in the plasma glucose target range over 24 h was 62% (SD 18), 63% (18), and 51% (19) with single-hormone artificial pancreas, dual-hormone artificial pancreas, and conventional insulin pump therapy, respectively. The mean difference in time spent in the target range between single-hormone artificial pancreas and conventional insulin pump therapy was 11% (17; p=0·002) and between dual-hormone artificial pancreas and conventional insulin pump therapy was 12% (21; p=0·00011). There was no difference (15; p=0·75) in the proportion of time spent in the target range between the single-hormone and dual-hormone artificial pancreas systems. There were 52 hypoglycaemic events with conventional insulin pump therapy (12 of which were symptomatic), 13 with the single-hormone artificial pancreas (five of which were symptomatic), and nine with the dual-hormone artificial pancreas (0 of which were symptomatic); the number of nocturnal hypoglycaemic events was 13 (0 symptomatic), 0, and 0, respectively. Single-hormone and dual-hormone artificial pancreas systems both provided better glycaemic control than did conventional insulin pump therapy. The single-hormone artificial pancreas might be sufficient for hypoglycaemia-free overnight glycaemic control. Canadian Diabetes Association; Fondation J A De Sève; Juvenile Diabetes Research Foundation; and Medtronic. Copyright © 2015 Elsevier Ltd. All rights reserved.
3D printing of PLGA scaffolds for tissue engineering.
Mironov, Anton V; Grigoryev, Aleksey M; Krotova, Larisa I; Skaletsky, Nikolaj N; Popov, Vladimir K; Sevastianov, Viktor I
2017-01-01
We proposed a novel method of generation of bioresorbable polymeric scaffolds with specified architectonics for tissue engineering using extrusion three-dimensional (3D) printing with solutions of polylactoglycolide in tetraglycol with their subsequent solidifying in aqueous medium. On the basis of 3D computer models, we obtained the matrix structures with interconnected system of pores ranging in size from 0.5 to 500 µm. The results of in vitro studies using cultures of line NIH 3Т3 mouse fibroblasts, floating islet cultures of newborn rabbit pancreas, and mesenchymal stem cells of human adipose tissue demonstrated the absence of cytotoxicity and good adhesive properties of scaffolds in regard to the cell cultures chosen. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 104-109, 2017. © 2016 Wiley Periodicals, Inc.
Lee, Song; Lee, Chan Mi; Kim, Song Cheol
2016-11-11
Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4 + cells. Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4 + and CA19-9 + cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4 + and CA19-9 + cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4 + cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4 + cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9 + cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4 + or CA19-9 + cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9 + cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4 + cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4 + cells. SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may be used as a source of stem/progenitor cells for pancreatic cell lineage-specific differentiation.
Pancreas transplant - slideshow
... this page: //medlineplus.gov/ency/presentations/100129.htm Pancreas transplant - series—Normal anatomy To use the sharing ... to slide 6 out of 6 Overview The pancreas resides in the back of the abdomen. It ...
Yoon, Mi Na; Kim, Min Jae; Koong, Hwa Soo; Kim, Dong Kwan; Kim, Se Hoon; Park, Hyung Seo
2017-09-01
Oscillation of intracellular calcium levels is closely linked to initiating secretion of digestive enzymes from pancreatic acinar cells. Excessive alcohol consumption is known to relate to a variety of disorders in the digestive system, including the exocrine pancreas. In this study, we have investigated the role and mechanism of ethanol on carbamylcholine (CCh)-induced intracellular calcium oscillation in murine pancreatic acinar cells. Ethanol at concentrations of 30 and 100 mM reversibly suppressed CCh-induced Ca 2+ oscillation in a dose-dependent manner. Pretreatment of ethanol has no effect on the store-operated calcium entry induced by 10 μM of CCh. Ethanol significantly reduced the initial calcium peak induced by low concentrations of CCh and therefore, the CCh-induced dose-response curve of the initial calcium peak was shifted to the right by ethanol pretreatment. Furthermore, ethanol significantly dose-dependently reduced inositol 1,4,5-trisphosphate-induced calcium release from the internal stores in permeabilized acinar cells. These results provide evidence that excessive alcohol intake could impair cytosolic calcium oscillation through inhibiting calcium release from intracellular stores in mouse pancreatic acinar cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Kolb, H; Freytag, G; Kiesel, U; Kolb-Bachofen, V
1980-09-01
The spontaneously autoimmune mouse strains NZB, NZB X NZW, MRL and BXSB have been examined for signs of autoimmune reactions against islet cells. Between 15 and 55 animals of each strain were tested. Infiltrates of lymphocytes and fibroblasts into pancreatic islets were found in more than 80% of NZB mice, in about 50% of MRL and NZB X NZW mice, and in less than 20% of BXSB mice. Infiltrates were not found in the exocrine portion of pancrea. All NZB mice had abnormal glucose tolerance. In the three other strains between 20 and 50% of animals had abnormal glucose tolerance. All mice had fasting normoglycaemia. The lesions in NZB mice were studied in more detail. It was found by ultrastructural analysis that in young mice pancreatic infiltrates consisted of lymphocytes and fibroblasts. Single lymphocytes were also seen outside the main infiltration area. After 2 to 5 months of age another type of infiltrate, consisting of lymphocytes and macrophages was observed. B-cell destruction by lymphocytes was apparent in both young and adult NZB mice. It is concluded that cellular autoimmune reactions against pancreatic islets may occur spontaneously as a consequence of immunological disorders in NZB, NZB X NZW and MRL mice.
Farrell, Helen; Oliveira, Martha; Macdonald, Kate; Yunis, Joseph; Mach, Michael; Bruce, Kimberley; Stevenson, Philip; Cardin, Rhonda; Davis-Poynter, Nicholas
2016-12-01
Cytomegaloviruses (CMVs) establish persistent, systemic infections and cause disease by maternal-foetal transfer, suggesting that their dissemination is a key target for antiviral intervention. Late clinical presentation has meant that human CMV (HCMV) dissemination is not well understood. Murine CMV (MCMV) provides a tractable model. Whole mouse imaging of virus-expressed luciferase has proved a useful way to track systemic infections. MCMV, in which the abundant lytic gene M78 was luciferase-tagged via a self-cleaving peptide (M78-LUC), allowed serial, unbiased imaging of systemic and peripheral infection without significant virus attenuation. Ex vivo luciferase imaging showed greater sensitivity than plaque assay, and revealed both well-known infection sites (the lungs, lymph nodes, salivary glands, liver, spleen and pancreas) and less explored sites (the bone marrow and upper respiratory tract). We applied luciferase imaging to tracking MCMV lacking M33, a chemokine receptor conserved in HCMV and a proposed anti-viral drug target. M33-deficient M78-LUC colonized normally in peripheral sites and local draining lymph nodes but spread poorly to the salivary gland, suggesting a defect in vascular transport consistent with properties of a chemokine receptor.
Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1
Boddu, Ravindra; Yang, Chaozhe; O’Connor, Amber K.; Hendrickson, Robert Curtis; Boone, Braden; Cui, Xiangqin; Garcia-Gonzalez, Miguel; Igarashi, Peter; Onuchic, Luiz F.; Germino, Gregory G.
2014-01-01
Autosomal recessive polycystic kidney disease (ARPKD) results from mutations in the human PKHD1 gene. Both this gene, and its mouse ortholog, Pkhd1, are primarily expressed in renal and biliary ductal structures. The mouse protein product, fibrocystin/polyductin complex (FPC), is a 445-kDa protein encoded by a 67-exon transcript that spans >500 kb of genomic DNA. In the current study, we observed multiple alternatively spliced Pkhd1 transcripts that varied in size and exon composition in embryonic mouse kidney, liver, and placenta samples, as well as among adult mouse pancreas, brain, heart, lung, testes, liver, and kidney. Using reverse transcription PCR and RNASeq, we identified 22 novel Pkhd1 kidney transcripts with unique exon junctions. Various mechanisms of alternative splicing were observed, including exon skipping, use of alternate acceptor/donor splice sites, and inclusion of novel exons. Bioinformatic analyses identified, and exon-trapping minigene experiments validated, consensus binding sites for serine/arginine-rich proteins that modulate alternative splicing. Using site-directed mutagenesis, we examined the functional importance of selected splice enhancers. In addition, we demonstrated that many of the novel transcripts were polysome bound, thus likely translated. Finally, we determined that the human PKHD1 R760H missense variant alters a splice enhancer motif that disrupts exon splicing in vitro and is predicted to truncate the protein. Taken together, these data provide evidence of the complex transcriptional regulation of Pkhd1/PKHD1 and identified motifs that regulate its splicing. Our studies indicate that Pkhd1/PKHD1 transcription is modulated, in part by intragenic factors, suggesting that aberrant PKHD1 splicing represents an unappreciated pathogenic mechanism in ARPKD. PMID:24984783
... Stay Informed - Join The Fight Animated Pancreas Patient Animations, Expert and Patient interviews on Pancreas Diseases State ... pancreatic experts at the American Pancreatic Association … Continue Reading More NPF News Social Media Post Read More ...
77 FR 2732 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
............ 132 11 1,452 0.3400 493.68 Liver Follow-up 132 459 60,588 0.5000 30,294.00 Kidney/Pancreas Candidate 144 11 1,584 0.5000 792.00 Registration Kidney/Pancreas Registration.... 144 6 864 0.9000 777.60 Kidney/Pancreas Follow-up....... 144 75 10,800 0.8500 9,180.00 Pancreas Candidate Registration. 144 4 576...
Maeda, Shimpei; Motoi, Fuyuhiko; Oana, Shuhei; Ariake, Kyohei; Mizuma, Masamichi; Morikawa, Takanori; Hayashi, Hiroki; Nakagawa, Kei; Kamei, Takashi; Naitoh, Takeshi; Unno, Michiaki
2017-09-25
von Hippel-Lindau disease is a dominantly inherited multi-system syndrome with neoplastic hallmarks. Pancreatic lesions associated with von Hippel-Lindau include serous cystic neoplasms, simple cysts, and neuroendocrine tumors. The combination of pancreatic neuroendocrine tumors and serous cystic neoplasms is relatively rare, and the surgical treatment of these lesions must consider both preservation of pancreatic function and oncological clearance. We report a patient with von Hippel-Lindau disease successfully treated with pancreas-sparing resection of a pancreatic neuroendocrine tumor where the pancreas had been completely replaced by serous cystic neoplasms, in which pancreatic function was preserved. A 39-year-old female with von Hippel-Lindau disease was referred to our institution for treatment of a pancreatic neuroendocrine tumor. Abdominal computed tomography demonstrated a well-enhanced mass, 4 cm in diameter in the tail of the pancreas, and two multilocular tumors with several calcifications, 5 cm in diameter, in the head of the pancreas. There was complete replacement of the pancreas by multiple cystic lesions with diameters ranging from 1 to 3 cm. Magnetic resonance cholangiopancreatography showed innumerable cystic lesions on the whole pancreas and no detectable main pancreatic duct. Endoscopic ultrasound-guided fine-needle aspiration of the mass in the pancreatic tail showed characteristic features of a neuroendocrine tumor. A diagnosis of pancreatic neuroendocrine tumor in the tail of the pancreas and mixed-type serous cystic neoplasms replacing the whole pancreas was made and she underwent distal pancreatectomy while avoiding total pancreatectomy. The stump of the pancreas was sutured as firm as possible using a fish-mouth closure. The patient made a good recovery and was discharged on postoperative day 9. She is currently alive and well with no symptoms of endocrine or exocrine pancreatic insufficiency 8 months after surgery. A pancreas-sparing resection should be considered for patients with pancreatic neuroendocrine tumors and complete cystic replacement of the pancreas to preserve quality of life after surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omari, E; Erickson, B; Li, X
2015-06-15
Purpose: As it is generally difficult to outline the pancreas on an ultrasound b-mode image, visualized structures such as the portal or the splenic veins are assumed to have the same motion as the pancreas. These structures can be used as a surrogate for monitoring pancreas motion during radiation therapy (RT) delivery using ultrasound. To verify this assumption, we studied the motion difference between the head of the pancreas, the portal vein, the tail of the pancreas, and splenic vein. Methods: 4DCT data acquired during RT simulation were analyzed for a total of 5 randomly selected patients with pancreatic cancer.more » The data was sorted into 10 respiratory phases from 0% to 90% (0%: end of the inspiration, 50%: end of expiration) . The head of the pancreas (HP), tail of the pancreas (TP), portal vein (PV), and splenic vein (SV) were contoured on all 10 phases. The volume change and motion were measured in the left-right (LR), anterior-superior (AP), and superior-inferior (SI) directions. Results: The volume change for all patients/phases were: 1.2 ± 3% for HP, 0.78 ± 1.6% for PV, 2.5 ± 2.9% for TP, and 0.53 ± 2.1% for SV. Motion for each structure was estimated from the centroid displacements due to the uniformity of the structures and the small volume change. The measured motion between HP and PV was: LR: 0.1 ± 0.17 mm, AP: 0.04 ± 0.1 mm, SI: 0.17 ± 0.16 mm and between TP and the PV was: LR: 0.05 ± 0.3 mm, AP: 0.1 ± 0.4 mm, SI: 0.01 ± 0.022 mm. Conclusion: There are small motion differences between the portal vein and the head of the pancreas, and the splenic vein and the tail of the pancreas. This suggests the feasibility of utilizing these features for monitoring the pancreas motion during radiation therapy.« less
[Generation of functional organs from pluripotent stem cells].
Miyamoto, Tatsuyuki; Nakauchi, Hiromitsu
2015-10-01
Hematopoietic stem cells (HSCs) have played a major role in stem cell biology, providing many conceptual ideas and models. Among them is the concept of the "niche", a special bone-marrow microenvironment that by exchanging cues regulates stem-cell fate. The HSC niche also plays an important role in HSC transplantation. Successful engraftment of donor HSCs depends on myeloablative pretreatment to empty the niche. The concept of the stem-cell niche has now been extended to the generation of organs. We postulated that an empty "organ niche" exists in a developing animal when development of an organ is genetically disabled. This organ niche should be developmentally compensated by blastocyst complementation using wild-type primary stem cells (PSCs). We proved the principle of organogenesis from xenogeneic PSCs in an embryo unable to form a specific organ, demonstrating the generation of functionally normal rat pancreas by injecting rat PSCs into pancreatogenesis-disabled mouse embryos. This principle has held in pigs. When pancreatogenesis-disabled pig embryos underwent complementation with blastomeres from wild-type pig embryos to produce chimeric pigs, the chimeras had normal pancreata and survived to adulthood. Demonstration of the generation of a functional organ from PSCs in pigs is a very important step toward generation of human cells, tissues, and organs from individual patients' own PSCs in large animals.
Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice
NASA Astrophysics Data System (ADS)
Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François
2001-02-01
Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.
Ma, Dan; Shield, Julian P.H.; Dean, Wendy; Leclerc, Isabelle; Knauf, Claude; Burcelin, Rémy; Rutter, Guy A.; Kelsey, Gavin
2004-01-01
Transient neonatal diabetes mellitus (TNDM) is a rare inherited diabetic syndrome apparent in the first weeks of life and again during early adulthood. The relative contributions of reduced islet β cell number and impaired β cell function to the observed hypoinsulinemia are unclear. The inheritance pattern of this imprinted disorder implicates overexpression of one or both genes within the TNDM locus: ZAC, which encodes a proapoptotic zinc finger protein, and HYMAI, which encodes an untranslated mRNA. To investigate the consequences for pancreatic function, we have developed a high-copy transgenic mouse line, TNDM29, carrying the human TNDM locus. TNDM29 neonates display hyperglycemia, and older adults, impaired glucose tolerance. Neonatal hyperglycemia occurs only on paternal transmission, analogous to paternal dependence of TNDM in humans. Embryonic pancreata of TNDM29 mice showed reductions in expression of endocrine differentiation factors and numbers of insulin-staining structures. By contrast, β cell mass was normal or elevated at all postnatal stages, whereas pancreatic insulin content in neonates and peak serum insulin levels after glucose infusion in adults were reduced. Expression of human ZAC and HYMAI in these transgenic mice thus recapitulates key features of TNDM and implicates impaired development of the endocrine pancreas and β cell function in disease pathogenesis. PMID:15286800
Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...
