Sample records for developing mouse pituitary

  1. Mice with Inactivation of Aryl Hydrocarbon Receptor-Interacting Protein (Aip) Display Complete Penetrance of Pituitary Adenomas with Aberrant ARNT Expression

    PubMed Central

    Raitila, Anniina; Lehtonen, Heli J.; Arola, Johanna; Heliövaara, Elina; Ahlsten, Manuel; Georgitsi, Marianthi; Jalanko, Anu; Paetau, Anders; Aaltonen, Lauri A.; Karhu, Auli

    2010-01-01

    Mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been shown to predispose to pituitary adenoma predisposition, a condition characterized by growth hormone (GH)-secreting pituitary tumors. To study AIP-mediated tumorigenesis, we generated an Aip mouse model. Heterozygous mice developed normally but were prone to pituitary adenomas, in particular to those secreting GH. A complete loss of AIP was detected in these lesions, and full penetrance was reached at the age of 15 months. No excess of any other tumor type was found. Ki-67 analysis indicated that Aip-deficient tumors have higher proliferation rates compared with Aip-proficient tumors, suggesting a more aggressive disease. Similar to human AIP-deficient pituitary adenomas, immunohistochemical studies showed that expression of aryl hydrocarbon receptor nuclear translocator 1 or 2 (ARNT or ARNT2) protein was lost in the mouse tumors, suggesting that mechanisms of AIP-related tumorigenesis involve aberrant ARNT function. The Aip+/− mouse appears to be an excellent model for the respective human disease phenotype. This model constitutes a tool to further study AIP-associated pituitary tumorigenesis and may be potentially valuable in efforts to develop therapeutic strategies to treat pituitary adenomas. PMID:20709796

  2. Expression of a Rho guanine nucleotide exchange factor, Ect2, in the developing mouse pituitary.

    PubMed

    Islam, M S; Tsuji, T; Higashida, C; Takahashi, M; Higashida, H; Koizumi, K

    2010-05-01

    The pituitary gland is a highly mitotically active tissue after birth. Various cell types are known to undergo proliferation in the anterior pituitary. However, little is known about the mechanisms regulating mitotic activity in this tissue. When searching for genes specifically expressed in the pituitary gland among those that we previously screened in Drosophila, we found epithelial cell-transforming gene 2 (Ect2). Ect2 is a guanine nucleotide exchange factor for Rho GTPases, which is known to play an essential role in cytokinesis. Although there have been many cellular studies regarding the function of Ect2, the temporal and spatial expression patterns of Ect2 in vivo have not been determined. In the present study, we examined the postnatal developmental expression of Ect2 in the mouse pituitary. Enhanced Ect2 expression was detected in the mouse pituitary gland during the first 3 weeks after birth, which coincided well with the period of rapid pituitary expansion associated with increased growth rate. Immunostaining analysis showed that Ect2-expressing cells were distributed in the anterior and intermediate lobes, but not the posterior lobe, of the pituitary. These Ect2-expressing cells frequently incorporated the thymidine analogue, EdU (5-ethynyl-2'-deoxyuridine), indicating that these cells were mitotically active. Taken together, the results demonstrate the functional role of Ect2 in postnatal proliferating cells in the two lobes of the pituitary, thereby suggesting roles in developmental growth of the mammalian pituitary.

  3. Cocaine-and Amphetamine Regulated Transcript (CART) Peptide Is Expressed in Precursor Cells and Somatotropes of the Mouse Pituitary Gland

    PubMed Central

    Mortensen, Amanda H.

    2016-01-01

    Cocaine-and Amphetamine Regulated Transcript (CART) peptide is expressed in the brain, endocrine and neuroendocrine systems and secreted into the serum. It is thought to play a role in regulation of hypothalamic pituitary functions. Here we report a spatial and temporal analysis of Cart expression in the pituitaries of adult and developing normal and mutant mice with hypopituitarism. We found that Prop1 is not necessary for initiation of Cart expression in the fetal pituitary at e14.5, but it is required indirectly for maintenance of Cart expression in the postnatal anterior pituitary gland. Pou1f1 deficiency has no effect on Cart expression before or after birth. There is no 1:1 correspondence between CART and any particular cell type. In neonates, CART is detected primarily in non-proliferating, POU1F1-positive cells. CART is also found in some cells that express TSH and GH suggesting a correspondence with committed progenitors of the POU1F1 lineage. In summary, we have characterized the normal temporal and cell specific expression of CART in mouse development and demonstrate that postnatal CART expression in the pituitary gland requires PROP1. PMID:27685990

  4. Expression of the long-chain fatty acid receptor GPR120 in the gonadotropes of the mouse anterior pituitary gland.

    PubMed

    Moriyama, Ryutaro; Deura, Chikaya; Imoto, Shingo; Nose, Kazuhiro; Fukushima, Nobuyuki

    2015-01-01

    G-protein-coupled receptor 120 (GPR120) has been known to be a receptor of long-chain fatty acids. Here, we investigated GPR120 expression in the mouse pituitary gland via real-time PCR, in situ hybridization, and immunohistochemistry. GPR120 mRNA was abundantly expressed in the pituitary gland of ad-lib fed animals. In situ hybridization and immunohistochemistry revealed GPR120 expression in the gonadotropes of the anterior pituitary gland, but not in thyrotropes, somatotropes, lactotropes, corticotropes, melanotropes, and the posterior pituitary gland. Furthermore, 24 h of fasting induced an increase in GPR120 mRNA expression in the pituitary gland. These results demonstrate that GPR120 in mouse pituitary gonadotropes is upregulated by fasting and that it may play a role in controlling gonadotropin secretion.

  5. Characterization of pancreatic glucagon-producing tumors and pituitary gland tumors in transgenic mice overexpressing MYCN in hGFAP-positive cells.

    PubMed

    Fielitz, Kathrin; Althoff, Kristina; De Preter, Katleen; Nonnekens, Julie; Ohli, Jasmin; Elges, Sandra; Hartmann, Wolfgang; Klöppel, Günter; Knösel, Thomas; Schulte, Marc; Klein-Hitpass, Ludger; Beisser, Daniela; Reis, Henning; Eyking, Annette; Cario, Elke; Schulte, Johannes H; Schramm, Alexander; Schüller, Ulrich

    2016-11-15

    Amplification or overexpression of MYCN is involved in development and maintenance of multiple malignancies. A subset of these tumors originates from neural precursors, including the most aggressive forms of the childhood tumors, neuroblastoma and medulloblastoma. In order to model the spectrum of MYCN-driven neoplasms in mice, we transgenically overexpressed MYCN under the control of the human GFAP-promoter that, among other targets, drives expression in neural progenitor cells. However, LSL-MYCN;hGFAP-Cre double transgenic mice did neither develop neural crest tumors nor tumors of the central nervous system, but presented with neuroendocrine tumors of the pancreas and, less frequently, the pituitary gland. Pituitary tumors expressed chromogranin A and closely resembled human pituitary adenomas. Pancreatic tumors strongly produced and secreted glucagon, suggesting that they derived from glucagon- and GFAP-positive islet cells. Interestingly, 3 out of 9 human pancreatic neuroendocrine tumors expressed MYCN, supporting the similarity of the mouse tumors to the human system. Serial transplantations of mouse tumor cells into immunocompromised mice confirmed their fully transformed phenotype. MYCN-directed treatment by AuroraA- or Brd4-inhibitors resulted in significantly decreased cell proliferation in vitro and reduced tumor growth in vivo. In summary, we provide a novel mouse model for neuroendocrine tumors of the pancreas and pituitary gland that is dependent on MYCN expression and that may help to evaluate MYCN-directed therapies.

  6. Testosterone Regulates NUCB2 mRNA Expression in Male Mouse Hypothalamus and Pituitary Gland

    PubMed Central

    Seon, Sojeong; Jeon, Daun; Kim, Heejeong; Chung, Yiwa; Choi, Narae; Yang, Hyunwon

    2017-01-01

    ABSTRACT Nesfatin-1/NUCB2 is known to take part in the control of the appetite and energy metabolism. Recently, many reports have shown nesfatin-1/NUCB2 expression and function in various organs. We previously demonstrated that nesfatin-1/NUCB2 expression level is higher in the pituitary gland compared to other organs and its expression is regulated by 17β-estradiol and progesterone secreted from the ovary. However, currently no data exist on the expression of nesfatin-1/NUCB2 and its regulation mechanism in the pituitary of male mouse. Therefore, we examined whether nesfatin-1/NUCB2 is expressed in the male mouse pituitary and if its expression is regulated by testosterone. As a result of PCR and western blotting, we found that a large amount of nesfatin-1/NUCB2 was expressed in the pituitary and hypothalamus. The NUCB2 mRNA expression level in the pituitary was decreased after castration, but not in the hypothalamus. In addition, its mRNA expression level in the pituitary was increased after testosterone treatment in the castrated mice, whereas, the expression level in the hypothalamus was significantly decreased after the treatment with testosterone. The in vitro experiment to elucidate the direct effect of testosterone on NUCB2 mRNA expression showed that NUCB2 mRNA expression was significantly decreased with testosterone in cultured hypothalamus tissue, but increased with testosterone in cultured pituitary gland. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the male mouse pituitary and was regulated by testosterone. This data suggests that reproductive-endocrine regulation through hypothalamus-pituitary-testis axis may contribute to NUCB2 mRNA expression in the mouse hypothalamus and pituitary gland. PMID:28484746

  7. Genetically Engineered Mouse Models of Pituitary Tumors

    PubMed Central

    Cano, David A.; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso

    2014-01-01

    Animal models constitute valuable tools for investigating the pathogenesis of cancer as well as for preclinical testing of novel therapeutics approaches. However, the pathogenic mechanisms of pituitary-tumor formation remain poorly understood, particularly in sporadic adenomas, thus, making it a challenge to model pituitary tumors in mice. Nevertheless, genetically engineered mouse models (GEMMs) of pituitary tumors have provided important insight into pituitary tumor biology. In this paper, we review various GEMMs of pituitary tumors, highlighting their contributions and limitations, and discuss opportunities for research in the field. PMID:25136513

  8. Pituitary Androgen Receptor Signalling Regulates Prolactin but Not Gonadotrophins in the Male Mouse

    PubMed Central

    O’Hara, Laura; Curley, Michael; Tedim Ferreira, Maria; Cruickshanks, Lyndsey; Milne, Laura; Smith, Lee B.

    2015-01-01

    Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males. PMID:25799562

  9. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo-optic dysplasia and hypopituitarism

    PubMed Central

    Sajedi, Ezat; Gaston-Massuet, Carles; Signore, Massimo; Andoniadou, Cynthia L.; Kelberman, Daniel; Castro, Sandra; Etchevers, Heather C.; Gerrelli, Dianne; Dattani, Mehul T.; Martinez-Barbera, Juan Pedro

    2008-01-01

    SUMMARY A homozygous substitution of the highly conserved isoleucine at position 26 by threonine (I26T) in the transcriptional repressor HESX1 has been associated with anterior pituitary hypoplasia in a human patient, with no forebrain or eye defects. Two individuals carrying a homozygous substitution of the conserved arginine at position 160 by cysteine (R160C) manifest septo-optic dysplasia (SOD), a condition characterised by pituitary abnormalities associated with midline telencephalic structure defects and optic nerve hypoplasia. We have generated two knock-in mouse models containing either the I26T or R160C substitution in the genomic locus. Hesx1I26T/I26T embryos show pituitary defects comparable with Hesx1−/− mouse mutants, with frequent occurrence of ocular abnormalities, although the telencephalon develops normally. Hesx1R160C/R160C mutants display forebrain and pituitary defects that are identical to those observed in Hesx1−/− null mice. We also show that the expression pattern of HESX1 during early human development is very similar to that described in the mouse, suggesting that the function of HESX1 is conserved between the two species. Together, these results suggest that the I26T mutation yields a hypomorphic allele, whereas R160C produces a null allele and, consequently, a more severe phenotype in both mice and humans. PMID:19093031

  10. Pituitary cell differentiation from stem cells and other cells: toward restorative therapy for hypopituitarism?

    PubMed

    Willems, Christophe; Vankelecom, Hugo

    2014-01-01

    The pituitary gland, key regulator of our endocrine system, produces multiple hormones that steer essential physiological processes. Hence, deficient pituitary function (hypopituitarism) leads to severe disorders. Hypopituitarism can be caused by defective embryonic development, or by damage through tumor growth/resection and traumatic brain injury. Lifelong hormone replacement is needed but associated with significant side effects. It would be more desirable to restore pituitary tissue and function. Recently, we showed that the adult (mouse) pituitary holds regenerative capacity in which local stem cells are involved. Repair of deficient pituitary may therefore be achieved by activating these resident stem cells. Alternatively, pituitary dysfunction may be mended by cell (replacement) therapy. The hormonal cells to be transplanted could be obtained by (trans-)differentiating various kinds of stem cells or other cells. Here, we summarize the studies on pituitary cell regeneration and on (trans-)differentiation toward hormonal cells, and speculate on restorative therapies for pituitary deficiency.

  11. All Hormone-Producing Cell Types of the Pituitary Intermediate and Anterior Lobes Derive From Prop1-Expressing Progenitors.

    PubMed

    Davis, Shannon W; Keisler, Jessica L; Pérez-Millán, María I; Schade, Vanessa; Camper, Sally A

    2016-04-01

    Mutations in PROP1, the most common known cause of combined pituitary hormone deficiency in humans, can result in the progressive loss of all hormones of the pituitary anterior lobe. In mice, Prop1 mutations result in the failure to initiate transcription of Pou1f1 (also known as Pit1) and lack somatotropins, lactotropins, and thyrotropins. The basis for this species difference is unknown. We hypothesized that Prop1 is expressed in a progenitor cell that can develop into all anterior lobe cell types, and not just the somatotropes, thyrotropes, and lactotropes, which are collectively known as the PIT1 lineage. To test this idea, we produced a transgenic Prop1-cre mouse line and conducted lineage-tracing experiments of Prop1-expressing cells. The results reveal that all hormone-secreting cell types of both the anterior and intermediate lobes are descended from Prop1-expressing progenitors. The Prop1-cre mice also provide a valuable genetic reagent with a unique spatial and temporal expression for generating tissue-specific gene rearrangements early in pituitary gland development. We also determined that the minimal essential sequences for reliable Prop1 expression lie within 10 kilobases of the mouse gene and demonstrated that human PROP1 can substitute functionally for mouse Prop1. These studies enhance our understanding of the pathophysiology of disease in patients with PROP1 mutations.

  12. [Comparative ultrastructural study of parotid gland, lacrimal gland and pituitary gland between miniature pig and mouse].

    PubMed

    Yan, Xing; Hai, Bo; Sun, Yi-lin; Zhang, Chun-mei; Wang, Song-ling

    2009-02-01

    To study the ultrastructure of parotid glands, lacrimal glands and pituitary glands between miniature pig and mouse. Five adult miniature pigs and 5 mice were studied. Ultrastructure of their parotid glands, lacrimal glands, and pituitary glands was observed. The secretary granules in acinar cell of miniature pig parotid glands showed higher density and more aequalis than those of mice. The cell apparatus in acinar cell of mouse parotid glands were more plentiful than those of miniature pigs. The secretary granules on blood vessel wall were richer in parotid gland of miniature pigs compared with mouse parotid gland. Lacrimal gland had the similar ultrastructure to parotid gland in these two animals. Many blood vessel antrum were found in pituitary glands of these two animals. Compared with mouse parotid glands, there are more secretary granules in acinar cells and vascular endothelial cells in miniature pig parotid glands, which might enter blood stream and have function of endocrine secretion.

  13. Deletion of OTX2 in neural ectoderm delays anterior pituitary development

    PubMed Central

    Mortensen, Amanda H.; Schade, Vanessa; Lamonerie, Thomas; Camper, Sally A.

    2015-01-01

    OTX2 is a homeodomain transcription factor that is necessary for normal head development in mouse and man. Heterozygosity for loss-of-function alleles causes an incompletely penetrant, haploinsufficiency disorder. Affected individuals exhibit a spectrum of features that range from developmental defects in eye and/or pituitary development to acephaly. To investigate the mechanism underlying the pituitary defects, we used different cre lines to inactivate Otx2 in early head development and in the prospective anterior and posterior lobes. Mice homozygous for Otx2 deficiency in early head development and pituitary oral ectoderm exhibit craniofacial defects and pituitary gland dysmorphology, but normal pituitary cell specification. The morphological defects mimic those observed in humans and mice with OTX2 heterozygous mutations. Mice homozygous for Otx2 deficiency in the pituitary neural ectoderm exhibited altered patterning of gene expression and ablation of FGF signaling. The posterior pituitary lobe and stalk, which normally arise from neural ectoderm, were extremely hypoplastic. Otx2 expression was intact in Rathke's pouch, the precursor to the anterior lobe, but the anterior lobe was hypoplastic. The lack of FGF signaling from the neural ectoderm was sufficient to impair anterior lobe growth, but not the differentiation of hormone-producing cells. This study demonstrates that Otx2 expression in the neural ectoderm is important intrinsically for the development of the posterior lobe and pituitary stalk, and it has significant extrinsic effects on anterior pituitary growth. Otx2 expression early in head development is important for establishing normal craniofacial features including development of the brain, eyes and pituitary gland. PMID:25315894

  14. Regulation of LH/FSH expression by secretoglobin 3A2 in the mouse pituitary gland.

    PubMed

    Miyano, Yuki; Tahara, Shigeyuki; Sakata, Ichiro; Sakai, Takafumi; Abe, Hiroyuki; Kimura, Shioko; Kurotani, Reiko

    2014-04-01

    Secretoglobin (SCGB) 3A2 was originally identified as a downstream target for the homeodomain transcription factor NKX2-1 in the lung. NKX2-1 plays a role in the genesis and expression of genes in the thyroid, lung and ventral forebrain; Nkx2-1-null mice have no thyroid and pituitary and severely hypoplastic lungs and hypothalamus. To demonstrate whether SCGB3A2 plays any role in pituitary hormone production, NKX2-1 and SCGB3A2 expression in the mouse pituitary gland was examined by immunohistochemical analysis and RT-PCR. NKX2-1 was localized in the posterior pituitary lobe, whereas SCGB3A2 was observed in both anterior and posterior lobes as shown by immunohistochemistry and RT-PCR. Expression of CCAAT-enhancer binding proteins (C/EBPs), which regulate mouse Scgb3a2 transcription, was also examined by RT-PCR. C/EBPβ, γ, δ and ζ were expressed in the adult mouse pituitary gland. SCGB3A2 was expressed in the anterior and posterior lobes from postnatal days 1 and 5, respectively and the areas where SCGB3A2 expression was found coincided with the area where FSH-secreting cells were found. Double-staining for SCGB3A2 and pituitary hormones revealed that SCGB3A2 was mainly localized in gonadotrophs in 49 % of FSH-secreting cells and 47 % of LH-secreting cells. In addition, SCGB3A2 dramatically inhibited LH and FSH mRNA expression in rat pituitary primary cell cultures. These results suggest that SCGB3A2 regulates FSH/LH production in the anterior pituitary lobe and that transcription factors other than NKX2-1 may regulate SCGB3A2 expression.

  15. All Hormone-Producing Cell Types of the Pituitary Intermediate and Anterior Lobes Derive From Prop1-Expressing Progenitors

    PubMed Central

    Keisler, Jessica L.; Pérez-Millán, María I.; Schade, Vanessa; Camper, Sally A.

    2016-01-01

    Mutations in PROP1, the most common known cause of combined pituitary hormone deficiency in humans, can result in the progressive loss of all hormones of the pituitary anterior lobe. In mice, Prop1 mutations result in the failure to initiate transcription of Pou1f1 (also known as Pit1) and lack somatotropins, lactotropins, and thyrotropins. The basis for this species difference is unknown. We hypothesized that Prop1 is expressed in a progenitor cell that can develop into all anterior lobe cell types, and not just the somatotropes, thyrotropes, and lactotropes, which are collectively known as the PIT1 lineage. To test this idea, we produced a transgenic Prop1-cre mouse line and conducted lineage-tracing experiments of Prop1-expressing cells. The results reveal that all hormone-secreting cell types of both the anterior and intermediate lobes are descended from Prop1-expressing progenitors. The Prop1-cre mice also provide a valuable genetic reagent with a unique spatial and temporal expression for generating tissue-specific gene rearrangements early in pituitary gland development. We also determined that the minimal essential sequences for reliable Prop1 expression lie within 10 kilobases of the mouse gene and demonstrated that human PROP1 can substitute functionally for mouse Prop1. These studies enhance our understanding of the pathophysiology of disease in patients with PROP1 mutations. PMID:26812162

  16. Stimulation of growth in the little mouse.

    PubMed

    Beamer, W H; Eicher, E M

    1976-10-01

    The new mouse mutation little (lit) in the homozygous state causes a pituitary deficiency involving at least growth hormone (GH) and prolactin. The resultant growth failure of lit/lit mice was shown to be reversed by experimental conditions that enhanced levels of GH or GH and prolactin in the circulation. Two measures of growth, actual weight gain and bone dimension, were significantly improved by the physiological processes of pregnancy and pseudopregnancy, by extra-sellar graft of a normal mouse pituitary, and by treatment with GH but not prolactin. These data confirmed pituitary dysfunction as the basic defect caused by the mutation lit and showed that the GH deficiency is responsible for growth failure. However, the biological site of gene action, the pituitary or hypothalamus, has not been established. Little mice exhibit a number of characteristics similar to those of human genetic ateleotic dwarfism Type 1, namely genetic inheritance, time of onset of growth retardation, proportionate skeletal size reduction, and pituitary GH deficiency.

  17. Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland

    PubMed Central

    Scully, Kathleen M.; Skowronska-Krawczyk, Dorota; Krawczyk, Michal; Merkurjev, Daria; Taylor, Havilah; Livolsi, Antonia; Tollkuhn, Jessica; Stan, Radu V.; Rosenfeld, Michael G.

    2016-01-01

    As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin β1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin β1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin β1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin β1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non–cell-autonomous effects on angiogenesis. We conclude that epithelial integrin β1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development. PMID:27810956

  18. Magmas Overexpression Inhibits Staurosporine Induced Apoptosis in Rat Pituitary Adenoma Cell Lines

    PubMed Central

    Gentilin, Erica; Minoia, Mariella; Molè, Daniela; delgi Uberti, Ettore C.; Zatelli, Maria Chiara

    2013-01-01

    Magmas is a nuclear gene that encodes for the mitochondrial import inner membrane translocase subunit Tim16. Magmas is overexpressed in the majority of human pituitary adenomas and in a mouse ACTH-secreting pituitary adenoma cell line. Here we report that Magmas is highly expressed in two out of four rat pituitary adenoma cell lines and its expression levels inversely correlate to the extent of cellular response to staurosporine in terms of apoptosis activation and cell viability. Magmas over-expression in rat GH/PRL-secreting pituitary adenoma GH4C1 cells leads to an increase in cell viability and to a reduction in staurosporine-induced apoptosis and DNA fragmentation, in parallel with the increase in Magmas protein expression. These results indicate that Magmas plays a pivotal role in response to pro-apoptotic stimuli and confirm and extend the finding that Magmas protects pituitary cells from staurosporine-induced apoptosis, suggesting its possible involvement in pituitary adenoma development. PMID:24069394

  19. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development

    PubMed Central

    Stoffel, Wilhelm; Jenke, Britta; Blöck, Barbara; Zumbansen, Markus; Koebke, Jürgen

    2005-01-01

    Neutral sphingomyelinases sphingomyelin phosphodiesterase (SMPD)2 and -3 hydrolyze sphingomyelin to phosphocholine and ceramide. smpd2 is expressed ubiquitously, and smpd3 is expressed predominantly in neurons of the CNS. Their activation and the functions of the released ceramides have been associated with signaling pathways in cell growth, differentiation, and apoptosis. However, these cellular responses remain poorly understood. Here we describe the generation and characterization of the smpd3–/– and smpd2–/–smpd3–/– double mutant mouse, which proved to be devoid of neutral sphingomyelinase activity. SMPD3 plays a pivotal role in the control of late embryonic and postnatal development: the smpd3-null mouse develops a novel form of dwarfism and delayed puberty as part of a hypothalamus-induced combined pituitary hormone deficiency. Our studies suggest that SMPD3 is segregated into detergent-resistant subdomains of Golgi membranes of hypothalamic neurosecretory neurons, where its transient activation modifies the lipid bilayer, an essential step in the Golgi secretory pathway. The smpd3–/– mouse might mimic a form of human combined pituitary hormone deficiency. PMID:15764706

  20. Neutral sphingomyelinase 2 (smpd3) in the control of postnatal growth and development.

    PubMed

    Stoffel, Wilhelm; Jenke, Britta; Blöck, Barbara; Zumbansen, Markus; Koebke, Jürgen

    2005-03-22

    Neutral sphingomyelinases sphingomyelin phosphodiesterase (SMPD)2 and -3 hydrolyze sphingomyelin to phosphocholine and ceramide. smpd2 is expressed ubiquitously, and smpd3 is expressed predominantly in neurons of the CNS. Their activation and the functions of the released ceramides have been associated with signaling pathways in cell growth, differentiation, and apoptosis. However, these cellular responses remain poorly understood. Here we describe the generation and characterization of the smpd3(-/-) and smpd2(-/-)smpd3(-/-) double mutant mouse, which proved to be devoid of neutral sphingomyelinase activity. SMPD3 plays a pivotal role in the control of late embryonic and postnatal development: the smpd3-null mouse develops a novel form of dwarfism and delayed puberty as part of a hypothalamus-induced combined pituitary hormone deficiency. Our studies suggest that SMPD3 is segregated into detergent-resistant subdomains of Golgi membranes of hypothalamic neurosecretory neurons, where its transient activation modifies the lipid bilayer, an essential step in the Golgi secretory pathway. The smpd3(-/-) mouse might mimic a form of human combined pituitary hormone deficiency.

  1. The Forkhead Transcription Factor, Foxd1, Is Necessary for Pituitary Luteinizing Hormone Expression in Mice

    PubMed Central

    Gumbel, Jason H.; Patterson, Elizabeth M.; Owusu, Sarah A.; Kabat, Brock E.; Jung, Deborah O.; Simmons, Jasmine; Hopkins, Torin; Ellsworth, Buffy S.

    2012-01-01

    The pituitary gland regulates numerous physiological functions including growth, reproduction, temperature and metabolic homeostasis, lactation, and response to stress. Pituitary organogenesis is dependent on signaling factors that are produced in and around the developing pituitary. The studies described in this report reveal that the forkhead transcription factor, Foxd1, is not expressed in the developing mouse pituitary gland, but rather in the mesenchyme surrounding the pituitary gland, which is an essential source of signaling factors that regulate pituitary organogenesis. Loss of Foxd1 causes a morphological defect in which the anterior lobe of the pituitary gland protrudes through the cartilage plate that is developing ventral to the pituitary at embryonic days (e)14.5, e16.5, and e18.5. The number of proliferating pituitary cells is increased at e14.5 and e16.5. Loss of Foxd1 also results in significantly decreased levels of Lhb expression at e18.5. This decrease in Lhb expression does not appear to be due to a change in the number of gonadotrope cells in the pituitary gland. Previous studies have shown that loss of the LIM homeodomain factor, Lhx3, which is activated by the FGF signaling pathway, results in loss of LH production. Although there is a difference in Lhb expression in Foxd1 null mice, the expression pattern of LHX3 is not altered in Foxd1 null mice. These studies suggest that Foxd1 is indirectly required for normal Lhb expression and cartilage formation. PMID:23284914

  2. A distal modular enhancer complex acts to control pituitary- and nervous system-specific expression of the LHX3 regulatory gene.

    PubMed

    Mullen, Rachel D; Park, Soyoung; Rhodes, Simon J

    2012-02-01

    Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency.

  3. A Distal Modular Enhancer Complex Acts to Control Pituitary- and Nervous System-Specific Expression of the LHX3 Regulatory Gene

    PubMed Central

    Mullen, Rachel D.; Park, Soyoung

    2012-01-01

    Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency. PMID:22194342

  4. Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord.

    PubMed

    Gleiberman, A S; Fedtsova, N G; Rosenfeld, M G

    1999-09-15

    Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in close proximity to Rathke's pouch, in this process are even less clear. In this report we describe an in vitro experimental system that reproduces the earliest steps of anterior pituitary development. We provide evidence that the ventral diencephalon from 2- to 4-day-old chick embryos is able to function as an inducer of pituitary development and can convert early chick embryonic head ectoderm, which is not involved normally in pituitary development, into typical anterior pituitary tissue. This induction is contact-dependent. In our experimental system, there is a requirement for the supporting action of mesenchyme, which is independent of the mesenchyme source. Transplantation of the notochord into the lateral head region of a six-somite chick embryo induces an epithelial invagination, suggesting that the notochord induces the outpouching of the roof of the stomodeal ectoderm that results in formation of Rathke's pouch and causes the close contact between this ectoderm and the ventral diencephalon. Finally, we demonstrate that the ventral diencephalon from e9.5-e11.5 mouse embryos is also an efficient inducer of anterior pituitary differentiation in chick embryonic lateral head ectoderm, suggesting that the mechanism of anterior pituitary induction is conserved between mammals and birds, using the same, or similar, signaling pathways. Copyright 1999 Academic Press.

  5. Natural and molecular history of prolactinoma: insights from a Prlr-/- mouse model.

    PubMed

    Bernard, Valérie; Villa, Chiara; Auguste, Aurélie; Lamothe, Sophie; Guillou, Anne; Martin, Agnès; Caburet, Sandrine; Young, Jacques; Veitia, Reiner A; Binart, Nadine

    2018-01-19

    Lactotroph adenoma, also called prolactinoma, is the most common pituitary tumor but little is known about its pathogenesis. Mouse models of prolactinoma can be useful to better understand molecular mechanisms involved in abnormal lactotroph cell proliferation and secretion. We have previously developed a prolactin receptor deficient ( Prlr -/- ) mouse, which develops prolactinoma. The present study aims to explore the natural history of prolactinoma formation in Prlr -/- mice, using hormonal, radiological, histological and molecular analyses to uncover mechanisms involved in lactotroph adenoma development. Prlr -/- females develop large secreting prolactinomas from 12 months of age, with a penetrance of 100%, mimicking human aggressive densely granulated macroprolactinoma, which is a highly secreting subtype. Mean blood PRL measurements reach 14 902 ng/mL at 24 months in Prlr -/- females while PRL levels were below 15 ng/mL in control mice ( p < 0.01). By comparing pituitary microarray data of Prlr -/- mice and an estrogen-induced prolactinoma model in ACI rats, we pinpointed 218 concordantly differentially expressed (DE) genes involved in cell cycle, mitosis, cell adhesion molecules, dopaminergic synapse and estrogen signaling. Pathway/gene-set enrichment analyses suggest that the transcriptomic dysregulation in both models of prolactinoma might be mediated by a limited set of transcription factors (i.e., STAT5, STAT3, AhR, ESR1, BRD4, CEBPD, YAP, FOXO1) and kinases (i.e., JAK2, AKT1, BRAF, BMPR1A, CDK8, HUNK, ALK, FGFR1, ILK). Our experimental results and their bioinformatic analysis provide insights into early genomic changes in murine models of the most frequent human pituitary tumor.

  6. Animal models of pituitary neoplasia

    PubMed Central

    Lines, K.E.; Stevenson, M.; Thakker, R.V.

    2016-01-01

    Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies. PMID:26320859

  7. Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism.

    PubMed

    Nica, Gabriela; Herzog, Wiebke; Sonntag, Carmen; Hammerschmidt, Matthias

    2004-05-01

    The Pou domain transcription factor Pit-1 is required for lineage determination and cellular commitment processes during mammalian adenohypophysis development. Here we report the cloning and mutational analysis of a pit1 homolog from zebrafish. Compared with mouse, zebrafish pit1 starts to be expressed at a much earlier stage of adenohypophysis development. However, as in the mouse, expression is restricted to a subset of pituitary cell types, excluding proopiomelanocortin (pomc)-expressing cells (corticotropes, melanotropes) and possibly gonadotropes. We could identify two N-ethyl-N-nitrosourea-induced zebrafish pit1 null mutants. Most mutants die during larval stages, whereas survivors develop severe dwarfism. Mutant larvae lack lactotropes, somatotropes, and thyrotropes, although the adenohypophysis is of normal size, without any sign of increased apoptosis rates. Instead, mutant embryos initiate ectopic expression of pomc in pit1-positive cells, leading to an expansion of the Pomc lineage. Similarly, the number of gonadotropes seems increased, as indicated by the expression of gsualpha, a marker for thyrotropes and gonadotropes. In pit1 mutants, the total number of gsualpha-positive cells is normal despite the loss of gsualpha and tshbeta coexpressing cells. Together, these data suggest a transfating of the Pit1 lineage to the Pomc and possibly the gonadotroph lineages in the mutant, and a pomc- and gonadotropin-repressive role of Pit1 during normal zebrafish development. This is different from mouse, for which a repressive role of Pit-1 has only been reported for the gonadotropin Lhbeta, but not for Pomc. In sum, our data point to both conserved and class-specific aspects of Pit1 function during pituitary development in different vertebrate species.

  8. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma

    PubMed Central

    Pozzi, Sara; Carreno, Gabriela; Manshaei, Saba; Panousopoulos, Leonidas; Gonzalez-Meljem, Jose Mario; Apps, John R.; Virasami, Alex; Thavaraj, Selvam; Gutteridge, Alice; Forshew, Tim; Marais, Richard; Brandner, Sebastian; Jacques, Thomas S.; Andoniadou, Cynthia L.

    2017-01-01

    Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ cells and suggest that persistent proliferative capacity of Sox2+ cells may underlie the pathogenesis of PCP. PMID:28506993

  9. Effects of high fat diet on the Basal activity of the hypothalamus-pituitary-adrenal axis in mice: a systematic review.

    PubMed

    Auvinen, H E; Romijn, J A; Biermasz, N R; Havekes, L M; Smit, J W A; Rensen, P C N; Pereira, A M

    2011-12-01

    Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the hypothalamus-pituitary-adrenal-axis activation. The aim of this review was to assess the effects of high fat feeding on the activity of the hypothalamus-pituitary-adrenal-axis in mice. PubMed, EMBASE, Web of Science, the Cochrane database, and Science Direct were electronically searched and reviewed by 2 individual researchers. We included only original mouse studies reporting parameters of the hypothalamus-pituitary-adrenal-axis after high fat feeding, and at least 1 basal corticosterone level with a proper control group. Studies with adrenalectomized mice, transgenic animals only, high fat diet for less than 2 weeks, or other interventions besides high fat diet, were excluded. 20 studies were included. The hypothalamus-pituitary-adrenal-axis evaluation was the primary research question in only 5 studies. Plasma corticosterone levels were unchanged in 40%, elevated in 30%, and decreased in 20% of the studies. The effects in the peripheral tissues and the central nervous system were also inconsistent. However, major differences were found between mouse strains, experimental conditions, and the content and duration of the diets. This systematic review demonstrates that the effects of high fat feeding on the basal activity of the hypothalamus-pituitary-adrenal-axis in mice are limited and inconclusive. Differences in experimental conditions hamper comparisons and accentuate the need for standardized evaluations to discern the effects of diet-induced obesity on the hypothalamus-pituitary-adrenal-axis. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Model of pediatric pituitary hormone deficiency separates the endocrine and neural functions of the LHX3 transcription factor in vivo.

    PubMed

    Colvin, Stephanie C; Malik, Raleigh E; Showalter, Aaron D; Sloop, Kyle W; Rhodes, Simon J

    2011-01-04

    The etiology of most pediatric hormone deficiency diseases is poorly understood. Children with combined pituitary hormone deficiency (CPHD) have insufficient levels of multiple anterior pituitary hormones causing short stature, metabolic disease, pubertal failure, and often have associated nervous system symptoms. Mutations in developmental regulatory genes required for the specification of the hormone-secreting cell types of the pituitary gland underlie severe forms of CPHD. To better understand these diseases, we have created a unique mouse model of CPHD with a targeted knockin mutation (Lhx3 W227ter), which is a model for the human LHX3 W224ter disease. The LHX3 gene encodes a LIM-homeodomain transcription factor, which has essential roles in pituitary and nervous system development in mammals. The introduced premature termination codon results in deletion of the carboxyl terminal region of the LHX3 protein, which is critical for pituitary gene activation. Mice that lack all LHX3 function do not survive beyond birth. By contrast, the homozygous Lhx3 W227ter mice survive, but display marked dwarfism, thyroid disease, and female infertility. Importantly, the Lhx3 W227ter mice have no apparent nervous system deficits. The Lhx3 W227ter mouse model provides a unique array of hormone deficits and facilitates experimental approaches that are not feasible with human patients. These experiments demonstrate that the carboxyl terminus of the LHX3 transcription factor is not required for viability. More broadly, this study reveals that the in vivo actions of a transcription factor in different tissues are molecularly separable.

  11. Genetic regulation of pituitary gland development in human and mouse.

    PubMed

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C A F; Dattani, Mehul T

    2009-12-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.

  12. Genetic Regulation of Pituitary Gland Development in Human and Mouse

    PubMed Central

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C. A. F.; Dattani, Mehul T.

    2009-01-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans. PMID:19837867

  13. Genetics, gene expression and bioinformatics of the pituitary gland.

    PubMed

    Davis, Shannon W; Potok, Mary Anne; Brinkmeier, Michelle L; Carninci, Piero; Lyons, Robert H; MacDonald, James W; Fleming, Michelle T; Mortensen, Amanda H; Egashira, Noboru; Ghosh, Debashis; Steel, Karen P; Osamura, Robert Y; Hayashizaki, Yoshihide; Camper, Sally A

    2009-04-01

    Genetic cases of congenital pituitary hormone deficiency are common and many are caused by transcription factor defects. Mouse models with orthologous mutations are invaluable for uncovering the molecular mechanisms that lead to problems in organ development and typical patient characteristics. We are using mutant mice defective in the transcription factors PROP1 and POU1F1 for gene expression profiling to identify target genes for these critical transcription factors and candidates for cases of pituitary hormone deficiency of unknown aetiology. These studies reveal critical roles for Wnt signalling pathways, including the TCF/LEF transcription factors and interacting proteins of the groucho family, bone morphogenetic protein antagonists and targets of notch signalling. Current studies are investigating the roles of novel homeobox genes and pathways that regulate the transition from proliferation to differentiation, cell adhesion and cell migration. Pituitary adenomas are a common human health problem, yet most cases are sporadic, necessitating alternative approaches to traditional Mendelian genetic studies. Mouse models of adenoma formation offer the opportunity for gene expression profiling during progressive stages of hyperplasia, adenoma and tumorigenesis. This approach holds promise for the identification of relevant pathways and candidate genes as risk factors for adenoma formation, understanding mechanisms of progression, and identifying drug targets and clinically relevant biomarkers. Copyright 2009 S. Karger AG, Basel.

  14. Genetics, Gene Expression and Bioinformatics of the Pituitary Gland

    PubMed Central

    Davis, Shannon W; Potok, Mary Anne; Brinkmeier, Michelle L; Carninci, Piero; Lyons, Robert H; MacDonald, James W.; Fleming, Michelle T; Mortensen, Amanda H; Egashira, Noboru; Ghosh, Debashis; Steel, Karen P.; Osamura, Robert Y; Hayashizaki, Yoshihide; Camper, Sally A

    2011-01-01

    Genetic cases of congenital pituitary hormone deficiency are common and many are caused by transcription factor defects. Mouse models with orthologous mutations are invaluable for uncovering the molecular mechanisms that lead to problems in organ development and typical patient characteristics. We are using mutant mice defective in the transcription factors PROP1 and POU1F1 for gene expression profiling to identify target genes for these critical transcription factors and candidates for cases of pituitary hormone deficiency of unknown etiology. These studies reveal critical roles for Wnt signalling pathways including the TCF/LEF transcription factors and interacting proteins of the groucho family, bone morphogenetic proteins antagonists, and targets of notch signalling. Current studies are investigating roles of novel homeobox genes and pathways that regulate the transition from proliferation to differentiation, cell adhesion and cell migration. Pituitary adenomas are a common human health problem, yet most cases are sporadic, necessitating alternative approaches to traditional Mendelian genetic studies. Mouse models of adenoma formation offer the opportunity for gene expression profiling during progressive stages of hyperplasia, adenoma and tumorigenesis. This approach holds promise for identification of relevant pathways and candidate genes as risk factors for adenoma formation, understanding mechanisms of progression, and identifying drug targets and clinically relevant biomarkers. PMID:19407506

  15. Familial Isolated Pituitary Adenomas (FIPA) and the Pituitary Adenoma Predisposition due to Mutations in the Aryl Hydrocarbon Receptor Interacting Protein (AIP) Gene

    PubMed Central

    Aaltonen, Lauri A.; Daly, Adrian F.

    2013-01-01

    Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses the current clinical and therapeutic characteristics of more than 200 FIPA families and addresses research findings among AIP mutation-bearing patients in different populations with pituitary adenomas. PMID:23371967

  16. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice.

    PubMed

    Lecoq, Anne-Lise; Zizzari, Philippe; Hage, Mirella; Decourtye, Lyvianne; Adam, Clovis; Viengchareun, Say; Veldhuis, Johannes D; Geoffroy, Valérie; Lombès, Marc; Tolle, Virginie; Guillou, Anne; Karhu, Auli; Kappeler, Laurent; Chanson, Philippe; Kamenický, Peter

    2016-10-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model. © 2016 Society for Endocrinology.

  17. Neutral Sphingomyelinase (SMPD3) Deficiency Causes a Novel Form of Chondrodysplasia and Dwarfism That Is Rescued by Col2A1-Driven smpd3 Transgene Expression

    PubMed Central

    Stoffel, Wilhelm; Jenke, Britta; Holz, Barbara; Binczek, Erika; Günter, Robert Heinz; Knifka, Jutta; Koebke, Jürgen; Niehoff, Anja

    2007-01-01

    Neutral sphingomyelinase SMPD3 (nSMase2), a sphingomyelin phosphodiesterase, resides in the Golgi apparatus and is ubiquitously expressed. Gene ablation of smpd3 causes a generalized prolongation of the cell cycle that leads to late embryonic and juvenile hypoplasia because of the SMPD3 deficiency in hypothalamic neurosecretory neurons. We show here that this novel form of combined pituitary hormone deficiency is characterized by the perturbation of the hypothalamus-pituitary growth axis, associated with retarded chondrocyte development and enchondral ossification in the epiphyseal growth plate. To study the contribution by combined pituitary hormone deficiency and by the local SMPD3 deficiency in the epiphyseal growth plate to the skeletal phenotype, we introduced the full-length smpd3 cDNA transgene under the control of the chondrocyte-specific promoter Col2a1. A complete rescue of the smpd3−/− mouse from severe short-limbed skeletal dysplasia was achieved. The smpd3−/− mouse shares its dwarf and chondrodysplasia phenotype with the most common form of human achondrodysplasia, linked to the fibroblast-growth-factor receptor 3 locus, not linked to deficits in the hypothalamic-pituitary epiphyseal growth plate axis. The rescue of smpd3 in vivo has implications for future research into dwarfism and, particularly, growth and development of the skeletal system and for current screening and future treatment of combined dwarfism and chondrodysplasia. PMID:17591962

  18. Neutral sphingomyelinase (SMPD3) deficiency causes a novel form of chondrodysplasia and dwarfism that is rescued by Col2A1-driven smpd3 transgene expression.

    PubMed

    Stoffel, Wilhelm; Jenke, Britta; Holz, Barbara; Binczek, Erika; Günter, Robert Heinz; Knifka, Jutta; Koebke, Jürgen; Niehoff, Anja

    2007-07-01

    Neutral sphingomyelinase SMPD3 (nSMase2), a sphingomyelin phosphodiesterase, resides in the Golgi apparatus and is ubiquitously expressed. Gene ablation of smpd3 causes a generalized prolongation of the cell cycle that leads to late embryonic and juvenile hypoplasia because of the SMPD3 deficiency in hypothalamic neurosecretory neurons. We show here that this novel form of combined pituitary hormone deficiency is characterized by the perturbation of the hypothalamus-pituitary growth axis, associated with retarded chondrocyte development and enchondral ossification in the epiphyseal growth plate. To study the contribution by combined pituitary hormone deficiency and by the local SMPD3 deficiency in the epiphyseal growth plate to the skeletal phenotype, we introduced the full-length smpd3 cDNA transgene under the control of the chondrocyte-specific promoter Col2a1. A complete rescue of the smpd3(-/-) mouse from severe short-limbed skeletal dysplasia was achieved. The smpd3(-/-) mouse shares its dwarf and chondrodysplasia phenotype with the most common form of human achondrodysplasia, linked to the fibroblast-growth-factor receptor 3 locus, not linked to deficits in the hypothalamic-pituitary epiphyseal growth plate axis. The rescue of smpd3 in vivo has implications for future research into dwarfism and, particularly, growth and development of the skeletal system and for current screening and future treatment of combined dwarfism and chondrodysplasia.

  19. Sulfation of LH Does Not Affect Intracellular Trafficking

    PubMed Central

    Pearl, Christopher A.; Boime, Irving

    2009-01-01

    LH and FSH are produced by the same gonadotrope cells of the anterior pituitary but differ in their mode of secretion. LH secretion is primarily episodic, or regulated, while FSH secretion is primarily basal, or constitutive. The asparagine (N)-linked oligosaccharides of LH and FSH terminate with sulfate and sialic acid, respectively. TSH also contains sulfated N-linked oligosaccharides and is secreted through the regulated pathway. It has been hypothesized that sulfate plays a role in segregating LH to the regulated pathway. Using a mouse pituitary model, we tested this hypothesis by examining the secretory fate of LH from pituitaries treated with sodium chlorate, a known inhibitor of sulfation. Here we show that mouse LH is sulfated and secreted through the regulated pathway, while FSH is secreted constitutively. LH secretion from chlorate treated pituitaries, which showed complete inhibition of sulfation, was similar to untreated pituitaries. These data suggest that the metabolic role for sulfated N-linked oligosaccharides is not for intracellular trafficking but for the extracellular bioactivity of LH. PMID:19647136

  20. Progesterone and 17β-estradiol regulate expression of nesfatin-1/NUCB2 in mouse pituitary gland.

    PubMed

    Chung, Yiwa; Kim, Jinhee; Im, Eunji; Kim, Heejeong; Yang, Hyunwon

    2015-01-01

    Nesfatin-1 was first shown to be involved in the control of appetite and energy metabolism in the hypothalamus. Many recent reports have shown nesfatin-1 expression in various tissues including the pituitary gland, but its expression and regulation mechanisms in the pituitary gland are unclear. Therefore, first, we investigated the mRNA and protein expression of nesfatin-1 in the pituitary using qRT-PCR and Western blotting, respectively. Expression of NUCB2 mRNA and nesfatin-1 protein was higher in the pituitary gland than in other organs, and nesfatin-1 protein was localized in many cells in the anterior pituitary gland. Next, we investigated whether NUCB2 mRNA expression in the pituitary gland was regulated by sex steroid hormones secreted by the ovary. Mice were ovariectomized and injected with progesterone (P4) and 17β-estradiol (E2). The expression of NUCB2 in the pituitary gland was dramatically decreased after ovariectomy and increased with injection of P4 and E2, respectively. The in vitro experiment to elucidate the direct effect of P4 and E2 on NUCB2 mRNA expression showed NUCB2 mRNA expression was significantly increased with E2 and decreased with P4 alone and P4 plus E2 in cultured pituitary tissue. The present study demonstrated that nesfatin-1/NUCB2 was highly expressed in the mouse pituitary and was regulated by P4 and E2. These data suggest that reproductive-endocrine regulation through hypothalamus-pituitary-ovary axis may contribute to nesfatin-1/NUCB2 expression in the pituitary gland. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Model of pediatric pituitary hormone deficiency separates the endocrine and neural functions of the LHX3 transcription factor in vivo

    PubMed Central

    Colvin, Stephanie C.; Malik, Raleigh E.; Showalter, Aaron D.; Sloop, Kyle W.; Rhodes, Simon J.

    2011-01-01

    The etiology of most pediatric hormone deficiency diseases is poorly understood. Children with combined pituitary hormone deficiency (CPHD) have insufficient levels of multiple anterior pituitary hormones causing short stature, metabolic disease, pubertal failure, and often have associated nervous system symptoms. Mutations in developmental regulatory genes required for the specification of the hormone-secreting cell types of the pituitary gland underlie severe forms of CPHD. To better understand these diseases, we have created a unique mouse model of CPHD with a targeted knockin mutation (Lhx3 W227ter), which is a model for the human LHX3 W224ter disease. The LHX3 gene encodes a LIM-homeodomain transcription factor, which has essential roles in pituitary and nervous system development in mammals. The introduced premature termination codon results in deletion of the carboxyl terminal region of the LHX3 protein, which is critical for pituitary gene activation. Mice that lack all LHX3 function do not survive beyond birth. By contrast, the homozygous Lhx3 W227ter mice survive, but display marked dwarfism, thyroid disease, and female infertility. Importantly, the Lhx3 W227ter mice have no apparent nervous system deficits. The Lhx3 W227ter mouse model provides a unique array of hormone deficits and facilitates experimental approaches that are not feasible with human patients. These experiments demonstrate that the carboxyl terminus of the LHX3 transcription factor is not required for viability. More broadly, this study reveals that the in vivo actions of a transcription factor in different tissues are molecularly separable. PMID:21149718

  2. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma.

    PubMed

    Haston, Scott; Pozzi, Sara; Carreno, Gabriela; Manshaei, Saba; Panousopoulos, Leonidas; Gonzalez-Meljem, Jose Mario; Apps, John R; Virasami, Alex; Thavaraj, Selvam; Gutteridge, Alice; Forshew, Tim; Marais, Richard; Brandner, Sebastian; Jacques, Thomas S; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-06-15

    Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2 + stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2 + cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2 + cells and suggest that persistent proliferative capacity of Sox2 + cells may underlie the pathogenesis of PCP. © 2017. Published by The Company of Biologists Ltd.

  3. GH in the dwarf dopaminergic D2 receptor knockout mouse: somatotrope population, GH release, and responsiveness to GH-releasing factors and somatostatin.

    PubMed

    García-Tornadú, Isabel; Rubinstein, Marcelo; Gaylinn, Bruce D; Hill, David; Arany, Edith; Low, Malcolm J; Díaz-Torga, Graciela; Becu-Villalobos, Damasia

    2006-09-01

    Recently, the importance of the dopaminergic D2 receptor (D2R) subtype in normal body growth and neonatal GH secretion has been highlighted. Disruption of D2R alters the GHRH-GH-IGF-I axis and impairs body growth in adult male mice. The D2R knockout (KO) dwarf mouse has not been well characterized; we therefore sought to determine somatotrope function in the adult pituitary. Using immunohistochemistry and confocal microscopy, we found a significant decrease in the somatotrope population in pituitaries from KO mice (P=0.043), which was paralleled by a decreased GH output from pituitary cells cultured in vitro. In cells from adult mice the response amplitude to GHRH differed between genotypes (lower in KO), but this difference was less dramatic after taking into account the lower basal release and hormone content in the KO cells. Furthermore, there were no significant differences in cAMP generation in response to GHRH between genotypes. By Western blot, GHRH-receptor in pituitary membranes from KO mice was reduced to 46% of the level found in wildtype (WT) mice (P=0.016). Somatostatin induced a concentration-dependent decrease in GH and prolactin (PRL) secretion in both genotypes, and 1x10(-7) M ghrelin released GH in cells from both genotypes (P=0.017) in a proportionate manner to basal levels. These results suggest that KO somatotropes maintain a regulated secretory function. Finally, we tested the direct effect of dopamine on GH and PRL secretion in cells from both genotypes at 20 days and 6 months of life. As expected, we found that dopamine could reduce PRL levels at both ages in WT mice but not in KO mice, but there was no consistent effect of the neurotransmitter on GH release in either genotype at the ages studied. The present study demonstrates that in the adult male D2R KO mouse, there is a reduction in pituitary GH content and secretory activity. Our results point to an involvement of D2R signaling at the hypothalamic level as dopamine did not release GH acting at the pituitary level either in 1-month-old or adult mice. The similarity of the pituitary defect in the D2R KO mouse to that of GHRH-deficient models suggests a probable mechanism. A loss of dopamine signaling via hypothalamic D2Rs at a critical age causes the reduced release of GHRH from hypophyseotropic neurons leading to inadequate clonal expansion of the somatotrope population. Our data also reveal that somatotrope cell number is much more sensitive to changes in neonatal GHRH input than their capacity to develop properly regulated GH-secretory function.

  4. Folate receptor {alpha} regulates cell proliferation in mouse gonadotroph {alpha}T3-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Congjun; Evans, Chheng-Orn; Stevens, Victoria L.

    We have previously found that the mRNA and protein levels of the folate receptor alpha (FR{alpha}) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FR{alpha} has not fully been determined. We investigated the effect of FR{alpha} over-expression in the mouse gonadotroph {alpha}T3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FR{alpha} were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNAmore » staining. These observations indicate that over-expression of FR{alpha} promotes cell proliferation. These effects were abrogated in the same {alpha}T3-1 cells when transfected with a mutant FR{alpha} cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FR{alpha} over-expressing cells. In summary, our data suggests that FR{alpha} regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.« less

  5. Establishment and culture optimization of a new type of pituitary immortalized cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokubu, Yuko; Asashima, Makoto; Life Science Center of TARA, The University of Tsukuba, Ibaraki-ken 305-8577

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells undermore » sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.« less

  6. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas

    PubMed Central

    Fukuoka, Hidenori; Cooper, Odelia; Ben-Shlomo, Anat; Mamelak, Adam; Ren, Song-Guang; Bruyette, Dave; Melmed, Shlomo

    2011-01-01

    Cushing disease is a condition in which the pituitary gland releases excessive adrenocorticotropic hormone (ACTH) as a result of an adenoma arising from the ACTH-secreting cells in the anterior pituitary. ACTH-secreting pituitary adenomas lead to hypercortisolemia and cause significant morbidity and mortality. Pituitary-directed medications are mostly ineffective, and new treatment options are needed. As these tumors express EGFR, we tested whether EGFR might provide a therapeutic target for Cushing disease. Here, we show that in surgically resected human and canine corticotroph cultured tumors, blocking EGFR suppressed expression of proopiomelanocortin (POMC), the ACTH precursor. In mouse corticotroph EGFR transfectants, ACTH secretion was enhanced, and EGF increased Pomc promoter activity, an effect that was dependent on MAPK. Blocking EGFR activity with gefitinib, an EGFR tyrosine kinase inhibitor, attenuated Pomc expression, inhibited corticotroph tumor cell proliferation, and induced apoptosis. As predominantly nuclear EGFR expression was observed in canine and human corticotroph tumors, we preferentially targeted EGFR to mouse corticotroph cell nuclei, which resulted in higher Pomc expression and ACTH secretion, both of which were inhibited by gefitinib. In athymic nude mice, EGFR overexpression enhanced the growth of explanted ACTH-secreting tumors and further elevated serum corticosterone levels. Gefitinib treatment decreased both tumor size and corticosterone levels; it also reversed signs of hypercortisolemia, including elevated glucose levels and excess omental fat. These results indicate that inhibiting EGFR signaling may be a novel strategy for treating Cushing disease. PMID:22105169

  7. Transcription factor 7-like 1 is involved in hypothalamo–pituitary axis development in mice and humans

    PubMed Central

    Gaston-Massuet, Carles; McCabe, Mark J.; Scagliotti, Valeria; Young, Rodrigo M.; Carreno, Gabriela; Gregory, Louise C.; Jayakody, Sujatha A.; Pozzi, Sara; Gualtieri, Angelica; Basu, Basudha; Koniordou, Markela; Wu, Chun-I; Bancalari, Rodrigo E.; Rahikkala, Elisa; Veijola, Riitta; Lopponen, Tuija; Graziola, Federica; Turton, James; Signore, Massimo; Mousavy Gharavy, Seyedeh Neda; Charolidi, Nicoletta; Sokol, Sergei Y.; Merrill, Bradley J.; Dattani, Mehul T.; Martinez-Barbera, Juan Pedro

    2016-01-01

    Aberrant embryonic development of the hypothalamus and/or pituitary gland in humans results in congenital hypopituitarism (CH). Transcription factor 7-like 1 (TCF7L1), an important regulator of the WNT/β-catenin signaling pathway, is expressed in the developing forebrain and pituitary gland, but its role during hypothalamo–pituitary (HP) axis formation or involvement in human CH remains elusive. Using a conditional genetic approach in the mouse, we first demonstrate that TCF7L1 is required in the prospective hypothalamus to maintain normal expression of the hypothalamic signals involved in the induction and subsequent expansion of Rathke’s pouch progenitors. Next, we reveal that the function of TCF7L1 during HP axis development depends exclusively on the repressing activity of TCF7L1 and does not require its interaction with β-catenin. Finally, we report the identification of two independent missense variants in human TCF7L1, p.R92P and p.R400Q, in a cohort of patients with forebrain and/or pituitary defects. We demonstrate that these variants exhibit reduced repressing activity in vitro and in vivo relative to wild-type TCF7L1. Together, our data provide support for a conserved molecular function of TCF7L1 as a transcriptional repressor during HP axis development in mammals and identify variants in this transcription factor that are likely to contribute to the etiology of CH. PMID:26764381

  8. Developmental analysis and influence of genetic background on the Lhx3 W227ter mouse model of combined pituitary hormone deficiency disease.

    PubMed

    Prince, Kelly L; Colvin, Stephanie C; Park, Soyoung; Lai, Xianyin; Witzmann, Frank A; Rhodes, Simon J

    2013-02-01

    Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3(W227ter/W227ter) mouse model. Lhx3(W227ter/W227ter) embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3(W227ter/W227ter) genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3(W227ter/W227ter) animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3(W227ter/W227ter) mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3(W227ter/W227ter) mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases.

  9. Developmental Analysis and Influence of Genetic Background on the Lhx3 W227ter Mouse Model of Combined Pituitary Hormone Deficiency Disease

    PubMed Central

    Prince, Kelly L.; Colvin, Stephanie C.; Park, Soyoung; Lai, Xianyin; Witzmann, Frank A.

    2013-01-01

    Combined pituitary hormone deficiency (CPHD) diseases result in severe outcomes for patients including short stature, developmental delays, and reproductive deficiencies. Little is known about their etiology, especially the developmental profiles and the influences of genetic background on disease progression. Animal models for CPHD provide valuable tools to investigate disease mechanisms and inform diagnostic and treatment protocols. Here we examined hormone production during pituitary development and the influence of genetic background on phenotypic severity in the Lhx3W227ter/W227ter mouse model. Lhx3W227ter/W227ter embryos have deficiencies of ACTH, α-glycoprotein subunit, GH, PRL, TSHβ, and LHβ during prenatal development. Furthermore, mutant mice have significant reduction in the critical pituitary transcriptional activator-1 (PIT1). Through breeding, the Lhx3W227ter/W227ter genotype was placed onto the 129/Sv and C57BL/6 backgrounds. Intriguingly, the genetic background significantly affected viability: whereas Lhx3W227ter/W227ter animals were found in the expected frequencies in C57BL/6, homozygous animals were not viable in the 129/Sv genetic environment. The hormone marker and PIT1 reductions observed in Lhx3W227ter/W227ter mice on a mixed background were also seen in the separate strains but in some cases were more severe in 129/Sv. To further characterize the molecular changes in diseased mice, we conducted a quantitative proteomic analysis of pituitary proteins. This showed significantly lower levels of PRL, pro-opiomelanocortin (ACTH), and α-glycoprotein subunit proteins in Lhx3W227ter/W227ter mice. Together, these data show that hormone deficiency disease is apparent in early prenatal stages in this CPHD model system. Furthermore, as is noted in human disease, genetic background significantly impacts the phenotypic outcome of these monogenic endocrine diseases. PMID:23288907

  10. Pituitary Stem Cell Update and Potential Implications for Treating Hypopituitarism

    PubMed Central

    Castinetti, Frederic; Davis, Shannon W.; Brue, Thierry

    2011-01-01

    Stem cells have been identified in organs with both low and high cell turnover rates. They are characterized by the expression of key marker genes for undifferentiated cells, the ability to self-renew, and the ability to regenerate tissue after cell loss. Several recent reports present evidence for the presence of pituitary stem cells. Here we offer a critical review of the field and suggest additional studies that could resolve points of debate. Recent reports have relied on different markers, including SOX2, nestin, GFRa2, and SCA1, to identify pituitary stem cells and progenitors. Future studies will be needed to resolve the relationships between cells expressing these markers. Members of the Sox family of transcription factors are likely involved in the earliest steps of pituitary stem cell proliferation and the earliest transitions to differentiation. The transcription factor PROP1 and the NOTCH signaling pathway may regulate the transition to differentiation. Identification of the stem cell niche is an important step in understanding organ development. The niche may be the marginal zone around the lumen of Rathke's pouch, between the anterior and intermediate lobes of mouse pituitary, because cells in this region apparently give birth to all six pituitary hormone cell lineages. Stem cells have been shown to play a role in recurrent malignancies in some tissues, and their role in pituitary hyperplasia, pituitary adenomas, and tumors is an important area for future investigation. From a therapeutic viewpoint, the ability to cultivate and grow stem cells in a pituitary predifferentiation state might also be helpful for the long-term treatment of pituitary deficiencies. PMID:21493869

  11. Effect of pituitary hollow fiber units and thyroid supplementation on growth in the little mouse (41949)

    NASA Technical Reports Server (NTRS)

    Harkness, John E.; Hymer, W. C.; Rosenberger, James L.; Grindeland, Richard E.

    1984-01-01

    It is shown that the implantation of encapsulated pituitary cells into heterozygous lit/+ mice inhibited the average percentage change in weight gain as compared to controls. However, homozygous lit/lit mice receiving cell-filled capsules consistently had higher percentage weight gains than their control counterparts. It was also found that thyroid-supplemented mutant mice with pituitary cell implants had significantly higher organ and carcass weights than other mutant groups.

  12. The pituitary hormones arginine vasopressin-neurophysin II and oxytocin-neurophysin I show close linkage with interleukin-1 on mouse chromosome 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marini, J.C.; Nelson, K.K.; Siracusa, L.D.

    1993-01-01

    Arginine vasopressin (AVP) and oxytocin (OXT) are posterior pituitary hormones. AVP is involved in fluid homeostasis, while OXT is involved in lactation and parturition. AVP is derived from a larger precursor, prepro-arginine-vasopressin-neurophysin II (prepro-AVP-NP II; AVP), and is physically linked to prepro-oxytocin-neurophysin I (prepro-OXT-NPI1; OXT). The genes for AVP and OXT are separated by only 12 kb of DNA in humans, whereas in the mouse 3.5 kb of intergenic sequence lies between Avp and Oxt. Interspecific backcross analysis has now been used to map the Avp/Oxt complex to chromosome 2 in the mouse. This map position confirms and extends themore » known region of linkage conservation between mouse chromosome 2 and human chromosome 20. 16 refs., 2 figs., 1 tab.« less

  13. Ghrelin receptor expression and colocalization with anterior pituitary hormones using a GHSR-GFP mouse line.

    PubMed

    Reichenbach, Alex; Steyn, Frederik J; Sleeman, Mark W; Andrews, Zane B

    2012-11-01

    Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.

  14. Msx1 Homeodomain Protein Represses the αGSU and GnRH Receptor Genes During Gonadotrope Development

    PubMed Central

    Xie, Huimin; Cherrington, Brian D.; Meadows, Jason D.; Witham, Emily A.

    2013-01-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at −114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program. PMID:23371388

  15. Msx1 homeodomain protein represses the αGSU and GnRH receptor genes during gonadotrope development.

    PubMed

    Xie, Huimin; Cherrington, Brian D; Meadows, Jason D; Witham, Emily A; Mellon, Pamela L

    2013-03-01

    Multiple homeodomain transcription factors are crucial for pituitary organogenesis and cellular differentiation. A homeodomain repressor, Msx1, is expressed from the ventral aspect of the developing anterior pituitary and implicated in gonadotrope differentiation. Here, we find that Msx1 represses transcription of lineage-specific pituitary genes such as the common α-glycoprotein subunit (αGSU) and GnRH receptor (GnRHR) promoters in the mouse gonadotrope-derived cell lines, αT3-1 and LβT2. Repression of the mouse GnRHR promoter by Msx1 is mediated through a consensus-binding motif in the downstream activin regulatory element (DARE). Truncation and mutation analyses of the human αGSU promoter map Msx1 repression to a site at -114, located at the junctional regulatory element (JRE). Dlx activators are closely related to the Msx repressors, acting through the same elements, and Dlx3 and Dlx2 act as transcriptional activators for GnRHR and αGSU, respectively. Small interfering RNA knockdown of Msx1 in αT3-1 cells increases endogenous αGSU and GnRHR mRNA expression. Msx1 gene expression reaches its maximal expression at the rostral edge at e13.5. The subsequent decline in Msx1 expression specifically coincides with the onset of expression of both αGSU and GnRHR. The expression levels of both αGSU and GnRHR in Msx1-null mice at e18.5 are higher compared with wild type, further confirming a role for Msx1 in the repression of αGSU and GnRHR. In summary, Msx1 functions as a negative regulator early in pituitary development by repressing the gonadotrope-specific αGSU and GnRHR genes, but a temporal decline in Msx1 expression alleviates this repression allowing induction of GnRHR and αGSU, thus serving to time the onset of gonadotrope-specific gene program.

  16. Mutations in PROP1 cause familial combined pituitary hormone deficiency.

    PubMed

    Wu, W; Cogan, J D; Pfäffle, R W; Dasen, J S; Frisch, H; O'Connell, S M; Flynn, S E; Brown, M R; Mullis, P E; Parks, J S; Phillips, J A; Rosenfeld, M G

    1998-02-01

    Combined pituitary hormone deficiency (CPHD) in man denotes impaired production of growth hormone (GH) and one or more of the other five anterior pituitary hormones. Mutations of the pituitary transcription factor gene POU1F1 (the human homologue of mouse Pit1) are responsible for deficiencies of GH, prolactin and thyroid stimulating hormone (TSH) in Snell and Jackson dwarf mice and in man, while the production of adrenocorticotrophic hormone (ACTH), luteinizing hormone (LH) and follicle stimulating hormone (FSH) is preserved. The Ames dwarf (df) mouse displays a similar phenotype, and appears to be epistatic to Snell and Jackson dwarfism. We have recently positionally cloned the putative Ames dwarf gene Prop1, which encodes a paired-like homeodomain protein that is expressed specifically in embryonic pituitary and is necessary for Pit1 expression. In this report, we have identified four CPHD families with homozygosity or compound heterozygosity for inactivating mutations of PROP1. These mutations in the human PROP1 gene result in a gene product with reduced DNA-binding and transcriptional activation ability in comparison to the product of the murine df mutation. In contrast to individuals with POU1F1 mutations, those with PROP1 mutations cannot produce LH and FSH at a sufficient level and do not enter puberty spontaneously. Our results identify a major cause of CPHD in humans and suggest a direct or indirect role for PROP1 in the ontogenesis of pituitary gonadotropes, as well as somatotropes, lactotropes and caudomedial thyrotropes.

  17. EMK protein kinase-null mice: dwarfism and hypofertility associated with alterations in the somatotrope and prolactin pathways.

    PubMed

    Bessone, S; Vidal, F; Le Bouc, Y; Epelbaum, J; Bluet-Pajot, M T; Darmon, M

    1999-10-01

    Gene trapping was used in embryonic stem (ES) cells in an attempt to inactivate genes involved in development. The Emk (ELKL motif kinase) gene has been disrupted and a mutant mouse line derived. Previous work had shown that EMK kinases, called MARK in the rat, exert a major control on microtubule stability by phosphorylating microtubule-associated proteins and that genes homologous to Emk in yeast or Caenorhabditis elegans are essential for cell and embryonic polarity. Although we found the Emk gene to be active in the preimplantation mouse embryo and then to show a widespread expression, Emk-null mice had no embryonic defect and were viable. They show an overall proportionate dwarfism and a peculiar hypofertility: homozygotes are not fertile when intercrossed, but are fertile in other types of crosses. Insulin-like growth factor I (IGF I) and IGF-binding protein 3 (IGFBP3) were reduced in the plasma of homozygotes of both sexes. A direct implication of the EMK kinase in IGF I plasmatic production is unlikely because the Emk gene does not seem to be expressed in hepatocytes. Nevertheless, GH assayed at arbitrary times in plasma did not show differences between genotypes and GH concentrations in pituitary extracts were not found to be altered in homozygotes. Our results, though, do not exclude the possibility that in the mutants the overall quantity of GH secreted daily is reduced. Our observation of a smaller size of the pituitaries of the mutants is in favor of this hypothesis. The prolactin concentration in the pituitaries was much lowered in homozygous females, but it was normal in males. The possible involvement of EMK protein kinase in hormone secretion in the pituitary and/or the hypothalamus, via the microtubule network, is discussed. Copyright 1999 Academic Press.

  18. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest.

  19. The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling

    PubMed Central

    2013-01-01

    Background The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke’s pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke’s pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. Results We show that Rathke’s pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polarisfl/fl; Wnt1-Cre, Ofd1-/- and Kif3a-/- primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1-/- mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. Conclusion These results provide insight into a poorly understood ancestral vertebrate structure. It appears that the opening of the buccohypophyseal canal depends upon Shh signaling and that modulation in this pathway most probably accounts for its persistence in phylogeny. PMID:23537390

  20. The buccohypophyseal canal is an ancestral vertebrate trait maintained by modulation in sonic hedgehog signaling.

    PubMed

    Khonsari, Roman H; Seppala, Maisa; Pradel, Alan; Dutel, Hugo; Clément, Gaël; Lebedev, Oleg; Ghafoor, Sarah; Rothova, Michaela; Tucker, Abigael; Maisey, John G; Fan, Chen-Ming; Kawasaki, Maiko; Ohazama, Atsushi; Tafforeau, Paul; Franco, Brunella; Helms, Jill; Haycraft, Courtney J; David, Albert; Janvier, Philippe; Cobourne, Martyn T; Sharpe, Paul T

    2013-03-28

    The pituitary gland is formed by the juxtaposition of two tissues: neuroectoderm arising from the basal diencephalon, and oral epithelium, which invaginates towards the central nervous system from the roof of the mouth. The oral invagination that reaches the brain from the mouth is referred to as Rathke's pouch, with the tip forming the adenohypophysis and the stalk disappearing after the earliest stages of development. In tetrapods, formation of the cranial base establishes a definitive barrier between the pituitary and oral cavity; however, numerous extinct and extant vertebrate species retain an open buccohypophyseal canal in adulthood, a vestige of the stalk of Rathke's pouch. Little is currently known about the formation and function of this structure. Here we have investigated molecular mechanisms driving the formation of the buccohypophyseal canal and their evolutionary significance. We show that Rathke's pouch is located at a boundary region delineated by endoderm, neural crest-derived oral mesenchyme and the anterior limit of the notochord, using CD1, R26R-Sox17-Cre and R26R-Wnt1-Cre mouse lines. As revealed by synchrotron X-ray microtomography after iodine staining in mouse embryos, the pouch has a lobulated three-dimensional structure that embraces the descending diencephalon during pituitary formation. Polaris(fl/fl); Wnt1-Cre, Ofd1(-/-) and Kif3a(-/-) primary cilia mouse mutants have abnormal sonic hedgehog (Shh) signaling and all present with malformations of the anterior pituitary gland and midline structures of the anterior cranial base. Changes in the expressions of Shh downstream genes are confirmed in Gas1(-/-) mice. From an evolutionary perspective, persistence of the buccohypophyseal canal is a basal character for all vertebrates and its maintenance in several groups is related to a specific morphology of the midline that can be related to modulation in Shh signaling. These results provide insight into a poorly understood ancestral vertebrate structure. It appears that the opening of the buccohypophyseal canal depends upon Shh signaling and that modulation in this pathway most probably accounts for its persistence in phylogeny.

  1. Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    PubMed Central

    Bavers, David L.; Beuschlein, Felix; Mortensen, Amanda H.; Keegan, Catherine E.; Hammer, Gary D.; Camper, Sally A.

    2011-01-01

    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism. PMID:22145038

  2. Tumorigenic potential of pituitary tumor transforming gene (PTTG) in vivo investigated using a transgenic mouse model, and effects of cross breeding with p53 (+/-) transgenic mice.

    PubMed

    Fong, Miranda Y; Farghaly, Hanan; Kakar, Sham S

    2012-11-20

    Pituitary tumor-transforming gene (PTTG) is an oncogene that is overexpressed in variety of tumors and exhibits characteristics of a transforming gene. Previous transgenic mouse models to access the tumorigenic potential in the pituitary and ovary have resulted in dysplasia without formation of visible tumors, possibly due to the insufficient expression of PTTG. PTTG expression level is critical for ovarian tumorigenesis in a xenograft model. Therefore, the tumorigenic function of PTTG in vivo remains unclear. We generated a transgenic mouse that overexpresses PTTG driven by the CMV promoter to determine whether PTTG functions as a transforming oncogene that is capable of initiating tumorigenesis. Transgenic animals were generated by microinjection of PTTG transgene into the male pronucleus of FVB 0.5 day old embryos. Expression levels of PTTG in tissues of transgenic animals were analyzed using an immunohistochemical analysis. H&E staining and immunohistostaining were performed to examine the type of tumor in transgenic and PTTG transgenic/p53+/- animals. PTTG transgenic offspring (TgPTTG) were monitored for tumor development at various ages. H&E analysis was performed to identify the presence of cancer and hyperplastic conditions verified with the proliferation marker PCNA and the microvessel marker CD31. Immunohistochemistry was performed to determine transgene expression, revealing localization to the epithelium of the fallopian tube, with more generalized expression in the liver, lung, kidney, and spleen. At eight months of age, 2 out of 15 TgPTTG developed ovarian cancer, 2 out of 15 developed benign tumors, 2 out of 15 developed cervical dysplasia, and 3 out of 15 developed adenomyosis of the uterus. At ten months of age, 2 out of 10 TgPTTG developed adenocarcinoma of the ovary, 1 out of 10 developed a papillary serous adenocarcinoma, and 2 out of 10 presented with atypia of ovarian epithelial cells. Tumorigenesis is a multi-step process, often requiring multiple oncogenes and/or inactivation of tumor suppressor genes. Therefore, to understand the contribution of p53 to PTTG induced tumorigenesis, we crossbred TgPTTG to p53+/- mice and maintained those 8 to 10 months. TgPTTG/p53+/- animals developed sarcomas faster than p53+/- alone as well as different tumor types in addition to cervical carcinomas in situ in 10 out of 17 females. We conclude that while PTTG is a functional transforming oncogene, it requires an additional partner to effectively promote tumorigenesis through the loss of p53 include or between function or modulation.

  3. Establishment and culture optimization of a new type of pituitary immortalized cell line.

    PubMed

    Kokubu, Yuko; Asashima, Makoto; Kurisaki, Akira

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    PubMed

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  5. Hypothalamic-pituitary cytokine network.

    PubMed

    Kariagina, Anastasia; Romanenko, Dmitry; Ren, Song-Guang; Chesnokova, Vera

    2004-01-01

    Cytokines expressed in the brain and involved in regulating the hypothalamus-pituitary-adrenal (HPA) axis contribute to the neuroendocrine interface. Leukemia inhibitory factor (LIF) and LIF receptors are expressed in human pituitary cells and murine hypothalamus and pituitary. LIF potently induces pituitary proopiomelanocortin (POMC) gene transcription and ACTH secretion and potentiates CRH induction of POMC. In vivo, LIF, along with CRH, enhances POMC expression and ACTH secretion in response to emotional and inflammatory stress. To further elucidate specific roles for both CRH and LIF in activating the inflammatory HPA response, double-knockout mice (CRH/LIFKO) were generated by breeding the null mutants for each respective single gene. Inflammation produced by ip injection of lipopolysaccharide (1 microg/mouse) to double CRH and LIF-deficient mice elicited pituitary POMC induction similar to wild type and markedly higher than in single null animals (P<0.0.01). Double-knockout mice also demonstrated robust corticosterone response to inflammation. High pituitary POMC mRNA levels may reflect abundant TNFalpha, IL-1beta, and IL-6 activation observed in the hypothalamus and pituitary of these animals. Our results suggest that increased central proinflammatory cytokine expression can compensate for the impaired HPA axis function and activates inflammatory ACTH and corticosterone responses in mice-deficient in both CRH and LIF.

  6. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development.

    PubMed

    Chung, Wilson C J; Linscott, Megan L; Rodriguez, Karla M; Stewart, Courtney E

    2016-01-01

    Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.

  7. Multiple endocrine neoplasia type 1 knockout mice develop parathyroid, pancreatic, pituitary and adrenal tumours with hypercalcaemia, hypophosphataemia and hypercorticosteronaemia.

    PubMed

    Harding, Brian; Lemos, Manuel C; Reed, Anita A C; Walls, Gerard V; Jeyabalan, Jeshmi; Bowl, Michael R; Tateossian, Hilda; Sullivan, Nicky; Hough, Tertius; Fraser, William D; Ansorge, Olaf; Cheeseman, Michael T; Thakker, Rajesh V

    2009-12-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized in man by parathyroid, pancreatic, pituitary and adrenal tumours. The MEN1 gene encodes a 610-amino acid protein (menin) which is a tumour suppressor. To investigate the in vivo role of menin, we developed a mouse model, by deleting Men1 exons 1 and 2 and investigated this for MEN1-associated tumours and serum abnormalities. Men1(+/-) mice were viable and fertile, and 220 Men1(+/-) and 94 Men1(+/+) mice were studied between the ages of 3 and 21 months. Survival in Men1(+/-) mice was significantly lower than in Men1(+/+) mice (<68% vs >85%, P<0.01). Men1(+/-) mice developed, by 9 months of age, parathyroid hyperplasia, pancreatic tumours which were mostly insulinomas, by 12 months of age, pituitary tumours which were mostly prolactinomas, and by 15 months parathyroid adenomas and adrenal cortical tumours. Loss of heterozygosity and menin expression was demonstrated in the tumours, consistent with a tumour suppressor role for the Men1 gene. Men1(+/-) mice with parathyroid neoplasms were hypercalcaemic and hypophosphataemic, with inappropriately normal serum parathyroid hormone concentrations. Pancreatic and pituitary tumours expressed chromogranin A (CgA), somatostatin receptor type 2 and vascular endothelial growth factor-A. Serum CgA concentrations in Men1(+/-) mice were not elevated. Adrenocortical tumours, which immunostained for 3-beta-hydroxysteroid dehydrogenase, developed in seven Men1(+/-) mice, but resulted in hypercorticosteronaemia in one out of the four mice that were investigated. Thus, these Men1(+/-) mice are representative of MEN1 in man, and will help in investigating molecular mechanisms and treatments for endocrine tumours.

  8. Relaxation of Insulin-Like Growth Factor II Imprinting in Prostate Cancer Development

    DTIC Science & Technology

    2005-01-01

    in the Results in Senescence and Biallelic IGF2 Expression- Hypo - mouse and are putative ICRs (Fig. 3A). At MR2, located within methylation has been...elderly. In In mammals, reproduction is controlled by the hypo - the case of prostate cancer, the most commonly diagnosed thalamic--pituitary-gonadal... caloric the ligands IGF-I, IGF-II, cell-surface receptors and binding intake or hormonal exposure), loss of imprinting of IGF-II proteins. Epidemiological

  9. cDNA cloning and characterization of mouse DTEF-1 and ETF, members of the TEA/ATTS family of transcription factors.

    PubMed

    Yockey, C E; Shimizu, N

    1998-02-01

    Members of the TEA/ATTS family of transcription factors have been found in most representative eukaryotic organisms. In vertebrates, the TEA family contains at least four members, which share overlapping DNA-binding specificity and have similar transcriptional activation properties. In this article, we describe the cDNA cloning and characterization of the murine TEA proteins DTEF-1 (mDTEF-1) and ETF. Using in situ hybridization analysis of mouse embryos, we found that mDTEF-1 and ETF transcript distributions substantially overlap. ETF is expressed throughout the embryo except in the myocardium early in development, whereas late in development, it is enriched in lung and neuroectoderm. Mouse DTEF-1 is expressed at a much lower level throughout development and is substantially enriched in ectoderm and skin, as well as in the developing pituitary at midgestation. Northern blot analysis of adult mouse tissue total RNA showed that both ETF and mDTEF-1 are abundant in uterus and lung relative to other tissues. Using gel mobility shift assays and GAL4-fusion protein analysis, we demonstrated that the full coding sequences of ETF and mDTEF-1 encode M-CAT/GT-IIC-binding proteins containing activation domains.

  10. High resolution time course analysis of gene expression from the liver and pituitary

    PubMed Central

    Hughes, Michael E.; DiTacchio, Luciano; Hayes, Kevin; Pullivarthy, Sandhya R.; Panda, Satchidananda; Hogenesch, John

    2009-01-01

    In both the suprachiasmatic nucleus and peripheral tissues, the circadian oscillator drives rhythmic transcription of downstream target genes. Recently, a number of studies have used DNA microarrays to systematically identify oscillating transcripts in plants, fruit flies, rats and mice. These studies have identified several dozen to many hundred rhythmically expressed genes by sampling tissues every four hours for one, two, or more days. To extend this work, we have performed DNA microarray analysis on RNA derived from the mouse pituitary sampled every hour for two days. COSOPT and Fisher's G-test were employed at a false-discovery rate less than 5% to identify more than 250 genes in the pituitary that oscillate with a 24-hour period length. We found that increasing the frequency of sampling across the circadian day dramatically increased the statistical power of both COSOPT and Fisher's G-test, resulting in considerably more high-confidence identifications of rhythmic transcripts than previously described. Finally, to extend the utility of these data sets, a web-based resource has been constructed at http://wasabi.itmat.upenn.edu/circa/mouse that is freely available to the research community. PMID:18419295

  11. Expression and Roles of Pannexins in ATP Release in the Pituitary Gland

    PubMed Central

    Li, Shuo; Bjelobaba, Ivana; Yan, Zonghe; Kucka, Marek; Tomić, Melanija

    2011-01-01

    Pannexins are a newly discovered three-member family of proteins expressed in the brain and peripheral tissues that belong to the superfamily of gap junction proteins. However, in mammals pannexins do not form gap junctions, and their expression and function in the pituitary gland have not been studied. Here we show that the rat pituitary gland expresses mRNA and protein transcripts of pannexins 1 and 2 but not pannexin 3. Pannexin 1 was more abundantly expressed in the anterior lobe, whereas pannexin 2 was more abundantly expressed in the intermediate and posterior pituitary. Pannexin 1 was identified in corticotrophs and a fraction of somatotrophs, the S100-positive pituicytes of the posterior pituitary and AtT-20 (mouse pituitary adrenocorticotropin-secreting cells) and rat immortalized pituitary cells secreting prolactin, whereas pannexin 2 was detected in the S100-positive folliculostellate cells of the anterior pituitary, melanotrophs of the intermediate lobe, and vasopressin-containing axons and nerve endings in the posterior lobe. Overexpression of pannexins 1 and 2 in AtT-20 pituitary cells enhanced the release of ATP in the extracellular medium, which was blocked by the gap junction inhibitor carbenoxolone. Basal ATP release in At-T20 cells was also suppressed by down-regulating the expression of endogenous pannexin 1 but not pannexin 2 with their short interfering RNAs. These results indicate that pannexins may provide a pathway for delivery of ATP, which is a native agonist for numerous P2X cationic channels and G protein-coupled P2Y receptors endogenously expressed in the pituitary gland. PMID:21467198

  12. Expression and roles of pannexins in ATP release in the pituitary gland.

    PubMed

    Li, Shuo; Bjelobaba, Ivana; Yan, Zonghe; Kucka, Marek; Tomic, Melanija; Stojilkovic, Stanko S

    2011-06-01

    Pannexins are a newly discovered three-member family of proteins expressed in the brain and peripheral tissues that belong to the superfamily of gap junction proteins. However, in mammals pannexins do not form gap junctions, and their expression and function in the pituitary gland have not been studied. Here we show that the rat pituitary gland expresses mRNA and protein transcripts of pannexins 1 and 2 but not pannexin 3. Pannexin 1 was more abundantly expressed in the anterior lobe, whereas pannexin 2 was more abundantly expressed in the intermediate and posterior pituitary. Pannexin 1 was identified in corticotrophs and a fraction of somatotrophs, the S100-positive pituicytes of the posterior pituitary and AtT-20 (mouse pituitary adrenocorticotropin-secreting cells) and rat immortalized pituitary cells secreting prolactin, whereas pannexin 2 was detected in the S100-positive folliculostellate cells of the anterior pituitary, melanotrophs of the intermediate lobe, and vasopressin-containing axons and nerve endings in the posterior lobe. Overexpression of pannexins 1 and 2 in AtT-20 pituitary cells enhanced the release of ATP in the extracellular medium, which was blocked by the gap junction inhibitor carbenoxolone. Basal ATP release in At-T20 cells was also suppressed by down-regulating the expression of endogenous pannexin 1 but not pannexin 2 with their short interfering RNAs. These results indicate that pannexins may provide a pathway for delivery of ATP, which is a native agonist for numerous P2X cationic channels and G protein-coupled P2Y receptors endogenously expressed in the pituitary gland.

