Sample records for developing mouse skin

  1. Human Atopic Dermatitis Skin-derived T Cells can Induce a Reaction in Mouse Keratinocytes in vivo.

    PubMed

    Martel, B C; Blom, L; Dyring-Andersen, B; Skov, L; Thestrup-Pedersen, K; Skov, S; Skak, K; Poulsen, L K

    2015-08-01

    In atopic dermatitis (AD), the inflammatory response between skin-infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice through keratinocyte activation and consequently cause the development of eczematous lesions. Punch biopsies of the lesional skin from AD patients were used to establish skin-derived T cell cultures, which were transferred to NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that the subcutaneous injection of the human AD skin-derived T cells resulted in the migration of the human T cells from subcutis to the papillary dermis followed by the development of erythema and oedema in the mouse skin. Furthermore, the human T cells induced a transient proliferative response in the mouse keratinocytes shown as increased numbers of Ki-67(+) keratinocytes and increased epidermal thickness. Out of six established AD skin-derived T cell cultures, two were superior at inducing a skin reaction in the mice, and these cultures were found to contain >10% CCR10(+) T cells compared to <2% for the other cultures. In comparison, blood-derived in vitro-differentiated Th2 cells only induced a weak response in a few of the mice. Thus, we conclude that human AD skin-derived T cells can induce a reaction in the mouse skin through the induction of a proliferative response in the mouse keratinocytes. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  2. Evaluation of an improved fiberoptics luminescence skin monitor with background correction.

    PubMed

    Vo-Dinh, T

    1987-06-01

    In this work, an improved version of a fiberoptics luminescence monitor, the prototype luminoscope II, is evaluated for in situ quantitative measurements. The instrument was developed to detect traces of luminescing organic contaminants on skin. An electronic background-nulling system was designed and incorporated into the instrument to compensate for various skin background emissions. A dose-response curve for a coal liquid spotted on mouse skin was established. The results illustrated the usefulness of the instrument for in vivo detection of organic materials on laboratory mouse skin.

  3. 2-Chloroethyl ethyl sulfide causes microvesication and inflammation-related histopathological changes in male hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Orlicky, David J.; White, Carl W; Agarwal, Rajesh

    2011-01-01

    Sulfur mustard (HD) is a vesicating agent that has been used as a chemical warfare agent in a number of conflicts, posing a major threat in both military conflict and chemical terrorism situations. Currently, we lack effective therapies to rescue skin injuries by HD, in part, due to the lack of appropriate animal models, which are required for conducting laboratory studies to evaluate the therapeutic efficacy of promising agents that could potentially be translated in to real HD-caused skin injury. To address this challenge, the present study was designed to assess whether microvesication could be achieved in mouse skin by an HD analog 2-chloroethyl ethyl sulfide (CEES) exposure; notably, microvesication is a key component of HD skin injury in humans. We found that skin exposure of male SKH-1 hairless mice to CEES caused epidermal-dermal separation indicating microvesication. In other studies, CEES exposure also caused an increase in skin bi-fold thickness, wet/dry weight ratio, epidermal thickness, apoptotic cell death, cell proliferation, and infiltration of macrophages, mast cells and neutrophils in male SKH-1 hairless mouse skin. Taken together, these results establish CEES-induced microvesication and inflammation-related histopathological changes in mouse skin, providing a potentially relevant laboratory model for developing effective countermeasures against HD skin injury in humans. PMID:21295104

  4. Defective natural killer cell activity in a mouse model of eczema herpeticum.

    PubMed

    Kawakami, Yuko; Ando, Tomoaki; Lee, Jong-Rok; Kim, Gisen; Kawakami, Yu; Nakasaki, Tae; Nakasaki, Manando; Matsumoto, Kenji; Choi, Youn Soo; Kawakami, Toshiaki

    2017-03-01

    Patients with atopic dermatitis (AD) are susceptible to several viruses, including herpes simplex virus (HSV). Some patients experience 1 or more episodes of a severe skin infection caused by HSV termed eczema herpeticum (EH). There are numerous mouse models of AD, but no established model exists for EH. We sought to establish and characterize a mouse model of EH. We infected AD-like skin lesions with HSV1 to induce severe skin lesions in a dermatitis-prone mouse strain of NC/Nga. Gene expression was investigated by using a microarray and quantitative PCR; antibody titers were measured by means of ELISA; and natural killer (NK) cell, cytotoxic T-cell, regulatory T-cell, and follicular helper T-cell populations were evaluated by using flow cytometry. The role of NK cells in HSV1-induced development of severe skin lesions was examined by means of depletion and adoptive transfer. Inoculation of HSV1 induced severe erosive skin lesions in eczematous mice, which had an impaired skin barrier, but milder lesions in small numbers of normal mice. Eczematous mice exhibited lower NK cell activity but similar cytotoxic T-cell activity and humoral immune responses compared with normal mice. The role of NK cells in controlling HSV1-induced skin lesions was demonstrated by experiments depleting or transferring NK cells. A murine model of EH with an impaired skin barrier was established in this study. We demonstrated a critical role of defective NK activities in the development of HSV1-induced severe skin lesions in eczematous mice. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  5. Ex vivo culture of mouse embryonic skin and live-imaging of melanoblast migration.