Renard, Eric
2008-07-01
Insulin delivery is a crucial component of a closed-loop system aiming at the development of an artificial pancreas. The intravenous route, which has been used in the bedside artificial pancreas model for 30 years, has clear advantages in terms of pharmacokinetics and pharmacodynamics, but cannot be used in any ambulatory system so far. Subcutaneous (SC) insulin infusion benefits from the broad expansion of insulin pump therapy that promoted the availability of constantly improving technology and fast-acting insulin analog use. However, persistent delays of insulin absorption and action, variability and shortterm stability of insulin infusion from SC-inserted catheters generate effectiveness and safety issues in view of an ambulatory, automated, glucose-controlled, artificial beta cell. Intraperitoneal insulin delivery, although still marginally used in diabetes care, may offer an interesting alternative because of its more-physiological plasma insulin profiles and sustained stability and reliability of insulin delivery.
Anzi, Shira; Stolovich-Rain, Miri; Klochendler, Agnes; Fridlich, Ori; Helman, Aharon; Paz-Sonnenfeld, Avital; Avni-Magen, Nili; Kaufman, Elizabeth; Ginzberg, Miriam B; Snider, Daniel; Ray, Saikat; Brecht, Michael; Holmes, Melissa M; Meir, Karen; Avivi, Aaron; Shams, Imad; Berkowitz, Asaf; Shapiro, A M James; Glaser, Benjamin; Ben-Sasson, Shmuel; Kafri, Ran; Dor, Yuval
2018-06-18
Developmental processes in different mammals are thought to share fundamental cellular mechanisms. We report a dramatic increase in cell size during postnatal pancreas development in rodents, accounting for much of the increase in organ size after birth. Hypertrophy of pancreatic acinar cells involves both higher ploidy and increased biosynthesis per genome copy; is maximal adjacent to islets, suggesting endocrine to exocrine communication; and is partly driven by weaning-related processes. In contrast to the situation in rodents, pancreas cell size in humans remains stable postnatally, indicating organ growth by pure hyperplasia. Pancreatic acinar cell volume varies 9-fold among 24 mammalian species analyzed, and shows a striking inverse correlation with organismal lifespan. We hypothesize that cellular hypertrophy is a strategy for rapid postnatal tissue growth, entailing life-long detrimental effects. Copyright © 2018 Elsevier Inc. All rights reserved.
Chronic pancreatitis with multiple pseudocysts and pancreatic panniculitis: A case report.
Gu, Yuqing; Qian, Zhuyin
2018-06-01
Pancreatic pseudocyst can present single or multiple, inside or outside the pancreas. Pancreatic panniculitis is a rare skin lesion in pancreatic disease patients. The purpose of this study is to report a case of chronic pancreatitis coexisting with multiple pseudocysts and pancreatic panniculitis. A 46-year-old man with chronic pancreatitis presented multiple small cystic lesions inside the head of the pancreas and two large cystic lesions adjacent to the tail of the pancreas. The patient also developed subcutaneous nodules involving upper and lower limbs, hands, and lower abdomen bilaterally. The patient was diagnosed with pancreatic pseudocyst and pancreatic panniculitis resulted from chronic pancreatitis. Bile duct stent and pancreatic duct stent placement was performed endoscopicly. Panniculitis faded three weeks later and the pancreatic pseudocysts disappeared six weeks later. Clinicians should be aware of the manifestation of multiple pancreatic pseudocyst and pancreatic panniculitis, and endoscopic transpapillary drainage may be a effective way in this scenario.
Causes of graft failure in simultaneous pancreas-kidney transplantation by various time periods.
Wakil, Kayo; Sugawara, Yasuhiko; Kokudo, Norihiro; Kadowaki, Takashi
2013-01-01
Data collected by the United Network for Organ Sharing from all approved United States transplant programs was analyzed. The data included 26,572 adult diabetic patients who received a primary pancreas transplant between January 1987 and December 2012. Simultaneous pancreas-kidney (SPK) transplantation was the major therapeutic option for diabetes patients. SPK had better graft survival than pancreas transplant alone (PTA) or pancreas-after-kidney (PAK) or pancreas-with-kidney (from a living donor, PWK). The 5-year pancreas graft survival rates for SPK, PWK, PAK, and PTA were 70.0%, 57.2%, 54.0%, and 48.2%, respectively. When long-term SPK pancreas graft survival was examined by various transplant time periods, it was found that survival has remained almost stable since 1996. Graft survival rates were high among the pancreas recipients transplanted in the periods 1996-2000, 2001-2005, and 2006-2012, and the rates were similar: the 5-year rates were 68.9%, 72.4%, and 73.8%, respectively. Technical failure was the leading cause of graft loss during the first year post-transplant, regardless of period: 61.3%, 68.6%, 64.2%, and 71.9% for 1987-1995, 1996-2000, 2001-2005, and 2006-2012, respectively. After one year, chronic rejection was the leading cause of graft loss in all periods: 51.8%, 53.2%, 44.3%, and 40.7% for 1987-1995, 1996-2000, 2001-2005, and 2006-2012, respectively. Chronic rejection accounted for around 50% (or more) of the grafts that survived over five years. Survival of long-term pancreas grafts as well as long-term causes of graft loss remained almost unchanged across the different transplant periods. Clearly, there is a need for a means to identify early markers of chronic rejection, and to control it to improve long-term survival.
TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, S; Rapacchi, S; Hu, P
2014-06-15
Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionarymore » learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.« less
... bowel Fluid on the lungs Lung, Intestine, and Pancreas Pancreas, intestine, and lung living-donor transplants are very ... care of the live organ donor: lung, liver, pancreas, and intestine data and medical guidelines. Transplantation. 2006 ...
[Histological and histochemical characteristics of pancreas of deer at the Altay].
Riadinskaia, N I; Siraziev, R Z
2008-01-01
Season changes in the pancreas from animals belonging to genuine deer subfamily have been investigated by histological, histochemical and biometric methods. Glycogen is not found in the pancreas cells throughout the seasons pointing to high functional activity of glandular cells, since glycogen is consumed for carbohydrate biopolymer synthesis and not accumulated. Depending upon the season, cytoplasm of pancreacells, cells of excretory ducts and pancreas islets showed different intensity of pyroninophilous reaction indicating RNA presence. These data coupled with the presence of protein in these cells demonstrate protein-synthesizing ability of the gland adapted to biorhythm. Changes in quantity and types of web cells as well as in functional activity of pancrea cells and pancreas islets revealed season regularity and reflected functional lability of the cells and their constant involvement in many of vital important process.
Characterization of Erg K+ Channels in α- and β-Cells of Mouse and Human Islets*
Hardy, Alexandre B.; Fox, Jocelyn E. Manning; Giglou, Pejman Raeisi; Wijesekara, Nadeeja; Bhattacharjee, Alpana; Sultan, Sobia; Gyulkhandanyan, Armen V.; Gaisano, Herbert Y.; MacDonald, Patrick E.; Wheeler, Michael B.
2009-01-01
Voltage-gated eag-related gene (Erg) K+ channels regulate the electrical activity of many cell types. Data regarding Erg channel expression and function in electrically excitable glucagon and insulin producing cells of the pancreas is limited. In the present study Erg1 mRNA and protein were shown to be highly expressed in human and mouse islets and in α-TC6 and Min6 cells α- and β-cell lines, respectively. Whole cell patch clamp recordings demonstrated the functional expression of Erg1 in α- and β-cells, with rBeKm1, an Erg1 antagonist, blocking inward tail currents elicited by a double pulse protocol. Additionally, a small interference RNA approach targeting the kcnh2 gene (Erg1) induced a significant decrease of Erg1 inward tail current in Min6 cells. To investigate further the role of Erg channels in mouse and human islets, ratiometric Fura-2 AM Ca2+-imaging experiments were performed on isolated α- and β-cells. Blocking Erg channels with rBeKm1 induced a transient cytoplasmic Ca2+ increase in both α- and β-cells. This resulted in an increased glucose-dependent insulin secretion, but conversely impaired glucagon secretion under low glucose conditions. Together, these data present Erg1 channels as new mediators of α- and β-cell repolarization. However, antagonism of Erg1 has divergent effects in these cells; to augment glucose-dependent insulin secretion and inhibit low glucose stimulated glucagon secretion. PMID:19690348
Usherin expression is highly conserved in mouse and human tissues.
Pearsall, Nicole; Bhattacharya, Gautam; Wisecarver, Jim; Adams, Joe; Cosgrove, Dominic; Kimberling, William
2002-12-01
Usher syndrome is an autosomal recessive disease that results in varying degrees of hearing loss and retinitis pigmentosa. Three types of Usher syndrome (I, II, and III) have been identified clinically with Usher type II being the most common of the three types. Usher type II has been localized to three different chromosomes 1q41, 3p, and 5q, corresponding to Usher type 2A, 2B, and 2C respectively. Usherin is a basement membrane protein encoded by the USH2A gene. Expression of usherin has been localized in the basement membrane of several tissues, however it is not ubiquitous. Immunohistochemistry detected usherin in the following human tissues: retina, cochlea, small and large intestine, pancreas, bladder, prostate, esophagus, trachea, thymus, salivary glands, placenta, ovary, fallopian tube, uterus, and testis. Usherin was absent in many other tissues such as heart, lung, liver, kidney, and brain. This distribution is consistent with the usherin distribution seen in the mouse. Conservation of usherin is also seen at the nucleotide and amino acid level when comparing the mouse and human gene sequences. Evolutionary conservation of usherin expression at the molecular level and in tissues unaffected by Usher 2a supports the important structural and functional role this protein plays in the human. In addition, we believe that these results could lead to a diagnostic procedure for the detection of Usher syndrome and those who carry an USH2A mutation.
75 FR 55584 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-13
... 58 7,482 0.6500 4,863.3000 Liver Follow-up 129 519 66,951 0.5000 33,475.5000 Kidney/Pancreas Candidate 143 14 2,002 0.5000 1,001.0000 Registration Kidney/Pancreas Registration 143 7 1,001 0.9000 900.9000 Kidney/Pancreas Follow-up... 143 85 12,155 0.8500 10,331.7500 Pancreas Candidate 143 7 1,001 0...
The Role of MicroRNAs in Pancreatitis
2015-10-01
pancreas ) leads to hundreds of thousands of hospital admissions each year in the United States. We studied the role of a noncoding RNA gene in pancreas ...paragraph) describes the subject, purpose and scope of the research. Pancreatitis (inflammation of the pancreas ) leads to hundreds of thousands of...upregulated in pancreas tissues from patients with chronic pancreatitis compared to that from healthy donors.3 In this study, we propose two
Jin, Xi; Jia, Tiantian; Liu, Ruohan; Xu, Shiwen
2018-06-01
The animal experiment was preformed to investigate the roles of PPAR-γ/PI3K/Akt pathway in apoptosis triggered by cadmium (Cd) and in the antagonistic effects of selenium (Se) on Cd in the pancreas of chicken. The current study showed that Cd treatment obviously increased the accumulation of Cd and directly led to lower activities of amylase, trypsin and lipase in chicken pancreas. The expression of PPAR-γ, PI3K, and Akt was declined, whereas the level of Bax, Cyt C and caspase-3 were increased in Cd group. In the result of TUNEL assay and the histological examination, typical apoptosis characteristics in the pancreas of Cd group were confirmed. Cd group also showed high levels of inducible nitric oxide synthase (iNOS) activity and nitric oxide (NO) content in pancreas. However, those Cd-induced changes were obviously alleviated in Cd + Se group. Our study revealed that Cd could impact the pancreas function and induce the activation of Bax and the overproduction of NO via PPAR-γ/PI3K/Akt pathway to promote apoptosis in chicken pancreas. However, Se could reduce Cd accumulation and antagonize Cd-triggered apoptosis in chicken pancreas. Copyright © 2018 Elsevier B.V. All rights reserved.
Histopathological changes in the pancreas of cattle with abdominal fat necrosis
TANI, Chikako; PRATAKPIRIYA, Watanyoo; TANI, Mineto; YAMAUCHI, Takenori; HIRAI, Takuya; YAMAGUCHI, Ryoji; ANO, Hitoshi; KATAMOTO, Hiromu
2016-01-01
The association between pancreatic disorder and abdominal fat necrosis in cattle remains unclear. The pancreases of 29 slaughtered cattle with or without fat necrosis were collected to investigate pathological changes. Japanese Black (JB) cattle were classified into the FN group (with abdominal fat necrosis; n=9) and N group (without fat necrosis; n=5). The pancreases were also collected from 15 Holstein Friesian (HF) cows. All JB cattle showed high body condition scores. Regarding the pathological findings, fatty pancreas which involves adipocyte infiltration into the pancreas and fat necrosis (saponification) were observed in 25 and 27 cases, respectively. Immunohistochemical staining with anti-Iba-1 antibody showed large numbers of macrophages surrounding the saponified fat in the pancreas. CD3-positive T cells were significantly more common in the pancreas of both the FN and N groups compared with the HF group (P<0.05). Furthermore, fibrosis in the pancreas exhibited a correlative tendency with the formation of necrotic fat mass in the peritoneal cavity (P<0.1). These results indicate that obesity leads to increased severity of pancreatic disorder, including fatty pancreas and pancreatitis. The pathological lesions in the pancreas may play a key role in abdominal fat necrosis through the inflammatory process. PMID:27795463
A Hybrid Method for Pancreas Extraction from CT Image Based on Level Set Methods
Tan, Hanqing; Fujita, Hiroshi
2013-01-01
This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction. PMID:24066016
Differentially regulated ADAMTS1, 8, 9, and 18 in pancreas adenocarcinoma
Aynekin, Büşra; Bozer, Mikdat; Kara, Adem; Haltaş, Hacer; İçen, Duygu; Demircan, Kadir
2017-01-01
Introduction Despite recent diagnostic and therapeutic improvements, pancreas cancer remains one of the highly lethal cancers. The extracellular matrix (ECM) is a physiological barrier that limits the spread of cancer cells into surrounding tissues and distant organs. Disintegrin and metalloprotease with thrombospondin motifs (ADAMTS) is a family of 19 proteases, which is involved in various biological processes such as ECM remodelling and anti-angiogenesis. Aim To investigate the expression of ADAMTS1, 8, 9, and 18 proteinases in pancreas adenocarcinoma and its nodal metastasis. Material and methods The immunostaining status of ADAMTS1, 8, 9, and 18 were investigated in formalin-fixed paraffin-embedded samples of 25 patients who underwent pancreaticoduodenectomy for an adenocarcinoma located at the head of the pancreas. Results In semi-quantitive grading pathologically, ADAMTS1, 8, 9, and 18 were found to be highly stained in all cancerous pancreas samples compared with normal pancreas. In addition, the immune positivity of ADAMTS1, 9, and 18 was found to be higher in metastatic lymph nodes than in non-metastatic lymph tissue. Tumour size was correlated with ADAMTS9 and 18 expressions in cancerous pancreas. Conclusions According to the data obtained from the study, we suggest that these four ADAMTSs may have significant roles in the tumorigenesis and nodal spread of pancreas adenocarcinoma. PMID:29358995
Morphological and functional evaluation of chronic pancreatitis with magnetic resonance imaging
Hansen, Tine Maria; Nilsson, Matias; Gram, Mikkel; Frøkjær, Jens Brøndum
2013-01-01
Magnetic resonance imaging (MRI) techniques for assessment of morphology and function of the pancreas have been improved dramatically the recent years and MRI is very often used in diagnosing and follow-up of chronic pancreatitis (CP) patients. Standard MRI including fat-suppressed T1-weighted and T2-weighted imaging techniques reveal decreased signal and glandular atrophy of the pancreas in CP. In contrast-enhanced MRI of the pancreas in CP the pancreatic signal is usually reduced and delayed due to decreased perfusion as a result of chronic inflammation and fibrosis. Thus, morphological changes of the ductal system can be assessed by magnetic resonance cholangiopancreatography (MRCP). Furthermore, secretin-stimulated MRCP is a valuable technique to evaluate side branch pathology and the exocrine function of the pancreas and diffusion weighted imaging can be used to quantify both parenchymal fibrotic changes and the exocrine function of the pancreas. These standard and advanced MRI techniques are supplementary techniques to reveal morphological and functional changes of the pancreas in CP. Recently, spectroscopy has been used for assessment of metabolite concentrations in-vivo in different tissues and may have the potential to offer better tissue characterization of the pancreas. Hence, the purpose of the present review is to provide an update on standard and advanced MRI techniques of the pancreas in CP. PMID:24259954
Pierre, Joseph F.; Neuman, Joshua C.; Brill, Allison L.; Brar, Harpreet K.; Thompson, Mary F.; Cadena, Mark T.; Connors, Kelsey M.; Busch, Rebecca A.; Heneghan, Aaron F.; Cham, Candace M.; Jones, Elaina K.; Kibbe, Carly R.; Davis, Dawn B.; Groblewski, Guy E.; Kudsk, Kenneth A.