  13. From Consternation to Revelation: Discovery of a Role for IGSF1 in Pituitary Control of Thyroid Function.

    PubMed

    Bernard, Daniel J; Brûlé, Emilie; Smith, Courtney L; Joustra, Sjoerd D; Wit, Jan M

    2018-03-01

    Immunoglobulin superfamily, member 1 (IGSF1) is a transmembrane glycoprotein highly expressed in the mammalian pituitary gland. Shortly after its discovery in 1998, the protein was proposed to function as a coreceptor for inhibins (and was even temporarily renamed inhibin binding protein). However, subsequent investigations, both in vitro and in vivo , failed to support a role for IGSF1 in inhibin action. Research on IGSF1 nearly ground to a halt until 2011, when next-generation sequencing identified mutations in the X-linked IGSF1 gene in boys and men with congenital central hypothyroidism. IGSF1 was localized to thyrotrope cells, implicating the protein in pituitary control of the thyroid. Investigations in two Igsf1 knockout mouse models converged to show that IGSF1 deficiency leads to reduced expression of the receptor for thyrotropin-releasing hormone (TRH) and impaired TRH stimulation of thyrotropin secretion, providing a candidate mechanism for the central hypothyroidism observed in patients. Nevertheless, the normal functions of IGSF1 in thyrotropes and other cells remain unresolved. Moreover, IGSF1 mutations are also commonly associated with other clinical phenotypes, including prolactin and growth hormone dysregulation, and macroorchidism. How the loss of IGSF1 produces these characteristics is unknown. Although early studies of IGSF1 ran into roadblocks and blind alleys, armed with the results of detailed clinical investigations, powerful mouse models, and new reagents, the field is now poised to discover IGSF1's function in endocrine tissues, including the pituitary and testes.

  14. Protein stabilization by RSUME accounts for PTTG pituitary tumor abundance and oncogenicity.

    PubMed

    Fuertes, M; Sapochnik, M; Tedesco, L; Senin, S; Attorresi, A; Ajler, P; Carrizo, G; Cervio, A; Sevlever, G; Bonfiglio, J J; Stalla, G K; Arzt, E

    2018-06-01

    Increased levels of the proto-oncogene pituitary tumor-transforming gene 1 (PTTG) have been repeatedly reported in several human solid tumors, especially in endocrine-related tumors such as pituitary adenomas. Securin PTTG has a critical role in pituitary tumorigenesis. However, the cause of upregulation has not been found yet, despite analyses made at the gene, promoter and mRNA level that show that no mutations, epigenetic modifications or other mechanisms that deregulate its expression may explain its overexpression and action as an oncogene. We describe that high PTTG protein levels are induced by the RWD-containing sumoylation enhancer (RWDD3 or RSUME), a protein originally identified in the same pituitary tumor cell line in which PTTG was also cloned. We demonstrate that PTTG and RSUME have a positive expression correlation in human pituitary adenomas. RSUME increases PTTG protein in pituitary tumor cell lines, prolongs the half-life of PTTG protein and regulates the PTTG induction by estradiol. As a consequence, RSUME enhances PTTG transcription factor and securin activities. PTTG hyperactivity on the cell cycle resulted in recurrent and unequal divisions without cytokinesis, and the consequential appearance of aneuploidies and multinucleated cells in the tumor. RSUME knockdown diminishes securin PTTG and reduces its tumorigenic potential in a xenograft mouse model. Taken together, our findings show that PTTG high protein steady state levels account for PTTG tumor abundance and demonstrate a critical role of RSUME in this process in pituitary tumor cells. © 2018 Society for Endocrinology.

  15. Tissue-specific expression of squirrel monkey chorionic gonadotropin

    PubMed Central

    Vasauskas, Audrey A.; Hubler, Tina R.; Boston, Lori; Scammell, Jonathan G.

    2010-01-01

    Pituitary gonadotropins LH and FSH play central roles in reproductive function. In Old World primates, LH stimulates ovulation in females and testosterone production in males. Recent studies have found that squirrel monkeys and other New World primates lack expression of LH in the pituitary. Instead, chorionic gonadotropin (CG), which is normally only expressed in the placenta of Old World primates, is the active luteotropic pituitary hormone in these animals. The goal of this study was to investigate the tissue-specific regulation of squirrel monkey CG. We isolated the squirrel monkey CGβ gene and promoter from genomic DNA from squirrel monkey B-lymphoblasts and compared the promoter sequence to that of the common marmoset, another New World primate, and human CGβ and LHβ. Using reporter gene assays, we found that a squirrel monkey CGβ promoter fragment (−1898/+9) is active in both mouse pituitary LβT2 and human placenta JEG3 cells, but not in rat adrenal PC12 cells. Furthermore, within this construct separate cis-elements are responsible for pituitary- and placenta-specific expression. Pituitary-specific expression is governed by Egr-1 binding sites in the proximal 250 bp of the promoter, whereas placenta-specific expression is controlled by AP-2 sites further upstream. Thus, selective expression of the squirrel monkey CGβ promoter in pituitary and placental cells is governed by distinct cis-elements that exhibit homology with human LHβ and marmoset CGβ promoters, respectively. PMID:21130091

  16. The Comparison between Circadian Oscillators in Mouse Liver and Pituitary Gland Reveals Different Integration of Feeding and Light Schedules

    PubMed Central

    Bur, Isabelle M.; Zouaoui, Sonia; Fontanaud, Pierre; Coutry, Nathalie; Molino, François; Martin, Agnès O.; Mollard, Patrice; Bonnefont, Xavier

    2010-01-01

    The mammalian circadian system is composed of multiple peripheral clocks that are synchronized by a central pacemaker in the suprachiasmatic nuclei of the hypothalamus. This system keeps track of the external world rhythms through entrainment by various time cues, such as the light-dark cycle and the feeding schedule. Alterations of photoperiod and meal time modulate the phase coupling between central and peripheral oscillators. In this study, we used real-time quantitative PCR to assess circadian clock gene expression in the liver and pituitary gland from mice raised under various photoperiods, or under a temporal restricted feeding protocol. Our results revealed unexpected differences between both organs. Whereas the liver oscillator always tracked meal time, the pituitary circadian clockwork showed an intermediate response, in between entrainment by the light regimen and the feeding-fasting rhythm. The same composite response was also observed in the pituitary gland from adrenalectomized mice under daytime restricted feeding, suggesting that circulating glucocorticoids do not inhibit full entrainment of the pituitary clockwork by meal time. Altogether our results reveal further aspects in the complexity of phase entrainment in the circadian system, and suggest that the pituitary may host oscillators able to integrate multiple time cues. PMID:21179516

  17. Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion.

    PubMed

    Gage, P J; Roller, M L; Saunders, T L; Scarlett, L M; Camper, S A

    1996-01-01

    The Ames dwarf mouse transmits a recessive mutation (df) resulting in a profound anterior pituitary hypocellularity due to a general lack of thyrotropes, somatotropes and lactotropes. These cell types are also dependent on the pituitary-specific transcription factor, Pit-1. We present evidence that expression of Pit-1 and limited commitment to these cells lineages occurs in df/df pituitaries. Thus, the crucial role of df may be in lineage-specific proliferation, rather than cytodifferentiation. The presence of all three Pit-1-dependent cell types in clonally derived clusters provides compelling evidence that these three lineages share a common, pluripotent precursor cell. Clusters containing different combinations of Pit-1-dependent cell types suggests that the Pit-1+ precursor cells choose from multiple developmental options during ontogeny. Characterization of df/df<-->+/+ chimeric mice demonstrated that df functions by a cell-autonomous mechanism. Therefore, df and Pit-1 are both cell-autonomous factors required for thyrotrope, somatotrope and lactotrope ontogeny, but their relative roles are different.

  18. Targeted overexpression of calcitonin in gonadotrophs of transgenic mice leads to chronic hypoprolactinemia.

    PubMed

    Yuan, Ren; Kulkarni, Trupti; Wei, Fu; Shah, Girish V

    2005-01-14

    It was previously shown that calcitonin-like pituitary peptide (pit-CT) is synthesized and secreted by gonadotrophs, and pit-CT inhibits PRL gene transcription and lactotroph cell proliferation. Present studies examined long-term consequences of pit-CT overexpression on the functioning of mouse anterior pituitary (AP) gland. Targeted overexpression of pit-CT in gonadotrophs of mouse pituitaries was achieved by generating mice overexpressing bovine luteinizing hormone (LH)-alpha subunit promoter-pit-CT cDNA transgene. Transgenic (pit-CT+) mice displayed chronic but selective overexpression of pit-CT in gonadotrophs. The mice also displayed a dramatic decline in PRL gene expression as assessed by PRL mRNA abundance, PRL immunohistochemistry (IHC) and serum PRL levels. LH secretion in pit-CT+ mice was also reduced, without any change in FSH secretion. Reproductive abnormalities such as prolonged estrous cycles, reduced pregnancy rate, delivery of smaller litters, increased neonatal mortality and deficient lactation were also observed. Administration of PRL during early pregnancy significantly increased the pregnancy rate and neonatal survival of newborns. These results demonstrate that overexpression of pit-CT leads to chronic hypoprolactinemia and reproductive dysfunction in female mice, and reinforces the possibility that gonadotroph-derived pit-CT is an important paracrine regulator of lactotroph function.

  19. Proteomic response of mouse pituitary gland under heat stress revealed active regulation of stress responsive proteins.

    PubMed

    Memon, Shahar Bano; Lian, Li; Gadahi, Javaid Ali; Genlin, Wang

    2016-10-01

    The mapping of tissue proteomes can identify the molecular regulators and effectors of their physiological activity. However, proteomic response of a mammalian tissue against heat stress (HS) particularly of the pituitary gland has not yet been resolved. The proteomic response of the mouse pituitary gland against HS at 40 o C was evaluated by iTRAQ. We found that, HS actively regulates stress-related proteins. Among 375 differentially expressed proteins, 26 up and 46 downregulated proteins were found as stress responsive proteins. Two proteins belonging to the HSP70 and one to HSP90 family were found upregulated. Meanwhile, the expression of HSP90α (Cytosolic), HSP60, and HSP84b were observed to be downregulated. A neuroprotective enzyme Nmnat3 was observed to be significantly upregulated. Three proteins related to the intermediate filament (IF) proteins (lamins, vimentin and keratins) were also found to be upregulated. We reported, an association between the IF proteins and HSPs as a biological marker of HS. The expression of Apo A-IV was upregulated and might be one explanation for low food intake during HS. Our findings indicated that, differentially expressed proteins might be played important roles in combating HS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Altered circadian rhythms of the stress hormone and melatonin response in lupus-prone MRL/MP-fas(Ipr) mice.

    PubMed

    Lechner, O; Dietrich, H; Oliveira dos Santos, A; Wiegers, G J; Schwarz, S; Harbutz, M; Herold, M; Wick, G

    2000-06-01

    The immune system interacts with the hypothalamo-pituitary-adrenal axis via so-called glucocorticoid increasing factors, which are produced by the immune system during immune reactions, causing an elevation of systemic glucocorticoid levels that contribute to preservation of the immune reactions specificities. Previous results from our laboratory had already shown an altered immuno-neuroendocrine dialogue via the hypothalamo-pituitary-adrenal axis in autoimmune disease-prone chicken and mouse strains. In the present study, we further investigated the altered glucocorticoid response via the hypothalamo-pituitary-adrenal axis in murine lupus. We established the circadian rhythms of corticosterone, dehydroepiandrosterone-sulfate, adrenocorticotropic hormone and melatonin, as well as the time response curves after injection of interleukin-1 of the first three parameters in normal SWISS and lupus-prone MRL/MP-fas(Ipr) mice. The results show that lupus-prone MRL/ MP-fas(Ipr) mice do not react appropriately to changes of the light/dark cycle, circadian melatonin rhythms seem to uncouple from the light/dark cycle, and plasma corticosterone levels are elevated during the resting phase. Diurnal changes of dehydroepiandrosterone-sulfate and adrenocorticotropic hormone were normal compared to healthy controls. These data indicate that MRL/ MP-fas(Ipr) mice not only show an altered glucocorticoid response mediated via the hypothalamo pituitary adrenal axis to IL-1, but are also affected by disturbances of corticosterone and melatonin circadian rhythms. Our findings may have implications for intrathymic T cell development and the emergence of autoimmune disease.

  1. Tissue-specific expression of squirrel monkey chorionic gonadotropin.

    PubMed

    Vasauskas, Audrey A; Hubler, Tina R; Boston, Lori; Scammell, Jonathan G

    2011-02-01

    Pituitary gonadotropins LH and FSH play central roles in reproductive function. In Old World primates, LH stimulates ovulation in females and testosterone production in males. Recent studies have found that squirrel monkeys and other New World primates lack expression of LH in the pituitary. Instead, chorionic gonadotropin (CG), which is normally only expressed in the placenta of Old World primates, is the active luteotropic pituitary hormone in these animals. The goal of this study was to investigate the tissue-specific regulation of squirrel monkey CG. We isolated the squirrel monkey CGβ gene and promoter from genomic DNA from squirrel monkey B-lymphoblasts and compared the promoter sequence to that of the common marmoset, another New World primate, and human and rhesus macaque CGβ and LHβ. Using reporter gene assays, we found that a squirrel monkey CGβ promoter fragment (-1898/+9) is active in both mouse pituitary LβT2 and human placenta JEG3 cells, but not in rat adrenal PC12 cells. Furthermore, within this construct separate cis-elements are responsible for pituitary- and placenta-specific expression. Pituitary-specific expression is governed by Egr-1 binding sites in the proximal 250 bp of the promoter, whereas placenta-specific expression is controlled by AP-2 sites further upstream. Thus, selective expression of the squirrel monkey CGβ promoter in pituitary and placental cells is governed by distinct cis-elements that exhibit homology with human LHβ and marmoset CGβ promoters, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. GFP reporter mice for the retinoblastoma-related cell cycle regulator p107

    PubMed Central

    Burkhart, Deborah L.; Viatour, Patrick; Ho, Victoria M.; Sage, Julien

    2009-01-01

    The RB tumor suppressor gene is mutated in a broad range of human cancers, including pediatric retinoblastoma. Strikingly, however, Rb mutant mice develop tumors of the pituitary and thyroid glands, but not retinoblastoma. Mouse genetics experiments have demonstrated that p107, a protein related to pRB, is capable of preventing retinoblastoma, but not pituitary tumors, in Rb-deficient mice. Evidence suggests that the basis for this compensatory function of p107 is increased transcription of the p107 gene in response to Rb inactivation. To begin to address the context-dependency of this compensatory role of p107 and to follow p107 expression in vivo, we have generated transgenic mice carrying an enhanced GFP (eGFP) reporter inserted into a bacterial artificial chromosome (BAC) containing the mouse p107 gene. Expression of the eGFP transgene parallels that of p107 in these transgenic mice and identifies cells with a broad range of expression level for p107, even within particular organs or tissues. We also show that loss of Rb results in the upregulation of p107 transcription in specific cell populations in vivo, including subpopulations of hematopoietic cells. Thus, p107 BAC-eGFP transgenic mice serve as a useful tool to identify distinct cell types in which p107 is expressed and may have key functions in vivo, and to characterize changes in cellular networks accompanying Rb deficiency. PMID:18719374

  3. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma.

    PubMed

    Mario Gonzalez-Meljem, Jose; Haston, Scott; Carreno, Gabriela; Apps, John R; Pozzi, Sara; Stache, Christina; Kaushal, Grace; Virasami, Alex; Panousopoulos, Leonidas; Neda Mousavy-Gharavy, Seyedeh; Guerrero, Ana; Rashid, Mamunur; Jani, Nital; Goding, Colin R; Jacques, Thomas S; Adams, David J; Gil, Jesus; Andoniadou, Cynthia L; Martinez-Barbera, Juan Pedro

    2017-11-28

    Senescent cells may promote tumour progression through the activation of a senescence-associated secretory phenotype (SASP), whether these cells are capable of initiating tumourigenesis in vivo is not known. Expression of oncogenic β-catenin in Sox2+ young adult pituitary stem cells leads to formation of clusters of stem cells and induction of tumours resembling human adamantinomatous craniopharyngioma (ACP), derived from Sox2- cells in a paracrine manner. Here, we uncover the mechanisms underlying this paracrine tumourigenesis. We show that expression of oncogenic β-catenin in Hesx1+ embryonic precursors also results in stem cell clusters and paracrine tumours. We reveal that human and mouse clusters are analogous and share a common signature of senescence and SASP. Finally, we show that mice with reduced senescence and SASP responses exhibit decreased tumour-inducing potential. Together, we provide evidence that senescence and a stem cell-associated SASP drive cell transformation and tumour initiation in vivo in an age-dependent fashion.

  4. Dynamic nuclear protein interactions investigated using fluorescence lifetime and fluorescence fluctuation spectroscopy

    NASA Astrophysics Data System (ADS)

    Siegel, Amanda P.; Hays, Nicole M.; Day, Richard N.

    2012-03-01

    The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for Förster resonance energy transfer (FRET) microscopy and fluorescence fluctuation spectroscopy (FFS) provide important tools for monitoring dynamic protein interactions inside living cells. Fluorescence lifetime imaging microscopy (FLIM) quantitatively maps changes in the spatial distribution of donor FP lifetimes that result from FRET with acceptor FPs. FFS probes dynamic protein associations through its capacity to monitor localized protein diffusion. Here, we use FRET-FLIM combined with FFS in living cells to investigate changes in protein mobility due to protein-protein interactions involving transcription factors and chromatin modifying proteins that function in anterior pituitary gene regulation. The heterochromatin protein 1 alpha (HP1α) plays a key role in the establishment and maintenance of heterochromatin through its interactions with histone methyltransferases. Recent studies, however, also highlight the importance of HP1α as a positive regulator of active transcription in euchromatin. Intriguingly, we observed that the transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) interacts with HP1α in regions of pericentromeric heterochromatin in mouse pituitary cells. These observations prompted us to investigate the relationship between HP1α dynamic interactions in pituitary specific gene regulation.

  5. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    PubMed Central

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2007-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of LβT2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature αT3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA. PMID:15128600

  6. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells.

    PubMed

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-09-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.

  7. B29 Gene Silencing in Pituitary Cells is Regulated by Its 3′ Enhancer

    PubMed Central

    Malone, Cindy S.; Kuraishy, Ali I.; Fike, Francesca M.; Loya, Ruchika G.; Mikkili, Minil R.; Teitell, Michael A.; Wall, Randolph

    2007-01-01

    Summary B cell-specific B29 (Igβ, CD79b) genes in rat, mouse, and human are situated between the 5′ growth hormone (GH) locus control region (LCR) and the 3′ GH gene cluster. The entire GH genomic region is DNase1 hypersensitive in GH-expressing pituitary cells, which predicts an “open” chromatin configuration, and yet B29 is not expressed. The B29 promoter and enhancers exhibit histone deacetylation in pituitary cells, but histone deacetylase inhibition failed to activate B29 expression. The B29 promoter and a 3′ enhancer showed local dense DNA methylation in both pituitary and non-lymphoid cells consistent with gene silencing. However, DNA methyltransferase inhibition did not activate B29 expression either. B29 promoter constructs were minimally activated in transfected pituitary cells. Co-transfection of the B cell-specific octamer transcriptional co-activator Bob1 with the B29 promoter construct resulted in high level promoter activity in pituitary cells comparable to B29 promoter activity in transfected B cells. Unexpectedly, inclusion of the B29 3′ enhancer in B29 promoter constructs strongly inhibited B29 transcriptional activity even when pituitary cells were co-transfected with Bob1. Both Oct-1 and Pit-1 bind the B29 3′ enhancer in in vitro EMSA and in in vivo chromatin immunoprecipitation analyses. These data indicate that the GH locus-embedded, tissue-specific B29 gene is silenced in GH-expressing pituitary cells by epigenetic mechanisms, the lack of a B cell-specific transcription factor, and likely by the B29 3′ enhancer acting as a powerful silencer in a context and tissue-specific manner. PMID:16920149

  8. Regeneration in the Pituitary After Cell-Ablation Injury: Time-Related Aspects and Molecular Analysis.

    PubMed

    Willems, Christophe; Fu, Qiuli; Roose, Heleen; Mertens, Freya; Cox, Benoit; Chen, Jianghai; Vankelecom, Hugo

    2016-02-01

    We recently showed that the mouse pituitary holds regenerative competence. Young-adult GHCre/iDTR mice, expressing diphtheria toxin (DT) receptor in GH-producing cells, regenerate the GH(+) cells, as ablated by 3-day DT treatment (3DT), up to 60% after 5 months. The pituitary's stem cells participate in this restoration process. Here, we characterized this regenerative capacity in relation to age and recovery period and started to search for underlying molecular mechanisms. Extending the recovery period (up to 19 mo) does not result in higher regeneration levels. In addition, the regenerative competence disappears at older age, coinciding with a reduction in pituitary stem cell number and fitness. Surprisingly, prolonging DT treatment of young-adult mice to 10 days (10DT) completely blocks the regeneration, although the stem cell compartment still reacts by promptly expanding, and retains in vitro stem cell functionality. To obtain a first broad view on molecular grounds underlying reparative capacity and/or failure, the stem cell-clustering side population was analyzed by whole-genome expression analysis. A number of stemness factors and components of embryonic, epithelial-mesenchymal transition, growth factor and Hippo pathways are higher expressed in the stem cell-clustering side population of the regenerating pituitary (after 3DT) when compared with the basal gland and to the nonregenerating pituitary (after 10DT). Together, the regenerative capacity of the pituitary is limited both in age-related terms and final efficacy, and appears to rely on stem cell-associated pathway activation. Dissection of the molecular profiles may eventually identify targets to induce or boost regeneration in situations of (injury-related) pituitary deficiency.

  9. The Dwarf Phenotype in GH240B Mice, Haploinsufficient for the Autism Candidate Gene Neurobeachin, Is Caused by Ectopic Expression of Recombinant Human Growth Hormone

    PubMed Central

    Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W. M.

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea +/− mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea +/− mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea +/− mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism. PMID:25333629

  10. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    PubMed

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  11. Pit-1/growth hormone factor 1 splice variant expression in the rhesus monkey pituitary gland and the rhesus and human placenta.

    PubMed

    Schanke, J T; Conwell, C M; Durning, M; Fisher, J M; Golos, T G

    1997-03-01

    We have examined the expression of Pit-1 messenger RNA (mRNA) splice variants in the nonhuman primate pituitary and in rhesus and human placenta. Full-length complementary DNAs (cDNAs) representing Pit-1 and the Pit-1 beta splice variants were cloned from a rhesus monkey pituitary cDNA library and were readily detectable by RT-PCR with rhesus pituitary gland RNA. The Pit-1T variant previously reported in mouse pituitary tumor cell lines was not detectable in normal rhesus pituitary tissue, although two novel splice variants were detected. A cDNA approximating the rat Pit-1 delta 4 variant was cloned but coded for a truncated and presumably nonfunctional protein. Only by using a nested RT-PCR approach were Pit-1 and Pit-1 beta variants consistently detectable in both human and rhesus placental tissue. The Pit-1 beta variant mRNA was not detectable in JEG-3 choriocarcinoma cells unless the cells were stimulated with 8-Br-cAMP. Immunoblot studies with nuclear extracts from primary rhesus syncytiotrophoblast cultures or JEG-3 choriocarcinoma cells indicated that although mRNA levels were very low, Pit-1 protein was detectable in differentiated cytotrophoblasts, and levels increased after treatment with 8-Br-cAMP. Two major species of Pit-1 protein were detected that corresponded to the two major bands in rat pituitary GH3 cell nuclear extracts. Low levels of slightly larger bands also were seen, which may represent Pit-1 beta protein or phosphorylated species. We conclude that Pit-1 splice variants expressed in the primate pituitary gland differ from those in the rodent gland and that the Pit-1 and Pit-1 beta mRNAs expressed in the placenta give rise to a pattern of protein expression similar to that seen in pituitary cells, which is inducible by treatment with 8-Br-cAMP.

  12. Developmental abnormalities of the posterior pituitary gland.

    PubMed

    di Iorgi, Natascia; Secco, Andrea; Napoli, Flavia; Calandra, Erika; Rossi, Andrea; Maghnie, Mohamad

    2009-01-01

    While the molecular mechanisms of anterior pituitary development are now better understood than in the past, both in animals and in humans, little is known about the mechanisms regulating posterior pituitary development. The posterior pituitary gland is formed by the evagination of neural tissue from the floor of the third ventricle. It consists of the distal axons of the hypothalamic magnocellular neurones that shape the neurohypophysis. After its downward migration, it is encapsulated together with the ascending ectodermal cells of Rathke's pouch which form the anterior pituitary. By the end of the first trimester, this development is completed and vasopressin and oxytocin can be detected in neurohypophyseal tissue. Abnormal posterior pituitary migration such as the ectopic posterior pituitary lobe appearing at the level of median eminence or along the pituitary stalk have been reported in idiopathic GH deficiency or in subjects with HESX1, LHX4 and SOX3 gene mutations. Another intriguing feature of abnormal posterior pituitary development involves genetic forms of posterior pituitary neurodegeneration that have been reported in autosomal-dominant central diabetes insipidus and Wolfram disease. Defining the phenotype of the posterior pituitary gland can have significant clinical implications for management and counseling, as well as providing considerable insight into normal and abnormal mechanisms of posterior pituitary development in humans.

  13. Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach.

    PubMed

    Gahete, Manuel D; Córdoba-Chacón, Jose; Salvatori, Roberto; Castaño, Justo P; Kineman, Rhonda D; Luque, Raul M

    2010-04-12

    Ghrelin acts as an endocrine link connecting physiological processes regulating food intake, body composition, growth, and energy balance. Ghrelin is the only peptide known to undergo octanoylation. The enzyme mediating this process, ghrelin O-acyltransferase (GOAT), is expressed in the gastrointestinal tract (GI; primary source of circulating ghrelin) as well as other tissues. The present study demonstrates that stomach GOAT mRNA levels correlate with circulating acylated-ghrelin levels in fasted and diet-induced obese mice. In addition, GOAT was found to be expressed in both the pituitary and hypothalamus (two target tissues of ghrelin's actions), and regulated in response to metabolic status. Using primary pituitary cell cultures as a model system to study the regulation of GOAT expression, we found that acylated-ghrelin, but not desacyl-ghrelin, increased GOAT expression. In addition, growth-hormone-releasing hormone (GHRH) and leptin increased, while somatostatin (SST) decreased GOAT expression. The physiologic relevance of these later results is supported by the observation that pituitary GOAT expression in mice lacking GHRH, SST and leptin showed opposite changes to those observed after in vitro treatment with the corresponding peptides. Therefore, it seems plausible that these hormones directly contribute to the regulation of pituitary GOAT. Interestingly, in all the models studied, pituitary GOAT expression paralleled changes in the expression of a dominant spliced-variant of ghrelin (In2-ghrelin) and therefore this transcript may be a primary substrate for pituitary GOAT. Collectively, these observations support the notion that the GI tract is not the only source of acylated-ghrelin, but in fact locally produced des-acylated-ghrelin could be converted to acylated-ghrelin within target tissues by locally active GOAT, to mediate its tissue-specific effects.

  14. Generation of immortal cell lines from the adult pituitary: role of cAMP on differentiation of SOX2-expressing progenitor cells to mature gonadotropes.

    PubMed

    Kim, Ginah L; Wang, Xiaomei; Chalmers, Jennifer A; Thompson, David R; Dhillon, Sandeep S; Koletar, Margaret M; Belsham, Denise D

    2011-01-01

    The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages.

  15. Endoplasmic reticulum-associated degradation of the mouse PC1/3-N222D hypomorph and human PCSK1 mutations contributes to obesity.

    PubMed

    Stijnen, P; Brouwers, B; Dirkx, E; Ramos-Molina, B; Van Lommel, L; Schuit, F; Thorrez, L; Declercq, J; Creemers, J W M

    2016-06-01

    The proprotein convertase 1/3 (PC1/3), encoded by proprotein convertase subtilisin/kexin type 1 (PCSK1), cleaves and hence activates several orexigenic and anorexigenic proproteins. Congenital inactivation of PCSK1 leads to obesity in human but not in mice. However, a mouse model harboring the hypomorphic mutation N222D is obese. It is not clear why the mouse models differ in phenotype. Gene expression analysis was performed with pancreatic islets from Pcsk1(N222D/N222D) mice. Subsequently, biosynthesis, maturation, degradation and activity were studied in islets, pituitary, hypothalamus and cell lines. Coimmunoprecipitation of PC1/3-N222D and human PC1/3 variants associated with obesity with the endoplasmic reticulum (ER) chaperone BiP was studied in cell lines. Gene expression analysis of islets of Pcsk1(N222D/N222D) mice showed enrichment of gene sets related to the proteasome and the unfolded protein response. Steady-state levels of PC1/3-N222D and in particular the carboxy-terminally processed form were strongly reduced in islets, pituitary and hypothalamus. However, impairment of substrate cleavage was tissue dependent. Proinsulin processing was drastically reduced, while processing of proopiomelanocortin (POMC) to adrenocorticotropic hormone (ACTH) in pituitary was only mildly impaired. Growth hormone expression and IGF-1 levels were normal, indicating near-normal processing of hypothalamic proGHRH. PC1/3-N222D binds to BiP and is rapidly degraded by the proteasome. Analysis of human PC1/3 obesity-associated mutations showed increased binding to BiP and prolonged intracellular retention for all investigated mutations, in particular for PC1/3-T175M, PC1/3-G226R and PC1/3-G593R. This study demonstrates that the hypomorphic mutation in Pcsk1(N222D) mice has an effect on catalytic activity in pancreatic islets, pituitary and hypothalamus. Reduced substrate processing activity in Pcsk1(N222D/N222D) mice is due to enhanced degradation in addition to reduced catalytic activity of the mutant. PC1/3-N222D binds to BiP, suggesting impaired folding and reduced stability. Enhanced BiP binding is also observed in several human obesity-associated PC1/3 variants, suggesting a common mechanism.

  16. Dysregulated Estrogen Receptor Signaling in the Hypothalamic-Pituitary-Ovarian Axis Leads to Ovarian Epithelial Tumorigenesis in Mice

    PubMed Central

    Laws, Mary J.; Kannan, Athilakshmi; Pawar, Sandeep; Haschek, Wanda M.; Bagchi, Milan K.; Bagchi, Indrani C.

    2014-01-01

    The etiology of ovarian epithelial cancer is poorly understood, mainly due to the lack of an appropriate experimental model for studying the onset and progression of this disease. We have created a mutant mouse model in which aberrant estrogen receptor alpha (ERα) signaling in the hypothalamic-pituitary-ovarian axis leads to ovarian epithelial tumorigenesis. In these mice, termed ERαd/d, the ERα gene was conditionally deleted in the anterior pituitary, but remained intact in the hypothalamus and the ovary. The loss of negative-feedback regulation by estrogen (E) at the level of the pituitary led to increased production of luteinizing hormone (LH) by this tissue. Hyperstimulation of the ovarian cells by LH resulted in elevated steroidogenesis, producing high circulating levels of steroid hormones, including E. The ERαd/d mice exhibited formation of palpable ovarian epithelial tumors starting at 5 months of age with 100% penetrance. By 15 months of age, 80% of ERαd/d mice die. Besides proliferating epithelial cells, these tumors also contained an expanded population of luteinized stromal cells, which acquire the ability to express P450 aromatase and synthesize E locally. In response to the elevated levels of E, the ERα signaling was accentuated in the ovarian epithelial cells of ERαd/d mice, triggering increased ERα-dependent gene expression, abnormal cell proliferation, and tumorigenesis. Consistent with these findings, treatment of ERαd/d mice with letrozole, an aromatase inhibitor, markedly reduced circulating E and ovarian tumor volume. We have, therefore, developed a unique animal model, which serves as a useful tool for exploring the involvement of E-dependent signaling pathways in ovarian epithelial tumorigenesis. PMID:24603706

  17. Trophic and neurotrophic factors in human pituitary adenomas (Review).

    PubMed

    Spoletini, Marialuisa; Taurone, Samanta; Tombolini, Mario; Minni, Antonio; Altissimi, Giancarlo; Wierzbicki, Venceslao; Giangaspero, Felice; Parnigotto, Pier Paolo; Artico, Marco; Bardella, Lia; Agostinelli, Enzo; Pastore, Francesco Saverio

    2017-10-01

    The pituitary gland is an organ that functionally connects the hypothalamus with the peripheral organs. The pituitary gland is an important regulator of body homeostasis during development, stress, and other processes. Pituitary adenomas are a group of tumors arising from the pituitary gland: they may be subdivided in functional or non-functional, depending on their hormonal activity. Some trophic and neurotrophic factors seem to play a key role in the development and maintenance of the pituitary function and in the regulation of hypothalamo-pituitary-adrenocortical axis activity. Several lines of evidence suggest that trophic and neurotrophic factors may be involved in pituitary function, thus suggesting a possible role of the trophic and neurotrophic factors in the normal development of pituitary gland and in the progression of pituitary adenomas. Additional studies might be necessary to better explain the biological role of these molecules in the development and progression of this type of tumor. In this review, in light of the available literature, data on the following neurotrophic factors are discussed: ciliary neurotrophic factor (CNTF), transforming growth factors β (TGF‑β), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), vascular endothelial growth inhibitor (VEGI), fibroblast growth factors (FGFs) and epidermal growth factor (EGF) which influence the proliferation and growth of pituitary adenomas.

  18. PTTG expression in different experimental and human prolactinomas in relation to dopaminergic control of lactotropes

    PubMed Central

    Cristina, Carolina; Díaz-Torga, Graciela S; Goya, Rodolfo G; Kakar, Sham S; Perez-Millán, María I; Passos, Vanessa Q; Giannella-Neto, Daniel; Bronstein, Marcello D; Becu-Villalobos, Damasia

    2007-01-01

    Background Pituitary tumor transforming gene (pttg) is a novel oncogene that is expressed at higher level in most of the tumors analyzed to date compared to normal tissues. Nevertheless, its expression in prolactinomas and its relation with the pituitary dopamine receptor 2 (D2R) are not well defined. We sought to determine the pituitary level of pttg in three different experimental models of prolactinomas with altered dopaminergic control of the pituitary: the dopaminergic D2R knockout female mouse, the estrogen-treated rat, and the senescent female rat. These three models shared the characteristics of increased pituitary weight, hyperprolactinemia, lactotrope hyperplasia and reduced or absent dopaminergic action at the pituitary level. We also studied samples from human macroprolactinomas, which were characterized as responsive or resistant to dopamine agonist therapy. Results When compared to female wild-type mice, pituitaries from female D2R knockout mice had decreased PTTG concentration, while no difference in pttg mRNA level was found. In senescent rats no difference in pituitary PTTG protein expression was found when compared to young rats. But, in young female rats treated with a synthetic estrogen (Diethylstylbestrol, 20 mg) PTTG protein expression was enhanced (P = 0.029). Therefore, in the three experimental models of prolactinomas, pituitary size was increased and there was hyperprolactinemia, but PTTG levels followed different patterns. Patients with macroprolactinomas were divided in those in which dopaminergic therapy normalized or failed to normalize prolactin levels (responsive and resistant, respectively). When pituitary pttg mRNA level was analyzed in these macroprolactinomas, no differences were found. We next analyzed estrogen action at the pituitary by measuring pituitary estrogen receptor α levels. The D2R knockout female mice have low estrogen levels and in accordance, pituitary estrogen receptors were increased (P = 0.047). On the other hand, in senescent rats estrogen levels were slightly though not significantly higher, and estrogen receptors were similar between groups. The estrogen-treated rats had high pharmacological levels of the synthetic estrogen, and estrogen receptors were markedly lower than in controls (P < 0.0001). Finally, in patients with dopamine resistant or responsive prolactinomas no significant differences in estrogen receptor α levels were found. Therefore, pituitary PTTG was increased only if estrogen action was increased, which correlated with a decrease in pituitary estrogen receptor level. Conclusion We conclude that PTTG does not correlate with prolactin levels or tumor size in animal models of prolactinoma, and its pituitary content is not related to a decrease in dopaminergic control of the lactotrope, but may be influenced by estrogen action at the pituitary level. Therefore it is increased only in prolactinomas generated by estrogen treatment, and not in prolactinomas arising from deficient dopamine control, or in dopamine resistant compared with dopamine responsive human prolactinomas. These results are important in the search for reliable prognostic indicators for patients with pituitary adenomas which will make tumor-specific therapy possible, and help to elucidate the poorly understood phenomenon of pituitary tumorigenesis. PMID:17222350

  19. Expression and regulation of glucocorticoid-induced leucine zipper in the developing anterior pituitary gland.

    PubMed

    Ellestad, Laura E; Malkiewicz, Stefanie A; Guthrie, H David; Welch, Glenn R; Porter, Tom E

    2009-02-01

    The expression profile of glucocorticoid-induced leucine zipper (GILZ) in the anterior pituitary during the second half of embryonic development in the chick is consistent with in vivo regulation by circulating corticosteroids. However, nothing else has been reported about the presence of GILZ in the neuroendocrine system. We sought to characterize expression and regulation of GILZ in the chicken embryonic pituitary gland and determine the effect of GILZ overexpression on anterior pituitary hormone levels. Pituitary GILZ mRNA levels increased during embryogenesis to a maximum on the day of hatch, and decreased through the first week after hatch. GILZ expression was rapidly upregulated by corticosterone in embryonic pituitary cells. To determine whether GILZ regulates hormone gene expression in the developing anterior pituitary, we overexpressed GILZ in embryonic pituitary cells and measured mRNA for the major pituitary hormones. Exogenous GILZ increased prolactin mRNA above basal levels, but not as high as that in corticosterone-treated cells, indicating that GILZ may play a small role in lactotroph differentiation. The largest effect we observed was a twofold increase in FSH beta subunit in cells transfected with GILZ but not treated with corticosterone, suggesting that GILZ may positively regulate gonadotroph development in a manner not involving glucocorticoids. In conclusion, this is the first report to characterize avian GILZ and examine its regulation in the developing neuroendocrine system. We have shown that GILZ is upregulated by glucocorticoids in the embryonic pituitary gland and may regulate expression of several pituitary hormones.

  20. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development.

    PubMed

    Japón, M A; Rubinstein, M; Low, M J

    1994-08-01

    We used 35S-labeled oligonucleotides and cRNAs (riboprobes) to detect the temporal order and spatial pattern of anterior pituitary hormone gene expression in (B6CBF1 x B6CBF1)F2 fetal mice from embryonic Day 9.5 (E9.5) to postnatal Day 1 (P1). Pro-opiomelanocortin (POMC) mRNA was expressed in the basal diencephalon on Day E10.5, in the ventromedial zone of the pars distalis on Day E12.5, and in the pars intermedia on Day E14.5. The common alpha-glycoprotein subunit (alpha-GSU) mRNA first appeared in the anterior wall of Rathke's pouch on Day E11.5 and extended to the pars tuberalis and ventromedial zone of the pars distalis on Day E12.5. Thyroid-stimulating hormone-beta (TSH beta) subunit mRNA was expressed initially in both the pas tuberalis and ventromedial pars distalis on Day E14.5, with an identical spatial distribution to alpha-GSU at the time. In contrast, luteinizing hormone-beta (LH beta) subunit and follicle-stimulating hormone beta (FSH beta) subunit mRNAs were detected initially only in the ventromedial pars distalis on Days E16.5 and E17.5, respectively, in an identical distribution to each other. POMC-, alpha-GSU-, TSH beta, LH beta-, and FSH beta-positive cells within the pars distalis all increased in number and autoradiographic signal with differing degrees of spatial expansion posteriorly, laterally, and dorsally up to Day P1. POMC expression was typically the most intense and extended circumferentially to include the entire lateral and dorsal surfaces of the pars distalis. The expression of both growth hormone (GH) and prolactin (PRL) started coincidentally on Day E15.5. However PRL cells localized in the ventromedial area similarly to POMC and the glycoprotein hormone subunits, whereas GH cells were found initially in a more lateral and central distribution within the lobes of the pars distalis. Somatotrophs increased dramatically in number and autoradiographic signal, extending throughout the pars distalis except for the most peripheral layer of cells on Day E17.5. Mammotrophs also increased in number but less abundantly than somatotrophs, and PRL expression remained more confined to central-medial and ventrolateral areas of the pars distalis up to Day P1. These data demonstrate distinctive patterns of expression for each of the major anterior pituitary hormone genes during development of the mouse pituitary gland and suggest that different groups of committed cells are the immediate precursors to the terminally differentiated hormone-secreting cell types.

  1. The mouse cochlea expresses a local hypothalamic-pituitary-adrenal equivalent signaling system and requires CRFR1 to establish normal hair cell innervation and cochlear sensitivity

    PubMed Central

    Graham, Christine E.; Vetter, Douglas E.

    2011-01-01

    Cells of the inner ear face constant metabolic and structural stress. Exposure to intense sound or certain drugs destroys cochlea hair cells, which in mammals do not regenerate. Thus, an endogenous stress response system may exist within the cochlea to protect it from everyday stressors. We recently described the existence of Corticotropin-Releasing Factor (CRF) in the mouse cochlea. The CRFR1 receptor is considered the primary and canonical target of CRF signaling, and systemically it plays an essential role in coordinating the body-wide stress response via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Here we describe an essential role for CRFR1 in auditory system development and function, and offer the first description of a complete HPA equivalent signaling system resident within the cochlea. To reveal the role of CRFR1 activation in the cochlea, we have used mice carrying a null ablation of the CRFR1 gene. CRFR1−/− mice exhibited elevated auditory thresholds at all frequencies tested, indicating reduced sensitivity. Furthermore, our results suggest that CRFR1 has a developmental role affecting inner hair cell morphology and afferent and efferent synapse distribution. Given the role of HPA signaling in maintaining local homeostasis in other tissues, the presence of a cochlear HPA signaling system suggests important roles for CRFR1 activity in setting cochlear sensitivity, perhaps both neural and non-neural mechanisms. These data highlight the complex pleiotropic mechanisms modulated by CRFR1 signaling in the cochlea. PMID:21273411

  2. A truncated, activin-induced Smad3 isoform acts as a transcriptional repressor of FSHβ expression in mouse pituitary

    PubMed Central

    Kim, So-Youn; Zhu, Jie; Woodruff, Teresa K.

    2011-01-01

    The receptor-regulated protein Smad3 is key player in the signaling cascade stimulated by the binding of activin to its cell surface receptor. Upon phosphorylation, Smad3 forms a heterocomplex with Smad2 and Smad4, translocates to the nucleus and acts as a transcriptional co-activator. We have identified a unique isoform of Smad3 that is expressed in mature pituitary gonadotropes. 5' RACE revealed that this truncated Smad3 isoform is transcribed from an ATG site within exon 4 and consists of 7 exons encoding half of the linker region and the MH2 region. In pituitary cells, the truncated Smad3 isoform was phosphorylated upon activin treatment, in a manner that was temporally distinct from the phosphorylation of full-length Smad3. Activin-induced phosphorylation of Smad3 and the truncated Smad3 isoform was blocked by both follistatin and siRNA-mediated knockdown of Smad3. The truncated Smad3 isoform antagonized Smad3-mediated, activin-responsive promoter activity. We propose that the pituitary gonadotrope contains an ultra-short, activin-responsive feedback loop utilizing two different isoforms of Smad3, one which acts as an agonist (Smad3) and another that acts as an intracrine antagonist (truncated Smad3 isoform) to regulate FSHβ production. PMID:21664424

  3. Prenatal alcohol exposure increases the susceptibility to develop aggressive prolactinomas in the pituitary gland.

    PubMed

    Jabbar, Shaima; Reuhl, Kenneth; Sarkar, Dipak K

    2018-05-16

    Excess alcohol use is known to promote development of aggressive tumors in various tissues in human patients, but the cause of alcohol promotion of tumor aggressiveness is not clearly understood. We used an animals model of fetal alcohol exposure that is known to promote tumor development and determined if alcohol programs the pituitary to acquire aggressive prolactin-secreting tumors. Our results show that pituitaries of fetal alcohol-exposed rats produced increased levels of intra-pituitary aromatase protein and plasma estrogen, enhanced pituitary tissue growth, and upon estrogen challenge developed prolactin-secreting tumors (prolactinomas) that were hemorrhagic and often penetrated into the surrounding tissue. Pituitary tumors of fetal alcohol-exposed rats produced higher levels of hemorrhage-associated genes and proteins and multipotency genes and proteins. Cells of pituitary tumor of fetal alcohol exposed rat grew into tumor spheres in ultra-low attachment plate, expressed multipotency genes, formed an increased number of colonies, showed enhanced cell migration, and induced solid tumors following inoculation in immunodeficient mice. These data suggest that fetal alcohol exposure programs the pituitary to develop aggressive prolactinoma after estrogen treatment possibly due to increase in stem cell niche within the tumor microenvironment.

  4. Pituitary gland development and disease: from stem cell to hormone production.

    PubMed

    Davis, Shannon W; Ellsworth, Buffy S; Peréz Millan, María Inés; Gergics, Peter; Schade, Vanessa; Foyouzi, Nastaran; Brinkmeier, Michelle L; Mortensen, Amanda H; Camper, Sally A

    2013-01-01

    Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas. © 2013 Elsevier Inc. All rights reserved.

  5. Pituitary Gland Development and Disease: From Stem Cell to Hormone Production

    PubMed Central

    Davis, Shannon W.; Ellsworth, Buffy S.; Peréz Millan, María Inés; Gergics, Peter; Schade, Vanessa; Foyouzi, Nastaran; Brinkmeier, Michelle L.; Mortensen, Amanda H.

    2014-01-01

    Many aspects of pituitary development have become better understood in the last two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multi-potent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone producing cell types. We now realize that pulsatile hormone secretion involves a 3-D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas. PMID:24290346

  6. Pituitary abscess: a case report and review of the literature

    PubMed Central

    Karagiannis, Apostolos K A; Dimitropoulou, Fotini; Papatheodorou, Athanasios; Lyra, Stavroula; Seretis, Andreas

    2016-01-01

    Summary Pituitary abscess is a rare life-threating entity that is usually misdiagnosed as a pituitary tumor with a definite diagnosis only made postoperatively. Over the last several decades, advances in healthcare have led to a significant decrease in morbidity and mortality due to pituitary abscess. We report a case of a 34-year-old woman who was admitted to our department for investigation of a pituitary mass and with symptoms of pituitary dysfunction, headaches and impaired vision. During her admission, she developed meningitis-like symptoms and was treated with antibiotics. She eventually underwent transsphenoidal surgery for excision of the pituitary mass. A significant amount of pus was evident intraoperatively; however, no pathogen was isolated. Six months later, the patient was well and had full recovery of the anterior pituitary function. Her menses returned, and she was only on treatment with desmopressin for diabetes insipidus that developed postoperatively. Learning points Pituitary abscess is a rare disease and the reported clinical features vary mimicking other pituitary lesions. The diagnosis of pituitary abscess is often very difficult to make and rarely included in the differential. The histological findings of acute inflammatory infiltration confirm the diagnosis of pituitary abscess. Medical and surgical treatment is usually recommended upon diagnosis of a pituitary abscess. PMID:27274845

  7. Metabolism during hypodynamia

    NASA Technical Reports Server (NTRS)

    Federov, I. V.

    1980-01-01

    Physical immobilization, inaction due to space travel, a sedentary occupation, or bed confinement due to a chronic illness elicit similar alternations in the metabolism of man and animals (rat, rabbit, dog, mouse). After a preliminary period of weight loss, there is eventually weight gain due to increased lipid storage. Protein catabolism is enhanced and anabolism depressed, with elevated urinary excretion of amino acids, creatine, and ammonia. Glycogen stores are depleted and glyconeogenesis is accelerated. Polyuria develops with subsequent redistribution of body fluids in which the blood volume of the systemic circulation is decreased and that of pulmonary circulation increased. This results in depressed production of vasopressin by the posterior pituitary which further enhances urinary water and salt loss.

  8. Stem cells in the canine pituitary gland and in pituitary adenomas.

    PubMed

    van Rijn, Sarah J; Tryfonidou, Marianna A; Hanson, Jeanette M; Penning, Louis C; Meij, Björn P

    2013-12-01

    Cushing's disease (CD) or pituitary-dependent hypercortisolism is a common endocrinopathy in dogs, with an estimated prevalence of 1 or 2 in 1000 dogs per year. It is caused by an adrenocorticotropic hormone secreting adenoma in the pars distalis or pars intermedia of the pituitary gland. The pituitary gland is a small endocrine gland located in the pituitary fossa. In the postnatal individual, the hypothalamus-pituitary axis plays a central role in maintaining homeostatic functions, like control of metabolism, reproduction, and growth. Stem cells are suggested to play a role in the homeostatic adaptations of the adult pituitary gland, such as the rapid specific cell-type expansion in response to pregnancy or lactation. Several cell populations have been suggested as pituitary stem cells, such as Side Population cells and cells expressing Sox2 or Nestin. These cell populations are discussed in this review. Also, stem and progenitor cells are thought to play a role in pituitary tumorigenesis, such as the development of pituitary adenomas in dogs. There are limited reports on the role of stem cells in pituitary adenomas, especially in dogs. Further studies are needed to identify and characterize this cell population and to develop specific cell targeting therapeutic strategies as a new way of treating canine CD.

  9. Cathepsin L plays a major role in cholecystokinin production in mouse brain cortex and in pituitary AtT-20 cells: protease gene knockout and inhibitor studies.

    PubMed

    Beinfeld, Margery C; Funkelstein, Lydiane; Foulon, Thierry; Cadel, Sandrine; Kitagawa, Kouki; Toneff, Thomas; Reinheckel, Thomas; Peters, Christoph; Hook, Vivian

    2009-10-01

    Cholecystokinin (CCK) is a peptide neurotransmitter whose production requires proteolytic processing of the proCCK precursor to generate active CCK8 neuropeptide in brain. This study demonstrates the significant role of the cysteine protease cathepsin L for CCK8 production. In cathepsin L knockout (KO) mice, CCK8 levels were substantially reduced in brain cortex by an average of 75%. To evaluate the role of cathepsin L in producing CCK in the regulated secretory pathway of neuroendocrine cells, pituitary AtT-20 cells that stably produce CCK were treated with the specific cathepsin L inhibitor, CLIK-148. CLIK-148 inhibitor treatment resulted in decreased amounts of CCK secreted from the regulated secretory pathway of AtT-20 cells. CLIK-148 also reduced cellular levels of CCK9 (Arg-CCK8), consistent with CCK9 as an intermediate product of cathepsin L, shown by the decreased ratio of CCK9/CCK8. The decreased CCK9/CCK8 ratio also suggests a shift in the production to CCK8 over CCK9 during inhibition of cathepsin L. During reduction of the PC1/3 processing enzyme by siRNA, the ratio of CCK9/CCK8 was increased, suggesting a shift to the cathepsin L pathway for the production of CCK9. The changes in ratios of CCK9 compared to CCK8 are consistent with dual roles of the cathepsin L protease pathway that includes aminopeptidase B to remove NH2-terminal Arg or Lys, and the PC1/3 protease pathway. These results suggest that cathepsin L functions as a major protease responsible for CCK8 production in mouse brain cortex, and participates with PC1/3 for CCK8 production in pituitary cells.

  10. A truncated, activin-induced Smad3 isoform acts as a transcriptional repressor of FSHβ expression in mouse pituitary.

    PubMed

    Kim, So-Youn; Zhu, Jie; Woodruff, Teresa K

    2011-08-06

    The receptor-regulated protein Smad3 is key player in the signaling cascade stimulated by the binding of activin to its cell surface receptor. Upon phosphorylation, Smad3 forms a heterocomplex with Smad2 and Smad4, translocates to the nucleus and acts as a transcriptional co-activator. We have identified a unique isoform of Smad3 that is expressed in mature pituitary gonadotropes. 5' RACE revealed that this truncated Smad3 isoform is transcribed from an ATG site within exon 4 and consists of 7 exons encoding half of the linker region and the MH2 region. In pituitary cells, the truncated Smad3 isoform was phosphorylated upon activin treatment, in a manner that was temporally distinct from the phosphorylation of full-length Smad3. Activin-induced phosphorylation of Smad3 and the truncated Smad3 isoform was blocked by both follistatin and siRNA-mediated knockdown of Smad3. The truncated Smad3 isoform antagonized Smad3-mediated, activin-responsive promoter activity. We propose that the pituitary gonadotrope contains an ultra-short, activin-responsive feedback loop utilizing two different isoforms of Smad3, one which acts as an agonist (Smad3) and another that acts as an intracrine antagonist (truncated Smad3 isoform) to regulate FSHβ production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland.

    PubMed

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-04-25

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2(+) and Sox9(+) adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors.

  12. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  13. Ras-dva Is a Novel Pit-1- and Glucocorticoid-Regulated Gene in the Embryonic Anterior Pituitary Gland

    PubMed Central

    Ellestad, Laura E.

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5′-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5′-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland. PMID:23161868

  14. Ras-dva is a novel Pit-1- and glucocorticoid-regulated gene in the embryonic anterior pituitary gland.

    PubMed

    Ellestad, Laura E; Porter, Tom E

    2013-01-01

    Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.

  15. Segmentation and analysis of mouse pituitary cells with graphic user interface (GUI)

    NASA Astrophysics Data System (ADS)

    González, Erika; Medina, Lucía.; Hautefeuille, Mathieu; Fiordelisio, Tatiana

    2018-02-01

    In this work we present a method to perform pituitary cell segmentation in image stacks acquired by fluorescence microscopy from pituitary slice preparations. Although there exist many procedures developed to achieve cell segmentation tasks, they are generally based on the edge detection and require high resolution images. However in the biological preparations that we worked on, the cells are not well defined as experts identify their intracellular calcium activity due to fluorescence intensity changes in different regions over time. This intensity changes were associated with time series over regions, and because they present a particular behavior they were used into a classification procedure in order to perform cell segmentation. Two logistic regression classifiers were implemented for the time series classification task using as features the area under the curve and skewness in the first classifier and skewness and kurtosis in the second classifier. Once we have found both decision boundaries in two different feature spaces by training using 120 time series, the decision boundaries were tested over 12 image stacks through a python graphical user interface (GUI), generating binary images where white pixels correspond to cells and the black ones to background. Results show that area-skewness classifier reduces the time an expert dedicates in locating cells by up to 75% in some stacks versus a 92% for the kurtosis-skewness classifier, this evaluated on the number of regions the method found. Due to the promising results, we expect that this method will be improved adding more relevant features to the classifier.

  16. Candidate genes for panhypopituitarism identified by gene expression profiling

    PubMed Central

    Mortensen, Amanda H.; MacDonald, James W.; Ghosh, Debashis

    2011-01-01

    Mutations in the transcription factors PROP1 and PIT1 (POU1F1) lead to pituitary hormone deficiency and hypopituitarism in mice and humans. The dysmorphology of developing Prop1 mutant pituitaries readily distinguishes them from those of Pit1 mutants and normal mice. This and other features suggest that Prop1 controls the expression of genes besides Pit1 that are important for pituitary cell migration, survival, and differentiation. To identify genes involved in these processes we used microarray analysis of gene expression to compare pituitary RNA from newborn Prop1 and Pit1 mutants and wild-type littermates. Significant differences in gene expression were noted between each mutant and their normal littermates, as well as between Prop1 and Pit1 mutants. Otx2, a gene critical for normal eye and pituitary development in humans and mice, exhibited elevated expression specifically in Prop1 mutant pituitaries. We report the spatial and temporal regulation of Otx2 in normal mice and Prop1 mutants, and the results suggest Otx2 could influence pituitary development by affecting signaling from the ventral diencephalon and regulation of gene expression in Rathke's pouch. The discovery that Otx2 expression is affected by Prop1 deficiency provides support for our hypothesis that identifying molecular differences in mutants will contribute to understanding the molecular mechanisms that control pituitary organogenesis and lead to human pituitary disease. PMID:21828248

  17. Craniopharyngioma

    MedlinePlus

    ... pituitary gland. They often involve the third ventricle, optic nerve, and pituitary gland. Description Crangiopharyngiomas are localized ... tumor. Other symptoms result from pressure on the optic tract and pituitary gland. Obesity, delayed development, impaired ...

  18. Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Stumm, Ralf; Pattarozzi, Alessandra; Porcile, Carola; Zona, Gianluigi; Dorcaratto, Alessandra; Ravetti, Jean-Louis; Minuto, Francesco; Spaziante, Renato; Schettini, Gennaro; Ferone, Diego; Florio, Tullio

    2008-08-15

    Hypothalamic or locally produced growth factors and cytokines control pituitary development, functioning, and cell division. We evaluated the expression of the chemokine stromal cell-derived factor 1 (SDF1) and its receptor CXCR4 in human pituitary adenomas and normal pituitary tissues and their role in cell proliferation. The expression of SDF1 and CXCR4 in 65 human pituitary adenomas and 4 human normal pituitaries was determined by reverse transcription-PCR, immunohistochemistry, and confocal immunofluorescence. The proliferative effect of SDF1 was evaluated in eight fibroblast-free human pituitary adenoma cell cultures. CXCR4 mRNA was expressed in 92% of growth hormone (GH)-secreting pituitary adenomas (GHoma) and 81% of nonfunctioning pituitary adenomas (NFPA), whereas SDF1 was identified in 63% and 78% of GHomas and NFPAs, respectively. Immunostaining for CXCR4 and SDF1 showed a strong homogenous labeling in all tumoral cells in both GHomas and NFPAs. In normal tissues, CXCR4 and SDF1 were expressed only in a subset of anterior pituitary cells, with a lower expression of SDF1 compared with its cognate receptor. CXCR4 and SDF1 were not confined to a specific cell population in the anterior pituitary but colocalized with discrete subpopulations of GH-, prolactin-, and adrenocorticorticotropic hormone-secreting cells. Conversely, most of the SDF1-containing cells expressed CXCR4. In six of eight pituitary adenoma primary cultures, SDF1 induced a statistically significant increase in DNA synthesis that was prevented by the treatment with the CXCR4 antagonist AMD3100 or somatostatin. CXCR4 and SDF1 are overexpressed in human pituitary adenomas and CXCR4 activation may contribute to pituitary cell proliferation and, possibly, to adenoma development in humans.

  19. Dopamine D2-like receptors (DRD2 and DRD4) in chickens: Tissue distribution, functional analysis, and their involvement in dopamine inhibition of pituitary prolactin expression.

    PubMed

    Lv, Can; Mo, Chunheng; Liu, Haikun; Wu, Chao; Li, Zhengyang; Li, Juan; Wang, Yajun

    2018-04-20

    Dopamine (DA) D2-like (and D1-like) receptors are suggested to mediate the dopamine actions in the anterior pituitary and/or CNS of birds. However, the information regarding the structure, functionality, and expression of avian D2-like receptors have not been fully characterized. In this study, we cloned two D2-like receptors (cDRD2, cDRD4) from chicken brain using RACE PCR. The cloned cDRD4 is a 378-amino acid receptor, which shows 57% amino acid (a.a.) identity with mouse DRD4. As in mammals, two cDRD2 isoforms, cDRD2L (long isoform, 437 a.a.) and cDRD2S (short isoform, 408 a.a.), which differ in their third intracellular loop, were identified in chickens. Using cell-based luciferase reporter assays or Western blot, we demonstrated that cDRD4, cDRD2L and cDRD2S could be activated by dopamine and quinpirole (a D2-like receptor agonist) dose-dependently, and their activation inhibits cAMP signaling pathway and stimulates MAPK/ERK signaling cascade, indicating that they are functional receptors capable of mediating dopamine actions. Quantitative real-time PCR revealed that cDRD2 and cDRD4 are widely expressed in chicken tissues with abundant expression noted in anterior pituitary, and their expressions are likely controlled by their promoters near exon 1, as demonstrated by dual-luciferase reporter assays in DF-1 cells. In accordance with cDRD2/cDRD4 expression in the pituitary, DA or quinpirole could partially inhibit vasoactive intestinal peptide-induced prolactin expression in cultured chick pituitary cells. Together, our data proves the functionality of DRD2 and DRD4 in birds and aids to uncover the conserved roles of DA/D2-like receptor system in vertebrates, such as its action on the pituitary. Copyright © 2018. Published by Elsevier B.V.

  20. Hypophysopexy technique for radiosurgical treatment of cavernous sinus pituitary adenoma.

    PubMed

    Couldwell, William T; Rosenow, Joshua M; Rovit, Richard L; Benzil, Deborah L

    2002-01-01

    Stereotactic radiosurgery is being used with increased frequency in the treatment of residual or recurrent pituitary adenomas. The major risk associated with radiosurgical treatment of residual or recurrent pituitary tumor adjacent to normal functional pituitary gland is radiation of the pituitary, which frequently leads to the development of hypopituitarism. The authors describe a technique of pituitary transposition to reduce the radiation dose to the normal pituitary gland in cases of planned radiosurgical treatment of residual pituitary adenoma within the cavernous sinus. A sellar exploration for tumor resection is performed, the pituitary gland is transposed from the region of the cavernous sinus, and a fat and fascia graft is interposed between the normal pituitary gland and the residual tumor in the cavernous sinus. The residual tumor may then be treated with stereotactic radiosurgery. The increased distance between the normal pituitary gland and the residual tumor facilitates treatment of the tumor with radiosurgery and reduces the radiation to the normal pituitary gland. An illustrative case of a young female with recurrent acromegaly and a pituitary adenoma invading the cavernous sinus is described.

  1. Testicular toxicity in cannabis extract treated mice: association with oxidative stress and role of antioxidant enzyme systems.

    PubMed

    Mandal, Tapas K; Das, Nildari S

    2010-02-01

    Intraperitoneal injection of cannabis extract at low doses (total doses ranging from 40 mg to 60 mg per mouse) induced adverse effect on testes and oxidative stress. At low doses, there was a significant increase in lipid peroxidation and decrease in testicular lipid content, but the effects were significantly less at higher doses and at the withdrawal of cannabis treatment (recovery dose). There was a marked decrease in antioxidant enzyme profiles (superoxide dismutase, catalase and glutathione peroxidase) and glutathione content at low doses, but these effects were higher at higher dose and at withdrawal of the treatment (recovery effect). Histology revealed significant shrinkage of tubular diameter and detrimental changes in seminiferous epithelium of testis with resulting lowered serum testosterone and pituitary gonadotropins (follicular stimulating [FSH] and luteinizing hormones [LH]) levels at low doses. But at higher doses and particularly at withdrawal of the treatment, regression of various germ cell layers of testes through the revival of testosterone hormone and pituitary gonadotropins (FSH and LH) were observed, indicating that recovery effects on testes became operative possibly through the corrective measure of endogenous testicular antioxidant enzymes profiles and pituitary gonadotropins hormones feedback mechanisms.

  2. ZBTB20 is required for anterior pituitary development and lactotrope specification.

    PubMed

    Cao, Dongmei; Ma, Xianhua; Cai, Jiao; Luan, Jing; Liu, An-Jun; Yang, Rui; Cao, Yi; Zhu, Xiaotong; Zhang, Hai; Chen, Yu-Xia; Shi, Yuguang; Shi, Guang-Xia; Zou, Dajin; Cao, Xuetao; Grusby, Michael J; Xie, Zhifang; Zhang, Weiping J

    2016-04-15

    The anterior pituitary harbours five distinct hormone-producing cell types, and their cellular differentiation is a highly regulated and coordinated process. Here we show that ZBTB20 is essential for anterior pituitary development and lactotrope specification in mice. In anterior pituitary, ZBTB20 is highly expressed by all the mature endocrine cell types, and to some less extent by somatolactotropes, the precursors of prolactin (PRL)-producing lactotropes. Disruption of Zbtb20 leads to anterior pituitary hypoplasia, hypopituitary dwarfism and a complete loss of mature lactotropes. In ZBTB20-null mice, although lactotrope lineage commitment is normally initiated, somatolactotropes exhibit profound defects in lineage specification and expansion. Furthermore, endogenous ZBTB20 protein binds to Prl promoter, and its knockdown decreases PRL expression and secretion in a lactotrope cell line MMQ. In addition, ZBTB20 overexpression enhances the transcriptional activity of Prl promoter in vitro. In conclusion, our findings point to ZBTB20 as a critical regulator of anterior pituitary development and lactotrope specification.

  3. ZBTB20 is required for anterior pituitary development and lactotrope specification

    PubMed Central

    Cao, Dongmei; Ma, Xianhua; Cai, Jiao; Luan, Jing; Liu, An-Jun; Yang, Rui; Cao, Yi; Zhu, Xiaotong; Zhang, Hai; Chen, Yu-Xia; Shi, Yuguang; Shi, Guang-Xia; Zou, Dajin; Cao, Xuetao; Grusby, Michael J.; Xie, Zhifang; Zhang, Weiping J.

    2016-01-01

    The anterior pituitary harbours five distinct hormone-producing cell types, and their cellular differentiation is a highly regulated and coordinated process. Here we show that ZBTB20 is essential for anterior pituitary development and lactotrope specification in mice. In anterior pituitary, ZBTB20 is highly expressed by all the mature endocrine cell types, and to some less extent by somatolactotropes, the precursors of prolactin (PRL)-producing lactotropes. Disruption of Zbtb20 leads to anterior pituitary hypoplasia, hypopituitary dwarfism and a complete loss of mature lactotropes. In ZBTB20-null mice, although lactotrope lineage commitment is normally initiated, somatolactotropes exhibit profound defects in lineage specification and expansion. Furthermore, endogenous ZBTB20 protein binds to Prl promoter, and its knockdown decreases PRL expression and secretion in a lactotrope cell line MMQ. In addition, ZBTB20 overexpression enhances the transcriptional activity of Prl promoter in vitro. In conclusion, our findings point to ZBTB20 as a critical regulator of anterior pituitary development and lactotrope specification. PMID:27079169

  4. Is it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the Leksell gamma knife?

    PubMed

    Marek, Josef; Jezková, Jana; Hána, Václav; Krsek, Michal; Bandúrová, L'ubomíra; Pecen, Ladislav; Vladyka, Vilibald; Liscák, Roman

    2011-02-01

    Radiation therapy is one of the treatment options for pituitary adenomas. The most common side effect associated with Leksell gamma knife (LGK) irradiation is the development of hypopituitarism. The aim of this study was to verify that hypopituitarism does not develop if the maximum mean dose to pituitary is kept under 15 Gy and to evaluate the influence of maximum distal infundibulum dose on the development of hypopituitarism. We followed the incidence of hypopituitarism in 85 patients irradiated with LGK in 1993-2003. The patients were divided in two subgroups: the first subgroup followed prospectively (45 patients), irradiated with a mean dose to pituitary <15 Gy; the second subgroup followed retrospectively 1993-2001 and prospectively 2001-2009 (40 patients), irradiated with a mean dose to pituitary >15 Gy. Serum TSH, free thyroxine, testosterone or 17β-oestradiol, IGF1, prolactin and cortisol levels were evaluated before and every 6 months after LGK irradiation. Hypopituitarism after LGK irradiation developed only in 1 out of 45 (2.2%) patients irradiated with a mean dose to pituitary <15 Gy, in contrast to 72.5% patients irradiated with a mean dose to pituitary >15 Gy. The radiation dose to the distal infundibulum was found as an independent factor of hypopituitarism with calculated maximum safe dose of 17 Gy. Keeping the mean radiation dose to pituitary under 15 Gy and the dose to the distal infundibulum under 17 Gy prevents the development of hypopituitarism following LGK irradiation.

  5. Pituitary iron and volume predict hypogonadism in transfusional iron overload.

    PubMed

    Noetzli, Leila J; Panigrahy, Ashok; Mittelman, Steven D; Hyderi, Aleya; Dongelyan, Ani; Coates, Thomas D; Wood, John C

    2012-02-01

    Hypogonadism is the most common morbidity in patients with transfusion-dependent anemias such as thalassemia major. We used magnetic resonance imaging (MRI) to measure pituitary R2 (iron) and volume to determine at what age these patients develop pituitary iron overload and volume loss. We recruited 56 patients (47 with thalassemia major, five with chronically transfused thalassemia intermedia and four with Blackfan-Diamond syndrome) to have pituitary MRIs to measure pituitary R2 and volume. Hypogonadism was defined clinically based on the timing of secondary sexual characteristics or the need for sex hormone replacement therapy. Patients with transfusional iron overload begin to develop pituitary iron overload in the first decade of life; however, clinically significant volume loss was not observed until the second decade of life. Severe pituitary iron deposition (Z > 5) and volume loss (Z < -2.5) were independently predictive of hypogonadism. Pituitary R2 correlated significantly with serum ferritin as well as liver, pancreatic, and cardiac iron deposition by MRI. Log pancreas R2* was the best single predictor for pituitary iron, with an area under the receiving operator characteristic curve of 0.88, but log cardiac R2* and ferritin were retained on multivariate regression with a combined r(2) of 0.71. Pituitary iron overload and volume loss were independently predictive of hypogonadism. Many patients with moderate-to-severe pituitary iron overload retained normal gland volume and function, representing a potential therapeutic window. The subset of hypogonadal patients having preserved gland volumes may also explain improvements in pituitary function observed following intensive chelation therapy. Copyright © 2011 Wiley Periodicals, Inc.

  6. Expression of the cell-surface heparan sulfate proteoglycan syndecan-2 in developing rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi

    2013-09-01

    In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans-type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM coreceptors via their respective heparan sulfate chains and efficiently transduce intracellular signals through the convergent action of their transmembrane and cytoplasmic domains. The syndecans comprise four family members in vertebrates: syndecan-1, -2, -3 and -4. However, whether syndecans are produced in the pituitary gland or whether they have a role as a coreceptor is not known. We therefore used (1) reverse transcription plus the polymerase chain reaction to analyze the expression of syndecan genes and (2) immunohistochemical techniques to identify the cells that produce the syndecans in the anterior pituitary gland of adult rat. Syndecan-2 mRNA expression was clearly detected in the corticotropes of the anterior pituitary gland. Moreover, the expression of syndecan-2 in the developing pituitary gland had a distinct temporospatial pattern. To identify the cells expressing syndecan-2 in the developing pituitary gland, we used double-immunohistochemistry for syndecan-2 and the cell markers E-cadherin (immature cells) and Ki-67 (proliferating cells). Some E-cadherin- and Ki-67-immunopositive cells expressed syndecan-2. Therefore, syndecan-2 expression occurs in developmentally regulated patterns and syndecan-2 probably has different roles in adult and developing anterior pituitary glands.

  7. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia.

    PubMed

    Raetzman, Lori T; Ward, Robert; Camper, Sally A

    2002-09-01

    Deficiencies in the homeobox transcription factors LHX4 and PROP1 cause pituitary hormone deficiency in both humans and mice. Lhx4 and Prop1 mutants exhibit severe anterior pituitary hypoplasia resulting from limited differentiation and expansion of most specialized cell types. Little is known about the mechanism through which these genes promote pituitary development. In this study we determined that the hypoplasia in Lhx4 mutants results from increased cell death and that the reduced differentiation is attributable to a temporal shift in Lhx3 activation. In contrast, Prop1 mutants exhibit normal cell proliferation and cell survival but show evidence of defective dorsal-ventral patterning. Molecular genetic analyses reveal that Lhx4 and Prop1 have overlapping functions in early pituitary development. Double mutants exhibit delayed corticotrope specification and complete failure of all other anterior pituitary cell types to differentiate. Thus, Lhx4 and Prop1 have critical, but mechanistically different roles in specification and expansion of specialized anterior pituitary cells.

  8. An unusual case of hypopituitarism and transient thyrotoxicosis following asymptomatic pituitary apoplexy.

    PubMed

    Yoshida, Masanori; Murakami, Miho; Ueda, Harumi; Miyata, Misaki; Takahashi, Norio; Oiso, Yutaka

    2014-01-01

    Although pituitary function is often impaired in pituitary apoplexy, the development of thyrotoxicosis is rare. We describe an unusual case of hypopituitarism due to pituitary apoplexy coexisting with transient hyperthyroidism. A 74-year-old woman presented with severe fatigue, palpitation, appetite loss, hypotension, and hyponatremia. Endocrine studies showed hyperthyroidism and anterior pituitary hormone deficiencies. A magnetic resonance imaging suggested recent-onset pituitary apoplexy in a pituitary tumor, although the patient had no apoplectic symptoms such as headache and visual disturbance. Thyrotoxicosis and adrenal insufficiency worsened her general condition. Glucocorticoid supplementation improved her clinical symptoms and hyponatremia. Serum anti-thyrotropin receptor and thyroid-stimulating antibody titers were negative, and her thyroid function was spontaneously normalized without antithyroid medication, suggesting painless thyroiditis. Thereafter, her thyroid function decreased because of central hypothyroidism and 75 µg of levothyroxine was needed to maintain thyroid function at the euthyroid stage. The pituitary mass was surgically removed and an old hematoma was detected in the specimen. Considering that painless thyroiditis develops as a result of an autoimmune process, an immune rebound mechanism due to adrenal insufficiency probably caused painless thyroiditis. Although the most common type of thyroid disorder in pituitary apoplexy is central hypothyroidism, thyrotoxicosis caused by painless thyroiditis should be considered even if the patient has pituitary deficiencies. Because thyrotoxicosis with adrenal insufficiency poses a high risk for a life-threatening adrenal crisis, prompt diagnosis and treatment are critical.

  9. Meningeal dissemination of a pituitary carcinoma to the cauda equina in a dog.

    PubMed

    Sheehan, Nora K; Rylander, Helena; Christensen, Neil; Nafe, Laura A

    2017-08-01

    An 8-year-old spayed female border collie dog was diagnosed with an invasive pituitary macrotumor. Five months after radiation therapy, the patient developed paraparesis and lumbosacral pain. Necropsy revealed a pituitary carcinoma with cauda equina drop metastasis. In cases of pituitary masses, meningeal dissemination should be considered if neurologic status declines.

  10. Effects of neonatal hypo- and hyperthyroidism on pituitary growth hormone content in the rat.

    PubMed

    Coulombe, P; Ruel, J; Dussault, J H

    1980-12-01

    Thyroid hormones play an important role in growth and development. Therefore, we investigated the effects of neonatal hypo- and hyperthyroidism on pituitary GH content in the rat. In control rats, pituitary GH content increased from 4.16 +/- 0.34 at 2 days to 43.7 +/- 4.2 microgram/gland (mean +/- SE) at 15 days of age, with a t 1/2 of increment of 3.48 +/- 0.40 days. Between 18-60 days of age, pituitary GH content increased from 56.9 +/- 4.0 to 300 +/- 28 microgram/gland, with a t 1/2 of 18.2 +/- 1.5 days. The administration of T3 had no significant effect on the pituitary GH content of these animals. In neonatal hypothyroid rats, pituitary GH content was significantly lower than that of controls at 2 days of age (P < 0.01) and decreased from 8 days on, with a t 1/2 of 3.71 +/- 0.25 days. However, 24 h after the administration of T3 (100 microgram/100 g BW), pituitary GH content was significantly increased in these animals. Similarly, the administration of T3 (0.4 microgram/100 g BW) to 14-day-old hypothyroid rats restored the pituitary GH content to 70-80% of normal after 5 days of therapy. Conversely, hyperthyroidism induced in 14-day-old normal or hypothyroid rats resulted in a significant decrease in their pituitary GH contents after 5 days of treatment. Therefore, the present results indicate that during the neonatal period, thyroid hormones play a primary role in the control of GH accumulation in the pituitary. Furthermore, the lack of increase in pituitary GH content after the administration of T3 during development might suggest that the rate of formation of GH is already maximum during this period of life in the rat, or, alternatively, that the pituitary nuclear T3 receptors are near full saturation during development. Finally, a generally similar effect of T3 on pituitary GH response was observed in the neonatal rat as well as in the adult animal.

  11. Isolation and Characterization of Rat Pituitary Endothelial Cells

    PubMed Central

    Chaturvedi, Kirti; Sarkar, Dipak K.

    2010-01-01

    Most previous studies that determined the effect of estradiol on angiogenesis used endothelial cells from nonpituitary sources. Because pituitary tumor tissue receives its blood supply via portal and arterial circulation, it is important to use pituitary-derived endothelial cells in studying pituitary angiogenesis. We have developed a magnetic separation technique to isolate endothelial cells from pituitary tissues and have characterized these cells in primary cultures. Endothelial cells of the pituitary showed the existence of endothelial cell marker, CD31, and of von Willebrand factor protein. These cells in cultures also showed immunore-activity of estrogen receptors alpha and beta. The angiogenic factors, vascular endothelial growth factor and basic fibroblast growth factor, significantly increased proliferation and migration of the pituitary-derived endothelial cells in primary cultures. These results suggest that a magnetic separation technique can be used for enrichment of pituitary-derived endothelial cells for determination of cellular mechanisms governing the vascularization in the pituitary. PMID:17028416

  12. Criteria for the definition of Pituitary Tumor Centers of Excellence (PTCOE): A Pituitary Society Statement.

    PubMed

    Casanueva, Felipe F; Barkan, Ariel L; Buchfelder, Michael; Klibanski, Anne; Laws, Edward R; Loeffler, Jay S; Melmed, Shlomo; Mortini, Pietro; Wass, John; Giustina, Andrea

    2017-10-01

    With the goal of generate uniform criteria among centers dealing with pituitary tumors and to enhance patient care, the Pituitary Society decided to generate criteria for developing Pituitary Tumors Centers of Excellence (PTCOE). To develop that task, a group of ten experts served as a Task Force and through two years of iterative work an initial draft was elaborated. This draft was discussed, modified and finally approved by the Board of Directors of the Pituitary Society. Such document was presented and debated at a specific session of the Congress of the Pituitary Society, Orlando 2017, and suggestions were incorporated. Finally the document was distributed to a large group of global experts that introduced further modifications with final endorsement. After five years of iterative work a document with the ideal criteria for a PTCOE is presented. Acknowledging that very few centers in the world, if any, likely fulfill the requirements here presented, the document may be a tool to guide improvements of care delivery to patients with pituitary disorders. All these criteria must be accommodated to the regulations and organization of Health of a given country.

  13. p21, an important mediator of quiescence during pituitary tumor formation, is dispensable for normal pituitary development during embryogenesis.

    PubMed Central

    Monahan, Pamela; Himes, Ashley D.; Parfieniuk, Agata; Raetzman, Lori T.

    2011-01-01

    A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components. PMID:22154697

  14. A journey through the pituitary gland: Development, structure and function, with emphasis on embryo-foetal and later development.

    PubMed

    Musumeci, Giuseppe; Castorina, Sergio; Castrogiovanni, Paola; Loreto, Carla; Leonardi, Rosi; Aiello, Flavia Concetta; Magro, Gaetano; Imbesi, Rosa

    2015-01-01

    The pituitary gland and the hypothalamus are morphologically and functionally associated in the endocrine and neuroendocrine control of other endocrine glands. They therefore play a key role in a number of regulatory feedback processes that co-ordinate the whole endocrine system. Here we review the neuroendocrine system, from the discoveries that led to its identification to some recently clarified embryological, functional, and morphological aspects. In particular we review the pituitary gland and the main notions related to its development, organization, cell differentiation, and vascularization. Given the crucial importance of the factors controlling neuroendocrine system development to understand parvocellular neuron function and the aetiology of the congenital disorders related to hypothalamic-pituitary axis dysfunction, we also provide an overview of the molecular and genetic studies that have advanced our knowledge in the field. Through the action of the hypothalamus, the pituitary gland is involved in the control of a broad range of key aspects of our lives: the review focuses on the hypothalamic-pituitary-gonadal axis, particularly GnRH, whose abnormal secretion is associated with clinical conditions involving delayed or absent puberty and reproductive dysfunction. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Acute hypopituitarism associated with periorbital swelling and cardiac dysfunction in a patient with pituitary tumor apoplexy: a case report.

    PubMed

    Ohara, Nobumasa; Yoneoka, Yuichiro; Seki, Yasuhiro; Akiyama, Katsuhiko; Arita, Masataka; Ohashi, Kazumasa; Suzuki, Kazuo; Takada, Toshinori

    2017-08-24

    Pituitary tumor apoplexy is a rare clinical syndrome caused by acute hemorrhage or infarction in a preexisting pituitary adenoma. It typically manifests as an acute episode of headache, visual disturbance, mental status changes, cranial nerve palsy, and endocrine pituitary dysfunction. However, not all patients present with classical symptoms, so it is pertinent to appreciate the clinical spectrum of pituitary tumor apoplexy presentation. We report an unusual case of a patient with pituitary tumor apoplexy who presented with periorbital edema associated with hypopituitarism. An 83-year-old Japanese man developed acute anterior hypopituitarism; he showed anorexia, fatigue, lethargy, severe bilateral periorbital edema, and mild cardiac dysfunction in the absence of headache, visual disturbance, altered mental status, and cranial nerve palsy. Magnetic resonance imaging showed a 2.5-cm pituitary tumor containing a mixed pattern of solid and liquid components indicating pituitary tumor apoplexy due to hemorrhage in a preexisting pituitary adenoma. Replacement therapy with oral hydrocortisone and levothyroxine relieved his symptoms of central adrenal insufficiency, central hypothyroidism, periorbital edema, and cardiac dysfunction. Common causes of periorbital edema include infections, inflammation, trauma, allergy, kidney or cardiac dysfunction, and endocrine disorders such as primary hypothyroidism. In the present case, the patient's acute central hypothyroidism was probably involved in the development of both periorbital edema and cardiac dysfunction. The present case highlights the need for physicians to consider periorbital edema as an unusual predominant manifestation of pituitary tumor apoplexy.