    PubMed

    Mort, Richard L; Keighren, Margaret; Hay, Leonard; Jackson, Ian J

    2014-05-19

    Melanoblasts are the neural crest derived precursors of melanocytes; the cells responsible for producing the pigment in skin and hair. Melanoblasts migrate through the epidermis of the embryo where they subsequently colonize the developing hair follicles(1,2). Neural crest cell migration is extensively studied in vitro but in vivo methods are still not well developed, especially in mammalian systems. One alternative is to use ex vivo organotypic culture(3-6). Culture of mouse embryonic skin requires the maintenance of an air-liquid interface (ALI) across the surface of the tissue(3,6). High resolution live-imaging of mouse embryonic skin has been hampered by the lack of a good method that not only maintains this ALI but also allows the culture to be inverted and therefore compatible with short working distance objective lenses and most confocal microscopes. This article describes recent improvements to a method that uses a gas permeable membrane to overcome these problems and allow high-resolution confocal imaging of embryonic skin in ex vivo culture(6). By using a melanoblast specific Cre-recombinase expressing mouse line combined with the R26YFPR reporter line we are able to fluorescently label the melanoblast population within these skin cultures. The technique allows live-imaging of melanoblasts and observation of their behavior and interactions with the tissue in which they develop. Representative results are included to demonstrate the capability to live-image 6 cultures in parallel.

  6. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    PubMed Central

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  7. BP180 dysfunction triggers spontaneous skin inflammation in mice.

    PubMed

    Zhang, Yang; Hwang, Bin-Jin; Liu, Zhen; Li, Ning; Lough, Kendall; Williams, Scott E; Chen, Jinbo; Burette, Susan W; Diaz, Luis A; Su, Maureen A; Xiao, Shengxiang; Liu, Zhi

    2018-06-04

    BP180, also known as collagen XVII, is a hemidesmosomal component and plays a key role in maintaining skin dermal/epidermal adhesion. Dysfunction of BP180, either through genetic mutations in junctional epidermolysis bullosa (JEB) or autoantibody insult in bullous pemphigoid (BP), leads to subepidermal blistering accompanied by skin inflammation. However, whether BP180 is involved in skin inflammation remains unknown. To address this question, we generated a BP180-dysfunctional mouse strain and found that mice lacking functional BP180 (termed Δ NC16A ) developed spontaneous skin inflammatory disease, characterized by severe itch, defective skin barrier, infiltrating immune cells, elevated serum IgE levels, and increased expression of thymic stromal lymphopoietin (TSLP). Severe itch is independent of adaptive immunity and histamine, but dependent on increased expression of TSLP by keratinocytes. In addition, a high TSLP expression is detected in BP patients. Our data provide direct evidence showing that BP180 regulates skin inflammation independently of adaptive immunity, and BP180 dysfunction leads to a TSLP-mediated itch. The newly developed mouse strain could be a model for elucidation of disease mechanisms and development of novel therapeutic strategies for skin inflammation and BP180-related skin conditions.

  8. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  9. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira

    2006-06-30

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/cmore » nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis.« less

  10. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  11. Activin B promotes initiation and development of hair follicles in mice.

    PubMed

    Jia, Qin; Zhang, Min; Kong, Yanan; Chen, Shixuan; Chen, Yinghua; Wang, Xueer; Zhang, Lei; Lang, Weiya; Zhang, Lu; Zhang, Lin

    2013-01-01

    Activin B has been reported to promote the regeneration of hair follicles during wound healing. However, its role in the development and life cycle of hair follicles has not been elucidated. In our study, the effect of activin B on mouse hair follicles of cultured and neonatal mouse skin was investigated. In these models, PBS or activin B (5, 10 or 50 ng/ml) was applied, and hair follicle development was monitored. Hair follicle initiation and development was examined using hematoxylin and eosin staining, alkaline phosphatase activity staining, Oil Red O+ staining, and the detection of TdT-mediated dUTP-biotin nick end-labeling cell apoptosis. Activin B was found to efficiently induce the initiation of hair follicles in the skin of both cultured and neonatal mice and to promote the development of hair follicles in neonatal mouse skin. Moreover, activin-B-treated hair follicles were observed to enter the anagen stage from the telogen stage and to remain in the anagen stage. These results demonstrate that activin B promotes the initiation and development of hair follicles in mice.

  12. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2more » (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.« less

  13. Histology and ultrastructure of transitional changes in skin morphology in the juvenile and adult four-striped mouse (Rhabdomys pumilio).

    PubMed

    Stewart, Eranée; Ajao, Moyosore Salihu; Ihunwo, Amadi Ogonda

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin.

  14. Discovery and Targeted Proteomics on Cutaneous Biopsies Infected by Borrelia to Investigate Lyme Disease*

    PubMed Central

    Schnell, Gilles; Boeuf, Amandine; Westermann, Benoît; Jaulhac, Benoît; Lipsker, Dan; Carapito, Christine; Boulanger, Nathalie; Ehret-Sabatier, Laurence

    2015-01-01

    Lyme disease is the most important vector-borne disease in the Northern hemisphere and represents a major public health challenge with insufficient means of reliable diagnosis. Skin is rarely investigated in proteomics but constitutes in the case of Lyme disease the key interface where the pathogens can enter, persist, and multiply. Therefore, we investigated proteomics on skin samples to detect Borrelia proteins directly in cutaneous biopsies in a robust and specific way. We first set up a discovery gel prefractionation-LC-MS/MS approach on a murine model infected by Borrelia burgdorferi sensu stricto that allowed the identification of 25 Borrelia proteins among more than 1300 mouse proteins. Then we developed a targeted gel prefractionation-LC-selected reaction monitoring (SRM) assay to detect 9/33 Borrelia proteins/peptides in mouse skin tissue samples using heavy labeled synthetic peptides. We successfully transferred this assay from the mouse model to human skin biopsies (naturally infected by Borrelia), and we were able to detect two Borrelia proteins: OspC and flagellin. Considering the extreme variability of OspC, we developed an extended SRM assay to target a large set of variants. This assay afforded the detection of nine peptides belonging to either OspC or flagellin in human skin biopsies. We further shortened the sample preparation and showed that Borrelia is detectable in mouse and human skin biopsies by directly using a liquid digestion followed by LC-SRM analysis without any prefractionation. This study thus shows that a targeted SRM approach is a promising tool for the early direct diagnosis of Lyme disease with high sensitivity (<10 fmol of OspC/mg of human skin biopsy). PMID:25713121

  15. Undergraduate Laboratory Module on Skin Diffusion

    ERIC Educational Resources Information Center

    Norman, James J.; Andrews, Samantha N.; Prausnitz, Mark R.