2015-01-01
Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis. PMID:26185331
Giri, Dinesh; Vignola, Maria Lillina; Gualtieri, Angelica; Scagliotti, Valeria; McNamara, Paul; Peak, Matthew; Didi, Mohammed; Gaston-Massuet, Carles; Senniappan, Senthil
2017-11-15
Congenital hypopituitarism (CH) is characterized by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycaemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Management of portal annular pancreas during laparoscopic pancreaticoduodenectomy.
Zimmitti, Giuseppe; Manzoni, Alberto; Ramera, Marco; Villanacci, Alberta; Sega, Valentina; Treppiedi, Elio; Guerini, Francesca; Garatti, Marco; Codignola, Claudio; Rosso, Edoardo
2018-03-23
Portal annular pancreas (PAP) is a pancreatic congenital anomaly consisting of pancreatic parenchyma encircling the portal vein and/or the superior mesenteric vein. It has been reported that the risk of developing a post-operative pancreatic fistula is higher following pancreaticoduodenectomy in patients with PAP, probably because of the possibility of leaving undrained a portion of pancreatic parenchyma during the reconstructive phase. Few manuscripts have reported a surgical technique of pancreaticoduodenectomy in case of PAP, herein we report the first case of a patient with PAP undergoing laparoscopic pancreaticoduodenectomy.
Kiriyama, Yuka; Tsukamoto, Tetsuya; Mizoguchi, Yoshikazu; Ishihara, Shin; Horiguchi, Akihiko; Tokoro, Takamasa; Kato, Yutaro; Sugioka, Atsushi; Kuroda, Makoto
2016-08-20
Perivascular epithelioid-cell tumor (PEComa) is a group of rare mesenchymal neoplasms that express myomelanocytic-cell markers and exhibit a wide variety of histopathological features. Although heterotopic pancreas has been reported to occur in the gastrointestinal tract, intrahepatic heterotopic pancreas has been reported only rarely. We present a case of intrahepatic PEComa that showed a strong regional correlation with the presence of heterotopic pancreas. An intrahepatic tumor and biliary dilatation was incidentally discovered during a diagnostic evaluation to investigate low-back pain in a 47-year-old Japanese male. Cholangiocarcinoma was suspected and a left hemihepatectomy performed. Histological examination revealed a 3 × 3.8-mm tumor in the neighboring B2 bile duct. Histological and immunohistochemical investigations revealed the presence of a PEComa and pancreatic acini within the tumor mass. PEComa in the hepatobiliary and pancreatic regions are extremely rare. The presence of heterotopic pancreas is also relatively uncommon. The strong regional association of these 2 lesions raises the possibility of a PEComa originating from heterotopic pancreas or from an irritable response caused by heterotopic pancreas.
Pancreas and cyst segmentation
NASA Astrophysics Data System (ADS)
Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie
2016-03-01
Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.
Nakamura, Taichi; Ito, Tetsuhide; Uchida, Masahiko; Hijioka, Masayuki; Igarashi, Hisato; Oono, Takamasa; Kato, Masaki; Nakamura, Kazuhiko; Suzuki, Koichi; Jensen, Robert T.; Takayanagi, Ryoichi
2013-01-01
Background and Aims There is increasing concern about the development of pancreatitis in patients with diabetes mellitus who received long-term GLP-1 analog treatment. Its pathogenesis is unknown. The effects of GLP-1 agonists on pancreatic endocrine cells is well studied, however there is little information on effects on other pancreatic tissues that might be involved in inflammatory processes. Pancreatic stellate cells (PSCs) can play an important role in pancreatitis, secreting various inflammatory cytokines/chemokines, as well as collagen. In this study, we investigated GLP-1R occurrence in normal pancreas, acute/chronic pancreatitis, and the effects of GLP-1 analog on normal PSCs, their ability to stimulate inflammatory mediator secretion or proliferation. Methods GLP-1R expression/localization in normal pancreas and pancreatitis (acute/chronic) tissues were evaluated with histological/immunohistochemical analysis. PSCs were isolated from male Wistar rats. GLP1R expression and effects of GLP-1 analog on activated PSCs was examined with realtime PCR, MTS assays and Western Blotting. Results In normal pancreas, pancreatic β cells expressed GLP-1R, with only low expression in acinar cells, whereas in acute or chronic pancreatitis, acinar cells, ductal cells and activated PSCs expressed GLP-1R. With activation of normal PSCs, GLP-1R is markedly increased, as is multiple other incretin-related receptors. The GLP-1 analog, liraglutide, did not induce inflammatory genes expression in activated PSCs, but induced proliferation. Liraglutide activated multiple signaling cascades in PSCs, and the ERK pathway mediated the PSCs proliferation. Conclusions GLP-1Rs are expressed in normal pancreas and there is marked enhanced expression in acute/chronic pancreatitis. GLP-1-agonist induced cell proliferation of activated PSCs without increasing release of inflammatory mediators. These results suggest chronic treatment with GLP-1R agonists could lead to proliferation/chronic activation of PSCs, which may lead to important effects in the pancreas. PMID:24217090
SU-E-J-168: Automated Pancreas Segmentation Based On Dynamic MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, S; Rapacchi, S; Hu, P
2014-06-01
Purpose: MRI guided radiotherapy is particularly attractive for abdominal targets with low CT contrast. To fully utilize this modality for pancreas tracking, automated segmentation tools are needed. A hybrid gradient, region growth and shape constraint (hGReS) method to segment 2D upper abdominal dynamic MRI is developed for this purpose. Methods: 2D coronal dynamic MR images of 2 healthy volunteers were acquired with a frame rate of 5 f/second. The regions of interest (ROIs) included the liver, pancreas and stomach. The first frame was used as the source where the centers of the ROIs were annotated. These center locations were propagatedmore » to the next dynamic MRI frame. 4-neighborhood region transfer growth was performed from these initial seeds for rough segmentation. To improve the results, gradient, edge and shape constraints were applied to the ROIs before final refinement using morphological operations. Results from hGReS and 3 other automated segmentation methods using edge detection, region growth and level set were compared to manual contouring. Results: For the first patient, hGReS resulted in the organ segmentation accuracy as measure by the Dices index (0.77) for the pancreas. The accuracy was slightly superior to the level set method (0.72), and both are significantly more accurate than the edge detection (0.53) and region growth methods (0.42). For the second healthy volunteer, hGReS reliably segmented the pancreatic region, achieving a Dices index of 0.82, 0.92 and 0.93 for the pancreas, stomach and liver, respectively, comparing to manual segmentation. Motion trajectories derived from the hGReS, level set and manual segmentation methods showed high correlation to respiratory motion calculated using a lung blood vessel as the reference while the other two methods showed substantial motion tracking errors. hGReS was 10 times faster than level set. Conclusion: We have shown the feasibility of automated segmentation of the pancreas anatomy based on dynamic MRI.« less
Pancreas anatomy and surgical procedure for pancreatectomy in rhesus monkeys.
Zhang, Yi; Fu, Lan; Lu, Yan-Rong; Guo, Zhi-Guang; Zhang, Zhao-Da; Cheng, Jing-Qiu; Hu, Wei-Ming; Liu, Xu-Bao; Mai, Gang; Zeng, Yong; Tian, Bo-Le
2011-12-01
The aim of this study was to investigate the pancreas anatomy and surgical procedure for harvesting pancreas for islet isolation while performing pancreatectomy to induce diabetes in rhesus monkeys. The necropsy was performed in three cadaveric monkeys. Two monkeys underwent the total pancreatectomy and four underwent partial pancreatectomy (70-75%). The greater omentum without ligament to transverse colon, the cystic artery arising from the proper hepatic artery and the branches supplying the paries posterior gastricus from the splenic artery were observed. For pancreatectomy, resected pancreas can be used for islet isolation. Diabetes was not induced in the monkeys undergoing partial pancreatectomy (70-75%). Pancreas anatomy in rhesus monkeys is not the same as in human. Diabetes can be induced in rhesus monkeys by total but not partial pancreatectomy (70-75%). Resected pancreas can be used for islet isolation while performing pancreatectomy to induce diabetes. © 2011 John Wiley & Sons A/S.
OPTN/SRTR 2016 Annual Data Report: Pancreas.
Kandaswamy, R; Stock, P G; Gustafson, S K; Skeans, M A; Curry, M A; Prentice, M A; Fox, A; Israni, A K; Snyder, J J; Kasiske, B L
2018-01-01
The number of pancreas transplants performed in the United States increased by 7.0% in 2016 over the previous year, the first such increase in more than a decade, largely attributable to an increase in simultaneous kidney pancreas transplants. Transplant rates increased in 2016, and mortality on the waiting list decreased. The declining enthusiasm for pancreas after kidney (PAK) transplants persisted. The uniform definition of graft failure was approved by the OPTN Board of Directors in 2015 and will be implemented in early 2018. Meanwhile, SRTR continues to refrain from reporting pancreas graft failure data. The OPTN/UNOS Pancreas Transplantation Committee is seeking to broaden allocation of pancreata across compatible ABO blood types in a proposal out for public comment July 31 to October 2, 2017. A new initiative to provide guidance on the benefits of PAK transplants is also out for public comment. .
Glass, Ryan; Andrawes, Sherif A; Hamele-Bena, Diane; Tong, Guo-Xia
2017-11-01
Metastatic carcinoma to the pancreas is uncommon and head and neck squamous carcinoma metastatic to the pancreas is extremely rare. Metastatic squamous cell carcinoma to the pancreas presents a unique diagnostic challenge: in addition to mimicking the rare primary squamous cell carcinoma of the pancreas based on cytologic, histologic, and immunohistochemical features, it may be mistaken for a cystic neoplasm of the pancreas because of its high predilection for cystic degeneration in metastatic sites. Herein, we report a case of tonsillar squamous cell carcinoma with a cystic pancreatic metastasis diagnosed by ultrasound-guided fine needle aspiration biopsy (EUS-FNA). This represents a third reported case of metastatic squamous cell carcinoma to the pancreas from the head and neck region. Metastatic squamous cell carcinoma should be considered in the differential diagnosis of EUS-FNA during evaluation of pancreatic cystic lesion. © 2017 Wiley Periodicals, Inc.
Pig Pancreas Anatomy: Implications for Pancreas Procurement, Preservation, and Islet Isolation
Ferrer, Joana; Scott, William E; Weegman, Bradley P; Suszynski, Thomas M; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K
2009-01-01
Background Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. The limited human islet supply from cadavers and poor islet yield and quality remain substantial impediments to progress in the field. Use of porcine islets holds great promise for large-scale application of islet transplantation. Consistent isolation of porcine islets is dependent on advances in pancreas procurement and preservation, and islet isolation requiring detailed knowledge of the porcine pancreatic anatomy. The primary aim of this study was to describe the vascular and ductal anatomy of the porcine pancreas in order to guide and improve organ preservation and enzyme perfusion. Methods Pancreata were removed by en bloc viscerectomy from 65 female Landrace pigs. Results 15% of organs exhibited inconsistent vascular branching from the celiac trunk. All organs had uniform patterns of branching at the superior mesenteric artery. The superior and inferior mesenteric veins (IMV) merged to become the portal vein in all but one case in which the IMV drained into the splenic vein. 97% of pancreata had three lobes: duodenal (DL), connecting (CL), and splenic (SL); 39% demonstrated ductal communication between the CL and the other two lobes; 50% had ductal communication only between the CL and DL; and 11% presented other types of ductal delineation. Conclusions Accounting for the variations in vascular and ductal anatomy, as detailed in this study, will facilitate development of protocols for preservation, optimal enzyme administration, and pancreas distention and digestion, and ultimately lead to substantial improvements in isolation outcomes. PMID:19077881
Takahashi, Mami; Mutoh, Michihiro; Ishigamori, Rikako; Fujii, Gen; Imai, Toshio
2013-03-01
Chronic inflammation is known to be a risk for many cancers, including pancreatic cancer. Heavy alcohol drinking and cigarette smoking are major causes of pancreatitis, and epidemiological studies have shown that smoking and chronic pancreatitis are risk factors for pancreatic cancer. Meanwhile, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are elevated in pancreatitis and pancreatic cancer tissues in humans and in animal models. Selective inhibitors of iNOS and COX-2 suppress pancreatic cancer development in a chemical carcinogenesis model of hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP). In addition, hyperlipidemia, obesity, and type II diabetes are also suggested to be associated with chronic inflammation in the pancreas and involved in pancreatic cancer development. We have shown that a high-fat diet increased pancreatic cancer development in BOP-treated hamsters, along with aggravation of hyperlipidemia, severe fatty infiltration, and increased expression of adipokines and inflammatory factors in the pancreas. Of note, fatty pancreas has been observed in obese and/or diabetic cases in humans. Preventive effects of anti-hyperlipidemic/anti-diabetic agents on pancreatic cancer have also been shown in humans and animals. Taking this evidence into consideration, modulation of inflammatory factors by anti-inflammatory agents will provide useful data for prevention of pancreatic cancer.