  16. Notch Signaling in Postnatal Pituitary Expansion: Proliferation, Progenitors, and Cell Specification

    PubMed Central

    Nantie, Leah B.; Himes, Ashley D.; Getz, Dan R.

    2014-01-01

    Mutations in PROP1 account for up to half of the cases of combined pituitary hormone deficiency that result from known causes. Despite this, few signaling molecules and pathways that influence PROP1 expression have been identified. Notch signaling has been linked to Prop1 expression, but the developmental periods during which Notch signaling influences Prop1 and overall pituitary development remain unclear. To test the requirement for Notch signaling in establishing the normal pituitary hormone milieu, we generated mice with early embryonic conditional loss of Notch2 (conditional knockout) and examined the consequences of chemical Notch inhibition during early postnatal pituitary maturation. We show that loss of Notch2 has little influence on early embryonic pituitary proliferation but is crucial for postnatal progenitor maintenance and proliferation. In addition, we show that Notch signaling is necessary embryonically and postnatally for Prop1 expression and robust Pit1 lineage hormone cell expansion, as well as repression of the corticotrope lineage. Taken together, our studies identify temporal and cell type–specific roles for Notch signaling and highlight the importance of this pathway throughout pituitary development. PMID:24673559

  17. Effects of pituitary dwarfism in the mouse on fast and slow skeletal muscles.

    PubMed

    Stickland, N C; Crook, A R; Sutton, C M

    1994-01-01

    The Snell dwarf mouse exhibits impaired growth of the anterior pituitary resulting in reduced levels of growth hormone and thyroid stimulating hormone. Ten dwarf mice and 10 phenotypically normal littermates were killed at 33 days of age. M. biceps brachii (a predominantly fast muscle) and m. soleus (a relatively slow muscle) were removed from each animal and complete frozen transverse sections obtained. Serial sections were reacted for various enzyme activities in order to identify muscle fibre types. There was no difference in the total number of muscle fibres in m. biceps brachii but a small difference in m. soleus between normal and dwarf mice. There were marked differences in the size of all fibre types between normal and dwarf mice with the largest differences in m. soleus. The percentage of slow oxidative fibres was similar (about 32%) in both groups of mice for m. soleus but there was a marked difference for this fibre type in m. biceps brachii being about 1.5% in normal mice and 8.0% in dwarf mice. This may be related to a difference in levels of thyroid hormone. Nuclear density was very significantly greater in dwarf muscles although total nuclear numbers were less than in normal muscles. These differences are most likely due to growth hormone levels. Differences in nuclear content were much greater in m. soleus than in m. biceps brachii.

  18. Neutral sphingomyelinase (SMPD3) deficiency disrupts the Golgi secretory pathway and causes growth inhibition.

    PubMed

    Stoffel, Wilhelm; Hammels, Ina; Jenke, Bitta; Binczek, Erika; Schmidt-Soltau, Inga; Brodesser, Susanne; Schauss, Astrid; Etich, Julia; Heilig, Juliane; Zaucke, Frank

    2016-11-24

    Systemic loss of neutral sphingomyelinase (SMPD3) in mice leads to a novel form of systemic, juvenile hypoplasia (dwarfism). SMPD3 deficiency in mainly two growth regulating cell types contributes to the phenotype, in chondrocytes of skeletal growth zones to skeletal malformation and chondrodysplasia, and in hypothalamic neurosecretory neurons to systemic hypothalamus-pituitary-somatotropic hypoplasia. The unbiased smpd3-/- mouse mutant and derived smpd3-/- primary chondrocytes were instrumental in defining the enigmatic role underlying the systemic and cell autonomous role of SMPD3 in the Golgi compartment. Here we describe the unprecedented role of SMPD3. SMPD3 deficiency disrupts homeostasis of sphingomyelin (SM), ceramide (Cer) and diacylglycerol (DAG) in the Golgi SMPD3-SMS1 (SM-synthase1) cycle. Cer and DAG, two fusogenic intermediates, modify the membrane lipid bilayer for the initiation of vesicle formation and transport. Dysproteostasis, unfolded protein response, endoplasmic reticulum stress and apoptosis perturb the Golgi secretory pathway in the smpd3-/- mouse. Secretion of extracellular matrix proteins is arrested in chondrocytes and causes skeletal malformation and chondrodysplasia. Similarly, retarded secretion of proteo-hormones in hypothalamic neurosecretory neurons leads to hypothalamus induced combined pituitary hormone deficiency. SMPD3 in the regulation of the protein vesicular secretory pathway may become a diagnostic target in the etiology of unknown forms of juvenile growth and developmental inhibition.

  19. Pituitary gland morphogenesis and ontogeny of adenohypophyseal cells of Salminus brasiliensis (Teleostei, Characiformes).

    PubMed

    de Jesus, Lázaro Wender Oliveira; Chehade, Chayrra; Costa, Fabiano Gonçalves; Borella, Maria Inês

    2014-06-01

    In this study, we describe for the first time the details of the pituitary gland morphogenesis and the ontogeny of adenohypophyseal cells of a South American Characiform species with great importance for Brazilian Aquaculture, Salminus brasiliensis (Characiformes, Characidae), from hatching to 25 days after hatching (dah), by histochemical and immunocytochemical methods. The pituitary placode was first detected at hatching (0 dah), and the pituitary anlage became more defined at 0.5 dah. The neurohypophysis (NH) development started at 3 dah, and the early formation of its stalk at 12.5 dah. An increase in adenohypophyseal and NH tissues was also observed, and in juveniles at 25 dah, the pituitary displayed similar morphology to that found in adults of this species, displaying the main features of the teleost pituitary. PRL cells were detected at 0.5 dah, together with ACTH and α-MSH cells, followed by GH and SL cells at 1.5 dah. β-FSH cells were detected at 25 dah, while β-LH cells at 5 dah. The pituitary development in this species comprises a dynamic process similar to other teleosts. Our findings in S. brasiliensis corroborate the heterogeneity in the ontogeny of adenohypophyseal cells in teleosts and suggest a role for adenohypophyseal hormones in the early development of this species.

  20. Oxidative stress and mitochondrial adaptive shift during pituitary tumoral growth.

    PubMed

    Sabatino, Maria Eugenia; Grondona, Ezequiel; Sosa, Liliana D V; Mongi Bragato, Bethania; Carreño, Lucia; Juarez, Virginia; da Silva, Rodrigo A; Remor, Aline; de Bortoli, Lucila; de Paula Martins, Roberta; Pérez, Pablo A; Petiti, Juan Pablo; Gutiérrez, Silvina; Torres, Alicia I; Latini, Alexandra; De Paul, Ana L

    2018-05-20

    The cellular transformation of normal functional cells to neoplastic ones implies alterations in the cellular metabolism and mitochondrial function in order to provide the bioenergetics and growth requirements for tumour growth progression. Currently, the mitochondrial physiology and dynamic shift during pituitary tumour development are not well understood. Pituitary tumours present endocrine neoplastic benign growth which, in previous reports, we had shown that in addition to increased proliferation, these tumours were also characterized by cellular senescence signs with no indication of apoptosis. Here, we show clear evidence of oxidative stress in pituitary cells, accompanied by bigger and round mitochondria during tumour development, associated with augmented biogenesis and an increased fusion process. An activation of the Nrf2 stress response pathway together with the attenuation of the oxidative damage signs occurring during tumour development were also observed which will probably provide survival advantages to the pituitary cells. These neoplasms also presented a progressive increase in lactate production, suggesting a metabolic shift towards glycolysis metabolism. These findings might imply an oxidative stress state that could impact on the pathogenesis of pituitary tumours. These data may also reflect that pituitary cells can modulate their metabolism to adapt to different energy requirements and signalling events in a pathophysiological situation to obtain protection from damage and enhance their survival chances. Thus, we suggest that mitochondria function, oxidative stress or damage might play a critical role in pituitary tumour progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Pituitary Tumors in Childhood: an update in their diagnosis, treatment and molecular genetics

    PubMed Central

    Keil, Margaret F.; Stratakis, Constantine A.

    2009-01-01

    Pituitary tumors are rare in childhood and adolescence, with a reported prevalence of up to 1 per million children. Only 2 - 6% of surgically treated pituitary tumors occur in children. Although pituitary tumors in children are almost never malignant and hormonal secretion is rare, these tumors may result in significant morbidity. Tumors within the pituitary fossa are of two types mainly, craniopharyngiomas and adenomas; craniopharyngiomas cause symptoms by compressing normal pituitary, causing hormonal deficiencies and producing mass effects on surrounding tissues and the brain; adenomas produce a variety of hormonal conditions such as hyperprolactinemia, Cushing disease and acromegaly or gigantism. Little is known about the genetic causes of sporadic lesions, which comprise the majority of pituitary tumors, but in children, more frequently than in adults, pituitary tumors may be a manifestation of genetic conditions such as multiple endocrine neoplasia type 1 (MEN 1), Carney complex, familial isolated pituitary adenoma (FIPA), and McCune-Albright syndrome. The study of pituitary tumorigenesis in the context of these genetic syndromes has advanced our knowledge of the molecular basis of pituitary tumors and may lead to new therapeutic developments. PMID:18416659

  2. Pituitary adenylate cyclase-activating polypeptide (PACAP) contributes to the proliferation of hematopoietic progenitor cells in murine bone marrow via PACAP-specific receptor

    PubMed Central

    Xu, Zhifang; Ohtaki, Hirokazu; Watanabe, Jun; Miyamoto, Kazuyuki; Murai, Norimitsu; Sasaki, Shun; Matsumoto, Minako; Hashimoto, Hitoshi; Hiraizumi, Yutaka; Numazawa, Satoshi; Shioda, Seiji

    2016-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP, encoded by adcyap1) plays an important role in ectodermal development. However, the involvement of PACAP in the development of other germ layers is still unclear. This study assessed the expression of a PACAP-specific receptor (PAC1) gene and protein in mouse bone marrow (BM). Cells strongly expressing PAC1+ were large in size, had oval nuclei, and merged with CD34+ cells, suggesting that the former were hematopoietic progenitor cells (HPCs). Compared with wild-type mice, adcyap1−/− mice exhibited lower multiple potential progenitor cell populations and cell frequency in the S-phase of the cell cycle. Exogenous PACAP38 significantly increased the numbers of colony forming unit-granulocyte/macrophage progenitor cells (CFU-GM) with two peaks in semi-solid culture. PACAP also increased the expression of cyclinD1 and Ki67 mRNAs. These increases were completely and partially inhibited by the PACAP receptor antagonists, PACAP6-38 and VIP6-28, respectively. Little or no adcyap1 was expressed in BM and the number of CFU-GM colonies was similar in adcyap1−/− and wild-type mice. However, PACAP mRNA and protein were expressed in paravertebral sympathetic ganglia, which innervate tibial BM, and in the sympathetic fibers of BM cavity. These results suggested that sympathetic nerve innervation may be responsible for PACAP-regulated hematopoiesis in BM, mainly via PAC1. PMID:26925806

  3. Development and sexual dimorphism of the pituitary gland.

    PubMed

    MacMaster, Frank P; Keshavan, Matcheri; Mirza, Yousha; Carrey, Normand; Upadhyaya, Ameet R; El-Sheikh, Rhonda; Buhagiar, Christian J; Taormina, S Preeya; Boyd, Courtney; Lynch, Michelle; Rose, Michelle; Ivey, Jennifer; Moore, Gregory J; Rosenberg, David R

    2007-02-13

    The pituitary gland plays a central role in sexual development and brain function. Therefore, we examined the effect of age and gender on pituitary volume in a large sample of healthy children and adults. Volumetric magnetic resonance imaging (MRI) was conducted in one hundred and fifty four (77 males and 77 females) healthy participants. Males were between the ages of 7 to 35 years (16.91+/-5.89 years) and females were 7 to 35 years of age (16.75+/-5.75 years). Subjects were divided into subgroups of age (7 to 9, 10 to 13, 14 to 17, 18 to 21, 22 and older) and sex (male/female). Pituitary gland volume differed between sexes when comparing the age groups (F=3.55, df=2, 143, p=0.03). Females demonstrated larger pituitary glands than males in the age 14 to 17 year old groups (p=0.04). Young (19 years and under) and old (20 years and older) females demonstrated a correlation between pituitary volume and age. Males did not show this relationship. These findings provide additional evidence for gender differences in the normative anatomy of the pituitary and may have relevance for the study of various childhood onset neuropsychiatric disorders in which pituitary dysfunction has been implicated.

  4. ICA Occlusion by an ACTH-secreting pituitary adenoma post-TSS and irradiation

    PubMed Central

    El-Zammar, Diala; Akagami, Ryojo

    2011-01-01

    Occlusion of intracranial arteries by a pituitary adenoma with ensuing infarction is a rare occurrence. In this case study, we show the instance of a pituitary macroadenoma and apoplexy causing mechanical obstruction of the internal carotid artery with consequent infarction following transphenoidal surgery (TSS) and radiation therapy in a patient with Cushing's disease. We report a 44-year-old woman presented with amenorrhea and headaches. Necessary investigations, resection by TSS, and microscopic examination revealed an adenocorticotropin (ACTH)-secreting pituitary macroadenoma. The pituitary tumour recurred in subsequent years, resulting in the development of Cushing's disease and syndrome. Despite two more transphenoidal surgeries, radiotherapy, and medical suppressive therapy, the pituitary adenoma continued to enlarge, and the hypercortisolemia and Cushingoid symptoms persisted. A craniotomy was arranged as the next step in the treatment strategy. Only hours prior to the scheduled surgery, the patient developed left-sided hemiplegia, was diagnosed with acute occlusion of the right ICA and underwent an emergency bifrontal craniotomy with evacuation of the tumour and decompression. Pathological examination revealed evidence of apoplexy in the ACTH-secreting pituitary adenoma. This case demonstrates the vast scope of complications that can arise from pituitary adenomas despite combination therapy and forewarns clinicians to be prepared to manage these infrequent but conceivable occurrences. PMID:22399870

  5. Proteomic Profiling of the Pituitary Gland in Studies of Psychiatric Disorders.

    PubMed

    Krishnamurthy, Divya; Rahmoune, Hassan; Guest, Paul C

    2017-01-01

    Psychiatric disorders have been associated with perturbations of the hypothalamic-pituitary-adrenal axis. Therefore, proteomic studies of the pituitary gland have the potential to provide new insights into the underlying pathways affected in these conditions as well as identify new biomarkers or targets for use in developing improved medications. This chapter describes a protocol for preparation of pituitary protein extracts followed by characterization of the pituitary proteome by label-free liquid chromatography-tandem mass spectrometry in expression mode (LC-MS E ). The main focus was on establishing a method for identifying the major pituitary hormones and accessory proteins as many of these have already been implicated in psychiatric diseases.

  6. Incidence of Diabetes Insipidus in Postoperative Period among the Patients Undergoing Pituitary Tumour Surgery.

    PubMed

    Kadir, M L; Islam, M T; Hossain, M M; Sultana, S; Nasrin, R; Hossain, M M

    2017-07-01

    Post operative complications after pituitary tumour surgery vary according to procedure. There are several surgical procedures being done such as transcranial, transsphenoidal microsurgical and transsphenoidal endoscopic approaches. One of the commonest complications is diabetes insipidus (DI). Our main objective was to find out the incidence of diabetes insipidus in post operative period among patients undergoing surgical intervention for pituitary tumour in our institute. The presence of diabetes insipidus in the postoperative period was established by measuring serum Na+ concentration, hourly urine output and urinary specific gravity to find out the incidence of diabetes insipidus in postoperative period in relation to age, gender, tumour diameter, function of tumour (i.e., either hormone secreting or not) and operative procedure used for surgical resection of pituitary tumor. As it is the most common postoperative complication so, in this study we tried to find out how many of the patients develop diabetes insipidus in postoperative period following surgical resection of pituitary tumour. This cross sectional type of observational study was carried out in the department of Neurosurgery, BSMMU from May 2014 to October 2015 on 33 consecutive patients who underwent surgical intervention for pituitary tumour for the first time. Data was collected by using a data collection sheet. The incidence of diabetes insipidus was found 23.1% of patients in <30 year age group, 38.5% of patients in 31-40 year age group and 38.5% of patients in ≥40 year age group (p=0.764). In case of distribution of patients according to gender 38.5% of male and 61.5% of female developed diabetes insipidus (p=0.073). Regarding tumour size 30.8% and 69.2% of patients developed diabetes insipidus having tumour diameter <30mm and ≥30mm respectively (p=0.590). In case of operative procedure 69.2% of patients developed diabetes insipidus who was operated by transsphenoidal endoscopic approach, 23.1% and 7.7% of patients developed diabetes insipidus who underwent pituitary tumour resection through transsphenoidal microscopic approach and transcranial microscopic approach respectively (p=0.432). 17.6% of patients develop DI having functioning pituitary macroadenoma and 62.5% of patients develop DI having nonfunctioning pituitary macroadenoma. This observational study has been performed to find out the incidence of diabetes insipidus. Incidence of postoperative DI is more at or around the age of 40 years. It is slightly predominant in female. Most of the patients manifest DI in the first 24 hours of surgical intervention. Incidence of DI is low among patients having functioning pituitary macroadenoma.

  7. Fetal Alcohol Exposure Reduces Dopamine Receptor D2 and Increases Pituitary Weight and Prolactin Production via Epigenetic Mechanisms

    PubMed Central

    Gangisetty, Omkaram; Wynne, Olivia; Jabbar, Shaima; Nasello, Cara; Sarkar, Dipak K.

    2015-01-01

    Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells. PMID:26509893

  8. Global deficits in development, function, and gene expression in the endocrine pancreas in a deletion mouse model of Prader-Willi syndrome.

    PubMed

    Stefan, Mihaela; Simmons, Rebecca A; Bertera, Suzanne; Trucco, Massimo; Esni, Farzad; Drain, Peter; Nicholls, Robert D

    2011-05-01

    Prader-Willi syndrome (PWS) is a multisystem disorder caused by genetic loss of function of a cluster of imprinted, paternally expressed genes. Neonatal failure to thrive in PWS is followed by childhood-onset hyperphagia and obesity among other endocrine and behavioral abnormalities. PWS is typically assumed to be caused by an unknown hypothalamic-pituitary dysfunction, but the underlying pathogenesis remains unknown. A transgenic deletion mouse model (TgPWS) has severe failure to thrive, with very low levels of plasma insulin and glucagon in fetal and neonatal life prior to and following onset of progressive hypoglycemia. In this study, we tested the hypothesis that primary deficits in pancreatic islet development or function may play a fundamental role in the TgPWS neonatal phenotype. Major pancreatic islet hormones (insulin, glucagon) were decreased in TgPWS mice, consistent with plasma levels. Immunohistochemical analysis of the pancreas demonstrated disrupted morphology of TgPWS islets, with reduced α- and β-cell mass arising from an increase in apoptosis. Furthermore, in vivo and in vitro studies show that the rate of insulin secretion is significantly impaired in TgPWS β-cells. In TgPWS pancreas, mRNA levels for genes encoding all pancreatic hormones, other secretory factors, and the ISL1 transcription factor are upregulated by either a compensatory response to plasma hormone deficiencies or a primary effect of a deleted gene. Our findings identify a cluster of imprinted genes required for the development, survival, coordinate regulation of genes encoding hormones, and secretory function of pancreatic endocrine cells, which may underlie the neonatal phenotype of the TgPWS mouse model.

  9. Pituitary Volume Prospectively Predicts Internalizing Symptoms in Adolescence

    ERIC Educational Resources Information Center

    Zipursky, Amy R.; Whittle, Sarah; Yucel, Murat; Lorenzetti, Valentina; Wood, Stephen J.; Lubman, Dan I.; Simmons, Julian G.; Allen, Nicholas B.

    2011-01-01

    Background: Early adolescence is a critical time for the development of both internalizing and externalizing disorders. We aimed to investigate whether pituitary volume, an index of hypothalamic-pituitary-adrenal (HPA) axis function, represents a vulnerability factor for the emergence of internalizing and externalizing symptoms during adolescence…

  10. Prolactin-Producing Pituitary Carcinoma, Hypopituitarism, and Graves' Disease-Report of a Challenging Case and Literature Review.

    PubMed

    Bettencourt-Silva, Rita; Pereira, Josué; Belo, Sandra; Magalhães, Daniela; Queirós, Joana; Carvalho, Davide

    2018-01-01

    The diagnosis of pituitary carcinoma is very rare, requires the evidence of metastatic disease, and has a poor overall survival. Malignant prolactinoma frequently requires dopamine agonist therapy, pituitary surgery, radiotherapy, and even chemotherapy. A 19-year-old female presented with galactorrhea, primary amenorrhea, and left hemianopsia. Complementary study detected hyperprolactinemia and a pituitary macroadenoma with cavernous sinus invasion and suprasellar growth. She was treated with cabergoline and bromocriptine without clinical or analytical improvement. Resection of the pituitary lesion was programmed and a non-contiguous lesion of the nasal mucosa was detected during the approach. This metastasis led to the diagnosis of prolactin-producing pituitary carcinoma. After partial resection, the patient was submitted to radiotherapy for residual disease with persistent symptoms. She developed growth hormone deficiency, central hypothyroidism, hypogonadism, and permanent diabetes insipidus. Six years later she was admitted for the suspicion of secondary adrenal insufficiency and thyrotoxicosis. Physical findings, laboratory data, thyroid ultrasound, and scintigraphy achieved the diagnosis of Graves' disease and hypocortisolism. She was treated with hydrocortisone and methimazole, but central hypothyroidism recurred after antithyroid drug withdrawal. Nine years after the diagnosis of a pituitary carcinoma, she maintains treatment with bromocriptine, has a locally stable disease, with no metastases. This report highlights an unusual presentation of a prolactin-producing pituitary carcinoma in a young female. The patient had multiple hormone deficiencies due to a pituitary lesion and treatments. The posterior development of hyperthyroidism and adrenal insufficiency brought an additional difficulty to the approach.

  11. Molecular and Clinical Findings in Patients with LHX4 and OTX2 Mutations

    PubMed Central

    Tajima, Toshihiro; Ishizu, Katsura; Nakamura, Akie

    2013-01-01

    The pituitary gland produces hormones that play important roles in both the development and homeostasis of the body. Ontogeny of the anterior and posterior pituitary is orchestrated by inputs from neighboring tissues, cellular signaling molecules and transcription factors. Disruption of expression or function of these factors has been implicated in the etiology of combined pituitary hormone deficiency (CPHD). These include the transcription factors HESX1, PROP1, POU1F1, LHX3, LHX4, OTX2, SOX2, SOX3 and GLI2. This review focuses on summarizing most recent mutations in LHX4 and OTX2 responsible for pituitary hormone deficiency. In both genetic defects of LHX4 and OTX2, there is high variability in clinical manifestations even in the same family. In addition, there is no clear phenotype-genotype correlation. These findings indicate that the other genetic and/or environmental factors influence the phenotype. In addition, the variability might reflect a plasticity during pituitary development and maintenance. Over the past two decades, a genetic basis for pituitary hormone deficiency and the mechanism of pituitary development have been clarified. It should be kept in mind that this review is not comprehensive, and defects of other transcriptional factors have been described in patients with CPHD. Furthermore, the causes in many patients with CPHD have not yet been determined. Therefore, continuing efforts for the clarification of the etiology are necessary. PMID:23990694

  12. Neurotrophins, their receptors and KI-67 in human GH-secreting pituitary adenomas: an immunohistochemical analysis.

    PubMed

    Artico, M; Bianchi, E; Magliulo, G; De Vincentiis, M; De Santis, E; Orlandi, A; Santoro, A; Pastore, F S; Giangaspero, F; Caruso, R; Re, M; Fumagalli, L

    2012-01-01

    Pituitary adenomas are a diverse group of tumors arising from the pituitary gland. Typically, they are small, slow-growing, hormonally inactive lesions that come to light as incidental findings on radiologic or postmortem examinations, although some small, slow-growing lesions with excessive hormonal activity may manifest with a clinical syndrome. The family of neurotrophins plays a key role in the development and maintenance of the pituitary endocrine cell function and in the regulation of hypothalamo-pituitary-adrenocortical axis activity. The objective of our experimental study is to investigate the localization of the neurotrophins, their relative receptors and to detect the expression level of Ki-67 to determine whether all these factors participate in the transformation and development of human pituitary adenomas. A very strong expression of Neurotrophin-3 (NT-3) and its receptor TrKC was observed in the extracellular matrix (ECM) and vessel endothelium, together with a clear/marked presence of Brain-derived neurotrophic factor (BDNF), and its receptor TrKB, thus confirming their direct involvement in the progression of pituitary adenomas. On the contrary, NGF (Nerve growth factor) and its receptor TrKA and p75NTR were weakly expressed in the epithelial gland cells and the ECM.

  13. Development and characterization of five rainbow trout pituitary single-cell clone lines capable of producing pituitary hormones

    USDA-ARS?s Scientific Manuscript database

    Five single-cell clone lines (mRTP1B, mRTP1E, mRTP1F, mRTP1K, and mRTP2A) have been developed from adult rainbow trout pituitary glands. These cell lines have been maintained in a CO2-independent medium supplemented with 10% fetal bovine serum (FBS) for more than 150 passages. At about 150 passages,...

  14. Concentrations of the adrenocorticotropic hormone, corticosterone and sex steroid hormones and the expression of the androgen receptor in the pituitary and adrenal glands of male turkeys (Meleagris gallopavo) during growth and development.

    PubMed

    Kiezun, J; Kaminska, B; Jankowski, J; Dusza, L

    2015-01-01

    Androgens take part in the regulation of puberty and promote growth and development. They play their biological role by binding to a specific androgen receptor (AR). The aim of this study was to evaluate the expression of AR mRNA and protein in the pituitary and adrenal glands, to localize AR protein in luteinizing hormone (LH)-producing pituitary and adrenocortical cells, to determine plasma concentrations of adrenocorticotropic hormone (ACTH) and corticosterone and the concentrations of corticosterone, testosterone (T), androstenedione (A4) and oestradiol (E2) in the adrenal glands of male turkeys at the age of 4, 8, 12, 16, 20, 24 and 28weeks. The concentrations of hormones and the expression of AR varied during development. The expression of AR mRNA and protein in pituitary increased during the growth. The increase of AR mRNA levels in pituitary occurred earlier than increase of AR protein. The percentage of pituitary cells expressing ARs in the population of LH-secreting cells increased in week 20. It suggests that AR expression in LH-producing pituitary cells is determined by the phase of development. The drop in adrenal AR mRNA and protein expression was accompanied by an increase in the concentrations of adrenal androgens. Those results could point to the presence of a compensatory mechanism that enables turkeys to avoid the potentially detrimental effects of high androgen concentrations. Our results will expand our knowledge of the role of steroids in the development of the reproductive system of turkeys from the first month of age until maturity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Assessment of Environmental and Hereditary Influence on Development of Pituitary Tumors Using Dermatoglyphic Traits and Their Potential as Screening Markers.

    PubMed

    Gradiser, Marina; Matovinovic Osvatic, Martina; Dilber, Dario; Bilic-Curcic, Ines

    2016-03-17

    The aim of this study was to assess environmental and hereditary influence on development of pituitary tumors using dermatoglyphic traits. The study was performed on 126 patients of both genders with pituitary tumors (60 non-functional and 66 functional pituitary tumor patients) in comparison to the control group of 400 phenotypically healthy individuals. Statistical analysis of quantitative and qualitative traits of digito-palmar dermatoglyphics was performed, and hormonal status was determined according to the standard protocols. Although we did not find markers that could specifically distinguish functional from non-functional tumors, we have found markers predisposing to the development of tumors in general (a small number of ridges between triradius of both hands, a smaller number of ridges between the triradius of c-d rc R), those for endocrine dysfunction (increased number of arches and reduced number of whorls, difference of pattern distribution in the I3 and I4 interdigital space), and some that could potentially be attributed to patients suffering from pituitary tumors (small number of ridges for variables FRR 5, smaller number of ridges in the FRL 4 of both hands and difference of pattern distribution at thenar of I1 and I2 interdigital space). The usage of dermatoglyphic traits as markers of predisposition of pituitary tumor development could facilitate the earlier detection of patients in addition to standard methods, and possibly earlier treatment and higher survival rate. Finally, our results are consistent with the hypothesis about multifactorial nature of pituitary tumor etiology comprised of both gene instability and environmental factors.

  16. Assessment of Environmental and Hereditary Influence on Development of Pituitary Tumors Using Dermatoglyphic Traits and Their Potential as Screening Markers

    PubMed Central

    Gradiser, Marina; Matovinovic Osvatic, Martina; Dilber, Dario; Bilic-Curcic, Ines

    2016-01-01

    The aim of this study was to assess environmental and hereditary influence on development of pituitary tumors using dermatoglyphic traits. The study was performed on 126 patients of both genders with pituitary tumors (60 non-functional and 66 functional pituitary tumor patients) in comparison to the control group of 400 phenotypically healthy individuals. Statistical analysis of quantitative and qualitative traits of digito-palmar dermatoglyphics was performed, and hormonal status was determined according to the standard protocols. Although we did not find markers that could specifically distinguish functional from non-functional tumors, we have found markers predisposing to the development of tumors in general (a small number of ridges between triradius of both hands, a smaller number of ridges between the triradius of c–d rc R), those for endocrine dysfunction (increased number of arches and reduced number of whorls, difference of pattern distribution in the I3 and I4 interdigital space), and some that could potentially be attributed to patients suffering from pituitary tumors (small number of ridges for variables FRR 5, smaller number of ridges in the FRL 4 of both hands and difference of pattern distribution at thenar of I1 and I2 interdigital space). The usage of dermatoglyphic traits as markers of predisposition of pituitary tumor development could facilitate the earlier detection of patients in addition to standard methods, and possibly earlier treatment and higher survival rate. Finally, our results are consistent with the hypothesis about multifactorial nature of pituitary tumor etiology comprised of both gene instability and environmental factors. PMID:26999178

  17. Transcriptomic changes throughout post-hatch development in Gallus gallus pituitary

    PubMed Central

    Lamont, Susan J; Schmidt, Carl J

    2016-01-01

    The pituitary gland is a neuroendocrine organ that works closely with the hypothalamus to affect multiple processes within the body including the stress response, metabolism, growth and immune function. Relative tissue expression (rEx) is a transcriptome analysis method that compares the genes expressed in a particular tissue to the genes expressed in all other tissues with available data. Using rEx, the aim of this study was to identify genes that are uniquely or more abundantly expressed in the pituitary when compared to all other collected chicken tissues. We applied rEx to define genes enriched in the chicken pituitaries at days 21, 22 and 42 post-hatch. rEx analysis identified 25 genes shared between all time points, 295 genes shared between days 21 and 22 and 407 genes unique to day 42. The 25 genes shared by all time points are involved in morphogenesis and general nervous tissue development. The 295 shared genes between days 21 and 22 are involved in neurogenesis and nervous system development and differentiation. The 407 unique day 42 genes are involved in pituitary development, endocrine system development and other hormonally related gene ontology terms. Overall, rEx analysis indicates a focus on nervous system/tissue development at days 21 and 22. By day 42, in addition to nervous tissue development, there is expression of genes involved in the endocrine system, possibly for maturation and preparation for reproduction. This study defines the transcriptome of the chicken pituitary gland and aids in understanding the expressed genes critical to its function and maturation. PMID:27856505

  18. In vivo measurements of T1 relaxation times in mouse brain associated with different modes of systemic administration of manganese chloride.

    PubMed

    Kuo, Yu-Ting; Herlihy, Amy H; So, Po-Wah; Bhakoo, Kishore K; Bell, Jimmy D

    2005-04-01

    To measure regional T1 and T2 values for normal C57Bl/6 mouse brain and changes in T1 after systemic administration of manganese chloride (MnCl2) at 9.4 T. C57Bl/6 mice were anesthetized and baseline T1 and T2 measurements obtained prior to measurement of T1 after administration of MnCl2 at 9.4 T. MnCl2 was administered systemically either by the intravenous (IV), intraperitoneal (IP), or subcutaneous (SC) routes. T1 and T2 maps for each MRI transverse slice were generated using commercial software, and T1 and T2 values of white matter (WM), gray matter (GM), pituitary gland, and lateral ventricle were obtained. When compared with baseline values at low-field, significant lengthening of the T1 values was shown at 9.4 T, while no significant change was seen for T2 values. Significant T1 shortening of the normal mouse brain was observed following IV, IP, and SC administration of MnCl2, with IV and IP showing similar acute effects. Significant decreases in T1 values were seen for the pituitary gland and the ventricles 15 minutes after either IV or IP injection. GM showed greater uptake of the contrast agent than WM at 15 and 45 minutes after either IV or IP injections. Although both structures are within the blood-brain barrier (BBB), GM and WM revealed a steady decrease in T1 values at 24 and 72 hours after MnCl2 injection regardless of the route of administration. Systemic administration of MnCl2 by IV and IP routes induced similar time-course of T1 changes in different regions of the mouse brain. Acute effects of MnCl2 administration were mainly influenced by either the presence or absence of BBB. SC injection also provided significant T1 change at subacute stage after MnCl2 administration. Copyright 2005 Wiley-Liss, Inc.

  19. Undifferentiated carcinoma of the pituitary gland: A case report and review of the literature.

    PubMed

    Lee, Hsun-Hwa; Hung, Shih-Han; Tseng, Te-Ming; Lin, Yun-Ho; Cheng, Ju-Chuan

    2014-03-01

    Primary pituitary gland cancer is extremely rare. The current study presents the case of a patient diagnosed with pituitary cancer three months after completing surgery and post-operative chemoradiotherapy for hypopharyngeal cancer. In this report we discuss 57-year-old patient who presented with diplopia and ptosis four months following the completion of treatment for hypopharyngeal cancer. A poorly-differentiated pituitary carcinoma was located. Despite aggressive treatment and surgical excision with postoperative chemoradiotherapy, the disease progressed rapidly and the patient succumbed due to multiple metastases and organ failure. This case report indicates a possible correlation between irradiation and the development of pituitary cancer.

  20. Pituitary gland volume and psychosocial stress among children at elevated risk for schizophrenia.

    PubMed

    Cullen, A E; Day, F L; Roberts, R E; Pariante, C M; Laurens, K R

    2015-11-01

    Pituitary volume enlargements have been observed among individuals with first-episode psychosis. These abnormalities are suggestive of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, which may contribute to the development of psychosis. However, the extent to which these abnormalities characterize individuals at elevated risk for schizophrenia prior to illness onset is currently unclear, as volume increases, decreases and no volume differences have all been reported relative to controls. The current study aimed to determine whether antipsychotic-naive, putatively at-risk children who present multiple antecedents of schizophrenia (ASz) or a family history of illness (FHx) show pituitary volume abnormalities relative to typically developing (TD) children. An additional aim was to explore the association between pituitary volume and experiences of psychosocial stress. ASz (n = 30), FHx (n = 22) and TD (n = 32) children were identified at age 9-12 years using a novel community-screening procedure or as relatives of individuals with schizophrenia. Measures of pituitary volume and psychosocial stress were obtained at age 11-14 years. Neither ASz nor FHx children showed differences in pituitary volume relative to TD children. Among FHx children only, pituitary volume was negatively associated with current distress relating to negative life events and exposure to physical punishment. The lack of pituitary volume abnormalities among ASz and FHx children is consistent with our previous work demonstrating that these children are not characterized by elevated diurnal cortisol levels. The findings imply that these biological markers of HPA axis hyperactivity, observed in some older samples of high-risk individuals, may emerge later, more proximally to disease onset.

  1. Sellar and supra-sellar glioblastoma masquerading as a pituitary macroadenoma.

    PubMed

    Mahta, Ali; Buhl, Ralf; Huang, Hongguang; Jansen, Olav; Kesari, Santosh; Ulmer, Stephan

    2013-04-01

    A few number of suprasellar gliomas have been reported thus far of which, some of them developed several years after radiation therapy for pituitary adenomas or craniopharyngiomas. Herein, we report a case of sellar glioblastoma with suprasellar extension with no prior radiation history who mimicked clinical and radiologic findings of a pituitary macroadenoma.

  2. The Enigma behind Pituitary and Sella Turcica

    PubMed Central

    Gopalakrishnan, Umarevathi; Mahendra, Lodd; Rangarajan, Sumanth; Madasamy, Ramasamy; Ibrahim, Mohammad

    2015-01-01

    The pituitary gland's role as a functional matrix for sella turcica has not been suggested in orthodontic literature. This paper is an attempt to correlate the role of pituitary gland in the development of sella turcica. A case report of dwarfism associated with hypopituitarism is presented to highlight the above hypothesis. PMID:26199763

  3. Adult pituitary stem cells: from pituitary plasticity to adenoma development.

    PubMed

    Florio, Tullio

    2011-01-01

    The pituitary needs high plasticity of the hormone-producing cell compartment to generate the continuously changing hormonal signals that govern the key physiological processes it is involved in, as well as homeostatic cell turnover. However, the underlying mechanisms are still poorly understood. It was proposed that adult stem cells direct the generation of newborn cells with a hormonal phenotype according to the physiological requirements. However, only in recent years adult pituitary stem cells have begun to be phenotypically characterized in several studies that identified multiple stem/progenitor cell candidates. Also considering the incompletely defined features of this cell subpopulation, some discrepancies among the different reports are clearly apparent and long-term self-renewal remains to be unequivocally demonstrated. Here, all the recently published evidence is analyzed, trying, when possible, to reconcile the results of the different studies. Finally, with the perspective of shedding light on pituitary tumorigenesis and the development of potentially new pharmacological approaches directed against these cells, very recent evidence on the presence of putative cancer stem cells in human pituitary adenomas is discussed. Copyright © 2011 S. Karger AG, Basel.

  4. Direct and indirect requirements of Shh/Gli signaling in early pituitary development.

    PubMed

    Wang, Yiwei; Martin, James F; Bai, C Brian

    2010-12-15

    Induction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning. We further show that the action of Gli2 occurs prior to the closure of Rathke' pouch. Lastly, we show that Shh/Gli2 signaling controls the diencephalic expression of Bone morphogenetic protein 4 (Bmp4) and Fibroblast growth factor 8 (Fgf8), two genes that are known to play critical roles in patterning and growth of Rathke's pouch. Our results therefore suggest both cell-autonomous and non-cell-autonomous requirements for Gli2 in regulation of pituitary progenitor specification, proliferation and differentiation. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Adrenocorticotropin-producing pituitary carcinoma with liver metastasis.

    PubMed

    Lormeau, B; Miossec, P; Sibony, M; Valensi, P; Attali, J R

    1997-04-01

    We report here the extremely rare case of a twenty-eight year-old woman with a metastatic ACTH-secreting pituitary carcinoma. This is the thirteenth case to be described in the literature. Ten years ago Cushing's disease was diagnosed. After pituitary surgery, then bilateral adrenalectomy, a Nelson's syndrome appeared. The particularly extensive pituitary secondary development led to several pituitary surgical procedures, radiotherapy, and octreotide treatment. Eight years after Cushing's disease was diagnosed, liver tumors were discovered. Pathological examination and ACTH immunostaining demonstrated the secretory nature of these metastases. The lack of ectopic tumor, the LPH/ACTH equimolar ratio and a study of the plasma proopiomelanocortin derivatives by HPLC showed that the ACTH secretion originated in pituitary tissues (in situ and liver metastases). The processing of POMC seems thus to be normal in this kind of tumor and metastases. Intact POMC levels were very high, indicating an aggressive tumor, and ACTH/LPH production was paradoxically stimulated by octreotide. This case is also exceptional because of the slow development of the disease, which may be due to the complementary hepatic chemoembolization treatment.

  6. In vivo alternative assessment of the chemicals that interfere with anterior pituitary POMC expression and interrenal steroidogenesis in POMC: EGFP transgenic zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Lingli; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072; Xu Wei

    2010-11-01

    Adrenocorticotropin (ACTH) has been considered a classic adrenocorticotropic hormone and the key pituitary-derived peptide controlling steroidogenesis in the adult adrenal. ACTH is encoded by the propiomelanocortin (POMC) gene, and its active form is mainly synthesized and processed from the POMC-encoded multihormone precursor in the anterior pituitary. The ACTH level has always been precisely controlled in the signaling cascade of the hypothalamo-pituitary-adrenal (HPA) axis due to its central role. The purpose of this study was to investigate whether the transgenic zebrafish line with EGFP driven by the POMC promoter can be used as a surrogate marker to detect the interference effectsmore » on anterior pituitary POMC expression caused by chemicals in teleost. The Tg (POMC:EGFP) fish treated for 4 days with the known adrenergic agents, dexamethasone (Dex) or aminoglutethimide (AG), exhibited altered levels of EGFP and POMC expression in the anterior domain of pituitary corticotrophs. Whole-mount in situ hybridization revealed impaired patterns of expression of the zebrafish ftz-fl gene (ff1b), a key molecular marker for early interrenal development. Next, several chemicals and six commonly used organophosphorus compounds (OPs) were tested for their effects on anterior pituitary POMC expression and early interrenal development. Our preliminary screening analyses indicated that simazine and 3,3',4,4'5-pentachlorobiphenyl (PCB126) could interfere with anterior pituitary POMC expression and interrenal development in fish. In summary, our results demonstrated that the Tg (POMC:EGFP) zebrafish line might be employed as a specific and reproductive in vivo assessment model for the effects of endocrine disruption on HPA signaling.« less

  7. Radiation-induced ocular motor cranial nerve palsies in patients with pituitary tumor.

    PubMed

    Vaphiades, Michael S; Spencer, Sharon A; Riley, Kristen; Francis, Courtney; Deitz, Luke; Kline, Lanning B

    2011-09-01

    Radiation therapy is often used in the treatment of pituitary tumor. Diplopia due to radiation damage to the ocular motor cranial nerves has been infrequently reported as a complication in this clinical setting. Retrospective case series of 6 patients (3 men and 3 women) with pituitary adenoma, all of whom developed diplopia following transsphenoidal resection of pituitary adenoma with subsequent radiation therapy. None had evidence of tumor involvement of the cavernous sinus. Five patients developed sixth nerve palsies, 3 unilateral and 2 bilateral, and in 1 patient, a sixth nerve palsy was preceded by a fourth cranial nerve palsy. One patient developed third nerve palsy. Five of the 6 patients had a growth hormone-secreting pituitary tumor with acromegaly. Following transsphenoidal surgery in all 6 patients (2 had 2 surgeries), 4 had 2 radiation treatments consisting of either radiosurgery (2 patients) or external beam radiation followed by radiosurgery (2 patients). Patients with pituitary tumors treated multiple times with various forms of radiation therapy are at risk to sustain ocular motor cranial nerve injury. The prevalence of acromegalic patients in this study reflects an aggressive attempt to salvage patients with recalcitrant growth hormone elevation and may place the patient at a greater risk for ocular motor cranial nerve damage.

  8. [Elucidation of the mechanism of fertilization and clinical application of assisted reproductive technology].

    PubMed

    Hiroi, M

    1996-08-01

    Fertilization is the process including many events such as maturation of egg and sperm, attachment, binding, acrosomal reaction, penetration, fusion, cortical reaction, zona reaction and nuclear fusion of both gamete, whereby individual gametes from the female and male unite to create offspring. Although the reason for mechanism of fertilization is still not clearly understood, this process may accelerate the rate adaptation in evolution. In this special lecture, I would like to present our experimental and clinical results especially concerning with morphological, physiological, biochemical and molecular approach on the mechanism of fertilization. 1. Development and maturation of follicles and oocytes. It is well known that pituitary FSH, LH control the ovarian function. Follicular development and ovum maturation are also controlled by both pituitary gonadotropins and local factors such as autocrine and paracrine agents. When hMG is injected during 1-6 day of menstrual cycle, several dominant follicles are developed. If hMG is injected after selection of dominant follicles, only one dominant follicle develop in the ovary. When PMS-treated immature rats were injected with immature or mature follicle fluids, rats injected with mature follicular fluid showed strongly suppress in the ovarian weights and numbers of ovulated follicles. Also mature follicle suppress aromatization from and androstenedione to estradiol. These findings mean that mature follicular fluid contains inhibitory factors. Apoptosis of granulosa cells and follicular steroids are related to fertilization. 2. Intracellular calcium of oocyte. Intracellular calcium concentration is known to start to increase in a periodic manner after fertilization in oocytes of mammalians. In 65% of tested mouse oocytes, fertilization occurred during 4 hours observation after sperm insemination in vitro. An initial long lasting intracellular calcium concentration was observed and followed by periodic manner. This calcium oscillation is inhibited by calcium blockers such as verpamil and nifedipine, but increased by high concentration of extracellular calcium concentration in the medium. Role of increase of intracellular calcium are understood to prevent polysperm and activate metabolism of oocytes. 3. Glucose metabolism of oocytes. Mouse embryo utilizes pyruvate as an essential nutrient until the 8-cell stage, and glucose thereafter. We have devised non-radiometrie and enzymatic microassay method to measure glucose, deoxyglucose, deoxyglucose 6-phosphate incorporated into individual mouse oocytes and preimplantation embryo. In parallel, the activities of several enzymes of glycolytic pathway were also determined. In this study, glucose metabolism is necessary to develop in fertilized ova with changing activity of enzymes. 4. Molecular bases of ovarian fluid. The zona pellucida ZP is involved in a number of events in fertilization, all these fertilization events occur in the oviduct. Oviductal glycoprotein 200-240 KD has been identified from oviductal zona pellucida. Monoclonal antibody of oviductal glycoprotein reacted with ZP of oviductal egg but not with the ovarian egg. Anti-ZPO antibody inhibit to bind sperm to ZP. Sequences in mouse and hamster oviduct specific glycoprotein are estimated, this glycoprotein mRNA was observed in only oviduct by northern blotting method. These molecular gene expression was observed by in situ hybridization in the oviduct of estrous cycle of hamster. 5. Microinsemination of sperm. Microinsemination of sperm into oocyte is widely used in clinical medicine. Sperm penetration assay (hamster test) is useful method to estimate fertilization capacity of sperm. But immotile sperm cannot estimate it. So modified micro sperm penetration assay was established to estimate fertilization capacity of sperm by using micro-manipulator. Subzonal sperm injection (SUZI) and intracytoplasmic sperm injection (ICSI) promotes fertilization and cleavage rate in immotile

  9. The risks of overlooking the diagnosis of secreting pituitary adenomas.

    PubMed

    Brue, Thierry; Castinetti, Frederic

    2016-10-06

    Secreting pituitary adenomas that cause acromegaly and Cushing's disease, as well as prolactinomas and thyrotroph adenomas, are uncommon, usually benign, slow-growing tumours. The rarity of these conditions means that their diagnosis is not familiar to most non-specialist physicians. Consequently, pituitary adenomas may be overlooked and remain untreated, and affected individuals may develop serious comorbidities that reduce their quality of life and life expectancy. Because many signs and symptoms of pituitary adenomas overlap with those of other, more common disorders, general practitioners and non-endocrinology specialists need to be aware of the "red flags" suggestive of these conditions. A long duration of active disease in patients with secreting pituitary adenomas is associated with an increased risk of comorbidities and reduced quality of life. Appropriate treatment can lead to disease remission, and, although some symptoms may persist in some patients, treatment usually reduces the incidence and severity of comorbidities and improves quality of life. Therefore, correct, early diagnosis and characterization of a pituitary adenoma is crucial for patients, to trigger timely, appropriate treatment and to optimize outcome. This article provides an overview of the epidemiology of hormonal syndromes associated with pituitary adenomas, discusses the difficulties of and considerations for their diagnosis, and reviews the comorbidities that may develop, but can be prevented, by accurate diagnosis and appropriate treatment. We hope this review will help general practitioners and non-endocrinology specialists to suspect secreting pituitary adenomas and refer patients to an endocrinologist for confirmation of the diagnosis and treatment.

  10. Anterior pituitary failure (panhypopituitarism) with balanced chromosome translocation 46,XY,t(11;22)(q24;q13).

    PubMed

    Yang, C Y; Chou, C W; Chen, S Y; Cheng, H M

    2001-04-01

    Hypopituitarism is the clinical syndrome that results from failure of the anterior pituitary gland to produce its hormones. Hypopituitarism can result from: (1) intrinsic or primary pituitary disease; (2) intrinsic hypothalamic or secondary pituitary disease; or (3) extrinsic extrasellar or parasellar disease. The etiologies of primary hypopituitarism are miscellaneous. The dominant clinical picture of hypopituitarism in the adult is that of hypogonadism. Reports have associated hypopituitarism with anti-pituitary-antibodies, hereditary syndrome and chromosome defects, but hypopituitarism has rarely been associated with balanced chromosome translocation (11;22)(q24;q13). Here, we describe a case of anterior pituitary failure with balanced chromosome translocation. A 19-year-old Chinese teenager presented with failure of pubertal development and sexual infantilism. On examination, the patient had the classic appearance of hypogonadism. Endocrine studies and three combined pituitary function tests revealed panhypopituitarism. A chromosomal study revealed 46,XY,t(11;22)(q24;q13), a balanced translocation between 11q24 and 22q13. Chest films showed delayed fusion of bilateral humeral head epiphyses and bilateral acromions. Scrotal sonography revealed testes were small bilaterally. Magnetic resonance imaging (MRI) of the sella revealed pituitary dwarfism. The patient received 19 months replacement therapy, including steroids (prednisolone 5 mg each day), L-thyroxine (Eltroxin 100 ug each day), and testosterone enanthate 250 mg every two weeks. His height increased 4 cm with secondary sexual characteristics developed, and muscle power increased.

  11. Cerebellar microfolia and other abnormalities of neuronal growth, migration, and lamination in the Pit1dw-J homozygote mutant mouse

    NASA Technical Reports Server (NTRS)

    Sekiguchi, M.; Abe, H.; Moriya, M.; Tanaka, O.; Nowakowski, R. S.

    1998-01-01

    The Snell dwarf mouse (Pit1dw-J homozygote) has a mutation in the Pit1 gene that prevents the normal formation of the anterior pituitary. In neonates and adults there is almost complete absence of growth hormone (GH), prolactin (PRL), thyroxin (T4), and thyroid-stimulating hormone (TSH). Since these hormones have been suggested to play a role in normal development of the central nervous system (CNS), we have investigated the effects of the Pit1dw-J mutation on the cerebellum and hippocampal formation. In the cerebellum, there were abnormalities of both foliation and lamination. The major foliation anomalies were 1) changes in the relative size of specific folia and also the proportional sizes of the anterior vs posterior cerebellum; and 2) the presence of between one and three microfolia per half cerebellum. The microfolia were all in the medial portion of the hemisphere in the caudal part of the cerebellum. Each microfolium was just rostral to a normal fissure and interposed between the fissure and a normal gyrus. Lamination abnormalities included an increase in the number of single ectopic granule cells in the molecular layer in both cerebellar vermis (86%) and hemisphere (40%) in comparison with the wild-type mouse. In the hippocampus of the Pit1dw-J homozygote mouse, the number of pyramidal cells was decreased, although the width of the pyramidal cell layer throughout areas CA1-CA3 appeared to be normal, but less densely populated than in the wild-type mouse. Moreover, the number of granule cells that form the granule cell layer was decreased from the wild-type mouse and some ectopic granule cells (occurring both as single cells and as small clusters) were observed in the innermost portion of the molecular layer. The abnormalities observed in the Pit1dw-J homozygote mouse seem to be caused by both direct and indirect effects of the deficiency of TSH (or T4), PRL, or GH rather than by a direct effect of the deletion of Pit1.

  12. Purinergic receptor ligands stimulate pro-opiomelanocortin gene expression in AtT-20 pituitary corticotroph cells.

    PubMed

    Zhao, L-F; Iwasaki, Y; Oki, Y; Tsugita, M; Taguchi, T; Nishiyama, M; Takao, T; Kambayashi, M; Hashimoto, K

    2006-04-01

    Although recent studies have suggested that purinergic receptors are expressed in the anterior pituitary gland, their involvement in the regulation of pituitary hormone gene expression is not completely understood. In the present study, we examined the expression of purinergic receptors and the effects of purinergic receptor ligands on pro-opiomelanocortin (POMC) gene expression, in AtT20 mouse corticotroph cells. We identified the expression of most of the purinergic receptor subtypes (A1, A2, P2X1, 3-7, P2Y1, 2, 4) mRNAs, analysed by the reverse transcriptase-polymerase chain reaction. We also found that adenosine and ATP, two representative and endogenous agonists of A1-3 and P2X/P2Y receptors, respectively, stimulated the 5'-promoter activity of the POMC gene in a dose- and time-related manner. When these ligands were simultaneously used with corticotrophin-releasing hormone (CRH), effects that were more than additive were observed, suggesting an enhancing role of these compounds in CRH-mediated adrenocorticotrophic hormone (ACTH) synthesis. These ligands also stimulated the expression of transcription factors involved in the regulation of the POMC gene, but did not enhance ACTH secretion. Finally, the positive effect of adenosine as well as CRH was completely inhibited by the protein kinase A inhibitor H89, whereas that of ATP was not influenced, indicating that different intracellular signalling pathways mediate these effects. Altogether, our results suggest a stimulatory role for these purinergic receptor ligands in the regulation of POMC gene expression in corticotroph cells. Because adenosine and ATP are known to be produced within the pituitary gland, it is possible they may be acting in an autocrine/paracrine fashion.

  13. In situ hybridization analysis of the temporospatial expression of the midkine/pleiotrophin family in rat embryonic pituitary gland.

    PubMed

    Fujiwara, Ken; Maliza, Rita; Tofrizal, Alimuddin; Batchuluun, Khongorzul; Ramadhani, Dini; Tsukada, Takehiro; Azuma, Morio; Horiguchi, Kotaro; Kikuchi, Motoshi; Yashiro, Takashi

    2014-07-01

    Pituitary gland development is controlled by numerous signaling molecules, which are produced in the oral ectoderm and diencephalon. A newly described family of heparin-binding growth factors, namely midkine (MK)/pleiotrophin (PTN), is involved in regulating the growth and differentiation of many tissues and organs. Using in situ hybridization with digoxigenin-labeled cRNA probes, we detected cells expressing MK and PTN in the developing rat pituitary gland. At embryonic day 12.5 (E12.5), MK expression was localized in Rathke's pouch (derived from the oral ectoderm) and in the neurohypophyseal bud (derived from the diencephalon). From E12.5 to E19.5, MK mRNA was expressed in the developing neurohypophysis, and expression gradually decreased in the developing adenohypophysis. To characterize MK-expressing cells, we performed double-staining of MK mRNA and anterior pituitary hormones. At E19.5, no MK-expressing cells were stained with any hormone. In contrast, PTN was expressed only in the neurohypophysis primordium during all embryonic stages. In situ hybridization clearly showed that MK was expressed in primitive (immature/undifferentiated) adenohypophyseal cells and neurohypophyseal cells, whereas PTN was expressed only in neurohypophyseal cells. Thus, MK and PTN might play roles as signaling molecules during pituitary development.

  14. Mammary ductal growth is impaired in mice lacking leptin-dependent signal transducer and activator of transcription 3 signaling.

    PubMed

    Thorn, Stephanie R; Giesy, Sarah L; Myers, Martin G; Boisclair, Yves R

    2010-08-01

    Mice lacking leptin (ob/ob) or its full-length receptor (db/db) are obese and reproductively incompetent. Fertility, pregnancy, and lactation are restored, respectively, in ob/ob mice treated with leptin through mating, d 6.5 post coitum, and pregnancy. Therefore, leptin signaling is needed for lactation, but the timing of its action and the affected mammary process remain unknown. To address this issue, we used s/s mice lacking only leptin-dependent signal transducer and activator of transcription (STAT)3 signaling. These mice share many features with db/db mice, including obesity, but differ by retaining sufficient activity of the hypothalamic-pituitary-ovarian axis to support reproduction. The s/s mammary epithelium was normal at 3 wk of age but failed to expand through the mammary fat pad (MFP) during the subsequent pubertal period. Ductal growth failure was not corrected by estrogen therapy and did not relate to inadequate IGF-I production by the MFP or to the need for epithelial or stromal leptin-STAT3 signaling. Ductal growth failure coincided with adipocyte hypertrophy and increased MFP production of leptin, TNFalpha, and IL6. These cytokines, however, were unable to inhibit the proliferation of a collection of mouse mammary epithelial cell lines. In conclusion, the very first step of postnatal mammary development fails in s/s mice despite sufficient estrogen IGF-I and an hypothalamic-pituitary-ovarian axis capable of supporting reproduction. This failure is not caused by mammary loss of leptin-dependent STAT3 signaling or by the development of inflammation. These data imply the existence of an unknown mechanism whereby leptin-dependent STAT3 signaling and obesity alter mammary ductal development.

  15. Sudden headache, third nerve palsy and visual deficit: thinking outside the subarachnoid haemorrhage box.

    PubMed

    Ní Chróinín, Danielle; Lambert, John

    2013-11-01

    A 75-year-old lady presented with sudden severe headache and vomiting. Examination was normal, and CT and lumbar puncture not convincing for subarachnoid haemorrhage. Shortly thereafter, she developed painless diplopia. Examination confirmed right third cranial nerve palsy plus homonymous left inferior quadrantanopia. Urgent cerebral MRI with angiography was requested to assess for a possible posterior communicating artery aneurysm, but revealed an unsuspected pituitary mass. Pituitary adenoma with pituitary apoplexy was diagnosed. Pituitary apopolexy is a syndrome comprising sudden headache, meningism, visual and/or oculomotor deficits, with an intrasellar mass. It is commonly due to haemorrhage or infarction within a pituitary adenoma. Treatment includes prompt steroid administration, and potentially surgical decompression. While subarachnoid haemorrhage is an important, well-recognised cause of sudden severe headache, other aetiologies, including pituitary apoplexy, should be considered and sought.

  16. The Influence of Pituitary Size on Outcome After Transsphenoidal Hypophysectomy in a Large Cohort of Dogs with Pituitary-Dependent Hypercortisolism.

    PubMed

    van Rijn, S J; Galac, S; Tryfonidou, M A; Hesselink, J W; Penning, L C; Kooistra, H S; Meij, B P

    2016-07-01

    Transsphenoidal hypophysectomy is one of the treatment strategies in the comprehensive management of dogs with pituitary-dependent hypercortisolism (PDH). To describe the influence of pituitary size at time of pituitary gland surgery on long-term outcome. Three-hundred-and-six dogs with PDH. Survival and disease-free fractions were analyzed and related to pituitary size; dogs with and without recurrence were compared. Four weeks after surgery, 91% of dogs were alive and remission was confirmed in 92% of these dogs. The median survival time was 781 days, median disease-free interval was 951 days. Over time, 27% of dogs developed recurrence of hypercortisolism after a median period of 555 days. Dogs with recurrence had significantly higher pituitary height/brain area (P/B) ratio and pre-operative basal urinary corticoid-to-creatinine ratio (UCCR) than dogs without recurrence. Survival time and disease-free interval of dogs with enlarged pituitary glands was significantly shorter than that of dogs with a non-enlarged pituitary gland. Pituitary size at the time of surgery significantly increased over the 20-year period. Although larger tumors have a less favorable prognosis, outcome in larger tumors improved over time. Transsphenoidal hypophysectomy is an effective treatment for PDH in dogs, with an acceptable long-term outcome. Survival time and disease-free fractions are correlated negatively with pituitary gland size, making the P/B ratio an important pre-operative prognosticator. However, with increasing experience, and for large tumors, pituitary gland surgery remains an option to control the pituitary mass and hypercortisolism. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  17. Differential requirements for Gli2 and Gli3 in the regional specification of the mouse hypothalamus

    PubMed Central

    Haddad-Tóvolli, Roberta; Paul, Fabian A.; Zhang, Yuanfeng; Zhou, Xunlei; Theil, Thomas; Puelles, Luis; Blaess, Sandra; Alvarez-Bolado, Gonzalo

    2015-01-01

    Secreted protein Sonic hedgehog (Shh) ventralizes the neural tube by modulating the crucial balance between activating and repressing functions (GliA, GliR) of transcription factors Gli2 and Gli3. This balance—the Shh-Gli code—is species- and context-dependent and has been elucidated for the mouse spinal cord. The hypothalamus, a forebrain region regulating vital functions like homeostasis and hormone secretion, shows dynamic and intricate Shh expression as well as complex regional differentiation. Here we asked if particular combinations of Gli2 and Gli3 and of GliA and GliR functions contribute to the variety of hypothalamic regions, i.e., we wanted to approach the question of a possible hypothalamic version of the Shh-Gli code. Based on mouse mutant analysis, we show that: (1) hypothalamic regional heterogeneity is based in part on differentially stringent requirements for Gli2 or Gli3; (2) another source of diversity are differential requirements for Shh of neural vs. non-neural origin; (3) the medial progenitor domain known to depend on Gli2 for its development generates several essential hypothalamic nuclei plus the pituitary and median eminence; (4) the suppression of Gli3R by neural and non-neural Shh is essential for hypothalamic specification. Finally, we have mapped our results on a recent model which considers the hypothalamus as a transverse region with alar and basal portions. Our data confirm the model and are explained by it. PMID:25859185

  18. Role of stromal cell-derived factor 1 (SDF1/CXCL12) in regulating anterior pituitary function.

    PubMed

    Barbieri, Federica; Bajetto, Adriana; Porcile, Carola; Pattarozzi, Alessandra; Schettini, Gennaro; Florio, Tullio

    2007-03-01

    Chemokines are key factors involved in the regulation of immune response, through the activation and control of leukocyte traffic, lymphopoiesis and immune surveillance. However, a large number of chemokines and their receptors are expressed in central nervous system (CNS) cells, either constitutively or induced by inflammatory stimuli, playing a role in many neuropathological processes. Stromal cell-derived factor 1 (SDF1) is a chemokine whose extra-immunological localization and functions have been extensively studied. SDF1 and its receptor CXCR4 were identified in both neurons and glia of many brain areas, including the hypothalamus, as well as at the pituitary level. Importantly, SDF1 and CXCR4 expression is increased in brain tumors in which their activity induced tumor cell proliferation and brain parenchyma invasion. Despite their localization, to date very few reports addressed the role of CXCR4 and SDF1 in the modulation of the hypothalamus/pituitary axis and their possible involvement in the development of pituitary adenomas. In this review, we discuss previous literature data on the role of chemokines in normal and adenomatous pituitary cells, focusing on recent data from our group showing that CXCR4 activation controls proliferation and both prolactin and GH release in the pituitary adenoma cell line GH4C1 through a complex network of intracellular signals. Thus, the SDF1/CXCR4 system together with other chemokinergic ligand-receptor pairs, may represent a novel regulatory pathway for pituitary function and, possibly, be involved in pituitary adenoma development. These lines of evidence suggest that the inhibition of chemokine receptors may represent a novel pharmacological target for the treatment of pituitary adenomas.

  19. Somatic GNAS Mutation Causes Widespread and Diffuse Pituitary Disease in Acromegalic Patients with McCune-Albright Syndrome

    PubMed Central

    Vortmeyer, Alexander O.; Gläsker, Sven; Mehta, Gautam U.; Abu-Asab, Mones S.; Smith, Jonathan H.; Zhuang, Zhengping; Collins, Michael T.

    2012-01-01

    Context: McCune-Albright syndrome (MAS) is caused by sporadic mutations of the GNAS. Patients exhibit features of acromegaly. In most patients, GH-secreting pituitary adenomas have been held responsible for this presentation. However, surgical adenomectomy rarely eliminates excess GH production. Objective: The aim of this study was to elucidate pituitary pathology in patients with MAS and to explain the basis of failure of adenomectomy to eliminate GH hypersecretion. Design and Setting: We conducted a case series at the National Institutes of Health. Intervention(s): Interventions included medical therapy and transsphenoidal surgery. Patients and Main Outcome Measures: We studied clinical and imaging features and the histology and molecular features of the pituitary of four acromegalic MAS patients. Results: We identified widespread and diffuse pituitary gland disease. The primary pathological changes were characterized by hyperplastic and neoplastic change, associated with overrepresentation of somatotroph cells in structurally intact tissue areas. Genetic analysis of multiple microdissected samples of any type of histological area consistently revealed identical GNAS mutations in individual patients. The only patient with remission after surgery received complete hypophysectomy in addition to removal of multiple GH-secreting tumors. Conclusions: These findings indicate developmental effects of GNAS mutation on the entire anterior pituitary gland. The pituitary of individual cases contains a spectrum of changes with regions of normal appearing gland, hyperplasia, and areas of fully developed adenoma formation, as well as transitional stages between these entities. The primary change underlying acromegaly in MAS patients is somatotroph hyperplasia involving the entire pituitary gland, with or without development of somatotroph adenoma. Thus, successful clinical management, whether it is medical, surgical, or via irradiation, must target the entire pituitary, not just the adenomas evident on imaging. PMID:22564667

  20. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes

    PubMed Central

    Cheung, Leonard Y. M.; Okano, Hideyuki

    2016-01-01

    The hypothalamic-pituitary axes are the coordinating centers for multiple endocrine gland functions and physiological processes. Defects in the hypothalamus or pituitary gland can cause reduced growth and severe short stature, affecting approximately 1 in 4000 children, and a large percentage of cases of pituitary hormone deficiencies do not have an identified genetic cause. SOX21 is a protein that regulates hair, neural, and trophoblast stem cell differentiation. Mice lacking Sox21 have reduced growth, but the etiology of this growth defect has not been described. We studied the expression of Sox21 in hypothalamic-pituitary development and examined multiple endocrine axes in these mice. We find no evidence of reduced intrauterine growth, food intake, or physical activity, but there is evidence for increased energy expenditure in mutants. In addition, despite changes in pituitary hormone expression, hypothalamic-pituitary axes appear to be functional. Therefore, SOX21 variants may be a cause of non-endocrine short stature in humans. PMID:27616671

  1. Pituitary adenylate cyclase-activating polypeptide: a novel peptide with protean implications.

    PubMed

    Pisegna, Joseph R; Oh, David S

    2007-02-01

    The purpose of this review is to highlight the importance of pituitary adenylate cyclase-activating polypeptide in physiological processes and to describe how this peptide is becoming increasingly recognized as having a major role in the body. Since its discovery in 1989, investigators have sought to determine the site of biological activity and the function of pituitary adenylate cyclase-activating polypeptide in maintaining homeostasis. Since its discovery, pituitary adenylate cyclase-activating polypeptide appears to play an important role in the regulation of processes within the central nervous system and gastrointestinal tract, as well in reproductive biology. Pituitary adenylate cyclase-activating polypeptide has been shown to regulate tumor cell growth and to regulate immune function through its effects on T lympocytes. These discoveries suggest the importance of pituitary adenylate cyclase-activating polypeptide in neuronal development, neuronal function, gastrointestinal tract function and reproduction. Future studies will examine more closely the role of pituitary adenylate cyclase-activating polypeptide in regulation of malignantly transformed cells, as well as in regulation of immune function.

  2. Case of pituitary stalk transection syndrome ascertained after breech delivery.

    PubMed

    Fukuta, Kaori; Hidaka, Takao; Ono, Yosuke; Kochi, Keiko; Yasoshima, Kuniaki; Arai, Takashi

    2016-02-01

    Pituitary stalk transection syndrome (PSTS) is a rare complication that can accompany breech delivery. Early diagnosis of this syndrome is difficult, and it may cause a serious delay in the diagnosis. We present a case of PSTS ascertained after breech delivery. A 20-year-old woman presented with primary amenorrhea. The patient was born by breech delivery and had a history of treatment for pituitary dwarfism. Her laboratory findings showed pituitary hypothyroidism, and hormone replacement therapy was initiated. At 28 years old, she became pregnant and had a normal delivery at 38 weeks' gestation. One year after delivery, her thyroid hormone level changed. Laboratory test showed adrenocortical insufficiency, and magnetic resonance imaging of the pituitary gland showed transection of the pituitary stalk and development of an ectopic posterior lobe. These findings were compatible with PSTS. When a patient who has been born by breech delivery presents with symptoms of pituitary deficiency, PSTS should be considered in the differential diagnosis. © 2015 Japan Society of Obstetrics and Gynecology.

  3. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  4. Adaptive Response in Female Modeling of the Hypothalamic-pituitary-gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course ...

  5. S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland.

    PubMed

    Horiguchi, Kotaro; Yako, Hideji; Yoshida, Saishu; Fujiwara, Ken; Tsukada, Takehiro; Kanno, Naoko; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Takako; Yashiro, Takashi; Kato, Yukio

    2016-01-01

    The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis.

  6. S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland

    PubMed Central

    Yoshida, Saishu; Fujiwara, Ken; Tsukada, Takehiro; Kanno, Naoko; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Takako; Yashiro, Takashi; Kato, Yukio

    2016-01-01

    The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis. PMID:27695124

  7. Antidepressant-like Effect of Bacopaside I in Mice Exposed to Chronic Unpredictable Mild Stress by Modulating the Hypothalamic-Pituitary-Adrenal Axis Function and Activating BDNF Signaling Pathway.

    PubMed

    Zu, Xianpeng; Zhang, Mingjian; Li, Wencai; Xie, Haisheng; Lin, Zhang; Yang, Niao; Liu, Xinru; Zhang, Weidong

    2017-11-01

    Preliminary studies conducted in our laboratory have confirmed that Bacopaside I (BS-I), a saponin compound isolated from Bacopa monnieri, displayed antidepressant-like activity in the mouse behavioral despair model. The present investigation aimed to verify the antidepressant-like action of BS-I using a mouse model of behavioral deficits induced by chronic unpredictable mild stress (CUMS) and further probe its underlying mechanism of action. Mice were exposed to CUMS for a period of 5 consecutive weeks to induce depression-like behavior. Then, oral gavage administrations with vehicle (model group), fluoxetine (12 mg/kg, positive group) or BS-I (5, 15, 45 mg/kg, treated group) once daily were started during the last two weeks of CUMS procedure. The results showed that BS-I significantly ameliorated CUMS-induced depression-like behaviors in mice, as characterized by an elevated sucrose consumption in the sucrose preference test and reduced immobility time without affecting spontaneous locomotor activity in the forced swimming test, tail suspension test and open field test. It was also found that BS-I treatment reversed the increased level of plasma corticosterone and decreased mRNA and protein expressions of glucocorticoid receptor induced by CUMS exposure, indicating that hypothalamic-pituitary-adrenal (HPA) axis hyperactivity of CUMS-exposed mice was restored by BS-I treatment. Furthermore, chronic administration of BS-I elevated expression levels of brain-derived neurotrophic factor (BDNF) (mRNA and protein) and activated the phosphorylation of extracellular signal-regulated kinase and cAMP response element-binding protein in the hippocampus and prefrontal cortex in mice subjected to CUMS procedure. Taken together, these results indicated that BS-I exhibited an obvious antidepressant-like effect in mouse model of CUMS-induced depression that was mediated, at least in part, by modulating HPA hyperactivity and activating BDNF signaling pathway.

  8. Hereditary pituitary hyperplasia with infantile gigantism.

    PubMed

    Gläsker, Sven; Vortmeyer, Alexander O; Lafferty, Antony R A; Hofman, Paul L; Li, Jie; Weil, Robert J; Zhuang, Zhengping; Oldfield, Edward H

    2011-12-01

    We report hereditary pituitary hyperplasia. The objective of the study was to describe the results of the clinical and laboratory analysis of this rare instance of hereditary pituitary hyperplasia. The study is a retrospective analysis of three cases from one family. The study was conducted at the National Institutes of Health, a tertiary referral center. A mother and both her sons had very early-onset gigantism associated with high levels of serum GH and prolactin. The condition was treated by total hypophysectomy. We performed clinical, pathological, and molecular evaluations, including evaluation basal and provocative endocrine testing, neuroradiological assessment, and assessment of the pituitary tissue by microscopic evaluation, immunohistochemistry, and electron microscopy. All three family members had very early onset of gigantism associated with abnormally high serum levels of GH and prolactin. Serum GHRH levels were not elevated in either of the boys. The clinical, radiographic, surgical, and histological findings indicated mammosomatotroph hyperplasia. The pituitary gland of both boys revealed diffuse mammosomatotroph hyperplasia of the entire pituitary gland without evidence of adenoma. Prolactin and GH were secreted by the same cells within the same secretory granules. Western blot and immunohistochemistry demonstrated expression of GHRH in clusters of cells distributed throughout the hyperplastic pituitary of both boys. This hereditary condition seems to be a result of embryonic pituitary maldevelopment with retention and expansion of the mammosomatotrophs. The findings suggest that it is caused by paracrine or autocrine pituitary GHRH secretion during pituitary development.

  9. Central diabetes insipidus as a very late relapse limited to the pituitary stalk in Langerhans cell histiocytosis.

    PubMed

    Nakagawa, Shunsuke; Shinkoda, Yuichi; Hazeki, Daisuke; Imamura, Mari; Okamoto, Yasuhiro; Kawakami, Kiyoshi; Kawano, Yoshifumi

    2016-07-01

    Central diabetes insipidus (CDI) and relapse are frequently seen in multifocal Langerhans cell histiocytosis (LCH). We present two females with multifocal LCH who developed CDI 9 and 5 years after the initial diagnosis, respectively, as a relapse limited to the pituitary stalk. Combination chemotherapy with cytarabine reduced the mass in the pituitary stalk. Although CDI did not improve, there has been no anterior pituitary hormone deficiency (APHD), neurodegenerative disease in the central nervous system (ND-CNS) or additional relapse for 2 years after therapy. It was difficult to predict the development of CDI in these cases. CDI might develop very late in patients with multifocal LCH, and therefore strict follow-up is necessary, especially with regard to symptoms of CDI such as polydipsia and polyuria. For new-onset CDI with LCH, chemotherapy with cytarabine might be useful for preventing APHD and ND-CNS.

  10. TCF and Groucho-related genes influence pituitary growth and development.

    PubMed

    Brinkmeier, Michelle L; Potok, Mary Anne; Cha, Kelly B; Gridley, Thomas; Stifani, Stefano; Meeldijk, Jan; Clevers, Hans; Camper, Sally A

    2003-11-01

    Mutations in the prophet of PIT1 gene (PROP1) are the most common cause of multiple pituitary hormone deficiency in humans; however, the mechanism of PROP1 action is not well understood. We report that Prop1 is essential for dorsally restricted expression of a Groucho-related gene, transducin-like enhancer of split 3 (Tle3), which encodes a transcriptional corepressor. Deficiency of a related gene, amino terminal enhancer of split (Aes), causes pituitary anomalies and growth insufficiency. TLE3 and AES have been shown to interact with TCF/LEF (transcripiton factors of the T cell-specific and lymphoid enhancer specific group) family members in cell culture systems. In the absence of TCF4 (Tcf7L2), Prop1 levels are elevated, pituitary hyperplasia ensues and palate closure is abnormal. Thus, we demonstrate that Tcf4 and Aes influence pituitary growth and development, and place Tcf4 and Tle3 in the genetic hierarchy with Prop1.

  11. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features.

    PubMed

    Ibáñez-Costa, Alejandro; Gahete, Manuel D; Rivero-Cortés, Esther; Rincón-Fernández, David; Nelson, Richard; Beltrán, Manuel; de la Riva, Andrés; Japón, Miguel A; Venegas-Moreno, Eva; Gálvez, Ma Ángeles; García-Arnés, Juan A; Soto-Moreno, Alfonso; Morgan, Jennifer; Tsomaia, Natia; Culler, Michael D; Dieguez, Carlos; Castaño, Justo P; Luque, Raúl M

    2015-03-04

    Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas compared with normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24-72 h) increased GH and ACTH secretion, Ca(2+) and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors.

  12. In1-ghrelin splicing variant is overexpressed in pituitary adenomas and increases their aggressive features

    PubMed Central

    Ibáñez-Costa, Alejandro; Gahete, Manuel D.; Rivero-Cortés, Esther; Rincón-Fernández, David; Nelson, Richard; Beltrán, Manuel; de la Riva, Andrés; Japón, Miguel A.; Venegas-Moreno, Eva; Gálvez, Ma Ángeles; García-Arnés, Juan A.; Soto-Moreno, Alfonso; Morgan, Jennifer; Tsomaia, Natia; Culler, Michael D.; Dieguez, Carlos; Castaño, Justo P.; Luque, Raúl M.

    2015-01-01

    Pituitary adenomas comprise a heterogeneous subset of pathologies causing serious comorbidities, which would benefit from identification of novel, common molecular/cellular biomarkers and therapeutic targets. The ghrelin system has been linked to development of certain endocrine-related cancers. Systematic analysis of the presence and functional implications of some components of the ghrelin system, including native ghrelin, receptors and the recently discovered splicing variant In1-ghrelin, in human normal pituitaries (n = 11) and pituitary adenomas (n = 169) revealed that expression pattern of ghrelin system suffers a clear alteration in pituitary adenomasas comparedwith normal pituitary, where In1-ghrelin is markedly overexpressed. Interestingly, in cultured pituitary adenoma cells In1-ghrelin treatment (acylated peptides at 100 nM; 24–72 h) increased GH and ACTH secretion, Ca2+ and ERK1/2 signaling and cell viability, whereas In1-ghrelin silencing (using a specific siRNA; 100 nM) reduced cell viability. These results indicate that an alteration of the ghrelin system, specially its In1-ghrelin variant, could contribute to pathogenesis of different pituitary adenomas types, and suggest that this variant and its related ghrelin system could provide new tools to identify novel, more general diagnostic, prognostic and potential therapeutic targets in pituitary tumors. PMID:25737012

  13. Adaptive Responses to Prochloraz Exposure in the Hypothalamic-Pituitary Gonadal Axis of Fathead Minnows

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict doseresponse and time-course ...

  14. Treatment of Pituitary Carcinomas and Atypical Pituitary Adenomas: A Review

    PubMed Central

    HIROHATA, Toshio; ISHII, Yudo; MATSUNO, Akira

    2014-01-01

    Atypical pituitary adenomas (APAs) are aggressive tumors, harboring a Ki-67 (MIB-1) staining index of 3% or more, and positive immunohistochemical staining for p53 protein, according to the World Health Organization (WHO) classification in 2004. Pituitary carcinomas (PC) usually develop from progressive APAs and predominantly consist of hormone-generating tumors, defined by the presence of disseminations in the cerebrospinal system or systemic metastases. Most of the cases with these malignant pituitary adenomas underwent surgeries, irradiations and adjuvant medical treatments, nevertheless, the therapies are mainly palliative. Recently, the efficacy of temozolomide (TMZ), an orally administered alkylating agent, has been reported as an alternative medical treatment. However, some recent studies have demonstrated a significant recurrence rate after effective response to TMZ. Further clinical and pathological researches of malignant pituitary adenomas will be required to improve the outcome of patients with these tumors. PMID:25446382

  15. Posttransplantation lymphoproliferative disease involving the pituitary gland.

    PubMed

    Meriden, Zina; Bullock, Grant C; Bagg, Adam; Bonatti, Hugo; Cousar, John B; Lopes, M Beatriz; Robbins, Mark K; Cathro, Helen P

    2010-11-01

    Posttransplantation lymphoproliferative disorders (PTLD) are heterogeneous lesions with variable morphology, immunophenotype, and molecular characteristics. Multiple distinct primary lesions can occur in PTLD, rarely with both B-cell and T-cell characteristics. Lesions can involve both grafted organs and other sites; however, PTLD involving the pituitary gland has not been previously reported. We describe a patient who developed Epstein-Barr virus-negative PTLD 13 years posttransplantation involving the terminal ileum and pituitary, which was simultaneously involved by a pituitary adenoma. Immunohistochemistry of the pituitary lesion showed expression of CD79a, CD3, and CD7 with clonal rearrangements of both T-cell receptor gamma chain (TRG@) and immunoglobulin heavy chain (IGH@) genes. The terminal ileal lesion was immunophenotypically and molecularly distinct. This is the first report of pituitary PTLD and illustrates the potentially complex nature of PTLD. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Thyroid hormone receptor beta2 is strongly up-regulated at all levels of the hypothalamo-pituitary-thyroidal axis during late embryogenesis in chicken.

    PubMed

    Grommen, Sylvia V H; Arckens, Lutgarde; Theuwissen, Tim; Darras, Veerle M; De Groef, Bert

    2008-03-01

    In this study, we tried to elucidate the changes in thyroid hormone (TH) receptor beta2 (TRbeta2) expression at the different levels of the hypothalamo-pituitary-thyroidal (HPT) axis during the last week of chicken embryonic development and hatching, a period characterized by an augmented activity of the HPT axis. We quantified TRbeta2 mRNA in retina, pineal gland, and the major control levels of the HPT axis - brain, pituitary, and thyroid gland - at day 18 of incubation, and found the most abundant mRNA content in retina and pituitary. Thyroidal TRbeta2 mRNA content increased dramatically between embryonic day 14 and 1 day post-hatch. In pituitary and hypothalamus, TRbeta2 mRNA expression rose gradually, in parallel with increases in plasma thyroxine concentrations. Using in situ hybridization, we have demonstrated the presence of TRbeta2 mRNA throughout the diencephalon and confirmed the elevation in TRbeta2 mRNA expression in the hypophyseal thyrotropes. In vitro incubation with THs caused a down-regulation of TRbeta2 mRNA levels in embryonic but not in post-hatch pituitaries. The observed expression patterns in pituitary and diencephalon may point to substantial changes in TRbeta2-mediated TH feedback active during the perinatal period. The strong rise in thyroidal TRbeta2 mRNA content could be indicative of an augmented modulation of thyroid development and/or function by THs toward and after hatching. Finally, THs proved to exert an age-dependent effect on pituitary TRbeta2 mRNA expression.

  17. Two-color Dye-swap DNA Microarray approach toward confident gene expression profiling in PMCAO mouse model for ischemia-related and PACAP38-influenced genes

    PubMed Central

    Hori, Motohide; Shibato, Junko; Nakamachi, Tomoya; Rakwal, Randeep; Ogawa, Tetsuo; Shioda, Seiji; Numazawa, Satoshi

    2015-01-01

    Toward twin goals of identifying molecular factors in brain injured by ischemic stroke, and the effects of neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain, we have established the permanent middle cerebral artery occlusion (PMCAO) mouse model and utilized the Agilent mouse whole genome 4 × 44 K DNA chip. PACAP38 (1 pmol) injection was given intracerebroventrically in comparison to a control saline (0.9% NaCl) injection, to screen genes responsive to PACAP38. Two sets of tissues were prepared, whole hemispheres (ischemic and non-ischemic) and infract core and penumbra regions at 6 and 24 h. In this study, we have detailed the experimental design and protocol used therein and explained the quality controls for the use of total RNA in the downstream DNA microarray experiment utilizing a two-color dye-swap approach for stringent and confident gene identification published in a series of papers by Hori and coworkers (Hori et al., 2012–2015). PMID:26484166

  18. Opposite effects of dihydrotestosterone and estradiol on apoptosis in the anterior pituitary gland from male rats.

    PubMed

    Magri, María Laura; Gottardo, María Florencia; Zárate, Sandra; Eijo, Guadalupe; Ferraris, Jimena; Jaita, Gabriela; Ayala, Mariela Moreno; Candolfi, Marianela; Pisera, Daniel; Seilicovich, Adriana

    2016-03-01

    Hormones locally synthesized in the anterior pituitary gland are involved in regulation of pituitary cell renewal. In the pituitary, testosterone (T) may exert its actions per se or by conversion to dihydrotestosterone (DHT) or 17β-estradiol (E2) by 5α-reductase and aromatase activity, which are expressed in this gland. Previous reports from our laboratory showed that estrogens modulate apoptosis of lactotropes and somatotropes from female rats. Now, we examined the in vitro and in vivo effects of gonadal steroids on apoptosis of anterior pituitary cells from adult male rats. T in vitro did not modify apoptosis in anterior pituitary cells from gonadectomized (GNX) male rats. DHT, a non-aromatizable androgen, exerted direct antiapoptotic action on total anterior pituitary cells and folliculo-stellate cells, but not on lactotropes, somatotropes, or gonadotropes. On the contrary, E2 exerted a rapid apoptotic effect on total cells as well as on lactotropes and somatotropes. Incubation of anterior pituitary cells with T in presence of Finasteride, an inhibitor of 5α-reductase, increased the percentage of TUNEL-positive cells. In vivo administration of DHT to GNX rats reduced apoptosis in the anterior pituitary whereas E2 exerted proapoptotic action and reduced cells in G2/M-phase of the cell cycle. In summary, our results indicate that DHT and E2 have opposite effects on apoptosis in the anterior pituitary gland suggesting that local metabolization of T to these steroids could be involved in pituitary cell turnover in males. Changes in expression and/or activity of 5α-reductase and aromatase may play a role in the development of anterior pituitary tumors.