    2011-01-01

    To introduce students to an application of chemical engineering directly related to human health, we developed an experiment for the unit operations laboratory at Georgia Tech examining diffusion across cadaver skin in the context of transdermal drug delivery. In this laboratory module, students prepare mouse skin samples, set up diffusion cells…

  16. MOUSE SKIN TUMORS AND HUMAN LUNG CANCER: RELATIONSHIPS WITH COMPLEX ENVIRONMENTAL EMISSIONS

    EPA Science Inventory

    Historically, mouse skin tumorigenesis has been used to evaluate the tumorigenic effects of complex mixtures including human respiratory carcinogens. his study examines the quantitative relationships between tumor induction in SENCAR mouse skin and the induction of respiratory ca...

  17. In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis.

    PubMed

    Zanivan, Sara; Meves, Alexander; Behrendt, Kristina; Schoof, Erwin M; Neilson, Lisa J; Cox, Jürgen; Tang, Hao R; Kalna, Gabriela; van Ree, Janine H; van Deursen, Jan M; Trempus, Carol S; Machesky, Laura M; Linding, Rune; Wickström, Sara A; Fässler, Reinhard; Mann, Matthias

    2013-02-21

    Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic changes in skin cancer development using the SILAC mouse technology coupled to high-resolution mass spectrometry. We distill protein expression signatures from our data that distinguish between skin cancer stages. A distinct phosphoproteome of the two stages of cancer progression is identified that correlates with perturbed cell growth and implicates cell adhesion as a major driver of malignancy. Importantly, integrated analysis of phosphoproteomic data and prediction of kinase activity revealed PAK4-PKC/SRC network to be highly deregulated in SCC but not in papilloma. This detailed molecular picture, both at the proteome and phosphoproteome level, will prove useful for the study of mechanisms of tumor progression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Utilizing nonlinear optical microscopy to investigate the development of early cancer in nude mice in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Lin, Sung-Jan; Lo, Wen; Dong, Chen-Yuan

    2007-07-01

    In this investigation, we used in vivo nonlinear optical microscopy to image normal and carcinogen DMBA treated skin tissues of nude mice. We acquired two-photon autofluroescence and second harmonic generation (SHG) images of the skin tissue, and applied the ASI (Autofluorescence versus SHG Index) to the resulting image. This allows us to visualize and quantify the interaction between mouse skin cells and the surrounding connective tissue. We found that as the imaging depth increases, ASI has a different distribution in the normal and the treated skin tissues. Since the DMBA treated skin eventually became squamous cell carcinoma (SCC), our results show that the physiological changes to mouse skin en route to become cancer can be effectively tracked by multiphoton microscopy. We envision this approach to be effective in studying tumor biology and tumor treatment procedures.

  19. Effects of low-dose γ-rays on the embryonic development of mouse melanoblasts and melanocytes in the epidermis and hair bulbs.

    PubMed

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2011-06-01

    The effects of low-dose γ-rays on the embryonic development of animal cells are not well studied. The mouse melanocyte is a good model to study the effects of low-dose γ-rays on the development of animal cells, as it possesses visible pigment (melanin) as a differentiation marker. The aim of this study is to investigate in detail the effects of low-dose γ-rays on embryonic development of mouse melanoblasts and melanocytes in the epidermis and hair bulbs at cellular level. Pregnant females of C57BL/10J mice at nine days of gestation were whole-body irradiated with a single acute dose of γrays (0.1, 0.25, 0.5, and 0.75 Gy), and the effects of γ-rays were studied by scoring changes in the development of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes at 18 days in gestation. The number of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes in the dorsal and ventral skins was markedly decreased even at 0.1 Gy-treated embryos (P < 0.001), and gradually decreased as dose increased. The effects on the ventral skin were greater than those on the dorsal skin. The dramatic reduction in the number of melanocytes compared to melanoblasts was observed in the ventral skin, but not in the dorsal skin. These results suggest that low-dose γ-rays provoke the death of melanoblasts and melanocytes, or inhibit the proliferation and differentiation of melanoblasts and melanocytes, even at the low dose.

  20. Mustard vesicating agent-induced toxicity in the skin tissue and silibinin as a potential countermeasure.

    PubMed

    Tewari-Singh, Neera; Agarwal, Rajesh

    2016-06-01

    Exposure to the vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) causes severe skin injury with delayed blistering. Depending upon the dose and time of their exposure, edema and erythema develop into blisters, ulceration, necrosis, desquamation, and pigmentation changes, which persist weeks and even years after exposure. Research advances have generated data that have started to explain the probable mechanism of action of vesicant-induced skin toxicity; however, despite these advances, effective and targeted therapies are still deficient. This review highlights studies on two SM analogs, 2-chloroethyl ethyl sulfide (CEES) and NM, and CEES- and NM-induced skin injury mouse models that have substantially added to the knowledge on the complex pathways involved in mustard vesicating agent-induced skin injury. Furthermore, employing these mouse models, studies under the National Institutes of Health Countermeasures Against Chemical Threats program have identified the flavanone silibinin as a novel therapeutic intervention with the potential to be developed as an effective countermeasure against skin injury following exposure to mustard vesicating agents. © 2016 New York Academy of Sciences.