Gerber, Philipp A; Hochuli, Michel; Benediktsdottir, Bara D; Zuellig, Richard A; Tschopp, Oliver; Glenck, Michael; de Rougemont, Olivier; Oberkofler, Christian; Spinas, Giatgen A; Lehmann, Roger
2018-01-01
The aim of this study was to assess safety and efficacy of islet transplantation after initial pancreas transplantation with subsequent organ failure. Patients undergoing islet transplantation at our institution after pancreas organ failure were compared to a control group of patients with pancreas graft failure, but without islet transplantation and to a group receiving pancreas retransplantation. Ten patients underwent islet transplantation after initial pancreas transplantation failed and were followed for a median of 51 months. The primary end point of HbA1c <7.0% and freedom of severe hypoglycemia was met by nine of 10 patients after follow-up after islet transplantation and in all three patients in the pancreas retransplantation group, but by none of the patients in the group without retransplantation (n = 7). Insulin requirement was reduced by 50% after islet transplantation. Kidney function (eGFR) declined with a rate of -1.0 mL ± 1.2 mL/min/1.73 m 2 per year during follow-up after islet transplantation, which tended to be slower than in the group without retransplantation (P = .07). Islet transplantation after deceased donor pancreas transplant failure is a method that can safely improve glycemic control and reduce the incidence of severe hypoglycemia and thus establish similar glycemic control as after initial pancreas transplantation, despite the need of additional exogenous insulin. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Hong, Tae Ho; Choi, Joon-Il; Park, Michael Yong; Rha, Sung Eun; Lee, Young Joon; You, Young Kyoung; Choi, Moon Hyung
2017-01-01
AIM To evaluate the correlation between subjective assessments of pancreatic hardness based on the palpation, objective measurements using a durometer, and magnetic resonance imaging (MRI) findings for assessing pancreatic hardness. METHODS Eighty-three patients undergoing pancreatectomies were enrolled. An experienced surgeon subjectively evaluated the pancreatic hardness in the surgical field by palpation. The pancreatic hardness was also objectively evaluated using a durometer. Preoperative MRI findings were evaluated by a radiologist in terms of the apparent diffusion coefficient (ADC) values, the relative signal intensity decrease (RSID) of the pancreatic parenchyma, and the diameter of the pancreatic parenchyma and duct. Durometer measurement results, ADC values, RSID, pancreatic duct and parenchyma diameters, and the ratio of the diameters of the duct and parenchyma were compared between pancreases judged to be soft or hard pancreas on the palpation. A correlation analysis was also performed between the durometer and MRI measurements. RESULTS The palpation assessment classified 44 patients as having a soft pancreas and 39 patients as having a hard pancreas. ADC values were significantly lower in the hard pancreas group. The ductal diameter and duct-to-pancreas ratio were significantly higher in the hard pancreas group. For durometer measurements, a correlation analysis showed a positive correlation with the ductal diameter and the duct-to-pancreas ratio and a negative correlation with ADC values. CONCLUSION Hard pancreases showed lower ADC values, a wider pancreatic duct diameter and a higher duct-to-pancreas ratio than soft pancreases. Additionally, the ADC values, diameter of the pancreatic duct and duct-to-pancreas ratio were closely correlated with the durometer results. PMID:28373771
Hong, Tae Ho; Choi, Joon-Il; Park, Michael Yong; Rha, Sung Eun; Lee, Young Joon; You, Young Kyoung; Choi, Moon Hyung
2017-03-21
To evaluate the correlation between subjective assessments of pancreatic hardness based on the palpation, objective measurements using a durometer, and magnetic resonance imaging (MRI) findings for assessing pancreatic hardness. Eighty-three patients undergoing pancreatectomies were enrolled. An experienced surgeon subjectively evaluated the pancreatic hardness in the surgical field by palpation. The pancreatic hardness was also objectively evaluated using a durometer. Preoperative MRI findings were evaluated by a radiologist in terms of the apparent diffusion coefficient (ADC) values, the relative signal intensity decrease (RSID) of the pancreatic parenchyma, and the diameter of the pancreatic parenchyma and duct. Durometer measurement results, ADC values, RSID, pancreatic duct and parenchyma diameters, and the ratio of the diameters of the duct and parenchyma were compared between pancreases judged to be soft or hard pancreas on the palpation. A correlation analysis was also performed between the durometer and MRI measurements. The palpation assessment classified 44 patients as having a soft pancreas and 39 patients as having a hard pancreas. ADC values were significantly lower in the hard pancreas group. The ductal diameter and duct-to-pancreas ratio were significantly higher in the hard pancreas group. For durometer measurements, a correlation analysis showed a positive correlation with the ductal diameter and the duct-to-pancreas ratio and a negative correlation with ADC values. Hard pancreases showed lower ADC values, a wider pancreatic duct diameter and a higher duct-to-pancreas ratio than soft pancreases. Additionally, the ADC values, diameter of the pancreatic duct and duct-to-pancreas ratio were closely correlated with the durometer results.
van de Bunt, Martijn; Lako, Majlinda; Barrett, Amy; Gloyn, Anna L.; Hansson, Mattias; McCarthy, Mark I.; Honoré, Christian
2016-01-01
ABSTRACT Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors, and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment, such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2, p-value = 4.9 × 10−5) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1, p-value = 8.6 × 10−5), showed transcriptional variation consistent with their known developmental roles. However, these analyses highlighted many other genes with stage-specific expression patterns, some of which may be novel drivers or markers of islet development. For example, the leptin receptor gene, LEPR, was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5, p-value = 2.0 × 10−12), suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes, including INS, ABCC8, and GLP1R, and enrichment of relevant GO-terms (e.g. “insulin secretion”; odds ratio = 4.2, p-value = 1.9 × 10−3): however, principal component analysis indicated that in vitro-differentiated cells were more immature than adult islets. Integration of the stage-specific expression information with genetic data from T2D genome-wide association studies revealed that 46 of 82 T2D-associated loci harbor genes present in at least one developmental stage, facilitating refinement of potential effector transcripts. Together, these data show that expression profiling in an iPSC islet development model can further understanding of islet biology and T2D pathogenesis. PMID:27246810
Retinoic acid plays an evolutionarily conserved and biphasic role in pancreas development
Huang, Wei; Wang, Guangliang; Delaspre, Fabien; Vitery, Maria del Carmen; Beer, Rebecca L.
2015-01-01
As the developing zebrafish pancreas matures, hormone-producing endocrine cells differentiate from pancreatic Notch-responsive cells (PNCs) that reside within the ducts. These new endocrine cells form small clusters known as secondary (2°) islets. We use the formation of 2° islets in the pancreatic tail of the larval zebrafish as a model of β-cell neogenesis. Pharmacological inhibition of Notch signaling leads to precocious endocrine differentiation and the early appearance of 2° islets in the tail of the pancreas. Following a chemical screen, we discovered that blocking the retinoic acid (RA)-signaling pathway also leads to the induction of 2° islets. Conversely, the addition of exogenous RA blocks the differentiation caused by Notch inhibition. In this report we characterize the interaction of these two pathways. We first verified that signaling via both RA and Notch ligands act together to regulate pancreatic progenitor differentiation. We produced a transgenic RA reporter, which demonstrated that PNCs directly respond to RA signaling through the canonical transcriptional pathway. Next, using a genetic lineage tracing approach, we demonstrated these progenitors produce endocrine cells following inhibition of RA signaling. Lastly, inhibition of RA signaling using a cell-type specific inducible cre/lox system revealed that RA signaling acts cell-autonomously in PNCs to regulate their differentiation. Importantly, the action of RA inhibition on endocrine formation is evolutionarily conserved, as shown by the differentiation of human embryonic stem cells in a model of human pancreas development. Together, these results revealed a biphasic function for RA in pancreatogenesis. As previously shown by others, RA initially plays an essential role during embryogenesis as it patterns the endoderm and specifies the pancreatic field. We reveal here that later in development RA is involved in negatively regulating the further differentiation of pancreatic progenitors and expands upon the developmental mechanisms by which this occurs. PMID:25127993
Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.
Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku
2017-07-01
Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.
Exenatide Induces Impairment of Autophagy Flux to Damage Rat Pancreas.
Li, Zhiqiang; Huang, Lihua; Yu, Xiao; Yu, Can; Zhu, Hongwei; Li, Xia; Han, Duo; Huang, Hui
2017-01-01
The study aimed to explore the alteration of autophagy in rat pancreas treated with exenatide. Normal Sprague-Dawley rats and diabetes-model rats induced by 2-month high-sugar and high-fat diet and streptozotocin injection were subcutaneously injected with exenatide, respectively, for 10 weeks, with homologous rats treated with saline as control. Meanwhile, AR42J cells, pancreatic acinar cell line, were cultured with exenatide at doses of 5 pM for 3 days. The pancreas was disposed, and several sections were stained with hematoxylin-eosin. Immunohistochemistry was used to measure the expressions of glucagon-like peptide 1 receptor (GLP-1R) and cysteine-aspartic acid protease-3 in rat pancreas, and Western blot was used to test the expressions of GLP-1R, light chain 3B-I and -II, and p62 in rat pancreas and AR42J cells. The data were expressed as mean (standard deviation) and analyzed by unpaired Student's t-test. Exenatide can induce pathological changes in rat pancreas. The GLP-1R, p62, light chain 3B-II, and cysteine-aspartic acid protease-3 in rat pancreas and AR42J cells treated with exenatide were significantly overexpressed. Exenatide can activate and upregulate its receptor, GLP-1R, then impair autophagy flux and activate apoptosis in the pancreatic acinar cell, thus damaging rat pancreas.
Siskind, Eric; Maloney, Caroline; Akerman, Meredith; Alex, Asha; Ashburn, Sarah; Barlow, Meade; Siskind, Tamar; Bhaskaran, Madhu; Ali, Nicole; Basu, Amit; Molmenti, Ernesto; Ortiz, Jorge
2014-09-01
Previously, increasing age has been a part of the exclusion criteria used when determining eligibility for a pancreas transplant. However, the analysis of pancreas transplantation outcomes based on age groupings has largely been based on single-center reports. A UNOS database review of all adult pancreas and kidney-pancreas transplants between 1996 and 2012 was performed. Patients were divided into groups based on age categories: 18-29 (n = 1823), 30-39 (n = 7624), 40-49 (n = 7967), 50-59 (n = 3160), and ≥60 (n = 280). We compared survival outcomes and demographic variables between each age grouping. Of the 20 854 pancreas transplants, 3440 of the recipients were 50 yr of age or above. Graft survival was consistently the greatest in adults 40-49 yr of age. Graft survival was least in adults age 18-29 at one-, three-, and five-yr intervals. At 10- and 15-yr intervals, graft survival was the poorest in adults >60 yr old. Patient survival and age were found to be inversely proportional; as the patient population's age increased, survival decreased. Pancreas transplants performed in patients of increasing age demonstrate decreased patient and graft survival when compared to pancreas transplants in patients <50 yr of age. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Drachenberg, C B; Odorico, J; Demetris, A J; Arend, L; Bajema, I M; Bruijn, J A; Cantarovich, D; Cathro, H P; Chapman, J; Dimosthenous, K; Fyfe-Kirschner, B; Gaber, L; Gaber, O; Goldberg, J; Honsová, E; Iskandar, S S; Klassen, D K; Nankivell, B; Papadimitriou, J C; Racusen, L C; Randhawa, P; Reinholt, F P; Renaudin, K; Revelo, P P; Ruiz, P; Torrealba, J R; Vazquez-Martul, E; Voska, L; Stratta, R; Bartlett, S T; Sutherland, D E R
2008-06-01
Accurate diagnosis and grading of rejection and other pathological processes are of paramount importance to guide therapeutic interventions in patients with pancreas allograft dysfunction. A multi-disciplinary panel of pathologists, surgeons and nephrologists was convened for the purpose of developing a consensus document delineating the histopathological features for diagnosis and grading of rejection in pancreas transplant biopsies. Based on the available published data and the collective experience, criteria for the diagnosis of acute cell-mediated allograft rejection (ACMR) were established. Three severity grades (I/mild, II/moderate and III/severe) were defined based on lesions known to be more or less responsive to treatment and associated with better- or worse-graft outcomes, respectively. The features of chronic rejection/graft sclerosis were reassessed, and three histological stages were established. Tentative criteria for the diagnosis of antibody-mediated rejection were also characterized, in anticipation of future studies that ought to provide more information on this process. Criteria for needle core biopsy adequacy and guidelines for pathology reporting were also defined. The availability of a simple, reproducible, clinically relevant and internationally accepted schema for grading rejection should improve the level of diagnostic accuracy and facilitate communication between all parties involved in the care of pancreas transplant recipients.
Arai, Takuma; Kobayashi, Akira; Yokoyama, Takahide; Ohya, Ayumi; Fujinaga, Yasunari; Shimizu, Akira; Motoyama, Hiroaki; Furusawa, Norihiko; Sakai, Hiroshi; Uehara, Takeshi; Kadoya, Masumi; Miyagawa, Shin-Ichi
2015-01-01
The aim of this study was to evaluate the impact of the pancreatic signal intensity (SI) on magnetic resonance imaging (MRI) findings for predicting the development of pancreatic fistula (PF) after a distal pancreatectomy (DP) involving a triple-row stapler closure. A multivariate logistic regression analysis was used to identify risk factors for clinical PF, as defined by the International Study Group on Pancreatic Fistula grade B or C. The pancreas-to-muscle SI ratio was evaluated using fat-suppressed T1-weighted MRI. Of the 41 enrolled patients, 8 (19.5%) developed clinical PF. The pancreatic thickness (≥15 mm) and SI ratio (≥1.3) were identified as independent predictors of clinical PF in a multivariate analysis. Clinical PF was observed in one patient with a thick pancreas and a low SI ratio (14.3%), whereas it was observed in 60% of the patients with a thick pancreas and a high SI ratio. The area under the receiver operating characteristic curve for a predictive model consisting of the two factors was 0.87 (95% confidence interval, 0.75 to 0.99), the level of which tended to be greater than that for pancreatic thickness alone (0.81, p = 0.09). The SI ratio as evaluated using MRI might be useful for predicting clinical PF in patients with the pancreatic thickness ≥15 mm after DP involving a stapler closure. Copyright © 2015 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Sato, Takeshi; Muroya, Koji; Hanakawa, Junko; Iwano, Reiko; Asakura, Yumi; Tanaka, Yukichi; Murayama, Kei; Ohtake, Akira; Hasegawa, Tomonobu; Adachi, Masanori
2015-12-01
Pearson marrow-pancreas syndrome (PS) is a rare mitochondrial disorder. Impaired mitochondrial respiratory chain complexes (MRCC) differ among individuals and organs, which accounts for variable clinical pictures. A subset of PS patients develop 3-methylglutaconic aciduria (3-MGA-uria), but the characteristic symptoms and impaired MRCC remain unknown. Our patient, a girl, developed pancytopenia, hyperlactatemia, steatorrhea, insulin-dependent diabetes mellitus, liver dysfunction, Fanconi syndrome, and 3-MGA-uria. She died from cerebral hemorrhage at 3 years of age. We identified a novel 5.4-kbp deletion of mitochondrial DNA. The enzymatic activities of MRCC I and IV were markedly reduced in the liver and muscle and mildly reduced in skin fibroblasts and the heart. To date, urine organic acid analysis has been performed on 29 PS patients, including our case. Eight patients had 3-MGA-uria, while only one patient did not. The remaining 20 patients were not reported to have 3-MGA-uria. In this paper, we included these 20 patients as PS patients without 3-MGA-uria. PS patients with and without 3-MGA-uria have similar manifestations. Only a few studies have examined the enzymatic activities of MRCC. No clinical characteristics distinguish between PS patients with and without 3-MGA-uria. The correlation between 3-MGA-uria and the enzymatic activities of MRCC remains to be elucidated. • The clinical characteristics of patients with Pearson marrow-pancreas syndrome and 3-methylglutaconic aciduria remain unknown. • No clinical characteristics distinguish between Pearson marrow-pancreas syndrome patients with and without 3-methylglutaconic aciduria.
Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo
Nyman, Lara R.; Ford, Eric
2010-01-01
Pancreatic islets are highly vascularized and arranged so that regions containing β-cells are distinct from those containing other cell types. Although islet blood flow has been studied extensively, little is known about the dynamics of islet blood flow during hypoglycemia or hyperglycemia. To investigate changes in islet blood flow as a function of blood glucose level, we clamped blood glucose sequentially at hyperglycemic (∼300 mg/dl or 16.8 mM) and hypoglycemic (∼50 mg/dl or 2.8 mM) levels while simultaneously imaging intraislet blood flow in mouse models that express green fluorescent protein in the β-cells or yellow fluorescent protein in the α-cells. Using line scanning confocal microscopy, in vivo blood flow was assayed after intravenous injection of fluorescent dextran or sulforhodamine-labeled red blood cells. Regardless of the sequence of hypoglycemia and hyperglycemia, islet blood flow is faster during hyperglycemia, and apparent blood volume is greater during hyperglycemia than during hypoglycemia. However, there is no change in the order of perfusion of different islet endocrine cell types in hypoglycemia compared with hyperglycemia, with the islet core of β-cells usually perfused first. In contrast to the results in islets, there was no significant difference in flow rate in the exocrine pancreas during hyperglycemia compared with hypoglycemia. These results indicate that glucose differentially regulates blood flow in the pancreatic islet vasculature independently of blood flow in the rest of the pancreas. PMID:20071562
Functional photoacoustic microscopy of diabetic vasculature
NASA Astrophysics Data System (ADS)
Krumholz, Arie; Wang, Lidai; Yao, Junjie; Wang, Lihong V.