  19. Forkhead Box O1 Is Present in Quiescent Pituitary Cells during Development and Is Increased in the Absence of p27Kip1

    PubMed Central

    Majumdar, Sreeparna; Farris, Corrie L.; Kabat, Brock E.; Jung, Deborah O.; Ellsworth, Buffy S.

    2012-01-01

    Congenital pituitary hormone deficiencies have been reported in approximately one in 4,000 live births, however studies reporting mutations in some widely studied transcription factors account for only a fraction of congenital hormone deficiencies in humans. Anterior pituitary hormones are required for development and function of several glands including gonads, adrenals, and thyroid. In order to identify additional factors that contribute to human congenital hormone deficiencies, we are investigating the forkhead transcription factor, FOXO1, which has been implicated in development of several organs including ovary, testis, and brain. We find that FOXO1 is present in the nuclei of non-dividing pituitary cells during embryonic development, consistent with a role in limiting proliferation and/or promoting differentiation. FOXO1 is present in a subset of differentiated cells at e18.5 and in adult with highest level of expression in somatotrope cells. We detected FOXO1 in p27Kip1-positive cells at e14.5. In the absence of p27Kip1 the number of pituitary cells containing FOXO1 is significantly increased at e14.5 suggesting that a feedback loop regulates the interplay between FOXO1 and p27Kip1. PMID:23251696

  20. Predicting Adaptive Response to Fadrozole Exposure:Computational Model of the Fathead MinnowsHypothalamic-Pituitary-Gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict doseresponse and time-course (...

  1. Development of two surgical approaches to the pituitary gland in the Horse.

    PubMed

    Carmalt, James L; Scansen, Brian A

    2018-12-01

    Current treatment of equine pituitary pars intermedia dysfunction (PPID) requires daily oral medication. Minimally invasive surgical palliation of this condition is appealing as a single treatment to alleviate the clinical signs of disease, dramatically improving the welfare of the horse. To develop a surgical approach to the equine pituitary gland, for subsequent treatment of PPID. A cadaver study to develop methodology and a terminal procedure under anaesthesia in the most promising techniques. Four surgical approaches to the pituitary gland were investigated in cadaver animals. A ventral trans-basispheniodal osteotomy and a minimally invasive intravenous approach via the ventral cavernous sinus progressed to live horse trials. Technical complications prevented the myeloscopic and trans-sphenopalatine sinus techniques from being successful. The ventral basisphenoidal osteotomy was repeatable and has potential if an intra-operative imaging guidance system could be employed. The minimally invasive approach was repeatable, atraumatic and relatively inexpensive. A minimally invasive surgical approach to the equine pituitary gland is possible and allows for needle placement within the target tissue. More work is necessary to determine what that treatment might be, but repeatable access to the gland has been obtained, which is a promising step.

  2. Giovanni Verga (1879-1923), author of a pioneering treatise on pituitary surgery: the foundations of this new field in Europe in the early 1900s.

    PubMed

    Pascual, José M; Mongardi, Lorenzo; Prieto, Ruth; Castro-Dufourny, Inés; Rosdolsky, María; Strauss, Sewan; Carrasco, Rodrigo; Winter, Eduard; Mazzarello, Paolo

    2017-10-01

    The field of pituitary surgery was born in the first decade of the twentieth century in Europe, and it evolved rapidly with the development of numerous innovative surgical techniques by some of the founding fathers of neurosurgery. This study investigates the pioneering Italian treatise on pituitary surgery, La Patologia Chirurgica dell'Ipofisi (Surgical Pathology of the Hypophysis), published in 1911 by Giovanni Verga (1879-1923), a surgeon from Pavía and one of Golgi's disciples. This little-known monograph compiles the earliest experience on pituitary surgery through the analysis of the first 50 procedures performed between 1903 and 1911. We conducted a biographical survey of Giovanni Verga and the motivations for his work on pituitary surgery. In addition, a systematic analysis of all original reports and historical documents about these pituitary procedures referenced in Verga's treatise was carried out. Verga's treatise provides a summary of the techniques employed and surgical outcomes for the first 50 attempted procedures of pituitary tumor removal. This monograph is the only scientific source that includes a complete account of the series of 10 pituitary tumors operated on by Sir Victor Horsley in the 1900s. Three major types of surgery were employed: (i) palliative procedures of craniectomy (n = 6); (ii) transcranial approaches to the pituitary gland, either subfrontal or subtemporal (n = 13); and (iii) transphenoidal routes to expose the sella turcica, either using an upper transnasal-transethmoidal approach (n = 19) or a lower sublabial/endonasal-transeptal one (n = 12). An operative mortality rate of 36% (n = 17) was observed in these early series. The pathological nature of the tumors operated on was available in 42 cases. There were 28 adenomas and 15 craniopharyngiomas. Sir Victor Horsley (1857-1916) and the Viennese surgeons Anton von Eiselsberg (1860-1939) and Oskar Hirsch (1877-1965) were the leading European figures in the development of pituitary surgery. Giovanni Verga's treatise La Patologia Chirurgica dell'Ipofisi is a fundamental, pioneering book in the history of pituitary surgery, a work that compiles the foundations of this field in Europe and the only authoritative source providing a complete record of pituitary procedures performed by Sir Victor Horsley.

  3. Changes in fine structure of pericytes and novel desmin-immunopositive perivascular cells during postnatal development in rat anterior pituitary gland.

    PubMed

    Jindatip, Depicha; Fujiwara, Ken; Horiguchi, Kotaro; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi

    2013-09-01

    Pericytes are perivascular cells associated with capillaries. We previously demonstrated that pericytes, identified by desmin immunohistochemistry, produce type I and III collagens in the anterior pituitary gland of adult rats. In addition, we recently used desmin immunoelectron microscopy to characterize a novel type of perivascular cell, dubbed a desmin-immunopositive perivascular cell, in the anterior pituitary. These two types of perivascular cells differ in fine structure. The present study attempted to characterize the morphological features of pituitary pericytes and novel desmin-immunopositive perivascular cells during postnatal development, in particular their role in collagen synthesis. Desmin immunostaining revealed numerous perivascular cells at postnatal day 5 (P5) and P10. Transmission electron microscopy showed differences in the fine structure of the two cell types, starting at P5. Pericytes had well-developed rough endoplasmic reticulum and Golgi apparatus at P5 and P10. The novel desmin-immunopositive perivascular cells exhibited dilated cisternae of rough endoplasmic reticulum at P5-P30. In addition, during early postnatal development in the gland, a number of type I and III collagen-expressing cells were observed, as were high expression levels of these collagen mRNAs. We conclude that pituitary pericytes and novel desmin-immunopositive perivascular cells contain well-developed cell organelles and that they actively synthesize collagens during the early postnatal period.

  4. Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development

    PubMed Central

    Park, Soyoung; Mullen, Rachel D.

    2013-01-01

    The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. PMID:24100213

  5. Hereditary Pituitary Hyperplasia with Infantile Gigantism

    PubMed Central

    Gläsker, Sven; Vortmeyer, Alexander O.; Lafferty, Antony R. A.; Hofman, Paul L.; Li, Jie; Weil, Robert J.; Zhuang, Zhengping

    2011-01-01

    Context: We report hereditary pituitary hyperplasia. Objective: The objective of the study was to describe the results of the clinical and laboratory analysis of this rare instance of hereditary pituitary hyperplasia. Design: The study is a retrospective analysis of three cases from one family. Setting: The study was conducted at the National Institutes of Health, a tertiary referral center. Patients: A mother and both her sons had very early-onset gigantism associated with high levels of serum GH and prolactin. Interventions: The condition was treated by total hypophysectomy. Main Outcome Measure(s): We performed clinical, pathological, and molecular evaluations, including evaluation basal and provocative endocrine testing, neuroradiological assessment, and assessment of the pituitary tissue by microscopic evaluation, immunohistochemistry, and electron microscopy. Results: All three family members had very early onset of gigantism associated with abnormally high serum levels of GH and prolactin. Serum GHRH levels were not elevated in either of the boys. The clinical, radiographic, surgical, and histological findings indicated mammosomatotroph hyperplasia. The pituitary gland of both boys revealed diffuse mammosomatotroph hyperplasia of the entire pituitary gland without evidence of adenoma. Prolactin and GH were secreted by the same cells within the same secretory granules. Western blot and immunohistochemistry demonstrated expression of GHRH in clusters of cells distributed throughout the hyperplastic pituitary of both boys. Conclusions: This hereditary condition seems to be a result of embryonic pituitary maldevelopment with retention and expansion of the mammosomatotrophs. The findings suggest that it is caused by paracrine or autocrine pituitary GHRH secretion during pituitary development. PMID:21976722

  6. The tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea) inhibits LH expression and puberty in its teleost host, Rutilus rutilus.

    PubMed

    Carter, V; Pierce, R; Dufour, S; Arme, C; Hoole, D

    2005-12-01

    The tapeworm Ligula intestinalis occurs in the body cavity of its cyprinid second intermediate host, in this study the roach Rutilus rutilus, and inhibits host gonadal development. The mechanism by which infected fish are prevented from reproducing is unknown. Comparison of parameters, such as body length and weight, and condition factor and age, between infected and uninfected individuals, indicated only minor effects of parasitism on growth and condition. In contrast, seasonal gonadal development, as observed in uninfected fish, did not occur in infected fish, and gonads remained small and blocked at the primary oocyte stage in female roach. As immature ovaries and testes are still present, the parasite is presumed to act upon the brain-pituitary-gonadal axis of the fish to inhibit further development of reproductive organs. We investigated the Ligula/fish interaction at the level of the pituitary gland by determination of gonadotrophin (LH) content using a heterologous RIA for carp (Cyprinus carpio) LHbeta subunit. The results indicated that the pituitary glands of infected roach contained approximately 50% less LH than non-infected fish. After the cloning and sequencing of roach LHbeta subunit, we measured roach LHbeta mRNA levels by real-time RT-PCR. A corresponding 50% reduction in LHbeta mRNA pituitary levels was determined. These results reflect a significant and measurable effect of parasitism on the pituitary gland, and lend support to the hypothesis that excretory/secretory products released from the parasite interact with the brain-pituitary-gonadal axis of the fish host and thus inhibit gonadal development.

  7. Acetylcholine Modulates the Hormones of the Growth Hormone/Insulinlike Growth Factor-1 Axis During Development in Mice.

    PubMed

    Lecomte, Marie-José; Bertolus, Chloé; Ramanantsoa, Nélina; Saurini, Françoise; Callebert, Jacques; Sénamaud-Beaufort, Catherine; Ringot, Maud; Bourgeois, Thomas; Matrot, Boris; Collet, Corinne; Nardelli, Jeannette; Mallet, Jacques; Vodjdani, Guilan; Gallego, Jorge; Launay, Jean-Marie; Berrard, Sylvie

    2018-04-01

    Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.

  8. Endocrine disorders among long-term survivors of childhood head and neck rhabdomyosarcoma.

    PubMed

    Clement, S C; Schoot, R A; Slater, O; Chisholm, J C; Abela, C; Balm, A J M; van den Brekel, M W; Breunis, W B; Chang, Y C; Davila Fajardo, R; Dunaway, D; Gajdosova, E; Gaze, M N; Gupta, S; Hartley, B; Kremer, L C M; van Lennep, M; Levitt, G A; Mandeville, H C; Pieters, B R; Saeed, P; Smeele, L E; Strackee, S D; Ronckers, C M; Caron, H N; van Santen, H M; Merks, J H M

    2016-02-01

    Head and neck rhabdomyosarcoma (HNRMS) survivors are at increased risk of developing pituitary dysfunction as an adverse event of radiotherapy. Our aim was to investigate the frequency and risk factors for pituitary dysfunction in these survivors. Secondly, we aimed to compare the prevalence of pituitary dysfunction between survivors treated with external beam radiation therapy (EBRT) and survivors treated with the ablative surgery, moulage technique after loading brachytherapy, and surgical reconstruction (AMORE) procedure. Eighty HNRMS survivors treated in London (EBRT based) and Amsterdam (AMORE based: AMORE if feasible, otherwise EBRT) in the period 1990-2010 and alive ≥ 2 years post-treatment were evaluated. Survivors were evaluated in multidisciplinary late-effects clinics, with measurement of linear growth, determination of thyroid function, and growth hormone parameters. Additional data, such as baseline characteristics, anthropometrics, pubertal stage, and the results of additional laboratory investigations, were retrieved from patient charts. Pituitary dysfunction was diagnosed in 24 in 80 (30%) survivors, after a median follow-up time of 11 years. Median time to develop pituitary dysfunction after HNRMS diagnosis was 3.0 years. Risk factors were EBRT-based therapy (odds ratio [OR] 2.06; 95% confidence interval [CI] 1.79-2.46), parameningeal tumour site (OR 1.83; 95% CI 1.60-2.17) and embryonal RMS histology (OR 1.49; 95% CI 1.19-1.90). Radiotherapy used for the treatment of HNRMS confers a significant risk of the development of pituitary dysfunction. AMORE-based treatment in children with HNRMS resulted in less pituitary dysfunction than treatment with conventional EBRT. Our findings underscore the importance of routine early endocrine follow-up in this specific population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The postoperative cortisol stress response following transsphenoidal pituitary surgery: a potential screening method for assessing preserved pituitary function.

    PubMed

    Zada, Gabriel; Tirosh, Amir; Huang, Abel P; Laws, Edward R; Woodmansee, Whitney W

    2013-09-01

    The ability to reliably identify patients with new hypocortisolemia acutely following pituitary surgery is critical. We aimed to quantify the postoperative cortisol stress response following selective transsphenoidal adenomectomy, as a marker for postoperative preservation of functional pituitary gland. Records of 208 patients undergoing transsphenoidal operations for pituitary lesions were reviewed. Patients with Cushing's Disease, preoperative adrenal insufficiency, and those receiving intraoperative steroids were excluded. To quantify the postoperative stress response, the ∆ cortisol index was defined as the postoperative day (POD) 1 morning cortisol minus the preoperative morning cortisol level. The incidence of new hypocortisolemia requiring glucocorticoid replacement upon hospital discharge was also recorded. Fifty-two patients met inclusion criteria. The mean preoperative, POD1, and POD2 cortisol levels were 16.5, 29.2, and 21.8 μg/dL, respectively. Morning fasting cortisol levels on POD1 ranged from 4.2 to 73.0 μg/dL. The ∆ cortisol index ranged from -19.0 to +56.2 (mean +12.7 μg/dL). Five patients (9.6%) developed new hypocortisolemia on POD 1-3 requiring glucocorticoid replacement; only one required long-term replacement. The mean ∆ cortisol in patients requiring postoperative glucocorticoids was -2.8 μg/dL, compared with +14.4 μg/dL in patients without evidence of adrenal insufficiency (p = 0.005). Of the 32 patients (61.5%) with a ∆cortisol >25 μg/dL, none developed postoperative adrenal insufficiency. The postoperative cortisol stress response, as quantified by the ∆ cortisol index, holds potential as a novel and complimentary screening method to predict preservation of normal pituitary function and acute development of new ACTH deficiency following transsphenoidal pituitary surgery.

  10. DEVELOPMENT OF A GENE-EXPRESSION ARRAY FOCUSING ON THE HYPOTHALAMUS-PITUITARY-THYROID AXIS IN XENOPUS LAEVIS

    EPA Science Inventory

    As recommended by the Endocrine Disruptor Screening and Testing Program Advisory Committee (EDSTAC), the USEPA has been developing a screening test capable of detecting effects of Endocrine Disrupting Chemicals (EDCs) on the hypothalamus-pituitary-thyroid (HPT) axis in Xenopus la...

  11. Predicting Adaptive Response to Fadrozole Exposure: Computational Model of the Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (...

  12. Adaptive Response in Female Fathead Minnows Exposed to an Aromatase Inhibitor: Computational Modeling of the Hypothalamic-Pituitary-Gonadal Axis

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course ...

  13. Pituitary iron and volume imaging in healthy controls.

    PubMed

    Noetzli, L J; Panigrahy, A; Hyderi, A; Dongelyan, A; Coates, T D; Wood, J C

    2012-02-01

    Patients with transfusional iron overload develop iron deposits in the pituitary gland, which are associated with volume loss and HH. The purpose of this study was to characterize R2 and volumetric data in a healthy population for diagnostic use in patients with transfusional iron overload. One hundred healthy controls without iron overload between the ages of 2 and 48 were recruited to have MR imaging of the brain to assess their pituitary R2 and volume. Pituitary R2 was assessed with a 8-echo spin-echo sequence, and pituitary volumes, by a 3D spoiled gradient-echo sequence with 1-mm(3) resolution. A 2-component continuous piecewise linear approximation was used for creating volumetric and R2 nomograms. Equations were generated from regression relationships for convenient z-score calculation. Pituitary R2 rose weakly with age (r(2) = 0.19, P < .0001). Anterior and total pituitary volumes increased steadily up to 18 years of age, after which volume slightly decreased. Females had larger pituitary glands, most likely representing their larger lactotroph population. From these data, a clinician can calculate the z scores for R2 and pituitary volume in patients with iron overload. Normal ranges are well-differentiated from values previously associated with endocrine disease in transfusional siderosis; this finding suggests that preclinical iron overload can be recognized and appropriately treated.

  14. Effect of cyanotoxins on the hypothalamic-pituitary-gonadal axis in male adult mouse.

    PubMed

    Xiong, Xiaolu; Zhong, Anyuan; Xu, Huajun

    2014-01-01

    Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic-Pituitary-Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis. Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice. MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.

  15. Expression of androgen receptor and estrogen receptor-alpha in the developing pituitary gland of male sheep lamb.

    PubMed

    Huang, Li-Bo; Yuan, Xue-Jun

    2011-09-01

    To explore the expression of androgen receptor (AR) and estrogen receptor alpha (ERα) in the developing pituitary of male lamb, we detected AR and ERα expression in the anterior pituitary of lambs aged 2-7 months old by immunohistochemistry. The results showed that both AR immunoreactivity (AR-ir) and ERα immunoreactivity (ERα-ir) were localized in the nuclei of anterior pituitary cell. The percentage of the anterior pituitary cells expressing ERα fluctuated from 8.79±0.02% to 11.80±0.04% during the examined stages, but fell significantly to the lowest level at 6 months. While the proportion of AR-ir showed significant changes, it was in 11.52±1.26% at 2 months, it firstly increased to 19.86±1.03% at 3 months, and then significantly decreased to 8.18±1.17% at 6 months (P<0.05). The expression of both AR-ir and ERα-ir were the lowest level at 6 months old. By staining for PCNA, we observed that the changes in expression of AR and ERα at different lamb ages did not result from cell proliferation of anterior pituitary cells. These results indicate that both AR and ERα are important in regulation of secretary function of anterior pituitary in sheep lamb, although the related mechanism needs to be elucidated further. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cushing's disease in a young woman with anorexia nervosa: pathophysiological implications.

    PubMed

    Katz, J L; Weiner, H; Kream, J; Zumoff, B

    1986-12-01

    This report describes a 17-year old student who was found to have Cushing's syndrome two years after she had developed anorexia nervosa (AN). The Cushing's syndrome was treated with bilateral resection of enlarged, hyperplastic, non-tumorous adrenal glands. The diagnosis was further confirmed four years later when, two to three years after new symptoms had appeared, an ACTH secreting pituitary adenoma (that is, Cushing's disease) was found on surgery. The possible mechanism for the development of Cushing's disease in a patient with prior anorexia nervosa, a sequence of events reported once previously, is discussed. It is suggested that increased hypothalamic-pituitary corticotroph stimulation in association with the anorexia nervosa, a now well-established endocrine phenomenon, activated an occult, inactive pituitary basophil adenoma in this patient, eventually resulting in autonomous pituitary overproduction of ACTH by the tumor.

  17. Acute Sheehan's syndrome presenting as central diabetes insipidus.

    PubMed

    Robalo, Raquel; Pedroso, Célia; Agapito, Ana; Borges, Augusta

    2012-11-06

    Sheehan's syndrome occurs as a result of ischaemic pituitary necrosis due to severe postpartum haemorrhage. Improvements in obstetrical care have significantly reduced its incidence in developed countries, but postpartum pituitary infarction remains a common cause of hypopituitarism in developing countries. We report a case of severe postpartum haemorrhage followed by headache, central diabetes insipidus and failure to lactate, which prompted us to investigate and identify both anterior and posterior pituitary deficiency compatible with Sheehan's syndrome. A timely diagnosis allowed us to implement an adequate treatment and follow-up plan, which are known to improve clinical status and patient outcome.

  18. Pituitary gland volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis and healthy controls: a systematic review and meta-analysis.

    PubMed

    Nordholm, Dorte; Krogh, Jesper; Mondelli, Valeria; Dazzan, Paola; Pariante, Carmine; Nordentoft, Merete

    2013-11-01

    A larger pituitary size is thought to reflect a greater activation of the hypothalamic-pituitary-adrenal (HPA) axis, which may be related to an increase in the number and size of corticotroph cells. Some studies, but not all, indicate that pituitary volume increases before or at the onset of psychosis. There is a need for at critical appraisal of the literature on this topic accompanied by a meta-analytical evaluation of the data. We included studies comparing the volume of the pituitary gland in healthy controls and patients with schizophrenia, first episode of psychosis (FEP), schizotypal disorder or ultra high-risk (UHR) subjects. We defined three groups of subjects for the analyses: healthy controls; UHR and schizotypal patients; and patients diagnosed with first episode of psychosis, schizophrenia or schizoaffective disorder. Ten studies were included in the meta-analysis. We found a trend of a larger pituitary volume in both UHR subject who had transition to psychosis (p=0.05) and in FEP subjects (p=0.09) compared to healthy controls. There was no difference in pituitary volume between patients with schizophrenia combined with FEP versus healthy controls (p=0.52) or between UHR (with and without transition) and healthy controls (p=0.24). In a regression analysis, we demonstrated that the number of subjects receiving antipsychotics and pituitary volume were positively correlated. As previously reported in other samples, gender also had an impact on pituitary volume with females presenting with a larger mean volume. Results from this meta-analysis suggest that the pituitary gland could be increasing before the onset of psychosis. Both gender and use of antipsychotics have a major impact on the pituitary volume. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Combined pituitary hormone deficiency in german shepherd dogs with dwarfism.

    PubMed

    Kooistra, H S; Voorhout, G; Mol, J A; Rijnberk, A

    2000-10-01

    In German shepherd dogs pituitary dwarfism is known as an autosomal recessive inherited abnormality. To investigate whether the function of cells other than the somatotropes may also be impaired in this disease, the secretory capacity of the pituitary anterior lobe (AL) cells was studied by a combined pituitary AL stimulation test with four releasing hormones (4RH test) in four male and four female German shepherd dwarfs. In addition, the morphology of the pituitary was investigated by computed tomography. The physical features of the eight German shepherd dwarfs were primarily characterized by growth retardation and stagnant development of the hair coat. The results of the 4RH test confirmed the presence of hyposomatotropism. The basal plasma TSH and prolactin concentrations were also low and did not change upon stimulation. Basal plasma concentrations of LH were relatively low and responded only slightly to suprapituitary stimulation. With respect to the plasma FSH levels there was a clear gender difference. In the males plasma FSH concentrations remained below the detection limit throughout the 4RH test, whereas in the females the basal plasma FSH levels were slightly lower and there was only a small increase following suprapituitary stimulation, compared with the values in age-matched controls. In contrast, basal and stimulated plasma ACTH concentrations did not differ between the dwarfs and the controls. Computed tomography of the pituitary fossa revealed a normal sized pituitary with cysts in five dogs, an enlarged pituitary with cysts in two dogs, and a small pituitary gland without cysts in the remaining dog. The results of this study demonstrate that German shepherd dwarfs have a combined deficiency of GH, TSH, and prolactin together with impaired release of gonadotropins, whereas ACTH secretion is preserved. The combined pituitary hormone deficiency is associated with cyst formation and pituitary hypoplasia.

  20. Differentiation between Cystic Pituitary Adenomas and Rathke Cleft Cysts: A Diagnostic Model Using MRI.

    PubMed

    Park, M; Lee, S-K; Choi, J; Kim, S-H; Kim, S H; Shin, N-Y; Kim, J; Ahn, S S

    2015-10-01

    Cystic pituitary adenomas may mimic Rathke cleft cysts when there is no solid enhancing component found on MR imaging, and preoperative differentiation may enable a more appropriate selection of treatment strategies. We investigated the diagnostic potential of MR imaging features to differentiate cystic pituitary adenomas from Rathke cleft cysts and to develop a diagnostic model. This retrospective study included 54 patients with a cystic pituitary adenoma (40 women; mean age, 37.7 years) and 28 with a Rathke cleft cyst (18 women; mean age, 31.5 years) who underwent MR imaging followed by surgery. The following imaging features were assessed: the presence or absence of a fluid-fluid level, a hypointense rim on T2-weighted images, septation, an off-midline location, the presence or absence of an intracystic nodule, size change, and signal change. On the basis of the results of logistic regression analysis, a diagnostic tree model was developed to differentiate between cystic pituitary adenomas and Rathke cleft cysts. External validation was performed for an additional 16 patients with a cystic pituitary adenoma and 8 patients with a Rathke cleft cyst. The presence of a fluid-fluid level, a hypointense rim on T2-weighted images, septation, and an off-midline location were more common with pituitary adenomas, whereas the presence of an intracystic nodule was more common with Rathke cleft cysts. Multiple logistic regression analysis showed that cystic pituitary adenomas and Rathke cleft cysts can be distinguished on the basis of the presence of a fluid-fluid level, septation, an off-midline location, and the presence of an intracystic nodule (P = .006, .032, .001, and .023, respectively). Among 24 patients in the external validation population, 22 were classified correctly on the basis of the diagnostic tree model used in this study. A systematic approach using this diagnostic tree model can be helpful in distinguishing cystic pituitary adenomas from Rathke cleft cysts. © 2015 by American Journal of Neuroradiology.

  1. Central diabetes insipidus in children and young adults: etiological diagnosis and long-term outcome of idiopathic cases.

    PubMed

    Di Iorgi, Natascia; Allegri, Anna Elsa Maria; Napoli, Flavia; Calcagno, Annalisa; Calandra, Erika; Fratangeli, Nadia; Vannati, Marianna; Rossi, Andrea; Bagnasco, Francesca; Haupt, Riccardo; Maghnie, Mohamad

    2014-04-01

    Central diabetes insipidus (CDI) is considered idiopathic in 20% to 50% of affected subjects. The purpose of this study was to determine whether a systematic diagnostic workup could achieve better etiologic diagnosis in children and adolescents presenting with polyuria and polydipsia. This is a prospective study conducted at a tertiary referral center. Patients underwent clinical and endocrine evaluations every 6 months and neuroimaging every 6 months for 2 years and yearly for 3 years. Endocrine function and neuroimaging were also reassessed after adult height achievement. A total of 85 consecutive patients with CDI were enrolled at a median age of 7.5 years; those with idiopathic CDI were stratified based on pituitary stalk thickness. To establish the etiology of CDI, we determined the time lag between its onset and the specific diagnosis, the long-term impact on pituitary function, and the overall long-term outcomes. Of the subjects, 24 (28.2%) received an etiologic diagnosis at presentation and 11 (13%) within 2.5 years (n = 7 germinomas and n = 4 Langerhans cell histiocytosis), 7 (8.2%) were lost to follow-up, and 43 (50.6%) were considered to have idiopathic disease and were followed until the median age of 17.3 years. Neuroimaging identified 40 of 43 patients with self-limited inflammatory/autoimmune pituitary stalk thickness within the first 6 months, the severity of which was significantly correlated to pituitary dysfunction. The probability of >10-year-survival without an anterior pituitary defect was related to the severity of pituitary stalk thickness, and 53% showed permanent anterior pituitary defects. Three patients developed Langerhans cell histiocytosis and 1 developed Hodgkin lymphoma after a median of 9 and 13 years, respectively. A diagnostic etiology was achieved in 96% of patients with CDI. Risk stratification based on the degree of pituitary stalk thickness is of prognostic value for long-term outcomes including permanent pituitary dysfunction. New guidance is provided for the management of these patients.

  2. Planum sphenoidale meningioma leading to visual disturbance

    PubMed Central

    Lutwak, Nancy; Dill, Curt; Wieczorek, Rosemary

    2011-01-01

    A 60-year-old male presented with complaints of dizziness, which worsened with fatigue and a sense his balance was ‘off’. Initial physical examination was negative and the laboratory testing was unremarkable. Within weeks, the patient developed bilateral visual field deficits. MRI revealed an extra-axial mass which extended into the pituitary fossa and caused compression of the pituitary gland. The pituitary stalk was displaced posteriorly and the optic chiasm was compressed with displacement superiorly and posteriorly. The patient underwent a surgical resection. Diabetes insipidus developed postoperatively requiring a vasopressin drip. He also developed hypopituitarism after the resection with hypothyroidism, hypoadrenalism and hypogonadism. The patient requires testosterone, levothyroxine and hydrocortisone replacement and has mild residual bitemporal hemianopsia. PMID:22679053

  3. Planum sphenoidale meningioma leading to visual disturbance.

    PubMed

    Lutwak, Nancy; Dill, Curt; Wieczorek, Rosemary

    2011-08-31

    A 60-year-old male presented with complaints of dizziness, which worsened with fatigue and a sense his balance was 'off'. Initial physical examination was negative and the laboratory testing was unremarkable. Within weeks, the patient developed bilateral visual field deficits. MRI revealed an extra-axial mass which extended into the pituitary fossa and caused compression of the pituitary gland. The pituitary stalk was displaced posteriorly and the optic chiasm was compressed with displacement superiorly and posteriorly. The patient underwent a surgical resection. Diabetes insipidus developed postoperatively requiring a vasopressin drip. He also developed hypopituitarism after the resection with hypothyroidism, hypoadrenalism and hypogonadism. The patient requires testosterone, levothyroxine and hydrocortisone replacement and has mild residual bitemporal hemianopsia.

  4. Development of additional pituitary hormone deficiencies in pediatric patients originally diagnosed with isolated growth hormone deficiency due to organic causes.

    PubMed

    Child, Christopher J; Blum, Werner F; Deal, Cheri; Zimmermann, Alan G; Quigley, Charmian A; Drop, Stenvert L S; Cutler, Gordon B; Rosenfeld, Ron G

    2016-05-01

    To determine characteristics of children initially diagnosed with isolated growth hormone deficiency (IGHD) of organic aetiology, who later developed multiple pituitary hormone deficiencies (MPHD). Data were analysed for 716 growth hormone-treated children with organic IGHD, who were growth hormone-naïve at baseline in the multinational, observational Genetics and Neuroendocrinology of Short Stature International Study. Development of MPHD was ascertained from investigator-provided diagnoses, adverse events and concomitant medications. Analyses were performed for all patients and separately for those who developed MPHD within 4.5 years or had >3.5 years follow-up and continued to have IGHD (4-year cohort). MPHD developed in 71/716 (9.9%) children overall, and in 60/290 (20.7%) in the 4-year cohort. The most frequent additional deficiencies were thyroid-stimulating hormone (47 patients) and gonadotropins (23 patients). Compared with those who remained with IGHD, children who developed MPHD had more severe GHD at study entry, significantly lower baseline insulin-like growth factor1, peak stimulated growth hormone, and more frequent diagnosis of intracranial tumour or mutation of gene(s) controlling hypothalamic-pituitary development and/or function. Multivariate logistic regression analyses identified female gender, longer follow-up, higher baseline age and lower peak stimulated growth hormone as predictors of MPHD development. MPHD is more likely to develop in patients with severe organic IGHD, especially those with history of intracranial tumour or mutation of gene(s) controlling hypothalamic-pituitary development and/or function. Older baseline age, female gender and longer follow-up duration were also associated with higher incidence of MPHD. Long-term monitoring of pituitary function is recommended, irrespective of the aetiology of GHD. © 2016 European Society of Endocrinology.

  5. PRKAR1A mutation causing pituitary-dependent Cushing disease in a patient with Carney complex.

    PubMed

    Kiefer, Florian W; Winhofer, Yvonne; Iacovazzo, Donato; Korbonits, Márta; Wolfsberger, Stefan; Knosp, Engelbert; Trautinger, Franz; Höftberger, Romana; Krebs, Michael; Luger, Anton; Gessl, Alois

    2017-08-01

    Carney complex (CNC) is an autosomal dominant condition caused, in most cases, by an inactivating mutation of the PRKAR1A gene, which encodes for the type 1 alpha regulatory subunit of protein kinase A. CNC is characterized by the occurrence of endocrine overactivity, myxomas and typical skin manifestations. Cushing syndrome due to primary pigmented nodular adrenocortical disease (PPNAD) is the most frequent endocrine disease observed in CNC. Here, we describe the first case of a patient with CNC and adrenocorticotropic hormone (ACTH)-dependent Cushing disease due to a pituitary corticotroph adenoma. Loss-of-heterozygosity analysis of the pituitary tumour revealed loss of the wild-type copy of PRKAR1A , suggesting a role of this gene in the pituitary adenoma development. PRKAR1A loss-of-function mutations can rarely lead to ACTH-secreting pituitary adenomas in CNC patients. Pituitary-dependent disease should be considered in the differential diagnosis of Cushing syndrome in CNC patients. © 2017 European Society of Endocrinology.

  6. Computational Modeling of Hypothalamic-Pituitary-Gonadal Axis to Predict Adaptive Responses in Female Fathead Minnows Exposed to an Aromatase Inhibitor

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We are developing a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose response and time-course...

  7. Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span

    PubMed Central

    Watson, L. Ashley; Solomon, Lauren A.; Li, Jennifer Ruizhe; Jiang, Yan; Edwards, Matthew; Shin-ya, Kazuo; Beier, Frank; Bérubé, Nathalie G.

    2013-01-01

    Human ATRX mutations are associated with cognitive deficits, developmental abnormalities, and cancer. We show that the Atrx-null embryonic mouse brain accumulates replicative damage at telomeres and pericentromeric heterochromatin, which is exacerbated by loss of p53 and linked to ATM activation. ATRX-deficient neuroprogenitors exhibited higher incidence of telomere fusions and increased sensitivity to replication stress–inducing drugs. Treatment of Atrx-null neuroprogenitors with the G-quadruplex (G4) ligand telomestatin increased DNA damage, indicating that ATRX likely aids in the replication of telomeric G4-DNA structures. Unexpectedly, mutant mice displayed reduced growth, shortened life span, lordokyphosis, cataracts, heart enlargement, and hypoglycemia, as well as reduction of mineral bone density, trabecular bone content, and subcutaneous fat. We show that a subset of these defects can be attributed to loss of ATRX in the embryonic anterior pituitary that resulted in low circulating levels of thyroxine and IGF-1. Our findings suggest that loss of ATRX increases DNA damage locally in the forebrain and anterior pituitary and causes tissue attrition and other systemic defects similar to those seen in aging. PMID:23563309

  8. De novo frameshift mutation in fibroblast growth factor 8 in a male patient with gonadotropin deficiency.

    PubMed

    Suzuki, Erina; Yatsuga, Shuichi; Igarashi, Maki; Miyado, Mami; Nakabayashi, Kazuhiko; Hayashi, Keiko; Hata, Kenichirou; Umezawa, Akihiro; Yamada, Gen; Ogata, Tsutomu; Fukami, Maki

    2014-01-01

    Missense, nonsense, and splice mutations in the Fibroblast Growth Factor 8(FGF8) have recently been identified in patients with hypothalamo-pituitary dysfunction and craniofacial anomalies. Here, we report a male patient with a frameshift mutation in FGF8. The patient exhibited micropenis, craniofacial anomalies, and ventricular septal defect at birth. Clinical evaluation at 16 years and 8 months of age revealed delayed puberty, hyposmia, borderline mental retardation, and mild hearing difficulty. Endocrine findings included gonadotropin deficiency and primary hypothyroidism. Molecular analysis identified a de novo heterozygous p.S192fsX204 mutation in the last exon of FGF8. RT-PCR analysis of normal human tissues detected FGF8 expression in the genital skin, and whole-mount in situ hybridization analysis of mouse embryos revealed Fgf8 expression in the anlage of the penis. The results indicate that frameshift mutations in FGF8 account for a part of the etiology of hypothalamo-pituitary dysfunction. Micropenis in patients with FGF8 abnormalities appears to be caused by gonadotropin deficiency and defective outgrowth of the anlage of the penis.

  9. Mild deficits in mice lacking pituitary adenylate cyclase-activating polypeptide receptor type 1 (PAC1) performing on memory tasks.

    PubMed

    Sauvage, M; Brabet, P; Holsboer, F; Bockaert, J; Steckler, T

    2000-12-08

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor subtype 1 (PAC1) have been suggested to play a role in the modulation of learning and memory. However, behavioral evidence for altered mnemonic function due to altered PAC1 activity is missing. Therefore, the role of PAC1 in learning and memory was studied in mouse mutants lacking this receptor (PAC1 knock-out mice), tested in water maze two-choice spatial discrimination, one-trial contextual and cued fear conditioning, and multiple-session contextual discrimination. Water maze spatial discrimination was unaffected in PAC1 mutants, while a mild deficit was observed in multiple session contextual discrimination in PAC1 knock-out mice. Furthermore, PAC1 knock-out mice were able to learn the association between context and shock in one-trial contextual conditioning, but showed faster return to baseline than wild-type mice. Thus, the effects of PAC1 knock-out on modulating performance in these tasks were subtle and suggest that PAC1 only plays a limited role in learning and memory.

  10. Evaluation of vector-primed cDNA library production from microgram quantities of total RNA.

    PubMed

    Kuo, Jonathan; Inman, Jason; Brownstein, Michael; Usdin, Ted B

    2004-12-15

    cDNA sequences are important for defining the coding region of genes, and full-length cDNA clones have proven to be useful for investigation of the function of gene products. We produced cDNA libraries containing 3.5-5 x 10(5) primary transformants, starting with 5 mug of total RNA prepared from mouse pituitary, adrenal, thymus, and pineal tissue, using a vector-primed cDNA synthesis method. Of approximately 1000 clones sequenced, approximately 20% contained the full open reading frames (ORFs) of known transcripts, based on the presence of the initiating methionine residue codon. The libraries were complex, with 94, 91, 83 and 55% of the clones from the thymus, adrenal, pineal and pituitary libraries, respectively, represented only once. Twenty-five full-length clones, not yet represented in the Mammalian Gene Collection, were identified. Thus, we have produced useful cDNA libraries for the isolation of full-length cDNA clones that are not yet available in the public domain, and demonstrated the utility of a simple method for making high-quality libraries from small amounts of starting material.

  11. Novel FGF8 Mutations Associated with Recessive Holoprosencephaly, Craniofacial Defects, and Hypothalamo-Pituitary Dysfunction

    PubMed Central

    McCabe, Mark J.; Gaston-Massuet, Carles; Tziaferi, Vaitsa; Gregory, Louise C.; Alatzoglou, Kyriaki S.; Signore, Massimo; Puelles, Eduardo; Gerrelli, Dianne; Farooqi, I. Sadaf; Raza, Jamal; Walker, Joanna; Kavanaugh, Scott I.; Tsai, Pei-San; Pitteloud, Nelly; Martinez-Barbera, Juan-Pedro

    2011-01-01

    Context: Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown. Objective: The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47). Methods: FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480–686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8loxPNeo/−) were analyzed for the presence of forebrain and hypothalamo-pituitary defects. Results: A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathke's pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE. Conclusion: We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary. PMID:21832120

  12. Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development.

    PubMed

    Eckstrum, Kirsten S; Edwards, Whitney; Banerjee, Annesha; Wang, Wei; Flaws, Jodi A; Katzenellenbogen, John A; Kim, Sung Hoon; Raetzman, Lori T

    2018-01-01

    Critical windows of development are often more sensitive to endocrine disruption. The murine pituitary gland has two critical windows of development: embryonic gland establishment and neonatal hormone cell expansion. During embryonic development, one environmentally ubiquitous endocrine-disrupting chemical, bisphenol A (BPA), has been shown to alter pituitary development by increasing proliferation and gonadotrope number in females but not males. However, the effects of exposure during the neonatal period have not been examined. Therefore, we dosed pups from postnatal day (PND)0 to PND7 with 0.05, 0.5, and 50 μg/kg/d BPA, environmentally relevant doses, or 50 μg/kg/d estradiol (E2). Mice were collected after dosing at PND7 and at 5 weeks. Dosing mice neonatally with BPA caused sex-specific gene expression changes distinct from those observed with embryonic exposure. At PND7, pituitary Pit1 messenger RNA (mRNA) expression was decreased with BPA 0.05 and 0.5 μg/kg/d in males only. Expression of Pomc mRNA was decreased at 0.5 μg/kg/d BPA in males and at 0.5 and 50 μg/kg/d BPA in females. Similarly, E2 decreased Pomc mRNA in both males and females. However, no noticeable corresponding changes were found in protein expression. Both E2 and BPA suppressed Pomc mRNA in pituitary organ cultures; this repression appeared to be mediated by estrogen receptor-α and estrogen receptor-β in females and G protein-coupled estrogen receptor in males, as determined by estrogen receptor subtype-selective agonists. These data demonstrated that BPA exposure during neonatal pituitary development has unique sex-specific effects on gene expression and that Pomc repression in males and females can occur through different mechanisms. Copyright © 2018 Endocrine Society.

  13. Differential Regulatory Role of Pituitary Adenylate Cyclase–Activating Polypeptide in the Serum-Transfer Arthritis Model

    PubMed Central

    Botz, Bálint; Bölcskei, Kata; Kereskai, László; Kovács, Miklós; Németh, Tamás; Szigeti, Krisztián; Horváth, Ildikó; Máthé, Domokos; Kovács, Noémi; Hashimoto, Hitoshi; Reglődi, Dóra; Szolcsányi, János; Pintér, Erika; Mócsai, Attila; Helyes, Zsuzsanna

    2014-01-01

    Objective Pituitary adenylate cyclase–activating polypeptide (PACAP) expressed in capsaicin-sensitive sensory neurons and immune cells has divergent functions in inflammatory and pain processes. This study was undertaken to investigate the involvement of PACAP in a mouse model of rheumatoid arthritis. Methods Arthritis was induced in PACAP−/− and wild-type (PACAP+/+) mice by K/BxN serum transfer. General features of the disease were investigated by semiquantitative scoring, plethysmometry, and histopathologic analysis. Mechano- and thermonociceptive thresholds and motor functions were also evaluated. Metabolic activity was assessed by positron emission tomography. Bone morphology was measured by in vivo micro–computed tomography, myeloperoxidase activity and superoxide production by bioluminescence imaging with luminol and lucigenin, respectively, and vascular permeability by fluorescent indocyanine green dye study. Results PACAP+/+ mice developed notable joint swelling, reduced grasping ability, and mechanical (but not thermal) hyperalgesia after K/BxN serum transfer. In PACAP−/− mice clinical scores and edema were significantly reduced, and mechanical hyperalgesia and motor impairment were absent, throughout the 2-week period of observation. Metabolic activity and superoxide production increased in the tibiotarsal joints of wild-type mice but were significantly lower in PACAP−/− animals. Myeloperoxidase activity in the ankle joints of PACAP−/− mice was significantly reduced in the early phase of arthritis, but increased in the late phase. Synovial hyperplasia was also significantly increased, and progressive bone spur formation was observed in PACAP-deficient mice only. Conclusion In PACAP-deficient mice with serum-transfer arthritis, joint swelling, vascular leakage, hyperalgesia, and early inflammatory cell accumulation are reduced; in the later phase of the disease, immune cell function and bone neoformation are increased. Elucidation of the underlying pathways of PACAP activity may open promising new avenues for development of therapy in inflammatory arthritis. PMID:25048575

  14. Partial hypopituitarism and Langerhans cell histiocytosis

    PubMed Central

    Balaguruswamy, S; Chattington, P D

    2011-01-01

    A case of multisystem Langerhans cell histiocytosis with pituitary involvement nearly 20 years after initial presentation. A 48-year-old man had histiocytosis X 22 years ago initially involving the groin; subsequently his external auditory meatus, scalp, gum, mandibular bone, perineum and axilla were involved and treated. The pituitary gland was involved 4 years ago. A thyrotropin-releasing hormone test showed delayed response suggestive of hypothalamic disease. Prolactin levels were normal. A gonadotropin-releasing hormone test showed impaired testosterone and gonadotrophin response in keeping with pituitary disease. A glucagon stimulation test showed an impaired growth hormone response but a normal cortisol increase. MRI pituitary showed an empty sella. There was no evidence of diabetes insipidus. Bone mineral densitometry was normal. He has partial hypopituitarism needing thyroxine and testosterone replacement. He also developed type 2 diabetes mellitus 9 years ago. He is closely monitored for any development of diabetes insipidus and the need for growth hormone supplementation. PMID:22715201

  15. Childhood maltreatment and adult psychopathology: pathways to hypothalamic-pituitary-adrenal axis dysfunction

    PubMed Central

    Mello, Marcelo F.; Faria, Alvaro A.; Mello, Andrea F.; Carpenter, Linda L.; Tyrka, Audrey R.; Price, Lawrence H.

    2015-01-01

    Objective The aim of this paper was to examine the relationship between childhood maltreatment and adult psychopathology, as reflected in hypothalamic-pituitary-adrenal axis dysfunction. Method A selective review of the relevant literature was undertaken in order to identify key and illustrative research findings. Results There is now a substantial body of preclinical and clinical evidence derived from a variety of experimental paradigms showing how early-life stress is related to hypothalamic-pituitary-adrenal axis function and psychological state in adulthood, and how that relationship can be modulated by other factors. Discussion The risk for adult psychopathology and hypothalamic-pituitary-adrenal axis dysfunction is related to a complex interaction among multiple experiential factors, as well as to susceptibility genes that interact with those factors. Although acute hypothalamic-pituitary-adrenal axis responses to stress are generally adaptive, excessive responses can lead to deleterious effects. Early-life stress alters hypothalamic-pituitary-adrenal axis function and behavior, but the pattern of hypothalamic-pituitary-adrenal dysfunction and psychological outcome in adulthood reflect both the characteristics of the stressor and other modifying factors. Conclusion Research to date has identified multiple determinants of the hypothalamic-pituitary-adrenal axis dysfunction seen in adults with a history of childhood maltreatment or other early-life stress. Further work is needed to establish whether hypothalamic-pituitary-adrenal axis abnormalities in this context can be used to develop risk endophenotypes for psychiatric and physical illnesses. PMID:19967199

  16. Wnt4 is essential to normal mammalian lung development.

    PubMed

    Caprioli, Arianna; Villasenor, Alethia; Wylie, Lyndsay A; Braitsch, Caitlin; Marty-Santos, Leilani; Barry, David; Karner, Courtney M; Fu, Stephen; Meadows, Stryder M; Carroll, Thomas J; Cleaver, Ondine

    2015-10-15

    Wnt signaling is essential to many events during organogenesis, including the development of the mammalian lung. The Wnt family member Wnt4 has been shown to be required for the development of kidney, gonads, thymus, mammary and pituitary glands. Here, we show that Wnt4 is critical for proper morphogenesis and growth of the respiratory system. Using in situ hybridization in mouse embryos, we identify a previously uncharacterized site of Wnt4 expression in the anterior trunk mesoderm. This expression domain initiates as early as E8.25 in the mesoderm abutting the tracheoesophageal endoderm, between the fusing dorsal aortae and the heart. Analysis of Wnt4(-/-) embryos reveals severe lung hypoplasia and tracheal abnormalities; however, aortic fusion and esophageal development are unaffected. We find decreased cell proliferation in Wnt4(-/-) lung buds, particularly in tip domains. In addition, we observe reduction of the important lung growth factors Fgf9, Fgf10, Sox9 and Wnt2 in the lung bud during early stages of organogenesis, as well as decreased tracheal expression of the progenitor factor Sox9. Together, these data reveal a previously unknown role for the secreted protein Wnt4 in respiratory system development. Copyright © 2015. Published by Elsevier Inc.

  17. Frequent development of combined pituitary hormone deficiency in patients initially diagnosed as isolated growth hormone deficiency: a long term follow-up of patients from a single center.

    PubMed

    Otto, Aline P; França, Marcela M; Correa, Fernanda A; Costalonga, Everlayny F; Leite, Claudia C; Mendonca, Berenice B; Arnhold, Ivo J P; Carvalho, Luciani R S; Jorge, Alexander A L

    2015-08-01

    Children initially diagnosed with isolated GH deficiency (IGHD) have a variable rate to progress to combined pituitary hormone deficiency (CPHD) during follow-up. To evaluate the development of CPHD in a group of childhood-onset IGHD followed at a single tertiary center over a long period of time. We retrospectively analyzed data from 83 patients initially diagnosed as IGHD with a mean follow-up of 15.2 years. The Kaplan-Meier method and Cox regression analysis was used to estimate the temporal progression and to identify risk factors to development of CPHD over time. From 83 patients initially with IGHD, 37 (45%) developed CPHD after a median time of follow up of 5.4 years (range from 1.2 to 21 years). LH and FSH deficiencies were the most common pituitary hormone (38%) deficiencies developed followed by TSH (31%), ACTH (12%) and ADH deficiency (5%). ADH deficiency (3.1 ± 1 years from GHD diagnosis) presented earlier and ACTH deficiency (9.3 ± 3.5 years) presented later during follow up compared to LH/FSH (8.3 ± 4 years) and TSH (7.5 ± 5.6 years) deficiencies. In a Cox regression model, pituitary stalk abnormalities was the strongest risk factor for the development of CPHD (hazard ratio of 3.28; p = 0.002). Our study indicated a high frequency of development of CPHD in patients initially diagnosed as IGHD at childhood. Half of our patients with IGHD developed the second hormone deficiency after 5 years of diagnosis, reinforcing the need for lifelong monitoring of pituitary function in these patients.

  18. Chronic unpredictable stress decreases expression of brain-derived neurotrophic factor (BDNF) in mouse ovaries: relationship to oocytes developmental potential.

    PubMed

    Wu, Li-Min; Hu, Mei-Hong; Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn't affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.

  19. Chronic Unpredictable Stress Decreases Expression of Brain-Derived Neurotrophic Factor (BDNF) in Mouse Ovaries: Relationship to Oocytes Developmental Potential

    PubMed Central

    Tong, Xian-Hong; Han, Hui; Shen, Ni; Jin, Ren-Tao; Wang, Wei; Zhou, Gui-Xiang; He, Guo-Ping; Liu, Yu-Sheng

    2012-01-01

    Background Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary. Methods Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated. Results Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment. Conclusion BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress. PMID:23284991

  20. Pituitary gland development: an update.

    PubMed

    Bancalari, Rodrigo E; Gregory, Louise C; McCabe, Mark J; Dattani, Mehul T

    2012-01-01

    The embryonic development of the pituitary gland involves a complex and highly spatio-temporally regulated network of integrating signalling molecules and transcription factors. Genetic mutations in any of these factors can lead to congenital hypopituitarism in association with a wide spectrum of craniofacial/midline defects ranging from incompatibility with life to holoprosencephaly (HPE) and cleft palate and septo-optic dysplasia (SOD). Increasing evidence supports a genotypic overlap with hypogonadotrophic hypogonadal disorders such as Kallmann syndrome, which is consistent with the known overlap in phenotypes between these disorders. This chapter reviews the cascade of events leading up to the successful development of the pituitary gland and to highlight key areas where genetic variations can occur thus leading to congenital hypopituitarism and associated defects. Copyright © 2012 S. Karger AG, Basel.

  1. Panhypopituitarism presenting as life-threatening heart failure caused by an inherited microdeletion in 1q25 including LHX4.

    PubMed

    Filges, Isabel; Bischof-Renner, Andrea; Röthlisberger, Benno; Potthoff, Christian; Glanzmann, René; Günthard, Joëlle; Schneider, Jacques; Huber, Andreas R; Zumsteg, Urs; Miny, Peter; Szinnai, Gabor

    2012-02-01

    Clinical presentation of hypopituitarism in the neonate may be variable, ranging from absent to severe nonspecific symptoms and may be life-threatening in patients with adrenocorticotropic hormone deficiency. The LIM homeobox gene 4 (LHX4) transcription factor regulates early embryonic development of the anterior pituitary gland. Autosomal dominant mutations in LHX4 cause congenital hypopituitarism with variable combined pituitary hormone deficiency (CPHD). We report on a neonate with unexplained heart failure and minor physical anomalies, suggesting a midline defect. She was diagnosed with complete CPHD. Cardiac function was rescued by replacement with hydrocortisone and thyroxine; hypoglycaemia stopped under growth hormone therapy. Magnetic resonance imaging revealed a dysgenetic pituitary gland suggesting an early developmental defect. Array comparative genomic hybridization showed a maternally inherited 1.5-megabase microdeletion in 1q25.2q25.3, including the LHX4 gene. Haploinsufficiency of LHX4 likely explains the predominant pituitary phenotype in the proposita and we suggest variable intrafamilial penetrance of the inherited microdeletion. To the best of our knowledge, we are the first to report on heart failure as a rare nonspecific symptom of treatable CPHD in the newborn. Variably penetrant pituitary insufficiency, including this severe and atypical presentation, can be correlated with LHX4 insufficiency and highlights the role of LHX4 for pituitary development.

  2. Occurrence of pituitary dysfunction following traumatic brain injury.

    PubMed

    Bondanelli, Marta; De Marinis, Laura; Ambrosio, Maria Rosaria; Monesi, Marcello; Valle, Domenico; Zatelli, Maria Chiara; Fusco, Alessandra; Bianchi, Antonio; Farneti, Marco; degli Uberti, Ettore C I

    2004-06-01

    Traumatic brain injury (TBI) may be associated with impairment of pituitary hormone secretion, which may contribute to long-term physical, cognitive, and psychological disability. We studied the occurrence and risk factors of pituitary dysfunction, including growth hormone deficiency (GHD) in 50 patients (mean age 37.6 +/- 2.4 years; 40 males, age 20-60 years; 10 females, age 23-87 years) with TBI over 5 years. Cranial or facial fractures were documented in 12 patients, and neurosurgery was performed in 14. According to the Glasgow Coma Scale (GCS), 16 patients had suffered from mild, 7 moderate, and 27 severe TBI. Glasgow Outcome Scale (GOS) indicated severe disability in 5, moderate disability in 11, and good recovery in 34 cases. Basal pituitary hormone evaluation, performed once at times variable from 12 to 64 months after TBI, showed hypogonadotrophic hypogonadism in 7 (14%), central hypothyroidism in 5 (10%), low prolactin (PRL) levels in 4 (8%), and high PRL levels in 4 (8%) cases. All subjects had normal corticotrophic and posterior pituitary function. Seven patients showed low insulin-like growth factor-I (IGF-I) levels for age and sex. Results of GHRH plus arginine testing indicated partial GHD in 10 (20%) and severe GHD in 4 (8%) cases. Patients with GHD were older (p <0.05) than patients with normal GH secretion. Magnetic resonance imaging demonstrated pituitary abnormalities in 2 patients; altogether pituitary dysfunction was observed in 27 (54%) patients. Six patients (12%) showed a combination of multiple abnormalities. Occurrence of pituitary dysfunction was 37.5%, 57.1%, and 59.3% in the patients with mild, moderate, and severe TBI, respectively. GCS scores were significantly (p <0.02) lower in patients with pituitary dysfunction compared to those with normal pituitary function (8.3 +/- 0.5 vs. 10.2 +/- 0.6). No relationship was detected between pituitary dysfunction and years since TBI, type of injury, and outcome from TBI. In conclusion, subjects with a history of TBI frequently develop pituitary dysfunction, especially GHD. Therefore, evaluation of pituitary hormone secretion, including GH, should be included in the long-term follow-up of all TBI patients so that adequate hormone replacement therapy may be administered.

  3. Potential of Gene Therapy for the Treatment of Pituitary Tumors

    PubMed Central

    Goya, R G.; Sarkar, D.K.; Brown, O.A.; Hereñú, C.B.

    2010-01-01

    Pituitary adenomas constitute the most frequent neuroendocrine pathology, comprising up to 15% of primary intracranial tumors. Current therapies for pituitary tumors include surgery and radiotherapy, as well as pharmacological approaches for some types. Although all of these approaches have shown a significant degree of success, they are not devoid of unwanted side effects, and in most cases do not offer a permanent cure. Gene therapy—the transfer of genetic material for therapeutic purposes—has undergone an explosive development in the last few years. Within this context, the development of gene therapy approaches for the treatment of pituitary tumors emerges as a promising area of research. We begin by presenting a brief account of the genesis of prolactinomas, with particular emphasis on how estradiol induces prolactinomas in animals. In so doing, we discuss the role of each of the recently discovered growth inhibitory and growth stimulatory substances and their interactions in estrogen action. We also evaluate the cell-cell communication that may govern these growth factor interactions and subsequently promote the growth and survival of prolactinomas. Current research efforts to implement gene therapy in pituitary tumors include the treatment of experimental prolactinomas or somatomammotropic tumors with adenoviral vector-mediated transfer of the suicide gene for the herpes simplex type 1 (HSV1) thymidine kinase, which converts the prodrug ganciclovir into a toxic metabolite. In some cases, the suicide transgene has been placed under the control of pituitary cell-type specific promoters, like the human prolactin or human growth hormone promoters. Also, regulatable adenoviral vector systems are being assessed in gene therapy approaches for experimental pituitary tumors. In a different type of approach, an adenoviral vector, encoding the human retinoblastoma suppressor oncogene, has been successfully used to rescue the phenotype of spontaneous pituitary tumors of the pars intermedia in mice. We close the article by discussing the future of molecular therapies. We point out that although, gene therapy represents a key step in the development of molecular medicine, it has inherent limitations. As a consequence, it is our view that at some point, genetic therapies will have to move from exogenous gene transfer (i.e. gene therapy) to endogenous gene repair. This approach will call for radically new technologies, such as nanotechnology, whose present state of development is outlined. PMID:15032616

  4. Digenic Inheritance of PROKR2 and WDR11 Mutations in Pituitary Stalk Interruption Syndrome.

    PubMed

    McCormack, Shana E; Li, Dong; Kim, Yeon Joo; Lee, Ji Young; Kim, Soo-Hyun; Rapaport, Robert; Levine, Michael A

    2017-07-01

    Pituitary stalk interruption syndrome (PSIS, ORPHA95496) is a congenital defect of the pituitary gland characterized by the triad of a very thin/interrupted pituitary stalk, an ectopic (or absent) posterior pituitary gland, and hypoplasia or aplasia of the anterior pituitary gland. Complex genetic patterns of inheritance of this disorder are increasingly recognized. The objective of this study was to identify a genetic cause of PSIS in an affected child. Whole exome sequencing (WES) was performed by using standard techniques, with prioritized genetic variants confirmed via Sanger sequencing. To investigate the effects of one candidate variant on mutant WDR11 function, Western blotting and coimmunofluorescence were used to assess binding capacity, and leptomycin B exposure along with immunofluorescence was used to assess nuclear localization. We describe a child who presented in infancy with combined pituitary hormone deficiencies and whose brain imaging demonstrated a small anterior pituitary, ectopic posterior pituitary, and a thin, interrupted stalk. WES demonstrated heterozygous missense mutations in two genes required for pituitary development, a known loss-of-function mutation in PROKR2 (c.253C>T;p.R85C) inherited from an unaffected mother, and a WDR11 (c.1306A>G;p.I436V) mutation inherited from an unaffected father. Mutant WDR11 loses its capacity to bind to its functional partner, EMX1, and to localize to the nucleus. WES in a child with PSIS and his unaffected family implicates a digenic mechanism of inheritance. In cases of hypopituitarism in which there is incomplete segregation of a monogenic genotype with the phenotype, the possibility that a second genetic locus is involved should be considered. Copyright © 2017 Endocrine Society

  5. Antibodies to pituitary surface antigens during various pituitary disease states.

    PubMed

    Keda, Y M; Krjukova, I V; Ilovaiskaia, I A; Morozova, M S; Fofanova, O V; Babarina, M B; Marova, E I; Pankov, Y A; Kandror, V I

    2002-11-01

    Autoantibodies to cell surface antigens of human somatotropinoma (ASAS), human prolactinoma (ASAP) and rat adenohypophysis (ASARA) were assayed in the serum of patients with pituitary diseases associated with GH deficiency (GHD), such as pituitary dwarfism and primary empty sella syndrome (ESS), and in the serum of patients with hyperprolactinaemia of different etiologies: idiopathic hyperprolactinaemia, prolactinoma and ESS. The investigation was carried out with a cellular variant of an ELISA. Among children with GHD, the highest percentage of antibody-positive patients was found in the group with idiopathic isolated GHD (89% of ASAS(+) patients and 30% of ASARA(+) patients vs 33.3% and 0% respectively in the group with idiopathic combined pituitary hormone deficiency, and 33.3% and 9% in patients with pituitary hypoplasia associated with isolated GHD or combined pituitary hormone deficiency). Among hyperprolactinaemic patients, the highest ASAP and ASARA frequency was observed in patients with idiopathic hyperprolactinaemia (67.7% and 41.9% respectively) where it was twice as high as in the group of patients with prolactinoma. The proportion of ASAS(+) and ASARA(+) did not differ significantly between the groups of patients with ess with or without GHD. Similarly, there was no significant difference between the number of ESS ASAP(+) and ASARA(+) patients with or without hyperprolactinaemia. The data obtained suggested that autoimmune disorders may be primary, and responsible, at least in part, for pituitary dysfunction in the cases of idiopathic isolated GHD and idiopathic hyperprolactinaemia. At the same time, the autoimmune disorders in the patients with prolactinoma or ESS are probably secondary to the organic pituitary lesion and their significance in the development of the pituitary dysfunction is obscure.

  6. The Molecular Basis of Hypopituitarism

    PubMed Central

    Romero, Christopher J; Nesi-França, Suzana; Radovick, Sally

    2009-01-01

    Hypopituitarism is defined as the deficiency of one or more of the hormones secreted by the pituitary gland. Several developmental factors necessary for pituitary embryogenesis and hormone secretion have been described, and mutations of these genes in humans provide a molecular understanding of hypopituitarism. Genetic studies of affected patients and their families provide insights into possible mechanisms of abnormal pituitary development, however, mutations are rare. This review characterizes several of these developmental proteins and their role in the pathogenesis of hypopituitarism. Continuing research is required to better understand the complexities and interplay between these pituitary factors and to make improvements in genetic diagnosis that may lead to early detection and provide a future cure. PMID:19854060

  7. A rare case of multiple pituitary adenomas in an adolescent Cushing disease presenting as a vertebral compression fracture.

    PubMed

    Song, Ji-Yeon; Mun, Sue-Jean; Sung, Soon-Ki; Hwang, Jae-Yeon; Baik, Seung-Kug; Kim, Jee Yeon; Cheon, Chong-Kun; Kim, Su-Young; Kim, Yoo-Mi

    2017-09-01

    Cushing disease in children and adolescents, especially with multiple pituitary adenomas (MPAs), is very rare. We report 17-year-old boy with MPAs. He presented with a vertebral compression fracture, weight gain, short stature, headache, and hypertension. On magnetic resonance imaging (MRI), only a left pituitary microadenoma was found. After surgery, transient clinical improvement was observed but headache and hypertension were observed again after 3 months later. Follow-up MRI showed a newly developed right pituitary microadenoma 6 months after the surgery. The need for careful clinical and radiographic follow-up should be emphasized in the search for potential MPAs in patients with persistent Cushing disease.

  8. ACTH Antibodies in Patients Receiving Depot Porcine ACTH to Hasten Recovery from Pituitary-Adrenal Suppression*

    PubMed Central

    Fleischer, Norman; Abe, Kaoru; Liddle, Grant W.; Orth, David N.; Nicholson, Wendell E.

    1967-01-01

    Six patients who had experienced prolonged steroid-induced pituitary-adrenal suppression were treated with 100 U of depot procine ACTH every 2 to 4 days for several months. Such treatment did not hasten the recovery of normal pituitary-adrenal function compared with the rate of recovery of a group of similarly suppressed patients who received no depot ACTH. Eight of nine patients who received prolonged courses of depot porcine ACTH developed antibodies to ACTH that cross-reacted with endogenous ACTH, binding it in the circulation in inactive form and retarding its removal from the circulation. The presence of such antibodies did not in itself grossly alter pituitary-adrenal interrelationships. Images PMID:4289551

  9. Alteration in G Proteins and Prolactin Levels in Pituitary After Ethanol and Estrogen Treatment

    PubMed Central

    Chaturvedi, Kirti; Sarkar, Dipak K.

    2010-01-01

    Background Chronic administration of ethanol increases plasma prolactin levels and enhances estradiol’s mitogenic action on the lactotropes of the pituitary gland. The present study was conducted to determine the changes in the pituitary levels of G proteins during the tumor development following alcohol and ethanol treatments. Methods Using ovariectomized Fischer-344 female rats, we have determined ethanol and estradiol actions at 2 and 4 weeks on pituitary weight and pituitary cell contents of prolactin, Gs. Gq11, Gi1, Gi2, and Gi3 proteins. Western blots were employed to measure protein contents. Results Ethanol increased basal and estradiol-enhanced wet weight and the prolactin content in the pituitary in a time-dependent manner. Chronic exposure of estradiol increased the levels of Gs protein in the pituitary. Unlike estradiol, ethanol exposure did not show significant effect on the basal level of Gs protein, but moderately increased the estradiol-induced levels of this protein. Estradiol exposure enhanced Gq11 protein levels in the pituitary after 2 and 4 weeks, while ethanol treatment failed to alter these protein levels in the pituitary in control-treated or estradioltreated ovariectomized rats. In the case of Gi1, estradiol but not ethanol increased the level of this protein at 4 weeks of treatment. However, estradiol and ethanol alone reduced the levels of both Gi2 and Gi3 proteins at 2 and 4 weeks of treatment. Ethanol also significantly reduced the estradiol-induced Gi2 levels at 4 weeks and Gi3 level at 2 and 4 weeks. Conclusions These results confirm ethanol’s and estradiol’s growth-promoting and prolactin stimulating actions on lactotropes of the pituitary and further provide evidence that ethanol and estradiol may control lactotropic cell functions by altering expression of specific group of G proteins in the pituitary. PMID:18336630

  10. Hypothalamo-pituitary hormone insufficiency associated with cleft lip and palate.

    PubMed Central

    Roitman, A; Laron, Z

    1978-01-01

    Two male patients with congenital cleft lip and palate first seen at ages 10.2 and 21.5 years presented with typical signs of hypothalamic-interior pituitary hormone deficiencies. They were found to lack GH, LH, and FSH and to be partially deficient in TSH and ACTH. Several congenital defects may explain this rare syndrome affecting midline structures in the proximity of the maldeveloped palate, including Rathke's pouch, which migrates distally to develop into the anterior pituitary. PMID:747400

  11. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery.

    PubMed

    Chittiboina, Prashant; Talagala, S Lalith; Merkle, Hellmut; Sarlls, Joelle E; Montgomery, Blake K; Piazza, Martin G; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R; Oldfield, Edward H; Koretsky, Alan P; Butman, John A

    2016-12-01

    OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra-high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm 3 and 0.15 × 0.15 × 0.30 mm 3 , respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary adenomas and identify microscopic invasion of the dura or cavernous sinus.

  12. PITUITARY DEFICIENCY FOLLOWING TRAUMATIC BRAIN INJURY IN EARLY CHILDHOOD: A REVIEW OF THE LITERATURE.

    PubMed

    Soliman, A T; Adel, A; Soliman, N A; Elalaily, R; De Sanctis, V

    2015-01-01

    AIMS OF REVIEW: the intent of the current manuscript is to critically review the studies on pituitary gland dysfunction in early childhood following traumatic brain injury (TBI), in comparison with those in adults. Search of the literature: The MEDLINE database was accessed through PubMed in April 2015. Results were restricted to the past 15 years and English language of articles. Both transient and permanent hypopituitarisms are not uncommon after TBI. Early after the TBI, pituitary dysfunction/s differ than those occurring after few weeks and months. Growth hormone deficiency (GHD) and alterations in puberty are the most common. After the one to more years of TBI, pituitary dysfunction tends to improve in some patients but may deteriorate in others. GH deficiency as well as Hypogonadism and thyroid dysfunction are the most common permanent lesions. Many of the symptoms of these endocrine defects can pass unnoticed because of the psychomotor defects associated with the TBI like depression and apathy. Unfortunately pituitary dysfunction appear to negatively affect psycho-neuro-motor recovery as well as growth and pubertal development of children and adolescents after TBI. Therefore, the current review highlights the importance of closely following patients, especially children and adolescents for growth and other symptoms and signs suggestive of endocrine dysfunction. In addition, all should be screened serially for possible endocrine disturbances early after the TBI as well as few months to a year after the injury. Risk factors for pituitary dysfunction after TBI include relatively serious TBI (Glasgow Coma Scale score < 10 and MRI showing damage to the hypothalamic pituitary area), diffuse brain swelling and the occurrence of hypotensive and/or hypoxic episodes. There is a considerable risk of developing pituitary dysfunction after TBI in children and adolescents. These patients should be clinically followed and screened for these abnormalities according to an agreed protocol of investigations. Further multicenter and multidisciplinary prospective studies are required to explore in details the occurrence of permanent pituitary dysfunction after TBI in larger numbers of children with TBI. This requires considerable organisation and communication between many disciplines such as neurosurgery, neurology, endocrinology, rehabilitation and developmental paediatrics.

  13. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery

    PubMed Central

    Chittiboina, Prashant; Talagala, S. Lalith; Merkle, Hellmut; Sarlls, Joelle E.; Montgomery, Blake K.; Piazza, Martin G.; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R.; Oldfield, Edward H.; Koretsky, Alan P.; Butman, John A.

    2016-01-01

    OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing’s disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra–high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm3 and 0.15 × 0.15 × 0.30 mm3, respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p < 0.01) in the SNR were inversely proportional to the distance from the ESC tip to the anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary adenomas and identify microscopic invasion of the dura or cavernous sinus. PMID:26991390

  14. Overcrowding-mediated stress alters cell proliferation in key neuroendocrine areas during larval development in Rhinella arenarum.

    PubMed

    Distler, Mijal J; Jungblut, Lucas D; Ceballos, Nora R; Paz, Dante A; Pozzi, Andrea G

    2016-02-01

    Exposure to adverse environmental conditions can elicit a stress response, which results in an increase in endogenous corticosterone levels. In early life stages, it has been thoroughly demonstrated that amphibian larval growth and development is altered as a consequence of chronic stress by interfering with the metamorphic process, however, the underlying mechanisms involved have only been partially disentangled. We examined the effect of intraspecific competition on corticosterone levels during larval development of the toad Rhinella arenarum and its ultimate effects on cell proliferation in particular brain areas as well as the pituitary gland. While overcrowding altered the number of proliferating cells in the pituitary gland, hypothalamus, and third ventricle of the brain, no differences were observed in areas which are less associated with neuroendocrine processes, such as the first ventricle of the brain. Apoptosis was increased in hypothalamic regions but not in the pituitary. With regards to pituitary cell populations, thyrotrophs but not somatoatrophs and corticotrophs showed a decrease in the cell number in overcrowded larvae. Our study shows that alterations in growth and development, produced by stress, results from an imbalance in the neuroendocrine systems implicated in orchestrating the timing of metamorphosis. © 2016 Wiley Periodicals, Inc.

  15. [Influence of hyperprolactinemia and tumoral size in the postoperative pituitary function in clinically nonfunctioning pituitary macroadenomas].

    PubMed

    Fonseca, Ana Luiza Vidal; Chimelli, Leila; Santos, Mario José C Felippe; Santos, Alair Augusto S M Damas dos; Violante, Alice Helena Dutra

    2002-09-01

    To study the influence of hyperprolactinemia and tumoral size in the pituitary function in clinically nonfunctioning pituitary macroadenomas. Twenty three patients with clinically nonfunctioning pituitary macroadenomas were evaluated by image studies (computed tomography or magnetic resonance) and basal hormonal level; 16 had preoperative hypothalamus-hypophysial function tests (megatests). All tumors had histological diagnosis and in seventeen immunohistochemical study for adenohypophysial hormones was also performed. Student's t test, chi square test, exact test of Fisher and Mc Neman test were used for the statistics analysis. The level of significance adopted was 5% (p<0.05). Tumoral diameter varied of 1.1 to 4.7 cm (average=2.99 cm +/- 1.04). In the preoperative, 5 (21.7%) patients did not show laboratorial hormonal deficit, 9 (39.1%) developed hyperprolactinemia, 13 (56,5%) normal levels of prolactin (PRL) and 1 (4.3%) subnormal; 18 (78.3%) patients developed hypopituitarism (4 pan-hypopituitarism). Nineteen patients (82.6%) underwent transsfenoidal approach, 3 (13%) craniotomy and 1 (4.4%) combined access. Only 6 patients had total tumoral resection. Of the 17 immunohistochemical studies, 5 tumours were immunonegatives, 1 compound, 1 LH+, 1 FSH +, 1 alpha sub-unit and 8 focal or isolated immunorreactivity for one of the pituitary hormones or sub-units; of the other six tumours, 5 were chromophobe and 1 chromophobe/acidophile. No significant statistic difference was noted between tumoral size and preoperative PRL levels (p=0.82), nor between tumoral size and postoperative hormonal state, except in the GH and gonadal axis. Significant statistic was noted: between tumoral size and preoperative hormonal state (except in the gonadal axis); between normal PRL levels, associated to none or little preoperative hypophysial disfunction, and recovery of postoperative pituitary function. Isolated preoperative hyperprolactinemia and tumoral size have not been predictable for the recovery of postoperative pituitary function.

  16. Dual odontogenic origins develop at the early stage of rat maxillary incisor development.

    PubMed

    Kriangkrai, Rungarun; Iseki, Sachiko; Eto, Kazuhiro; Chareonvit, Suconta

    2006-03-01

    Developmental process of rat maxillary incisor has been studied through histological analysis and investigation of tooth-related gene expression patterns at initial tooth development. The tooth-related genes studied here are fibroblast growth factor-8 (Fgf-8), pituitary homeobox gene-2 (Pitx-2), sonic hedgehog (Shh), muscle segment homeobox-1 (Msx-1), paired box-9 (Pax-9) and bone morphogenetic protein-4 (Bmp-4). The genes are expressed in oral epithelium and/or ectomesenchyme at the stage of epithelial thickening to the early bud stage of tooth development. Both the histological observation and tooth-related gene expression patterns during early stage of maxillary incisor development demonstrate that dual odontogenic origins aligned medio-laterally in the medial nasal process develop, subsequently only single functional maxillary incisor dental placode forms. The cascade of tooth-related gene expression patterns in rat maxillary incisor studied here is quite similar to those of the previous studies in mouse mandibular molar, even though the origins of oral epithelium and ectomesenchyme involved in development of maxillary incisor and mandibular molar are different. Thus, we conclude that maxillary incisor and mandibular molar share a similar signaling control of Fgf-8, Pitx-2, Shh, Msx-1, Pax-9 and Bmp-4 genes at the stage of oral epithelial thickening to the early bud stage of tooth development.

  17. Establishment of an Effective Radioiodide Thyroid Ablation Protocol in Mice.

    PubMed

    Schmohl, Kathrin A; Müller, Andrea M; Schwenk, Nathalie; Knoop, Kerstin; Rijntjes, Eddy; Köhrle, Josef; Heuer, Heike; Bartenstein, Peter; Göke, Burkhard; Nelson, Peter J; Spitzweg, Christine

    2015-09-01

    Due to the high variance in available protocols on iodide-131 ((131)I) ablation in rodents, we set out to establish an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium iodide symporter (NIS) as a reporter gene without interference with thyroidal NIS. We tested a range of (131)I doses with and without prestimulation of thyroidal radioiodide uptake by a low-iodine diet and thyroid-stimulating hormone (TSH) application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 concentrations, pituitary TSHβ and liver deiodinase type 1 (DIO1) mRNA expression, body weight analysis, and (99m)Tc-pertechnetate scintigraphy. While 200 µCi (7.4 MBq) (131)I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 MBq) (131)I combined with 1 week of a low-iodine diet decreased serum concentrations below the detection limit. However, the high (131)I dose resulted in severe side effects. A combination of 1 week of a low-iodine diet followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) (131)I decreased serum T4 concentrations below the detection limit and significantly increased pituitary TSHβ concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and a decrease in liver DIO1 expression below the detection limit. (99m)Tc-pertechnetate scintigraphy revealed absence of thyroidal (99m)Tc-pertechnetate uptake in ablated mice. In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to generate an in vivo model that allows the study of thyroid hormone action using NIS as a reporter gene.

  18. Establishment of an Effective Radioiodide Thyroid Ablation Protocol in Mice

    PubMed Central

    Schmohl, Kathrin A.; Müller, Andrea M.; Schwenk, Nathalie; Knoop, Kerstin; Rijntjes, Eddy; Köhrle, Josef; Heuer, Heike; Bartenstein, Peter; Göke, Burkhard; Nelson, Peter J.; Spitzweg, Christine

    2015-01-01

    Due to the high variance in available protocols on iodide-131 (131I) ablation in rodents, we set out to establish an effective method to generate a thyroid-ablated mouse model that allows the application of the sodium iodide symporter (NIS) as a reporter gene without interference with thyroidal NIS. We tested a range of 131I doses with and without prestimulation of thyroidal radioiodide uptake by a low-iodine diet and thyroid-stimulating hormone (TSH) application. Efficacy of induction of hypothyroidism was tested by measurement of serum T4 concentrations, pituitary TSHβ and liver deiodinase type 1 (DIO1) mRNA expression, body weight analysis, and 99mTc-pertechnetate scintigraphy. While 200 µCi (7.4 MBq) 131I alone was not sufficient to abolish thyroidal T4 production, 500 µCi (18.5 MBq) 131I combined with 1 week of a low-iodine diet decreased serum concentrations below the detection limit. However, the high 131I dose resulted in severe side effects. A combination of 1 week of a low-iodine diet followed by injection of bovine TSH before the application of 150 µCi (5.5 MBq) 131I decreased serum T4 concentrations below the detection limit and significantly increased pituitary TSHβ concentrations. The systemic effects of induced hypothyroidism were shown by growth arrest and a decrease in liver DIO1 expression below the detection limit. 99mTc-pertechnetate scintigraphy revealed absence of thyroidal 99mTc-pertechnetate uptake in ablated mice. In summary, we report a revised protocol for radioiodide ablation of the thyroid gland in the mouse to generate an in vivo model that allows the study of thyroid hormone action using NIS as a reporter gene. PMID:26601076

  19. Pituitary adenylate cyclase-activating polypeptide promotes eccrine gland sweat secretion.

    PubMed

    Sasaki, S; Watanabe, J; Ohtaki, H; Matsumoto, M; Murai, N; Nakamachi, T; Hannibal, J; Fahrenkrug, J; Hashimoto, H; Watanabe, H; Sueki, H; Honda, K; Miyazaki, A; Shioda, S

    2017-02-01

    Sweat secretion is the major function of eccrine sweat glands; when this process is disturbed (paridrosis), serious skin problems can arise. To elucidate the causes of paridrosis, an improved understanding of the regulation, mechanisms and factors underlying sweat production is required. Pituitary adenylate cyclase-activating polypeptide (PACAP) exhibits pleiotropic functions that are mediated via its receptors [PACAP-specific receptor (PAC1R), vasoactive intestinal peptide (VIP) receptor type 1 (VPAC1R) and VPAC2R]. Although some studies have suggested a role for PACAP in the skin and several exocrine glands, the effects of PACAP on the process of eccrine sweat secretion have not been examined. To investigate the effect of PACAP on eccrine sweat secretion. Reverse transcriptase-polymerase chain reaction and immunostaining were used to determine the expression and localization of PACAP and its receptors in mouse and human eccrine sweat glands. We injected PACAP subcutaneously into the footpads of mice and used the starch-iodine test to visualize sweat-secreting glands. Immunostaining showed PACAP and PAC1R expression by secretory cells from mouse and human sweat glands. PACAP immunoreactivity was also localized in nerve fibres around eccrine sweat glands. PACAP significantly promoted sweat secretion at the injection site, and this could be blocked by the PAC1R-antagonist PACAP6-38. VIP, an agonist of VPAC1R and VPAC2R, failed to induce sweat secretion. This is the first report demonstrating that PACAP may play a crucial role in sweat secretion via its action on PAC1R located in eccrine sweat glands. The mechanisms underlying the role of PACAP in sweat secretion may provide new therapeutic options to combat sweating disorders. © 2016 British Association of Dermatologists.

  20. Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics

    PubMed Central

    Keeley, Patrick W.; Zhou, Cuiqi; Lu, Lu; Williams, Robert W.; Melmed, Shlomo; Reese, Benjamin E.