  1. Mustard vesicating agents–induced toxicity in the skin tissue and silibinin as a potential countermeasure

    PubMed Central

    Tewari-Singh, Neera; Agarwal, Rajesh

    2016-01-01

    Exposure to the vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) causes severe skin injury with delayed blistering. Depending upon the dose and time of their exposure, edema and erythema develop into blisters, ulceration, necrosis, desquamation, and pigmentation changes, which persist weeks and even years after exposure. Research advances have generated data that have started to explain the probable mechanism of action of vesicant-induced skin toxicity; however, despite these advances, effective and targeted therapies are still deficient. This review highlights studies on two SM analogs, chloroethyl ethyl sulfide (CEES) and NM, and CEES- and NM-induced skin injury mouse models that have substantially added to the knowledge on the complex pathways involved in mustard vesicating agent–induced skin injury. Furthermore, employing these mouse models, studies under the National Institutes of Health Countermeasures Against Chemical Threats program have identified the flavanone silibinin as a novel therapeutic intervention with the potential to be developed as an effective countermeasure against skin injury following exposure to mustard vesicating agents. PMID:27326543

  2. A comparative study on the transdermal penetration effect of gaseous and aqueous plasma reactive species

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei

    2018-02-01

    To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.

  3. Progression of Mouse Skin Carcinogenesis Is Associated with Increased Erα Levels and Is Repressed by a Dominant Negative Form of Erα

    PubMed Central

    Michalopoulos, Ioannis; Sideridou, Maria; Tsimaratou, Katerina; Christodoulou, Ioannis; Pyrillou, Katerina; Gorgoulis, Vassilis; Vlahopoulos, Spiros; Zoumpourlis, Vassilis

    2012-01-01

    Estrogen receptors (ER), namely ERα and ERβ, are hormone-activated transcription factors with an important role in carcinogenesis. In the present study, we aimed at elucidating the implication of ERα in skin cancer, using chemically-induced mouse skin tumours, as well as cell lines representing distinct stages of mouse skin oncogenesis. First, using immunohistochemical staining we showed that ERα is markedly increased in aggressive mouse skin tumours in vivo as compared to the papilloma tumours, whereas ERβ levels are low and become even lower in the aggressive spindle tumours of carcinogen-treated mice. Then, using the multistage mouse skin carcinogenesis model, we showed that ERα gradually increases during promotion and progression stages of mouse skin carcinogenesis, peaking at the most aggressive stage, whereas ERβ levels only slightly change throughout skin carcinogenesis. Stable transfection of the aggressive, spindle CarB cells with a dominant negative form of ERα (dnERα) resulted in reduced ERα levels and reduced binding to estrogen responsive elements (ERE)-containing sequences. We characterized two highly conserved EREs on the mouse ERα promoter through which dnERα decreased endogenous ERα levels. The dnERα-transfected CarB cells presented altered protein levels of cytoskeletal and cell adhesion molecules, slower growth rate and impaired anchorage-independent growth in vitro, whereas they gave smaller tumours with extended latency period of tumour onset in vivo. Our findings suggest an implication of ERα in the aggressiveness of spindle mouse skin cancer cells, possibly through regulation of genes affecting cell shape and adhesion, and they also provide hints for the effective targeting of spindle cancer cells by dnERα. PMID:22870269

  4. Hydrocortisone Diffusion Through Synthetic Membrane, Mouse Skin, and Epiderm™ Cultured Skin

    PubMed Central

    Christensen, John Mark; Chuong, Monica Chang; Le, Hang; Pham, Loan; Bendas, Ehab

    2011-01-01

    Objectives The penetration of hydrocortisone (HC) from six topical over-the-counter products along with one prescription cream through cultured normal human-derived epidermal keratinocytes (Epiderm™), mouse skin and synthetic nylon membrane was performed as well as the effect hydrating the skin by pre-washing was explored using the Upright Franz Cell. Method and Results Permeation of HC through EpiDerm™, mouse skin and synthetic membrane was highest with the topical HC gel formulation with prewash treatment of the membranes among seven products evaluated, 198 ± 32 µg/cm2, 746.32 ± 12.43 µg/cm2, and 1882 ± 395.18 µg/cm2, respectively. Pre-washing to hydrate the skin enhanced HC penetration through EpiDerm™ and mouse skin. The 24-hour HC released from topical gel with prewash treatment was 198.495 ± 32 µg/cm2 and 746.32 ± 12.43 µg/cm2 while without prewash, the 24-h HC released from topical gel was 67.2 ± 7.41 µg/cm2 and 653.43 ± 85.62 µg/cm2 though EpiDerm™ and mouse skin, respectively. HC penetration through synthetic membrane was ten times greater than through mouse skin and EpiDerm™. Generally, the shape, pattern, and rank order of HC diffusion from each commercial product was similar through each membrane. PMID:21572515

  5. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M.; Dong, Zigang

    2010-01-01

    Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1α expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70S6K in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033