2012-06-01
We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (~400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change.
Functional photoacoustic microscopy of diabetic vasculature
Krumholz, Arie; Wang, Lidai; Yao, Junjie
2012-01-01
Abstract. We used functional photoacoustic microscopy to image diabetes-induced damage to the microvasculature. To produce an animal model for Type 1 diabetes, we used streptozotocin (STZ), which is particularly toxic to the insulin-producing beta cells of the pancreas in mammals. A set number of ND4 Swiss Webster mice received intraperitoneal injections of STZ for five consecutive days at 50 mg/kg. Most mice developed a significant rise in blood glucose level (∼400 mg/dL) within three weeks of the first injection. Changes in vasculature and hemodynamics were monitored for six weeks. The mouse ear was imaged with an optical-resolution photoacoustic microscope at a main blood vessel branch from the root of the ear. There are noticeable and measurable changes associated with the disease, including decreased vessel diameter and possible occlusion due to vessel damage and polyurea. We also observed an increase in the blood flow speed in the vein and a decrease in the artery, which could be due to compensation for the dehydration and vessel diameter changes. Functional and metabolic parameters such as hemoglobin oxygen saturation, oxygen extraction fraction, and oxygen consumption rate were also measured, but showed no significant change. PMID:22734725
Al-Mrabeh, Ahmad; Hollingsworth, Kieren G; Steven, Sarah; Taylor, Roy
2016-08-01
This study was designed to establish whether the low volume and irregular border of the pancreas in type 2 diabetes would be normalised after reversal of diabetes. A total of 29 individuals with type 2 diabetes undertook a very low energy (very low calorie) diet for 8 weeks followed by weight maintenance for 6 months. Methods were established to quantify the pancreas volume and degree of irregularity of the pancreas border. Three-dimensional volume-rendering and fractal dimension (FD) analysis of the MRI-acquired images were employed, as was three-point Dixon imaging to quantify the fat content. There was no change in pancreas volume 6 months after reversal of diabetes compared with baseline (52.0 ± 4.9 cm(3) and 51.4 ± 4.5 cm(3), respectively; p = 0.69), nor was any volumetric change observed in the non-responders. There was an inverse relationship between the volume and fat content of the pancreas in the total study population (r =-0.50, p = 0.006). Reversal of diabetes was associated with an increase in irregularity of the pancreas borders between baseline and 8 weeks (FD 1.143 ± 0.013 and 1.169 ± 0.006, respectively; p = 0.05), followed by a decrease at 6 months (1.130 ± 0.012, p = 0.006). On the other hand, no changes in FD were seen in the non-reversed group. Restoration of normal insulin secretion did not increase the subnormal pancreas volume over 6 months in the study population. A significant change in irregularity of the pancreas borders occurred after acute weight loss only after reversal of diabetes. Pancreas morphology in type 2 diabetes may be prognostically important, and its relationship to change in beta cell function requires further study.
van der Kroon, Inge; Joosten, Lieke; Nock, Berthold A; Maina, Theodosia; Boerman, Otto C; Brom, Maarten; Gotthardt, Martin
2016-10-03
Accurate assessment of the 111 In-exendin-3 uptake within the pancreas requires exact delineation of the pancreas, which is highly challenging by MRI and CT in rodents. In this study, the pancreatic tracer 99m Tc-demobesin-4 was evaluated for accurate delineation of the pancreas to be able to accurately quantify 111 In-exendin-3 uptake within the pancreas. Healthy and alloxan-induced diabetic Brown Norway rats were injected with the pancreatic tracer 99m Tc-demobesin-4 ([ 99m Tc-N 4 -Pro 1 ,Tyr 4 ,Nle 14 ]bombesin) and the beta cell tracer 111 In-exendin-3 ([ 111 In-DTPA-Lys 40 ]exendin-3). After dual isotope acquisition of SPECT images, 99m Tc-demobesin-4 was used to define a volume of interest for the pancreas in SPECT images subsequently the 111 In-exendin-3 uptake within this region was quantified. Furthermore, biodistribution and autoradiography were performed in order to gain insight in the distribution of both tracers in the animals. 99m Tc-demobesin-4 showed high accumulation in the pancreas. The uptake was highly homogeneous throughout the pancreas, independent of diabetic status, as demonstrated by autoradiography, whereas 111 In-exendin-3 only accumulates in the islets of Langerhans. Quantification of both ex vivo and in vivo SPECT images resulted in an excellent linear correlation between the pancreatic uptake, determined with ex vivo counting and 111 In-exendin-3 uptake, determined from the quantitative analysis of the SPECT images (Pearson r = 0.97, Pearson r = 0.92). 99m Tc-demobesin-4 shows high accumulation in the pancreas of rats. It is a suitable tracer for accurate delineation of the pancreas and can be conveniently used for simultaneous acquisition with 111 In labeled exendin-3. This method provides a straightforward, reliable, and objective method for preclinical beta cell mass (BCM) quantification with 111 In-exendin-3.
Atiq, Muslim; Bhutani, Manoop S; Ross, William A; Raju, Gottumukkala S; Gong, Yun; Tamm, Eric P; Javle, Milind; Wang, Xuemei; Lee, Jeffrey H
2013-04-01
Metastatic lesions to the pancreas pose diagnostic challenges with regards to their differentiation from primary pancreatic cancer. Data on the yield of endoscopic ultrasonography (EUS)-guided fine-needle aspiration in detection of these lesions are limited. This is a retrospective review of 23 patients referred to a tertiary referral center for further evaluation of suspected pancreatic metastases. Main outcome measures were diagnostic yield of endoscopic ultrasonography-guided fine-needle aspiration in evaluation of metastatic lesions to the pancreas. Of 644 patients, 23 (3.6%) undergoing EUS of the pancreas were diagnosed to have metastatic disease to the pancreas based on clinical, radiological, and cytological results. Mean (SD) age was 64.3 (11.7) years. Of the 23 patients, 18 (78.3%) were asymptomatic. Mean (SD) size of lesion on EUS was 39.1 (19.9) mm. A diagnosis of malignant lesion was made in 21 of 23 cases, with a diagnostic accuracy of 91.3%. Metastatic lesions to the pancreas present as incidental, solitary mass lesions on staging or surveillance imaging. Endoscopic ultrasonography-guided fine-needle aspiration is an important tool in the characterization and further differentiation of metastatic lesions to the pancreas from primary pancreatic cancer.
Hempfling, H; Husemann, B
1975-06-01
1. Glucose loading tests were undertaken on isolated pancreas or pancreas-duodenal preparations. 2. In 75% of cases a vasodilatation can be observed which leads to enhanced blood circulation under constant pressure in the isolated organ. 3. This vasodilatation persists until the level of blood sugar has normalized. 4. The experiment being carried out on an isolated organ, external factors such as the vagus nerve, do not become active.
Berney, Thierry; Boffa, Catherine; Augustine, Titus; Badet, Lionel; de Koning, Eelco; Pratschke, Johann; Socci, Carlo; Friend, Peter
2016-07-01
Donation after circulatory death (DCD) donors are increasingly being used as a source of pancreas allografts for vascularized organ and islet transplantation. We provide practice guidelines aiming to increase DCD pancreas utilization. We review risk assessment and donor selection criteria. We report suggested factors in donor and recipient clinical management and provide an overview of the activities and outcomes of vascularized pancreas and islet transplantation. © 2015 Steunstichting ESOT.
Li, Wei; Li, Sai-Jiao; Yin, Tai-Lang; Yang, Jing; Cheng, Yan
2017-04-01
This study investigated the abnormal expression of ATP synthase β-subunit (ATPsyn-β) in pancreas islets of rat model of polycystic ovary syndrome (PCOS) with type 2 diabetes mellitus (T2DM), and the secretion function changes after up-regulation of ATP5b. Sixty female SD rats were divided into three groups randomly and equally. The rat model of PCOS with T2DM was established by free access to the high-carbohydrate/high-fat diet, subcutaneous injections of DHEA, and a single injection of streptozotocin. The pancreas was removed for the detection of the ATPsyn-β expression by immunohistochemical staining, Western blotting and reverse transcription-PCR (RT-PCR). The pancreas islets of the rats were cultured, isolated with collagenase V and purified by gradient centrifugation, and the insulin secretion after treatment with different glucose concentrations was tested. Lentivirus ATP5b was successfully constructed with the vector of GV208 and transfected into the pancreas islets for the over-expression of ATPsyn-β. The insulin secretion and intracellular ATP content were determined after transfection of the PCOS-T2DM pancreas islets with Lenti-ATP5b. The results showed that the expression of ATPsyn-β protein and mRNA was significantly decreased in the pancreas of PCOS-T2DM rats. The ATP content in the pancreas islets was greatly increased and the insulin secretion was improved after the up-regulation of ATPsyn-β in the pancreas islets transfected with lenti-ATP5b. These results indicated that for PCOS, the ATPsyn-β might be one of the key factors for the attack of T2DM.
Treiber, Matthias; Einwächter, Henrik; Phillip, Veit; Wagenpfeil, Stefan; Schmid, Roland M; Lersch, Christian
2016-01-01
According to the widely accepted "Cambridge Classification", one of the morphological criteria for chronic pancreatitis (CP) is enlargement of the pancreas. Increased size seems to be an obvious feature of an inflammatory disease. However, it has never been validated so far, if CP is indeed accompanied by significant enlargement of the pancreas. In this retrospective study, reference values for the size of the pancreas (head, body and tail measured in the transverse plane by transabdominal ultrasound) were established from 921 patients without pancreatic disease. Measurements were performed by a single investigator. Subsequently, the size of the pancreas from 72 patients with CP was compared to age- and sex-matched controls. Calculating the 5th and 95th percentile, reference values of the pancreatic size were as follows: head 1.5-3.1 cm (mean: 2.2); body 0.6-1.6 cm (mean: 1.1); tail 1.4-3.0 cm (mean: 2.1). The size of the pancreas correlated significantly with body height, weight and body mass index. Patients with CP had only a slightly but statistically significantly larger pancreas than controls. Mean values from the CP group were still between the 5th and 95th percentile of matched controls. Although the pancreas from patients with CP was statistically significantly larger compared to controls, the difference was only marginally. According to these data, it is at least questionable if pancreatic size is a helpful parameter for sonographic evaluation to discriminate chronic pancreatitis from healthy pancreas. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.
Caudal dysgenesis in islet-1 transgenic mice
Muller, Yunhua Li; Yueh, Yir Gloria; Yaworsky, Paul J.; Salbaum, J. Michael; Kappen, Claudia
2014-01-01
Maternal diabetes during pregnancy is responsible for the occurrence of diabetic embryopathy, a spectrum of birth defects that includes heart abnormalities, neural tube defects, and caudal dysgenesis syndromes. Here, we report that mice transgenic for the homeodomain transcription factor Isl-1 develop profound caudal growth defects that resemble human sacral/caudal agenesis. Isl-1 is normally expressed in the pancreas and is required for pancreas development and endocrine cell differentiation. Aberrant regulation of this pancreatic transcription factor causes increased mesodermal cell death, and the severity of defects is dependent on transgene dosage. Together with the finding that mutation of the pancreatic transcription factor HLXB9 causes sacral agenesis, our results implicate pancreatic transcription factors in the pathogenesis of birth defects associated with diabetes. PMID:12738808
Holmstrom, Sam R; Deering, Tye; Swift, Galvin H; Poelwijk, Frank J; Mangelsdorf, David J; Kliewer, Steven A; MacDonald, Raymond J
2011-08-15
We have determined the cistrome and transcriptome for the nuclear receptor liver receptor homolog-1 (LRH-1) in exocrine pancreas. Chromatin immunoprecipitation (ChIP)-seq and RNA-seq analyses reveal that LRH-1 directly induces expression of genes encoding digestive enzymes and secretory and mitochondrial proteins. LRH-1 cooperates with the pancreas transcription factor 1-L complex (PTF1-L) in regulating exocrine pancreas-specific gene expression. Elimination of LRH-1 in adult mice reduced the concentration of several lipases and proteases in pancreatic fluid and impaired pancreatic fluid secretion in response to cholecystokinin. Thus, LRH-1 is a key regulator of the exocrine pancreas-specific transcriptional network required for the production and secretion of pancreatic fluid.
LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.
Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David
2013-04-05
Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer. Copyright © 2013 Elsevier Inc. All rights reserved.
76 FR 76166 - Draft Guidance for Industry and Food and Drug Administration Staff; the Content of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-06
...The Food and Drug Administration (FDA) is announcing the availability of the draft guidance document entitled ``Draft Guidance for Industry and FDA Staff: The Content of Investigational Device Exemption (IDE) and Premarket Approval (PMA) Applications for Artificial Pancreas Device Systems.'' This draft guidance document provides industry and the Agency staff with guidelines for developing premarket submissions for artificial pancreas device systems, in particular, the Control-to-Range (CTR) and Control-to-Target (CTT) device systems. This draft guidance is not final nor is it in effect at this time.
Intraductal papillary-mucinous neoplasia of the pancreas: Histopathology and molecular biology.
Verbeke, Caroline S
2010-10-27
Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a clinically and morphologically distinctive precursor lesion of pancreatic cancer, characterized by gradual progression through a sequence of neoplastic changes. Based on the nature of the constituting neoplastic epithelium, degree of dysplasia and location within the pancreatic duct system, IPMNs are divided in several types which differ in their biological properties and clinical outcome. Molecular analysis and recent animal studies suggest that IPMNs develop in the context of a field-defect and reveal their possible relationship with other neoplastic precursor lesions of pancreatic cancer.
Fu, Min; Wu, Wenming; Hong, Xiafei; Liu, Qiuhua; Jiang, Jialin; Ou, Yaobin; Zhao, Yupei; Gong, Xinqi
2018-04-24
Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge. In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline. Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data. The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.
Intrapancreatic Splenule in a Pancreas Allograft: Case Report.
Yadav, K; Serrano, O K; Kandaswamy, R
2016-11-01
A 16-year-old white man was involved in a motor vehicle collision and suffered head, chest, and abdominal trauma. Despite initial resuscitative efforts, he progressed to brain death and was designated to be an organ donor by his family. He had no earlier medical or surgical history and no high-risk behaviors. Blood work revealed normal creatinine, liver function tests, lipase, and amylase. Viral serologies were negative except for cytomegalovirus IgG and Epstein-Barr virus nucleic acid. Imaging revealed a right kidney contusion, a manubrial fracture, and fractures of right first rib and bilateral scapulae. No other abdominal trauma was identified, specifically to the pancreas, duodenum, or spleen. Our transplant center accepted the pancreas from this donor. During back-table inspection of the pancreas, a 1.5 × 1.5 cm dark purple rubbery mass was identified within the parenchyma of the pancreas in the tail. An incisional biopsy of the lesion was sent for frozen section, which yielded a mixed inflammatory infiltrate consisting of neutrophils and lymphocytes and an overlying fibrous capsule. The diagnosis of lymphoma or another neoplasm could not be definitely ruled out. Owing to uncertainty in diagnosis, the entire lesion was excised along with the distal pancreas with the use of a linear stapler. The staple line was oversewn with running 4-0 polypropylene suture, and the pancreas was transplanted. After surgery, the pancreas allograft functioned well with a small pancreatic leak, which had resolved by the first postoperative outpatient visit. Published by Elsevier Inc.
Heterotopic Pancreas: Histopathologic Features, Imaging Findings, and Complications.