    2014-01-01

    Neurons are commonly organized as regular arrays within a structure, and their patterning is achieved by minimizing the proximity between like-type cells, but molecular mechanisms regulating this process have, until recently, been unexplored. We performed a forward genetic screen using recombinant inbred (RI) strains derived from two parental A/J and C57BL/6J mouse strains to identify genomic loci controlling spacing of cholinergic amacrine cells, which is a subclass of retinal interneuron. We found conspicuous variation in mosaic regularity across these strains and mapped a sizeable proportion of that variation to a locus on chromosome 11 that was subsequently validated with a chromosome substitution strain. Using a bioinformatics approach to narrow the list of potential candidate genes, we identified pituitary tumor-transforming gene 1 (Pttg1) as the most promising. Expression of Pttg1 was significantly different between the two parental strains and correlated with mosaic regularity across the RI strains. We identified a seven-nucleotide deletion in the Pttg1 promoter in the C57BL/6J mouse strain and confirmed a direct role for this motif in modulating Pttg1 expression. Analysis of Pttg1 KO mice revealed a reduction in the mosaic regularity of cholinergic amacrine cells, as well as horizontal cells, but not in two other retinal cell types. Together, these results implicate Pttg1 in the regulation of homotypic spacing between specific types of retinal neurons. The genetic variant identified creates a binding motif for the transcriptional activator protein 1 complex, which may be instrumental in driving differential expression of downstream processes that participate in neuronal spacing. PMID:24927528

  1. “Glowing Head” Mice: A Genetic Tool Enabling Reliable Preclinical Image-Based Evaluation of Cancers in Immunocompetent Allografts

    PubMed Central

    Day, Chi-Ping; Carter, John; Ohler, Zoe Weaver; Bonomi, Carrie; El Meskini, Rajaa; Martin, Philip; Graff-Cherry, Cari; Feigenbaum, Lionel; Tüting, Thomas; Van Dyke, Terry; Hollingshead, Melinda; Merlino, Glenn

    2014-01-01

    Preclinical therapeutic assessment currently relies on the growth response of established human cell lines xenografted into immunocompromised mice, a strategy that is generally not predictive of clinical outcomes. Immunocompetent genetically engineered mouse (GEM)-derived tumor allograft models offer highly tractable preclinical alternatives and facilitate analysis of clinically promising immunomodulatory agents. Imageable reporters are essential for accurately tracking tumor growth and response, particularly for metastases. Unfortunately, reporters such as luciferase and GFP are foreign antigens in immunocompetent mice, potentially hindering tumor growth and confounding therapeutic responses. Here we assessed the value of reporter-tolerized GEMs as allograft recipients by targeting minimal expression of a luciferase-GFP fusion reporter to the anterior pituitary gland (dubbed the “Glowing Head” or GH mouse). The luciferase-GFP reporter expressed in tumor cells induced adverse immune responses in wildtype mouse, but not in GH mouse, as transplantation hosts. The antigenicity of optical reporters resulted in a decrease in both the growth and metastatic potential of the labeled tumor in wildtype mice as compared to the GH mice. Moreover, reporter expression can also alter the tumor response to chemotherapy or targeted therapy in a context-dependent manner. Thus the GH mice and experimental approaches vetted herein provide concept validation and a strategy for effective, reproducible preclinical evaluation of growth and response kinetics for traceable tumors. PMID:25369133

  2. Prediction of postoperative diabetes insipidus using morphological hyperintensity patterns in the pituitary stalk on magnetic resonance imaging after transsphenoidal surgery for sellar tumors.

    PubMed

    Hayashi, Yasuhiko; Kita, Daisuke; Watanabe, Takuya; Fukui, Issei; Sasagawa, Yasuo; Oishi, Masahiro; Tachibana, Osamu; Ueda, Fumiaki; Nakada, Mitsutoshi

    2016-12-01

    Diabetes insipidus (DI) remains a complication of transsphenoidal surgery (TSS) for sellar and parasellar tumors. Antidiuretic hormone (ADH) appears as hyper intensity (HI) in the pituitary stalk and the posterior lobe of the pituitary gland on T1-weighted magnetic resonance (MR) imaging. Its disappearance from the posterior lobe occurs with DI, indicating a lack of ADH. The appearance of HI in the pituitary stalk indicates disturbances in ADH transport. This retrospective study included 172 patients undergoing TSS for sellar tumors at our institute from 2006 to 2014. Sequential T1-weighted MR images without enhancement were evaluated for HI in the pituitary stalk and the posterior lobe to assess the localization of ADH before and at intervals after TSS. DI was assessed pre- and postoperatively. HI in the pituitary stalk showed the following morphology: (1) ovoid in the distal end of the pituitary stalk (group A), (2) linear in the distal part of the pituitary stalk (group B), (3) linear in the whole pituitary stalk (group C). Preoperative DI occurred in 6 patients (3.5 %) with no HI observed in the posterior lobe. Postoperative DI was transient in 82 patients (47.7 %), and permanent in 11 (6.4 %). One week after surgery, HI was absent in the posterior lobe in 74 patients (43.0 %), and present in the pituitary stalk in 99 patients (57.6 %); both were significantly correlated with postoperative DI (p < 0.001). The absence of HI in the posterior lobe (A, 48.9 %; B, 68.3 %; C, 92.3 %), persistence of DI (A, 3.7 days; B, 45.9 days; C, 20.5 months), and duration until HI recovery in the posterior lobe (A, 3.6 months; B, 6.8 months; C, 22.9 months) were greatest in group C, followed by group B, and then group A. Fourteen group A patients did not have postoperative DI despite having HI in the pituitary stalk and the posterior lobe. Four group C patients developed permanent DI with persistence HI in the pituitary stalk. HI in the pituitary stalk and its absence in the posterior lobe indicated postoperative DI, which was transient if HI was detected in the pituitary stalk. DI duration could be predicted by the length of HI in the pituitary stalk, which corresponded to the degree of ADH transport obstruction.

  3. Pituitary gland volume in at-risk mental state for psychosis: a longitudinal MRI analysis.

    PubMed

    Walter, Anna; Studerus, Erich; Smieskova, Renata; Tamagni, Corinne; Rapp, Charlotte; Borgwardt, Stefan J; Riecher-Rössler, Anita

    2015-04-01

    Pituitary enlargement has been reported in individuals with schizophrenic psychosis or an at-risk mental state for psychosis (ARMS). In a previous study, our group could show pituitary volume increase in first episode and ARMS patients with later transition to psychosis (ARMS-T). However, there are no longitudinal studies on this issue so far. We therefore examined longitudinally whether transition to psychosis would be accompanied by a further increase of pituitary volume in antipsychotic-naïve ARMS patients. Magnetic resonance imaging (MRI) data were acquired from 23 antipsychotic-naïve individuals with an ARMS. Ten subjects developed psychosis (ARMS-T) and 13 did not (ARMS-NT). ARMS-T were re-scanned after the onset of psychosis, and ARMS-NT were re-scanned at the end of the study period. There was no significant difference of the pituitary volume between ARMS-T and ARMS-NT in our sample, and there were no significant pituitary volume changes over time. Discussion Longitudinally, we could not detect any further volumetric changes in the pituitary volume with transition to psychosis. This, together with the result of our previous study, could indicate that the perceived level of stress in ARMS patients is constantly high from very early onward.

  4. Development of pituitary adenoma in women with hyperprolactinaemia: clinical, endocrine, and radiological characteristics.

    PubMed Central

    Pontiroli, A E; Falsetti, L

    1984-01-01

    Sixty eight women referred for treatment of hyperprolactinaemia entered a three year follow up study to determine the clinical and endocrine course of the disease and its association with microadenoma of the pituitary. Details recorded before treatment included medical history, gonadotrophin and ovarian hormonal concentrations, and release of prolactin in response to protirelin (thyrotrophin releasing hormone), benserazide, cimetidine, and nomifensine. Sellar tomography was then performed yearly for three years in all women, 54 of them also undergoing computed coronal and sagittal tomography. At baseline evaluation 27 women showed radiological evidence of pituitary adenoma; at the end of the follow up period the number had increased to 41. Amenorrhoea, steady and raised serum prolactin concentrations, a low ratio of luteinising hormone to follicle stimulating hormone, a longer duration of disease, and low serum progesterone concentrations were more common in women with a final diagnosis of pituitary adenoma than in those whose sella remained normal. Tests for release of prolactin had yielded abnormal results from the outset in all 41 women with radiological evidence of pituitary adenoma and in about half of those whose sella had remained radiologically normal. Response to medical treatment (metergoline in 20 patients, bromocriptine in 21) was similar and showed no difference between patients with tumorous and non-tumorous hyperprolactinaemia. These findings suggest that a large proportion of women with hyperprolactinaemia may harbour a prolactin secreting pituitary adenoma which becomes apparent over a relatively short period. Amenorrhoea and steady and raised serum prolactin concentrations are more common in these women. Tests for release of prolactin are of predictive value in identifying women who will develop a pituitary adenoma. PMID:6421360

  5. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    PubMed

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not in the trigeminal nucleus caudalis, and no significant differences were found in the expression of the VPAC1 and VPAC2 receptors. Conclusions This study demonstrated the chronic alteration of pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in the rat, which suggests the crucial involvement of pituitary adenylate cyclase-activating polypeptide in the development of migraine. The selective increase in pituitary adenylate cyclase-activating polypeptide-related receptors suggests that the PAC1 receptor pathway is a novel target for the treatment of migraine.

  6. Characterization of GPR101 transcript structure and expression patterns

    PubMed Central

    Trivellin, Giampaolo; Bjelobaba, Ivana; Daly, Adrian F.; Larco, Darwin O.; Palmeira, Leonor; Faucz, Fabio R.; Thiry, Albert; Leal, Letícia F.; Rostomyan, Liliya; Quezado, Martha; Schernthaner-Reiter, Marie Helene; Janjic, Marija M.; Villa, Chiara; Wu, T. John; Stojilkovic, Stanko S.; Beckers, Albert; Feldman, Benjamin; Stratakis, Constantine A.

    2016-01-01

    We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. GPR101 transcripts were characterized in human tissues by 5’-RACE and RNAseq, while the putative promoter was bioinformatically predicted. We investigated GPR101 mRNA and protein expression by RT-qPCR, whole-mount in situ hybridization, and immunostaining, in human, rhesus monkey, rat, and zebrafish. We identified four GPR101 isoforms characterized by different 5’ untranslated regions (UTRs) and a common 6.1 kb-long 3’UTR. GPR101 expression was very low or absent in almost all adult human tissues examined, except for specific brain regions. Strong GPR101 staining was observed in human fetal pituitary and during adolescence, whereas very weak/absent expression was detected during childhood and adult life. In contrast to humans, adult pituitaries of monkey and rat expressed GPR101, but in different cell types. Gpr101 is expressed in the brain and pituitary during rat and zebrafish development; in rat pituitary Gpr101 is expressed only after birth and showed sexual dimorphism. This study shows that different GPR101 transcripts exist and that the brain is the major site of GPR101 expression across different species, although divergent species- and temporal-specific expression patterns are evident. These findings suggest an important role for GPR101 in brain and pituitary development and likely reflect the very different growth, development and maturation patterns among species. PMID:27282544

  7. Responsiveness of pituitary to galanin throughout the reproductive cycle of male European sea bass (Dicentrarchus labrax).

    PubMed

    Pinto, P; Velez, Z; Sousa, C; Santos, S; Andrade, A; Alvarado, M V; Felip, A; Zanuy, S; Canário, A V M

    2017-09-01

    The neuropeptide galanin (Gal) is a putative factor regulating puberty onset and reproduction through its actions on the pituitary. The present study investigated the pituitary responsiveness to galanin and the patterns of galanin receptors (Galrs) expression throughout the reproductive cycle of two years old male European sea bass (Dicentrarchus labrax), an important aquaculture species. Quantitative analysis of pituitary and hypothalamus transcript expression of four galr subtypes revealed differential regulation according to the testicular developmental stage, with an overall decrease in expression from the immature stage to the mid-recrudescence stage. Incubation of pituitary cells with mammalian 1-29Gal peptide induced significant changes in cAMP concentration, with sensitivities that varied according to the testicular development stages. Furthermore 1-29Gal was able to stimulate both follicle stimulating hormone (Fsh) and luteinizing hormone (Lh) release from pituitary cell suspensions. The magnitude of the effects and effective concentrations varied according to reproductive stage, with generalized induction of Fsh and Lh release in animals sampled in January (full spermiation). The differential expression of galrs in pituitary and hypothalamus across the reproductive season, together with the differential effects of Gal on gonadotropins release in vitro strongly suggests the involvement of the galaninergic system in the regulation the hypothalamus-pituitary-gonad axis of male sea bass. This is to our knowledge the first clear evidence for the involvement of galanin in the regulation of reproduction in non-mammalian vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Associations between pituitary imaging abnormalities and clinical and biochemical phenotypes in children with congenital growth hormone deficiency: data from an international observational study.

    PubMed

    Deal, Cheri; Hasselmann, Caroline; Pfäffle, Roland W; Zimmermann, Alan G; Quigley, Charmian A; Child, Christopher J; Shavrikova, Elena P; Cutler, Gordon B; Blum, Werner F

    2013-01-01

    Magnetic resonance imaging (MRI) is used to investigate the etiology of growth hormone deficiency (GHD). This study examined relationships between MRI findings and clinical/hormonal phenotypes in children with GHD in the observational Genetics and Neuroendocrinology of Short Stature International Study, GeNeSIS. Clinical presentation, hormonal status and first-year GH response were compared between patients with pituitary imaging abnormalities (n = 1,071), patients with mutations in genes involved in pituitary development/GH secretion (n = 120) and patients with idiopathic GHD (n = 7,039). Patients with hypothalamic-pituitary abnormalities had more severe phenotypes than patients with idiopathic GHD. Additional hormonal deficiencies were found in 35% of patients with structural abnormalities (thyroid-stimulating hormone > adrenocorticotropic hormone > luteinizing hormone/follicle-stimulating hormone > antidiuretic hormone), most frequently in patients with septo-optic dysplasia (SOD). Patients with the triad [ectopic posterior pituitary (EPP), pituitary aplasia/hypoplasia and stalk defects] had a more severe phenotype and better response to GH treatment than patients with isolated abnormalities. The sex ratio was approximately equal for patients with SOD, but there was a significantly higher proportion of males (approximately 70%) in the EPP, pituitary hypoplasia, stalk defects, and triad categories. This large, international database demonstrates the value of classification of GH-deficient patients by the presence and type of hypothalamic-pituitary imaging abnormalities. This information may assist family counseling and patient management. Copyright © 2013 S. Karger AG, Basel.

  9. Anti-PIT-1 antibody syndrome; a novel clinical entity leading to hypopituitarism.

    PubMed

    Bando, Hironori; Iguchi, Genzo; Yamamoto, Masaaki; Hidaka-Takeno, Ryoko; Takahashi, Yutaka

    2015-03-01

    Various hypothalamic-pituitary diseases cause hypopituitarism. Inflammation related to autoimmunity also causes hypopituitarism. Hypophysitis is a representative disease caused by autoimmunity. Generally, anterior pituitary hormones are non-specifically impaired in this condition, but specific hormone defects have been reported in some cases. Anti-PIT-1 (pituitary-specific transcription factor 1) antibody syndrome is a novel clinical entity that presents an acquired combined pituitary hormone deficiency characterized by a specific defect in growth hormone, prolactin, and thyroid-stimulating hormone. Circulating anti-PIT-1 antibody along with various autoantibodies are detected with multiple endocrine organopathy, meeting the definition of autoimmune polyglandular syndrome. Mechanistically, cytotoxic T lymphocytes that specifically react with PIT-1 protein play an important role in the development of this syndrome.

  10. Rathke's cyst with ectopic neurohypophysis presenting as severe short stature with delayed puberty.

    PubMed

    Dutta, Deep; Roy, Ajitesh; Ghosh, Sujoy; Mukhopadhyay, Pradip; Dasgupta, Ranen; Mukhopadhyay, Satinath; Chowdhury, Subhankar

    2012-12-01

    Ectopic neurohypophysis (EN) is found in nearly half of children with growth hormone deficiency (GHD). Rathke's cyst (RC) is uncommon in children and when present, hypopituitarism is found in nearly half of them. We present a fourteen and half-year-old girl with severe short stature and delayed puberty who on evaluation was found to have GHD, secondary hypocortisolism, and hypogonadism. Imaging revealed hypoplastic anterior pituitary, stalk agenesis, EN at tuber cinereum and intrapituitary RC. This is perhaps the first report of simultaneous occurrence of EN and RC, which was seen in a girl with multiple pituitary hormone deficiency. A primary defect in pituitary development may explain this simultaneous occurrence of EN and RC and hence this severe anterior pituitary function deficit.

  11. Identification of targets for rational pharmacological therapy in childhood craniopharyngioma.

    PubMed

    Gump, Jacob M; Donson, Andrew M; Birks, Diane K; Amani, Vladimir M; Rao, Karun K; Griesinger, Andrea M; Kleinschmidt-DeMasters, B K; Johnston, James M; Anderson, Richard C E; Rosenfeld, Amy; Handler, Michael; Gore, Lia; Foreman, Nicholas; Hankinson, Todd C

    2015-05-21

    Pediatric adamantinomatous craniopharyngioma (ACP) is a histologically benign but clinically aggressive brain tumor that arises from the sellar/suprasellar region. Despite a high survival rate with current surgical and radiation therapy (75-95 % at 10 years), ACP is associated with debilitating visual, endocrine, neurocognitive and psychological morbidity, resulting in excheptionally poor quality of life for survivors. Identification of an effective pharmacological therapy could drastically decrease morbidity and improve long term outcomes for children with ACP. Using mRNA microarray gene expression analysis of 15 ACP patient samples, we have found several pharmaceutical targets that are significantly and consistently overexpressed in our panel of ACP relative to other pediatric brain tumors, pituitary tumors, normal pituitary and normal brain tissue. Among the most highly expressed are several targets of the kinase inhibitor dasatinib - LCK, EPHA2 and SRC; EGFR pathway targets - AREG, EGFR and ERBB3; and other potentially actionable cancer targets - SHH, MMP9 and MMP12. We confirm by western blot that a subset of these targets is highly expressed in ACP primary tumor samples. We report here the first published transcriptome for ACP and the identification of targets for rational therapy. Experimental drugs targeting each of these gene products are currently being tested clinically and pre-clinically for the treatment of other tumor types. This study provides a rationale for further pre-clinical and clinical studies of novel pharmacological treatments for ACP. Development of mouse and cell culture models for ACP will further enable the translation of these targets from the lab to the clinic, potentially ushering in a new era in the treatment of ACP.

  12. Regulation of alternative splicing of Slo K+ channels in adrenal and pituitary during the stress-hyporesponsive period of rat development.

    PubMed

    Lai, Guey-Jen; McCobb, David P

    2006-08-01

    Stress triggers release of ACTH from the pituitary, glucocorticoids from the adrenal cortex, and epinephrine from the adrenal medulla. Although functions differ, these hormone systems interact in many ways. Previous evidence indicates that pituitary and steroid hormones regulate alternative splicing of the Slo gene at the stress axis-regulated exon (STREX), with functional implications for the calcium-activated K+ channels prominent in adrenal medullary and pituitary cells. Here we examine the role of corticosterone in Slo splicing regulation in pituitary and adrenal tissues during the stress-hyporesponsive period of early rat postnatal life. The sharp drop in plasma corticosterone (CORT) that defines this period offers a unique opportunity to test CORT's role in Slo splicing. We report that in both adrenal and pituitary tissues, the percentage of Slo transcripts having STREX declines and recovers in parallel with CORT. Moreover, addition of 500 nm CORT to cultures of anterior pituitary cells from 13-, 21-, and 30-d postnatal animals increased the percentage of Slo transcripts with STREX, whereas 20 microm CORT reduced STREX representation. Applied to adrenal chromaffin cells, 20 microm CORT decreased STREX inclusion, whereas neither 500 nm nor 2 microm had any effect. The mineralocorticoid receptor antagonist RU28318 abolished the effect of 500 nm CORT on splicing in pituitary cells, whereas the glucocorticoid receptor antagonist RU38486 blocked the effect of 20 microm CORT on adrenal chromaffin cells. These results support the hypothesis that the abrupt, transient drop in CORT during the stress-hyporesponsive period drives the transient decline in STREX splice variant representation in pituitary, but not adrenal.

  13. Alternative splicing of iodothyronine deiodinases in pituitary adenomas. Regulation by oncoprotein SF2/ASF.

    PubMed

    Piekielko-Witkowska, Agnieszka; Kedzierska, Hanna; Poplawski, Piotr; Wojcicka, Anna; Rybicka, Beata; Maksymowicz, Maria; Grajkowska, Wieslawa; Matyja, Ewa; Mandat, Tomasz; Bonicki, Wieslaw; Nauman, Pawel

    2013-06-01

    Pituitary tumors belong to the group of most common neoplasms of the sellar region. Iodothyronine deiodinase types 1 (DIO1) and 2 (DIO2) are enzymes contributing to the levels of locally synthesized T3, a hormone regulating key physiological processes in the pituitary, including its development, cellular proliferation, and hormone secretion. Previous studies revealed that the expression of deiodinases in pituitary tumors is variable and, moreover, there is no correlation between mRNA and protein products of the particular gene, suggesting the potential role of posttranscriptional regulatory mechanisms. In this work we hypothesized that one of such mechanisms could be the alternative splicing. Therefore, we analyzed expression and sequences of DIO1 and DIO2 splicing variants in 30 pituitary adenomas and 9 non-tumorous pituitary samples. DIO2 mRNA was expressed as only two mRNA isoforms. In contrast, nine splice variants of DIO1 were identified. Among them, five were devoid of exon 3. In silico sequence analysis of DIO1 revealed multiple putative binding sites for splicing factor SF2/ASF, of which the top-ranked sites were located in exon 3. Silencing of SF2/ASF in pituitary tumor GH3 cells resulted in change of ratio between DIO1 isoforms with or without exon 3, favoring the expression of variants without exon 3. The expression of SF2/ASF mRNA in pituitary tumors was increased when compared with non-neoplastic control samples. In conclusion, we provide a new mechanism of posttranscriptional regulation of DIO1 and show deregulation of DIO1 expression in pituitary adenoma, possibly resulting from disturbed expression of SF2/ASF. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells.

    PubMed Central

    McKinnon, R D; Danielson, P; Brow, M A; Bloom, F E; Sutcliffe, J G

    1987-01-01

    We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture. Images PMID:2439903

  15. PACAP Interactions in the Mouse Brain: Implications for Behavioral and Other Disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acquaah-Mensah, George; Taylor, Ronald C.; Bhave, Sanjiv V.

    2012-01-10

    As an activator of adenylate cyclase, the neuropeptide Pituitary Adenylate Cyclase Activating Peptide (PACAP) impacts levels of cyclic AMP, a key second messenger available in brain cells. PACAP is involved in certain adult behaviors. To elucidate PACAP interactions, a compendium of microarrays representing mRNA expression in the adult mouse whole brain was pooled from the Phenogen database for analysis. A regulatory network was computed based on mutual information between gene pairs using gene expression data across the compendium. Clusters among genes directly linked to PACAP, and probable interactions between corresponding proteins were computed. Database 'experts' affirmed some of the inferredmore » relationships. The findings suggest ADCY7 is probably the adenylate cyclase isoform most relevant to PACAP's action. They also support intervening roles for kinases including GSK3B, PI 3-kinase, SGK3 and AMPK. Other high-confidence interactions are hypothesized for future testing. This new information has implications for certain behavioral and other disorders.« less

  16. Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozza, M.; Gerard, C.; Kolakowski, L.F. Jr.

    1995-06-10

    Macrophage migration inhibitory factor, MIF, is a cytokine released by T-lymphocytes, macrophages, and the pituitary gland that serves to integrate peripheral and central inflammatory responses. Ubiquitous expression and developmental regulation suggest that MIF may have additional roles outside of the immune system. Here we report the structure and chromosomal location of the mouse Mif gene and the partial characterization of five Mif pseudogenes. The mouse Mif gene spans less than 0.7 kb of chromosomal DNA and is composed of three exons. A comparison between the mouse and the human genes shows a similar gene structure and common regulatory elements inmore » both promoter regions. The mouse Mif gene maps to the middle region of chromosome 10, between Bcr and S100b, which have been mapped to human chromosomes 22q11 and 21q22.3, respectively. The entire sequence of two pseudogenes demonstrates the absence of introns, the presence of the 5{prime} untranslated region of the cDNA, a 3{prime} poly(A) tail, and the lack of sequence similarity with untranscribed regions of the gene. The five pseudogenes are highly homologous to the cDNA, but contain a variable number of mutations that would produce mutated or truncated MIF-like proteins. Phylogenetic analyses of MIF genes and pseudogenes indicate several independent genetic events that can account for multiple genomic integrations. Three of the Mif pseudogenes were also mapped by interspecific backcross to chromosomes 1, 9, and 17. These results suggest that Mif pseudogenes originated by retrotransposition. 46 refs., 5 figs., 1 tab.« less

  17. Reassembly of Anterior Pituitary Organization by Hanging Drop Three-Dimensional Cell Culture

    PubMed Central

    Tsukada, Takehiro; Kouki, Tom; Fujiwara, Ken; Ramadhani, Dini; Horiguchi, Kotaro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-01-01

    The anterior pituitary gland comprises 5 types of hormone-producing cells and non-endocrine cells, such as folliculostellate (FS) cells. The cells form a lobular structure surrounded by extracellular matrix (ECM) but are not randomly distributed in each lobule; hormone-producing cells have affinities for specific cell types (topographic affinity), and FS cells form a homotypic meshwork. To determine whether this cell and ECM organization can be reproduced in vitro, we developed a 3-dimensional (3D) model that utilizes hanging drop cell culture. We found that the topographic affinities of hormone-producing cells were indeed maintained (ie, GH to ACTH cells, GH to TSH cells, PRL to LH/FSH cells). Fine structures in hormone-producing cells retained their normal appearance. In addition, FS cells displayed well-developed cytoplasmic protrusions, which interconnected with adjacent FS cells to form a 3D meshwork. In addition, reassembly of gap junctions and pseudofollicles among FS cells was observed in cell aggregates. Major ECM components—collagens and laminin—were deposited and distributed around the cells. In sum, the dissociated anterior pituitary cells largely maintained their in vivo anterior pituitary architectures. This culture system appears to be a powerful experimental tool for detailed analysis of anterior pituitary cell organization. PMID:24023396

  18. Reassembly of anterior pituitary organization by hanging drop three-dimensional cell culture.

    PubMed

    Tsukada, Takehiro; Kouki, Tom; Fujiwara, Ken; Ramadhani, Dini; Horiguchi, Kotaro; Kikuchi, Motoshi; Yashiro, Takashi

    2013-08-29

    The anterior pituitary gland comprises 5 types of hormone-producing cells and non-endocrine cells, such as folliculostellate (FS) cells. The cells form a lobular structure surrounded by extracellular matrix (ECM) but are not randomly distributed in each lobule; hormone-producing cells have affinities for specific cell types (topographic affinity), and FS cells form a homotypic meshwork. To determine whether this cell and ECM organization can be reproduced in vitro, we developed a 3-dimensional (3D) model that utilizes hanging drop cell culture. We found that the topographic affinities of hormone-producing cells were indeed maintained (ie, GH to ACTH cells, GH to TSH cells, PRL to LH/FSH cells). Fine structures in hormone-producing cells retained their normal appearance. In addition, FS cells displayed well-developed cytoplasmic protrusions, which interconnected with adjacent FS cells to form a 3D meshwork. In addition, reassembly of gap junctions and pseudofollicles among FS cells was observed in cell aggregates. Major ECM components-collagens and laminin-were deposited and distributed around the cells. In sum, the dissociated anterior pituitary cells largely maintained their in vivo anterior pituitary architectures. This culture system appears to be a powerful experimental tool for detailed analysis of anterior pituitary cell organization.

  19. Pituitary carcinoma diagnosed on fine needle aspiration: Report of a case and review of pathogenesis

    PubMed Central

    Yakoushina, Tatiana V.; Lavi, Ehud; Hoda, R. S.

    2010-01-01

    Pituitary carcinoma (PC) is a very rare entity (0.2% of all pituitary tumors), with only about 140 cases reported in English literature. There are no reliable histological, immunohistochemical or ultrastructural features distinguishing pituitary adenoma (PA) from PC. By definition, a diagnosis of PC is made after a patient with PA develops non-contiguous central nervous system (CNS) or systemic metastases. To date, only three cases of PC have been reportedly diagnosed on fine needle aspiration (FNA). Two of the reported cases were diagnosed on FNA of the cervical lymph nodes and one on FNA of the vertebral bone lesion. Herein, we present a case of PC, diagnosed on FNA of the liver lesion. In this case, we describe cytologic features of PC and compare them to histologic features of the tumor in the pituitary. Clinical behavior of tumor, pathogenesis of metastasis and immunochemical and prognostic markers will also be described. PMID:20806088

  20. Surgical experience with Cushing's disease.

    PubMed Central

    Scott, H W; Liddle, G W; Mulherin, J L; Mckenna, T J; Stroup, S L; Rhamy, R K

    1977-01-01

    During the period 1952 to 1976 at Vanderbilt University Hospital 119 patients with pituitary-dependent hypercortisolism or Cushing's disease were studied. The less severe cases, which constitute a majority, were treated by pituitary irradiation with endocrinologic cure or improvement in two-thirds of the treated patients. Bilateral total adrenalectomy was reserved for the most severe cases and for failures of pituitary irradiation. In 29 patients with total bilateral adrenalectomy there was one postoperative death. Two of 28 survivors had incomplete relief of hypercortisolism and required additional therapy for its control. One patient with recent operation is improved and another with early improvement died suddenly at home three months after operation. The 24 other adrenalectomized patients, followed 6 months to 20 years, were considered endocrinologic cures of Cushing's disease. One patient in the group who had not received pituitary irradiation developed signs of expanding pituitary tumor after adrenalectomy (Nelson's syndrome) with satisfactory response to radiation therapy. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:857746

  1. Rubinstein-Taybi Syndrome Associated with Pituitary Macroadenoma: A Case Report.

    PubMed

    Olyaei, Yasamin; Sarmiento, J Manuel; Bannykh, Serguei I; Drazin, Doniel; Naruse, Robert T; King, Wesley

    2017-04-11

    Rubinstein-Taybi Syndrome (RSTS) is an autosomal dominant disorder that is classically characterized by prenatal and postnatal growth restriction, microcephaly, dysmorphic craniofacial features, broad thumbs and toes, and intellectual disability. We describe the first reported case of a pituitary macroadenoma associated with RSTS. A 39-year-old Caucasian female with a past medical history of RSTS diagnosed at age two was found to have a gadolinium-enhancing pituitary mass on magnetic resonance imaging (MRI) of the brain three years ago during workup for migraine-like headaches. Subsequent serial imaging showed radiographic evidence of growth up to 11.5 x 14.0 x 10.0 mm in size. The pituitary sellar lesion was resected through an endoscopic transnasal transsphenoidal approach and was found to be a thyrotroph adenoma. RSTS is a rare, neurodevelopmental genetic disease where most patients with disabilities survive into adulthood. The disorder is associated with an increased predisposition for development of nervous system tumors, including pituitary adenomas.

  2. Rubinstein-Taybi Syndrome Associated with Pituitary Macroadenoma: A Case Report

    PubMed Central

    Olyaei, Yasamin; Bannykh, Serguei I; Drazin, Doniel; Naruse, Robert T; King, Wesley

    2017-01-01

    Rubinstein-Taybi Syndrome (RSTS) is an autosomal dominant disorder that is classically characterized by prenatal and postnatal growth restriction, microcephaly, dysmorphic craniofacial features, broad thumbs and toes, and intellectual disability. We describe the first reported case of a pituitary macroadenoma associated with RSTS. A 39-year-old Caucasian female with a past medical history of RSTS diagnosed at age two was found to have a gadolinium-enhancing pituitary mass on magnetic resonance imaging (MRI) of the brain three years ago during workup for migraine-like headaches. Subsequent serial imaging showed radiographic evidence of growth up to 11.5 x 14.0 x 10.0 mm in size. The pituitary sellar lesion was resected through an endoscopic transnasal transsphenoidal approach and was found to be a thyrotroph adenoma. RSTS is a rare, neurodevelopmental genetic disease where most patients with disabilities survive into adulthood. The disorder is associated with an increased predisposition for development of nervous system tumors, including pituitary adenomas. PMID:28503387

  3. Pituitary gigantism presenting with depressive mood disorder and diabetic ketoacidosis in an Asian adolescent.

    PubMed

    Kuo, Sheng-Fong; Chuang, Wen-Yu; Ng, Sohching; Chen, Chih-Hung; Chang, Chen-Nen; Chou, Chi-Hsiang; Weng, Wei-Chieh; Yeh, Chih-Hua; Lin, Jen-Der

    2013-01-01

    Hyperglycemia is seldom described in young patients with pituitary gigantism. Here, we describe the case of a 17-year-old Taiwanese boy who developed depressive mood disorder and diabetic ketoacidosis (DKA) at the presentation of pituitary gigantism. The boy complained of lethargy and dysphoric mood in June 2008. He presented at the emergency department with epigastralgia and dyspnea in January 2009. Results of laboratory tests suggested type 1 diabetes mellitus with DKA. However, serum C-peptide level was normal on follow-up. Although he had no obvious features of acral enlargement, a high level of insulin-like growth factor 1 was detected, and a 75 g oral glucose suppression test showed no suppression of serum growth hormone levels. A pituitary macroadenoma was found on subsequent magnetic resonance imaging. The pituitary adenoma was surgically removed, followed by gamma-knife radiosurgery, and Sandostatin long-acting release treatment. He was then administered metformin, 500 mg twice daily, and to date, his serum glycohemoglobin has been <7%.

  4. Emerging pharmacotherapy for treatment of traumatic brain injury: targeting hypopituitarism and inflammation.

    PubMed

    Paterniti, Irene; Cordaro, Marika; Navarra, Michele; Esposito, Emanuela; Cuzzocrea, Salvatore

    2015-01-01

    Traumatic brain injury (TBI) is a common cause of morbidity and mortality in the developed world. In particular, TBI is an important cause of death and disability in young adults with consequences ranging from physical disabilities to long-term cognitive, behavioural, psychological and social defects. There is a large body of evidence that suggest that TBI conditions may adversely affect pituitary function in both the acute and chronic phases of recovery. Prevalence of hypopituitarism, from total to isolated pituitary deficiency, ranges from 5 to 90%. The time interval between TBI and pituitary function evaluation is one of the major factors responsible for variations in the prevalence of hypopituitarism reported. Diagnosis of hypopituitarism and accurate treatment of pituitary disorders offers the opportunity to improve mortality and outcome in TBI conditions. The aim of this paper is to review the history and pathophysiology of TBI and to summarize the best evidence of TBI as a cause of pituitary deficiency. Moreover, in this article we will describe the multiple changes which occur within the hypothalamic-pituitary-thyroid axis in critical illness, giving rise to 'sick euthyroid syndrome', focus our attention on thyroid hormones circulating levels from the initial insult to critical illness.

  5. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation.

    PubMed

    Hunter, Chad S; Malik, Raleigh E; Witzmann, Frank A; Rhodes, Simon J

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.

  6. LHX3 Interacts with Inhibitor of Histone Acetyltransferase Complex Subunits LANP and TAF-1β to Modulate Pituitary Gene Regulation

    PubMed Central

    Witzmann, Frank A.; Rhodes, Simon J.

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex. PMID:23861948

  7. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor-corepressor interaction

    PubMed Central

    Carvalho, Luciani R.; Woods, Kathryn S.; Mendonca, Berenice B.; Marcal, Nathalie; Zamparini, Andrea L.; Stifani, Stefano; Brickman, Joshua M.; Arnhold, Ivo J.P.; Dattani, Mehul T.

    2003-01-01

    The paired-like homeobox gene expressed in embryonic stem cells Hesx1/HESX1 encodes a developmental repressor and is expressed in early development in a region fated to form the forebrain, with subsequent localization to Rathke’s pouch, the primordium of the anterior pituitary gland. Mutations within the gene have been associated with septo-optic dysplasia, a constellation of phenotypes including eye, forebrain, and pituitary abnormalities, or milder degrees of hypopituitarism. We identified a novel homozygous nonconservative missense mutation (I26T) in the critical Engrailed homology repressor domain (eh1) of HESX1, the first, to our knowledge, to be described in humans, in a girl with evolving combined pituitary hormone deficiency born to consanguineous parents. Neuroimaging revealed a thin pituitary stalk with anterior pituitary hypoplasia and an ectopic posterior pituitary, but no midline or optic nerve abnormalities. This I26T mutation did not affect the DNA-binding ability of HESX1 but led to an impaired ability to recruit the mammalian Groucho homolog/Transducin-like enhancer of split-1 (Gro/TLE1), a crucial corepressor for HESX1, thereby leading to partial loss of repression. Thus, the novel pituitary phenotype highlighted here appears to be a specific consequence of the inability of HESX1 to recruit Groucho-related corepressors, suggesting that other molecular mechanisms govern HESX1 function in the forebrain. PMID:14561704

  8. Effects of long-term treatment with growth hormone-releasing peptide-2 in the GHRH knockout mouse.

    PubMed

    Alba, Maria; Fintini, Danilo; Bowers, Cyril Y; Parlow, A F; Salvatori, Roberto

    2005-11-01

    Growth hormone (GH) secretagogues (GHS) stimulate GH secretion in vivo in humans and in animals. They act on the ghrelin receptor, expressed in both the hypothalamus and the pituitary. It is unknown whether GHSs act predominantly by increasing the release of hypothalamic GH-releasing hormone (GHRH) or by acting directly on the somatotroph cells. We studied whether a potent GHS could stimulate growth in the absence of endogenous GHRH. To this end, we used GHRH knockout (GHRH-KO) mice. These animals have proportionate dwarfism due to severe GH deficiency (GHD) and pituitary hypoplasia due to reduced somatotroph cell mass. We treated male GHRH-KO mice for 6 wk (from week 1 to week 7 of age) with GH-releasing peptide-2 (GHRP-2, 10 microg s.c. twice a day). Chronic treatment with GHRP-2 failed to stimulate somatotroph cell proliferation and GH secretion and to promote longitudinal growth. GHRP-2-treated mice showed an increase in total body weight compared with placebo-treated animals, due to worsening of the body composition alterations typical of GHD animals. These data demonstrate that GHRP-2 failed to reverse the severe GHD caused by lack of GHRH.

  9. Disruption of the HPA-axis through corticosterone-release pellets induces robust depressive-like behavior and reduced BDNF levels in mice.

    PubMed

    Demuyser, Thomas; Bentea, Eduard; Deneyer, Lauren; Albertini, Giulia; Massie, Ann; Smolders, Ilse

    2016-07-28

    The corticosterone mouse model is widely used in preclinical research towards a better understanding of mechanisms of major depression. One particular administration procedure is the subcutaneous implantation of corticosterone slow-release pellets. In this report we want to provide basic evidence, regarding behavioral changes, neurotransmitter and -modulator levels and some other relevant biomolecules after hypothalamic-pituitary-adrenal-axis distortion. We show that three weeks of corticosterone pellet exposure robustly induces depressive-like but not anxiety-like behavior in mice, accompanied by a significant decrease in hippocampal brain-derived neurotrophic factor levels, at five weeks after the start of treatment. Furthermore there is an overall decrease in plasma corticosterone levels after three weeks of treatment that lasts up until the five weeks' time point. On the other hand, no differences are observed in total monoamine, glutamate or d-serine levels, nor in glucocorticoid receptor expression, in various depression-related brain areas. Altogether this characterization delivers vital information, supplementary to existing literature, regarding the phenotyping of pellet-induced hypothalamic-pituitary-adrenal-axis disruption in mice following three weeks of continuous corticosterone exposure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. DYNAMIC BEHAVIOR OF A DELAY-DIFFERENTIAL EQUATION MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    EPA Science Inventory


    During the menstrual cycle, pituitary hormones stimulate the growth and development of ovarian follicles and the release of an ovum to be fertilized. The ovarian follicles secrete hormones during the cycle that regulate the production of the pituitary hormones creating positi...

  11. Cellular distribution and regulation of ghrelin messenger ribonucleic acid in the rat pituitary gland.

    PubMed

    Caminos, J E; Nogueiras, R; Blanco, M; Seoane, L M; Bravo, S; Alvarez, C V; García-Caballero, T; Casanueva, F F; Diéguez, C

    2003-11-01

    Ghrelin, a 28-amino-acid acylated peptide, strongly stimulates GH release and food intake. In the present study, we found that ghrelin is expressed in somatotrophs, lactotrophs, and thyrotrophs but not in corticotrophs or gonadotrophs of rat pituitary. Persistent expression of the ghrelin gene is found during postnatal development in male and female rats, although the levels significantly decrease in both cases from pituitaries of 20-d-old rats onward, but at 60 d old, the levels were higher in male than female rats. This sexually dimorphic pattern appears to be mediated by estrogens because ovariectomy, but not orchidectomy, increases pituitary ghrelin mRNA levels. Taking into account that somatotroph cell function is markedly influenced by thyroid hormones, glucocorticoids, GH, and metabolic status, we also assessed such influence. We found that ghrelin mRNA levels decrease in hypothyroid- and glucocorticoid-treated rats, increase in GH-deficient rats (dwarf rats), and remain unaffected by food deprivation. In conclusion, we have defined the specific cell types that express ghrelin in the rat anterior pituitary gland. These data provide direct morphological evidence that ghrelin may well be acting in a paracrine-like fashion in the regulation of anterior pituitary cell function. In addition, we clearly demonstrate that pituitary ghrelin mRNA levels are age and gender dependent. Finally, we show that pituitary ghrelin mRNA levels are influenced by alteration on thyroid hormone, glucocorticoids, and GH levels but not by fasting, which indicates that the regulation of ghrelin gene expression is tissue specific.

  12. Expression of leukemia inhibitory factor and leukemia inhibitory factor receptor in the canine pituitary gland and corticotrope adenomas.

    PubMed

    Hanson, J M; Mol, J A; Meij, B P

    2010-05-01

    Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the IL-6 family that activates the hypothalamic-pituitary-adrenal axis and promotes corticotrope cell differentiation during development. The aim of this study was to investigate the expression of LIF and its receptor (LIFR) in the canine pituitary gland and in corticotrope adenomas, and to perform a mutation analysis of LIFR. Using immunohistochemistry, immunofluorescence, and quantitative expression analysis, LIF and LIFR expression were studied in pituitary glands of control dogs and in specimens of corticotrope adenoma tissue collected through hypophysectomy in dogs with pituitary-dependent hypercortisolism (PDH, Cushing's disease). Using sequence analysis, cDNA was screened for mutations in the LIFR. In the control pituitary tissues and corticotrope adenomas, there was a low magnitude of LIF expression. The LIFR, however, was highly expressed and co-localized with ACTH(1-24) expression. Cytoplasmatic immunoreactivity of LIFR was preserved in corticotrope adenomas and adjacent nontumorous cells of pars intermedia. No mutation was found on mutation analysis of the complete LIFR cDNA. Surprisingly, nuclear to perinuclear immunoreactivity for LIFR was present in nontumorous pituitary cells of the pars distalis in 10 of 12 tissue specimens from PDH dogs. These data show that LIFR is highly co-expressed with adrenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH) in the canine pituitary gland and in corticotrope adenomas. Nuclear immunoreactivity for LIFR in nontumorous cells of the pars distalis may indicate the presence of a corticotrope adenoma. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  13. Restricted growth and insulin-like growth factor-1 deficiency in mice lacking presenilin-1 in the neural crest cell lineage

    PubMed Central

    Nakajima, Mitsunari; Watanabe, Sono; Okuyama, Satoshi; Shen, Jie; Furukawa, Yoshiko

    2012-01-01

    Presenilin-1 (PS1) is a transmembrane protein that is in many cases responsible for the development of early-onset familial Alzheimer’s disease. PS1 is essential for neurogenesis, somitogenesis, angiogenesis, and cardiac morphogenesis. We report here that PS1 is also required for maturation and/or maintenance of the pituitary gland. We generated PS1-conditional knockout (PS1-cKO) mice by crossing floxed PS1 and Wnt1-cre mice, in which PS1 was lacking in the neural crest-derived cell lineage. Although the PS1-cKO mice exhibited no obvious phenotypic abnormalities for several days after birth, reduced body weight in the mutant was evident by the age of 3 to 5 weeks. Pituitary weight and serum insulin-like growth factor (IGF)-1 level were also reduced in the mutant. Histologic analysis revealed severe atrophy of the cytosol in the anterior and intermediate pituitary lobes of the mutant. Immunohistochemistry did not reveal clear differences in the expression levels of thyroid-stimulating hormone, adrenocorticotropic hormone, or prolactin in the mutant pituitary. In contrast, growth hormone expression levels were reduced in the anterior lobe of the mutant. PS1 was defective in the posterior lobe, but not the anterior or intermediate lobes, in the mutant pituitary. These findings suggest that PS1 indirectly mediates the development and/or maintenance of the anterior and intermediate lobes in the pituitary gland via actions in other regions, such as the posterior lobe. PMID:19665542

  14. Overexpression of vasopressin (V3) and corticotrophin-releasing hormone receptor genes in corticotroph tumours.

    PubMed

    de Keyzer, Y; René, P; Beldjord, C; Lenne, F; Bertagna, X

    1998-10-01

    The molecular mechanisms underlying ACTH-secreting tumour formation remain unknown. Transmembrane signalling pathways play an important role in several endocrine disorders including pituitary tumours. To investigate the role of the pituitary vasopressin (V3) receptor (R) in ACTH-secreting tumours we have qualitatively and quantitatively analysed its mRNA. RT-PCR, denaturing gradient gel electrophoresis and S1 nuclease protection experiments were used to analyse V3 mRNA structure in ACTH-secreting tumours. We also developed a competitive RT-PCR system to compare the levels of expression of POMC, V3 and CRH-R genes. This system used as competitor a single mutant template (termed multi-mutant) containing primers for the three genes flanking an unrelated core sequence allowing multiple quantifications from the same cDNA preparations. We analysed 12 normal pituitaries, 15 corticotroph pituitary adenomas and 6 ACTH-secreting bronchial carcinoids. The V3 mRNA structure and sequence were found to be identical in normal and tumoural pituitary indicating that the tumoural Vs mRNA codes for a normal receptor. POMC RT-PCR signals in the pituitary tumour group were approximately 7-fold higher than in the normal pituitary group. Similarly, V3 and CRH-R signal were increased in pituitary tumors (mean +/- SEM: 5.87 x 10(-6) +/- 1.73 x 10(-6), and 2.33 x 10(-4) +/- 1.4 x 10(-4), respectively), when compared to normal pituitaries (1.19 x 10(-7) +/- 2.39 x 10(-8), and 1.7 x 10(-6) +/- 4.65 x 10(-7), respectively) suggesting that these two genes are expressed at very high levels in corticotroph tumours. When expressed relative to the corresponding POMC signals, increases in V3 and CRH-R signals reached 49-fold and 137-fold, respectively, in pituitary tumours. In ACTH-secreting bronchial carcinoids V3 gene expression level was also higher than in normal pituitary, whereas CRH-R signals were detected in only 4 of the 6 tumours with wide variations. Our results show that both vasopressin and CRH receptor genes are overexpressed in ACTH-secreting pituitary tumours. They suggest that overexpression of G protein-coupled receptors may be an additional mechanism through which membrane receptors may play a role in human tumours.

  15. Computational Model of the Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis: Incorporating Protein Synthesis in Improving Predictability of Responses to Endocrine Active Chemicals

    EPA Science Inventory

    There is international concern about chemicals that alter endocrine system function in humans and/or wildlife and subsequently cause adverse effects. We previously developed a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minno...

  16. A FEEDBACK MODEL FOR TESTICULAR-PITUITARY AXIS HORMONE KINETICS AND THEIR EFFECTS ON THE REGULATION OF THE PROSTATE IN ADULT MALE RATS

    EPA Science Inventory

    The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. A model describing the kinetics and dynamics of testosterone (T), dihydrotestosterone (DHT) and luteinizing hormone (LH) was developed based on a model by Barton and Anderson (1997). The mode...

  17. Apoptosis: its role in pituitary development and neoplastic pituitary tissue.

    PubMed

    Guzzo, M F; Carvalho, L R S; Bronstein, M D

    2014-04-01

    Apoptosis, also known as programmed cell death, is a phenomenon in which different stimuli trigger cellular mechanisms that culminate in death, in the absence of inflammatory cell response. Two different activation pathways are known, the intrinsic pathway (or mitochondrial) and extrinsic (or death-receptor pathway), both pathways trigger enzymatic reactions that lead cells to break up and be phagocytized by neighboring cells. This process is a common occurrence in physiological and pathological states, participating in the control of cell proliferation, differentiation and remodeling of organs. In the early steps of pituitary gland formation, numerous apoptotic cells are detected in the separation of Rathke's pouch from the roof of oral ectoderm. In the distal part of the gland, which will form the adenohypophysis, the ratio of apoptosis was significantly lower. However, there is evidence that neoplastic pituitary cells undergo unbalance in genes that control apoptosis leading to uncontrolled cell growth. No direct evidence of apoptosis was found in the drugs used for tumors producing prolactin and growth hormone. In conclusion, an unbalancing in the apoptosis process is the boundary between development and tumor growth.

  18. The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, from birth to sexual maturity

    NASA Technical Reports Server (NTRS)

    Cepriano, L. M.; Schreibman, M. P.

    1993-01-01

    Immunoreactive neuropeptide Y and dynorphin have been localized in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, at different ages and stages of development from birth to sexual maturity. Immunoreactive neuropeptide Y was found in perikarya and tracts of the nucleus olfactoretinalis, telencephalon, ventral tegmentum and in the neurohypophysis and in the three regions of the adenohypophysis. Immunoreactive dynorphin was found in nerve tracts in the olfactory bulb and in cells of the pars intermedia and the rostral pars distalis of the pituitary gland.

  19. The regulation of nucleotide metabolism of immune cells: papaverine induced nucleotide breakdown.

    PubMed

    Sheppard, H; Sass, S; Tsien, W H

    1980-06-01

    During a period of prelabeling of mouse thymus cells with any nucleoside at 4 degrees C, nucleoside phosphates accumulated, but no nucleic acid synthesis occurred. Elevating the temperature to 37 degrees C then led to incorporation into the respective nucleic acid reaching a maximum in 5--15 min. Papaverine inhibited this incorporation (IC50:50 muM) and caused an efflux of label into the medium as a nonphosphorylated product. The responses of the different nucleotide phosphate pools showed more dependency on the base then the sugar moeity. The effect of papaverine could not be altered or mimicked by deprivation of oxygen, glucose, or calcium. Mouse spleen cells responded like thymocytes to papaverine, but rat GH3 pituitary cell DNA syntesis was only transiently inhibited with no concomitant efflux of 3H into the medium. As expected, thymus cellular adenosine triphosphate (ATP), determined by the luciferin-luciferase reaction, decreased in the presence of papaverine; suprisingly, extracellular ATP fell as well. The results suggest that decreases in cellular ATP of mouse thymus cells leads to reductions of all nucleoside phosphates and the efflux of the resultant nucleosides. Papaverine may effect a decrease in the ATP levels by activating a phosphohydrolase rather than, or in addition to, the previously suggested inhibition of mitochondrial electron transport.

  20. In Vivo Evidence for Epidermal Growth Factor Receptor (EGFR)-mediated Release of Prolactin from the Pituitary Gland

    PubMed Central

    Dahlhoff, Maik; Blutke, Andreas; Wanke, Rüdiger; Wolf, Eckhard; Schneider, Marlon R.

    2011-01-01

    Members of the epidermal growth factor receptor (EGFR/ERBB) system are essential local regulators of mammary gland development and function. Emerging evidence suggests that EGFR signaling may also influence mammary gland activity indirectly by promoting the release of prolactin from the pituitary gland in a MAPK and estrogen receptor-α (ERα)-dependent manner. Here, we report that overexpression of the EGFR ligand betacellulin (BTC) causes a lactating-like phenotype in the mammary gland of virgin female mice including the major hallmarks of lactogenesis. BTC transgenic (BTC-tg) females showed reduced levels of prolactin in the pituitary gland and increased levels of the hormone in the circulation. Furthermore, treatment of BTC-tg females with bromocriptine, an inhibitor of prolactin secretion, blocked the development of the lactation-like phenotype, suggesting that it is caused by central release of prolactin rather than by local actions of BTC in the mammary gland. Introduction of the antimorphic Egfr allele Wa5 also blocked the appearance of the mammary gland alterations, revealing that the phenotype is EGFR-dependent. We detected an increase in MAPK activity, but unchanged phosphorylation of ERα in the pituitary gland of BTC-tg females as compared with control mice. These results provide the first functional evidence in vivo for a role of the EGFR system in regulating mammary gland activity by modulating prolactin release from the pituitary gland. PMID:21914800

  1. [Dwarfism due to familial panhypopituitarism].

    PubMed

    Cos Welsh, J; Espinosa de los Monteros, A; de la Luz Ajuria, M; Morillo Almao, E

    1977-01-01

    Three sisters of 27 7/12, 13 8/12 and 9 1/12 years of age, respectively, with proportionate dwarfism, high pitched voice and lack of sexual development are described. All the patients had very low serum levels of immunoreactive growth hormone (GH), as well as of LH and FSH. Hypoglycemia induced by insulin and arginine infusion failed to increase GH levels, and the administration of the hypothalamic LH-FSH releasing hormone (LH-RH) did not elicit any response in the secretion of gonadotropins. The oldest sister developed hypothyroidism in recent years, since the I131 thyroid uptake was normal ten years before; her serum TSH was low and did not change with TRH stimulation. In addition, a low pituitary ACTH reserve was demonstrated by the hypoglycemia and metirapone tests. Case 2 showed partial pituitary TSH and ACTH reserve, whereas the youngest child only had low TSH pituitary reserve. These patients had all the clinical and laboratory characteristics of familial panhypopituitarism, with normal sella turcica. Genetic transmission in this cases is consistent with the autosomal recessive form, which is the most frequent type of inheritance of this entity. Consanguinity can not be ruled out. The results of the hypothalamic-pituitary functional tests apparently suggest that the primary defect could be located at the pituitary level. It is also possible that the pathological process may have a progressive evolution.

  2. Normal pituitary volumes in children and adolescents with bipolar disorder: a magnetic resonance imaging study.

    PubMed

    Chen, Hua Hsuan; Nicoletti, Mark; Sanches, Marsal; Hatch, John P; Sassi, Roberto B; Axelson, David; Brambilla, Paolo; Keshavan, Matcheri S; Ryan, Neal; Birmaher, Boris; Soares, Jair C

    2004-01-01

    The volume of the pituitary gland in adults with bipolar disorder has previously been reported to be smaller than that of healthy controls. Such abnormalities would be consistent with the HPA dysfunction reported in this illness. We conducted a study of children and adolescents with bipolar disorder to determine whether size abnormalities in the pituitary gland are already present early in illness course. Magnetic resonance imaging (MRI) morphometric analysis of the pituitary gland was carried out in 16 DSM-IV children and adolescents with bipolar disorder (mean age+/-sd=15.5+/-3.4 years) and 21 healthy controls (mean age+/-sd=16.9+/-3.8 years). Subjects underwent a 1.5 T MRI, with 3-D Spoiled Gradient Recalled (SPGR) acquisition. There was no statistically significant difference between pituitary gland volumes of bipolar patients compared to healthy controls (ANCOVA, age, gender, and ICV as covariates; F=1.77, df=1,32, P=.19). There was a statistically significant direct relationship between age and pituitary gland volume in both groups (r=.59, df=17, P=.007 for healthy controls; r=.61, df=12, P=.008 for bipolar patients). No evidence of size abnormalities in the pituitary gland was found in child and adolescent bipolar patients, contrary to reports involving adult bipolar patients. This suggests that anatomical abnormalities in this structure may develop later in illness course as a result of continued HPA dysfunction. (c) 2005 Wiley-Liss, Inc.

  3. Pituitary and/or hypothalamic dysfunction following moderate to severe traumatic brain injury: Current perspectives

    PubMed Central

    Javed, Zeeshan; Qamar, Unaiza; Sathyapalan, Thozhukat

    2015-01-01

    There is an increasing deliberation regarding hypopituitarism following traumatic brain injury (TBI) and recent data have suggested that pituitary dysfunction is very common among survivors of patients having moderate-severe TBI which may evolve or resolve over time. Due to high prevalence of pituitary dysfunction after moderate-severe TBI and its association with increased morbidity and poor recovery and the fact that it can be easily treated with hormone replacement, it has been suggested that early detection and treatment is necessary to prevent long-term neurological consequences. The cause of pituitary dysfunction after TBI is still not well understood, but evidence suggests few possible primary and secondary causes. Results of recent studies focusing on the incidence of hypopituitarism in the acute and chronic phases after TBI are varied in terms of severity and time of occurrence. Although the literature available does not show consistent values and there is difference in study parameters and diagnostic tests used, it is clear that pituitary dysfunction is very common after moderate to severe TBI and patients should be carefully monitored. The exact timing of development cannot be predicted but has suggested regular assessment of pituitary function up to 1 year after TBI. In this narrative review, we aim to explore the current evidence available regarding the incidence of pituitary dysfunction in acute and chronic phase post-TBI and recommendations for screening and follow-up in these patients. We will also focus light over areas in this field worthy of further investigation. PMID:26693424

  4. Progression from isolated growth hormone deficiency to combined pituitary hormone deficiency.

    PubMed

    Cerbone, Manuela; Dattani, Mehul T

    2017-12-01

    Growth hormone deficiency (GHD) can present at any time of life from the neonatal period to adulthood, as a result of congenital or acquired insults. It can present as an isolated problem (IGHD) or in combination with other pituitary hormone deficiencies (CPHD). Pituitary deficits can evolve at any time from GHD diagnosis. The number, severity and timing of occurrence of additional endocrinopathies are highly variable. The risk of progression from IGHD to CPHD in children varies depending on the etiology (idiopathic vs organic). The highest risk is displayed by children with abnormalities in the Hypothalamo-Pituitary (H-P) region. Heterogeneous data have been reported on the type and timing of onset of additional pituitary hormone deficits, with TSH deficiency being most frequent and Diabetes Insipidus the least frequent additional deficit in the majority, but not all, of the studies. ACTH deficiency may gradually evolve at any time during follow-up in children or adults with childhood onset IGHD, particularly (but not only) in presence of H-P abnormalities and/or TSH deficiency. Hence there is a need in these patients for lifelong monitoring for ACTH deficiency. GH treatment unmasks central hypothyroidism mainly in patients with organic GHD, but all patients starting GH should have their thyroid function monitored closely. Main risk factors for development of CPHD include organic etiology, H-P abnormalities (in particular pituitary stalk abnormalities, empty sella and ectopic posterior pituitary), midline brain (corpus callosum) and optic nerves abnormalities, genetic defects and longer duration of follow-up. The current available evidence supports longstanding recommendations for the need, in all patients diagnosed with IGHD, of a careful and indefinite follow-up for additional pituitary hormone deficiencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Dynamic helical computed tomography of the pituitary gland in healthy dogs.

    PubMed

    Van der Vlugt-Meijer, Roselinda H; Meij, Björn P; Voorhout, George

    2007-01-01

    Dynamic helical computed tomography (CT) of the pituitary gland can be used to image the three-dimensional shape and dimensions of abnormalities within the pituitary gland. The aim of this study was to develop a protocol for dynamic helical CT of the pituitary gland in healthy dogs as a future reference study for patients with pituitary disease. Dynamic helical series of nine scans of the pituitary gland during and following contrast medium injection were performed in six healthy dogs using the following protocols: a series with 1 mm collimation and a table feed per X-ray tube rotation of 2 mm (pitch of 2) in six dogs, a series with 2 mm collimation and pitch of 2 in three dogs, and a series with 1 mm collimation and pitch of 1 in three other dogs. Multiplanar reconstructions of the images were made using a reconstruction index of 0.5. Images of all series were assessed visually for enhancement of the arteries, the neurohypophysis, and the adenohypophysis. The enhancement pattern of the neurohypophysis was distinguished adequately from that of the adenohypophysis in five dogs that were scanned with 1 mm collimation and pitch of 2, but the difference was less discernable when the other protocols were used. The carotid artery, its trifurcation, and the arterial cerebral circle were best visualized in dorsal reconstructions. Dynamic helical CT of the pituitary gland in healthy dogs can be performed with 1 mm collimation and pitch of 2, and a scan length that includes the entire pituitary region. Using this protocol, with the specific scanner used, the neurohypophysis, the adenohypophysis, and the surrounding vascular structures are adequately visualized.

  6. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary.

    PubMed

    Garcia-Lavandeira, Montse; Quereda, Víctor; Flores, Ignacio; Saez, Carmen; Diaz-Rodriguez, Esther; Japon, Miguel A; Ryan, Aymee K; Blasco, Maria A; Dieguez, Carlos; Malumbres, Marcos; Alvarez, Clara V

    2009-01-01

    The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease.

  7. A GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary

    PubMed Central

    Garcia-Lavandeira, Montse; Quereda, Víctor; Flores, Ignacio; Saez, Carmen; Diaz-Rodriguez, Esther; Japon, Miguel A.; Ryan, Aymee K.; Blasco, Maria A.; Dieguez, Carlos; Malumbres, Marcos; Alvarez, Clara V.

    2009-01-01

    Background The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. Principal Findings We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. Significance Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease. PMID:19283075

  8. Combined pituitary hormone deficiency with unique pituitary dysplasia and morning glory syndrome related to a heterozygous PROKR2 mutation

    PubMed Central

    Asakura, Yumi; Muroya, Koji; Hanakawa, Junko; Sato, Takeshi; Aida, Noriko; Narumi, Satoshi; Hasegawa, Tomonobu; Adachi, Masanori

    2015-01-01

    Abstract Recent reports have indicated the role of the prokineticin receptor 2 gene (PROKR2) in the etiology of congenital hypopituitarism, including septo-optic dysplasia and Kallmann syndrome. In the present study, using next-generation targeted sequencing, we identified a novel heterozygous PROKR2 variant (c.742C>T; p.R248W) in a female patient who had combined pituitary hormone deficiency (CPHD), morning glory syndrome and a severely malformed pituitary gland. No other mutation was present in 27 genes related to hypogonadotropic hypogonadism, pituitary hormone deficiency and optic nerve malformation. The substituted amino acid was located on the third intracellular loop of the PROKR2 protein, which is a G protein-coupled receptor. Computational analyses with two programs (SIFT and PolyPhen-2) showed that the substitution was deleterious to PROKR2 function. The p.R248W mutation was transmitted from the patient’s mother, who had a slightly delayed menarche. Collectively, we provide further genetic evidence linking heterozygous PROKR2 mutations and the development of CPHD. PMID:25678757

  9. Combined pituitary hormone deficiency with unique pituitary dysplasia and morning glory syndrome related to a heterozygous PROKR2 mutation.

    PubMed

    Asakura, Yumi; Muroya, Koji; Hanakawa, Junko; Sato, Takeshi; Aida, Noriko; Narumi, Satoshi; Hasegawa, Tomonobu; Adachi, Masanori

    2015-01-01

    Recent reports have indicated the role of the prokineticin receptor 2 gene (PROKR2) in the etiology of congenital hypopituitarism, including septo-optic dysplasia and Kallmann syndrome. In the present study, using next-generation targeted sequencing, we identified a novel heterozygous PROKR2 variant (c.742C>T; p.R248W) in a female patient who had combined pituitary hormone deficiency (CPHD), morning glory syndrome and a severely malformed pituitary gland. No other mutation was present in 27 genes related to hypogonadotropic hypogonadism, pituitary hormone deficiency and optic nerve malformation. The substituted amino acid was located on the third intracellular loop of the PROKR2 protein, which is a G protein-coupled receptor. Computational analyses with two programs (SIFT and PolyPhen-2) showed that the substitution was deleterious to PROKR2 function. The p.R248W mutation was transmitted from the patient's mother, who had a slightly delayed menarche. Collectively, we provide further genetic evidence linking heterozygous PROKR2 mutations and the development of CPHD.

  10. Vincent du Vigneaud: following the sulfur trail to the discovery of the hormones of the posterior pituitary gland at Cornell Medical College.

    PubMed

    Ottenhausen, Malte; Bodhinayake, Imithri; Banu, Matei A; Stieg, Philip E; Schwartz, Theodore H

    2016-05-01

    In 1955, Vincent du Vigneaud (1901-1978), the chairman of the Department of Biochemistry at Cornell University Medical College, was awarded the Nobel Prize for Chemistry for his research on insulin and for the first synthesis of the posterior pituitary hormones-oxytocin and vasopressin. His tremendous contribution to organic chemistry, which began as an interest in sulfur-containing compounds, paved the way for a better understanding of the pituitary gland and for the development of diagnostic and therapeutic tools for diseases of the pituitary. His seminal research continues to impact neurologists, endocrinologists, and neurosurgeons, and enables them to treat patients who had no alternatives prior to du Vigneaud's breakthroughs in peptide structure and synthesis. The ability of neurosurgeons to aggressively operate on parasellar pathology was directly impacted and related to the ability to replace these hormones after surgery. The authors review the life and career of Vincent du Vigneaud, his groundbreaking discoveries, and his legacy of the understanding and treatment of the pituitary gland in health and disease.

  11. MRI features of growth hormone deficiency in children with short stature caused by pituitary lesions.

    PubMed

    Xu, Chao; Zhang, Xinxian; Dong, Lina; Zhu, Bin; Xin, Tao

    2017-06-01

    We verified the advantages of using magnetic resonance imaging (MRI) for improving the diagnostic quality of growth hormone deficiency (GHD) in children with short stature caused by pituitary lesions. Clinical data obtained from 577 GHD patients with short stature caused by pituitary lesions were retrospectively analyzed. There were 354 cases (61.3%) with anterior pituitary dysplasia; 45 cases (7.8%) of pituitary stalk interruption syndrome (PSIS); 15 cases (2.6%) of pituitary hyperplasia due to primary hypothyroidism; 38 cases (6.6%) of Rathke cleft cyst; 68 cases (11.8%) of empty sella syndrome; 16 cases (2.8%) of pituitary invasion from Langerhans cell histiocytosis; 2 cases (0.3%) of sellar regional arachnoid cyst and 39 cases (6.8%) of craniopharyngioma. MRI results showed that the height of anterior pituitary in patients was less than normal. Location, size and signals of posterior pituitary and pituitary stalk were normal in anterior pituitary dysplasia. In all cases pituitary hyperplasia was caused by hypothyroidism. MRI results showed that anterior pituitary was enlarged, and we detected upward apophysis and obvious homogeneous enhancement. There were no pituitary stalk interruption and abnormal signal. We also observed that after hormone replacement therapy the size of pituitary gland was reduced. Anterior pituitary atrophy was observed in Rathke cleft cyst, empty sella syndrome, sellar regional arachnoid cyst and craniopharyngioma. The microstructure of hypophysis and sellar region was studied with MRI. We detected pituitary lesions, and the characteristics of various pituitary diseases of GHD in children with short stature. It was concluded that in children with GHD caused by pituitary lesions, MRI was an excellent method for early diagnosis. This method offers clinical practicability and we believe it can be used for differential diagnosis and to monitor the therapeutic effects.

  12. The endocrine-immune network during taeniosis by Taenia solium: The role of the pituitary gland.

    PubMed

    Quintanar-Stephano, Andrés; Hernández-Cervantes, Rosalía; Moreno-Mendoza, Norma; Escobedo, Galileo; Carrero, Julio Cesar; Nava-Castro, Karen E; Morales-Montor, Jorge

    2015-12-01

    It is well known that sex hormones play an important role during Taenia solium infection; however, to our knowledge no studies exist concerning the immune response following complete or lobe-specific removal of the pituitary gland during T. solium infection. Thus, the aim of this work was to analyze in hamsters, the effects of lack of pituitary hormones on the duodenal immune response, and their impact on T. solium establishment and development. Thus, in order to achieve this goal, we perform anterior pituitary lobectomy (AL, n = 9), neurointermediate pituitary lobectomy (NIL, n = 9) and total hypophysectomy (HYPOX, n = 8), and related to the gut establishment and growth of T. solium, hematoxylin-eosin staining of duodenal tissue and immunofluorescence of duodenal cytokine expression and compared these results to the control intact (n = 8) and control infected group (n = 8). Our results indicate that 15 days post-infection, HYPOX reduces the number and size of intestinally recovered T. solium adults. Using semiquantitative immunofluorescent laser confocal microscopy, we observed that the mean intensity of duodenal IFN-γ and IL-12 Th1 cytokines was mildly expressed in the infected controls, in contrast with the high level of expression of these cytokines in the NIL infected hamsters. Likewise, the duodenum of HYPOX animals showed an increase in the expression of Th2 cytokines IL-5 and IL-6, when compared to control hamsters. Histological analysis of duodenal mucosa from HYPOX hamsters revealed an exacerbated inflammatory infiltrate located along the lamina propria and related to the presence of the parasite. We conclude that lobe-specific pituitary hormones affect differentially the T. solium development and the gut immune response. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Transmission and scanning electron microscopy study of the characteristics and morphology of pericytes and novel desmin-immunopositive perivascular cells before and after castration in rat anterior pituitary gland.

    PubMed

    Jindatip, Depicha; Fujiwara, Ken; Kouki, Tom; Yashiro, Takashi

    2012-09-01

    Pericytes are perivascular cells associated with microcirculation. Typically, they are localized close to the capillary wall, underneath the basement membrane, and have sparse cytoplasm and poorly developed cell organelles. However, the specific properties of pericytes vary by organ and the conditions within organs. We recently demonstrated that pericytes in rat anterior pituitary gland produce type I and III collagens. The present study attempted to determine the morphological characteristics of these pituitary pericytes. Castrated rats were used as a model of hormonal and vascular changes in the gland. Pericytes, as determined by desmin immunohistochemistry, were more numerous and stained more intensely in castrated rats. Transmission electron microscopy revealed that pituitary pericytes displayed the typical characteristics of pericytes. In pituitary sections from castrated rats, the Golgi apparatus of pericytes was well developed and the rough endoplasmic reticulum was elongated. Additionally, scanning electron microscopy revealed four pericyte shapes: oval, elongate, triangular, and multiangular. As compared with normal rats, the proportion of oval pericytes was lower, and the proportions of the other three shapes were higher, in castrated rats. These results suggest that pericytes change their fine structure and cell shape in response to hormonal and vascular changes in the anterior pituitary gland. In addition, a novel type of perivascular cell was found by desmin immunoelectron microscopy. The morphological properties of these cells were dissimilar to those of pericytes. The cells were localized in the perivascular space, had no basement membrane, and contained dilated rough endoplasmic reticulum. This new cell type will require further study of its origin and characteristics.

  14. In vitro pituitary and thyroid cell proliferation assays and their relevance as alternatives to animal testing.

    PubMed

    Jomaa, Barae; Aarts, Jac M M J G; de Haan, Laura H J; Peijnenburg, Ad A C M; Bovee, Toine F H; Murk, Albertinka J; Rietjens, Ivonne M C M

    2013-01-01

    This study investigates the in vitro effect of eleven thyroid-active compounds known to affect pituitary and/or thyroid weights in vivo, using the proliferation of GH3 rat pituitary cells in the so-called "T-screen," and of FRTL-5 rat thyroid cells in a newly developed test denoted "TSH-screen" to gain insight into the relative value of these in vitro proliferation tests for an integrated testing strategy (ITS) for thyroid activity. Pituitary cell proliferation in the T-screen was stimulated by three out of eleven tested compounds, namely thyrotropin releasing hormone (TRH), triiodothyronine (T3) and thyroxine (T4). Of these three compounds, only T4 causes an increase in relative pituitary weight, and thus T4 was the only compound for which the effect in the in vitro assay correlated with a reported in vivo effect. As to the newly developed TSH-screen, two compounds had an effect, namely, thyroid-stimulating hormone (TSH) induced and T4 antagonized FRTL-5 cell proliferation. These effects correlated with in vivo changes induced by these compounds on thyroid weight. Altogether, the results indicate that most of the selected compounds affect pituitary and thyroid weights by modes of action different from a direct thyroid hormone receptor (THR) or TSH receptor (TSHR)-mediated effect, and point to the need for additional in vitro tests for an ITS. Additional analysis of the T-screen revealed a positive correlation between the THR-mediated effects of the tested compounds in vitro and their effects on relative heart weight in vivo, suggesting that the T-screen may directly predict this THR-mediated in vivo adverse effect.

  15. Effects of growth hormone over-expression on reproduction in the common carp Cyprinus carpio L.

    PubMed

    Cao, Mengxi; Chen, Ji; Peng, Wei; Wang, Yaping; Liao, Lanjie; Li, Yongming; Trudeau, Vance L; Zhu, Zuoyan; Hu, Wei

    2014-01-01

    To study the complex interaction between growth and reproduction we have established lines of transgenic common carp (Cyprinus carpio) carrying a grass carp (Ctenopharyngodon idellus) growth hormone (GH) transgene. The GH-transgenic fish showed delayed gonadal development compared with non-transgenic common carp. To gain a better understanding of the phenomenon, we studied body growth, gonad development, changes of reproduction related genes and hormones of GH-transgenic common carp for 2years. Over-expression of GH elevated peripheral gh transcription, serum GH levels, and inhibited endogenous GH expression in the pituitary. Hormone analyses indicated that GH-transgenic common carp had reduced pituitary and serum level of luteinizing hormone (LH). Among the tested genes, pituitary lhβ was inhibited in GH-transgenic fish. Further analyses in vitro showed that GH inhibited lhβ expression. Localization of ghr with LH indicates the possibility of direct regulation of GH on gonadotrophs. We also found that GH-transgenic common carp had reduced pituitary sensitivity to stimulation by co-treatments with a salmon gonadotropin-releasing hormone (GnRH) agonist and a dopamine antagonist. Together these results suggest that the main cause of delayed reproductive development in GH transgenic common carp is reduced LH production and release. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF.

    PubMed

    Diaz-Rodriguez, Esther; Garcia-Rendueles, Angela R; Ibáñez-Costa, Alejandro; Gutierrez-Pascual, Ester; Garcia-Lavandeira, Montserrat; Leal, Alfonso; Japon, Miguel A; Soto, Alfonso; Venegas, Eva; Tinahones, Francisco J; Garcia-Arnes, Juan A; Benito, Pedro; Angeles Galvez, Maria; Jimenez-Reina, Luis; Bernabeu, Ignacio; Dieguez, Carlos; Luque, Raul M; Castaño, Justo P; Alvarez, Clara V

    2014-11-01

    Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in acromegaly.

  17. Development of the hypothalamus and pituitary in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus)

    PubMed Central

    Ashwell, Ken W S

    2012-01-01

    The living monotremes (platypus and echidnas) are distinguished by the development of their young in a leathery-shelled egg, a low and variable body temperature and a primitive teat-less mammary gland. Their young are hatched in an immature state and must deal with the external environment, with all its challenges of hypothermia and stress, as well as sourcing nutrients from the maternal mammary gland. The Hill and Hubrecht embryological collections have been used to follow the structural development of the monotreme hypothalamus and its connections with the pituitary gland both in the period leading up to hatching and during the lactational phase of development, and to relate this structural maturation to behavioural development. In the incubation phase, development of the hypothalamus proceeds from closure of the anterior neuropore to formation of the lateral hypothalamic zone and putative medial forebrain bundle. Some medial zone hypothalamic nuclei are emerging at the time of hatching, but these are poorly differentiated and periventricular zone nuclei do not appear until the first week of post-hatching life. Differentiation of the pituitary is also incomplete at hatching, epithelial cords do not develop in the pars anterior until the first week, and the hypothalamo-neurohypophyseal tract does not appear until the second week of post-hatching life. In many respects, the structure of the hypothalamus and pituitary of the newly hatched monotreme is similar to that seen in newborn marsupials, suggesting that both groups rely solely on lateral hypothalamic zone nuclei for whatever homeostatic mechanisms they are capable of at birth/hatching. PMID:22512474

  18. Variations of pituitary function over time after brain injuries: the lesson from a prospective study.

    PubMed

    Giordano, Giulio; Aimaretti, Gianluca; Ghigo, Ezio

    2005-01-01

    Traumatic Brain Injury (TBI) and Subarachnoid Haemorrhage (SAH) are conditions at high risk to develop hypopituitarism as pointed out by many papers in scientific literature. But most of the papers were referred to retrospective evaluations, not considering the possible evolution of the pituitary function over time. Aim of our studies was to clarify whether pituitary deficiencies and normal pituitary function recorded at short term follow-up (3 months), would improve or worsen, respectively, at long term (12 months after the brain injury). In a multicenter study protocol, in patients who suffered TBI (n = 70; 50 Males, 20 Females; age 39.31 +/- 2.4 years; BMI 23.8 +/- 0.4 kg/m(2)) or SAH (n = 32; 12M, 20F; age: 51.9 +/- 2.2 year; BMI: 24.7 +/- 0.6 kg/m(2)) we tested 3 and 12 months after the pathological events the pituitary function. In TBI patients, the 3 month evaluation had shown some degree of hypopituitarism in 32.8% and the 12 months retesting demonstrated some degree of hypopituitarism in 22.7%. Total hypopituitarism was always confirmed at 12 months while Multiple and Isolated deficits recorded at 3 months was confirmed in nearly 25% only of the patients. On the other hand, in 5.5% of TBI with normal pituitary function at 3 months Isolated deficits were recorded at 12 months testing. Moreover, in 13.3% of TBI with Isolated deficit at 3 months Multiple hypopituitarism was demonstrated at 12 months retesting. In SAH patients, the 3 months evaluation had shown some degree of hypopituitarism in 46.8% and the 12 month retesting demonstrated some degree of hypopituitarism in 37.5%. No multiple hypopituitarism recorded at 3 months was confirmed at 12 months, but 2 patients with isolated deficits at 3 months showed multiple hypopituitarism at 12 month retesting. At 12 as well as at 3 months, both in TBI and SAH patients, the most common deficit was severe GHD (>20%) followed by secondary hypogonadism and then hypoadrenalism and hypothyroidism. In all, in patients who experienced TBI or SAH the risk to develop hypopituitarism is very high; early diagnosis of total hypopituitarism is always confirmed at the long term follow-up; however pituitary function in brain injured patients may improve over time, because, isolated and even multiple pituitary insufficiencies recorded at short term can be transient; on the other hand normal pituitary function recorder at short term may, become impaired 12 months after the injury. Thus, brain injured patients must undergo neuroendocrine follow-up over time in order to monitoring pituitary function and eventually providing appropriate placement.

  19. Down, But Not Out: Partial Elimination of Androgen Receptors in the Male Mouse Brain Does Not Affect Androgenic Regulation of Anxiety or HPA Activity.

    PubMed

    Chen, Chieh V; Brummet, Jennifer L; Jordan, Cynthia L; Breedlove, S Marc

    2016-02-01

    We previously found that androgen receptor (AR) activity mediates two effects of T in adult male mice: reduction of anxiety-like behaviors and dampening of the hypothalamic-pituitary-adrenal response to stress. To determine whether brain ARs mediate these effects, we used the Cre/loxP technology seeking to disable AR throughout the central nervous system (CNS). Female mice carrying the floxed AR allele (ARlox) were crossed with males carrying cre recombinase transgene controlled by the nestin promoter (NesCre), producing cre in developing neurons and glia. Among male offspring, four genotypes resulted: males carrying ARlox and NesCre (NesARko), and three control groups (wild types, NesCre, and ARlox). Reporter mice indicated ubiquitous Cre expression throughout the CNS. Nevertheless, AR immunocytochemistry in NesARko mice revealed efficient knockout (KO) of AR in some brain regions (hippocampus and medial prefrontal cortex [mPFC]), but not others. Substantial AR protein was seen in the amygdala and hypothalamus among other regions, whereas negligible AR remained in others like the bed nucleus of the stria terminalis and dorsal periaqueductal gray. This selective KO allowed for testing the role of AR in hippocampus and mPFC. Males were castrated and implanted with T at postnatal day 60 before testing on postnatal day 90-100. In contrast with males with global KO of AR, T still modulated anxiety-related behavior and hypothalamic-pituitary-adrenal activity in NesARko males. These results leave open the possibility that AR acting in the CNS mediates these effects of T, but demonstrate that AR is not required in the hippocampus or mPFC for T's anxiolytic effects.

  20. Down, But Not Out: Partial Elimination of Androgen Receptors in the Male Mouse Brain Does Not Affect Androgenic Regulation of Anxiety or HPA Activity

    PubMed Central

    Brummet, Jennifer L.; Jordan, Cynthia L.; Breedlove, S. Marc

    2016-01-01

    We previously found that androgen receptor (AR) activity mediates two effects of T in adult male mice: reduction of anxiety-like behaviors and dampening of the hypothalamic-pituitary-adrenal response to stress. To determine whether brain ARs mediate these effects, we used the Cre/loxP technology seeking to disable AR throughout the central nervous system (CNS). Female mice carrying the floxed AR allele (ARlox) were crossed with males carrying cre recombinase transgene controlled by the nestin promoter (NesCre), producing cre in developing neurons and glia. Among male offspring, four genotypes resulted: males carrying ARlox and NesCre (NesARko), and three control groups (wild types, NesCre, and ARlox). Reporter mice indicated ubiquitous Cre expression throughout the CNS. Nevertheless, AR immunocytochemistry in NesARko mice revealed efficient knockout (KO) of AR in some brain regions (hippocampus and medial prefrontal cortex [mPFC]), but not others. Substantial AR protein was seen in the amygdala and hypothalamus among other regions, whereas negligible AR remained in others like the bed nucleus of the stria terminalis and dorsal periaqueductal gray. This selective KO allowed for testing the role of AR in hippocampus and mPFC. Males were castrated and implanted with T at postnatal day 60 before testing on postnatal day 90–100. In contrast with males with global KO of AR, T still modulated anxiety-related behavior and hypothalamic-pituitary-adrenal activity in NesARko males. These results leave open the possibility that AR acting in the CNS mediates these effects of T, but demonstrate that AR is not required in the hippocampus or mPFC for T's anxiolytic effects. PMID:26562258

  1. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Enhances Hippocampal Synaptic Plasticity and Improves Memory Performance in Huntington's Disease.

    PubMed

    Cabezas-Llobet, N; Vidal-Sancho, L; Masana, M; Fournier, A; Alberch, J; Vaudry, D; Xifró, X

    2018-03-10

    Deficits in hippocampal synaptic plasticity result in cognitive impairment in Huntington's disease (HD). Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts neuroprotective actions, mainly through the PAC1 receptor. However, the role of PACAP in cognition is poorly understood, and no data exists in the context of Huntington's disease (HD). Here, we investigated the ability of PACAP receptor stimulation to enhance memory development in HD. First, we observed a hippocampal decline of all three PACAP receptor expressions, i.e., PAC1, VPAC1, and VPAC2, in two different HD mouse models, R6/1 and HdhQ7/Q111, from the onset of cognitive dysfunction. In hippocampal post-mortem human samples, we found a specific decrease of PAC1, without changes in VPAC1 and VPAC2 receptors. To determine whether activation of PACAP receptors could contribute to improve memory performance, we conducted daily intranasal administration of PACAP38 to R6/1 mice at the onset of cognitive impairment for seven days. We found that PACAP treatment rescued PAC1 level in R6/1 mice, promoted expression of the hippocampal brain-derived neurotrophic factor, and reduced the formation of mutant huntingtin aggregates. Furthermore, PACAP administration counteracted R6/1 mice memory deficits as analyzed by the novel object recognition test and the T-maze spontaneous alternation task. Importantly, the effect of PACAP on cognitive performance was associated with an increase of VGlut-1 and PSD95 immunolabeling in hippocampus of R6/1 mice. Taken together, these results suggest that PACAP, acting through stimulation of PAC1 receptor, may have a therapeutic potential to counteract cognitive deficits induced in HD.

  2. Panhypopituitarism after multisystem trauma.

    PubMed

    Wiechecka, Joanna; Krzewska, Aleksandra; Droń, Izabela; Beń-Skowronek, Iwona

    2013-01-01

    The pituitary gland plays a key role in hormonal regulation in the organism, contributing to maintenance of balance of basic vital functions. To emphasise the need for assessment of pituitary function after head injury, as correct diagnosis and hormone replacement therapy prove to be a life-saving therapy accelerating the recovery process. A healthy, normally developing 9-year-old girl, a child of young and healthy parents, was struck by a falling tree. The results of severe head trauma included adrenal crisis, hypothyroidism, and diabetes insipidus as manifestations of damage to the anterior and posterior pituitary gland. Administration of hormone replacement therapy, i.e. hydrocortisone, L-thyroxine, and desmopressin greatly improved the patient´s condition and facilitated effective rehabilitation. Determination of pituitary hormones in children after severe head injury should be an important part of diagnosis allowing identification of an early stage of acute hypopituitarism and acceleration of recovery through hormone replacement therapy.