  6. A comparison of skin prick tests, intradermal skin tests, and specific IgE in the diagnosis of mouse allergy.

    PubMed

    Sharma, Hemant P; Wood, Robert A; Bravo, Andrea R; Matsui, Elizabeth C

    2008-04-01

    Mouse sensitization is assessed by using skin testing and serum levels of mouse allergen-specific IgE (m-IgE). However, it is unknown whether a positive skin test response or m-IgE result accurately identifies those with clinically relevant mouse sensitization. We sought to compare skin testing and m-IgE measurement in the diagnosis of mouse allergy. Sixty-nine mouse laboratory workers underwent skin prick tests (SPTs), intradermal tests (IDTs), and serum IgE measurements to mouse allergen, followed by nasal challenge to increasing concentrations of mouse allergen. Challenge response was assessed by nasal symptom score. Thirty-eight women and 31 men with a mean age of 30 years were studied. Forty-nine workers reported mouse-related symptoms, of whom 10 had positive m-IgE results and 12 had positive SPT responses. Fifteen had negative SPT responses but positive IDT responses. Positive nasal challenges were observed in 70% of workers with positive m-IgE results, 83% of workers with positive SPT responses, 33% of workers with negative SPT responses/positive IDT responses, and 0% of workers with negative IDT responses. SPTs performed best, having the highest positive and negative predictive values. Among participants with a positive challenge result, those with a positive SPT response or m-IgE result had a significantly lower challenge threshold than those with a positive IDT response (P = .01). Workers with a positive challenge result were more likely to have an increase in nasal eosinophilia after the challenge compared with those with a negative challenge result (P = .03). SPTs perform best in discriminating patients with and without mouse allergy. Mouse-specific IgE and IDTs appear to be less useful than SPTs in the diagnosis of mouse allergy.

  7. Actinic keratosis modelling in mice: A translational study

    PubMed Central

    Vandenberghe, Isabelle; Cartron, Valérie; Cèbe, Patrick; Blanchet, Jean-Christophe; Sibaud, Vincent; Guilbaud, Nicolas; Audoly, Laurent; Lamant, Laurence; Kruczynski, Anna

    2017-01-01

    Background Actinic keratoses (AK) are pre-malignant cutaneous lesions caused by prolonged exposure to ultraviolet radiation. As AKs lesions are generally accepted to be the initial lesions in a disease continuum that progresses to squamous cell carcinoma (SCC), AK lesions have to be treated. They are also the second most common reason for visits to the dermatologist. Several treatments are available but their efficacy still needs to be improved. The UV-B-induced KA lesion mouse model is used in preclinical studies to assess the efficacy of novel molecules, even though it is often more representative of advanced AK or SCC. Objectives Here we report on a translational study, comparing the various stages of AK development in humans and in the UV-B irradiated mouse model, as well as the optimization of photograph acquisition of AK lesions on mouse skin. Methods Human and mouse skin lesions were analysed by histology and immunohistochemistry. Mouse lesions were also assessed using a digital dermatoscope. Results An histological and phenotypic analysis, including p53, Ki67 and CD3 expression detection, performed on human and mouse AK lesions, shows that overall AK modelling in mice is relevant in the clinical situation. Some differences are observed, such as disorganization of keratinocytes of the basal layer and a number of atypical nuclei which are more numerous in human AK, whereas much more pronounced acanthosis is observed in skin lesion in mice. Thanks to this translational study, we are able to select appropriate experimental conditions for establishing either early or advanced stage AK or an SCC model. Furthermore, we optimized photograph acquisition of AK lesions on mouse skin by using a digital dermatoscope which is also used in clinics and allows reproducible photograph acquisition for further reliable assessment of mouse lesions. Use of this camera is illustrated through a pharmacological study assessing the activity of CARAC®. Conclusion These data demonstrate that this mouse model of UV-B-induced skin lesions is predictive for the identification of novel therapeutic treatments for both early and advanced stages of the disease. PMID:28662116

  8. Quercetin attenuates the development of 7, 12-dimethyl benz (a) anthracene (DMBA) and croton oil-induced skin cancer in mice

    PubMed Central

    Ali, Huma; Dixit, Savita

    2015-01-01

    Abstract To evaluate the chemopreventive potential of quercetin in an experimental skin carcinogenesis mouse model. Skin tumor was induced by topical application of 7, 12-dimethyl Benz (a) anthracene (DMBA) and Croton oil in Swiss albino mouse. Quercetin was orally administered at a concentration of 200 mg/kg and 400 mg/kg body weight daily for 16 weeks in mouse to evaluate chemopreventive potential. Skin cancer was assessed by histopathological analysis. We found that quercetin reduced the tumor size and the cumulative number of papillomas. The mean latent period was significantly increased as compared to carcinogen treated controls. Quercetin significantly decreased the serum levels of glutamate oxalate transaminase, glutamate pyruvate transaminase, alkaline phosphatase and bilirubin. It significantly increased the levels of glutathione, superoxide dismutase and catalase. The elevated level of lipid peroxides in the control group was significantly inhibited by quercetin. Futhermore, DNA damage was significantly decreased in quercetin treated mice as compared to DMBA and croton oil treated mice. The results suggest that quercetin exerts chemopreventive effect on DMBA and croton oil induced skin cancer in mice by increasing antioxidant activities. PMID:25859269

  9. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In papillary dermis, fluorescein distribution is more homogeneous. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, skin appendage and blood vessels. In conclusion, this study demonstrates the usefulness of CLSM as technique for imaging skin in vivo. In addition, CLSM is non-invasive, the same tissue site may be imaged over a period of time to monitor the various change such as wound healing, severity of skin diseases and effect of therapeutic management.

  10. Topical application of Bifidobacterium-fermented soy milk extract containing genistein and daidzein improves rheological and physiological properties of skin.