Rezvani, Maryam; Menias, Christine; Sandrasegaran, Kumaresan; Olpin, Jeffrey D; Elsayes, Khaled M; Shaaban, Akram M
2017-01-01
Heterotopic pancreas is a congenital anomaly in which pancreatic tissue is anatomically separate from the main gland. The most common locations of this displacement include the upper gastrointestinal tract-specifically, the stomach, duodenum, and proximal jejunum. Less common sites are the esophagus, ileum, Meckel diverticulum, biliary tree, mesentery, and spleen. Uncomplicated heterotopic pancreas is typically asymptomatic, with the lesion being discovered incidentally during an unrelated surgery, during an imaging examination, or at autopsy. The most common computed tomographic appearance of heterotopic pancreas is that of a small oval intramural mass with microlobulated margins and an endoluminal growth pattern. The attenuation and enhancement characteristics of these lesions parallel their histologic composition. Acinus-dominant lesions demonstrate avid homogeneous enhancement after intravenous contrast material administration, whereas duct-dominant lesions are hypovascular and heterogeneous. At magnetic resonance imaging, the heterotopic pancreas is isointense to the orthotopic pancreas, with characteristic T1 hyperintensity and early avid enhancement after intravenous gadolinium-based contrast material administration. Heterotopic pancreatic tissue has a rudimentary ductal system in which an orifice is sometimes visible at imaging as a central umbilication of the lesion. Complications of heterotopic pancreas include pancreatitis, pseudocyst formation, malignant degeneration, gastrointestinal bleeding, bowel obstruction, and intussusception. Certain complications may be erroneously diagnosed as malignancy. Paraduodenal pancreatitis is thought to be due to cystic degeneration of heterotopic pancreatic tissue in the medial wall of the duodenum. Recognizing the characteristic imaging features of heterotopic pancreas aids in differentiating it from cancer and thus in avoiding unnecessary surgery. © RSNA, 2017.
PIPAC Nab-pac for Stomach, Pancreas, Breast and Ovarian Cancer
2018-05-31
Peritoneal Carcinomatosis; Ovarian Cancer Stage IIIB; Ovarian Cancer Stage IIIC; Ovarian Cancer Stage IV; Breast Cancer Stage IIIB; Breast Cancer Stage IIIc; Breast Cancer Stage IV; Stomach Cancer Stage III; Stomach Cancer Stage IV With Metastases; Pancreas Cancer, Stage III; Pancreas Cancer, Stage IV
Liang, Tao; Dolai, Subhankar; Xie, Li; Winter, Erin; Orabi, Abrahim I; Karimian, Negar; Cosen-Binker, Laura I; Huang, Ya-Chi; Thorn, Peter; Cattral, Mark S; Gaisano, Herbert Y
2017-04-07
A genuine understanding of human exocrine pancreas biology and pathobiology has been hampered by a lack of suitable preparations and reliance on rodent models employing dispersed acini preparations. We have developed an organotypic slice preparation of the normal portions of human pancreas obtained from cancer resections. The preparation was assessed for physiologic and pathologic responses to the cholinergic agonist carbachol (Cch) and cholecystokinin (CCK-8), including 1) amylase secretion, 2) exocytosis, 3) intracellular Ca 2+ responses, 4) cytoplasmic autophagic vacuole formation, and 5) protease activation. Cch and CCK-8 both dose-dependently stimulated secretory responses from human pancreas slices similar to those previously observed in dispersed rodent acini. Confocal microscopy imaging showed that these responses were accounted for by efficient apical exocytosis at physiologic doses of both agonists and by apical blockade and redirection of exocytosis to the basolateral plasma membrane at supramaximal doses. The secretory responses and exocytotic events evoked by CCK-8 were mediated by CCK-A and not CCK-B receptors. Physiologic agonist doses evoked oscillatory Ca 2+ increases across the acini. Supraphysiologic doses induced formation of cytoplasmic autophagic vacuoles and activation of proteases (trypsin, chymotrypsin). Maximal atropine pretreatment that completely blocked all the Cch-evoked responses did not affect any of the CCK-8-evoked responses, indicating that rather than acting on the nerves within the pancreas slice, CCK cellular actions directly affected human acinar cells. Human pancreas slices represent excellent preparations to examine pancreatic cell biology and pathobiology and could help screen for potential treatments for human pancreatitis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Candida in acute pancreatitis.
Chakrabarti, Arunaloke; Rao, Pooja; Tarai, Bansidhar; Shivaprakash, Mandya Rudramurthy; Wig, Jaidev
2007-01-01
A Candida infection of the pancreas, which previously was considered extremely unusual, has been increasingly reported in recent years. The present study was conducted with the aim of performing a cohort analysis of our patients with acute pancreatitis to find out the incidence, sites, and species of Candida involvement; and to evaluate the risk factors, severity, and course of illness of such patients. A total of 335 patients with acute pancreatitis were investigated for a possible Candida infection of the pancreas from January 2000 to May 2003. The clinical records of all those patients who were positive for Candida spp. isolation from pancreatic tissue were analyzed. The clinical records of 32 more cases, randomly selected from the patients who were investigated for candidal pancreatitis but were negative for Candida spp., were also analyzed in order to compare their findings with those patients with a true Candida infection of the pancreas. A true or possible Candida infection was observed in 41 (12.2%) of those 335 patients and Candida tropicalis was the most common isolate (43.9%). Candida spp. were isolated from pancreatic necrotic tissue in 22 (6.6%) patients (true infection). A possible Candida infection (positive drain fluid effluents at least twice, without any Candida isolation from pre/per operative samples from pancreas) was seen in 19 (5.7%) patients. Candida was also isolated exclusively from the blood in another 19 patients with a clinical diagnosis of acute pancreatitis. A risk factor analysis showed that patients with severe injury to the pancreas, on prophylactic fluconazole, and after surgical intervention were significantly more prone to develop a Candida infection. Patients with a Candida superinfection also had a significantly increased hospital stay and higher mortality. This study thus emphasizes the important role of Candida infection in patients with acute pancreatitis and demonstrates the need for early attention.
Simultaneous Scalp, Skull, Kidney, and Pancreas Transplant from a Single Donor.
Selber, Jesse C; Chang, Edward I; Clemens, Mark W; Gaber, Lilian; Hanasono, Matthew M; Klebuc, Michael; Skoracki, Roman J; Trask, Todd; Yu, Peirong; Gaber, A Osama
2016-06-01
Vascularized composite allotransplantation is an emerging field, but the complications of lifelong immunosuppression limit indications. Vascularized composite allotransplantation in solid organ recipients represents a unique opportunity because immunosuppression has already been accepted. This report of a simultaneous scalp, skull, kidney, and pancreas transplant represents both the first skull-scalp transplant and combination of a vascularized composite allotransplantation with double organ transplantation. A previous recipient of a kidney-pancreas transplant presented with osteoradionecrosis of the calvaria and a large area of unstable scalp following successful, curative treatment of a scalp tumor. His kidney and pancreas functions were also critically poor. A multidisciplinary, multi-institutional plan was developed to perform a simultaneous scalp, skull, and repeated kidney and pancreas transplantation, all from a single donor. Eighteen months after the patient was listed with the United Network for Organ Sharing, a donor was identified and the multiorgan vascularized composite allotransplantation was performed. Twenty physicians and 15 hours were required to perform donor and recipient procedures. The patient recovered well and was discharged on postoperative day 15. He has had one episode of scalp rejection confirmed by biopsy and treated successfully. His creatinine value is currently 0.8 mg/dl, from 5.0 mg/dl, and his blood glucose levels are normal without supplemental insulin. Aesthetic outcome is very satisfactory. The patient is now 1 year post-transplantation and doing well. Vascularized composite allotransplantation in solid organ recipients is an expansion of current indications to already immunosuppressed patients. Rejection of the vascularized composite allotransplant without solid organ rejection can occur and is treatable. Methodical planning, an interdisciplinary approach, and careful management of all organs are critical to success. Therapeutic, V.
Role of the Transcription Factor Sox4 in Insulin Secretion and Impaired Glucose Tolerance
Goldsworthy, Michelle; Hugill, Alison; Freeman, Helen; Horner, Emma; Shimomura, Kenju; Bogani, Debora; Pieles, Guido; Mijat, Vesna; Arkell, Ruth; Bhattacharya, Shoumo; Ashcroft, Frances M.; Cox, Roger D.
2008-01-01
OBJECTIVES— To identify, map, clone, and functionally validate a novel mouse model for impaired glucose tolerance and insulin secretion. RESEARCH DESIGN AND METHODS— Haploinsufficiency of the insulin receptor and associated mild insulin resistance has been used to sensitize an N-ethyl-N-nitrosourea (ENU) screen to identify novel mutations resulting in impaired glucose tolerance and diabetes. The new impaired glucose tolerance 4 (IGT4) model was selected using an intraperitoneal glucose tolerance test and inheritance of the phenotype confirmed by generation of backcross progeny. Segregation of the phenotype was correlated with genotype information to map the location of the gene and candidates sequenced for mutations. The function of the SRY-related high mobility group (HMG)-box 4 (Sox4) gene in insulin secretion was tested using another ENU allele and by small interfering RNA silencing in insulinoma cells. RESULTS— We describe two allelic autosomal dominant mutations in the highly conserved HMG box of the transcription factor Sox4. Previously associated with pancreas development, Sox4 mutations in the adult mouse result in an insulin secretory defect, which exhibits impaired glucose tolerance in association with insulin receptor+/−–induced insulin resistance. Elimination of the Sox4 transcript in INS1 and Min6 cells resulted in the abolition of glucose-stimulated insulin release similar to that observed for silencing of the key metabolic enzyme glucokinase. Intracellular calcium measurements in treated cells indicate that this defect lies downstream of the ATP-sensitive K+ channel (KATP channel) and calcium influx. CONCLUSIONS— IGT4 represents a novel digenic model of insulin resistance coupled with an insulin secretory defect. The Sox4 gene has a role in insulin secretion in the adult β-cell downstream of the KATP channel. PMID:18477811
Kabanov, A S; Shishkina, L N; Mazurkov, O Iu; Skarnovich, M O; Bormotov, N I; Serova, O A; Sergeev, Al A; Sergeev, Ar A; Selivanov, B A; Tikhonov, A Iu; Agafonov, A P; Sergeev, A N
2015-01-01
Study pharmacodynamic parameters of anti-viral effectiveness of a chemical compound NIOC-14 in experiments in mice infected with ectromelia virus (EV). EV (K-1 strain) was obtained from the State Collection of Viral Infections and Rickettsioses Causative Agents of the State Scientific Centre of Virology and Biotechnology "Vector". Outbred ICR mice were intranasally infected with EV at a dose of 10 LD50 per animal (10 x 50% lethal doses/animal) and per orally received NIOC-14 or ST-246 as a positive control. Chemical compound NIOC-14 (7-[N'-(4-trifluoromethylbenzoyl)-hidrazincarbonyl]-tricyclo[3.2.2.0(2,4)]non-8-en-6-carbonic acid) was synthesized in Novosibirsk Institute of Organic Chemistry (NIOC). Anti-pox preparation ST-246, developed by SIGA Technologies Inc. (USA), was synthesized in NIOC using the technique described by the authors. 50% effective doses against EV in vivo were shown not to differ significantly between the preparations NIOC-14 (3.59 μg/g mouse mass) and ST-246 (5.08 μg/g mouse mass). During determination of therapeutic window, administration of NIOC-14 to mice 1 day or 1 hour before EV infection, as well as 1, 2 and 4 days after EV infection and then for 9 days was found to ensure 100% animal survival. Administration of NIOC-14 as well as ST-246 resulted in the decrease relative to control of EV titers in lungs, nasal cavity, brains, liver, spleen, kidneys and pancreas. Anti-viral effectiveness of NIOC-14 against EV in vivo was thus comparable by all the studied pharmacodynamic parameters with anti-viral activity of anti-pox-virus preparation ST-246.
Kumar, S; Das, S; Rachagani, S; Kaur, S; Joshi, S; Johansson, SL; Ponnusamy, MP; Jain, M; Batra, SK
2015-01-01
Pancreatic cancer (PC) is characterized by aberrant overexpression of mucins that contribute to its pathogenesis. Although the inflammatory cytokines contribute to mucin overexpression, the mucin profile of PC is markedly distinct from that of normal or inflamed pancreas. We postulated that de novo expression of various mucins in PC involves chromatin modifications. Analysis of chromatin modifying enzymes by PCR array identified differential expression of NCOA3 in MUC4-expressing PC cell lines. Immunohistochemistry analysis in tumor tissues from patients and spontaneous mouse models, and microarray analysis following the knockdown of NCOA3 were performed to elucidate its role in mucin regulation and overall impact on PC. Silencing of NCOA3 in PC cell lines resulted in significant downregulation of two most differentially expressed mucins in PC, MUC4 and MUC1 (P<0.01). Immunohistochemistry analysis in PC tissues and metastatic lesions established an association between NCOA3 and mucin (MUC1 and MUC4) expression. Spontaneous mouse model of PC (K-rasG12D; Pdx-1cre) showed early expression of Ncoa3 during preneoplastic lesions. Mechanistically, NCOA3 knockdown abrogated retinoic acid-mediated MUC4 upregulation by restricting MUC4 promoter accessibility as demonstrated by micrococcus nuclease digestion (P<0.05) and chromatin immuno-precipitation analysis. NCOA3 also created pro-inflammatory conditions by upregulating chemokines like CXCL1, 2, 5 and CCL20 (P<0.001). AKT, ubiquitin C, ERK1/2 and NF-κB occupied dominant nodes in the networks significantly modulated after NCOA3 silencing. In addition, NCOA3 stabilized mucins post translationally through fucosylation by FUT8, as the knockdown of FUT8 resulted in the downregulation of MUC4 and MUC1 at protein levels. PMID:25531332
Pancreatic Beta Cells Synthesize Neuropeptide Y and Can Rapidly Release Peptide Co-Transmitters
Whim, Matthew D.
2011-01-01
Background In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells. Methodology/Principal Findings NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds. Conclusions These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time. PMID:21559341
Choi, Yong Hyeok; Yoon, Soon Man; Kim, Eun Bee; Oh, Youngmin; Kim, Keunmo; Lee, Jisun; Park, Seon Mee; Youn, Sei Jin
2017-04-25
Peptic ulcer bleeding is treated using endoscopic hemostasis using clips or bands. Pancreas divisum (PD), a congenital anomaly of the pancreas, usually has no clinical symptoms; however, pancreatitis may occur if there are disturbances in the drainage of pancreatic secretions. We report an unusual case of PD accompanied by acute pancreatitis, following endoscopic band ligation for duodenal ulcer bleeding. A 48-year-old woman was admitted to our hospital due to melena. An upper endoscopy revealed a small ulcer with oozing adjacent minor papilla. An endoscopic band ligation was performed on this lesion. Acute pancreatitis developed suddenly 6 hours after the band ligation and improved dramatically after removal of the band. Magnetic resonance cholangiopancreatography was performed, revealing complete PD. Endoscopic band ligation is known as the effective method for peptic ulcer bleeding; however, it should be used carefully in duodenal ulcer bleeding near the minor duodenal papilla due to the possibility of PD.
Pancreatic stellate cell: physiologic role, role in fibrosis and cancer.
Apte, Minote; Pirola, Romano C; Wilson, Jeremy S
2015-09-01
Ever since the first descriptions of methods to isolate pancreatic stellate cells (PSCs) from rodent and human pancreas 17 years ago, rapid advances have been made in our understanding of the biology of these cells and their functions in health and disease. This review updates recent literature in the field, which indicates an increasingly complex role for the cells in normal pancreas, pancreatitis and pancreatic cancer. Work reported over the past 12 months includes improved methods of PSC immortalization, a role for PSCs in islet fibrosis, novel factors causing PSC activation as well as those inducing quiescence, and translational research aimed at inhibiting the facilitatory effects of PSCs on disease progression in chronic pancreatitis as well as pancreatic cancer. Improved understanding of the role of PSCs in pancreatic pathophysiology has prompted a focus on translational studies aimed at developing novel approaches to modulate PSC function in a bid to improve clinical outcomes of two major fibrotic diseases of the pancreas: chronic pancreatitis and pancreatic cancer.