  3. Cre-mediated recombination in pituitary somatotropes

    PubMed Central

    Nasonkin, Igor O.; Potok, Mary Anne; Camper, Sally A.

    2009-01-01

    We report a transgenic line with highly penetrant cre recombinase activity in the somatotrope cells of the anterior pituitary gland. Expression of the cre transgene is under the control of the locus control region of the human growth hormone gene cluster and the rat growth hormone promoter. Cre recombinase activity was assessed with two different lacZ reporter genes that require excision of a floxed stop sequence for expression: a chick β-actin promoter with the CMV enhancer transgene and a ROSA26 knock-in. Cre activity is detectable in the developing pituitary after initiation of Gh transcription and persists through adulthood with high penetrance in Gh expressing cells and lower penetrance in lactotropes, a cell type that shares a common origin with somatotropes. This Gh-cre transgenic line is suitable for efficient, cell-specific deletion of floxed regions of genomic DNA in differentiated somatotropes and a subset of lactotrope cells of the anterior pituitary gland. PMID:19039787

  4. V3 vasopressin receptor and corticotropic phenotype in pituitary and nonpituitary tumors.

    PubMed

    de Keyzer, Y; René, P; Lenne, F; Auzan, C; Clauser, E; Bertagna, X

    1997-01-01

    Pituitary corticotropic cells express a specific vasopressin receptor, called V1b or V3, through which vasopressin stimulates corticotropin secretion. We recently cloned a cDNA coding for this receptor and showed that it belongs to the G protein-coupled receptor family. V3 mRNA is readily detected by RT-PCR in normal human pituitaries and corticotropic pituitary adenomas but not in PRL or GH-secreting adenomas, thus demonstrating that, like POMC itself and the CRH receptor, V3 is a marker of the corticotropic phenotype. Nuclease protection experiments suggest that V3 is overexpressed in some corticotropic adenomas, and thus may play a role in tumor development by activating the phospholipase C-signalling pathway. In addition analysis of its expression in nonpituitary neuroendocrine tumors showed a striking association with carcinoids of the lung responsible for the ectopic ACTH syndrome.

  5. Detection of Pituitary Antibodies by Immunofluorescence: Approach and Results in Patients With Pituitary Diseases

    PubMed Central

    Ricciuti, Adriana; De Remigis, Alessandra; Landek-Salgado, Melissa A.; De Vincentiis, Ludovica; Guaraldi, Federica; Lupi, Isabella; Iwama, Shintaro; Wand, Gary S.; Salvatori, Roberto

    2014-01-01

    Context: Pituitary antibodies have been measured mainly to identify patients whose disease is caused or sustained by pituitary-specific autoimmunity. Although reported in over 100 publications, they have yielded variable results and are thus considered of limited clinical utility. Objectives: Our objectives were to analyze all publications reporting pituitary antibodies by immunofluorescence for detecting the major sources of variability, to experimentally test these sources and devise an optimized immunofluorescence protocol, and to assess prevalence and significance of pituitary antibodies in patients with pituitary diseases. Study Design and Outcome Measures: We first evaluated the effect of pituitary gland species, section fixation, autofluorescence quenching, blockade of unwanted antibody binding, and use of purified IgG on the performance of this antibody assay. We then measured cross-sectionally the prevalence of pituitary antibodies in 390 pituitary cases and 60 healthy controls, expressing results as present or absent and according to the (granular, diffuse, perinuclear, or mixed) staining pattern. Results: Human pituitary was the best substrate to detect pituitary antibodies and yielded an optimal signal-to-noise ratio when treated with Sudan black B to reduce autofluorescence. Pituitary antibodies were more common in cases (95 of 390, 24%) than controls (3 of 60, 5%, P = .001) but did not discriminate among pituitary diseases when reported dichotomously. However, when expressed according to their cytosolic staining, a granular pattern was highly predictive of pituitary autoimmunity (P < .0001). Conclusion: We report a comprehensive study of pituitary antibodies by immunofluorescence and provide a method and an interpretation scheme that should be useful for identifying and monitoring patients with pituitary autoimmunity. PMID:24606106

  6. Addison's Disease and Pituitary Enlargement.

    PubMed

    Winters, Stephen J; Vitaz, Todd; Nowacki, Michael R; Craddock, Durrett C; Silverman, Craig

    2015-06-01

    A 60-year-old man with Addison's disease, primary hypothyroidism and type 2 diabetes mellitus who was treated with stable doses of hydrocortisone and fludrocortisone developed increasing skin pigmentation and a bitemporal hemianopia. The plasma ACTH level was 14,464 pg/mL, and an invasive pituitary macroadenoma with suprasellar extension was found on magnetic resonance imaging leading to transnasal-transsphenoidal adenomectomy. The tumor demonstrated features of an eosinophilic adenoma and stained uniformly for ACTH. Residual tumor was treated with stereotactic radiotherapy. This case and the 13 cases published previously indicate that primary adrenal failure may predispose to corticotroph hyperplasia, and in some patients to the development of an invasive corticotroph adenoma. The ACTH level should be measured, and a pituitary magnetic resonance imaging is indicated when skin pigmentation increases in a patient with primary adrenal failure who is receiving customary treatment with glucocorticoids and mineralocorticoids.

  7. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis.

    PubMed

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism.

  8. Panhypopituitarism due to Absence of the Pituitary Stalk: A Rare Aetiology of Liver Cirrhosis

    PubMed Central

    Gonzalez Rozas, Marta; Hernanz Roman, Lidia; Gonzalez, Diego Gonzalez; Pérez-Castrillón, José Luis

    2016-01-01

    Studies have established a relationship between hypothalamic-pituitary dysfunction and the onset of liver damage, which may occasionally progress to cirrhosis. Patients with hypopituitarism can develop a metabolic syndrome-like phenotype. Insulin resistance is the main pathophysiological axis of metabolic syndrome and is the causal factor in the development of nonalcoholic fatty liver disease (NAFLD). We present the case of a young patient with liver cirrhosis of unknown aetiology that was finally attributed to panhypopituitarism. PMID:27213061

  9. Differential neonatal imprinting and regulation by estrogen of estrogen receptor subtypes alpha and beta and of the truncated estrogen receptor product (TERP-1) mRNA expression in the male rat pituitary.

    PubMed

    Tena-Sempere, M; Barreiro, M L; González, L C; Pinilla, L; Aguilar, E

    2001-11-01

    Two distinct nuclear estrogen receptors (ERs) have been identified, the classical one, renamed ERalpha, and the more recently cloned ERbeta. In a variety of tissues, gene expression of both receptor subtypes results in the generation of multiple transcripts encoding the full-length as well as several alternately spliced isoforms. In the rat pituitary, a truncated, tissue-specific variant of ERalpha, called TERP-1, has been identified and found able to modulate ERalpha and ERbeta activity. So far, its pattern of expression and hormonal regulation have been mostly studied in females. The present study was designed to analyze the pattern of expression of TERP-1 mRNA in the male rat pituitary at different stages of postnatal development, and to evaluate the impact of neonatal imprinting and estrogen treatment upon TERP-1 expression in the male pituitary. Assessment of TERP-1 mRNA levels by semi-quantitative RT-PCR, using a variant-specific primer pair, revealed that TERP-1 is also expressed in the male rat pituitary. Relative mRNA expression levels changed markedly during postnatal development, with moderate expression of the TERP-1 transcript at birth, barely detectable levels during the infantile-prepubertal period, and maximal values in adulthood. Expression of TERP-1 was sensitive to neonatal estrogen exposure, which resulted in a significant, persistent increase in mRNA levels from the infantile period until puberty. This phenomenon was not mimicked by neonatal blockade of endogenous GnRH. In addition, estrogen was able to acutely up-regulate pituitary TERP-1 mRNA expression levels in prepubertal (30-day-old) and adult (75-day-old) males. Interestingly, neonatal imprinting as well as acute estrogen treatment resulted in opposite effects on TERP-1 and full-length ERalpha and ERbeta transcripts, the latter being decreased under both conditions. In conclusion, our data indicate that TERP-1 mRNA is expressed in a developmentally regulated manner in the male rat pituitary, and is affected by neonatal estrogen imprinting and acute estrogen treatment. Regulation of TERP-1 expression by neonatal or acute estrogen treatment may thus represent an additional tuning mechanism for estrogen actions in the male rat pituitary. Copyright 2001 S. Karger AG, Basel

  10. A novel mutation of LHX3 is associated with combined pituitary hormone deficiency including ACTH deficiency, sensorineural hearing loss, and short neck-a case report and review of the literature.

    PubMed

    Bonfig, Walter; Krude, Heiko; Schmidt, Heinrich

    2011-08-01

    The LHX3 LIM-homeodomain transcription factor gene is required for normal pituitary and motoneuron development. LHX3 mutations are associated with growth hormone, prolactin, gonadotropin, and TSH deficiency; abnormal pituitary morphology; and may be accompanied with limited neck rotation and sensorineural hearing loss. We report on a boy, who presented with hypoglycemia in the newborn period. He is the second child of healthy unrelated parents. Short neck, growth hormone deficiency, and central hypothyroidism were diagnosed at a general pediatric hospital. Growth hormone and levothyroxine treatment were started, and blood sugar normalized with this treatment. On cerebral MRI, the anterior pituitary gland was hypoplastic. Sensorineural hearing loss was diagnosed by auditory testing. During follow-up, six repeatedly low morning cortisol levels (<1 μg/dl) and low ACTH levels (<10 pg/ml) were documented, so ACTH deficiency had developed over time and therefore hydrocortisone replacement was started at 1.5 years of age. Mutation analysis of the LHX3 gene revealed a homozygous stop mutation in exon 2: c.229C>T (CGA > TGA), Arg77stop (R77X). A complete loss of function is assumed with this homozygous stop mutation. We report a novel LHX3 mutation, which is associated with combined pituitary hormone deficiency including ACTH deficiency, short neck, and sensorineural hearing loss. All patients with LHX3 defects should undergo longitudinal screening for ACTH deficiency, since corticotrope function may decline over time. All patients should have auditory testing to allow for regular speech development.

  11. Steroidogenic Factor 1, Pit-1, and Adrenocorticotropic Hormone: A Rational Starting Place for the Immunohistochemical Characterization of Pituitary Adenoma.

    PubMed

    McDonald, William C; Banerji, Nilanjana; McDonald, Kelsey N; Ho, Bridget; Macias, Virgilia; Kajdacsy-Balla, Andre

    2017-01-01

    -Pituitary adenoma classification is complex, and diagnostic strategies vary greatly from laboratory to laboratory. No optimal diagnostic algorithm has been defined. -To develop a panel of immunohistochemical (IHC) stains that provides the optimal combination of cost, accuracy, and ease of use. -We examined 136 pituitary adenomas with stains of steroidogenic factor 1 (SF-1), Pit-1, anterior pituitary hormones, cytokeratin CAM5.2, and α subunit of human chorionic gonadotropin. Immunohistochemical staining was scored using the Allred system. Adenomas were assigned to a gold standard class based on IHC results and available clinical and serologic information. Correlation and cluster analyses were used to develop an algorithm for parsimoniously classifying adenomas. -The algorithm entailed a 1- or 2-step process: (1) a screening step consisting of IHC stains for SF-1, Pit-1, and adrenocorticotropic hormone; and (2) when screening IHC pattern and clinical history were not clearly gonadotrophic (SF-1 positive only), corticotrophic (adrenocorticotropic hormone positive only), or IHC null cell (negative-screening IHC), we subsequently used IHC for prolactin, growth hormone, thyroid-stimulating hormone, and cytokeratin CAM5.2. -Comparison between diagnoses generated by our algorithm and the gold standard diagnoses showed excellent agreement. When compared with a commonly used panel using 6 IHC for anterior pituitary hormones plus IHC for a low-molecular-weight cytokeratin in certain tumors, our algorithm uses approximately one-third fewer IHC stains and detects gonadotroph adenomas with greater sensitivity.

  12. Cardiovascular disease risk factors in adolescents: do negative emotions and hypothalamic-pituitary-adrenal axis function play a role?

    PubMed

    Pajer, Kathleen A

    2007-10-01

    Negative emotions such as depression and hostility/anger are important risk factors for cardiovascular disease in adults, but are often neglected in treatment or prevention programs. Adolescence is a stage of life when negative emotions often first become problematic and is also a time when the pathogenesis of cardiovascular disease appears to accelerate. The literature on negative emotions and cardiovascular disease risk factors in adolescents is reviewed here. Research indicates that negative emotions are associated with cardiovascular disease risk factors in adolescence. Negative emotions are also associated with several types of hypothalamic-pituitary-adrenal axis dysregulation. Such dysregulation appears to have a facilitatory effect on cardiovascular disease development and progression in adults. Thus, it is possible that negative emotions in adolescents may be risk factors for the development of cardiovascular disease via dysregulation of the hypothalamic-pituitary-adrenal axis. Although this hypothesis has not been directly tested, some studies indirectly support the hypothesis. Negative emotions are associated with cardiovascular disease risk factors in adolescents; it is possible that hypothalamic-pituitary-adrenal axis dysregulation is an important mechanism. This hypothesis merits further research. If the hypothesis is valid, it has significant implications for early prevention of cardiovascular disease.

  13. Contemporary indications for transsphenoidal pituitary surgery.

    PubMed

    Miller, Brandon A; Ioachimescu, Adriana G; Oyesiku, Nelson M

    2014-12-01

    To analyze current indications for transsphenoidal pituitary surgery. The current literature regarding transsphenoidal surgery for all subtypes of pituitary adenomas and other sellar lesions was examined. Alternate approaches for pituitary surgery were also reviewed. Transsphenoidal surgery continues to be the mainstay of surgical treatment for pituitary tumors, and has good outcomes in experienced hands. Pre- and postoperative management of pituitary tumors remains an important part of the treatment of patients with pituitary tumors. Even as medical and surgical treatment for pituitary tumors evolves, transsphenoidal surgery remains a mainstay of treatment. Outcomes after transshenoidal surgery have improved over time. Neurosurgeons must be aware of the indications, risks and alternatives to transsphenoidal pituitary surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Expression of the pituitary stem/progenitor marker GFRα2 in human pituitary adenomas and normal pituitary

    PubMed Central

    Mathioudakis, Nestoras; Sundaresh, Ram; Larsen, Alexandra; Ruff, William; Schiller, Jennifer; Cázares, Hugo Guerrero; Burger, Peter; Salvatori, Roberto; Quiñones-Hinojosa, Alfredo

    2014-01-01

    Purpose Recent studies suggest that adult pituitary stem cells may play a role in pituitary tumorigenesis. We sought to explore whether the Glial cell-line derived neurotrophic factor receptor alpha 2 (GFRα2), a recently described pituitary stem/progenitor marker, might be differentially expressed in pituitary adenomas versus normal pituitary. Methods The expression of GFRα2 and other members of the GFR receptor family (GFRα1, α3, α4) were analyzed using RT-PCR, western blot, and immunohistochemistry in 39 pituitary adenomas, 14 normal pituitary glands obtained at autopsy, and cDNA from 3 normal pituitaries obtained commercially. Results GFRα2 mRNA was ~2.6 fold under-expressed in functioning adenomas (P <0.01) and ~3.5 fold over-expressed in non-functioning adenomas (NFAs) (P <0.05) compared to normal pituitary. Among NFAs, GFRα2 was significantly over-expressed (~5-fold) in the gonadotropinoma subtype only (P<0.05). GFRα2 protein expression appeared to be higher in most NFAs, although there was heterogeneity in protein expression in this group. GFRα2 protein expression appeared consistently lower in functioning adenomas by IHC and western blot. In normal pituitary, GFRα2 was localized in Rathke’s remnant, the putative pituitary stem cell niche, and in corticotropes. Conclusion Our results suggest that the pituitary stem cell marker GFRα2 is under-expressed in functioning adenomas and over-expressed in NFAs, specifically gonadotropinomas. Further studies are required to elucidate whether over-expression of GFRα2 in gonadotropinomas might play a role in pituitary tumorigenesis. PMID:24402129

  15. Maternal exposure to a mixture of di(2-ethylhexyl) phthalate (DEHP) and polychlorinated biphenyls (PCBs) causes reproductive dysfunction in adult male mouse offspring.

    PubMed

    Fiandanese, Nadia; Borromeo, Vitaliano; Berrini, Anna; Fischer, Bernd; Schaedlich, Kristina; Schmidt, Juliane-Susanne; Secchi, Camillo; Pocar, Paola

    2016-10-01

    We investigated the effects of maternal exposure to the plasticizer di(2-ethylhexyl) phthalate (DEHP) and the organic industrial compounds polychlorinated biphenyls (PCBs), singly and combined, on the reproductive function of male mouse offspring. Mice dams were exposed throughout pregnancy and lactation to 1μg PCBs (101+118)/kg/day, 50μg DEHP/kg/day, or the DEHP/PCB mixture in the diet. The mixture induced permanent alterations in adult F1 males' reproductive health in a way, differently from the single compounds. Depending on the endpoint, we observed: (1) synergy in altering the gross and histological morphology of the testis; (2) antagonism on the expression levels of genes involved in pituitary-gonadal cross-talk; (3) non-interactions on sperm parameters and testosterone production. This study illustrates the complex action of a DEHP/PCB mixture, leading to a unique panel of effects on the male reproductive system, indicating the need for research on the reproductive hazards of combined endocrine disruptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Hypoglycemia, hyperglucagonemia, and fetoplacental defects in glucagon receptor knockout mice: a role for glucagon action in pregnancy maintenance

    PubMed Central

    Ouhilal, Sophia; Cui, Lingguang; Du, Xiu-Quan; Gelling, Richard W.; Reznik, Sandra E.; Russell, Robert; Parlow, Albert F.; Karpovsky, Clara; Santoro, Nanette; Charron, Maureen J.

    2012-01-01

    Alterations in insulin signaling as well as insulin action predispose to infertility as well as adverse pregnancy outcomes; however, little is known about the role of glucagon signaling in reproduction. The glucagon receptor knockout (Gcgr−/−) mouse created by our laboratory was used to define the role of glucagon signaling in maintaining normal reproduction. In this mouse model, lack of glucagon signaling did not alter the hypothalamic-pituitary-ovarian axis. Pregnant Gcgr−/− female mice displayed persistent hypoglycemia and hyperglucagonemia. Gcgr−/− pregnancies were associated with decreased fetal weight, increased late-gestation fetal demise, and significant abnormalities of placentation. Gcgr−/− placentas contained areas of extensive mineralization, fibrinoid necrosis, narrowing of the vascular channels, and a thickened interstitium associated with trophoblast hyperplasia. Absent glucagon signaling did not alter glycogen content in Gcgr−/− placentas but significantly downregulated genes that control growth, adrenergic signaling, vascularization, oxidative stress, and G protein-coupled receptors. Our data suggest that, similarly to insulin, glucagon action contributes to normal female reproductive function. PMID:22167521

  17. Dioxin-induced retardation of development through a reduction in the expression of pituitary hormones and possible involvement of an aryl hydrocarbon receptor in this defect: A comparative study using two strains of mice with different sensitivities to dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Tomoki; Taura, Junki; Hattori, Yukiko

    We have previously revealed that treating pregnant rats with 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) reduces the expression of gonadotropins and growth hormone (GH) in the fetal and neonatal pituitary. A change in gonadotropin expression impairs the testicular expression of steroidogenic proteins in perinatal pups, and imprint defects in sexual behavior after reaching maturity. In this study, we examined whether TCDD also affects the expression of gonadotropin and GH in mice using C57BL/6J and DBA/2J strains which express the aryl hydrocarbon receptor (Ahr) exhibiting a different affinity for TCDD. When pregnant C57BL/6J mice at gestational day (GD) 12 were given oral TCDD (0.2–20 μg/kg),more » all doses significantly attenuated the pituitary expression of gonadotropin mRNAs in fetuses at GD18. On the other hand, in DBA/2J mice, a much higher dose of TCDD (20 μg/kg) was needed to produce a significant attenuation. Such reduction in the C57BL/6J strain continued until at least postnatal day (PND) 4. In agreement with this, TCDD reduced the testicular expression of steroidogenic proteins in C57BL/6J neonates at PND2 and 4, although the same did not occur in the fetal testis and ovary. Furthermore, TCDD reduced the perinatal expression of GH, litter size and the body weight of newborn pups only in the C57BL/6J strain. These results suggest that 1) also in mice, maternal exposure to TCDD attenuates gonadotropin-regulated steroidogenesis and GH expression leading to the impairment of pup development and sexual immaturity; and 2) Ahr activation during the late fetal and early postnatal stages is required for these defects. - Highlights: • The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on mouse growth was studied. • TCDD reduced the levels of luteinizing hormone and growth hormone in perinatal pups. • Maternal exposure to TCDD also attenuated testicular steroidogenesis in pups. • The above effects of TCDD were more pronounced in C57BL/6J than in DBA/2J strain. • TCDD seems to disturb pup maturation by activating aryl hydrocarbon receptor.« less

  18. Development of syndrome of inappropriate antidiuretic hormone secretion (SIADH) after Onyx embolisation of a cavernous carotid fistula

    PubMed Central

    Chen, Tsinsue; Kalani, M Yashar S; Ducruet, Andrew F; Albuquerque, Felipe C; McDougall, Cameron G

    2016-01-01

    Patients with cavernous carotid fistulas (CCFs) can present with pituitary hypoperfusion and hypopituitarism; however, there are no previous reports of pituitary or hormonal abnormalities developing after CCF embolisation in an asymptomatic patient. We describe a patient with no hormonal abnormalities who developed syndrome of inappropriate antidiuretic hormone (SIADH) secretion after CCF embolisation. The patient had bilateral indirect CCFs, which were completely embolised via a transvenous approach, and was neurologically stable postoperatively and discharged. In the subsequent 2 weeks the patient was readmitted twice for acute hyponatraemia and a tonic-clonic seizure. Laboratory studies revealed severe SIADH. Clinical status and sodium levels improved after treatment. One year later the patient was weaned off all medications and remained neurologically stable. SIADH may be a delayed phenomenon after CCF embolisation. Given the proximity of embolised vessels to the pituitary's vascular supply, CCF treatment may result in flow disturbance, ischaemia and hormonal abnormalities. PMID:27001597

  19. HoxD10 gene delivery using adenovirus/adeno-associate hybrid virus inhibits the proliferation and tumorigenicity of GH4 pituitary lactotrope tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Mi Ae; Endocrinology, Dong Rae Bong Seng Hospital, Busan; Yashar, Parham

    2008-07-04

    Prolactinoma is one of the most common types of pituitary adenoma. It has been reported that a variety of growth factors and cytokines regulating cell growth and angiogenesis play an important role in the growth of prolactinoma. HoxD10 has been shown to impair endothelial cell migration, block angiogenesis, and maintain a differentiated phenotype of cells. We investigated whether HoxD10 gene delivery could inhibit the growth of prolactinoma. Rat GH4 lactotrope tumor cells were infected with adenovirus/adeno-associated virus (Ad/AAV) hybrid vectors carrying the mouse HoxD10 gene (Hyb-HoxD10) or the {beta}-galactosidase gene (Hyb-Gal). Hyb-HoxD10 expression inhibited GH4 cell proliferation in vitro. Themore » expression of FGF-2 and cyclin D2 was inhibited in GH4 cells infected with Hyb-HoxD10. GH4 cells transduced with Hyb-HoxD10 did not form tumors in nude mice. These results indicate that the delivery of HoxD10 could potentially inhibit the growth of PRL-secreting tumors. This approach may be a useful tool for targeted therapy of prolactinoma and other neoplasms.« less

  20. Insulin Rescues Impaired Spermatogenesis via the Hypothalamic-Pituitary-Gonadal Axis in Akita Diabetic Mice and Restores Male Fertility

    PubMed Central

    Schoeller, Erica L.; Albanna, Gabriella; Frolova, Antonina I.; Moley, Kelle H.

    2012-01-01

    The mechanism responsible for poor reproductive outcomes in type 1 diabetic males is not well understood. In light of new evidence that the Sertoli cells of the testis secrete insulin, it is currently unclear whether diabetic subfertility is the result of deficiency of pancreatic insulin, testicular insulin, or both. In this study, the Akita mouse diabetic model, which expresses a mutant, nonfunctional form of ins2 in testes and pancreas, was used to distinguish between systemic and local effects of insulin deficiency on the process of spermatogenesis and fertility. We determined that Akita homozygous male mice are infertile and have reduced testis size and abnormal morphology. Spermatogonial germ cells are still present but are unable to mature into spermatocytes and spermatids. Exogenous insulin treatment regenerates testes and restores fertility, but this plasma insulin cannot pass through the blood-testis barrier. We conclude that insulin does not rescue fertility through direct interaction with the testis; instead, it restores function of the hypothalamic-pituitary-gonadal axis and, thus, normalizes hormone levels of luteinizing hormone and testosterone. Although we show that the Sertoli cells of the testis secrete insulin protein, this insulin does not appear to be critical for fertility. PMID:22522616

  1. Normal dimensions of the posterior pituitary bright spot on magnetic resonance imaging.

    PubMed

    Côté, Martin; Salzman, Karen L; Sorour, Mohammad; Couldwell, William T

    2014-02-01

    The normal pituitary bright spot seen on unenhanced T1-weighted MRI is thought to result from the T1-shortening effect of the vasopressin stored in the posterior pituitary. Individual variations in its size may be difficult to differentiate from pathological conditions resulting in either absence of the pituitary bright spot or in T1-hyperintense lesions of the sella. The objective of this paper was to define a range of normal dimensions of the pituitary bright spot and to illustrate some of the most commonly encountered pathologies that result in absence or enlargement of the pituitary bright spot. The authors selected normal pituitary MRI studies from 106 patients with no pituitary abnormality. The size of each pituitary bright spot was measured in the longest axis and in the dimension perpendicular to this axis to describe the typical dimensions. The authors also present cases of patients with pituitary abnormalities to highlight the differences and potential overlap between normal and pathological pituitary imaging. All of the studies evaluated were found to have pituitary bright spots, and the mean dimensions were 4.8 mm in the long axis and 2.4 mm in the short axis. The dimension of the pituitary bright spot in the long axis decreased with patient age. The distribution of dimensions of the pituitary bright spot was normal, indicating that 99.7% of patients should have a pituitary bright spot measuring between 1.2 and 8.5 mm in its long axis and between 0.4 and 4.4 mm in its short axis, an interval corresponding to 3 standard deviations below and above the mean. In cases where the dimension of the pituitary bright spot is outside this range, pathological conditions should be considered. The pituitary bright spot should always be demonstrated on T1-weighted MRI, and its dimensions should be within the identified normal range in most patients. Outside of this range, pathological conditions affecting the pituitary bright spot should be considered.

  2. Lack of normal MR enhancement of the pituitary gland: findings in three siblings with combined pituitary hormone deficiency.

    PubMed

    Falcone, S; Sanchez, J; Quencer, R M

    1998-02-01

    We present the MR appearance of the sella turcica in three sibling dwarfs with combined pituitary hormone deficiency in which MR images revealed a peripheral curvilinear band of enhancement about the pituitary gland in all three patients, a normal-size pituitary gland in two siblings, a mildly enlarged pituitary gland in one sibling, and a thin infundibulum and a normal posterior pituitary bright spot in all three siblings. Possible antecedents include an abnormal vascular supply, pituitary gland replacement by a nonfunctioning adenoma, a proteinaceous cyst, or a hamartoma.

  3. A case of an infant with congenital combined pituitary hormone deficiency and normalized liver histology of infantile cholestasis after hormone replacement therapy.

    PubMed

    Wada, Keisuke; Kobayashi, Hironori; Moriyama, Aisa; Haneda, Yasuhiro; Mushimoto, Yuichi; Hasegawa, Yuki; Onigata, Kazumichi; Kumori, Koji; Ishikawa, Noriyoshi; Maruyama, Riruke; Sogo, Tsuyoshi; Murphy, Lynne; Taketani, Takeshi

    2017-01-01

    Congenital combined pituitary hormone deficiency (CPHD) may present with cholestasis in the neonate or during early infancy. However, its precise mechanism is unknown. A 3-mo-old boy presented with cryptorchidism and hypoplastic scrotum after birth. Neonatal jaundice was noted but temporarily improved with phototherapy. Jaundice recurred at 2 mo of age. Elevated direct bilirubin (D-Bil) and liver dysfunction were found but cholangiography showed no signs of biliary atresia (BA). Liver biopsy findings showed giant cell formation of hepatocytes with hypoplastic bile ducts. Subsequent magnetic resonance imaging (MRI) of the head revealed a hypoplastic pituitary gland with an ectopic posterior lobe, and the patient was diagnosed with congenital CPHD based on decreased secretion of cortisol and GH by the pituitary anterior lobe load test. D-Bil levels promptly improved after hydrocortisone (HDC) replacement. We subsequently began replacement with levothyroxine (L-T 4 ) and GH, and liver histology showed normal interlobular bile ducts at 8 mo old. This is the first case report of proven histological improvement after hormone replacement therapy. This suggested that pituitary-mediated hormones, especially cortisol, might be involved in the development of the bile ducts.

  4. A case of an infant with congenital combined pituitary hormone deficiency and normalized liver histology of infantile cholestasis after hormone replacement therapy

    PubMed Central

    Wada, Keisuke; Kobayashi, Hironori; Moriyama, Aisa; Haneda, Yasuhiro; Mushimoto, Yuichi; Hasegawa, Yuki; Onigata, Kazumichi; Kumori, Koji; Ishikawa, Noriyoshi; Maruyama, Riruke; Sogo, Tsuyoshi; Murphy, Lynne; Taketani, Takeshi

    2017-01-01

    Abstract. Congenital combined pituitary hormone deficiency (CPHD) may present with cholestasis in the neonate or during early infancy. However, its precise mechanism is unknown. A 3-mo-old boy presented with cryptorchidism and hypoplastic scrotum after birth. Neonatal jaundice was noted but temporarily improved with phototherapy. Jaundice recurred at 2 mo of age. Elevated direct bilirubin (D-Bil) and liver dysfunction were found but cholangiography showed no signs of biliary atresia (BA). Liver biopsy findings showed giant cell formation of hepatocytes with hypoplastic bile ducts. Subsequent magnetic resonance imaging (MRI) of the head revealed a hypoplastic pituitary gland with an ectopic posterior lobe, and the patient was diagnosed with congenital CPHD based on decreased secretion of cortisol and GH by the pituitary anterior lobe load test. D-Bil levels promptly improved after hydrocortisone (HDC) replacement. We subsequently began replacement with levothyroxine (L-T4) and GH, and liver histology showed normal interlobular bile ducts at 8 mo old. This is the first case report of proven histological improvement after hormone replacement therapy. This suggested that pituitary-mediated hormones, especially cortisol, might be involved in the development of the bile ducts. PMID:29026274

  5. Development of the hypothalamus and pituitary in platypus (Ornithorhynchus anatinus) and short-beaked echidna (Tachyglossus aculeatus).

    PubMed

    Ashwell, Ken W S

    2012-07-01

    The living monotremes (platypus and echidnas) are distinguished by the development of their young in a leathery-shelled egg, a low and variable body temperature and a primitive teat-less mammary gland. Their young are hatched in an immature state and must deal with the external environment, with all its challenges of hypothermia and stress, as well as sourcing nutrients from the maternal mammary gland. The Hill and Hubrecht embryological collections have been used to follow the structural development of the monotreme hypothalamus and its connections with the pituitary gland both in the period leading up to hatching and during the lactational phase of development, and to relate this structural maturation to behavioural development. In the incubation phase, development of the hypothalamus proceeds from closure of the anterior neuropore to formation of the lateral hypothalamic zone and putative medial forebrain bundle. Some medial zone hypothalamic nuclei are emerging at the time of hatching, but these are poorly differentiated and periventricular zone nuclei do not appear until the first week of post-hatching life. Differentiation of the pituitary is also incomplete at hatching, epithelial cords do not develop in the pars anterior until the first week, and the hypothalamo-neurohypophyseal tract does not appear until the second week of post-hatching life. In many respects, the structure of the hypothalamus and pituitary of the newly hatched monotreme is similar to that seen in newborn marsupials, suggesting that both groups rely solely on lateral hypothalamic zone nuclei for whatever homeostatic mechanisms they are capable of at birth/hatching. © 2012 The Author. Journal of Anatomy © 2012 Anatomical Society.

  6. Pituitary Medicine From Discovery to Patient-Focused Outcomes

    PubMed Central

    2016-01-01

    Context: This perspective traces a pipeline of discovery in pituitary medicine over the past 75 years. Objective: To place in context past advances and predict future changes in understanding pituitary pathophysiology and clinical care. Design: Author's perspective on reports of pituitary advances in the published literature. Setting: Clinical and translational Endocrinology. Outcomes: Discovery of the hypothalamic-pituitary axis and mechanisms for pituitary control, have culminated in exquisite understanding of anterior pituitary cell function and dysfunction. Challenges facing the discipline include fundamental understanding of pituitary adenoma pathogenesis leading to more effective treatments of inexorably growing and debilitating hormone secreting pituitary tumors as well as medical management of non-secreting pituitary adenomas. Newly emerging pituitary syndromes include those associated with immune-targeted cancer therapies and head trauma. Conclusions: Novel diagnostic techniques including imaging genomic, proteomic, and biochemical analyses will yield further knowledge to enable diagnosis of heretofore cryptic syndromes, as well as sub classifications of pituitary syndromes for personalized treatment approaches. Cost effective personalized approaches to precision therapy must demonstrate value, and will be empowered by multidisciplinary approaches to integrating complex subcellular information to identify therapeutic targets for enabling maximal outcomes. These goals will be challenging to attain given the rarity of pituitary disorders and the difficulty in conducting appropriately powered prospective trials. PMID:26908107

  7. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway

    PubMed Central

    Vernia, Santiago; Cavanagh-Kyros, Julie; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    The cJun N-terminal kinase (JNK) signaling pathway is a key mediator of metabolic stress responses caused by consuming a high-fat diet, including the development of obesity. To test the role of JNK, we examined diet-induced obesity in mice with targeted ablation of Jnk genes in the anterior pituitary gland. These mice exhibited an increase in the pituitary expression of thyroid-stimulating hormone (TSH), an increase in the blood concentration of thyroid hormone (T4), increased energy expenditure, and markedly reduced obesity compared with control mice. The increased amount of pituitary TSH was caused by reduced expression of type 2 iodothyronine deiodinase (Dio2), a gene that is required for T4-mediated negative feedback regulation of TSH expression. These data establish a molecular mechanism that accounts for the regulation of energy expenditure and the development of obesity by the JNK signaling pathway. PMID:24186979

  8. Genetics of Isolated Growth Hormone Deficiency

    PubMed Central

    2010-01-01

    When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin−like Growth Factor−I (IGF−I) plays a pivotal role, GHD could also be considered as a form of IGF−I deficiency (IGFD). Although IGFD can develop at any level of the GH−releasing hormone (GHRH)−GH−IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD. Conflict of interest:None declared. PMID:21274339

  9. Sellar Region Surgery in Croatia in the First Half of 20th Century

    PubMed Central

    Fatović Ferenčić, Stella; Gnjidić, Živko

    2006-01-01

    We reconstructed the historical development of surgical approaches to the pituitary gland, which were used in Croatia in the first half of the 20th century, on the basis of earliest clinical case reports and descriptions of initial surgical attempts. The first published case report on surgical treatment of acromegaly was described, as well as the review of 11 patients with pituitary disease admitted to the Ophthalmology Clinic in Zagreb in the period 1925-1927. The earliest 5 reports on pituitary surgery dating from 1925 were analyzed to reveal the circumstances that led to the development of transsphenoidal approach as a method of choice in Croatia, when this technique was becoming obsolete in other parts of the world. Frequent modifications of surgical approaches to sellar region have been shown a suitable historical-medical model for analysis of changes in surgical trends. PMID:16625698

  10. Severe peripheral neuropathy and elevated plantar pressures causing foot ulceration in pituitary gigantism.

    PubMed

    Jennings, A M; Robinson, A; Kandler, R H; Betts, R P; Ryder, R E; Cullen, D R

    1993-07-01

    We report two patients with treated pituitary gigantism and peripheral neuropathy, one of whom has chronic foot ulceration. Detailed neurophysiological assessment was performed on both patients. The patient with foot ulceration had clinical and neurophysiological evidence of severe neuropathy, whereas the patient without ulceration had only neurophysiological abnormalities. The sweating response to acetylcholine was markedly impaired in the feet of both patients, suggesting pedal autonomic denervation. Neither patient had evidence of diabetes mellitus and detailed investigation failed to reveal an alternative cause of peripheral neuropathy. Optical pedobarography revealed abnormally high pressure (> 10 kg/cm2) under the metatarsal heads of both patients, one such area coinciding with the area of ulceration. Thus in pituitary gigantism elevated plantar pressures may contribute to the development of foot ulceration when severe peripheral neuropathy is present. Furthermore, as in diabetes mellitus, impaired sweating may also increase the risk of ulceration as the resultant dry skin may develop fissures.

  11. Mechanisms for pituitary tumorigenesis: the plastic pituitary

    PubMed Central

    Melmed, Shlomo

    2003-01-01

    The anterior pituitary gland integrates the repertoire of hormonal signals controlling thyroid, adrenal, reproductive, and growth functions. The gland responds to complex central and peripheral signals by trophic hormone secretion and by undergoing reversible plastic changes in cell growth leading to hyperplasia, involution, or benign adenomas arising from functional pituitary cells. Discussed herein are the mechanisms underlying hereditary pituitary hypoplasia, reversible pituitary hyperplasia, excess hormone production, and tumor initiation and promotion associated with normal and abnormal pituitary differentiation in health and disease. PMID:14660734

  12. Genetic aspects of hypothalamic and pituitary gland development.

    PubMed

    McCabe, Mark J; Dattani, Mehul T

    2014-01-01

    Hypothalamo-pituitary development during embryogenesis is a highly complex process involving the interaction of a network of spatiotemporally regulated signaling molecules and transcription factors. Mutations in any of the genes encoding these components can lead to congenital hypopituitarism, which is often associated with a wide spectrum of defects affecting craniofacial/midline development. In turn, these defects can be incompatible with life, or lead to disorders encompassing holoprosencephaly (HPE) and cleft palate, and septo-optic dysplasia (SOD). In recent years, there has been increasing evidence of an overlapping genotype between this spectrum of disorders and Kallmann syndrome (KS), defined as the association of hypogonadotropic hypogonadism (HH) and anosmia. This is consistent with the known phenotypic overlap between these disorders and opens a new avenue of identifying novel genetic causes of the hypopituitarism spectrum. This chapter reviews the genetic and molecular events leading to the successful development of the hypothalamo-pituitary axis during embryogenesis, and focuses on genes in which variations/mutations occur, leading to congenital hypopituitarism and associated defects. © 2014 Elsevier B.V. All rights reserved.

  13. A targeted deletion/insertion in the mouse Pcsk1 locus is associated with homozygous embryo preimplantation lethality, mutant allele preferential transmission and heterozygous female susceptibility to dietary fat.

    PubMed

    Mbikay, Majambu; Croissandeau, Gilles; Sirois, Francine; Anini, Younes; Mayne, Janice; Seidah, Nabil G; Chrétien, Michel

    2007-06-15

    Proprotein convertase 1 (PC1) is a neuroendocrine proteinase involved in the proteolytic activation of precursors to hormones and neuropeptides. To determine the physiological importance of PC1, we produced a mutant mouse from embryonic stem cells in which its locus (Pcsk1) had been inactivated by homologous recombination. The inactivating mutation consisted of a 32.7-kb internal deletion and a 1.8 kb insertion of the bacterial neomycin resistance gene (neo) under the mouse phosphoglycerate kinase 1 protein (PGKneo). Intercross of Pcsk1(+/-) mice produced no Pcsk1(-/-) offspring or blastocysts; in addition, more than 80% of the offspring were Pcsk1(+/-). These observations suggested that the mutation caused preimplantation lethality of homozygous embryos and preferential transmission of the mutant allele. Interestingly, RT-PCR analysis on RNA from endocrine tissues from Pcsk1(+/-) mice revealed the presence of aberrant transcripts specifying the N-terminal half of the PC1 propeptide fused to neo gene product. Mass spectrometric profiles of proopiomelanocortin-derived peptides in the anterior pituitary were similar between Pcsk1(+/-) and Pcsk1(+/+) mice, but significantly different between male and female mice of the same genotype. Relative to their wild-type counterparts, female mutant mice exhibited stunted growth under a low fat diet, and catch-up growth under a high-fat diet. The complex phenotype exhibited by this Pcsk1 mutant mouse model may be due to PC1 deficiency aggravated by expression of aberrant gene products from the mutant allele.

  14. Thyroid-stimulating hormone pituitary adenomas.

    PubMed

    Clarke, Michelle J; Erickson, Dana; Castro, M Regina; Atkinson, John L D

    2008-07-01

    Thyroid-stimulating hormone (TSH)-secreting pituitary adenomas are rare, representing < 2% of all pituitary adenomas. The authors conducted a retrospective analysis of patients with TSH-secreting or clinically silent TSH-immunostaining pituitary tumors among all pituitary adenomas followed at their institution between 1987 and 2003. Patient records, including clinical, imaging, and pathological and surgical characteristics were reviewed. Twenty-one patients (6 women and 15 men; mean age 46 years, range 26-73 years) were identified. Of these, 10 patients had a history of clinical hyperthyroidism, of whom 7 had undergone ablative thyroid procedures (thyroid surgery/(131)I ablation) prior to the diagnosis of pituitary adenoma. Ten patients had elevated TSH preoperatively. Seven patients presented with headache, and 8 presented with visual field defects. All patients underwent imaging, of which 19 were available for imaging review. Sixteen patients had macroadenomas. Of the 21 patients, 18 underwent transsphenoidal surgery at the authors' institution, 2 patients underwent transsphenoidal surgery at another facility, and 1 was treated medically. Patients with TSH-secreting tumors were defined as in remission after surgery if they had no residual adenoma on imaging and had biochemical evidence of hypo-or euthyroidism. Patients with TSH-immunostaining tumors were considered in remission if they had no residual tumor. Of these 18 patients, 9 (50%) were in remission following surgery. Seven patients had residual tumor; 2 of these patients underwent further transsphenoidal resection, 1 underwent a craniotomy, and 4 underwent postoperative radiation therapy (2 conventional radiation therapy, 1 Gamma Knife surgery, and 1 had both types of radiation treatment). Two patients had persistently elevated TSH levels despite the lack of evidence of residual tumor. On pathological analysis and immunostaining of the surgical specimen, 17 patients had samples that stained positively for TSH, 8 for alpha-subunit, 10 for growth hormone, 7 for prolactin, 2 for adrenocorticotrophic hormone, and 1 for follicle-stimulating hormone/luteinizing hormone. Eleven patients (61%) ultimately required thyroid hormone replacement therapy, and 5 (24%) required additional pituitary hormone replacement. Of these, 2 patients required treatment for new anterior pituitary dysfunction as a complication of surgery, and 2 patients with preoperative partial anterior pituitary dysfunction developed complete panhypopituitarism. One patient had transient diabetes insipidus. The remainder had no change in pituitary function from their preoperative state. Thyroid-stimulating hormone-secreting pituitary lesions are often delayed in diagnosis, are frequently macroadenomas and plurihormonal in terms of their pathological characteristics, have a heterogeneous clinical picture, and are difficult to treat. An experienced team approach will optimize results in the management of these uncommon lesions.

  15. Prevalence of hypopituitarism after intracranial operations not directly associated with the pituitary gland.

    PubMed

    Fleck, Steffen Kristian; Wallaschofski, Henri; Rosenstengel, Christian; Matthes, Marc; Kohlmann, Thomas; Nauck, Matthias; Schroeder, Henry Werner Siegfried; Spielhagen, Christin

    2013-11-04

    Over the last few years, awareness and detection rates of hypopituitarism following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) has steadily increased. Moreover, recent studies have found that a clinically relevant number of patients develop pituitary insufficiency after intracranial operations and radiation treatment for non-pituitary tumors. But, in a substantial portion of more than 40%, the hypopituitarism already exists before surgery. We sought to determine the frequency, pattern, and severity of endocrine disturbances using basal and advanced dynamic pituitary testing following non-pituitary intracranial procedures. 51 patients (29 women, 22 men) with a mean age of 55 years (range of 20 to 75 years) underwent prospective evaluation of basal parameters and pituitary function testing (combined growth hormone releasing hormone (GHRH)/arginine test, insulin tolerance test (ITT), low dose adrenocorticotropic hormone (ACTH) test), performed 5 to 168 months (median 47.2 months) after intracranial operation (4 patients had additional radiation and 2 patients received additional radiation combined with chemotherapy). We discovered an overall rate of hypopituitarism with distinct magnitude in 64.7% (solitary in 45.1%, multiple in 19.6%, complete in 0%). Adrenocorticotropic hormone insufficiency was found in 51.0% (partial in 41.2%, complete in 9.8%) and growth hormone deficiency (GHD) occurred in 31.4% (partial in 25.5%, severe in 5.9%). Thyrotropic hormone deficiency was not identified. The frequency of hypogonadism was 9.1% in men. Pituitary deficits were associated with operations both in close proximity to the sella turcica and more distant regions (p = 0.91). Age (p = 0.76) and gender (p = 0.24) did not significantly differ across patients with versus those without hormonal deficiencies. Groups did not significantly differ across pathology and operation type (p = 0.07). Hypopituitarism occurs more frequently than expected in patients who have undergone neurosurgical intracranial procedures for conditions other then pituitary tumors or may already exists in a neurosurgical population before surgery. Pituitary function testing and adequate substitution may be warranted for neurosurgical patients with intracranial pathologies at least if unexplained symptoms like fatigue, weakness, altered mental activity, and decreased exercise tolerance are present.

  16. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish.

    PubMed

    Fontaine, Romain; Affaticati, Pierre; Bureau, Charlotte; Colin, Ingrid; Demarque, Michaël; Dufour, Sylvie; Vernier, Philippe; Yamamoto, Kei; Pasqualini, Catherine

    2015-08-01

    Dopaminergic (DA) neurons located in the preoptico-hypothalamic region of the brain exert a major neuroendocrine control on reproduction, growth, and homeostasis by regulating the secretion of anterior pituitary (or adenohypophysis) hormones. Here, using a retrograde tract tracing experiment, we identified the neurons playing this role in the zebrafish. The DA cells projecting directly to the anterior pituitary are localized in the most anteroventral part of the preoptic area, and we named them preoptico-hypophyseal DA (POHDA) neurons. During development, these neurons do not appear before 72 hours postfertilization (hpf) and are the last dopaminergic cell group to differentiate. We found that the number of neurons in this cell population continues to increase throughout life proportionally to the growth of the fish. 5-Bromo-2'-deoxyuridine incorporation analysis suggested that this increase is due to continuous neurogenesis and not due to a phenotypic change in already-existing neurons. Finally, expression profiles of several genes (foxg1a, dlx2a, and nr4a2a/b) were different in the POHDA compared with the adjacent suprachiasmatic DA neurons, suggesting that POHDA neurons develop as a distinct DA cell population in the preoptic area. This study offers some insights into the regional identity of the preoptic area and provides the first bases for future functional genetic studies on the development of DA neurons controlling anterior pituitary functions.

  17. Transsphenoidal surgery for pituitary tumours

    PubMed Central

    Massoud, A; Powell, M; Williams, R; Hindmarsh, P; Brook, C

    1997-01-01

    Accepted 29 January 1997
 OBJECTIVES—Transsphenoidal surgery (TSS) is the preferred method for the excision of pituitary microadenomas in adults. This study was carried out to establish the long term efficacy and safety of TSS in children.
STUDY DESIGN—A 14 year retrospective analysis was carried out on 23 children (16 boys and seven girls), all less than 18 years of age, who had undergone TSS at our centre.
RESULTS—Twenty nine transsphenoidal surgical procedures were carried out. The most common diagnosis was an adrenocorticotrophic hormone (ACTH) secreting adenoma (14 (61%) patients). The median length of follow up was 8.0 years (range 0.3-14.0 years). Eighteen (78%) patients were cured after the first procedure. No death was related to the operation. The most common postoperative complication was diabetes insipidus, which was transient in most patients. Other complications were headaches in two patients and cerebrospinal fluid leaks in two patients. De novo endocrine deficiencies after TSS in children were as follows: three (14%) patients developed panhypopituitarism, eight (73%) developed growth hormone insufficiency, three (14%) developed secondary hypothyroidism, and four (21%) developed gonadotrophin deficiency. Permanent ACTH deficiency occurred in five (24%) patients, though all patients received postoperative glucocorticoid treatment until dynamic pituitary tests were performed three months after TSS.
CONCLUSIONS—TSS in children is a safe and effective treatment for pituitary tumours, provided it is performed by surgeons with considerable experience and expertise. Surgical complications are minimal. Postoperative endocrine deficit is considerable, but is only permanent in a small proportion of patients.

 • Transsphenoidal surgery is a safe and effective treatment for pituitary tumours in children • Transsphenoidal surgery should be performed by surgeons with considerable experience and expertise • Surgical complications of transsphenoidal surgery are minimal and endocrine deficit is permanent in only a small proportion of patients PMID:9196353

  18. Pituitary Tumors—Patient Version

    Cancer.gov

    Pituitary tumors are usually not cancer and are called pituitary adenomas. They grow slowly and do not spread. Rarely, pituitary tumors are cancer and they can spread to distant parts of the body. Start here to find information on pituitary tumors treatment.

  19. MEN1 and pituitary adenomas.

    PubMed

    Delemer, Brigitte

    2012-04-01

    MEN1 gene mutations predispose carriers to pituitary tumors. Molecular pathways involved in the development of these tumors seem different to what is known in sporadic tumors. Clinical studies showed that all types of adenomas can be found with a predominance of prolactinoma and macroadenoma compared to a control population. These MEN1 tumors seem more aggressive, invasive and resistant to treatment requiring a very careful long-life follow-up. Occurrence of these tumors can be described in the pediatric population and it can be the first and only manifestation of MEN1 for some years asking the question of the systematic screening for MEN1 gene mutation in pediatric population with pituitary adenoma. Copyright © 2012. Published by Elsevier Masson SAS.

  20. Prenatal Maternal Stress Predicts Methylation of Genes Regulating the Hypothalamic-Pituitary-Adrenocortical System in Mothers and Newborns in the Democratic Republic of Congo

    ERIC Educational Resources Information Center

    Kertes, Darlene A.; Kamin, Hayley S.; Hughes, David A.; Rodney, Nicole C.; Bhatt, Samarth; Mulligan, Connie J.

    2016-01-01

    Exposure to stress early in life permanently shapes activity of the hypothalamic-pituitary-adrenocortical (HPA) axis and the brain. Prenatally, glucocorticoids pass through the placenta to the fetus with postnatal impacts on brain development, birth weight (BW), and HPA axis functioning. Little is known about the biological mechanisms by which…

  1. Flow cytometric immunofluorescence of rat anterior pituitary cells

    NASA Technical Reports Server (NTRS)

    Hatfield, J. Michael; Hymer, W. C.

    1985-01-01

    A flow cytometric immunofluorescence technique was developed for the quantification of growth hormone, prolactin, and luteinizing hormone producing cells. The procedure is based on indirect-immunofluorescence of intracellular hormone using an EPICS V cell sorter and can objectively count 50,000 cells in about 3 minutes. It can be used to study the dynamics of pituitary cell populations under various physiological and pharmacological conditions.

  2. Is IGSF1 involved in human pituitary tumor formation?

    PubMed

    Faucz, Fabio R; Horvath, Anelia D; Azevedo, Monalisa F; Levy, Isaac; Bak, Beata; Wang, Ying; Xekouki, Paraskevi; Szarek, Eva; Gourgari, Evgenia; Manning, Allison D; de Alexandre, Rodrigo Bertollo; Saloustros, Emmanouil; Trivellin, Giampaolo; Lodish, Maya; Hofman, Paul; Anderson, Yvonne C; Holdaway, Ian; Oldfield, Edward; Chittiboina, Prashant; Nesterova, Maria; Biermasz, Nienke R; Wit, Jan M; Bernard, Daniel J; Stratakis, Constantine A

    2015-02-01

    IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study, we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in the sections of GH-producing adenomas, familial somatomammotroph hyperplasia, and in normal pituitary. We identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function, in two male patients and one female with somatomammotroph hyperplasia from the same family. Of 60 female controls, two carried the same variant and seven were heterozygous for other variants. Immunohistochemistry showed increased IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared with a GH-producing adenoma from a patient negative for any IGSF1 variants and with normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation. © 2015 Society for Endocrinology.

  3. Curcumin (Diferuloylmethane) Inhibits Cell Proliferation, Induces Apoptosis, and Decreases Hormone Levels and Secretion in Pituitary Tumor Cells

    PubMed Central

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-01-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas. PMID:18450960

  4. Is IGSF1 involved in human pituitary tumor formation?

    PubMed Central

    Faucz, Fabio R.; Horvath, Anelia D.; Azevedo, Monalisa F.; Levy, Isaac; Bak, Beata; Wang, Ying; Xekouki, Paraskevi; Szarek, Eva; Gourgari, Evgenia; Manning, Allison D.; de Alexandre, Rodrigo Bertollo; Saloustros, Emmanouil; Trivellin, Giampaolo; Lodish, Maya; Hofman, Paul; Anderson, Yvonne C; Holdaway, Ian; Oldfield, Edward; Chittiboina, Prashant; Nesterova, Maria; Biermasz, Nienke R.; Wit, Jan M.; Bernard, Daniel J.; Stratakis, Constantine A.

    2014-01-01

    IGSF1 is a membrane glycoprotein highly expressed in the anterior pituitary. Pathogenic mutations in the IGSF1 gene (on Xq26.2) are associated with X-linked central hypothyroidism and testicular enlargement in males. In this study we tested the hypothesis that IGSF1 is involved in the development of pituitary tumors, especially those that produce growth hormone (GH). IGSF1 was sequenced in 21 patients with gigantism or acromegaly and 92 healthy individuals. Expression studies with a candidate pathogenic IGSF1 variant were carried out in transfected cells and immunohistochemistry for IGSF1 was performed in sections from GH-producing adenomas, familial somatomammotroph hyperplasia and in normal pituitary. In two male patients, and in one female, with somatomammotroph hyperplasia from the same family, we identified the sequence variant p.N604T, which in silico analysis suggested could affect IGSF1 function. Of 60 female controls, two carried the same variant, and seven were heterozygous for other variants. Immunohistochemistry showed increase IGSF1 staining in the GH-producing tumor from the patient with the IGSF1 p.N604T variant compared to a GH-producing adenoma from a patient negative for any IGSF1 variants and to normal control pituitary tissue. The IGSF1 gene appears polymorphic in the general population. A potentially pathogenic variant identified in the germline of three patients with gigantism from the same family (segregating with the disease) was also detected in two healthy female controls. Variations in IGSF1 expression in pituitary tissue in patients with or without IGSF1 germline mutations point to the need for further studies of IGSF1 action in pituitary adenoma formation. PMID:25527509

  5. Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells.

    PubMed

    Miller, Matthew; Chen, Shenglin; Woodliff, Jeffrey; Kansra, Sanjay

    2008-08-01

    Prolactinomas are the most prevalent functional pituitary adenomas. Dopamine D2 receptor (D2R) agonists, such as bromocriptine are the first line of therapy; however, drug intolerance/resistance to D2R agonists exists. Apart from D2R agonists, there is no established medical therapy for prolactinomas; therefore, identifying novel therapeutics is warranted. Curcumin, a commonly used food additive in South Asian cooking, inhibits proliferation of several tumor cell lines; however, its effect on pituitary tumor cell proliferation has not been determined. Our objectives were to: 1) determine whether curcumin inhibits proliferation of pituitary tumor cell lines; 2) identify the signaling intermediaries that mediate the effect of curcumin; 3) examine whether curcumin inhibited pituitary hormone production and release; and 4) examine whether curcumin could enhance the growth-inhibitory effect of bromocriptine. Using rat lactotroph cell lines, GH3 and MMQ cells, we report that curcumin had a robust dose and time-dependent inhibitory effect on GH3 and MMQ cell proliferation. Inhibitory effects of curcumin persisted, even on removal of curcumin, and curcumin also blocked colony formation ability of pituitary tumor cells. The growth-inhibitory effect of curcumin was accompanied by decreased expression of cyclin D3 and ser 780 phosphorylation of retinoblastoma protein. In addition, curcumin also induced apoptosis in both GH3 and MMQ cells. Furthermore, curcumin suppresses intracellular levels and release of both prolactin and GH. Finally, we show that low concentrations of curcumin enhanced the growth-inhibitory effect of bromocriptine on MMQ cell proliferation. Taken together we demonstrate that curcumin inhibits pituitary tumor cell proliferation, induces apoptosis, and decreases hormone production and release, and thus, we propose developing curcumin as a novel therapeutic tool in the management of prolactinomas.

  6. Altered pupillary light reflex in PACAP receptor 1-deficient mice.

    PubMed

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Luuk, Hendrik; Hannibal, Jens

    2012-05-09

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A primer on pituitary injury for the obstetrician gynecologist: Simmond's disease, Sheehan's Syndrome, traumatic injury, Dahan's Syndrome, pituitary apoplexy and lymphocytic hypophysitis.

    PubMed

    Dahan, Michael H; Tan, Seang L

    2017-04-01

    The pituitary gland plays a critical role in reproduction. In response to the hypothalamus the anterior pituitary secretes prolactin, thyroid-stimulating hormone, adreno-corticotropic hormone, follicle-stimulating hormone, luteinizing hormone and growth hormone. Dysregulation in these hormones often lead to reproductive failure. Multiple mechanisms of pituitary injury exist. Simmond's disease is atrophy or destruction of the anterior lobe of the pituitary gland resulting in hypopituitarism. Sheehan's syndrome is post-partum pituitary injury due to massive hemorrhage. Traumatic injury resulting in hemorrhage in a non-pregnancy state can also cause partial or complete pituitary failure. Dahan's syndrome is pituitary injury due to severe vasospasm, without significant hemorrhage. Pituitary apoplexy is infarction of a pituitary adenoma and intra-mass hemorrhage with result injury to hormone production by the gland. Lymphocytic infiltration is the most common cause of hypophysitis and the mechanism is often unknown, although it may be autoimmune-related. The mechanism and treatments of each of these pathologies will be discussed in a context of reproduction.

  8. Nuclear receptor CAR specifically activates the two-pore K+ channel Kcnk1 gene in male mouse livers, which attenuates phenobarbital-induced hepatic hyperplasia.

    PubMed

    Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2013-03-01

    KCNK1, a member of the family of two-pore K(+) ion channels, is specifically induced in the livers of male mice after phenobarbital treatment. Here, we have determined the molecular mechanism of this male-specific activation of the Kcnk1 gene and characterized KCNK1 as a phenobarbital-inducible antihyperplasia factor. Upon activation by phenobarbital, nuclear receptor CAR binds the 97-bp response element (-2441/-2345) within the Kcnk1 promoter. This binding is observed in the livers of male mice, but not in the livers of female mice and requires the pituitary gland, because hypophysectomy abrogates it. Hyperplasia further progressed in the livers of Kcnk1 ( -/- ) male mice compared with those of Kcnk1 ( +/+ ) males after phenobarbital treatment. Thus, KCNK1 suppresses phenobarbital-induced hyperplasia. These results indicate that phenobarbital treatment induces KCNK1 to elicit a male-specific and growth-suppressing signal. Thus, KCNK1 and Kcnk1 ( -/- ) mice provide an experimental tool for further investigation into the molecular mechanism of CAR-mediated promotion of the development of hepatocellular carcinoma in mice.

  9. Hypopituitarism after traumatic brain injury.

    PubMed

    Bondanelli, Marta; Ambrosio, Maria Rosaria; Zatelli, Maria Chiara; De Marinis, Laura; degli Uberti, Ettore C

    2005-05-01

    Traumatic brain injury (TBI) is one of the main causes of death and disability in young adults, with consequences ranging from physical disabilities to long-term cognitive, behavioural, psychological and social defects. Post-traumatic hypopituitarism (PTHP) was recognized more than 80 years ago, but it was thought to be a rare occurrence. Recently, clinical evidence has demonstrated that TBI may frequently cause hypothalamic-pituitary dysfunction, probably contributing to a delayed or hampered recovery from TBI. Changes in pituitary hormone secretion may be observed during the acute phase post-TBI, representing part of the acute adaptive response to the injury. Moreover, diminished pituitary hormone secretion, caused by damage to the pituitary and/or hypothalamus, may occur at any time after TBI. PTHP is observed in about 40% of patients with a history of TBI, presenting as an isolated deficiency in most cases, and more rarely as complete pituitary failure. The most common alterations appear to be gonadotropin and somatotropin deficiency, followed by corticotropin and thyrotropin deficiency. Hyper- or hypoprolactinemia may also be present. Diabetes insipidus may be frequent in the early, acute phase post-TBI, but it is rarely permanent. Severity of TBI seems to be an important risk factor for developing PTHP; however, PTHP can also manifest after mild TBI. Accurate evaluation and long-term follow-up of all TBI patients are necessary in order to detect the occurrence of PTHP, regardless of clinical evidence for pituitary dysfunction. In order to improve outcome and quality of life of TBI patients, an adequate replacement therapy is of paramount importance.

  10. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth.

    PubMed

    Gautam, Dinesh; Jeon, Jongrye; Starost, Matthew F; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Parlow, Albert F; Gavrilova, Oksana; Szalayova, Ildiko; Mezey, Eva; Wess, Jürgen

    2009-04-14

    The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.

  11. Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery.

    PubMed

    Wolfsberger, Stefan; Neubauer, André; Bühler, Katja; Wegenkittl, Rainer; Czech, Thomas; Gentzsch, Stephan; Böcher-Schwarz, Hans-Gerd; Knosp, Engelbert

    2006-11-01

    Virtual endoscopy (vE) is the navigation of a camera through a virtual anatomical space that is computationally reconstructed from radiological image data. Inside this three-dimensional space, arbitrary movements and adaptations of viewing parameters are possible. Thereby, vE can be used for noninvasive diagnostic purposes and for simulation of surgical tasks. This article describes the development of an advanced system of vE for endoscopic transsphenoidal pituitary surgery and its application to teaching, training, and in the routine clinical setting. The vE system was applied to a series of 35 patients with pituitary pathology (32 adenomas, three Rathke's cleft cysts) operated endoscopically via the transsphenoidal route at the Department of Neurosurgery of the Medical University Vienna between 2004 and 2006. The virtual endoscopic images correlated well with the intraoperative view. For the transsphenoidal approach, vE improved intraoperative orientation by depicting anatomical landmarks and variations. For planning a safe and tailored opening of the sellar floor, transparent visualization of the pituitary adenoma and the normal gland in relation to the internal carotid arteries was useful. According to our experience, vE can be a valuable tool for endoscopic transsphenoidal pituitary surgery for training purposes and preoperative planning. For the novice, it can act as a simulator for endoscopic anatomy and for training surgical tasks. For the experienced pituitary surgeon, vE can depict the individual patient's anatomy, and may, therefore, improve intraoperative orientation. By prospectively visualizing unpredictable anatomical variations, vE may increase the safety of this surgical procedure.

  12. Metastatic melanoma to the pituitary gland.

    PubMed

    McCutcheon, Ian E; Waguespack, Steven G; Fuller, Gregory N; Couldwell, William T

    2007-08-01

    Metastasis to the pituitary gland is unusual, and occurs most often in patients with carcinomas of the breast or lung. Despite its propensity for spread to the brain, metastatic melanoma has rarely been described within the sella. We report two cases of malignant melanoma pathologically confirmed within the pituitary, both metastatic from a primary site on the chest wall. In each patient, transsphenoidal resection of the tumor was incomplete and each received local radiotherapy after surgery. One patient recurred quickly and developed brain metastasis as well. He died four months after resection of the pituitary metastasis, but the second patient survived six months without recurrence. As intrasellar metastasis portends widespread systemic disease and may be synchronous with parenchymal brain metastasis, survival in such patients is limited regardless of adjunctive therapy. Such cases are likely to arise more commonly in future due to the increasing incidence of melanoma. Identifying them by imaging alone is difficult due to inconsistent signal characteristics on MRI (as shown by these cases) and the confusion introduced by any associated intratumoral hemorrhage.

  13. Isolated double adrenocorticotropic hormone-secreting pituitary adenomas: A case report and review of the literature

    PubMed Central

    PU, JIUJUN; WANG, ZHIMING; ZHOU, HUI; ZHONG, AILING; JIN, KAI; RUAN, LUNLIANG; YANG, GANG

    2016-01-01

    Only a few cases of double or multiple pituitary adenomas have previously been reported in the literature; however, isolated double adrenocorticotropic hormone (ACTH)-secreting pituitary adenomas are even more rare. The present study reports a rare case of a 50-year-old female patient who presented with typical clinical features of Cushing's disease and was diagnosed with isolated double ACTH-secreting pituitary adenomas. Endocrinological examination revealed an ACTH-producing pituitary adenoma, and preoperative magnetic resonance imaging (MRI) demonstrated a microadenoma with a lower intensity on the right side of the pituitary gland. The patient underwent endoscopic endonasal transsphenoidal surgery, which revealed another pituitary tumor in the left side of the pituitary gland. The two, clearly separated, pituitary adenomas identified in the same gland were completely resected. Immunohistochemistry and pathology revealed that the clearly separated double pituitary adenomas were positive for ACTH, thyroid-stimulating, growth and prolactin hormones. Postoperatively, the levels of ACTH and cortisol hormone decreased rapidly. The case reported in the present study is considerably rare, due to the presence of a second pituitary adenoma in the same gland, which was not detected by preoperative MRI scan, but was noticed during surgery. Intraoperative evaluation may be important in the identification of double or multiple pituitary adenomas. PMID:27347184

  14. Development of Prostaglandin Endoperoxide Synthase Expression in the Ovine Fetal Central Nervous System and Pituitary

    PubMed Central

    Gersting, Jason A.; Schaub, Christine E.; Wood, Charles E.

    2009-01-01

    In this study, we tested the hypothesis that prostaglandin endoperoxide synthase -1 and -2 (PGHS-1 and PGHS-2) are expressed throughout the latter half of gestation in ovine fetal brain and pituitary. Hypothalamus, pituitary, hippocampus, brainstem, cortex and cerebellum were collected from fetal sheep at 80, 100, 120, 130, 145 days of gestational age (DGA), 1 and 7 days postpartum lambs, and from adult ewes (n=4–5 per group). mRNA and protein were isolated from each region, and expression of Prostaglandin Synthase -1 (PGHS-1) and -2 (PGHS-2) were evaluated using real-time RT-PCR and western blot. PGHS-1 and -2 were detected in every brain region at every age tested. Both enzymes were measured in highest abundance in hippocampus and cerebral cortex, and lowest in brainstem and pituitary. PGHS-1 and -2 mRNA’s were upregulated in hypothalamus and pituitary after 100 DGA. The hippocampus exhibited decreases in PGHS-1 and increases in PGHS-2 mRNA after 80 DGA. Brainstem PGHS-1 and -2 and cortex PGHS-2 exhibited robust increases in mRNA postpartum, while cerebellar PGHS-1 and -2 mRNA’s were upregulated at 120 DGA. Tissue concentrations of PGE2 correlated with PGHS-2 mRNA, but not to other variables. We conclude that the regulation of expression of these enzymes is region-specific, suggesting that the activity of these enzymes is likely to be critical for brain development in the late-gestation ovine fetus. PMID:19706338

  15. Comparative inhibition of the GH/IGF-I axis obtained with either the targeted secretion inhibitor SXN101959 or the somatostatin analog octreotide in growing male rats.

    PubMed

    Somm, Emmanuel; Bonnet, Nicolas; Zizzari, Philippe; Tolle, Virginie; Toulotte, Audrey; Jones, Richard; Epelbaum, Jacques; Martinez, Alberto; Hüppi, Petra S; Aubert, Michel L

    2013-11-01

    Abnormally high GH/IGF-I levels, most often caused by adenomas arising from pituitary somatotrophs, generate deleterious effects. We recently described a targeted secretion inhibitor (SXN101742) comprising a GHRH domain and the endopeptidase domain of botulinum toxin serotype D (GHRH-light chain endopeptidase type D domain [LC/D] associated to a heavy chain translocation domain [HN]) able to down-regulate the GH/IGF-I axis. In the present study, we compared the effect of a single iv bolus of a related molecule developed for clinical studies (SXN101959, 1 mg/kg) with a sc infusion of the somatostatin analog octreotide (SMS201-995, 10 μg/kg · h) to lower GH/IGF-I activity in growing male rats. Ten days after administration of SXN101959 or initiation of the octreotide infusion, body and pituitary weights, body length, GH peaks, and IGF-I production were reduced by both treatments but to a greater extent with SXN101959. In contrast to unaltered GH gene expression and increased GH storage in pituitaries from octreotide-treated rats, the inhibition of GH secretion was associated with a collapse of both GH mRNA and protein level in pituitaries from SXN101959-treated rats, in line with a specific decrease in hypothalamic GHRH production, not observed with octreotide. SXN101959 did not induce major apoptotic events in anterior pituitary and exhibited a reversible mode of action with full recovery of somatotroph cell functionality 30 days after treatment. Octreotide infusion permanently decreased ghrelin levels, whereas SXN101959 only transiently attenuated ghrelinemia. Both treatments limited bone mass acquisition and altered specifically tissues development. In conclusion, SXN101959 exerts a powerful and reversible inhibitory action on the somatotropic axis. Specific features of SXN101959, including long duration of action coupled to a strong inhibition of pituitary GH synthesis, represent advantages when treating overproduction of GH.

  16. Pituitary stalk compression by the dorsum sellae: possible cause for late childhood onset growth disorders.

    PubMed

    Taoka, Toshiaki; Iwasaki, Satoru; Okamoto, Shingo; Sakamoto, Masahiko; Nakagawa, Hiroyuki; Otake, Shoichiro; Fujioka, Masayuki; Hirohashi, Shinji; Kichikawa, Kimihiko

    2006-06-01

    The purpose of this study was to evaluate the relationship between pituitary stalk compression by the dorsum sellae and clinical or laboratory findings in short stature children. We retrospectively reviewed magnetic resonance images of the pituitary gland and pituitary stalk for 34 short stature children with growth hormone (GH) deficiency and 24 age-matched control cases. We evaluated the degree of pituitary stalk compression caused by the dorsum sellae. Body height, GH level, pituitary height and onset age of the short stature were statistically compared between cases of pituitary stalk compression with associated stalk deformity and cases without compression. Compression of the pituitary stalk with associated stalk deformity was seen in nine cases within the short stature group. There were no cases observed in the control group. There were no significant differences found for body height, GH level and pituitary height between the cases of pituitary stalk compression with associated stalk deformity and cases without compression. However, a significant difference was seen in the onset age between cases with and without stalk compression. Pituitary stalk compression with stalk deformity caused by the dorsum sellae was significantly correlated with late childhood onset of short stature.

  17. High-resolution heavily T2-weighted magnetic resonance imaging for evaluation of the pituitary stalk in children with ectopic neurohypophysis.

    PubMed

    El Sanharawi, Imane; Tzarouchi, Loukia; Cardoen, Liesbeth; Martinerie, Laetitia; Leger, Juliane; Carel, Jean-Claude; Elmaleh-Berges, Monique; Alison, Marianne

    2017-05-01

    In anterior pituitary deficiency, patients with non visible pituitary stalk have more often multiple deficiencies and persistent deficiency than patients with visible pituitary stalk. To compare the diagnostic value of a high-resolution heavily T2-weighted sequence to 1.5-mm-thick unenhanced and contrast-enhanced sagittal T1-weighted sequences to assess the presence of the pituitary stalk in children with ectopic posterior pituitary gland. We retrospectively evaluated the MRI data of 14 children diagnosed with ectopic posterior pituitary gland between 2010 and 2014. We evaluated the presence of a pituitary stalk using a sagittal high-resolution heavily T2-weighted sequence and a 1.5-mm sagittal T1-weighted turbo spin-echo sequence before and after contrast medium administration. A pituitary stalk was present on at least one of the sequences in 10 of the 14 children (71%). T2-weighted sequence depicted the pituitary stalk in all 10 children, whereas the 1.5-mm-thick T1-weighted sequence depicted 2/10 (20%) before contrast injection and 8/10 (80%) after contrast injection (P=0.007). Compared with 1.5-mm-thick contrast-enhanced T1-weighted sequences, high-resolution heavily T2-weighted sequence demonstrates better sensitivity in detecting the pituitary stalk in children with ectopic posterior pituitary gland, suggesting that contrast injection is unnecessary to assess the presence of a pituitary stalk in this setting.

  18. The Infundibular Recess Passes through the Entire Pituitary Stalk.

    PubMed

    Tsutsumi, S; Hori, M; Ono, H; Tabuchi, T; Aoki, S; Yasumoto, Y

    2016-12-01

    The infundibular recess (IR), commonly illustrated as a V-shaped hollow in the sagittal view, is recognized as a small extension of the third ventricle into the pituitary stalk. The precise morphology of the human IR is unknown. The present study sought to delineate the morphology of the IR using magnetic resonance imaging. Subjects included 100 patients without acute cerebral infarcts, intracranial hemorrhage, intrasellar or suprasellar cysts, hydrocephalus, inflammatory disease, or brain tumors. Patients with symptoms of increased intracranial pressure, intracranial hypotension, or pituitary dysfunction were excluded. Thin-sliced, seamless T2-weighted sequences involving the optic chiasm, entire pituitary stalk, and pituitary gland were performed in axial and sagittal planes for each patient. The numbers of slices delineating the pituitary stalk and IR were recorded from the axial images and quantified as ratios. The pituitary stalk consistently appeared as a styloid- or cone-shaped structure with variable inclinations toward the third ventricle floor. The IR was delineated as a smoothly tapering, tubular extension of the third ventricle located in the central portion of the pituitary stalk. In 81 % of patients, the IR passed through the entire length of the pituitary stalk and reached the upper surface of the pituitary gland, which was identified in 40 % of the midsagittal images. The IR is a cerebrospinal fluid-filled canal passing through the center of the pituitary stalk and connects the third ventricle to the pituitary gland. It may function in conjunction with the pituitary gland.

  19. Acute Onset Polymyositis after Prolactinoma Extirpation

    PubMed Central

    Jakez-Ocampo, Juan; Atisha-Fregoso, Yemil; Llorente, Luis

    2014-01-01

    Hyperprolactinemia has been related to autoimmune diseases. Herein, we describe a case of a female with a prolactin producer pituitary macroadenoma who developed severe polymyositis one month after its removal. The patient had very high levels of CPK and muscle biopsy showed remarkable inflammatory infiltration. Steroid therapy was followed with total recovery. To the best of our knowledge, this is the first case reported of acute polymyositis after pituitary macroadenoma exeresis. PMID:25431724

  20. Reconstructed bone chip detachment is a risk factor for sinusitis after transsphenoidal surgery.

    PubMed

    Hsu, Yao-Wen; Ho, Ching-Yin; Yen, Yu-Shu

    2014-01-01

    Sphenoid sinusitis is a complication associated with endoscopic transsphenoidal pituitary surgery. Studies that address the relationship between methods of sellar defect reconstruction and postoperative sinusitis are rare. The purpose of this study was to investigate the incidence, the possible risk factors, and the causative pathogens of sphenoid sinusitis after endoscopic transsphenoidal pituitary surgery. Prospective cohort study. We performed a prospective analysis of 182 patients with benign pituitary tumor who underwent endoscopic transsphenoidal pituitary surgery and sellar defect reconstruction with bone chip, from July 2008 through July 2011. All patients were followed up with nasal endoscopy for at least 6 weeks. Fifty-seven (31.3%) patients developed postoperative sphenoid sinusitis. Comparing the sinusitis and nonsinusitis groups, we found that bone chip detachment was a significant risk factor for postoperative sinusitis, with a relative risk of 2.86 (64.1% vs. 22.4%). The most common pathogens present in cases of postoperative sinusitis were methicillin-sensitive Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. Regular follow-up with nasal endoscopy can prevent delayed diagnosis of postoperative sphenoid sinusitis. Culture-directed antibiotics with aggressive endoscopic debridement are an effective treatment for these patients. An optimal reconstruction strategy should be further developed to reduce bone chip detachment and secondary sinusitis. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Dynamic interactions between Pit-1 and C/EBPalpha in the pituitary cell nucleus.

    PubMed

    Demarco, Ignacio A; Voss, Ty C; Booker, Cynthia F; Day, Richard N

    2006-11-01

    The homeodomain (HD) transcription factors are a structurally conserved family of proteins that, through networks of interactions with other nuclear proteins, control patterns of gene expression during development. For example, the network interactions of the pituitary-specific HD protein Pit-1 control the development of anterior pituitary cells and regulate the expression of the hormone products in the adult cells. Inactivating mutations in Pit-1 disrupt these processes, giving rise to the syndrome of combined pituitary hormone deficiency. Pit-1 interacts with CCAAT/enhancer-binding protein alpha (C/EBPalpha) to regulate prolactin transcription. Here, we used the combination of biochemical analysis and live-cell microscopy to show that two different point mutations in Pit-1, which disrupted distinct activities, affected the dynamic interactions between Pit-1 and C/EBPalpha in different ways. The results showed that the first alpha-helix of the POU-S domain is critical for the assembly of Pit-1 with C/EBPalpha, and they showed that DNA-binding activity conferred by the HD is critical for the final intranuclear positioning of the metastable complex. This likely reflects more general mechanisms that govern cell-type-specific transcriptional control, and the results from the analysis of the point mutations could indicate an important link between the mislocalization of transcriptional complexes and disease processes.

  2. Incidence of pituitary dysfunction following traumatic brain injury: A prospective study from a regional neurosurgical centre.

    PubMed

    Alavi, Seyed Alireza; Tan, Chin Lik; Menon, David K; Simpson, Helen L; Hutchinson, Peter J

    2016-06-01

    Patients with traumatic brain injury (TBI) may develop pituitary dysfunction. Although, there is now increasing awareness of and investigations into such post-traumatic hypopituitarism (PTHP), the exact prevalence and incidence remain uncertain. Here, we aim to identify the incidence of PTHP in a selected population of TBI patients deemed at risk of PTHP at a regional neurosurgical centre in the UK. A total of 105 patients have been assessed in two cohorts: (i) 58 patients in serial cohort and (ii) 47 patients in cross-sectional late cohort. We found that in serial cohort, 10.3% (6/58) of TBI patients had abnormalities of the pituitary-adrenal axis in the acute phase (Day 0-7 post injury). In comparison, in cross-sectional late cohort, 21.3% (10/47) of the patients developed dysfunction in at least one of their pituitary axes at 6 months or more post-TBI, with hypogonadotrophic hypogonadism being the most common. Twenty-two patients from these two cohorts had their growth hormone assessment at 12 months or more post-TBI and 9.1% (2/22) were found to have growth hormone deficiency. Our results suggest that PTHP is a common condition amongst sufferers of TBI, and appropriate measures should be taken to detect and manage it.

  3. [The behavioral-neuroendocrine mechanism of development of homosexuality].

    PubMed

    Xue, Hui; Tai, Fa-Dao

    2007-10-01

    In this review, we primarily focus on the behavioral-neuroendocrine mechanism of development of homosexuality from genetic, neuroendocrine neuroanatomical and behavioral studies. Besides the influence of genetics and environment, sexual orientation was determined by the early perinatal hormone exposure. Gonadal steroidal hormone interacted with many neurotransmitters in individual development by hypothalamus pituitary adrenal axis and hypothalamus pituitary gonadal axis, which regulated the individual's sexual orientation. It was summarized here about the future directions on sexual orientation and demonstrated problems which would have to investigate next step. All these may be beneficial for our understanding of the homosexuality and paying attention to psychological and physiological health of homosexuality, which is useful to prevent the development of teenage homosexuality.

  4. Rhythmicity in Mice Selected for Extremes in Stress Reactivity: Behavioural, Endocrine and Sleep Changes Resembling Endophenotypes of Major Depression

    PubMed Central

    Ruschel, Jörg; Palme, Rupert; Holsboer, Florian; Kimura, Mayumi; Landgraf, Rainer

    2009-01-01

    Background Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called ‘stress reactivity’ (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors. Methodology/Principle Findings In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice. Conclusion/Significance Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD. PMID:19177162

  5. MRI assessment of pituitary iron accumulation by using pituitary-R2 in β-thalassemia patients.

    PubMed

    Bozdağ, Mustafa; Bayraktaroğlu, Selen; Aydınok, Yeşim; Çallı, Mehmet Cem

    2018-06-01

    Background Patients with thalassemia major (TM) require repeated blood transfusions, which leads to accumulation of iron in a wide variety of tissues. Accumulation of iron in the pituitary gland can lead to irreversible hypogonadotropic hypogonadism (HH) in this group of patients. Purpose To investigate the reliability of pituitary-R2 as a marker to estimate the extent of pituitary iron load by comparing the pituitary magnetic resonance imaging (MRI) findings with hepatic iron load and serum ferritin levels. Material and Methods A total of 38 β-TM patients were classified into HH (group A, n = 18) and non-HH (group B, n = 17) groups. A third group, group C, consisted of 17 healthy participants. Each participant underwent 1.5-T MRI examinations. Pituitary gland heights (PGH), pituitary-R2 values, and liver-R2 values were measured by using multi-echo spin-echo sequences. Results Pituitary-R2 values were significantly higher in group A compared with group B ( P < 0.05). A positive correlation was detected between the pituitary-R2 values and serum ferritin levels in TM patients ( P < 0.01). A threshold value of 14.1 Hz for pituitary-R2 was found to give a high specificity and sensitivity in distinguishing the TM patients with HH from those with normal pituitary functions. PGH measurements were significantly lower in group A compared with group B ( P < 0.05). Conclusion MRI-assessed pituitary-R2 seems to be a reliable marker for differentiating the TM patients with normal pituitary function from those with secondary hypogonadism due to iron toxicity.

  6. Characterization of pituitary cells targeted by antipituitary antibodies in patients with isolated autoimmune diseases without pituitary insufficiency may help to foresee the kind of future hypopituitarism.