    PubMed

    Miyazaki, Kouji; Hanamizu, Tomoko; Sone, Toshiro; Chiba, Katsuyoshi; Kinoshita, Takashi; Yoshikawa, Satoshi

    2004-01-01

    The authors examined the effects of Bifidobacterium-fermented soy milk extract (BE) containing genistein and daidzein on the hyaluronic acid (HA) content and rheological and physiological properties of hairless mouse and/or human skin. Topical application of BE for six weeks significantly restored changes in the elasticity and viscoelasticity of mouse skin, increased the HA content, and hydrated and thickened mouse skin. Also, topical application of a gel formula containing 10% BE to the human forearm for three months significantly lessened the decrease in skin elasticity. Therefore, BE is expected to become a new cosmetic ingredient to prevent the loss of skin elasticity through enhancement of HA production.

  11. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study

    PubMed Central

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-01-01

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633

  12. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study.

    PubMed

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-08-07

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.

  13. Phloretin Inhibits Phorbol Ester–Induced Tumor Promotion and Expression of Cyclooxygenase-2 in Mouse Skin: Extracellular Signal-Regulated Kinase and Nuclear Factor-κB as Potential Targets

    PubMed Central

    Shin, Jun-Wan; Kundu, Joydeb Kumar

    2012-01-01

    Abstract The present study investigated the effect of phloretin [2′,4′,6′-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)–induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis. PMID:22181070

  14. Phloretin inhibits phorbol ester-induced tumor promotion and expression of cyclooxygenase-2 in mouse skin: extracellular signal-regulated kinase and nuclear factor-κB as potential targets.

    PubMed

    Shin, Jun-Wan; Kundu, Joydeb Kumar; Surh, Young-Joon

    2012-03-01

    The present study investigated the effect of phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis.

  15. Anti-Lymphocyte Antibodies: Specifically Purified Anti-Thymocyte Antibody as an Immunosuppressive Agent in Human and Rhesus Transplants.

    DTIC Science & Technology

    To further isolate the immunosuppressive fraction of antithymocyte antibody, the mouse skin graft system has been developed to test subfractions. The technique of Billingham is used to skin graft between the A/J-C3H strains of mice. Antimouse

  16. Targeted disruption of glutathione peroxidase 4 (GPx4) in mouse skin epithelial cells impairs postnatal hair follicle morphogenesis that is partially rescued through inhibition of COX-2

    PubMed Central

    Sengupta, Aniruddha; Lichti, Ulrike F.; Carlson, Bradley A.; Cataisson, Christophe; Ryscavage, Andrew O.; Mikulec, Carol; Conrad, Marcus; Fischer, Susan M.; Hatfield, Dolph L.; Yuspa, Stuart H.

    2013-01-01

    Selenoproteins are essential molecules for the mammalian antioxidant network. We previously demonstrated that targeted loss of all selenoproteins in mouse epidermis disrupted skin and hair development and caused premature death. In the current study we targeted specific selenoproteins for epidermal deletion to determine whether similar phenotypes developed. Keratinocyte-specific knockout mice lacking either the glutathione peroxidase 4 (GPx4) or thioredoxin reductase 1 (TR1) gene were generated by cre-lox technology using K14-cre. TR1 knockout mice had a normal phenotype in resting skin while GPx4 loss in epidermis caused epidermal hyperplasia, dermal inflammatory infiltrate, dysmorphic hair follicles and alopecia in perinatal mice. Unlike epidermal ablation of all selenoproteins, mice ablated for GPx4 recovered after 5 weeks and had a normal lifespan. GPx1 and TR1 were upregulated in the skin and keratinocytes of GPx4 knockout mice. GPx4 deletion reduces keratinocyte adhesion in culture and increases lipid peroxidation and COX-2 levels in cultured keratinocytes and whole skin. Feeding a COX-2 inhibitor to nursing mothers partially prevents development of the abnormal skin phenotype in knockout pups. These data link the activity of cutaneous GPx4 to the regulation of COX-2 and hair follicle morphogenesis and provide insight into the function of individual selenoprotein activity in maintaining cutaneous homeostasis. PMID:23364477

  17. Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin

    DTIC Science & Technology

    2000-01-01

    4. TITLE AND SUBTITLE Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-exposed Mouse Skin 6. AUTHOR(S) Sabourin , C.L.K...in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin Carol L. K. Sabourin ,1 John P. Petrali,2 and Robert P. Casillas2...inflammatory response following HD exposure by measuring ear swelling. Further studies using the 291 292 SABOURIN , PETRALI, AND CASILLAS Volume 14

  18. Histopathological and immunohistochemical evaluation of nitrogen mustard-induced cutaneous effects in SKH-1 hairless and C57BL/6 mice.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Orlicky, David J; White, Carl W; Agarwal, Rajesh

    2014-03-01

    Sulfur mustard (SM) is a vesicant warfare agent which causes severe skin injuries. Currently, we lack effective antidotes against SM-induced skin injuries, in part due to lack of appropriate animal model(s) that can be used for efficacy studies in laboratory settings to identify effective therapies. Therefore, to develop a relevant mouse skin injury model, we examined the effects of nitrogen mustard (NM), a primary vesicant and a bifunctional alkylating agent that induces toxic effects comparable to SM. Specifically, we conducted histopathological and immunohistochemical evaluation of several applicable cutaneous pathological lesions following skin NM (3.2mg) exposure for 12-120h in SKH-1 and C57BL/6 mice. NM caused a significant increase in epidermal thickness, incidence of microvesication, cell proliferation, apoptotic cell death, inflammatory cells (neutrophils, macrophages and mast cells) and myleoperoxidase activity in the skin of both mouse strains. However, there was a more prominent NM-induced increase in epidermal thickness, and macrophages and mast cell infiltration, in SKH-1 mice relative to what was seen in C57BL/6 mice. NM also caused collagen degradation and edema at early time points (12-24h); however, at later time points (72 and 120h), dense collagen staining was observed, indicating either water loss or start of integument repair in both the mouse strains. This study provides quantitative measurement of NM-induced histopathological and immunohistochemical cutaneous lesions in both hairless and haired mouse strains that could serve as useful tools for screening and identification of effective therapies for treatment of skin injuries due to NM and SM. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuroki, T.; Chida, K.; Munakata, K.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was appliedmore » twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.« less