A Study of ASN007 in Patients With Advanced Solid Tumors
2018-01-29
Cancer; Malignancy; Neoplasia; Neoplasm; Neoplasm Metastasis; Colon Cancer; Colonic Neoplasms; Colon Cancer Liver Metastasis; Metastatic Cancer; Metastatic Melanoma; Metastatic Colon Cancer; Metastatic Lung Cancer; Non Small Cell Lung Cancer Metastatic; Pancreatic Cancer; Pancreas Cancer; Pancreas Adenocarcinoma; Pancreas Neoplasm; Metastatic Nonsmall Cell Lung Cancer; Metastatic Pancreatic Cancer
[Effect of pineal gland peptides on morphofunctional structure of the pancreas in ageing].
Ryzhak, A P; Kostiuchek, I N; Kvetnoĭ, I M
2007-01-01
A study of pineal gland peptides effect on morphology and functions of the pancreas in the model of premature ageing in rats was performed with respect to the need in methods for premature ageing prevention. Structural, morphological and functional alterations in pancreas tissue, suggesting premature ageing of the gland, were identified by methods of immunohistochemistry and electronic microscopy. There was registered a geroprotective effect of the pineal gland peptides on pancreas tissue, manifested in the resistance of the latter to the impact of stress factors entailing premature ageing.
A brief outline of the history of the pancreatic anatomy.
Tando, Yusuke; Yanagimachi, Miyuki; Matsuhashi, Yuki; Nakamura, Teruo; Kamisawa, Terumi
2010-01-01
In the middle of the 18th century, Kouan Kuriyama, a Japanese physician of the Choshu Domain, depicted the anatomy of the human pancreas in a report to his master, Toyo Yamawaki. This report is the first anatomical description of the pancreas in Japan. In the Mediterranean area, the pancreas was apparently first described about 2,000 years before his observation. Although there are quite a few reviews on the history of this complex organ, our brief essay offers a historical outline of the pancreas. (c) 2010 S. Karger AG, Basel.
Diabetic Foot Complications Despite Successful Pancreas Transplantation.
Seo, Dong-Kyo; Lee, Ho Seong; Park, Jungu; Ryu, Chang Hyun; Han, Duck Jong; Seo, Sang Gyo
2017-06-01
It is known that successful pancreas transplantation enables patients with diabetes to maintain a normal glucose level without insulin and reduces diabetes-related complications. However, we have little information about the foot-specific morbidity in patients who have undergone successful pancreas transplantation. The purpose of this study was to investigate the prevalence and predisposing factors for foot complications after successful pancreas transplantation. This retrospective study included 218 patients (91 males, 127 females) who had undergone pancreas transplantation for diabetes. The mean age was 40.7 (range, 15-76) years. Diabetes type, transplantation type, body mass index, and diabetes duration before transplantation were confirmed. After pancreas transplantation, the occurrence and duration of foot and ankle complications were assessed. Twenty-two patients (10.1%) had diabetic foot complications. Fifteen patients (6.9%) had diabetic foot ulcer and 7 patients (3.2%) had Charcot arthropathy. Three patients had both diabetic foot ulcer and Charcot arthropathy. Three insufficiency fractures (1.4%) were included. Mean time of complications after transplantation was 18.5 (range, 2-77) months. Creatinine level 1 year after surgery was higher in the complication group rather than the noncomplication group ( P = .02). Complications of the foot and ankle still occurred following pancreas transplantation in patients with diabetes. Level III, comparative study.
A single-centre experience of Roux-en-Y enteric drainage for pancreas transplantation.
Amin, Irum; Butler, Andrew J; Defries, Gail; Russell, Neil K; Harper, Simon J F; Jah, Asif; Saeb-Parsy, Kourosh; Pettigrew, Gavin J; Watson, Christopher J E
2017-04-01
Exocrine drainage following pancreas transplantation can be achieved by drainage into the bladder or bowel, the latter typically by direct duodeno-jejunostomy; the use of Roux-en-Y enteric drainage is uncommon. We report a retrospective analysis of a single-centre experience of Roux-en-Y enteric drainage following pancreas transplantation. Over a 14-year period (2001-2015), 204 consecutive adult pancreas transplants were performed (96.6% simultaneous pancreas and kidney transplants), of which 26.0% were from donors after circulatory death (DCD). During a median follow-up of 67 months (range 13-183 months), 14 (6.9%) recipients experienced complications related to their enteric drainage. Complications during follow-up included early enteric anastomotic haemorrhage (five patients), non-anastomotic enteric bleeding (one patient), small bowel obstruction (four patients) and graft duodenal perforation (two within 6 weeks, five beyond 12 months). No recipient lost their graft as a direct result of complications related to enteric drainage. Patient and pancreas graft survival at 1 year was 99.0% and 94.0% and at 5 years 91.3% and 84.9%, respectively. We conclude that Roux-en-Y enteric drainage following pancreas transplantation is a safe and effective procedure and facilitates graft salvage in the event of graft duodenal perforation. © 2017 Steunstichting ESOT.
Rae, Mick; Grace, Cathal; Hogg, Kirsten; Wilson, Lisa Marie; McHaffie, Sophie L; Ramaswamy, Seshadri; MacCallum, Janis; Connolly, Fiona; McNeilly, Alan S; Duncan, Colin
2013-01-01
Using an ovine model of polycystic ovary syndrome (PCOS), (pregnant ewes injected with testosterone propionate (TP) (100 mg twice weekly) from day (d)62 to d102 of d147 gestation (maternal injection - MI-TP)), we previously reported female offspring with normal glucose tolerance but hyperinsulinemia. We therefore examined insulin signalling and pancreatic morphology in these offspring using quantitative (Q) RT-PCR and western blotting. In addition the fetal pancreatic responses to MI-TP, and androgenic and estrogenic contributions to such responses (direct fetal injection (FI) of TP (20 mg) or diethylstilbestrol (DES) (20 mg) at d62 and d82 gestation) were assessed at d90 gestation. Fetal plasma was assayed for insulin, testosterone and estradiol, pancreatic tissue was cultured, and expression of key β-cell developmental genes was assessed by QRT-PCR. In female d62MI-TP offspring insulin signalling was unaltered but there was a pancreatic phenotype with increased numbers of β-cells (P<0.05). The fetal pancreas expressed androgen receptors in islets and genes involved in β-cell development and function (PDX1, IGF1R, INSR and INS) were up-regulated in female fetuses after d62MI-TP treatment (P<0.05-0.01). In addition the d62MI-TP pancreas showed increased insulin secretion under euglycaemic conditions (P<0.05) in vitro. The same effects were not seen in the male fetal pancreas or when MI-TP was started at d30, before the male programming window. As d62MI-TP increased both fetal plasma testosterone (P<0.05) and estradiol concentrations (P<0.05) we assessed the relative contribution of androgens and estrogens. FI-TP (commencing d62) (not FI-DES treatment) caused elevated basal insulin secretion in vitro and the genes altered by d62MI-TP treatment were similarly altered by FI-TP but not FI-DES. In conclusion, androgen over-exposure alters fetal pancreatic development and β-cell numbers in offspring. These data suggest that that there may be a primary pancreatic phenotype in models of PCOS, and that there may be a distinct male and female pancreas.
Ramaswamy, S; Grace, C; Mattei, A A; Siemienowicz, K; Brownlee, W; MacCallum, J; McNeilly, A S; Duncan, W C; Rae, M T
2016-06-06
Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells.
Ramaswamy, S.; Grace, C.; Mattei, A. A.; Siemienowicz, K.; Brownlee, W.; MacCallum, J.; McNeilly, A. S.; Duncan, W. C.; Rae, M. T.
2016-01-01
Exogenous androgenic steroids applied to pregnant sheep programmes a PCOS-like phenotype in female offspring. Via ultrasound guidance we applied steroids directly to ovine fetuses at d62 and d82 of gestation, and examined fetal (day 90 gestation) and postnatal (11 months old) pancreatic structure and function. Of three classes of steroid agonists applied (androgen - Testosterone propionate (TP), estrogen - Diethystilbesterol (DES) and glucocorticoid - Dexamethasone (DEX)), only androgens (TP) caused altered pancreatic development. Beta cell numbers were significantly elevated in prenatally androgenised female fetuses (P = 0.03) (to approximately the higher numbers found in male fetuses), whereas alpha cell counts were unaffected, precipitating decreased alpha:beta cell ratios in the developing fetal pancreas (P = 0.001), sustained into adolescence (P = 0.0004). In adolescence basal insulin secretion was significantly higher in female offspring from androgen-excess pregnancies (P = 0.045), and an exaggerated, hyperinsulinaemic response to glucose challenge (P = 0.0007) observed, whereas prenatal DES or DEX treatment had no effects upon insulin secretion. Postnatal insulin secretion correlated with beta cell numbers (P = 0.03). We conclude that the pancreas is a primary locus of androgenic stimulation during development, giving rise to postnatal offspring whose pancreas secreted excess insulin due to excess beta cells in the presence of a normal number of alpha cells. PMID:27265420
Elevated fecal peptidase D at onset of colitis in Galphai2-/- mice, a mouse model of IBD.
Bergemalm, Daniel; Kruse, Robert; Sapnara, Maria; Halfvarson, Jonas; Hörnquist, Elisabeth Hultgren
2017-01-01
The identification of novel fecal biomarkers in inflammatory bowel disease (IBD) is hampered by the complexity of the human fecal proteome. On the other hand, in experimental mouse models there is probably less variation. We investigated the fecal protein content in mice to identify possible biomarkers and pathogenic mechanisms. Fecal samples were collected at onset of inflammation in Galphai2-/- mice, a well-described spontaneous model of chronic colitis, and from healthy littermates. The fecal proteome was analyzed by two-dimensional electrophoresis and quantitative mass spectrometry and results were then validated in a new cohort of mice. As a potential top marker of disease, peptidase D was found at a higher ratio in Galphai2-/- mouse feces relative to controls (fold change 27; p = 0.019). Other proteins found to be enriched in Gαi2-/- mice were mainly pancreatic proteases, and proteins from plasma and blood cells. A tendency of increased calprotectin, subunit S100-A8, was also observed (fold change 21; p = 0.058). Proteases are potential activators of inflammation in the gastrointestinal tract through their interaction with the proteinase-activated receptor 2 (PAR2). Accordingly, the level of PAR2 was found to be elevated in both the colon and the pancreas of Galphai2-/- mice at different stages of disease. These findings identify peptidase D, an ubiquitously expressed intracellular peptidase, as a potential novel marker of colitis. The elevated levels of fecal proteases may be involved in the pathogenesis of colitis and contribute to the clinical phenotype, possibly by activation of intestinal PAR2.
Ultrasound imaging of the mouse pancreatic duct using lipid microbubbles
NASA Astrophysics Data System (ADS)
Banerjee, B.; McKeown, K. R.; Skovan, B.; Ogram, E.; Ingram, P.; Ignatenko, N.; Paine-Murrieta, G.; Witte, R.; Matsunaga, T. O.
2012-03-01
Research requiring the murine pancreatic duct to be imaged is often challenging due to the difficulty in selectively cannulating the pancreatic duct. We have successfully catheterized the pancreatic duct through the common bile duct in severe combined immune deficient (SCID) mice and imaged the pancreatic duct with gas filled lipid microbubbles that increase ultrasound imaging sensitivity due to exquisite scattering at the gas/liquid interface. A SCID mouse was euthanized by CO2, a midline abdominal incision made, the common bile duct cut at its midpoint, a 2 cm, 32 gauge tip catheter was inserted about 1 mm into the duct and tied with suture. The duodenum and pancreas were excised, removed in toto, embedded in agar and an infusion pump was used to instill normal saline or lipid-coated microbubbles (10 million / ml) into the duct. B-mode images before and after infusion of the duct with microbubbles imaged the entire pancreatic duct (~ 1 cm) with high contrast. The microbubbles were cavitated by high mechanical index (HMI) ultrasound for imaging to be repeated. Our technique of catheterization and using lipid microbubbles as a contrast agent may provide an effective, affordable technique of imaging the murine pancreatic duct; cavitation with HMI ultrasound would enable repeated imaging to be performed and clustering of targeted microbubbles to receptors on ductal cells would allow pathology to be localized accurately. This research was supported by the Experimental Mouse Shared Service of the AZ Cancer Center (Grant Number P30CA023074, NIH/NCI and the GI SPORE (NIH/NCI P50 CA95060).
Meredith, David M.; Borromeo, Mark D.; Deering, Tye G.; Casey, Bradford H.; Savage, Trisha K.; Mayer, Paul R.; Hoang, Chinh; Tung, Kuang-Chi; Kumar, Manonmani; Shen, Chengcheng; Swift, Galvin H.
2013-01-01
The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process. PMID:23754747
Effects of oral administration of titanium dioxide fine-sized particles on plasma glucose in mice.
Gu, Ning; Hu, Hailong; Guo, Qian; Jin, Sanli; Wang, Changlin; Oh, Yuri; Feng, Yujie; Wu, Qiong
2015-12-01
Titanium dioxide (TiO2) is an authorized additive used as a food colorant, is composed of nano-sized particles (NP) and fine-sized particles (FP). Previous study reported that oral administration of TiO2 NPs triggers an increase in plasma glucose of mice. However, no previous studies have focused on toxic effects of TiO2 FPs on plasma glucose homeostasis following oral administration. In the current study, mice were orally administered TiO2 FPs greater than 100 nm in size (64 mg/kg body weight per day), and effects on plasma glucose levels examined. Our results showed that titanium levels was not changed in mouse blood, livers and pancreases after mice were orally administered TiO2 FPs. Biochemical analyzes showed that plasma glucose and ROS levels were not affected by TiO2 FPs. Histopathological results showed that TiO2 FPs did not induce pathology changes in organs, especially plasma glucose homeostasis regulation organs, such as pancreas and liver. Western blotting showed that oral administration of TiO2 FPs did not induce insulin resistance (IR) in mouse liver. These results showed that, TiO2 FPs cannot be absorbed via oral administration and affect plasma glucose levels in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Muñoz-Bellvis, Luis; Esteban, María Del Carmen; Iglesias, Manuel; González, Luis; González-Muñoz, Juan Ignacio; Muñoz-González, Cristina; E Quiñones, José; Tabernero, Guadalupe; Iglesias, Rosa Ana; Sayagués, José María; Fraile, Pilar
2018-04-01
Simultaneous kidney-pancreas transplantation for patients with type 1 diabetes and end-stage chronic renal disease is widely performed. However, the rate of surgical morbidity from pancreatic complications remains high. The aim of this study was to describe the development and results of a new program, from the point of view of the pancreatic surgeon. We analyzed 53 simultaneous kidney-pancreas transplantations performed over a period of seven years (2009-2016), with a median follow up of 39 months (range: 1-86 months). Out of the total of this series, two patients died: one patient because of cardiac arrest immediately after surgery; and another patient due to traffic accident, complicated by pneumonia. Among the 51 living patients, two grafts were lost: one due to chronic rejection four years after transplantation; and the other due to arterial thrombosis 20 days after transplantation (the only case requiring transplantectomy). In ten patients, one or more re-operations were necessary due to the following: graft pancreatitis (n=4), small intestinal obstruction (n=4), arterial thrombosis (n=1), fistula (n=1) and hemoperitoneum (n=1). Overall patient and graft survival rates after 1, 3 and 5 years were 98, 95 and 95% and 96, 93 and 89%, respectively. This study has shown that the results of a new pancreas transplant program, which relies on the previous experience of other groups, do not demonstrate a learning curve. Adequate surgeon education and training, as well as the proper use of standardized techniques, should ensure optimal results. Copyright © 2018 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
A bio-inspired glucose controller based on pancreatic β-cell physiology.
Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer
2012-05-01
Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. © 2012 Diabetes Technology Society.