    PubMed

    De Bellis, A; Dello Iacovo, A; Bellastella, G; Savoia, A; Cozzolino, D; Sinisi, A A; Bizzarro, A; Bellastella, A; Giugliano, D

    2014-10-01

    Detection of antipituitary antibodies (APA) at high levels and with a particular immunofluorescence pattern in patients with autoimmune polyendocrine syndromes may indicate a possible future autoimmune pituitary involvement. This longitudinal study was aimed at characterizing in patients with a single organ-specific autoimmune disease the pituitary cells targeted by APA at start, verifying whether this characterization allows to foresee the kind of possible subsequent hypopituitarism. Thirty-six APA positive and 40 APA negative patients with isolated autoimmune diseases participated in the study. None of them had pituitary dysfunction at entry. Characterization by four-layer immunofluorescence of pituitary cells targeted by APA in APA positive patients at entry and study of pituitary function in all patients were performed every 6 months during a 5 year follow-up. Antipituitary antibodies immunostained selectively one type of pituitary-secreting cells in 21 patients (58.3 %, group 1), and several types of pituitary cells in the remaining 15 (41.7 %, group 2). All patients in group 1 showed subsequently a pituitary insufficiency, corresponding to the type of cells targeted by APA in 18 of them (85.7 %). Only 8 out of 15 patients in group 2 (53.3 %) showed a hypopituitarism, isolated in 7 and combined in the other one. None of APA negative patients showed hypopituitarism. The characterization of pituitary cells targeted by APA in patients with isolated autoimmune diseases, when the pituitary function is still normal, may help to foresee the kind of subsequent hypopituitarism, especially when APA immunostained selectively only one type of pituitary cells. A careful follow-up of pituitary function in these patients is advisable to allow an early diagnosis of hypopituitarism, even in subclinical phase and a consequent timely replacement therapy.

  7. Brain-Pituitary Axis Development In The CEBAS Minimodule

    NASA Technical Reports Server (NTRS)

    Schreibman, Martin P.; Magliulo-Cepriano, Lucia

    2001-01-01

    The CEBAS minimodule system is a man-made aquatic ecological system that incorporates animals, plants, snails, and microorganisms. It has been proposed that CEBAS will lead to a multigenerational experimental facility for utilization in a space station as well as for the development of an aquatic CELSS to produce animal and plant biomass for human nutrition. In this context, research on the reproductive biology of the organisms within the system should receive the highest priority. 1bus, the goals of our proposal were to provide information on space-flight-induced changes in the brain-pituitary axis and in the organs that receive information from the environment in the vertebrate selected for the CEBAS Minimodule program, the freshwater teleost Xiphophorus helleri (the swordtail). We studied the development of the brain- pituitary axis in neonates, immature and mature swordtails using histology, cytology, immunohistochemistry, morphometry, and in situ histochemistry to evaluate the synthesis, storage, and release of neurotransmitters, neuroregulatory peptides, neurohormones, and pituitary hormones as well as the structure of the organs and cells that produce, store, or are the target organs for these substances. We flew experiments in the CEBAS-minimodule on two shuttle missions, STS-89 and STS-90. In both flights four gravid females and about 200 juvenile (7 days old) swordtails (Xiphophorus helleri) constituted the aquatic vertebrates to be studied, in addition to the plants and snails that were studied by other team members. In a sample sharing agreement developed with Dr. Volker Bluem, organizer of the CEBAS research program, we received a small number of the juveniles and shared the brains of two adult females.

  8. Transient pituitary enlargement with central hypogonadism secondary to bilateral cavernous sinus thrombosis: pituitary oedema?

    PubMed

    Joubert, Michael; Verdon, Renaud; Reznik, Yves

    2009-05-01

    Design We report the case of an incidental pituitary mass discovered in the context of bilateral cavernous sinus thrombosis due to a bacterial pansinusitis. Conclusions Magnetic resonance imaging features of the pituitary lesion, together with transient central hypogonadism and total regression of the mass after anticoagulation and antimicrobial therapy, suggest that this lesion is a pituitary oedema of vascular mechanism. Other possible causes of pituitary mass in such a situation are also discussed.

  9. Peroxisome proliferator-activated receptor (PPAR)gamma is highly expressed in normal human pituitary gland.

    PubMed

    Bogazzi, F; Russo, D; Locci, M T; Chifenti, B; Ultimieri, F; Raggi, F; Viacava, P; Cecchetti, D; Cosci, C; Sardella, C; Acerbi, G; Gasperi, M; Martino, E

    2005-11-01

    Expression of peroxisome proliferator-activated receptor (PPAR)gamma in normal pituitary seems to be restricted to ACTH-secreting cells. The aim of the study was to evaluate the expression of PPARgamma in normal human pituitary tissue and to study its localization in the pituitary secreting cells. Normal pituitary tissue samples were obtained form 11 patients with non-secreting adenoma who underwent surgical excision of the tumor. Expression of PPARgamma was evaluated by immunostaining and western blotting; localization of PPARgamma in each pituitary secreting cell lineage was evaluated by double immunofluorescence using confocal microscopy. Pituitary non-functioning adenomas served as Controls. PPARgamma was highly expressed in all pituitary samples with a (mean +/- SD) 81 +/- 6.5% of stained cells; expression of PPARgamma was confirmed by western blotting. Non-functioning pituitary adenomas had 74 +/- 11% PPARgamma positive cells. Expression of PPARy was either in cytoplasm or nuclei. In addition, treatment of GH3 cells, with a PPARgamma ligand was associated with traslocation of the receptor from cytoplasm into the nucleus. Double immunostaining revealed that every pituitary secreting cell (GH, TSH, LH, FSH, PRL and ACTH) had PPARgamma expressed. The present study demonstrated that PPARgamma is highly expressed in every normal pituitary secreting cell lineage. It can translocate into the nucleus by ligand binding; however, its role in pituitary hormone regulation remains to be elucidated.

  10. Endocrinology Update: Hypopituitarism.

    PubMed

    Heidelbaugh, Joel J

    2016-12-01

    Hypopituitarism is defined as a deficiency of one or more pituitary hormones due to a decline in function of the pituitary gland and/or hypothalamus, which can result in higher risks of morbidity and mortality and decreased quality of life. Although hypopituitarism is a rare condition, it commonly develops after traumatic brain injury and in the setting of functioning and nonfunctioning pituitary adenomas. The diagnosis is based on detailed investigation of symptoms of target endocrine gland function relative to the corresponding pituitary hormone deficiency. The clinical manifestations of hypopituitarism result from the degree of the specific hormone deficiency. A thorough and longitudinal history and physical examination, including visual field testing, are paramount. Management consists of prompt pharmacotherapy, surgery, and/or radiotherapy to restore normal endocrine function and quality of life. In most patients with anterior and posterior pituitary hormone deficiency, corresponding hormone replacement is the mainstay of therapy. The prognosis for patients with hypopituitarism depends on the manner of and age at presentation, degree and severity of hormonal impairment, and response to medical and surgical therapies. Patients with hypopituitarism require lifelong monitoring of serum hormone levels and symptoms of hormone deficiency or excess. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  11. Modification of hormonal secretion in clinically silent pituitary adenomas.

    PubMed

    Daems, Tania; Verhelst, Johan; Michotte, Alex; Abrams, Pascale; De Ridder, Dirk; Abs, Roger

    2009-01-01

    Silent pituitary adenomas are a subtype of adenomas characterized by positive immunoreactivity for one or more hormones classically secreted by normal pituitary cells but without clinical expression, although in some occasions enhanced or changed secretory activity can develop over time. Silent corticotroph adenomas are the classical example of this phenomenon. A series of about 500 pituitary adenomas seen over a period of 20 years were screened for modification in hormonal secretion. Biochemical and immunohistochemical data were reviewed. Two cases were retrieved, one silent somatotroph adenoma and one thyrotroph adenoma, both without specific clinical features or biochemical abnormalities, which presented 20 years after initial surgery with evidence of acromegaly and hyperthyroidism, respectively. While the acromegaly was controlled by a combination of somatostatin analogs and growth hormone (GH) receptor antagonist therapy, neurosurgery was necessary to manage the thyrotroph adenoma. Immunohistochemical examination demonstrated an increase in the number of thyroid stimulating hormone (TSH)-immunoreactive cells compared to the first tissue. Apparently, the mechanisms responsible for the secretory modifications are different, being a change in secretory capacity in the silent somatotroph adenoma and a quantitative change in the silent thyrotroph adenoma. These two cases, one somatotroph and one thyrotroph adenoma, are an illustration that clinically silent pituitary adenomas may in rare circumstances evolve over time and become active, as previously demonstrated in silent corticotroph adenomas.

  12. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects?

    PubMed

    Xekouki, Paraskevi; Stratakis, Constantine A

    2012-12-01

    Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney-Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD's loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects.

  13. SOX2 is sequentially required for progenitor proliferation and lineage specification in the developing pituitary

    PubMed Central

    Goldsmith, Sam

    2016-01-01

    Sox2 mutations are associated with pituitary hormone deficiencies and the protein is required for pituitary progenitor proliferation, but its function has not been well characterized in this context. SOX2 is known to activate expression of Six6, encoding a homeodomain transcription factor, in the ventral diencephalon. Here, we find that the same relationship likely exists in the pituitary. Moreover, because Six6 deletion is associated with a similar phenotype as described here for loss of Sox2, Six6 appears to be an essential downstream target of SOX2 in the gland. We also uncover a second role for SOX2. Whereas cell differentiation is reduced in Sox2 mutants, some endocrine cells are generated, such as POMC-positive cells in the intermediate lobe. However, loss of SOX2 here results in complete downregulation of the melanotroph pioneer factor PAX7, and subsequently a switch of identity from melanotrophs to ectopic corticotrophs. Rescuing proliferation by ablating the cell cycle negative regulator p27 (also known as Cdkn1b) in Sox2 mutants does not restore melanotroph emergence. Therefore, SOX2 has two independent roles during pituitary morphogenesis; firstly, promotion of progenitor proliferation, and subsequently, acquisition of melanotroph identity. PMID:27226320

  14. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects?

    PubMed Central

    Xekouki, Paraskevi; Stratakis, Constantine A

    2013-01-01

    Succinate dehydrogenase (SDH) or mitochondrial complex II is a multimeric enzyme that is bound to the inner membrane of mitochondria and has a dual role as it serves both as a critical step of the tricarboxylic acid or Krebs cycle and as a member of the respiratory chain that transfers electrons directly to the ubiquinone pool. Mutations in SDH subunits have been implicated in the formation of familial paragangliomas (PGLs) and/or pheochromocytomas (PHEOs) and in Carney–Stratakis syndrome. More recently, SDH defects were associated with predisposition to a Cowden disease phenotype, renal, and thyroid cancer. We recently described a kindred with the coexistence of familial PGLs and an aggressive GH-secreting pituitary adenoma, harboring an SDHD mutation. The pituitary tumor showed loss of heterozygosity at the SDHD locus, indicating the possibility that SDHD’s loss was causatively linked to the development of the neoplasm. In total, 29 cases of pituitary adenomas presenting in association with PHEOs and/or extra-adrenal PGLs have been reported in the literature since 1952. Although a number of other genetic defects are possible in these cases, we speculate that the association of PHEOs and/or PGLs with pituitary tumors is a new syndromic association and a novel phenotype for SDH defects. PMID:22889736

  15. The pituitary gland in patients with Langerhans cell histiocytosis: a clinical and radiological evaluation.

    PubMed

    Kurtulmus, Neslihan; Mert, Meral; Tanakol, Refik; Yarman, Sema

    2015-04-01

    Langerhans cell histiocytosis (LCH) is a rare disease in which the most common endocrine manifestation is diabetes insipidus (DI). Data on anterior pituitary function in patients with LCH are limited. Thus, the present study investigated anterior pituitary function in LCH patients with DI via the evaluation of clinical and radiological findings at disease onset and during follow-up. The present study retrospectively evaluated nine patients with LCH (five males and four females). All diagnoses of LCH were made following histological and/or immunophenotypic analyses of tissue biopsies, bronchoalveolar lavage, or cerebrospinal fluid (CSF). Basal and, if necessary, dynamic pituitary function tests were used to assess anterior pituitary function, and magnetic resonance imaging (MRI) scans were used to image the pituitary. The LCH treatment modality was based on organ involvement. The mean age at onset of DI was 27.6 years (range 15-60 years). One patient (11%) exhibited single organ involvement, while eight patients (89%) displayed multisystem organ involvement. On admittance, one patient had hypogonadotropic hypogonadism, one patient exhibited panhypopituitarism [hypogonadotropic hypogonadism, central hypothyroidism, hypocortisolism, and growth hormone (GH) deficiency], and four patients (44%) displayed hyperprolactinemia. The MRI data revealed infundibular enlargement in seven patients (78%), a thalamic mass in one patient (11%), and the absence of the bright spot in all patients. A single patient (11%) showed a mass in the pons that had a partially empty sella. The patients were treated with radiation therapy (RT), chemotherapy (CT), or a combination of both (RT+CT) and were followed up for a median of 91.8 months (range 2-318 months). Seven patients were assessed during the follow-up period, of whom four patients (57.1%) developed anterior pituitary hormone deficiency, three (43%) were diagnosed with GH deficiency, and one (14%) exhibited gonadotropin deficiency. The gonadotropin deficiency in the patient, which was diagnosed on admittance, was resolved during the follow-up period. DI persisted in all patients, and the conditions of the seven patients who have remained on follow-up are stable. In the present study, patients with LCH exhibited altered function in the anterior pituitary as well as the posterior pituitary, which may be due to the natural course of the disease or the effects of treatment. The present findings indicate that anterior pituitary function should be assessed in LCH patients on admittance and during follow-up, especially in LCH patients with multisystem organ involvement.

  16. Pituitary Tumors—Health Professional Version

    Cancer.gov

    Pituitary tumors represent from 10% to 25% of all intracranial neoplasms. Pituitary tumors can be classified into three groups: benign adenoma, invasive adenoma, and carcinoma. Find evidence-based information on pituitary tumors treatment.

  17. Prevalence of hypopituitarism after intracranial operations not directly associated with the pituitary gland

    PubMed Central

    2013-01-01

    Background Over the last few years, awareness and detection rates of hypopituitarism following traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) has steadily increased. Moreover, recent studies have found that a clinically relevant number of patients develop pituitary insufficiency after intracranial operations and radiation treatment for non-pituitary tumors. But, in a substantial portion of more than 40%, the hypopituitarism already exists before surgery. We sought to determine the frequency, pattern, and severity of endocrine disturbances using basal and advanced dynamic pituitary testing following non-pituitary intracranial procedures. Methods 51 patients (29 women, 22 men) with a mean age of 55 years (range of 20 to 75 years) underwent prospective evaluation of basal parameters and pituitary function testing (combined growth hormone releasing hormone (GHRH)/arginine test, insulin tolerance test (ITT), low dose adrenocorticotropic hormone (ACTH) test), performed 5 to 168 months (median 47.2 months) after intracranial operation (4 patients had additional radiation and 2 patients received additional radiation combined with chemotherapy). Results We discovered an overall rate of hypopituitarism with distinct magnitude in 64.7% (solitary in 45.1%, multiple in 19.6%, complete in 0%). Adrenocorticotropic hormone insufficiency was found in 51.0% (partial in 41.2%, complete in 9.8%) and growth hormone deficiency (GHD) occurred in 31.4% (partial in 25.5%, severe in 5.9%). Thyrotropic hormone deficiency was not identified. The frequency of hypogonadism was 9.1% in men. Pituitary deficits were associated with operations both in close proximity to the sella turcica and more distant regions (p = 0.91). Age (p = 0.76) and gender (p = 0.24) did not significantly differ across patients with versus those without hormonal deficiencies. Groups did not significantly differ across pathology and operation type (p = 0.07). Conclusion Hypopituitarism occurs more frequently than expected in patients who have undergone neurosurgical intracranial procedures for conditions other then pituitary tumors or may already exists in a neurosurgical population before surgery. Pituitary function testing and adequate substitution may be warranted for neurosurgical patients with intracranial pathologies at least if unexplained symptoms like fatigue, weakness, altered mental activity, and decreased exercise tolerance are present. PMID:24188166

  18. hpttg is over-expressed in pituitary adenomas and other primary epithelial neoplasias.

    PubMed

    Sáez, C; Japón, M A; Ramos-Morales, F; Romero, F; Segura, D I; Tortolero, M; Pintor-Toro, J A

    1999-09-23

    The role of oncogenes in pituitary tumorigenesis remains elusive since few genetic changes have been identified so far in pituitary tumors. Pituitary tumor-transforming gene (pttg) has been recently cloned from rat GH4 pituitary tumor cells. We have previously isolated and characterized hpttg from human thymus. In the present study, we analyse the expression of hpttg mRNA in a series of human pituitary adenomas. We show that hpttg is highly expressed in the majority of pituitary adenomas while only very low levels of mRNA can be detected in normal pituitary gland by Northern blot analysis. hPTTG protein was immunolocalized mainly in the cytoplasm of adenoma cells. Other common extra-cranial malignant tumors were also analysed by immunohistochemistry. Interestingly, strong hPTTG immunoreactivity was detected in most adenocarcinomas of mammary and pulmonary origins.

  19. Magnetic resonance imaging validation of pituitary gland compression and distortion by typical sellar pathology.

    PubMed

    Cho, Charles H; Barkhoudarian, Garni; Hsu, Liangge; Bi, Wenya Linda; Zamani, Amir A; Laws, Edward R

    2013-12-01

    Identification of the normal pituitary gland is an important component of presurgical planning, defining many aspects of the surgical approach and facilitating normal gland preservation. Magnetic resonance imaging is a proven imaging modality for optimal soft-tissue contrast discrimination in the brain. This study is designed to validate the accuracy of localization of the normal pituitary gland with MRI in a cohort of surgical patients with pituitary mass lesions, and to evaluate for correlation between presurgical pituitary hormone values and pituitary gland characteristics on neuroimaging. Fifty-eight consecutive patients with pituitary mass lesions were included in the study. Anterior pituitary hormone levels were measured preoperatively in all patients. Video recordings from the endoscopic or microscopic surgical procedures were available for evaluation in 47 cases. Intraoperative identification of the normal gland was possible in 43 of 58 cases. Retrospective MR images were reviewed in a blinded fashion for the 43 cases, emphasizing the position of the normal gland and the extent of compression and displacement by the lesion. There was excellent agreement between imaging and surgery in 84% of the cases for normal gland localization, and in 70% for compression or noncompression of the normal gland. There was no consistent correlation between preoperative pituitary dysfunction and pituitary gland localization on imaging, gland identification during surgery, or pituitary gland compression. Magnetic resonance imaging proved to be accurate in identifying the normal gland in patients with pituitary mass lesions, and was useful for preoperative surgical planning.

  20. Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function.

    PubMed

    Bladowska, Joanna; Sokolska, Violetta; Sozański, Tomasz; Bednarek-Tupikowska, Grażyna; Sąsiadek, Marek

    2010-01-01

    Post-surgical evaluation of the pituitary gland in MRI is difficult because of a change of anatomical conditions. It depends also on numerous other factors, including: size and expansion of a tumour before surgery, type of surgical access, quality and volume of filling material used and time of its resorption.The aim of the study was to compare MR image of the pituitary gland after surgery with clinical findings and to establish a correlation between MRI presentation of spared pituitary and its hormonal function. 124 patients after resection of pituitary adenomas - 409 MRI results in total - were studied. With a 1.5-T unit, T1-weighted sagittal and coronal, enhanced and unenhanced images were obtained. The pituitary gland seemed to be normal in MRI in 11 patients, 8 of them had completely regular pituitary function but in 3 of them we noticed a partial hypopituitarism. In 99 patients only a part of the pituitary gland was recognised, 53 of them had hypopituitarism but 46 of them were endocrinologically healthy. 14 patients seemed to have no persistent pituitary gland in MRI, in comparison to hormonal studies: there was panhypopituitarism in 6 and hypopituitarism in 8 cases. MRI presentation of post - surgical pituitary gland doesn't necessarily correlate with its hormonal function - there was a significant statistical difference. Some patients with partial pituitary seems normal hormonal function. In some cases the pituitary seem normal in MRI but these patients have hormonal disorders and need substitution therapy.

  1. Hypopituitarism after stereotactic radiosurgery for pituitary adenomas.

    PubMed

    Xu, Zhiyuan; Lee Vance, Mary; Schlesinger, David; Sheehan, Jason P

    2013-04-01

    Studies of new-onset Gamma Knife stereotactic radiosurgery (SRS)-induced hypopituitarism in large cohort of pituitary adenoma patients with long-term follow-up are lacking. We investigated the outcomes of SRS for pituitary adenoma patients with regard to newly developed hypopituitarism. This was a retrospective review of patients treated with SRS at the University of Virginia between 1994 and 2006. A total of 262 patients with a pituitary adenoma treated with SRS were reviewed. Thorough endocrine assessment was performed immediately before SRS and in regular follow-ups. Assessment consisted of 24-hour urine free cortisol (patients with Cushing disease), serum adrenocorticotropic hormone, cortisol, follicle-stimulating hormone, luteinizing hormone, insulin-like growth factor-1, growth hormone, testosterone (men), prolactin, thyroid-stimulating hormone, and free T(4). Endocrine remission occurred in 144 of 199 patients with a functioning adenoma. Tumor control rate was 89%. Eighty patients experienced at least 1 axis of new-onset SRS-induced hypopituitarism. The new hypopituitarism rate was 30% based on endocrine follow-up ranging from 6 to 150 months; the actuarial rate of new pituitary hormone deficiency was 31.5% at 5 years after SRS. On univariate and multivariate analyses, variables regarding the increased risk of hypopituitarism included suprasellar extension and higher radiation dose to the tumor margin; there were no correlations among tumor volume, prior transsphenoidal adenomectomy, prior radiation therapy, and age at SRS. SRS provides an effective and safe treatment option for patients with a pituitary adenoma. Higher margin radiation dose to the adenoma and suprasellar extension were 2 independent predictors of SRS-induced hypopituitarism.

  2. Mid-term prognosis of non-functioning pituitary adenomas with high proliferative potential: really an aggressive variant?

    PubMed

    Ogawa, Yoshikazu; Jokura, Hidefumi; Niizuma, Kuniyasu; Tominaga, Teiji

    2018-05-01

    Pituitary adenomas with high proliferation rate and rapid growth are well known, but the clinical characteristics, prognosis, and treatment algorithm remain unclear. The clinical characteristics and mid-term prognosis of patients with non-functioning pituitary adenomas with high proliferative potential were retrospectively investigated. This study identified 53 patients with Ki-67 labeling index of > 3% among 845 patients with non-functioning pituitary adenoma (6.3%) initially treated by surgery. Prophylactic treatment was not applied for patients with residual tumor, but salvage treatment was performed if tumor progression was identified within the follow-up period. Twenty-two patients remained progression-free, whereas 31 patients suffered tumor progression. Comparison of gross total removal (n = 22) and non-total removal (n = 31) groups showed significantly longer progression-free period in the former group (P < 0.001). As salvage treatment gamma knife radiosurgery was applied for 11 patients resulting in 10 patients remaining progression-free and regrowth in 1 patient. Fractionated irradiation was applied for 10 patients, resulting in 2 patients remaining progression-free, deaths in 5 patients including 3 of transformation to pituitary carcinoma, dementia in 1 patient caused by frontal lobe dysfunction, and progression in 2 patients requiring additional surgery and gamma knife radiosurgery. Temozolomide was administered in 2 patients, resulting in deaths in both patients including 1 transformation to pituitary carcinoma. Total removal and gamma knife radiosurgery can result in good outcome. However, the prognosis is extremely poor for patients inadequate for gamma knife radiosurgery. Development of new salvage treatments is essential.

  3. Value of pituitary gland MRI at 7 T in Cushing's disease and relationship to inferior petrosal sinus sampling: case report.

    PubMed

    Law, Meng; Wang, Regina; Liu, Chia-Shang J; Shiroishi, Mark S; Carmichael, John D; Mack, William J; Weiss, Martin; Wang, Danny J J; Toga, Arthur W; Zada, Gabriel

    2018-03-23

    Cushing's disease is caused by adrenocorticotrophic hormone (ACTH)-secreting pituitary adenomas, which are often difficult to identify on standard 1.5-T or 3-T MRI, including dynamic contrast imaging. Inferior petrosal and cavernous sinus sampling remains the gold standard for MRI-negative Cushing's disease. The authors report on a 27-year-old woman with Cushing's disease in whom the results of standard 1.5-T and 3-T MRI, including 1.5-T dynamic contrast imaging, were negative. Inferior petrosal sinus sampling showed a high central-to-peripheral ACTH ratio (148:1) as well as a right-to-left ACTH gradient (19:1), suggesting a right-sided pituitary microadenoma. The patient underwent 7-T MRI, which showed evidence of a right-sided pituitary lesion with focal hypoenhancement not visualized on 1.5-T or 3-T MRI. The patient underwent an endoscopic endonasal transsphenoidal operation, with resection of a right-sided pituitary mass. Postoperatively, she developed clinical symptoms suggestive of adrenal insufficiency and a nadir cortisol level of 1.6 μg/dl on postoperative day 3, and hydrocortisone therapy was initiated. Permanent histopathology specimens showed Crooke's hyaline change and ACTH-positive cells suggestive of an adenoma. MRI at 7 T may be beneficial in identifying pituitary microadenoma location in cases of standard 1.5-T and 3-T MRI-negative Cushing's disease. In the future, 7-T MRI may preempt inferior petrosal sinus sampling and help in cases of standard and dynamic contrast 1.5-T and 3-T MRI-negative Cushing's disease.

  4. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation.

    PubMed

    Gage, P J; Brinkmeier, M L; Scarlett, L M; Knapp, L T; Camper, S A; Mahon, K A

    1996-12-01

    Two nonallelic dwarfing mutations in mice define genes important for pituitary development and function. Mice homozygous for either the Ames (df) or Snell (Pit 1dw) dwarf mutations exhibit severe proportional dwarfism, hypothyroidism, and infertility due to the cytodifferentiation failure of three anterior pituitary cell types: thyrotropes, somatotropes, and lactotropes. Analysis of double heterozygotes and double mutants has provided evidence that the df and dw genes act sequentially in the same genetic pathway. Double heterozygotes had no reduction in growth rate or final adult size. Double homozygotes had essentially the same phenotype as the single mutants and were recovered at the predicted frequency, indicating that there are no previously unrecognized, redundant functions of the two genes. Several lines of evidence demonstrate that df acts earlier in the differentiation pathway than Pit1. The df mutants fail to extinguish expression of the homeobox gene Rpx on embryonic day 13.5 (e13.5), and the size of their nascent pituitary glands is reduced by e14.5. In contrast, Pit1dw mutants down-regulate Rpx appropriately and exhibit normal cell proliferation up to e14.5. The failure to extinguish Rpx and the concomitant hypocellularity of df pituitaries suggest the importance of Rpx repression in lineage-specific cell proliferation before the appearance of lineage-specific markers. Later, Pit-1 and hypothalamic neuropeptides act sequentially to regulate marker gene transcription and cell proliferation. These results establish the time of df action in a cascade of genes that regulate pituitary ontogeny.

  5. Affective dysfunction in a mouse model of Rett syndrome: Therapeutic effects of environmental stimulation and physical activity.

    PubMed

    Kondo, Mari A; Gray, Laura J; Pelka, Gregory J; Leang, Sook-Kwan; Christodoulou, John; Tam, Patrick P L; Hannan, Anthony J

    2016-02-01

    Rett syndrome (RTT) is a neurodevelopmental disorder associated with mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2) and consequent dysregulation of brain maturation. Patients suffer from a range of debilitating physical symptoms, however, behavioral and emotional symptoms also severely affect their quality of life. Here, we present previously unreported and clinically relevant affective dysfunction in the female heterozygous Mecp2(tm1Tam) mouse model of RTT (129sv and C57BL6 mixed background). The affective dysfunction and aberrant anxiety-related behavior of the Mecp2(+/-) mice were found to be reversible with environmental enrichment (EE) from 4 weeks of age. The effect of exercise alone (via wheel running) was also explored, providing the first evidence that increased voluntary physical activity in an animal model of RTT is beneficial for some phenotypes. Mecp2(+/-) mutants displayed elevated corticosterone despite decreased Crh expression, demonstrating hypothalamic-pituitary-adrenal axis dysregulation. EE of Mecp2(+/-) mice normalized basal serum corticosterone and hippocampal BDNF protein levels. The enrichment-induced rescue appears independent of the transcriptional regulation of the MeCP2 targets Bdnf exon 4 and Crh. These findings provide new insight into the neurodevelopmental role of MeCP2 and pathogenesis of RTT, in particular the affective dysfunction. The positive outcomes of environmental stimulation and physical exercise have implications for the development of therapies targeting the affective symptoms, as well as behavioral and cognitive dimensions, of this devastating neurodevelopmental disorder. © 2015 Wiley Periodicals, Inc.

  6. Role of Growth Hormone in Breast Cancer.

    PubMed

    Subramani, Ramadevi; Nandy, Sushmita B; Pedroza, Diego A; Lakshmanaswamy, Rajkumar

    2017-06-01

    Breast cancer is one of the most common cancers diagnosed in women. Approximately two-thirds of all breast cancers diagnosed are classified as hormone dependent, which indicates that hormones are the key factors that drive the growth of these breast cancers. Ovarian and pituitary hormones play a major role in the growth and development of normal mammary glands and breast cancer. In particular, the effect of the ovarian hormone estrogen has received much attention in regard to breast cancer. Pituitary hormones prolactin and growth hormone have also been associated with breast cancer. Although the role of these pituitary hormones in breast cancers has been studied, it has not been investigated extensively. In this review, we attempt to compile basic information from most of the currently available literature to understand and demonstrate the significance of growth hormone in breast cancer. Based on the available literature, it is clear that growth hormone plays a significant role in the development, progression, and metastasis of breast cancer by influencing tumor angiogenesis, stemness, and chemoresistance. Copyright © 2017 Endocrine Society.

  7. Hypothalamic-pituitary, ovarian and adrenal contributions to polycystic ovary syndrome.

    PubMed

    Baskind, N Ellissa; Balen, Adam H

    2016-11-01

    Polycystic ovary syndrome (PCOS) is a prevalent heterogeneous disorder linked with disturbances of reproductive, endocrine and metabolic function. The definition and aetiological hypotheses of PCOS are continually developing to incorporate evolving evidence of the syndrome, which appears to be both multifactorial and polygenic. The pathophysiology of PCOS encompasses inherent ovarian dysfunction that is strongly influenced by external factors including the hypothalamic-pituitary axis and hyperinsulinaemia. Neuroendocrine abnormalities including increased gonadotrophin-releasing hormone (GnRH) pulse frequency with consequent hypersecretion of luteinising hormone (LH) affects ovarian androgen synthesis, folliculogenesis and oocyte development. Disturbed ovarian-pituitary and hypothalamic feedback accentuates the gonadotrophin abnormalities, and there is emerging evidence putatively implicating dysfunction of the Kiss 1 system. Within the follicle subunit itself, there are intra-ovarian paracrine modulators, cytokines and growth factors, which appear to play a role. Adrenally derived androgens may also contribute to the pathogenesis of PCOS, but their role is less defined. Copyright © 2016. Published by Elsevier Ltd.

  8. The causes of hypopituitarism in the absence of abnormal pituitary imaging.

    PubMed

    Wilson, V; Mallipedhi, A; Stephens, J W; Redfern, R M; Price, D E

    2014-01-01

    Hypopituitarism in the absence of a history of pituitary pathology or abnormal pituitary imaging is rare. To identify the cause of hypopituitarism in individuals in whom pituitary imaging was normal. Retrospective analysis of electronic patient record. A review of the pituitary function in the 506 patients on the Morriston Hospital pituitary database revealed 230 had some degree of hypopituitarism and of these, 21 (9%) had normal pituitary imaging. Of this group, six patients had a past medical history of subarachnoid haemorrhage, head injury or meningitis, and mainly suffered from a deficiency of antidiuretic hormone. One patient had a stroke resulting in multiple anterior hormone deficiencies and six individuals had idiopathic cranial diabetes insipidus (DI). Subsequent investigations of the remaining eight patients with normal pituitary imaging revealed that two had neurosarcoidosis both of whom had panhypopituitarism. Four patients had haemochromatosis which resulted in gonadotropin deficiency in two, DI in one and panhypopituitarism in the other. There were two individuals with confirmed hypopituitarism and multiple hormone deficiencies in which no cause could be identified. These results show that hypopituitarism in the absence of pituitary pathology or an identifiable cause is rare. In patients with multiple anterior pituitary hormone deficiencies haemochromatosis and sarcoidosis should be considered.

  9. Changes in thrombospondin-1 levels in the endothelial cells of the anterior pituitary during estrogen-induced prolactin-secreting pituitary tumors

    PubMed Central

    Sarkar, Abby J; Chaturvedi, Kirti; Chen, Cui Ping; Sarkar, Dipak K

    2010-01-01

    Thrombospondin-1 (TSP-1), a multifunctional matrix glycoprotein, has been shown to control tumor growth by inhibiting angiogenesis in various tissues. However, the role of this glycoprotein in pituitary angiogenesis is not well studied. In this report, we determined the changes in the production and action of TSP-1 on endothelial cells in anterior pituitary following estradiol treatment, which is known to increase prolactin-secreting tumor growth and vascularization in this tissue. We showed that TSP-1 immunoreactive protein is distributed in the anterior pituitary, particularly in the endothelial cells. Estradiol treatment for 2 and 4 weeks decreased the total tissue immunoreactive level of TSP-1 as well as the endothelial cell-specific immunoreactive level of this protein in the anterior pituitary. The steroid treatment also decreased the protein levels of TSP-1 in anterior pituitary tissues and in purified pituitary endothelial cells in primary cultures. Determination of the effects of TSP-1 on proliferation and migration of pituitary-derived endothelial cells in primary cultures elucidated an inhibitory action of TSP-1 on these vascular cell functions. These results suggest that locally produced TSP-1 may regulate estrogen angiogenic action on the pituitary. PMID:17283240

  10. Relationship between pituitary stalk (PS) visibility and the severity of hormone deficiencies: PS interruption syndrome revisited.

    PubMed

    Wang, Weiqing; Wang, Shuwei; Jiang, Yiran; Yan, Fuhua; Su, Tingwei; Zhou, Weiwei; Jiang, Lei; Zhang, Yifei; Ning, Guang

    2015-09-01

    Pituitary stalk interruption syndrome (PSIS) is a rare cause of combined pituitary hormone deficiency characterized by a triad shown in pituitary imaging, yet it has never been evaluated due to the visibility of pituitary stalk (PS) in imaging findings. The major objective of the study was to systematically describe the disease including clinical presentations, imaging findings and to estimate the severity of anterior pituitary hormone deficiency based on the visibility of the PS. This was a retrospective study including 74 adult patients with PSIS in Shanghai Clinical Center for Endocrine and Metabolic Diseases between January 2010 and June 2014. Sixty had invisible PS according to the findings on MRI, while the rest had a thin or intersected PS. Basic characteristics and hormonal status were compared. Of the 74 patients with PSIS, age at diagnosis was 25 (22-28) years. Absent pubertal development (97·3%) was the most common presenting symptom, followed by short stature. Insulin tolerance test (ITT) and gonadotrophin-releasing hormone (GnRH) stimulation test were used to evaluate the function of anterior pituitary. The prevalence of isolated deficiency in growth hormone (GH), gonadotrophins, corticotrophin and thyrotrophin were 100%, 97·2%, 88·2% and 70·3%, respectively. Although the ratio of each deficiency did not vary between patients with invisible PS and with visible PS, panhypopituitarism occurred significantly more frequent in patients with invisible PS. Patients with invisible PS had significantly lower levels of luteinizing hormone (LH), follicle stimulation hormone (FSH) and hormones from targeted glands including morning cortisol, 24-h urine free cortisol, free triiodothyronine (FT3), free thyroxine (FT4) and testosterone (T) in male than patients with visible PS. Moreover, patients with invisible PS had lower peak LH and FSH in GnRH stimulation test, and higher peak cortisol in ITT while peak GH remained unchanged between two groups. The prevalence of multiple anterior pituitary hormone deficiency was high in adult patients with PSIS. And more importantly, we found the visibility of PS shown on MRI might be an indication of the severity of PSIS. © 2015 John Wiley & Sons Ltd.

  11. Pituitary Magnetic Resonance Imaging for Sellar and Parasellar Masses: Ten-Year Experience in 2598 Patients

    PubMed Central

    Famini, Pouyan; Maya, Marcel M.

    2011-01-01

    Context: Sellar and parasellar masses present with overlapping clinical and radiological features ranging from asymptomatic incidental presentations and hormonal effects to compressive local mass effects. Pituitary masses are diagnosed with increased frequency with magnetic resonance imaging (MRI) advancements and availability, but indications and diagnostic outcomes of MRI screening for sellar lesions are not defined. Although pituitary adenomas are the most frequently encountered sellar mass lesions, other etiologies should be considered in the differential diagnosis of a sellar mass. Setting: The study was conducted at a tertiary pituitary center. Patients: This study was a retrospective review of 2598 subjects undergoing at least one pituitary MRI scan from 1999 to 2009. Main Outcome Measure: Prevalence and diagnosis of specific sellar and parasellar masses as screened by pituitary MRI. Results: The most common indications for pituitary imaging, excluding known mass follow-up, were for evaluation of hyperprolactinemia or hypogonadism. A normal pituitary gland was reported in 47% of subjects undergoing pituitary MRI. The most common pituitary adenomas initially identified by MRI included prolactinoma (40%), nonfunctioning adenoma (37%), and GH adenoma (13%). Nonadenomatous sellar masses accounted for 18% of visible lesions, of which the most common were Rathke's cleft cyst (19%), craniopharyngioma (15%), and meningioma (15%). Metastases accounted for 5% of nonpituitary lesions and breast cancer was the most common primary source. Conclusions: Half of all pituitary MRI scans performed in a large patient population yielded no visible lesion. Nonadenomatous pituitary lesions should be considered in the diagnosis of sellar masses observed on MRI, and a high clinical suspicion is required to exclude the presence of a nonfunctioning pituitary adenoma. PMID:21470998

  12. Effect of Preserving the Pituitary Stalk During Resection of Craniopharyngioma in Children on the Diabetes Insipidus and Relapse Rates and Long-Term Outcomes.

    PubMed

    Cheng, Jing; Fan, Yanqin; Cen, Bo

    2017-09-01

    The objective of this study was to investigate the effect of preserving an infiltrated pituitary stalk during the resection of craniopharyngioma of pituitary stalk origin on postoperative outcomes and thus provide a theoretical basis for microsurgical treatment and prognosis. We screened the clinical data of all 103 pediatric patients with craniopharyngioma undergoing surgical treatment at our department between January 2006 and January 2013 and conducted a retrospective analysis of 82 patients with craniopharyngioma originating in the pituitary stalk. The patients were followed up from 12 months to 8 years. We analyzed the effect of preserving the pituitary stalk on the early and persistent diabetes insipidus rates, postoperative relapse rate, and mortality. In the total resection group (n = 67), the early and persistent diabetes insipidus rates were significantly lower in the 46 patients (68.7%) with a pituitary stalk than in those whose pituitary stalk was removed (P < 0.05); no significant difference was observed in the relapse rate between the 2 subgroups (P > 0.05). In the subtotal resection group (n = 15), a significant difference was observed in the early and persistent diabetes insipidus rates (P < 0.05), but no significant difference was observed in the relapse rate between the patients with a pituitary stalk and those whose pituitary stalk was removed (P > 0.05). For children with craniopharyngioma of pituitary stalk origin, preserving the pituitary stalk has a significant effect on the early and persistent diabetes insipidus rates. When intraoperative exploration showed excessive adhesion between the tumor and pituitary stalk, we opted to preserve the pituitary stalk, which significantly reduced the early and persistent postoperative diabetes insipidus rates, without significantly increasing the relapse or mortality rate.

  13. Expression of Slug in S100β-protein-positive cells of postnatal developing rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yako, Hideji; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-02-01

    Among heterogeneous S100β-protein-positive (S100β-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100β-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100β-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100β-promoter has allowed us to observe living S100β-positive cells. In the present study, we first confirmed that living S100β-positive cells in tissue cultures of S100β-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100β-positive cells. Interestingly, we detected Slug expression in S100β-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100β-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100β-positive cells express Slug and that its expression is important for subsequent migration and proliferation.

  14. Intercellular communication within the rat anterior pituitary gland. XV. Properties of spontaneous and LHRH-induced Ca2+ transients in the transitional zone of the rat anterior pituitary in situ.

    PubMed

    Hattori, Kazuki; Shirasawa, Nobuyuki; Suzuki, Hikaru; Otsuka, Takanobu; Wada, Ikuo; Yashiro, Takashi; Herbert, Damon C; Soji, Tsuyoshi; Hashitani, Hikaru

    2013-01-01

    In the transitional zone of the rat anterior pituitary, spontaneous and LHRH-induced Ca(2+) dynamics were visualized using fluo-4 fluorescence Ca(2+) imaging. A majority of cells exhibited spontaneous Ca(2+) transients, while small populations of cells remained quiescent. Approximately 70% of spontaneously active cells generated fast, oscillatory Ca(2+) transients that were inhibited by cyclopiazonic acid (10 μm) but not nicardipine (1 μm), suggesting that Ca(2+) handling by endoplasmic reticulum, but not Ca(2+) influx through voltage-dependent L-type Ca(2+) channels, plays a fundamental role in their generation. In the adult rat anterior pituitary, LHRH (100 μg/ml) caused a transient increase in the Ca(2+) level in a majority of preparations taken from the morning group rats killed between 0930 h and 1030 h. However, the second application of LHRH invariably failed to elevate Ca(2+) levels, suggesting that the long-lasting refractoriness to LHRH stimulation was developed upon the first challenge of LHRH. In contrast, LHRH had no effect in most preparations taken from the afternoon group rats euthanized between 1200 h and 1400 h. In the neonatal rat anterior pituitary, LHRH caused a suppression of spontaneous Ca(2+) transients. Strikingly, the second application of LHRH was capable of reproducing the suppression of Ca(2+) signals, indicating that the refractoriness to LHRH had not been established in neonatal rats. These results suggest that responsiveness to LHRH has a long-term refractoriness in adult rats, and that the physiological LHRH surge may be clocked in the morning. Moreover, LHRH-induced excitation and associated refractoriness appear to be incomplete in neonatal rats and may be acquired during development.

  15. Postoperative Copeptin Concentration Predicts Diabetes Insipidus After Pituitary Surgery.

    PubMed

    Winzeler, Bettina; Zweifel, Christian; Nigro, Nicole; Arici, Birsen; Bally, Martina; Schuetz, Philipp; Blum, Claudine Angela; Kelly, Christopher; Berkmann, Sven; Huber, Andreas; Gentili, Fred; Zadeh, Gelareh; Landolt, Hans; Mariani, Luigi; Müller, Beat; Christ-Crain, Mirjam

    2015-06-01

    Copeptin is a stable surrogate marker of vasopressin release; the peptides are stoichiometrically secreted from the neurohypophysis due to elevated plasma osmolality or nonosmotic stress. We hypothesized that following stress from pituitary surgery, patients with neurohypophyseal damage and eventual diabetes insipidus (DI) would not exhibit the expected pronounced copeptin elevation. The objective was to evaluate copeptin's accuracy to predict DI following pituitary surgery. This was a prospective multicenter observational cohort study. Three Swiss or Canadian referral centers were used. Consecutive pituitary surgery patients were included. Copeptin was measured postoperatively daily until discharge. Logistic regression models and diagnostic performance measures were calculated to assess relationships of postoperative copeptin levels and DI. Of 205 patients, 50 (24.4%) developed postoperative DI. Post-surgically, median [25th-75th percentile] copeptin levels were significantly lower in patients developing DI vs those not showing this complication: 2.9 [1.9-7.9] pmol/L vs 10.8 [5.2-30.4] pmol/L; P < .001. Logistic regression analysis revealed strong association between postoperative copeptin concentrations and DI even after considering known predisposing factors for DI: adjusted odds ratio (95% confidence interval) 1.41 (1.16-1.73). DI was seen in 22/27 patients with copeptin <2.5 pmol/L (positive predictive value, 81%; specificity, 97%), but only 1/40 with copeptin >30 pmol/L (negative predictive value, 95%; sensitivity, 94%) on postoperative day 1. Lack of standardized DI diagnostic criteria; postoperative blood samples for copeptin obtained during everyday care vs at fixed time points. In patients undergoing pituitary procedures, low copeptin levels despite surgical stress reflect postoperative DI, whereas high levels virtually exclude it. Copeptin therefore may become a novel tool for early goal-directed management of postoperative DI.

  16. STRESS IN THE CLASSIFICATION OF PITUITARY TUMORS. FOCUS ON AGGRESSIVE PITUITARY ADENOMAS.

    PubMed

    Kovács, Kálmán; Rotondo, Fabio; Horváth, Eva; Syro, Luis V

    2014-03-30

    After a brief summary of the stress concept and the contribution of Dr. Hans Selye, this publication focuses on the classification of pituitary neoplasms and the difficulties to provide conclusive information on the prognosis of various pituitary tumor types. The term "aggressive pituitary tumors" was introduced. These tumors have a rapid cell proliferation rate. At present, the assessment of Ki-67 nuclear labeling index appears to be the simplest and most reliable method to evaluate tumor cell multiplication. Further studies on pituitary tumor biomarkers are needed.

  17. Altered Pituitary Gland Structure and Function in Posttraumatic Stress Disorder

    PubMed Central

    Bonert, Vivien; Moser, Franklin; Mirocha, James; Melmed, Shlomo

    2017-01-01

    Objectives: Posttraumatic stress disorder (PTSD) is associated with hypothalamus-pituitary-adrenal (HPA) axis response to stressors, but links to neurophysiological and neuroanatomical changes are unclear. The purpose of this study was to determine whether stress-induced cortisol alters negative feedback on pituitary corticotroph function and pituitary volume. Design: Prospective controlled study in an outpatient clinic. Methods: Subjects with PTSD and matched control subjects underwent pituitary volume measurement on magnetic resonance imaging, with pituitary function assessed by 24-hour urine free cortisol (UFC), 8:00 am cortisol, and adrenocorticotropic hormone (ACTH) levels, and ACTH levels after 2-day dexamethasone/corticotropin-releasing hormone test. Primary outcome was pituitary volume; secondary outcomes were ACTH area under the curve (AUC) and 24-hour UFC. Results: Thirty-nine subjects were screened and 10 subjects with PTSD were matched with 10 healthy control subjects by sex and age. Mean pituitary volume was 729.7 mm3 [standard deviation (SD), 227.3 mm3] in PTSD subjects vs 835.2 mm3 (SD, 302.8 mm3) in control subjects. ACTH AUC was 262.5 pg/mL (SD, 133.3 pg/mL) L in PTSD vs 244.0 pg/mL (SD, 158.3 pg/mL) in control subjects (P = 0.80). In PTSD subjects, UFC levels and pituitary volume inversely correlated with PTSD duration; pituitary volume correlated with ACTH AUC in control subjects (Pearson correlation coefficient, 0.88, P = 0.0009) but not in PTSD subjects. Conclusions: The HPA axis may be downregulated and dysregulated in people with PTSD, as demonstrated by discordant pituitary corticotroph function and pituitary volume vs intact HPA feedback and correlation of pituitary volume with ACTH levels in healthy control subjects. The results suggest a link between pituitary structure and function in PTSD, which may point to endocrine targeted therapeutic approaches. PMID:29264511

  18. Bone morphogenetic protein 4 and bone morphogenetic protein receptor expression in the pituitary gland of adult dogs in healthy condition and with ACTH-secreting pituitary adenoma.

    PubMed

    Sato, A; Ochi, H; Harada, Y; Yogo, T; Kanno, N; Hara, Y

    2017-01-01

    The purpose of this study was to investigate the expression of bone morphogenetic protein 4 (BMP4) and its receptors, bone morphogenetic protein receptor I (BMPRI) and BMPRII, in the pituitary gland of healthy adult dogs and in those with ACTH-secreting pituitary adenoma. Quantitative polymerase chain reaction analysis showed that the BMP4 messenger RNA expression level in the ACTH-secreting pituitary adenoma samples was significantly lower than that in the normal pituitary gland samples (P = 0.03). However, there were no statistically significant differences between samples with respect to the messenger RNA expression levels of the receptors BMPRIA, BMPRIB, and BMPRII. Double-immunofluorescence analysis of the normal canine pituitary showed that BMP4 was localized in the thyrotroph (51.3 ± 7.3%) and not the corticotroph cells. By contrast, BMPRII was widely expressed in the thyrotroph (19.9 ± 5.2%) and somatotroph cells (94.7 ± 3.6%) but not in the corticotroph cells (P < 0.001, thyrotroph cells vs somatotroph cells). Similarly, in ACTH-secreting pituitary adenoma, BMP4 and BMPRII were not expressed in the corticotroph cells. Moreover, the percentage of BMP4-positive cells was also significantly reduced in the thyrotroph cells of the surrounding normal pituitary tissue obtained from the resected ACTH-secreting pituitary adenoma (8.3 ± 7.9%) compared with that in normal canine pituitary (P < 0.001). BMP4 has been reported to be expressed in corticotroph cells in the human pituitary gland. Therefore, the results of this study reveal a difference in the cellular pattern of BMP4-positive staining in the pituitary gland between humans and dogs and further revealed the pattern of BMPRII-positive staining in the dog pituitary gland. These species-specific differences regarding BMP4 should be considered when using dogs as an animal model for Cushing's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Leptin Stimulates Prolactin mRNA Expression in the Goldfish Pituitary through a Combination of the PI3K/Akt/mTOR, MKK3/6/p38MAPK and MEK1/2/ERK1/2 Signalling Pathways.

    PubMed

    Yan, Aifen; Chen, Yanfeng; Chen, Shuang; Li, Shuisheng; Zhang, Yong; Jia, Jirong; Yu, Hui; Liu, Lian; Liu, Fang; Hu, Chaoqun; Tang, Dongsheng; Chen, Ting

    2017-12-20

    Leptin actions at the pituitary level have been extensively investigated in mammalian species, but remain insufficiently characterized in lower vertebrates, especially in teleost fish. Prolactin (PRL) is a pituitary hormone of central importance to osmoregulation in fish. Using goldfish as a model, we examined the global and brain-pituitary distribution of a leptin receptor (lepR) and examined the relationship between expression of lepR and major pituitary hormones in different pituitary regions. The effects of recombinant goldfish leptin-AI and leptin-AII on PRL mRNA expression in the pituitary were further analysed, and the mechanisms underlying signal transduction for leptin-induced PRL expression were determined by pharmacological approaches. Our results showed that goldfish lepR is abundantly expressed in the brain-pituitary regions, with highly overlapping PRL transcripts within the pituitary. Recombinant goldfish leptin-AI and leptin-AII proteins could stimulate PRL mRNA expression in dose- and time-dependent manners in the goldfish pituitary, by both intraperitoneal injection and primary cell incubation approaches. Moreover, the PI3K/Akt/mTOR, MKK 3/6 /p 38 MAPK, and MEK 1/2 /ERK 1/2 -but not JAK2/STAT 1, 3 and 5 cascades-were involved in leptin-induced PRL mRNA expression in the goldfish pituitary.

  20. Cloning, characterization, and physical mapping of the canine Prop-1 gene (PROP1): exclusion as a candidate for combined pituitary hormone deficiency in German shepherd dogs.

    PubMed

    Lantinga-van Leeuwen, I S; Kooistra, H S; Mol, J A; Renier, C; Breen, M; van Oost, B A

    2000-01-01

    Abnormalities in the genes encoding Pit-1 and Prop-1 have been reported to cause combined pituitary hormone deficiency (CPHD) in mice and humans. In dogs, a similar phenotype has been described in the German shepherd breed. We have previously reported that the Pit-1 gene (POU1F1) is not mutated in affected German shepherd dogs. In this study, we report the isolation and mapping of the canine Prop-1 gene (PROP1), and we assessed the involvement of PROP1 in German shepherd dog dwarfism. The canine PROP1 gene was found to contain three exons, encoding a 226 amino acid protein. The deduced amino acid sequence was 79% and 84% homologous with the mouse and human Prop-1 protein, respectively. Using fluorescence in situ hybridization, PROP1 was mapped to canine chromosome 11. Further mapping with a canine radiation hybrid panel showed co-localization with the polymorphic DNA marker AHT137. Sequence analysis of genomic DNA from dwarf German shepherd dogs revealed no alterations in the PROP1 gene. Moreover, linkage analysis of AHT137 revealed no co-segregation between the PROP1 locus and the CPHD phenotype, excluding this gene as candidate for canine CPHD and providing a new spontaneous model of hypopituitarism. Copyright 2000 S. Karger AG, Basel

  1. Pituitary Tumors Symptoms, Tests, Prognosis, and Stages (PDQ®)—Patient Version

    Cancer.gov

    Most pituitary tumors are benign (not cancer), and are called pituitary adenomas. These tumors make extra amounts of certain hormones. Find out about risk factors, signs and symptoms, and tests to diagnose pituitary tumors.

  2. Ultraviolet B irradiation of the mouse eye induces pigmentation of the skin more strongly than does stress loading, by increasing the levels of prohormone convertase 2 and α-melanocyte-stimulating hormone.

    PubMed

    Hiramoto, K; Yamate, Y; Kobayashi, H; Ishii, M; Sato, E F; Inoue, M

    2013-01-01

    In previous studies, we made the unexpected finding that in mice, ultraviolet (UV)B irradiation of the eye increased the concentration of α-melanocyte-stimulating hormone (α-MSH) in plasma, and systemically stimulated epidermal melanocytes. To compare the extent of the pigmentation induced by social and restraint stress (which activate the hippocampus-pituitary system) with that induced by UVB irradiation. DBA/2 and sham-operated or hypophysectomized DBA/2 mice were subjected to local UVB exposure using a sunlamp directed at the eye, and two types of stress (social and restraint) were imposed. UVB irradiation of the eye or exposure to stress loading both increased the number of Dopa-positive melanocytes in the epidermis, and hypophysectomy strongly inhibited the UVB-induced and stress-induced stimulation of melanocytes. Irradiation of the eye caused a much greater increase in dopamine than did the stress load. Both UVB eye irradiation and stress increased the blood levels of α-MSH and adrenocorticotropic hormone (ACTH). In addition, the increase in plasma α-MSH was greater in animals subjected to UVB eye irradiation than in those subjected to stress loading, whereas the reverse occurred for plasma ACTH. UVB irradiation to the eye and stress loading increased the expression of prohormone convertase (PC)1/3 and PC2 in the pituitary gland. The increase in expression of pituitary PC2 was greater in animals subjected to UVB eye irradiation than to stress, whereas no difference was seen between the two groups for the increase in PC1/3. UVB eye irradiation exerts a stronger effect on pigmentation than stress loading, and is related to increased levels of α-MSH and PC2. © The Author(s). CED © 2012 British Association of Dermatologists.

  3. 3,5-Diiodo-L-Thyronine (3,5-T2) Exerts Thyromimetic Effects on Hypothalamus-Pituitary-Thyroid Axis, Body Composition, and Energy Metabolism in Male Diet-Induced Obese Mice

    PubMed Central

    Lietzow, Julika; Wohlgemuth, Franziska; Hoefig, Carolin S.; Wiedmer, Petra; Schweizer, Ulrich; Köhrle, Josef; Schürmann, Annette

    2015-01-01

    Effective and safe antiobesity drugs are still needed in face of the obesity pandemic worldwide. Recent interventions in rodents revealed 3,5-diiodo-L-thyronine (3,5-T2) as a metabolically active iodothyronine affecting energy and lipid metabolism without thyromimetic side effects typically associated with T3 administration. Accordingly, 3,5-T2 has been proposed as a potential hypolipidemic agent for treatment of obesity and hepatic steatosis. In contrast to other observations, our experiments revealed dose-dependent thyromimetic effects of 3,5-T2 akin to those of T3 in diet-induced obese male C57BL/6J mice. 3,5-T2 treatment exerted a negative feedback regulation on the hypothalamus-pituitary-thyroid axis, similar to T3. This is demonstrated by decreased expression of genes responsive to thyroid hormones (TH) in pituitary resulting in a suppressed thyroid function with lower T4 and T3 concentrations in serum and liver of 3,5-T2-treated mice. Analyses of hepatic TH target genes involved in lipid metabolism revealed T3-like changes in gene expression and increased type I-deiodinase activity after application of 3,5-T2 (2.5 μg/g body weight). Reduced hepatic triglyceride and serum cholesterol concentrations reflected enhanced lipid metabolism. Desired increased metabolic rate and reduction of different fat depots were, however, compromised by increased food intake preventing significant body weight loss. Moreover, enlarged heart weights indicate potential cardiac side effects of 3,5-T2 beyond hepatic thyromimetic actions. Altogether, the observed thyromimetic effects of 3,5-T2 in several mouse TH target tissues raise concern about indiscriminate administration of 3,5-T2 as powerful natural hormone for the treatment of hyperlipidemia and pandemic obesity. PMID:25322465

  4. 3,5-Diiodo-L-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice.

    PubMed

    Jonas, Wenke; Lietzow, Julika; Wohlgemuth, Franziska; Hoefig, Carolin S; Wiedmer, Petra; Schweizer, Ulrich; Köhrle, Josef; Schürmann, Annette

    2015-01-01

    Effective and safe antiobesity drugs are still needed in face of the obesity pandemic worldwide. Recent interventions in rodents revealed 3,5-diiodo-L-thyronine (3,5-T2) as a metabolically active iodothyronine affecting energy and lipid metabolism without thyromimetic side effects typically associated with T3 administration. Accordingly, 3,5-T2 has been proposed as a potential hypolipidemic agent for treatment of obesity and hepatic steatosis. In contrast to other observations, our experiments revealed dose-dependent thyromimetic effects of 3,5-T2 akin to those of T3 in diet-induced obese male C57BL/6J mice. 3,5-T2 treatment exerted a negative feedback regulation on the hypothalamus-pituitary-thyroid axis, similar to T3. This is demonstrated by decreased expression of genes responsive to thyroid hormones (TH) in pituitary resulting in a suppressed thyroid function with lower T4 and T3 concentrations in serum and liver of 3,5-T2-treated mice. Analyses of hepatic TH target genes involved in lipid metabolism revealed T3-like changes in gene expression and increased type I-deiodinase activity after application of 3,5-T2 (2.5 μg/g body weight). Reduced hepatic triglyceride and serum cholesterol concentrations reflected enhanced lipid metabolism. Desired increased metabolic rate and reduction of different fat depots were, however, compromised by increased food intake preventing significant body weight loss. Moreover, enlarged heart weights indicate potential cardiac side effects of 3,5-T2 beyond hepatic thyromimetic actions. Altogether, the observed thyromimetic effects of 3,5-T2 in several mouse TH target tissues raise concern about indiscriminate administration of 3,5-T2 as powerful natural hormone for the treatment of hyperlipidemia and pandemic obesity.

  5. Suppression of the hypothalamic-pituitary-gonadal axis by TAK-385 (relugolix), a novel, investigational, orally active, small molecule gonadotropin-releasing hormone (GnRH) antagonist: studies in human GnRH receptor knock-in mice.

    PubMed

    Nakata, Daisuke; Masaki, Tsuneo; Tanaka, Akira; Yoshimatsu, Mie; Akinaga, Yumiko; Asada, Mari; Sasada, Reiko; Takeyama, Michiyasu; Miwa, Kazuhiro; Watanabe, Tatsuya; Kusaka, Masami

    2014-01-15

    TAK-385 (relugolix) is a novel, non-peptide, orally active gonadotropin-releasing hormone (GnRH) antagonist, which builds on previous work with non-peptide GnRH antagonist TAK-013. TAK-385 possesses higher affinity and more potent antagonistic activity for human and monkey GnRH receptors compared with TAK-013. Both TAK-385 and TAK-013 have low affinity for the rat GnRH receptor, making them difficult to evaluate in rodent models. Here we report the human GnRH receptor knock-in mouse as a humanized model to investigate pharmacological properties of these compounds on gonadal function. Twice-daily oral administration of TAK-013 (10mg/kg) for 4 weeks decreased the weights of testes and ventral prostate in male knock-in mice but not in male wild-type mice, demonstrating the validity of this model to evaluate antagonists for the human GnRH receptor. The same dose of TAK-385 also reduced the prostate weight to castrate levels in male knock-in mice. In female knock-in mice, twice-daily oral administration of TAK-385 (100mg/kg) induced constant diestrous phases within the first week, decreased the uterus weight to ovariectomized levels and downregulated GnRH receptor mRNA in the pituitary after 4 weeks. Gonadal function of TAK-385-treated knock-in mice began to recover after 5 days and almost completely recovered within 14 days after drug withdrawal in both sexes. Our findings demonstrate that TAK-385 acts as an antagonist for human GnRH receptor in vivo and daily oral administration potently, continuously and reversibly suppresses the hypothalamic-pituitary-gonadal axis. TAK-385 may provide useful therapeutic interventions in hormone-dependent diseases including endometriosis, uterine fibroids and prostate cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Three-dimensional magnetic resonance volumetry of the pituitary gland is effective in detecting short stature in children

    PubMed Central

    HAN, XUE; XIU, JIANJUN; HUANG, ZHAOQIN; ZHANG, JIE; ZHANG, ZHONGHE; DONG, YIN; YUAN, XIANSHUN; LIU, QINGWEI

    2014-01-01

    The aim of the present study was to obtain standard reference values for the pituitary gland volumes of healthy children and to analyze the potential diagnostic values of pituitary gland volumetry for growth hormone deficiency (GHD) and idiopathic short stature (ISS). The volume of the pituitary gland was measured using a thin-section three-dimensional (3D) magnetic resonance imaging (MRI) sequence of magnetization-prepared rapid gradient echo imaging with a section thickness of 1 mm. A group of 75 healthy children aged between 1 and 19 years were recruited to obtain normal volumetry values of the pituitary gland. These individuals demonstrated no evidence of abnormalities to the central nervous or endocrine systems prior to the study. An additional group of 55 children with GHD (n=32) or ISS (n=23) aged between 0 and 14 years were included in the measurement of pituitary gland volume and height. The Student’s t-test was used to evaluate the repetition test, while Pearson’s correlation coefficient and regression analyses were performed to examine the correlations between the volume and height of the pituitary glands. Pituitary gland volume and height demonstrated an increasing trend with age in the healthy children. In addition, the pituitary gland volume exhibited a growth spurt in the early teenage years (10–14 years-old), which was more prominent in females. The growth spurt was not observed for pituitary gland height. When compared with the healthy children, 65.6% of the children with GHD and 34.8% of the children with ISS had smaller pituitary gland volumes. Similarly, 37.5% of the children with GHD and 26.1% of the children with ISS had a smaller pituitary gland height compared with the healthy children. The pituitary gland volume performed significantly better compared with height with regard to the detection rate. Therefore, the results indicated that 3D MRI volumetry was useful for understanding the developmental characteristics of the pituitary gland in healthy children, and that the reference data provided by 3D MRI were effective in the diagnosis of short stature following associations with neuroimaging and clinical functional abnormalities of the pituitary gland. PMID:25009618

  7. Three-dimensional magnetic resonance volumetry of the pituitary gland is effective in detecting short stature in children.

    PubMed

    Han, Xue; Xiu, Jianjun; Huang, Zhaoqin; Zhang, Jie; Zhang, Zhonghe; Dong, Yin; Yuan, Xianshun; Liu, Qingwei

    2014-08-01

    The aim of the present study was to obtain standard reference values for the pituitary gland volumes of healthy children and to analyze the potential diagnostic values of pituitary gland volumetry for growth hormone deficiency (GHD) and idiopathic short stature (ISS). The volume of the pituitary gland was measured using a thin-section three-dimensional (3D) magnetic resonance imaging (MRI) sequence of magnetization-prepared rapid gradient echo imaging with a section thickness of 1 mm. A group of 75 healthy children aged between 1 and 19 years were recruited to obtain normal volumetry values of the pituitary gland. These individuals demonstrated no evidence of abnormalities to the central nervous or endocrine systems prior to the study. An additional group of 55 children with GHD (n=32) or ISS (n=23) aged between 0 and 14 years were included in the measurement of pituitary gland volume and height. The Student's t-test was used to evaluate the repetition test, while Pearson's correlation coefficient and regression analyses were performed to examine the correlations between the volume and height of the pituitary glands. Pituitary gland volume and height demonstrated an increasing trend with age in the healthy children. In addition, the pituitary gland volume exhibited a growth spurt in the early teenage years (10-14 years-old), which was more prominent in females. The growth spurt was not observed for pituitary gland height. When compared with the healthy children, 65.6% of the children with GHD and 34.8% of the children with ISS had smaller pituitary gland volumes. Similarly, 37.5% of the children with GHD and 26.1% of the children with ISS had a smaller pituitary gland height compared with the healthy children. The pituitary gland volume performed significantly better compared with height with regard to the detection rate. Therefore, the results indicated that 3D MRI volumetry was useful for understanding the developmental characteristics of the pituitary gland in healthy children, and that the reference data provided by 3D MRI were effective in the diagnosis of short stature following associations with neuroimaging and clinical functional abnormalities of the pituitary gland.

  8. Identification of differentially expressed genes in the zebrafish hypothalamus - pituitary axis

    PubMed Central

    Toro, Sabrina; Wegner, Jeremy; Muller, Marc; Westerfield, Monte; Varga, Zoltan M.

    2009-01-01

    The vertebrate hypothalamic-pituitary axis (HP) is the main link between the central nervous system and endocrine system. Although several signal pathways and regulatory genes have been implicated in adenohypophysis ontogenesis, little is known about hypothalamic and neurohypophysial development or when the HP matures and becomes functional. To identify markers of the HP, we constructed subtractive cDNA libraries between adult zebrafish hypothalamus and pituitary. We identified previously published genes and ESTs and novel zebrafish genes, some of which were predicted by genomic database analysis. We also analyzed expression patterns of these genes and found that several are expressed in the embryonic and larval hypothalamus, neurohypophysis, and/or adenohypophysis. Expression at these stages makes these genes useful markers to study HP maturation and function. PMID:19166982

  9. Pituitary pars intermedia dysfunction (equine Cushing’s disease) in a Thoroughbred stallion: a single report

    PubMed Central

    HATAZOE, Takashi; KAWAGUCHI, Hiroaki; HOBO, Seiji; MISUMI, Kazuhiro

    2016-01-01

    ABSTRACT Equine pituitary pars intermedia dysfunction (PPID) generally occurs in older horses showing hirsutism, delayed molting, weight loss, polydipsia, polyuria, laminitis, and reproductive disorders (in broodmares), but there have been no reports on stallions. This report presents a case of a 21-year-old Thoroughbred stallion that developed hirsutism and experienced delayed molting. There were no abnormal findings for semen quality or the stallion’s sexual desire. The horse was diagnosed with PPID based on dexamethasone suppression test and plasma levels of adrenocorticotropic hormone. It was then medicated with pergolide mesylate. Since the horse died due to humerus fracture, an autopsy was conducted, and pituitary adenoma was confirmed. No pathological findings were defined in the testicles; therefore, reproductive activity might not have been impaired. PMID:26858577

  10. The thyroid axis in ageing.

    PubMed

    Leitol, Holger; Behrends, Jens; Brabant, Georg

    2002-01-01

    The hypothalmo-pituitary thyroid axis, among various endocrine systems, undergoes physiological alterations associated with the ageing process. Directly age-related changes have to be distinguished from indirect modifications which are caused by simultaneous thyroidal or non-thyroidal illness or other physiological or pathophysiological states whose incidence increases with age. In summary, direct changes of the hypothalmo-pituitary-thyroid axis seem to be subtle and suggestive of a decreased hypothalamic stimulation of thyroid function. In parallel, disease-specific alterations such as the development of thyroid autonomy or changes in energy intake or sleep lead to pronounced alterations of thyroid function with age which may dominate the underlying ageing of the hypothalmo-pituitary thyroid axis itself. The following article attempts to delineate some aspects of the interplay of the regulation of thyroid function and the ageing process.

  11. Advances in understanding hypopituitarism

    PubMed Central

    Stieg, Mareike R.; Renner, Ulrich; Stalla, Günter K.; Kopczak, Anna

    2017-01-01

    The understanding of hypopituitarism has increased over the last three years. This review provides an overview of the most important recent findings. Most of the recent research in hypopituitarism has focused on genetics. New diagnostic techniques like next-generation sequencing have led to the description of different genetic mutations causative for congenital dysfunction of the pituitary gland while new molecular mechanisms underlying pituitary ontogenesis have also been described. Furthermore, hypopituitarism may occur because of an impairment of the distinctive vascularization of the pituitary gland, especially by disruption of the long vessel connection between the hypothalamus and the pituitary. Controversial findings have been published on post-traumatic hypopituitarism. Moreover, autoimmunity has been discussed in recent years as a possible reason for hypopituitarism. With the use of new drugs such as ipilimumab, hypopituitarism as a side effect of pharmaceuticals has come into focus. Besides new findings on the pathomechanism of hypopituitarism, there are new diagnostic tools in development, such as new growth hormone stimulants that are currently being tested in clinical trials. Moreover, cortisol measurement in scalp hair is a promising tool for monitoring cortisol levels over time. PMID:28299199

  12. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant.

    PubMed

    Struthers, R S; Vale, W W; Arias, C; Sawchenko, P E; Montminy, M R

    1991-04-18

    Most of the transcriptional effects of cyclic AMP are mediated by the cAMP response element binding protein (CREB). After activation of cAMP-dependent protein kinase A, the catalytic subunits of this enzyme apparently mediate the phosphorylation and activation of CREB. As cAMP serves as a mitogenic signal for anterior pituitary somatotrophic cells, we investigated whether CREB similarly regulates proliferation of these cells. We prepared transgenic mice expressing a transcriptionally inactive mutant of CREB (CREBM1), which cannot be phosphorylated, in cells of the anterior pituitary. If CREB activity is required for proliferation, the overexpressed mutant protein would effectively compete with wild-type CREB activity and thereby block the response to cAMP. As predicted, the CREBM1 transgenic mice exhibited a dwarf phenotype with atrophied pituitary glands markedly deficient in somatotroph but not other cell types. We conclude that transcriptional activation of CREB is necessary for the normal development of a highly restricted cell type, and that environmental cues, possibly provided by the hypothalamic growth hormone-releasing factor, are necessary for population of the pituitary by somatotrophic cells.

  13. Gigantism associated with a pituitary tumour secreting growth hormone and prolactin and cured by transsphenoidal hypophysectomy.

    PubMed

    Favre, L; Rogers, L M; Cobb, C A; Rabin, D

    1979-06-01

    An 18-year old male is reported who presented with a history of a growtn spurt over the year preceding his admission. His height was above the 97th percentile, and he had incompletely developed secondary sexual characters. Pituitary evaluation demonstrated a moderately elevated level of growth hormone (hGH) not suppressible by a glucose load and not stimulable by TRH or by L-DOPA. Serum prolactin (PRL) concentration was also increased while gonadotrophin, thyroid and adrenal function were all subnormal. There was clear radiological evidence of a large pituitary tumour with suprasellar extension and transsphenoidal total hypophysectomy was performed. A mixed chromophobe and acidophilic adenoma was found and both growth hormone and prolactin were demonstrable in different cells of the tumour by the immunoperoxidase technique. Post-operatively the patient has hypopituitarism and levels of growth hormone and prolactin have remained low or undetectable after 6 months. Thus early diagnosis and surgical treatment of gigantism of this mixed hGH-PRL secreting pituitary tumour was associated with a cure, which contrasts with the unfavourable outcome of many of the patients previously reported.

  14. Autocrine IL-6 mediates pituitary tumor senescence

    PubMed Central

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  15. Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages.

    PubMed

    Li, Qing; Hegge, Raquel; Bridges, Phillip J; Matthews, James C

    2017-01-01

    Consumption of ergot alkaloid-containing tall fescue grass impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis." Despite the apparent association between pituitary function and these physiological parameters, including depressed serum prolactin; no reports describe the effect of fescue toxicosis on pituitary genomic expression profiles. To identify candidate regulatory mechanisms, we compared the global and selected targeted mRNA expression patterns of pituitaries collected from beef steers that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of a high-toxic endophyte-infected tall fescue pasture (HE; 0.746 μg/g ergot alkaloids; 5.7 ha; n = 10; BW = 267 ± 14.5 kg) or a low-toxic endophyte tall fescue-mixed pasture (LE; 0.023 μg/g ergot alkaloids; 5.7 ha; n = 9; BW = 266 ± 10.9 kg). As previously reported, in the HE steers, serum prolactin and body weights decreased and a potential for hepatic gluconeogenesis from amino acid-derived carbons increased. In this manuscript, we report that the pituitaries of HE steers had 542 differentially expressed genes (P < 0.001, false discovery rate ≤ 4.8%), and the pattern of altered gene expression was dependent (P < 0.001) on treatment. Integrated Pathway Analysis revealed that canonical pathways central to prolactin production, secretion, or signaling were affected, in addition to those related to corticotropin-releasing hormone signaling, melanocyte development, and pigmentation signaling. Targeted RT-PCR analysis corroborated these findings, including decreased (P < 0.05) expression of DRD2, PRL, POU1F1, GAL, and VIP and that of POMC and PCSK1, respectively. Canonical pathway analysis identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. We conclude that consumption of endophyte-infected tall fescue alters the pituitary transcriptome profiles of steers in a manner consistent with their negatively affected physiological parameters.

  16. The PTTG1-targeting miRNAs miR-329, miR-300, miR-381, and miR-655 inhibit pituitary tumor cell tumorigenesis and are involved in a p53/PTTG1 regulation feedback loop

    PubMed Central

    Diao, Cai-feng; Li, Jian-wei; Su, Jing-liang; Zhang, Sai

    2015-01-01

    Deregulation of the pituitary tumor transforming gene (PTTG1), a newly discovered oncogene, is a hallmark of various malignancies, including pituitary tumors. However, the mechanisms regulating PTTG1 expression are still needed to be explored. MicroRNAs (miRNAs) are a novel class of small RNA molecules that act as posttranscriptional regulators of gene expression and can play a significant role in tumor development. Here, we identified a series of miRNAs, namely, miR-329, miR-300, miR-381 and miR-655, which could target PTTG1 messenger RNA and inhibit its expression. Interestingly, all four miRNAs significantly that are downregulated in pituitary tumors were mapped to the 14q32.31 locus, which acts as a tumor suppressor in several cancers. Functional studies show that the PTTG1-targeting miRNAs inhibit proliferation, migration and invasion but induce apoptosis in GH3 and MMQ cells. Furthermore, overexpression of a PTTG1 expression vector lacking the 3′UTR partially reverses the tumor suppressive effects of these miRNAs. Next, we identified the promoter region of PTTG1-targeting miRNAs with binding sites for p53. In our hands, p53 transcriptionally activated the expression of these miRNAs in pituitary tumor cells. Finally, we found that PTTG1 could inhibit p53 transcriptional activity to the four miRNAs. These data indicate the existence of a feedback loop between PTTG1 targeting miRNAs, PTTG1 and p53 that promotes pituitary tumorigenesis. Together, these findings suggest that these PTTG1-targeting miRNAs are important players in the regulation of pituitary tumorigenesis and that these miRNAs may serve as valuable therapeutic targets for cancer treatment. PMID:26320179

  17. α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK

    PubMed Central

    Enriori, Pablo J.; Jensen, Thomas Elbenhardt; Garcia-Rudaz, Cecilia; Litwak, Sara A.; Raun, Kirsten; Wojtaszewski, Jørgen; Wulff, Birgitte Schjellerup; Cowley, Michael A.

    2016-01-01

    The melanocortin system includes five G-protein coupled receptors (family A) defined as MC1R-MC5R, which are stimulated by endogenous agonists derived from proopiomelanocortin (POMC). The melanocortin system has been intensely studied for its central actions in body weight and energy expenditure regulation, which are mainly mediated by MC4R. The pituitary gland is the source of various POMC-derived hormones released to the circulation, which raises the possibility that there may be actions of the melanocortins on peripheral energy homeostasis. In this study, we examined the molecular signaling pathway involved in α-MSH-stimulated glucose uptake in differentiated L6 myotubes and mouse muscle explants. In order to examine the involvement of AMPK, we investigate α-MSH stimulation in both wild type and AMPK deficient mice. We found that α-MSH significantly induces phosphorylation of TBC1 domain (TBC1D) family member 1 (S237 and T596), which is independent of upstream PKA and AMPK. We find no evidence to support that α-MSH-stimulated glucose uptake involves TBC1D4 phosphorylation (T642 and S704) or GLUT4 translocation. PMID:27467141

  18. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors.

    PubMed

    Hill, Alexis S; Sahay, Amar; Hen, René

    2015-09-01

    Adult hippocampal neurogenesis is increased by antidepressants, and is required for some of their behavioral effects. However, it remains unclear whether expanding the population of adult-born neurons is sufficient to affect anxiety and depression-related behavior. Here, we use an inducible transgenic mouse model in which the pro-apoptotic gene Bax is deleted from neural stem cells and their progeny in the adult brain, and thereby increases adult neurogenesis. We find no effects on baseline anxiety and depression-related behavior; however, we find that increasing adult neurogenesis is sufficient to reduce anxiety and depression-related behaviors in mice treated chronically with corticosterone (CORT), a mouse model of stress. Thus, neurogenesis differentially affects behavior under baseline conditions and in a model of chronic stress. Moreover, we find no effect of increased adult hippocampal neurogenesis on hypothalamic-pituitary-adrenal (HPA) axis regulation, either at baseline or following chronic CORT administration, suggesting that increasing adult hippocampal neurogenesis can affect anxiety and depression-related behavior through a mechanism independent of the HPA axis. The use of future techniques to specifically inhibit BAX in the hippocampus could be used to augment adult neurogenesis, and may therefore represent a novel strategy to promote antidepressant-like behavioral effects.

  19. A pediatric case of pituitary macroadenoma presenting with pituitary apoplexy and cranial nerve involvement: case report

    PubMed Central

    Özçetin, Mustafa; Karacı, Mehmet; Toroslu, Ertuğ; Edebali, Nurullah

    2016-01-01

    Pituitary adenomas usually arise from the anterior lobe of the pituitary gland and are manifested with hormonal disorders or mass effect. Mass effect usually occurs in nonfunctional tumors. Pituitary adenomas may be manifested with visual field defects or rarely in the form of total oculomotor palsy. Visual field defect is most frequently in the form of bitemporal hemianopsia and superior temporal defect. Sudden loss of vision, papilledema and ophthalmoplegia may be observed. Pituitary apoplexy is defined as an acute clinical syndrome characterized with headache, vomiting, loss of vision, ophthalmoplegia and clouding of consciousness. The problem leading to pituitary apoplexy may be decreased blood supply in the adenoma and hemorrhage following this decrease or hemorrhage alone. In this article, we present a patient who presented with fever, vomiting and sudden loss of vision and limited outward gaze in the left eye following trauma and who was found to have pituitary macroadenoma causing compression of the optic chiasma and optic nerve on the left side on cranial and pituitary magnetic resonance imaging. PMID:27738402

  20. STRESS RISK FACTORS AND STRESS-RELATED PATHOLOGY: NEUROPLASTICITY, EPIGENETICS AND ENDOPHENOTYPES

    PubMed Central

    Radley, Jason J.; Kabbaj, Mohamed; Jacobson, Lauren; Heydendael, Willem; Yehuda, Rachel; Herman, James P.

    2013-01-01

    This review highlights a symposium on stress risk factors and stress susceptibility, presented at the Neurobiology of Stress workshop in Boulder, Colorado, June 2010. This symposium addressed factors linking stress plasticity and reactivity to stress pathology in animal models and in humans. Dr. Jason Radley discussed studies demonstrating prefrontal cortical neuroplasticity and prefrontal control of hypothalamo-pituitary-adrenocortical axis function in rat, highlighting emerging evidence for a critical role of this region in normal and pathological stress integration. Dr. Mohamed Kabbaj summarized his studies of possible epigenetic mechanisms underlying behavioral differences in rat populations bred for differential stress reactivity. Dr. Lauren Jacobson described studies using a mouse model to explore the diverse actions of antidepressant action in brain, suggesting mechanisms whereby antidepressants may be differentially effective in treating specific depression endophenotypes. Dr. Rachel Yehuda discussed the role of glucocorticoids in post-traumatic stress disorder (PTSD), indicating that low cortisol may be a trait that predisposes the individual to development of the disorder. Furthermore, she presented evidence indicating that traumatic events can have transgenerational impact on cortisol reactivity and development of PTSD symptoms. Together, the symposium highlighted emerging themes regarding the role of brain reorganization, individual differences and epigenetics in determining stress plasticity and pathology. PMID:21848436

  1. Longitudinal volume changes of the pituitary gland in patients with schizotypal disorder and first-episode schizophrenia.

    PubMed

    Takahashi, Tsutomu; Zhou, Shi-Yu; Nakamura, Kazue; Tanino, Ryoichiro; Furuichi, Atsushi; Kido, Mikio; Kawasaki, Yasuhiro; Noguchi, Kyo; Seto, Hikaru; Kurachi, Masayoshi; Suzuki, Michio

    2011-01-15

    An enlarged volume of the pituitary gland has been reported in the schizophrenia spectrum, possibly reflecting the hypothalamic-pituitary-adrenal (HPA) hyperactivity. However, it remains largely unknown whether the pituitary size longitudinally changes in the course of the spectrum disorders. In the present study, longitudinal magnetic resonance imaging (MRI) data were obtained from 18 patients with first-episode schizophrenia, 13 patients with schizotypal disorder, and 20 healthy controls. The pituitary volume was measured at baseline and follow-up (mean, 2.7 years) scans and was compared across groups. The pituitary volume was larger in the schizophrenia patients than controls at baseline, and both patient groups had significantly larger pituitary volume than controls at follow-up. In a longitudinal comparison, both schizophrenia (3.6%/year) and schizotypal (2.7%/year) patients showed significant pituitary enlargement compared with controls (-1.8%/year). In the schizophrenia patients, greater pituitary enlargement over time was associated with less improvement of delusions and higher scores for thought disorders at the follow-up. These findings suggest that the pituitary gland exhibits ongoing volume changes during the early course of the schizophrenia spectrum as a possible marker of state-related impairments. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Emerging Targets in Pituitary Adenomas: Role of the CXCL12/CXCR4-R7 System.

    PubMed

    Barbieri, Federica; Thellung, Stefano; Würth, Roberto; Gatto, Federico; Corsaro, Alessandro; Villa, Valentina; Nizzari, Mario; Albertelli, Manuela; Ferone, Diego; Florio, Tullio

    2014-01-01

    Chemokines are chemotactic regulators of immune surveillance in physiological and pathological conditions such as inflammation, infection, and cancer. Several chemokines and cognate receptors are constitutively expressed in the central nervous system, not only in glial and endothelial cells but also in neurons, controlling neurogenesis, neurite outgrowth, and axonal guidance during development. In particular, the chemokine CXCL12 and its receptors, CXCR4 and CXCR7, form a functional network that controls plasticity in different brain areas, influencing neurotransmission, neuromodulation, and cell migration, and the dysregulation of this chemokinergic axis is involved in several neurodegenerative, neuroinflammatory, and malignant diseases. CXCR4 primarily mediates the transduction of proliferative signals, while CXCR7 seems to be mainly responsible for scavenging CXCL12. Importantly, the multiple intracellular signalling generated by CXCL12 interaction with its receptors influences hypothalamic modulation of neuroendocrine functions, although a direct modulation of pituitary functioning via autocrine/paracrine mechanisms was also reported. Both CXCL12 and CXCR4 are constitutively overexpressed in pituitary adenomas and their signalling induces cell survival and proliferation, as well as hormonal hypersecretion. In this review we focus on the physiological and pathological functions of immune-related cyto- and chemokines, mainly focusing on the CXCL12/CXCR4-7 axis, and their role in pituitary tumorigenesis. Accordingly, we discuss the potential targeting of CXCR4 as novel pharmacological approach for pituitary adenomas.