  20. Intravital imaging of a spheroid-based orthotopic model of melanoma in the mouse ear skin

    PubMed Central

    Chan, Keefe T.; Jones, Stephen W.; Brighton, Hailey E.; Bo, Tao; Cochran, Shelly D.; Sharpless, Norman E.; Bear, James E.

    2017-01-01

    Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo. PMID:28748125

  1. Stage-specific disruption of Stat3 demonstrates a direct requirement during both the initiation and promotion stages of mouse skin tumorigenesis.

    PubMed

    Kataoka, Ken; Kim, Dae Joon; Carbajal, Steve; Clifford, John L; DiGiovanni, John

    2008-06-01

    Constitutive activation of signal transducer and activator of transcription 3 (Stat3) has been found in a variety of human malignancies and has been suggested to play an important role in carcinogenesis. Recently, our laboratory demonstrated that Stat3 is required for the development of skin tumors via two-stage carcinogenesis using skin-specific loss-of-function transgenic mice. To investigate further the role of Stat3 in each stage of chemical carcinogenesis in mouse skin, i.e. initiation and promotion stages, we generated inducible Stat3-deficient mice (K5.Cre-ER(T2) x Stat3(fl/fl)) that show epidermal-specific disruption of Stat3 following topical treatment with 4-hydroxytamoxifen (TM). The epidermis of inducible Stat3-deficient mice treated with TM showed a significant increase in apoptosis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and reduced proliferation following exposure to 12-O-tetradecanoylphorbol-13-acetate. In two-stage skin carcinogenesis assays, inducible Stat3-deficient mice treated with TM during the promotion stage showed a significant delay of tumor development and a significantly reduced number of tumors compared with control groups. Inducible Stat3-deficient mice treated with TM before initiation with DMBA also showed a significant delay in tumor development and a significantly reduced number of tumors compared with control groups. Finally, treatment of inducible Stat3-deficient mice that had existing skin tumors generated by the two-stage carcinogenesis protocol with TM (by intraperitoneal injection) led to inhibition of tumor growth compared with tumors formed in control groups. Collectively, these results directly demonstrate that Stat3 is required for skin tumor development during both the initiation and promotion stages of skin carcinogenesis in vivo.

  2. Evaluation of Permacol as a cultured skin equivalent.

    PubMed

    MacLeod, T M; Cambrey, A; Williams, G; Sanders, R; Green, C J

    2008-12-01

    Skin loss following severe burn requires prompt wound closure to avoid such complications as fluid and electrolyte imbalance, infection, immune suppression, and pain. In clinical situations in which insufficient donor skin is available, the development of cultured skin equivalents (dermal matrices seeded with keratinocytes and fibroblasts) may provide a useful alternative. The aim of this study was to assess the suitability of a porcine-derived dermal collagen matrix (Permacol) to function as a cultured skin equivalent in supporting the growth of keratinocytes in vitro and providing cover to full thickness wounds in the BALB C/nude mouse model. A histological comparison was against Glycerol treated-Ethylene Oxide Sterilised Porcine Dermis (Gly-EO Dermis) which has successfully been used as a cultured skin equivalent in previous studies. Both Gly-EO Dermis and to a lesser extent Permacol were able to support the growth of cultured keratinocytes following a 16-day period of cell culture, however, this study was only able to demonstrate the presence of an epidermal layer on Gly-EO dermis 2 weeks after grafting onto full-thickness wounds in the BALB C/nude mouse model.

  3. Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature

    PubMed Central

    Swindell, William R.; Johnston, Andrew; Sun, Liou; Xing, Xianying; Fisher, Gary J.; Bulyk, Martha L.; Elder, James T.; Gudjonsson, Johann E.

    2012-01-01

    Background Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific. PMID:22413003

  4. Dicer Cooperates with p53 to Suppress DNA Damage and Skin Carcinogenesis in Mice

    PubMed Central

    Lyle, Stephen; Hoover, Kathleen; Colpan, Cansu; Zhu, Zhiqing; Matijasevic, Zdenka; Jones, Stephen N.

    2014-01-01

    Dicer is required for the maturation of microRNA, and loss of Dicer and miRNA processing has been found to alter numerous biological events during embryogenesis, including the development of mammalian skin and hair. We have previously examined the role of miRNA biogenesis in mouse embryonic fibroblasts and found that deletion of Dicer induces cell senescence regulated, in part, by the p53 tumor suppressor. Although Dicer and miRNA molecules are thought to have either oncogenic or tumor suppressing roles in various types of cancer, a role for Dicer and miRNAs in skin carcinogenesis has not been established. Here we show that perinatal ablation of Dicer in the skin of mice leads to loss of fur in adult mice, increased epidermal cell proliferation and apoptosis, and the accumulation of widespread DNA damage in epidermal cells. Co-ablation of Dicer and p53 did not alter the timing or extent of fur loss, but greatly reduced survival of Dicer-skin ablated mice, as these mice developed multiple and highly aggressive skin carcinomas. Our results describe a new mouse model for spontaneous basal and squamous cell tumorigenesis. Furthermore, our findings reveal that loss of Dicer in the epidermis induces extensive DNA damage, activation of the DNA damage response and p53-dependent apoptosis, and that Dicer and p53 cooperate to suppress mammalian skin carcinogenesis. PMID:24979267

  5. COMPARATIVE TUMOR-INITIATING ACTIVITY OF COMPLEX MIXTURES FROM ENVIRONMENTAL PARTICULATE EMISSIONS ON SENCAR MOUSE SKIN

    EPA Science Inventory

    The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...