Wang, Yayun; Chen, Manhua
2017-01-01
Background Acute pancreatitis (AP) is a sudden inflammation of the pancreas. It results in multiple, severe complications, and 15–20% of patients develop severe acute pancreatitis (SAP) with mortality as high as 30%. Consequently, it is imperative to develop an effective therapy for SAP. Material/Methods We used 30 adult male Sprague Dawley (SD) rats. Rats were randomly divided into 3 groups – sham, SAP, and fentanyl+SAP – with 10 rats in each group. An automatic biochemical analyzer was used to analyze the concentration of creatine kinase isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Terminal-deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay was applied to assess the cell apoptosis rate. Pathological changes in pancreas/heart were detected with hematoxylin and eosin (HE) staining. Western immunoblot assay was used to analyze protein levels of interleukin (IL)-1β, IL-6, and IκB. Results Fentanyl pre-treatment inhibits SAP-induced elevation of CK-MB/LDH concentrations in serum. Compared with the sham group, SAP generates a higher brown/yellow staining rate, which is abated by fentanyl. In the pancreas, SAP generated more serious interstitial edema/hemorrhage and fat necrosis than in the sham group, which are attenuated by fentanyl. Likewise, compared to the sham group, SAP generates swelled/disordered myocardial fibers and congested blood vessels in myocardium, which are ameliorated by fentanyl. In the sham group, there was little IL-1β/IL-6, and fentanyl significantly inhibited SAP-induced up-regulation of IL-1β/IL-6 levels. Compared with the sham group, SAP significantly reduced IκB level, which was rescued by fentanyl. Conclusions Fentanyl effectively alleviates SAP-induced pancreas and heart injuries through regulating the nuclear factor-κB (NF-κB) signaling pathway. PMID:28680032
Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling.
Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony
2017-03-01
During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches.
Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling
Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony
2017-01-01
During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches. PMID:28248965
Pancreatic stellate cells: a starring role in normal and diseased pancreas.
Apte, Minoti V; Pirola, Romano C; Wilson, Jeremy S
2012-01-01
While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC), had remained undiscovered until as recently as 20 years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas-chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies have also implied other functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans. During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumor growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.
A Bio-Inspired Glucose Controller Based on Pancreatic β-Cell Physiology
Herrero, Pau; Georgiou, Pantelis; Oliver, Nick; Johnston, Desmond G; Toumazou, Christofer
2012-01-01
Introduction Control algorithms for closed-loop insulin delivery in type 1 diabetes have been mainly based on control engineering or artificial intelligence techniques. These, however, are not based on the physiology of the pancreas but seek to implement engineering solutions to biology. Developments in mathematical models of the β-cell physiology of the pancreas have described the glucose-induced insulin release from pancreatic β cells at a molecular level. This has facilitated development of a new class of bio-inspired glucose control algorithms that replicate the functionality of the biological pancreas. However, technologies for sensing glucose levels and delivering insulin use the subcutaneous route, which is nonphysiological and introduces some challenges. In this article, a novel glucose controller is presented as part of a bio-inspired artificial pancreas. Methods A mathematical model of β-cell physiology was used as the core of the proposed controller. In order to deal with delays and lack of accuracy introduced by the subcutaneous route, insulin feedback and a gain scheduling strategy were employed. A United States Food and Drug Administration-accepted type 1 diabetes mellitus virtual population was used to validate the presented controller. Results Premeal and postmeal mean ± standard deviation blood glucose levels for the adult and adolescent populations were well within the target range set for the controller [(70, 180) mg/dl], with a percent time in range of 92.8 ± 7.3% for the adults and 83.5 ± 14% for the adolescents. Conclusions This article shows for the first time very good glucose control in a virtual population with type 1 diabetes mellitus using a controller based on a subcellular β-cell model. PMID:22768892
Henninger, B; Rauch, S; Zoller, H; Plaikner, M; Jaschke, W; Kremser, C
2017-04-01
To evaluate pancreatic iron in patients with human hemochromatosis protein associated hereditary hemochromatosis (HHC) using R2* relaxometry. 81 patients (58 male, 23 female; median age 49.5, range 10-81 years) with HHC were retrospectively studied. All underwent 1.5T magnetic resonance imaging (MRI) of the abdomen. A fat-saturated multi-gradient echo sequence with 12 echoes (TR=200ms; TE-initial 0.99ms; Delta-TE 1.41ms; 12 echoes; flip-angle: 20°) was used for the R2* quantification of the liver and the pancreas. Parameter maps were analyzed using regions of interest (3 in the liver and 2 in the pancreas) and R2* values were correlated. 59/81 patients had a liver R2*≥70 1/s of which 10/59 patients had a pancreas R2*≥50 1/s. No patient presented with a liver R2*<70 1/s and pancreas R2*≥50 1/s. All patients with pancreas R2* values≥50 1/s had liver R2* values≥70 1/s. ROC analysis resulted in a threshold of 209.4 1/s for liver R2* values to identify HFE positive patients with pancreas R2* values≥50 1/s with a median specificity of 78.87% and a median sensitivity of 90%. In patients with HHC R2* relaxometry of the pancreas should be performed when liver iron overload is present and can be omitted in cases with no sign of hepatic iron. Copyright © 2017 Elsevier B.V. All rights reserved.
A Fate Map of the Murine Pancreas Buds Reveals a Multipotent Ventral Foregut Organ Progenitor
Angelo, Jesse R.; Guerrero-Zayas, Mara-Isel; Tremblay, Kimberly D.
2012-01-01
The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification. PMID:22815796
Secchi, A; Caldara, R; La Rocca, E; Martinenghi, S; Bernardi, M; Bonfatti, D; Caspani, L; Castoldi, R; Ferrari, G; Gallioli, G
1994-01-01
Pancreas and kidney transplantation is performed in uremic IDDM patients to cure end-stage renal failure and diabetes. Seventy-two simultaneous kidney-pancreas transplantations were performed at our Institution between July 1985 and November 1994. All transplants were performed using heart-beating cadaver donors. The first 25 patients received 26 segmental pancreas according to Dubernard (KPS), whereas the last 46 patients received a whole, bladder-drained pancrea according to Sollinger (KPW). Mean pancreas cold and warm ischemia times were 294 +/- 14 and 44 +/- 2 minutes, respectively, in the KPS group and 660 +/- 37 and 40 +/- 8 minutes, respectively, in the KPW group. Twelve (48%) KPS patients and 19 (41%) KPW patients had postoperative pancreas surgical complications: vascular thrombosis led to graft failure in 5 KPS patients (20%) and 2 KPW patients (4%) (p = 0.01). Pancreatic fistula, hemorrhagic complications, and duodenum-bladder leakage were the surgical complications observed more frequently. Six KPS patients (24%) and 8 KPW patients (17%) underwent reintervention as a consequence of surgical complications. Fifteen KPS patients (60%) and 30 KPW patients (65%) experienced an acute kidney rejection episode, which was steroid-resistant in 14 KPW and 2 KPS patients. The actuarial survival rates for simultaneous kidney-pancreas recipients at one and 4 years were 92% and 84%, respectively, for KPS recipients, and 95% and 88%, respectively, for KPW patients. Kidney actuarial survival rates at one and 4 years were 96% and 76% respectively, for group KPS, and 93% and 89%, respectively, for KPW patients.(ABSTRACT TRUNCATED AT 250 WORDS)
Margreiter, Christian; Aigner, Felix; Resch, Thomas; Berenji, Anna-Katharina; Oberhuber, Rupert; Sucher, Robert; Profanter, Christoph; Veits, Lothar; Öllinger, Robert; Margreiter, Raimund; Pratschke, Johann; Mark, Walter
2012-01-27
Although percutaneous biopsies are considered to be the gold standard in diagnosing pancreas graft rejection, they are not performed routinely because of their association with severe complications. On the other hand, correct diagnosis of rejection is essential but may be difficult in cases of enteric drainage, particularly in patients with a pancreas transplant alone or a pancreas after kidney transplant. Pancreas recipients who underwent enteroscopy between May 2005 and September 2009 were included in this retrospective analysis. Biopsies were graded 0 to 4 for interstitial and vascular changes. During the study period a total of 65 simultaneous pancreas-kidney transplants, 13 pancreas after kidney transplants and 4 pancreas transplants alone were performed. Sixty-three patients underwent a single enteroscopy, 10 had two, and 6 had three or more. Indications were protocol graft monitoring (n=73), graft dysfunction (n=17), enteric hemorrhage (n=9), or other (n=3). The duodenal segment was accessed in 76 instances (75%) with abnormal findings in 23. A total of 69 biopsies were obtained and revealed normal mucosa in 49 cases (71%). Histology showed signs of acute rejection in 11 cases. The upper gastrointestinal tract was also assessed, and, in 13 cases, additional pathologies were identified including gastroduodenitis (n=10), gastric/duodenal ulcer (n=2), and hemorrhagic esophagitis (n=1). No procedure-related complication occurred. This series of enteroscopies demonstrates that the duodenal segment of a pancreatic graft is accessible using our implant technique, and thus permitting biopsies to be obtained and endoscopic interventions to be performed.
Pruszynska-Oszmalek, E; Kolodziejski, P A; Stadnicka, K; Sassek, M; Chalupka, D; Kuston, B; Nogowski, L; Mackowiak, P; Maiorano, G; Jankowski, J; Bednarczyk, M
2015-08-01
The purpose of the study was to examine the effect of 2 prebiotics and 2 synbiotics on the digestive potency of pancreas in 1-, 3-, 7-, 14-, 21-, and 34-day-old cockerels. Prebiotics (inulin and Bi²tos) and synbiotics (inulin + Lactococcus lactis subsp. lactis and Bi²tos + Lactococcus lactis subsp. cremoris) were injected in ovo into the air cell on the 12th d embryonic development. Their application increased the activity of amylase, lipase, and trypsin in the pancreas. The most pronounced changes were observed at the end of the investigated rearing period (d 34). The strongest stimulative effects on amylase were shown by both synbiotics, on lipase synbiotic Bi²tos + Lactococcus lactis subsp. cremoris, and on trypsin all the used prebiotics and synbiotics. Simultaneously, neither the absolute nor the relative mass of the pancreas in comparison to control group were changed. Also, the injected in ovo compounds did not cause a deterioration in the posthatching condition of the chicken liver, as determined by measurement of the activity of marker enzymes in the blood (alanine aminotransferase and aspartate aminotransferase). Treatment with the prebiotics and synbiotics did not change the feed conversion ratio but Bi²tos (galacto-oligosaccharide) and inulin (fructan) + Lactococcus lactis subsp. lactis significantly increased final BW. © 2015 Poultry Science Association Inc.
Dosimetric benefit of adaptive re-planning in pancreatic cancer stereotactic body radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yongbao; Center for Advanced Radiotherapy Technologies University of California San Diego, La Jolla, CA; Department of Radiation Oncology, University of California San Diego, La Jolla, CA
Stereotactic body radiotherapy (SBRT) shows promise in unresectable pancreatic cancer, though this treatment modality has high rates of normal tissue toxicity. This study explores the dosimetric utility of daily adaptive re-planning with pancreas SBRT. We used a previously developed supercomputing online re-planning environment (SCORE) to re-plan 10 patients with pancreas SBRT. Tumor and normal tissue contours were deformed from treatment planning computed tomographies (CTs) and transferred to daily cone-beam CT (CBCT) scans before re-optimizing each daily treatment plan. We compared the intended radiation dose, the actual radiation dose, and the optimized radiation dose for the pancreas tumor planning target volumemore » (PTV) and the duodenum. Treatment re-optimization improved coverage of the PTV and reduced dose to the duodenum. Within the PTV, the actual hot spot (volume receiving 110% of the prescription dose) decreased from 4.5% to 0.5% after daily adaptive re-planning. Within the duodenum, the volume receiving the prescription dose decreased from 0.9% to 0.3% after re-planning. It is noteworthy that variation in the amount of air within a patient's stomach substantially changed dose to the PTV. Adaptive re-planning with pancreas SBRT has the ability to improve dose to the tumor and decrease dose to the nearby duodenum, thereby reducing the risk of toxicity.« less
Synthetic matrix of polyether-polyurethane as a biological platform for pancreatic regeneration.
Pereira, Luciana Xavier; Viana, Celso Tarso Rodrigues; Orellano, Laura Alejandra Ariza; Almeida, Simone Aparecida; Vasconcelos, Anilton Cesar; Goes, Alfredo de Miranda; Birbrair, Alexander; Andrade, Silvia Passos; Campos, Paula Peixoto
2017-05-01
Several alternative cellular approaches using biomaterials to host insulin-producing cells derived from stem cells have been developed to overcome the limitations of type 1 diabetes treatment (exogenous insulin injection). However, none seem to fulfill all requirements needed to induce pancreatic cells successful colonization of the scaffolds. Here, we report a polymeric platform adherent to the native mice pancreas filled with human adipose stem cells (hASCs) that was able to induce growth of pancreatic parenchyma. Synthetic polyether-polyurethane discs were placed adjacent to pancreas of normoglycemic and streptozotocin-induced diabetic mice. At day 4 post implantation, 1×10 6 hASCs were injected intra-implant in groups of normoglycemic and diabetic mice. Immunohistochemistry analysis of the implants was performed to identify insulin positive cells in the newly formed tissue. In addition, metabolic, inflammatory and angiogenic parameters were carried out in those mice. This study provides evidence of the ability of a biohybrid device to induce the growth of differentiated pancreas parenchyma in both normoglycemic and streptozotocin-induced diabetic mice as detected by histological analysis. Glucose metabolism and body weight of hyperglycemic mice bearing hASCs implants improved. The synthetic porous scaffold bearing hASC cells placed adjacent to the native animal pancreas exhibits the potential to be exploited in future cell-based type 1 diabetes therapies. Copyright © 2017 Elsevier Inc. All rights reserved.
Shock Wave Lithotripsy: Effects on the Pancreas and Recurrent Stone Disease
NASA Astrophysics Data System (ADS)
Krambeck, Amy E.; Rohlinger, Audrey L.; Lohse, Christine M.; Patterson, David E.; Gettman, Matthew T.
2007-04-01
Long-term effects of shockwave lithotripsy (SWL) are unknown; however, we recently found an association between SWL and diabetes mellitus in a population based case control cohort. To further study the association between SWL and diabetes mellitus, we determined the immediate impact of SWL on the pancreas as well as the long-term natural history of stone disease following treatment. Chart review identified 630 patients treated with SWL at our institution in 1985. Questionnaires focusing on recurrent stone episodes after SWL were sent to 578 patients alive in 2004. To further assess impact of SWL on the pancreas, pancreatic enzyme measurements were performed on 24 symptomatic stone patients treated in 2006 with ureteroscopy (n=12) and SWL (n=12). Serum amylase and lipase were evaluated pre and post SWL. A⩾5 U/L increase in either lab value was considered significant. Among patients in the long-term SWL treatment group, the questionnaire response rate was 58.9% (288/489). Recurrent stone events were noted in 154 (53.5%) of the survey respondents. Characteristics associated with stone recurrences were: gender (p=0.004), age at SWL (p=0.022), BMI (p=0.007), SWL complications (p=0.009), and lower pole SWL (p=0.025). Recurrent stone disease was also associated with the development of diabetes mellitus (p=0.020). In the contemporary group of treated stone patients, pancreatic enzyme analysis demonstrated an increase in serum amylase and lipase in 3 (25.0%) SWL patients and 1 (8.3%) ureteroscopy patient (p=0.273). In conclusion, over half of the patients treated with SWL will develop recurrent stone events. We found a strong association between recurrent stone disease and the development of diabetes mellitus at long-term follow-up. Although not statistically significant due to small number, data in a contemporary treatment cohort suggest the possibility that the pancreas can be adversely affected by SWL.
Pancreatitis and agenesis of the dorsal pancreas.
Oldenburg, B; van Leeuwen, M S; van Berge Henegouwen, G P; Koningsberger, J C
1998-10-01
We report a case of agenesis of the dorsal pancreas, complicated by pancreatitis and diabetes mellitus. A 39-year-old woman was referred for evaluation of a chronic pancreatitis. Abdominal spiral CT and ERP and MRCP demonstrated agenesis of the dorsal pancreas. The pathogenesis, clinical features and diagnosis of this very rarely reported disease are discussed.