  3. T cell lymphoblastic lymphoma/leukemia within an adrenocorticotropic hormone and thyroid stimulating hormone positive pituitary adenoma: A cytohistological correlation emphasizing importance of intra-operative squash smear.

    PubMed

    Gupta, Rakesh K; Saran, Ravindra K; Srivastava, Arvind K; Jagetia, Anita; Garg, Lalit; Sharma, Mehar C

    2017-08-01

    We present a rare case of primary pituitary T cell lymphoma/leukemia (T-LBL) in association with adrenocorticotropic hormone (ACTH) and thyroid stimulating hormone (TSH) expressing pituitary adenoma in a 55-year-old woman highlighting the importance of intra-operative squash smears examination. The patient presented with complaints of headache, diminution of vision and recent onset altered sensorium. MRI revealed a mass lesion in the sellar-suprasellar region with non-visualization of pituitary gland separately, extending to involve adjacent structures diagnosed as invasive pituitary macroadenoma. Intra-operative tissue was sent for squash smear examination. The cytology showed a tumor comprising of sheets of immature lymphoid cells intermixed with clusters of pituitary acinar cells with many mitoses and tingible body macrophages. A diagnosis of presence of immature lymphoid cells within the pituitary was offered and differentials of infiltration by lymphoma cells from systemic disease versus primary central nervous lymphoma-like lymphoma arising in the pituitary adenoma were considered. Later paraffin section examination and immunohistochemistry corroborated with the squash findings and a final diagnosis of primary pituitary T cell lymphoma/leukemia in association with ACTH and TSH expressing pituitary adenoma was made. To date, only six cases of primary pituitary T cell lymphomas, including three T-LBL cases, have been reported. This is the seventh case and first one additionally describing cytohistological correlation and importance of intra-operative cytology. © 2017 Japanese Society of Neuropathology.

  4. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.

    PubMed

    Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi

    2014-06-01

    We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.

  5. Antiapoptotic Factor Humanin Is Expressed in Normal and Tumoral Pituitary Cells and Protects Them from TNF-α-Induced Apoptosis

    PubMed Central

    Magri, María Laura; Zárate, Sandra; Moreno Ayala, Mariela; Ferraris, Jimena; Eijo, Guadalupe; Pisera, Daniel; Candolfi, Marianela; Seilicovich, Adriana

    2014-01-01

    Humanin (HN) is a 24-amino acid peptide with cytoprotective action in several cell types such as neurons and testicular germ cells. Rattin (HNr), a homologous peptide of HN expressed in several adult rat tissues, also has antiapoptotic action. In the present work, we demonstrated by immunocytochemical analysis and flow cytometry the expression of HNr in the anterior pituitary of female and male adult rats as well as in pituitary tumor GH3 cells. HNr was localized in lactotropes and somatotropes. The expression of HNr was lower in females than in males, and was inhibited by estrogens in pituitary cells from both ovariectomized female and orquidectomized male rats. However, the expression of HNr in pituitary tumor cells was not regulated by estrogens. We also evaluated HN action on the proapoptotic effect of TNF-α in anterior pituitary cells assessed by the TUNEL method. HN (5 µM) per se did not modify basal apoptosis of anterior pituitary cells but completely blocked the proapoptotic effect of TNF-α in total anterior pituitary cells, lactotropes and somatotropes from both female and male rats. Also, HN inhibited the apoptotic effect of TNF-α on pituitary tumor cells. In summary, our results demonstrate that HNr is present in the anterior pituitary gland, its expression showing sexual dimorphism, which suggests that gonadal steroids may be involved in the regulation of HNr expression in this gland. Antiapoptotic action of HN in anterior pituitary cells suggests that this peptide could be involved in the homeostasis of this gland. HNr is present and functional in GH3 cells, but it lacks regulation by estrogens, suggesting that HN could participate in the pathogenesis of pituitary tumors. PMID:25360890

  6. Surgical Management of Carney Complex-Associated Pituitary Pathology.

    PubMed

    Lonser, Russell R; Mehta, Gautam U; Kindzelski, Bogdan A; Ray-Chaudhury, Abhik; Vortmeyer, Alexander O; Dickerman, Robert; Oldfield, Edward H

    2017-05-01

    Carney complex (CNC) is a familial neoplasia syndrome that is associated with pituitary-associated hypersecretion of growth hormone (GH) (acromegaly). The underlying cause of pituitary GH hypersecretion and its management have been incompletely defined. To provide biological insight into CNC-associated pituitary pathology and improve management, we analyzed findings in CNC patients who underwent transsphenoidal surgery. Consecutive CNC patients at the National Institutes of Health with acromegaly and imaging evidence of a pituitary adenoma(s) who underwent transsphenoidal resection of tumor(s) were included. Prospectively acquired magnetic resonance imaging and biochemical, surgical, and histological data were analyzed. Seven acromegalic CNC patients (2 male, 5 female) were included. The mean age at surgery was 29.7 years (range, 18-44 years). The mean follow-up was 4.7 years (range, 0.2-129 months). Magnetic resonance imaging revealed a single pituitary adenoma in 4 patients and multiple pituitary adenomas in 3 patients. Whereas patients with single discrete pituitary adenomas underwent selective adenomectomy, patients with multiple adenomas underwent selective adenomectomy of multiple tumors, as well as partial or total hypophysectomy. All adenomas were either GH and prolactin positive or exclusively prolactin positive. Pituitary tissue surrounding the adenomas in patients with multiple adenomas revealed hyperplastic GH- and prolactin-positive tissue. CNC-associated acromegaly results from variable pituitary pathology, including a single GH-secreting adenoma or multiple GH-secreting adenomas and/or GH hypersecretion of the pituitary gland surrounding multiple adenomas. Although selective adenomectomy is the preferred treatment for cases of GH-secreting adenomas, multiple adenomas with associated pituitary gland GH hypersecretion may require partial or complete hypophysectomy to achieve biochemical remission. Copyright © 2017 by the Congress of Neurological Surgeons

  7. Pituitary imaging findings in male patients with hypogonadotrophic hypogonadism.

    PubMed

    Hirsch, Dania; Benbassat, Carlos; Toledano, Yoel; S'chigol, Irena; Tsvetov, Gloria; Shraga-Slutzky, Ilana; Eizenberg, Yoav; Shimon, Ilan

    2015-08-01

    Data on pituitary imaging in adult male patients presenting with hypogonadotrophic hypogonadism (HH) and no known pituitary disease are scarce. To assess the usefulness of pituitary imaging in the evaluation of men presenting with HH after excluding known pituitary disorders and hyperprolactinemia. A historical prospective cohort of males with HH. Men who presented for endocrine evaluation from 2011 to 2014 with testosterone levels <10.4 nmol/L (300 ng/mL), normal LH and FSH levels and no known pituitary disease. Seventy-five men were included in the analysis. Their mean age and BMI were 53.4 ± 14.8 years and 30.7 ± 5.2 kg/m2, respectively. Mean total testosterone, LH, and FSH were 6.2 ± 1.7 nmol/L, 3.4 ± 2 and 4.7 ± 3.1 mIU/L, respectively. Prolactin level within the normal range was obtained in all men (mean 161 ± 61, range 41-347 mIU/L). Sixty-two men had pituitary MRI and 13 performed CT. In 61 (81.3%) men pituitary imaging was normal. Microadenoma was found in 8 (10.7%), empty sella and thickened pituitary stalk in one patient (1.3%) each. In other four patients (5.3%) a small or mildly asymmetric pituitary gland was noted. No correlation was found between testosterone level and the presence of pituitary anomalies. This study suggests that the use of routine hypothalamic-pituitary imaging in the evaluation of IHH, in the absence of clinical characteristics of other hormonal loss or sellar compression symptoms, will not increase the diagnostic yield of sellar structural abnormalities over that reported in the general population.

  8. Surgical Management of Carney Complex–Associated Pituitary Pathology

    PubMed Central

    Mehta, Gautam U.; Kindzelski, Bogdan A.; Ray-Chaudhury, Abhik; Vortmeyer, Alexander O.; Dickerman, Robert; Oldfield, Edward H.

    2017-01-01

    Abstract BACKGROUND: Carney complex (CNC) is a familial neoplasia syndrome that is associated with pituitary-associated hypersecretion of growth hormone (GH) (acromegaly). The underlying cause of pituitary GH hypersecretion and its management have been incompletely defined. OBJECTIVE: To provide biological insight into CNC-associated pituitary pathology and improve management, we analyzed findings in CNC patients who underwent transsphenoidal surgery. METHODS: Consecutive CNC patients at the National Institutes of Health with acromegaly and imaging evidence of a pituitary adenoma(s) who underwent transsphenoidal resection of tumor(s) were included. Prospectively acquired magnetic resonance imaging and biochemical, surgical, and histological data were analyzed. RESULTS: Seven acromegalic CNC patients (2 male, 5 female) were included. The mean age at surgery was 29.7 years (range, 18-44 years). The mean follow-up was 4.7 years (range, 0.2-129 months). Magnetic resonance imaging revealed a single pituitary adenoma in 4 patients and multiple pituitary adenomas in 3 patients. Whereas patients with single discrete pituitary adenomas underwent selective adenomectomy, patients with multiple adenomas underwent selective adenomectomy of multiple tumors, as well as partial or total hypophysectomy. All adenomas were either GH and prolactin positive or exclusively prolactin positive. Pituitary tissue surrounding the adenomas in patients with multiple adenomas revealed hyperplastic GH- and prolactin-positive tissue. CONCLUSION: CNC-associated acromegaly results from variable pituitary pathology, including a single GH-secreting adenoma or multiple GH-secreting adenomas and/or GH hypersecretion of the pituitary gland surrounding multiple adenomas. Although selective adenomectomy is the preferred treatment for cases of GH-secreting adenomas, multiple adenomas with associated pituitary gland GH hypersecretion may require partial or complete hypophysectomy to achieve biochemical remission. PMID:27509071

  9. Magnetic Resonance Imaging Determination of Normal Pituitary Gland Dimensions in Zaria, Northwest Nigerian Population

    PubMed Central

    Ibinaiye, Philip Oluleke; Olarinoye-Akorede, Sefia; Kajogbola, Olugbenga; Bakari, Adamu Girei

    2015-01-01

    Objectives: To determine the dimensions of normal pituitary gland using T1-weighted magnetic resonance images (MRI) and to determine their relationship with age and sex. Materials and Methods: Cranial MRI scans of 100 individuals with clinically normal pituitary function (58 males and 42 females) and in the age range 14–82 years were reviewed in order to obtain volumetric measurements of the pituitary gland. The height, width, and depth of the pituitary were obtained from mid-sagittal and coronal planes, while the volume was calculated from these measured parameters. The data obtained were stratified based on age and sex for analysis. Statistical tests applied included Student's t-test and Pearson correlation. A minimum level of statistical significance was set at P < 0.05. Results: The mean pituitary volumes were 334.1 ± 145.8 mm3 and 328.1 ± 129.2 mm3 while the mean pituitary heights were 6.45 ± 1.7 mm and 6.46 ± 1.57 mm in males and females, respectively. Although there was no statistically significant difference between pituitary height and pituitary volume in both sexes, they correlated negatively with increasing age (r = −202, P = 0.04 and r = −410, P = 0.000, respectively). Both parameters were highest in pubertal subjects and declined steadily with age, with a second peak occurring only for pituitary height in the sixth decade. The mean pituitary widths (9.08 ± 2.59 mm and 9.21 ± 1.86 mm) and depths (10.59 ± 1.71 mm and 10.49 ± 1.57 mm) in males and females, respectively, did not show remarkable changes with age and sex in the individuals studied. Conclusion: With this study, we have provided reference values in Nigerian population for the dimensions of normal pituitary gland, in order to facilitate assessment and diagnosis in patients with abnormalities of the hypothalamic–pituitary axis. PMID:26167387

  10. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates.

    PubMed

    Ladd, Charlotte O; Thrivikraman, K V; Huot, Rebecca L; Plotsky, Paul M

    2005-07-01

    Burgeoning evidence supports a preeminent role for early- and late-life stressors in the development of physio- and psychopathology. Handling-maternal separation (HMS) in neonatal Long Evans hooded rats leads to stable phenotypes ranging from resilient to vulnerable to later stressor exposure. Handling with 180 min of maternal separation yields a phenotype of stress hyper-responsiveness associated with facilitation of regional CRF neurocircuits and glucocorticoid resistance. This study assessed whether or not prolonged HMS (180 min/day, HMS180) on post-natal days 2-14 sensitizes the adult limbic hypothalamo-pituitary-adrenal (LHPA) axis to chronic variable stress (CS) compared to brief HMS (15 min/day, HMS15). We examined regional mRNA densities of corticotropin-releasing factor (CRF), its receptor CRF1, glucocorticoid receptor (GR), and mineralocorticoid receptor (MR); regional CRF1 and CRF2alpha binding, and pituitary-adrenal responses to an acute air-puff startle (APS) stressor in four groups: HMS15, nonstressed; HMS15, stressed; HMS180, nonstressed; HMS180, stressed. As expected we observed exaggerated pituitary-adrenal responses to APS, increased regional CRF mRNA density, decreased regional CRF1 binding, and decreased cortical GR mRNA density in nonstressed HMS180 vs. HMS15 animals. However, in contrast to our hypothesis, CS decreased pituitary-adrenal reactivity and central amygdala CRF mRNA density in HMS180 rats, while increasing cortical GR mRNA density and CRF1 binding. CS had no effect on the pituitary-adrenal response to APS in HMS15 rats, despite tripling hypothalamic paraventricular CRF mRNA density. The data suggest that many effects of prolonged HMS are reversible in adulthood by CS, while the neuroendocrine adaptations imbued by brief HMS are sufficiently stable to restrain pituitary-adrenal stress responses even following CS.

  11. Moderate Exercise Prevents Functional Remodeling of the Anterior Pituitary Gland in Diet-Induced Insulin Resistance in Rats: Role of Oxidative Stress and Autophagy.

    PubMed

    Mercau, María E; Repetto, Esteban M; Perez, Matías N; Martinez Calejman, Camila; Sanchez Puch, Silvia; Finkielstein, Carla V; Cymeryng, Cora B

    2016-03-01

    A sustained elevation of glucocorticoid production, associated with the establishment of insulin resistance (IR) could add to the deleterious effects of the IR state. The aim of this study is to analyze the consequences of long-term feeding with a sucrose-rich diet (SRD) on Pomc/ACTH production, define the underlying cellular processes, and determine the effects of moderate exercise (ME) on these parameters. Animals fed a standard chow with or without 30% sucrose in the drinking water were subjected to ME. Circulating hormone levels were determined, and pituitary tissues were processed and analyzed by immunobloting and quantitative real-time PCR. Parameters of oxidative stress (OxS), endoplasmic reticulum stress, and autophagy were also determined. Rats fed SRD developed a decrease in pituitary Pomc/ACTH expression levels, increased expression of antioxidant enzymes, and induction of endoplasmic reticulum stress and autophagy. ME prevented pituitary dysfunction as well as induction of antioxidant enzymes and autophagy. Reporter assays were performed in AtT-20 corticotroph cells incubated in the presence of palmitic acid. Pomc transcription was inhibited by palmitic acid-dependent induction of OxS and autophagy, as judged by the effect of activators and inhibitors of both processes. Long-term feeding with SRD triggers the generation of OxS and autophagy in the pituitary gland, which could lead to a decline in Pomc/ACTH/glucocorticoid production. These effects could be attributed to an increase in fatty acids availability to the pituitary gland. ME was able to prevent these alterations, suggesting additional beneficial effects of ME as a therapeutic strategy in the management of IR.

  12. Novel Lethal Form of Congenital Hypopituitarism Associated With the First Recessive LHX4 Mutation

    PubMed Central

    Gregory, L. C.; Humayun, K. N.; Turton, J. P. G.; McCabe, M. J.; Rhodes, S. J.

    2015-01-01

    Background: LHX4 encodes a member of the LIM-homeodomain family of transcription factors that is required for normal development of the pituitary gland. To date, only incompletely penetrant heterozygous mutations in LHX4 have been described in patients with variable combined pituitary hormone deficiencies. Objective/Hypothesis: To report a unique family with a novel recessive variant in LHX4 associated with a lethal form of congenital hypopituitarism that was identified through screening a total of 97 patients. Method: We screened 97 unrelated patients with combined pituitary hormone deficiency, including 65% with an ectopic posterior pituitary, for variants in the LHX4 gene using Sanger sequencing. Control databases (1000 Genomes, dbSNP, Exome Variant Server, ExAC Browser) were consulted upon identification of variants. Results: We identified the first novel homozygous missense variant (c.377C>T, p.T126M) in two deceased male patients of Pakistani origin with severe panhypopituitarism associated with anterior pituitary aplasia and posterior pituitary ectopia. Both were born small for gestational age with a small phallus, undescended testes, and mid-facial hypoplasia. The parents' first-born child was a female with mid-facial hypoplasia (DNA was unavailable). Despite rapid commencement of hydrocortisone and T4 in the brothers, all three children died within the first week of life. The LHX4(p.T126M) variant is located within the LIM2 domain, in a highly conserved location. The absence of homozygosity for the variant in over 65 000 controls suggests that it is likely to be responsible for the phenotype. Conclusion: We report, for the first time to our knowledge, a novel homozygous mutation in LHX4 associated with a lethal phenotype, implying that recessive mutations in LHX4 may be incompatible with life. PMID:25871839

  13. The incidence of cerebrovascular accidents and second brain tumors in patients with pituitary adenoma: a population-based study.

    PubMed

    Brown, Paul D; Blanchard, Miran; Jethwa, Krishan; Flemming, Kelly D; Brown, Cerise A; Kline, Robert W; Jacobson, Debra J; St Sauver, Jennifer; Pollock, Bruce E; Garces, Yolanda I; Stafford, Scott L; Link, Michael J; Erickson, Dana; Foote, Robert L; Laack, Nadia N I

    2014-03-01

    To assess the risk of cerebrovascular accidents (CVAs) and second brain tumors (SBTs) in patients with pituitary adenoma after surgery or radiotherapy. A cohort of 143 people from Olmsted County, who were diagnosed with pituitary adenoma between 1933 and 2000, was studied. Only patients from Olmsted County were included because of the unique nature of medical care in Olmsted County, which allows the ascertainment of virtually all cases of pituitary adenoma for this community's residents and comparisons to the general population in the county. Surgical resection was performed in 76 patients, 29 patients underwent radiotherapy (with 21 undergoing both surgery and radiotherapy), 5 patients were reirradiated, and 59 patients were managed conservatively and observed. Median follow-up was 15.5 years. There was no difference in CVA-free survival between treatment groups. On univariate analysis age > 60 years (hazard ratio [HR], 11.93; 95% CI, 6.26-23.03; P < .001); male sex (HR, 3.67; 95% CI, 2.03-6.84; P < .001), and reirradiation (HR, 3.41; 95% CI, 1.05-9.68; P = .04) were associated with worse CVA-free survival. In multivariate analysis, only age > 60 years was associated with worse CVA-free survival. Compared with the general population, there was a 4-fold increase in the rate of CVAs in pituitary adenoma patients (HR, 4.2; 95% CI, 2.8-6.1). Two patients developed SBT (an irradiated patient and a surgically managed patient). CVA is a significant risk for patients with pituitary tumors, but treatment does not seem to impact the risk. Even with long-term follow-up, SBTs are a rare event regardless of treatment modality.

  14. The incidence of cerebrovascular accidents and second brain tumors in patients with pituitary adenoma: a population-based study

    PubMed Central

    Brown, Paul D.; Blanchard, Miran; Jethwa, Krishan; Flemming, Kelly D.; Brown, Cerise A.; Kline, Robert W.; Jacobson, Debra J.; St. Sauver, Jennifer; Pollock, Bruce E.; Garces, Yolanda I.; Stafford, Scott L.; Link, Michael J.; Erickson, Dana; Foote, Robert L.; Laack, Nadia N.I.

    2014-01-01

    Background To assess the risk of cerebrovascular accidents (CVAs) and second brain tumors (SBTs) in patients with pituitary adenoma after surgery or radiotherapy. Methods A cohort of 143 people from Olmsted County, who were diagnosed with pituitary adenoma between 1933 and 2000, was studied. Only patients from Olmsted County were included because of the unique nature of medical care in Olmsted County, which allows the ascertainment of virtually all cases of pituitary adenoma for this community's residents and comparisons to the general population in the county. Surgical resection was performed in 76 patients, 29 patients underwent radiotherapy (with 21 undergoing both surgery and radiotherapy), 5 patients were reirradiated, and 59 patients were managed conservatively and observed. Results Median follow-up was 15.5 years. There was no difference in CVA-free survival between treatment groups. On univariate analysis age > 60 years (hazard ratio [HR], 11.93; 95% CI, 6.26–23.03; P < .001); male sex (HR, 3.67; 95% CI, 2.03–6.84; P < .001), and reirradiation (HR, 3.41; 95% CI, 1.05–9.68; P = .04) were associated with worse CVA-free survival. In multivariate analysis, only age > 60 years was associated with worse CVA-free survival. Compared with the general population, there was a 4-fold increase in the rate of CVAs in pituitary adenoma patients (HR, 4.2; 95% CI, 2.8–6.1). Two patients developed SBT (an irradiated patient and a surgically managed patient). Conclusion CVA is a significant risk for patients with pituitary tumors, but treatment does not seem to impact the risk. Even with long-term follow-up, SBTs are a rare event regardless of treatment modality. PMID:26034611

  15. Whole brain-pituitary in vitro preparation of the transgenic medaka (Oryzias latipes) as a tool for analyzing the differential regulatory mechanisms of LH and FSH release.

    PubMed

    Karigo, Tomomi; Aikawa, Masato; Kondo, Chika; Abe, Hideki; Kanda, Shinji; Oka, Yoshitaka

    2014-02-01

    Two types of gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH), are important pituitary hormones for sexual maturation and reproduction, and both of them are centrally regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In mammals, these two gonadotropins are secreted from a single type of gonadotrope. The mechanisms of differential regulation by GnRH of the release of two types of gonadotropins with different secretory profiles are still unknown. In teleosts, however, LH and FSH are secreted from separate cellular populations, unlike in mammals. This feature makes them useful for studying the regulatory mechanisms of LH and FSH secretions independently. Here, we generated transgenic medaka lines that express Ca(2+) indicator protein, inverse-pericam, specifically in the LH or FSH cells. We performed cell-type-specific Ca(2+) imaging of LH and FSH cells, respectively, using the whole brain-pituitary preparations of these transgenic fish in which all neural circuits and GnRH neuronal projection to the pituitary are kept intact. LH and FSH cells showed different Ca(2+) responses to GnRH. The results suggest differential regulation mechanisms for LH and FSH release by GnRH. Moreover, we also succeeded in detecting the effect on LH cells of endogenous GnRH peptide, which was released by electrical stimulation of the axons of GnRH1 neurons. Thus, our newly developed experimental model system using the whole brain-pituitary in vitro preparation of the transgenic medaka is a powerful tool for analyzing the differential regulatory mechanisms of the release of LH and FSH by multisynaptic neural inputs to the pituitary.

  16. Succinate Dehydrogenase (SDH) D Subunit (SDHD) Inactivation in a Growth-Hormone-Producing Pituitary Tumor: A New Association for SDH?

    PubMed Central

    Xekouki, Paraskevi; Pacak, Karel; Almeida, Madson; Wassif, Christopher A.; Rustin, Pierre; Nesterova, Maria; de la Luz Sierra, Maria; Matro, Joey; Ball, Evan; Azevedo, Monalisa; Horvath, Anelia; Lyssikatos, Charalampos; Quezado, Martha; Patronas, Nicholas; Ferrando, Barbara; Pasini, Barbara; Lytras, Aristides; Tolis, George

    2012-01-01

    Background: Mutations in the subunits B, C, and D of succinate dehydrogenase (SDH) mitochondrial complex II have been associated with the development of paragangliomas (PGL), gastrointestinal stromal tumors, papillary thyroid and renal carcinoma (SDHB), and testicular seminoma (SDHD). Aim: Our aim was to examine the possible causative link between SDHD inactivation and somatotropinoma. Patients and Methods: A 37-yr-old male presented with acromegaly and hypertension. Other family members were found with PGL. Elevated plasma and urinary levels of catecholamines led to the identification of multiple PGL in the proband in the neck, thorax, and abdomen. Adrenalectomy was performed for bilateral pheochromocytomas (PHEO). A GH-secreting macroadenoma was also found and partially removed via transsphenoidal surgery (TTS). Genetic analysis revealed a novel SDHD mutation (c.298_301delACTC), leading to a frame shift and a premature stop codon at position 133 of the protein. Loss of heterozygosity for the SDHD genetic locus was shown in the GH-secreting adenoma. Down-regulation of SDHD protein in the GH-secreting adenoma by immunoblotting and immunohistochemistry was found. A literature search identified other cases of multiple PGL and/or PHEO in association with pituitary tumors. Conclusion: We describe the first kindred with a germline SDHD pathogenic mutation, inherited PGL, and acromegaly due to a GH-producing pituitary adenoma. SDHD loss of heterozygosity, down-regulation of protein in the GH-secreting adenoma, and decreased SDH enzymatic activity supports SDHD's involvement in the pituitary tumor formation in this patient. Older cases of multiple PGL and PHEO and pituitary tumors in the literature support a possible association between SDH defects and pituitary tumorigenesis. PMID:22170724

  17. Demographic study of pituitary adenomas undergone trans-sphenoidal surgery in Loghman Hakim Hospital, Tehran, Iran 2001–2013

    PubMed Central

    Zerehpoosh, Farahnaz Bidari; Sabeti, Shahram; Sharifi, Guive; Shakeri, Hania; Alipour, Setareh; Arman, Farid

    2015-01-01

    Background: Pituitary adenomas (PAs) are abnormal benign tumors that develop in the pituitary gland. This study aimed to assess the prevalence of different types of PAs with an indication for trans-sphenoidal surgery in a well-defined population referred to Loghman Hakim Hospital during 2001–2013. Subjects and Methods: In this retrospective study, the prevalence rate and symptoms associated with pituitary mass and hormone excess in operated patients were investigated. The diagnosis was verified after retrieval of clinical, hormonal, radiological, and pathological data. Demographic data were collected in all cases. Descriptive analysis, t-test, one-way analysis of variance and Fischer exacts test were used. Results: A total of 278 patients with PAs who underwent surgical interventions were evaluated. Most of the patients were aged 40–50 years with an average of 41 ± 14. The most prominent complaint was pressure effect, which was detected in 153 cases (55.2%). At the second place, hormonal disorders were observed in 125 cases (44.8%). Type of pituitary tumors were: Prolactinomas (29.1%), growth hormone (GH)-producing tumors (25%), nonfunctioning PAs (28.4%), adrenocorticotropic hormone (ACTH)-producing tumors (2.1%), thyroid stimulating hormone (TSH)-producing tumors (0.7%), GH/prolactin (13.6%), GH/ACTH (0.3%), and TSH/ACTH (0.3%). Fifty-seven patients presented with recurrent adenomas. Pituitary apoplexy was found in 11 patients. One case of Sheehan syndrome was recorded among these. The correlations between clinical symptoms and patients, age and sex were not significant. Conclusion: The overview of demographic characteristics in Iranian patients with PAs with surgical indication has been discussed in the present investigation. The prevalence of different types of PAs and the most common clinical symptoms have been demonstrated. PMID:26693430

  18. Rare Frequency of Mutations in Pituitary Transcription Factor Genes in Combined Pituitary Hormone or Isolated Growth Hormone Deficiencies in Korea.

    PubMed

    Choi, Jin Ho; Jung, Chang Woo; Kang, Eungu; Kim, Yoon Myung; Heo, Sun Hee; Lee, Beom Hee; Kim, Gu Hwan; Yoo, Han Wook

    2017-05-01

    Congenital hypopituitarism is caused by mutations in pituitary transcription factors involved in the development of the hypothalamic-pituitary axis. Mutation frequencies of genes involved in congenital hypopituitarism are extremely low and vary substantially between ethnicities. This study was undertaken to compare the clinical, endocrinological, and radiological features of patients with an isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD). This study included 27 patients with sporadic IGHD and CPHD. A mutation analysis of the POU1F1, PROP1, LHX3, LHX4, and HESX1 genes was performed using genomic DNA from peripheral blood leukocytes. IGHD and CPHD were observed in 4 and 23 patients, respectively. Mean age at diagnosis was 8.28±7.25 years for IGHD and 13.48±10.46 years for CPHD (p=0.37). Serum insulin-like growth factor-1 and peak growth hormone (GH) levels following GH stimulation tests were significantly lower in patients with CPHD than in those with IGHD (p<0.05). Sellar MRI findings revealed structural abnormalities in 3 patients with IGHD (75%) and 21 patients with CPHD (91.3%) (p=0.62). A mutation analysis identified homozygous p.R109Q mutations in HESX1 in a patient with CPHD. Patients with CPHD had more severe GHD than those with IGHD. The frequency of defects in the genes encoding pituitary transcription factors was extremely low in Korean patients with congenital hypopituitarism. Environmental factors and the impact of other causative genes may contribute to this clinical phenotype. © Copyright: Yonsei University College of Medicine 2017

  19. Rare Frequency of Mutations in Pituitary Transcription Factor Genes in Combined Pituitary Hormone or Isolated Growth Hormone Deficiencies in Korea

    PubMed Central

    Choi, Jin-Ho; Jung, Chang-Woo; Kang, Eungu; Kim, Yoon-Myung; Heo, Sun Hee; Lee, Beom Hee; Kim, Gu-Hwan

    2017-01-01

    Purpose Congenital hypopituitarism is caused by mutations in pituitary transcription factors involved in the development of the hypothalamic-pituitary axis. Mutation frequencies of genes involved in congenital hypopituitarism are extremely low and vary substantially between ethnicities. This study was undertaken to compare the clinical, endocrinological, and radiological features of patients with an isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD). Materials and Methods This study included 27 patients with sporadic IGHD and CPHD. A mutation analysis of the POU1F1, PROP1, LHX3, LHX4, and HESX1 genes was performed using genomic DNA from peripheral blood leukocytes. Results IGHD and CPHD were observed in 4 and 23 patients, respectively. Mean age at diagnosis was 8.28±7.25 years for IGHD and 13.48±10.46 years for CPHD (p=0.37). Serum insulin-like growth factor-1 and peak growth hormone (GH) levels following GH stimulation tests were significantly lower in patients with CPHD than in those with IGHD (p<0.05). Sellar MRI findings revealed structural abnormalities in 3 patients with IGHD (75%) and 21 patients with CPHD (91.3%) (p=0.62). A mutation analysis identified homozygous p.R109Q mutations in HESX1 in a patient with CPHD. Patients with CPHD had more severe GHD than those with IGHD. Conclusion The frequency of defects in the genes encoding pituitary transcription factors was extremely low in Korean patients with congenital hypopituitarism. Environmental factors and the impact of other causative genes may contribute to this clinical phenotype. PMID:28332357

  20. In Situ Hybridization Method Reveals (Pro)renin Receptor Expressing Cells in the Pituitary Gland of Rats: Correlation with Anterior Pituitary Hormones.

    PubMed

    Takahashi, Kazuhiro; Yatabe, Megumi; Fujiwara, Ken; Hirose, Takuo; Totsune, Kazuhito; Yashiro, Takashi

    2013-02-28

    Expression of (pro)renin receptor ((P)RR), a specific receptor for renin and prorenin, was studied in rat pituitary gland. In situ hybridization showed that cells expressing (P)RR mRNA were widely distributed in the anterior lobe and intermediate lobe of the pituitary gland. Double-staining using in situ hybridization for (P)RR mRNA and immunohistochemistry for the pituitary hormones showed that (P)RR mRNA was expressed in most of the GH cells and ACTH cells in the anterior lobe. (P)RR mRNA was also expressed in a few prolactin cells and TSH cells, but not in LH cells. The present study has shown for the first time the distribution of (P)RR mRNA expressing cells in the rat pituitary gland. These findings suggest that (P)RR plays physiological roles in the pituitary gland, such as the modulation of the pituitary hormone secretion.

  1. Combined pituitary hormone deficiency: current and future status.

    PubMed

    Castinetti, F; Reynaud, R; Quentien, M-H; Jullien, N; Marquant, E; Rochette, C; Herman, J-P; Saveanu, A; Barlier, A; Enjalbert, A; Brue, T

    2015-01-01

    Over the last two decades, the understanding of the mechanisms involved in pituitary ontogenesis has largely increased. Since the first description of POU1F1 human mutations responsible for a well-defined phenotype without extra-pituitary malformation, several other genetic defects of transcription factors have been reported with variable degrees of phenotype-genotype correlations. However, to date, despite the identification of an increased number of genetic causes of isolated or multiple pituitary deficiencies, the etiology of most (80-90 %) congenital cases of hypopituitarism remains unsolved. Identifying new etiologies is of importance as a post-natal diagnosis to better diagnose and treat the patients (delayed pituitary deficiencies, differential diagnosis of a pituitary mass on MRI, etc.), and as a prenatal diagnosis to decrease the risk of early death (undiagnosed corticotroph deficiency for instance). The aim of this review is to summarize the main etiologies and phenotypes of combined pituitary hormone deficiencies, associated or not with extra-pituitary anomalies, and to suggest how the identification of such etiologies could be improved in the near future.

  2. Pituitary volumes are changed in patients with conversion disorder.

    PubMed

    Atmaca, Murad; Baykara, Sema; Mermi, Osman; Yildirim, Hanefi; Akaslan, Unsal

    2016-03-01

    Our study group previously measured pituitary volumes and found a relationship between somatoform disoders and pituitary volumes. Therefore, in conversion disorder, another somatoform disorder, we hypothesized that pituitary gland volumes would be reduced. Twenty female patients and healthy controls were recruited to the present investigation. The volumes of the pituitary gland were determined by using a 1.5 Tesla magnetic resonance scanner. We found that the pituitary gland volumes of the patients with conversion disorder were significantly smaller than those of healthy control subjects. In the patients with conversion disorder but not in the healthy control group, a significant negative correlation between the duration of illness and pituitary gland volume was determined. In summary, in the present study, we suggest that the patients with conversion disorder have smaller pituitary volumes compared to those of healthy control subjects. Further studies should confirm our data and ascertain whether volumetric alterations determined in the patients with conversion disorder can be changed with treatment or if they change over time.

  3. [Molecular pathology of congenital pituitary hypothyroidism--discovery of new clinical entities].

    PubMed

    Tatsumi, K; Amino, N; Miyai, K

    1993-05-01

    Congenital pituitary hypothyroidism (pituitary cretinism) results in severe mental and growth retardation when it is not treated soon after birth. Since the introduction of neonatal mass screening of thyrotropin (TSH), most congenital hypothyroidism has been detected except for pituitary and hypothalamic hypothyroidism. In 1971, we reported the first familial case of congenital isolated TSH deficiency and thereafter began intensively investigating the molecular pathology of congenital pituitary hypothyroidism. After determining the entire structure of the human TSH beta gene, we identified the molecular pathology in this patient. Recently, we reported a familial case of congenital combined pituitary hormone deficiency (PIT1 abnormality). To examine the PIT1 gene, which encodes pituitary specific transcription factor, Pit-1/GHF-1, we determined its genomic structure. Sequence comparisons using PCR amplified PIT1 gene sequences revealed only one nonsense mutation in the patient, and established that this alteration caused the combined deficiencies of TSH, GH and PRL. We also discuss other recent progress in molecular pathology of congenital pituitary hypothyroidism.

  4. The acute salinity changes activate the dual pathways of endocrine responses in the brain and pituitary of tilapia.

    PubMed

    Aruna, Adimoolam; Nagarajan, Ganesan; Chang, Ching-Fong

    2015-01-15

    To analyze and compare the stress and osmoregulatory hormones and receptors in pituitary during acute salinity changes, the expression patterns of corticotropin releasing hormone (crh) in hypothalamus, prolactin (prl) releasing peptide (pRrp) in telencephalon and diencephalon, glucocorticoid receptors 2 (gr2), and mineralocorticoid receptor (mr), crh-r, pro-opiomelanocorticotropin (pomc), pRrp, prl, dopamine 2 receptor (d2-r), growth hormone (gh), gh-receptor (gh-r) and insulin-like growth hormone (igf-1) transcripts in pituitary were characterized in euryhaline tilapia. The results indicate that the crh transcripts increased in the hypothalamus and rostral pars distalis of the pituitary after the transfer of fish to SW. Similarly, the pRrp transcripts were more abundant in SW acclimated tilapia forebrain and hypothalamus. The crh-r, gr2 and mr transcripts were more expressed in rostral pars distalis and pars intermedia of pituitary at SW than FW tilapia. The data indicate that the SW acclimation stimulates these transcripts in the specific regions of the brain and pituitary which may be related to the activation of the hypothalamic-pituitary-interrenal (HPI)-axis. The results of dual in situ hybridization reveal that the transcripts of crh-r, gr2 and mr with pomc are highly co-localized in corticotrophs of pituitary. Furthermore, we demonstrate high expression of pRrp in the brain and low expression of pRrp and prl transcripts in the pituitary of SW fish. No crh-r and corticosteroid receptors were co-localized with prl transcripts in the pituitary. The gh-r and igf-1 mRNA levels were significantly increased in SW acclimated tilapia pituitary whereas there was no difference in the gh mRNA levels. The data suggest that the locally produced pRrp and d2-r may control and regulate the expression of prl mRNA in pituitary. Therefore, the dual roles of pRrp are involved in the stress (via brain-pituitary) and osmoregulatory (via pituitary) pathways in tilapia exposed to acute salinity changes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Pituitary gigantism: Causes and clinical characteristics.

    PubMed

    Rostomyan, Liliya; Daly, Adrian F; Beckers, Albert

    2015-12-01

    Acromegaly and pituitary gigantism are very rare conditions resulting from excessive secretion of growth hormone (GH), usually by a pituitary adenoma. Pituitary gigantism occurs when GH excess overlaps with the period of rapid linear growth during childhood and adolescence. Until recently, its etiology and clinical characteristics have been poorly understood. Genetic and genomic causes have been identified in recent years that explain about half of cases of pituitary gigantism. We describe these recent discoveries and focus on some important settings in which gigantism can occur, including familial isolated pituitary adenomas (FIPA) and the newly described X-linked acrogigantism (X-LAG) syndrome. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Pituitary gland imaging and outcome.

    PubMed

    Di Iorgi, Natascia; Morana, Giovanni; Gallizia, Anna Lisa; Maghnie, Mohamad

    2012-01-01

    Magnetic resonance imaging (MRI) allows a detailed and precise anatomical study of the pituitary gland by differentiating between the anterior and posterior pituitary lobes. The identification of posterior pituitary hyperintensity, now considered a marker of neurohypophyseal functional integrity, has been the most striking advance for the diagnosis and understanding of anterior and posterior pituitary diseases. The advent of MRI has in fact led to a significant improvement in the understanding of the pathogenesis of disorders that affect the hypothalamo-pituitary area. Today, there is convincing evidence to support the hypothesis that marked MRI differences in pituitary morphology indicate a diverse range of disorders which affect the organogenesis and function of the anterior pituitary gland with different prognoses. Furthermore, the association of extrapituitary malformations accurately defined by MRI has supported a better definition of several conditions linked to pituitary hormone deficiencies and midline defects. MRI is a very informative procedure that should be used to support a diagnosis of hypopituitarism. It is useful in clinical management, because it helps endocrinologists determine which patients to target for further molecular studies and genetic counselling, which ones to screen for additional hormone deficits, and which ones may need growth hormone replacement into adult life. Copyright © 2012 S. Karger AG, Basel.

  7. Pituitary metastasis of hepatocellular carcinoma presenting with panhypopituitarism: a case report.

    PubMed

    Tanaka, Tomoko; Hiramatsu, Katsushi; Nosaka, Takuto; Saito, Yasushi; Naito, Tatsushi; Takahashi, Kazuto; Ofuji, Kazuya; Matsuda, Hidetaka; Ohtani, Masahiro; Nemoto, Tomoyuki; Suto, Hiroyuki; Yamamoto, Tatsuya; Kimura, Hirohiko; Nakamoto, Yasunari

    2015-11-06

    Metastasis to the pituitary gland is extremely rare and is often detected incidentally by symptoms associated with endocrine dysfunction. Breast and lung cancer are the most common primary metastasizing to pituitary gland. Metastasis from hepatocellular carcinoma to the pituitary gland is extremely rare, with only 10 cases having been previously reported. We present here the first case of pituitary metastasis of hepatocellular carcinoma presenting with panhypopituitarism diagnosed by magnetic resonance imaging. We report the case of an 80-year-old Japanese woman who presented with the sudden onset of hypotension and bradycardia after having previously been diagnosed with hepatocellular carcinoma. Based on low levels of pituitary hormones, she was diagnosed with panhypopituitarism caused by metastasis of the hepatocellular carcinoma to the pituitary gland. Magnetic resonance imaging with arterial spin-labeling was effective in the differential diagnosis of the intrasellar tumor. The patient died despite hormone replacement therapy because of hypovolemic shock. Metastasis to the pituitary gland causes various non-specific symptoms, so it is difficult to diagnose. The present case emphasizes the importance of diagnostic imaging in identifying these metastases. Clinicians should consider the possibility of pituitary metastasis in patients with malignant tumors who demonstrate hypopituitarism.

  8. Association of Ki-67 Labelling Index and IL-17A with Pituitary Adenoma.

    PubMed

    Glebauskiene, Brigita; Liutkeviciene, Rasa; Vilkeviciute, Alvita; Gudinaviciene, Inga; Rocyte, Aurelija; Simonaviciute, Dovile; Mazetyte, Ruta; Kriauciuniene, Loresa; Zaliuniene, Dalia

    2018-01-01

    The aim of the present study was to determine if the Ki-67 labelling index reflects invasiveness of pituitary adenoma and to evaluate IL-17A concentration in blood serum of pituitary adenoma patients. The study was conducted in the Hospital of Lithuanian University of Health Sciences. All pituitary adenomas were analysed based on magnetic resonance imaging findings. The suprasellar extension and sphenoid sinus invasion by pituitary adenoma were classified according to Hardy classification modified by Wilson. Knosp classification system was used to quantify the invasion of the cavernous sinus. The Ki-67 labelling index was obtained by immunohistochemical analysis with the monoclonal antibody, and serum levels of IL-17A were determined by enzyme-linked immunosorbent assay (ELISA). Sixty-nine PA tissue samples were investigated. Serum levels of IL-17A were determined in 60 patients with PA and 64 control subjects. Analysis revealed statistically significantly higher Ki-67 labelling index in invasive compared to noninvasive pituitary adenomas. Median serum IL-17A level was higher in the pituitary adenoma patients than in the control group. Conclusion . IL-17A might be a significant marker for patients with pituitary adenoma and Ki-67 labelling index in case of invasive pituitary adenomas.

  9. Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas.

    PubMed

    Ntali, Georgia; Wass, John A

    2018-04-01

    Non-functioning pituitary adenomas (NFPAs) are benign pituitary neoplasms that do not cause a hormonal hypersecretory syndrome. An improved understanding of their epidemiology, clinical presentation and diagnosis is needed. A literature review was performed using Pubmed to identify research reports and clinical case series on NFPAs. They account for 14-54% of pituitary adenomas and have a prevalence of 7-41.3/100,000 population. Their standardized incidence rate is 0.65-2.34/100,000 and the peak occurence is from the fourth to the eighth decade. The clinical spectrum of NFPAs varies from being completely asymptomatic to causing significant hypothalamic/pituitary dysfunction and visual field compromise due to their large size. Most patients present with symptoms of mass effect, such as headaches, visual field defects, ophthalmoplegias, and hypopituitarism but also hyperprolactinaemia due to pituitary stalk deviation and less frequently pituitary apoplexy. Non-functioning pituitary incidentalomas are found on brain imaging performed for an unrelated reason. Diagnostic approach includes magnetic resonance imaging of the sellar region, laboratory evaluations, screening for hormone hypersecretion and for hypopituitarism, and a visual field examination if the lesion abuts the optic nerves or chiasm. This article reviews the epidemiology, clinical behaviour and diagnostic approach of non-functioning pituitary adenomas.

  10. [Clinical values of triptorelin stimulating test in assessing hypothalamus-pituitary-gonad axis function in male patients with hypothalamus-pituitary-gonad axis disorders].

    PubMed

    Wu, Xue-yan; Nie, Min; Lu, Shuang-yu; Mao, Jiang-feng

    2011-03-15

    To investigate the clinical values of luteinizing hormone-releasing hormone (LHRH) α (triptorelin) stimulating test in the differential diagnoses of hypothalamus-pituitary-gonad axis (HPGA) disorders. A total of 229 male patients with various HPGA disorders were recruited for triptorelin stimulating test. And all patients were followed up for 12 - 48 months until a definite diagnosis was made. The values of triptorelin stimulating test in the differential diagnoses of HPGA disorders were assessed by examining the close relationship between LHmax and the final clinical diagnosis. (1) LH levels rose steady after an intramuscular injection of triptorelin 100 µg and the time of LHmax appeared at 45 - 60 min. (2) LHmax < 4 U/L indicated the function of HPGA was not activated. LHmax in the range of 4 - 12 U/L indicated the patients might have constitutional delayed puberty development. LHmax > 12 U/L indicated the fulfilled puberty development. Triptorelin stimulating test can precisely evaluate the functions of HPGA in various HPGA disorders and provide valuable information for the differential diagnoses in constitutional delayed puberty development, hypogonadotropic hypogonadism, central and peripheral precocious puberty disorders.

  11. A case of deletion 14(q22.1-->q22.3) associated with anophthalmia and pituitary abnormalities.

    PubMed Central

    Elliott, J; Maltby, E L; Reynolds, B

    1993-01-01

    An interstitial deletion of the region q22.1-->q22.3 of chromosome 14 is described in a child with bilateral anophthalmia, dysmorphic features including micrognathia, small tongue, and high arched palate, developmental and growth retardation, undescended testes with a micropenis, and hypothyroidism. Interstitial deletions of the long arm of chromosome 14 are extremely rare, but this case seems to confirm that the region q22 is specifically concerned with pituitary and eye development. Images PMID:7682620

  12. Pituitary gland volume in adolescent and young adult bipolar and unipolar depression.

    PubMed

    MacMaster, Frank P; Leslie, Ronald; Rosenberg, David R; Kusumakar, Vivek

    2008-02-01

    Few studies have examined pituitary gland size in mood disorders, particularly in adolescents. We hypothesized increase in the pituitary gland size in early-onset mood disorders. Thirty subjects between the ages of 13 and 20 years participated in the study. Three groups (control, bipolar I depression and unipolar depression) of 10 subjects each (4 male, 6 female) underwent volumetric magnetic resonance imaging at 1.5 T. Analysis of covariance (covarying for age, sex and intracranial volume) revealed a significant difference in pituitary gland volume amongst the groups [F(2,24) = 7.092, p = 0.014]. Post hoc analysis revealed that controls had a significantly smaller pituitary gland volume than both bipolar patients (p = 0.019) and depressed patients (p = 0.049). Bipolar and depressed subjects did not differ significantly from each other with regard to pituitary gland volume (p = 0.653). Control females had larger pituitary glands than control males [F(1,8) = 10.523, p = 0.012], but no sex differences were noted in the mood disorder groups. Pituitary glands are enlarged in adolescents with mood disorders compared to controls. Healthy young females have larger pituitary glands than males, but such a difference is not evident in individuals with unipolar depression or bipolar disorder. These findings provide new evidence of abnormalities of the pituitary in early onset mood disorders, and are consistent with neuroendocrine dysfunction in early stages of such illnesses.

  13. The effect of atypical antipsychotics on pituitary gland volume in patients with first-episode psychosis: a longitudinal MRI study.

    PubMed

    Nicolo, John-Paul; Berger, Gregor E; Garner, Belinda A; Velakoulis, Dennis; Markulev, Connie; Kerr, Melissa; McGorry, Patrick D; Proffitt, Tina-Marie; McConchie, Mirabel; Pantelis, Christos; Wood, Stephen J

    2010-01-01

    Pituitary volume is currently measured as a marker of hypothalamic-pituitary-adrenal hyperactivity in patients with psychosis despite suggestions of susceptibility to antipsychotics. Qualifying and quantifying the effect of atypical antipsychotics on the volume of the pituitary gland will determine whether this measure is valid as a future estimate of HPA-axis activation in psychotic populations. To determine the qualitative and quantitative effect of atypical antipsychotic medications on pituitary gland volume in a first-episode psychosis population. Pituitary volume was measured from T1-weighted magnetic resonance images in a group of 43 first-episode psychosis patients, the majority of whom were neuroleptic-naïve, at baseline and after 3months of treatment, to determine whether change in pituitary volume was correlated with cumulative dose of atypical antipsychotic medication. There was no significant baseline difference in pituitary volume between subjects and controls, or between neuroleptic-naïve and neuroleptic-treated subjects. Over the follow-up period there was a negative correlation between percentage change in pituitary volume and cumulative 3-month dose of atypical antipsychotic (r=-0.37), i.e. volume increases were associated with lower doses and volume decreases with higher doses. Atypical antipsychotic medications may reduce pituitary gland volume in a dose-dependent manner suggesting that atypical antipsychotic medication may support affected individuals to cope with stress associated with emerging psychotic disorders.

  14. Pituitary Metastasis from Renal Cell Carcinoma: Description of a Case Report.

    PubMed

    Wendel, Chloé; Campitiello, Marco; Plastino, Francesca; Eid, Nada; Hennequin, Laurent; Quétin, Philippe; Longo, Raffaele

    2017-01-03

    BACKGROUND Pituitary metastasis is uncommon, breast and lung cancers being the most frequent primary tumors. Renal cell carcinoma (RCC) is a rare cause of pituitary metastases, with only a few cases described to date. CASE REPORT We report a case of a 61-year-old man who presented with a progressive deterioration of visual acuity and field associated with a bitemporal hemianopsia. Two years ago, he underwent radical right nephrectomy for a clear cell RCC (ccRCC). The biological tests showed pan-hypopituitarism and diabetes insipidus. Brain MRI revealed a large sellar tumor lesion bilaterally infiltrating the cavernous sinuses, which was surgically resected. Histology confirmed a ccRCC pituitary metastasis. The patient received post-surgical radiotherapy. Considering the presence of concomitant extra-pituitary metastases, treatment with sunitinib was started, followed by several lines of therapy with axitinib, everolimus, and sorafenib because of tumor progression. The patient also presented with a pituitary tumor recurrence, which was treated by stereotaxic radiotherapy. He died five years after the initial diagnosis of RCC and 30 months after the diagnosis of the pituitary metastasis.  CONCLUSIONS There are no standardized treatment guidelines for management of pituitary metastases. Pituitary surgery plays a role in symptom palliation, and it does not have any relevant impact on survival. Exclusive radiotherapy or stereotaxic radiotherapy could be an alternative to surgery in patients whose general condition is poor or who have concomitant extra-pituitary metastases.

  15. Expression of the pituitary transcription factor Ptx-1, but not that of the trans-activating factor prop-1, is reduced in human corticotroph adenomas and is associated with decreased alpha-subunit secretion.

    PubMed

    Skelly, R H; Korbonits, M; Grossman, A; Besser, G M; Monson, J P; Geddes, J F; Burrin, J M

    2000-07-01

    We have studied the expression of the pituitary transcription factors Ptx-1 and Prop-1 in a series of 34 pituitary adenomas fully characterized for in vitro hormone secretion and histological staining. In studies involving mammalian cell lines, the pituitary transcription factor Ptx-1 has been shown to be a pituitary hormone panactivator, whereas more recent studies have shown that it plays an important role in alpha-subunit gene expression. Its expression has not been examined previously in human pituitary adenomas characterized by in vitro hormone secretory profiles. Of the 34 pituitary adenomas studied, Ptx-1 expression was reduced by more than 50% compared to that of the housekeeping gene human glyceraldehyde-3-phosphate dehydrogenase in the 6 corticotroph adenomas, which also had significantly reduced alpha-subunit production (all 6 tumors secreting < or =0.5 ng/24 h). Mutations of the pituitary transcription factor Prop-1, which is responsible for the syndrome of Ames dwarfism in mice, are being increasingly recognized as a cause of combined pituitary hormone deficiency in humans, although ACTH deficiency has been described only once. Prop-1 expression was detected in all 34 pituitary adenomas, including 6 corticotroph adenomas and 5 gonadotroph adenomas. The expression of Prop-1 has not been described previously in these cell phenotypes.

  16. Stem cell therapy and its potential role in pituitary disorders.

    PubMed

    Lara-Velazquez, Montserrat; Akinduro, Oluwaseun O; Reimer, Ronald; Woodmansee, Whitney W; Quinones-Hinojosa, Alfredo

    2017-08-01

    The pituitary gland is one of the key components of the endocrine system. Congenital or acquired alterations can mediate destruction of cells in the gland leading to hormonal dysfunction. Even though pharmacological treatment for pituitary disorders is available, exogenous hormone replacement is neither curative nor sustainable. Thus, alternative therapies to optimize management and improve quality of life are desired. An alternative modality to re-establish pituitary function is to promote endocrine cell regeneration through stem cells that can be obtained from the pituitary parenchyma or pluripotent cells. Stem cell therapy has been successfully applied to a plethora of other disorders, and is a promising alternative to hormonal supplementation for resumption of normal hormone homeostasis. In this review, we describe the common causes for pituitary deficiencies and the advances in cellular therapy to restore the physiological pituitary function.

  17. Serotonin, ATRX, and DAXX Expression in Pituitary Adenomas: Markers in the Differential Diagnosis of Neuroendocrine Tumors of the Sellar Region.

    PubMed

    Casar-Borota, Olivera; Botling, Johan; Granberg, Dan; Stigare, Jerker; Wikström, Johan; Boldt, Henning Bünsow; Kristensen, Bjarne Winther; Pontén, Fredrik; Trouillas, Jacqueline

    2017-09-01

    Differential diagnosis based on morphology and immunohistochemistry between a clinically nonfunctioning pituitary neuroendocrine tumor (NET)/pituitary adenoma and a primary or secondary NET of nonpituitary origin in the sellar region may be difficult. Serotonin, a frequently expressed marker in the NETs, has not been systematically evaluated in pituitary NETs. Although mutations in ATRX or DAXX have been reported in a significant proportion of pancreatic NETs, the mutational status of ATRX and DAXX and their possible pathogenetic role in pituitary NETs are unknown. Facing a difficult diagnostic case of an invasive serotonin and adrenocorticotroph hormone immunoreactive NET in the sellar region, we explored the immunohistochemical expression of serotonin, ATRX, and DAXX in a large series of pituitary endocrine tumors of different types from 246 patients and in 2 corticotroph carcinomas. None of the pituitary tumors expressed serotonin, suggesting that serotonin immunoreactive sellar tumors represent primary or secondary NETs of nonpituitary origin. Normal expression of ATRX and DAXX in pituitary tumors suggests that ATRX and DAXX do not play a role in the pathogenesis of pituitary endocrine tumors that remain localized to the sellar and perisellar region. A lack of ATRX or DAXX in a sellar NET suggests a nonpituitary NET, probably of pancreatic origin. One of the 2 examined corticotroph carcinomas, however, demonstrated negative ATRX immunolabeling due to an ATRX gene mutation. Further studies on a larger cohort of pituitary carcinomas are needed to clarify whether ATRX mutations may contribute to the metastatic potential in a subset of pituitary NETs.

  18. Phenotypical and Pharmacological Characterization of Stem-Like Cells in Human Pituitary Adenomas.

    PubMed

    Würth, Roberto; Barbieri, Federica; Pattarozzi, Alessandra; Gaudenzi, Germano; Gatto, Federico; Fiaschi, Pietro; Ravetti, Jean-Louis; Zona, Gianluigi; Daga, Antonio; Persani, Luca; Ferone, Diego; Vitale, Giovanni; Florio, Tullio

    2017-09-01

    The presence and functional role of tumor stem cells in benign tumors, and in human pituitary adenomas in particular, is a debated issue that still lacks a definitive formal demonstration. Fifty-six surgical specimens of human pituitary adenomas were processed to establish tumor stem-like cultures by selection and expansion in stem cell-permissive medium or isolating CD133-expressing cells. Phenotypic and functional characterization of these cells was performed (1) ex vivo, by immunohistochemistry analysis on paraffin-embedded tissues; (2) in vitro, attesting marker expression, proliferation, self-renewal, differentiation, and drug sensitivity; and (3) in vivo, using a zebrafish model. Within pituitary adenomas, we identified rare cell populations expressing stem cell markers but not pituitary hormones; we isolated and expanded in vitro these cells, obtaining fibroblast-free, stem-like cultures from 38 pituitary adenoma samples. These cells grow as spheroids, express stem cell markers (Oct4, Sox2, CD133, and nestin), show sustained in vitro proliferation as compared to primary cultures of differentiated pituitary adenoma cells, and are able to differentiate in hormone-expressing pituitary cells. Besides, pituisphere cells, apparently not tumorigenic in mice, engrafted in zebrafish embryos, inducing pro-angiogenic and invasive responses. Finally, pituitary adenoma stem-like cells express regulatory pituitary receptors (D2R, SSTR2, and SSTR5), whose activation by a dopamine/somatostatin chimeric agonist exerts antiproliferative effects. In conclusion, we provide evidence that human pituitary adenomas contain a subpopulation fulfilling biological and phenotypical signatures of tumor stem cells that may represent novel therapeutic targets for therapy-resistant tumors.

  19. Preoperative preparation of patients with pituitary gland disorders.

    PubMed

    Malenković, Vesna; Gvozdenović, Ljiljana; Milaković, Branko; Sabljak, Vera; Ladjević, Nebojsa; Zivaljević, Vladan

    2011-01-01

    This paper presents the most common disorders of pituitary function: acromegaly, hypopituitarism, diabetes insipidus and syndrome similar to diabetes insipidus, in terms of their importance in preoperative preparation of patients. Pituitary function manages almost the entire endocrine system using the negative feedback mechanism that is impaired by these diseases. The cause of acromegaly is a pituitary adenoma, which produces growth hormone in adults. Primary therapy of acromegaly is surgical, with or without associated radiotherapy. If a patient with acromegaly as comorbidity prepares for non-elective neurosurgical operation, then it requires consultation with brain surgeons for possible delays of that operation and primary surgical treatment of pituitary gland. If operative treatment of pituitary gland is carried out, the preoperative preparation (for other surgical interventions) should consider the need for perioperative glucocorticoid supplementation. Panhypopituitarism consequences are different in children and adults and the first step in diagnosis is to assess the function of target organs. Change of electrolytes and water occurs in the case of pituitary lesions in the form of central or nephrogenic diabetes insipidus as a syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Preoperative preparation of patients with pituitary dysfunction should be multidisciplinary, whether it is a neurosurgical or some other surgical intervention. The aim is to evaluate the result of insufficient production of pituitary hormones (hypopituitarism), excessive production of adenohypophysis hormones (acromegaly, Cushing's disease and hyperprolactinemia) and the influence of pituitary tumours in surrounding structures (compression syndrome) and to determine the level of perioperative risk. Pharmacological suppressive therapy of the hyperfunctional pituitary disorders can have significant interactions with drugs used in the perioperative period.

  20. Occurrence of IgG4-related hypophysitis lacking IgG4-bearing plasma cell infiltration during steroid therapy.

    PubMed

    Ohkubo, Yohsuke; Sekido, Takashi; Takeshige, Keiko; Ishi, Hiroaki; Takei, Masahiro; Nishio, Shin-ichi; Yamazaki, Masanori; Komatsu, Mitsuhisa; Kawa, Shigeyuki; Suzuki, Satoru

    2014-01-01

    Eight years after an episode of multiple IgG4-related disease, a pituitary mass with panhypopituitarism and a visual disturbance developed in a 70-year-old man under low-dose steroid therapy. A pituitary biopsy revealed findings of lymphocytic hypophysitis with the absence of IgG4-positive plasma cell infiltration. The serum IgG4 level was unremarkable. Although performing a pituitary biopsy and measuring the serum IgG4 level is crucial for making a diagnosis of IgG4-related hypophysitis, it is occasionally difficult to diagnose the disease in patients treated with steroid therapy, as observed in the present case. Based on a review of the diagnosis, conducting a careful assessment is required, especially in men and elderly patients thought to have solitary hypophysitis.

  1. Congenital hypopituitarism due to POU1F1 gene mutation.

    PubMed

    Lee, Ni-Chung; Tsai, Wen-Yu; Peng, Shinn-Forng; Tung, Yi-Ching; Chien, Yin-Hsiu; Hwu, Wuh-Liang

    2011-01-01

    POU1F1 (Pit-1; Gene ID 5449) is an anterior pituitary transcriptional factor, and POU1F1 mutation is known to cause anterior pituitary hypoplasia, growth hormone and prolactin deficiency and various degree of hypothyroidism. We report here a patient who presented with growth failure and central hypothyroidism since early infancy. However, treatment with thyroxine gave no effect and he subsequently developed calf muscle pseudohypertrophy (Kocher-Debre-Semelaigne syndrome), elevation of creatinine kinase, dilated cardiomyopathy and pericardial effusion. Final diagnosis was made by combined pituitary function test and sequencing analysis that revealed POU1F1 gene C.698T > C (p.F233S) mutation. The rarity of the disease can result in delayed diagnosis and treatment. Copyright © 2011 Formosan Medical Association & Elsevier. Published by Elsevier B.V. All rights reserved.

  2. Growth hormone deficiency and diabetes insipidus as a complication of endoscopic third ventriculostomy.

    PubMed

    Tafuri, Kimberly S; Wilson, Thomas A

    2012-12-01

    Endoscopic third ventriculostomy (ETV) has become the procedure of choice for the treatment of obstructive hydrocephalus in children and adults. Endocrinological complications of ETV in children are rare. Diabetes insipidus (DI) is the most common and accounts for only 0.5% of complications from ETV. The majority of documented cases are transient. To date, there are no documented cases of multiple pituitary hormone deficiencies. We present here a 6-year-old girl with growth hormone deficiency and permanent DI which developed as a complication of ETV. This patient is unique in both demonstrating multiple pituitary hormone deficiencies and the classical triphasic response of DI after ETV. We postulate that these complications were caused by compression of the pituitary stalk and hypothalamic injury during the procedure. We compare our case presentation to experimental studies conducted in rats.

  3. Diabetes insipidus due to herpes encephalitis in a patient with diffuse large cell lymphoma. A case report.

    PubMed

    Scheinpflug, K; Schalk, E; Reschke, K; Franke, A; Mohren, M

    2006-01-01

    The major causes of central diabetes insipidus are neoplastic or infiltrative lesions of the hypothalamus or pituitary, severe head injuries and pituitary or hypothalamic surgery. Central diabetes insipidus caused by viral infections has been rarely reported in immunosuppressed patients, such as those with acquired immunodeficiency syndrome or Cushing's syndrome. We report the case of a 48-year-old woman suffering from diffuse large cell lymphoma, who developed hypotonic polyuria, hypernatriaemia and somnolence after the first course of chemotherapy with CHOEP and rituximab. Diabetes insipidus was diagnosed by low urine osmolarity and an undetectable vasopressin concentration. MRI revealed no pituitary abnormalities but encephalitis, and lumbar punction confirmed herpes zoster infection. To the best of our knowledge this is the first description of central diabetes insipidus in a lymphoma patient caused by an opportunistic CNS-infection.

  4. Novel FOXA2 mutation causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-derived organ abnormalities.

    PubMed

    Giri, Dinesh; Vignola, Maria Lillina; Gualtieri, Angelica; Scagliotti, Valeria; McNamara, Paul; Peak, Matthew; Didi, Mohammed; Gaston-Massuet, Carles; Senniappan, Senthil

    2017-11-15

    Congenital hypopituitarism (CH) is characterized by the deficiency of one or more pituitary hormones and can present alone or in association with complex disorders. Congenital hyperinsulinism (CHI) is a disorder of unregulated insulin secretion despite hypoglycaemia that can occur in isolation or as part of a wider syndrome. Molecular diagnosis is unknown in many cases of CH and CHI. The underlying genetic etiology causing the complex phenotype of CH and CHI is unknown. In this study, we identified a de novo heterozygous mutation in the developmental transcription factor, forkhead box A2, FOXA2 (c.505T>C, p.S169P) in a child with CHI and CH with craniofacial dysmorphic features, choroidal coloboma and endoderm-derived organ malformations in liver, lung and gastrointestinal tract by whole exome sequencing. The mutation is at a highly conserved residue within the DNA binding domain. We demonstrated strong expression of Foxa2 mRNA in the developing hypothalamus, pituitary, pancreas, lungs and oesophagus of mouse embryos using in situ hybridization. Expression profiling on human embryos by immunohistochemistry showed strong expression of hFOXA2 in the neural tube, third ventricle, diencephalon and pancreas. Transient transfection of HEK293T cells with Wt (Wild type) hFOXA2 or mutant hFOXA2 showed an impairment in transcriptional reporter activity by the mutant hFOXA2. Further analyses using western blot assays showed that the FOXA2 p.(S169P) variant is pathogenic resulting in lower expression levels when compared with Wt hFOXA2. Our results show, for the first time, the causative role of FOXA2 in a complex congenital syndrome with hypopituitarism, hyperinsulinism and endoderm-derived organ abnormalities. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Genetic disorders of the anterior pituitary gland.

    PubMed

    Teller, W M

    1985-01-01

    This survey deals with disorders caused by genetically disturbed function of the anterior pituitary gland. Genetic Dwarfism may be caused by isolated growth hormone deficiency (IGHD) or panpituitary diseases, such as congenital absence of the pituitary or familial panhypopituitarism. Genetic disturbances of isolated pituitary hormone secretion without dwarfism may occur as isolated gonadotropin deficiency (IGD), isolated luteinizing hormone deficiency ("fertile eunuch"), Kallmann syndrome (olfactogenital dysplasia), isolated thyrotropin deficiency (ITD) and isolated corticotropin deficiency (ICD). Pituitary dysfunction may also be associated with other genetic disease entities.

  6. Distribution of the Vasotocin Subtype Four Receptor (VT4R) in the Anterior Pituitary Gland of the Chicken, Gallus gallus, and its Possible Role in the Avian Stress Response.

    PubMed

    Selvam, R; Jurkevich, A; Kang, S W; Mikhailova, M V; Cornett, L E; Kuenzel, W J

    2013-01-01

    The neurohormone arginine vasotocin (AVT) in non mammalian vertebrates is homologous to arginine vasopressin (AVP) in mammals. Its actions are mediated via G protein-coupled receptors that belong to the vasotocin/mesotocin family. Because of the known regulatory effects of nonapeptide hormones on anterior pituitary functions, receptor subtypes in that family have been proposed to be located in anterior pituitary cells. Recently, an avian vasotocin receptor subtype designated VT4R has been cloned, which shares 69% sequence homology with a human vasopressin receptor, the V1aR. In the present study, a polyclonal antibody to the VT4R was developed and validated to confirm its specificity to the VT4R. The antibody was used to test the hypothesis that the VT4R is present in the avian anterior pituitary and is specifically associated with certain cell types, where its expression is modulated by acute stress. Western blotting of membrane protein extracts from pituitary tissue, the use of HeLa cells transfected with the VT4R and peptide competition assays all confirmed the specificity of the antibody to the VT4R. Dual-labelling immunofluorescence microscopy was utilised to identify pituitary cell types that contained immunoreactive VT4R. The receptor was found to be widely distributed throughout the cephalic lobe but not in the caudal lobe of the anterior pituitary. Immunoreactive VT4R was associated with corticotrophs. Approximately 89% of immunolabelled corticotrophs were shown to contain the VT4R. The immunoreactive VT4R was not found in gonadotrophs, somatotrophs or lactotrophs. To determine a possible functional role of the VT4R and previously characterised VT2R, gene expression levels in the anterior pituitary were determined after acute immobilisation stress by quantitative reverse transcriptase-polymerase chain reaction. The results showed a significant increase in plasma corticosterone levels (three- to four-fold), a significant reduction of VT4R mRNA and an increase of VT2R mRNA (P < 0.05) in acutely immobilised chicks compared to controls. The data suggest a role of the VT4R in the avian stress response. © 2012 British Society for Neuroendocrinology.

  7. Secondary Intracranial Tumors Following Radiotherapy for Pituitary Adenomas: A Systematic Review

    PubMed Central

    Yamanaka, Ryuya; Sato, Toshiteru; Hayano, Azusa; Takashima, Yasuo

    2017-01-01

    Pituitary adenomas are often treated with radiotherapy for the management of tumor progression or recurrence. Despite the improvement in cure rates, patients treated by radiotherapy are at risk of development of secondary malignancies. We conducted a comprehensive literature review of the secondary intracranial tumors that occurred following radiotherapy to pituitary adenomas to obtain clinicopathological characteristics. The analysis included 48 neuroepithelial tumors, 37 meningiomas, and 52 sarcomas which were published between 1959–2017, although data is missing regarding overall survival and type of irradiation in a significant proportion of the reports. The average onset age for the pituitary adenoma was 37.2 ± 14.4 years and the average latency period before the diagnosis of the secondary tumor was 15.2 ± 8.7 years. Radiotherapy was administered in pituitary adenomas at an average dose of 52.0 ± 19.5 Gy. The distribution of pituitary adenomas according to their function was prolactinoma in 10 (7.2%) cases, acromegaly in 37 (27.0%) cases, Cushing disease in 4 (2.9%) cases, PRL+GH in 1 (0.7%) case, non-functioning adenoma in 57 (41.6%) cases. Irradiation technique delivered was lateral opposing field in 23 (16.7%) cases, 3 or 4 field technique in 27 (19.6%) cases, rotation technique in 10 (7.2%) cases, radio surgery in 6 (4.3%) cases. Most of the glioma or sarcoma had been generated after lateral opposing field or 3/4 field technique. Fibrosarcomas were predominant before 1979 (p < 0.0001). The median overall survival time for all neuroepithelial tumors was 11 months (95% confidence intervals (CI), 3–14). Patients with gliomas treated with radiotherapy exhibited a non-significant positive trend with longer overall survival. The median overall survival time for sarcoma cases was 6 months (95% CI, 1.5–9). The median survival time in patients with radiation and/or chemotherapy for sarcomas exhibited a non-significant positive trend with longer overall survival. In patients treated with radiotherapy for pituitary adenomas, the risk of secondary tumor incidence warrants a longer follow up period. Moreover, radiation and/or chemotherapy should be considered in cases of secondary glioma or sarcoma following radiotherapy to the pituitary adenomas. PMID:28786923

  8. Cell life and death in the anterior pituitary gland: role of oestrogens.

    PubMed

    Seilicovich, A

    2010-07-01

    Apoptotic processes play an important role in the maintenance of cell numbers in the anterior pituitary gland during physiological endocrine events. In this review, we summarise the regulation of apoptosis of anterior pituitary cells, particularly lactotrophs, somatotrophs and gonadotrophs, and analyse the possible mechanisms involved in oestrogen-induced apoptosis in anterior pituitary cells. Oestrogens exert apoptotic actions in several cell types and act as modulators of pituitary cell renewal, sensitising cells to both mitogenic and apoptotic signals. Local synthesis of growth factors and cytokines induced by oestradiol as well as changes in phenotypic features that enhance the responsiveness of anterior pituitary cells to pro-apoptotic factors may account for cyclical apoptotic activity in anterior pituitary cells during the oestrous cycle. Considering that tissue homeostasis results from a balance between cell proliferation and death and that mechanisms involved in apoptosis are tightly regulated, defects in cell death processes could have a considerable physiopathological impact.

  9. Pituitary apoplexy: pathophysiology, diagnosis and management.

    PubMed

    Glezer, Andrea; Bronstein, Marcello D

    2015-06-01

    Pituitary apoplexy is characterized by sudden increase in pituitary gland volume secondary to ischemia and/or necrosis, usually in a pituitary adenoma. Most cases occur during the 5th decade of life, predominantly in males and in previously unknown clinically non-functioning pituitary adenomas. There are some predisposing factors as arterial hypertension, anticoagulant therapy and major surgery. Clinical picture comprises headache, visual impairment, cranial nerve palsies and hypopituitarism. Most cases improve with both surgical and expectant management and the best approach in the acute phase is still controversial. Surgery, usually by transsphenoidal route, is indicated if consciousness and/or vision are impaired, despite glucocorticoid replacement and electrolyte support. Pituitary function is impaired in most patients before apoplexy and ACTH deficiency is common, which makes glucocorticoid replacement needed in most cases. Pituitary deficiencies, once established, usually do not recover, regardless the treatment. Sellar imaging and endocrinological function must be periodic reevaluated.

  10. An acute adrenal insufficiency revealing pituitary metastases of lung cancer in an elderly patient.

    PubMed

    Marmouch, Hela; Arfa, Sondes; Mohamed, Saoussen Cheikh; Slim, Tensim; Khochtali, Ines

    2016-01-01

    Metastases of solid tumors to the pituitary gland are often asymptomatic or appereas as with diabetes insipid us. Pituitary metastases more commonly affect the posterior lobe and the infundibulum than the anterior lobe. The presentation with an acute adrenal insufficiency is a rare event. A 69-year-old men presented with vomiting, low blood pressure and hypoglycemia. Hormonal exploration confirmed a hypopituitarism. Appropriate therapy was initiated urgently. The hypothalamic-pituitary MRI showed a pituitary hypertrophy, a nodular thickening of the pituitary stalk. The chest X Rays revealed pulmonary opacity. Computed tomography scan of the chest showed a multiples tumors with mediastinal lymphadenopathy. Bronchoscopy and biopsy demonstrated a pulmonary adenocarcinoma. Hence we concluded to a lung cancer with multiple pituitary and adrenal gland metastases. This case emphasizes the need for an etiological investigation of acute adrenal insufficiency after treatment of acute phase.

  11. An acute adrenal insufficiency revealing pituitary metastases of lung cancer in an elderly patient

    PubMed Central

    Marmouch, Hela; Arfa, Sondes; Mohamed, Saoussen Cheikh; Slim, Tensim; Khochtali, Ines

    2016-01-01

    Metastases of solid tumors to the pituitary gland are often asymptomatic or appereas as with diabetes insipid us. Pituitary metastases more commonly affect the posterior lobe and the infundibulum than the anterior lobe. The presentation with an acute adrenal insufficiency is a rare event. A 69-year-old men presented with vomiting, low blood pressure and hypoglycemia. Hormonal exploration confirmed a hypopituitarism. Appropriate therapy was initiated urgently. The hypothalamic-pituitary MRI showed a pituitary hypertrophy, a nodular thickening of the pituitary stalk. The chest X Rays revealed pulmonary opacity. Computed tomography scan of the chest showed a multiples tumors with mediastinal lymphadenopathy. Bronchoscopy and biopsy demonstrated a pulmonary adenocarcinoma. Hence we concluded to a lung cancer with multiple pituitary and adrenal gland metastases. This case emphasizes the need for an etiological investigation of acute adrenal insufficiency after treatment of acute phase. PMID:27200139

  12. The Characteristics of Incidental Pituitary Microadenomas in 120 Korean Forensic Autopsy Cases

    PubMed Central

    Kim, Jang-Hee; Seo, Jung-Seok; Lee, Bong-Woo; Lee, Sang-Young; Jeon, Seok-Hoon

    2007-01-01

    To investigate the characteristics of incidental pituitary microadenomas, we examined 120 pituitary glands from Korean forensic autopsy cases, from which eight tumors were identified (incidence 6.7%). The average age of the affected subjects was 50 yr (range: 33-96 yr) with a female predominance. The maximum diameters of the tumors ranged from 0.4 to 5.4 mm (mean: 2.8 mm). Immunohistochemical analysis of pituitary hormones revealed three growth hormone-secreting adenomas, one prolactin-producing adenoma, one gonadotropin-producing adenoma, one plurihormonal adenoma, and two null cell adenomas. MIB-1 staining for Ki-67 antigen showed no positive expression. The microvessel density (MVD) of the pituitary microadenomas ranged from 2.3 to 11.6% (mean: 5.3%) and was significantly lower than that of nonneoplastic pituitary glands (11.9-20.1%, mean: 14.8%). Our study provides reference data on incidental pituitary microadenomas in the Korean population. PMID:17923757

  13. Spontaneous regression of a pituitary cyst: report of two cases.

    PubMed

    Nishio, S; Morioka, T; Suzuki, S; Fukui, M

    2001-01-01

    Two unusual cases of pituitary cysts are described. Both patients presented with sudden onset of severe headache, and magnetic resonance imaging (MRI) demonstrated pituitary cysts, which regressed over months. Although the precise etiology of the cysts was unproven, the cystic lesions in our patients are thought to have shrunken after "pituitary apoplexy."

  14. 21 CFR 522.1820 - Pituitary luteinizing hormone for injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pituitary luteinizing hormone for injection. 522... ANIMAL DRUGS § 522.1820 Pituitary luteinizing hormone for injection. (a) Specifications. The drug is a... standard pituitary luteinizing hormone and is reconstituted for use by addition of 5 milliliters of 0.9...

  15. 21 CFR 522.1820 - Pituitary luteinizing hormone for injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Pituitary luteinizing hormone for injection. 522... ANIMAL DRUGS § 522.1820 Pituitary luteinizing hormone for injection. (a) Specifications. The drug is a... standard pituitary luteinizing hormone and is reconstituted for use by addition of 5 milliliters of 0.9...

  16. Ets-1 is a target of MAPK signaling in the embryonic anterior pituitary gland during glucocorticoid initiation of pituitary growth hormone expression

    USDA-ARS?s Scientific Manuscript database

    Glucocorticoids play a critical role in functional differentiation of somatotrophs, the growth hormone (GH)-producing cells within the anterior pituitary gland. In chicken embryonic day 11 (e11) pituitary cells, premature induction of growth hormone (GH) resulting from corticosterone (CORT) treatmen...

  17. Female orgasm but not male ejaculation activates the pituitary. A PET-neuro-imaging study.

    PubMed

    Huynh, Hieu Kim; Willemsen, Antoon T M; Holstege, Gert

    2013-08-01

    The pituitary gland plays an important role in basic survival mechanisms by releasing fluctuating amounts of hormones into the bloodstream, depending on the circumstances the individual finds itself. However, despite these changes in pituitary hormonal production, neuroimaging studies have never been able to demonstrate changes in the activation level of the pituitary. The most apparent reason is the much higher blood flow rate in the pituitary than in the brain. However, the present PET-scanning study demonstrates for the first time that neuroimaging techniques can identify increased pituitary activity. In a study with 11 healthy women sexual orgasm compared to rest caused an increased blood supply to the pituitary. We assume that this increase signifies elevated pituitary activation in order to produce higher plasma concentrations of oxytocin and prolactin. These hormones induce vaginal and uterus movements, ovulation and enhancement of sperm and egg transport. No increased blood supply was observed comparing clitoral stimulation, orgasm attempt, and faked orgasm with rest. In a study with 11 healthy men comparing ejaculation with rest did not reveal increased pituitary activation, probably because ejaculation causes a much lower increase of oxytocin and prolactin plasma concentration than female orgasm. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Evaluation of clinical hypothyroidism risk due to irradiation of thyroid and pituitary glands in radiotherapy of nasopharyngeal cancer patients.

    PubMed

    Lin, Zhixiong; Wang, Xiaoyan; Xie, Wenjia; Yang, Zhining; Che, Kaijun; Wu, Vincent W C

    2013-12-01

    Radiation-induced thyroid dysfunction after radiotherapy for nasopharyngeal cancer (NPC) has been reported. This study investigated the radiation effects of the thyroid and pituitary glands on thyroid function after radiotherapy for NPC. Sixty-five NPC patients treated with radiotherapy were recruited. Baseline thyroid hormone levels comprising free triiodothyronine (fT3), free thyroxine (fT4) and thyroid-stimulating hormone (TSH) were taken before treatment and at 3, 6, 12 and 18 months. A seven-beam intensity-modulated radiotherapy plan was generated for each patient. Thyroid and pituitary gland dose volume histograms were generated, dividing the patients into four groups: high (>50 Gy) thyroid and pituitary doses (HTHP group); high thyroid and low pituitary doses (HTLP group); low thyroid and high pituitary doses; and low thyroid and pituitary doses. Incidence of hypothyroidism was analysed. Twenty-two (34%) and 17 patients (26%) received high mean thyroid and pituitary doses, respectively. At 18 months, 23.1% of patients manifested various types of hypothyroidism. The HTHP group showed the highest incidence (83.3%) of hypothyroidism, followed by the HTLP group (50%). NPC patients with high thyroid and pituitary gland doses carried the highest risk of abnormal thyroid physiology. The dose to the thyroid was more influential than the pituitary dose at 18 months after radiotherapy, and therefore more attention should be given to the thyroid gland in radiotherapy planning. © 2013 The Royal Australian and New Zealand College of Radiologists.

  19. Rat brain xenografts reverse hypogonadism in mice immunosuppressed with anti-CD4 monoclonal antibody.

    PubMed

    Honey, C R; Charlton, H M; Wood, K J

    1991-01-01

    This study examines the effect of immunosuppression with monoclonal antibodies (MAb) against the murine CD4 (L3T4), a cell surface glycoprotein expressed primarily on helper T-lymphocytes, on the viability and function of rat neural xenografts placed in the third ventricle of hypogonadal (hpg) mice. The hpg mouse fails to synthesize hypothalamic gonadotrophin releasing hormone (GnRH) and consequently there is a drastic reduction in pituitary gonadotrophic hormone content and a failure of postnatal gonadal development (Cattanach et al. 1977). Three groups of male hpg mice received xenografts of day 1 post natal rat preoptic area (POA) tissue, a source of GnRH neurons, to their third ventricle. Those immunosuppressed with anti-CD4 MAb all showed surviving graft tissue thirty days post-transplant and half of this group had enlarged testes with all stages of spermatogenesis. In those hpg mice which were injected with saline alone, or with an anti-CD8 (Lyt-2) antibody there was no xenograft survival. These results suggest that the injection of monoclonal antibodies against the T-helper subset may provide an alternative means of immunosuppression aimed at the enhancement of survival of tissue grafts in the CNS.

  20. Nuclear Receptor CAR Specifically Activates the Two-Pore K+ Channel Kcnk1 Gene in Male Mouse Livers, Which Attenuates Phenobarbital-Induced Hepatic Hyperplasia

    PubMed Central

    Negishi, Masahiko

    2013-01-01

    KCNK1, a member of the family of two-pore K+ ion channels, is specifically induced in the livers of male mice after phenobarbital treatment. Here, we have determined the molecular mechanism of this male-specific activation of the Kcnk1 gene and characterized KCNK1 as a phenobarbital-inducible antihyperplasia factor. Upon activation by phenobarbital, nuclear receptor CAR binds the 97-bp response element (−2441/−2345) within the Kcnk1 promoter. This binding is observed in the livers of male mice, but not in the livers of female mice and requires the pituitary gland, because hypophysectomy abrogates it. Hyperplasia further progressed in the livers of Kcnk1 −/− male mice compared with those of Kcnk1 +/+ males after phenobarbital treatment. Thus, KCNK1 suppresses phenobarbital-induced hyperplasia. These results indicate that phenobarbital treatment induces KCNK1 to elicit a male-specific and growth-suppressing signal. Thus, KCNK1 and Kcnk1 −/− mice provide an experimental tool for further investigation into the molecular mechanism of CAR-mediated promotion of the development of hepatocellular carcinoma in mice. PMID:23291559

Top