  6. Inhibitory effect of kyungohkgo in the development of 2,4-dinitrochlorobenzene-induced atopic dermatitis in NC/Nga mice.

    PubMed

    Im, Lee-Rang; Ahn, Ji-Young; Kim, Jun-Ho; Xin, Mingjie; Kwon, Se-Uk; Kim, Yun-Kyung; Kim, Dae-Ki; Lee, Young-Mi

    2011-02-01

    Kyungohkgo (KOG) is one of the most important formulas in traditional oriental medicine. We investigated the remedial effect of KOG on the development of atopic dermatitis (AD) in female NC/Nga mice. AD-like lesion was induced by the application of 2,4-Dinitrochlorobenzene on to the back skin repeatedly; KOG was administered orally (12.5 and 25.0 mg/kg) and topically (0.5 and 1.0 mg/mouse) to NC/Nga mice once a day for all through the period of this experiment and every mouse body weight was periodically taken. The effects of KOG on 2,4-Dinitrochlorobenzene-treated NC/Nga mice were determined by measuring AD-like skin lesions, the infiltration of mast cells and serum immunoglobulin E concentration. After the KOG applications are over, the KOG groups had less skin lesions than the atopy one, their immunoglobulin E levels were significantly downregulated and the infiltration of mast cells in the dorsal skin were reduced. Our results suggest that KOG may be effective in alleviating the development of AD. The inhibition of AD in NC/Nga mice may be influenced by the prevention of mast cell activation.

  7. Cutaneous Surgical Denervation: A Method for Testing the Requirement for Nerves in Mouse Models of Skin Disease.

    PubMed

    Peterson, Shelby C; Brownell, Isaac; Wong, Sunny Y

    2016-06-26

    Cutaneous somatosensory nerves function to detect diverse stimuli that act upon the skin. In addition to their established sensory roles, recent studies have suggested that nerves may also modulate skin disorders including atopic dermatitis, psoriasis and cancer. Here, we describe protocols for testing the requirement for nerves in maintaining a cutaneous mechanosensory organ, the touch dome (TD). Specifically, we discuss methods for genetically labeling, harvesting and visualizing TDs by whole-mount staining, and for performing unilateral surgical denervation on mouse dorsal back skin. Together, these approaches can be used to directly compare TD morphology and gene expression in denervated as well as sham-operated skin from the same animal. These methods can also be readily adapted to examine the requirement for nerves in mouse models of skin pathology. Finally, the ability to repeatedly sample the skin provides an opportunity to monitor disease progression at different stages and times after initiation.

  8. Antimicrobial Blue Light Therapy for Multidrug-Resistant Acinetobacter baumannii Infection in a Mouse Burn Model: Implications for Prophylaxis and Treatment of Combat-related Wound Infections

    PubMed Central

    Zhang, Yunsong; Zhu, Yingbo; Gupta, Asheesh; Huang, Yingying; Murray, Clinton K.; Vrahas, Mark S.; Sherwood, Margaret E.; Baer, David G.; Hamblin, Michael R.; Dai, Tianhong

    2014-01-01

    In this study, we investigated the utility of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model. A bioluminescent clinical isolate of multidrug-resistant A. baumannii was obtained. The susceptibility of A. baumannii to blue light (415 nm)–inactivation was compared in vitro to that of human keratinocytes. Repeated cycles of sublethal inactivation of bacterial by blue light were performed to investigate the potential resistance development of A. baumannii to blue light. A mouse model of third degree burn infected with A. baumannii was developed. A single exposure of blue light was initiated 30 minutes after bacterial inoculation to inactivate A. baumannii in mouse burns. It was found that the multidrug-resistant A. baumannii strain was significantly more susceptible than keratinocytes to blue light inactivation. Transmission electron microscopy revealed blue light–induced ultrastructural damage in A. baumannii cells. Fluorescence spectroscopy suggested that endogenous porphyrins exist in A. baumannii cells. Blue light at an exposure of 55.8 J/cm2 significantly reduced the bacterial burden in mouse burns. No resistance development to blue light inactivation was observed in A. baumannii after 10 cycles of sublethal inactivation of bacteria. No significant DNA damage was detected in mouse skin by means of a skin TUNEL assay after a blue light exposure of 195 J/cm2. PMID:24381206

  9. Human Effector Memory T Helper Cells Engage with Mouse Macrophages and Cause Graft-versus-Host-Like Pathology in Skin of Humanized Mice Used in a Nonclinical Immunization Study.

    PubMed

    Sundarasetty, Balasai; Volk, Valery; Theobald, Sebastian J; Rittinghausen, Susanne; Schaudien, Dirk; Neuhaus, Vanessa; Figueiredo, Constanca; Schneider, Andreas; Gerasch, Laura; Mucci, Adele; Moritz, Thomas; von Kaisenberg, Constantin; Spineli, Loukia M; Sewald, Katherina; Braun, Armin; Weigt, Henning; Ganser, Arnold; Stripecke, Renata

    2017-06-01

    Humanized mice engrafted with human hematopoietic stem cells and developing functional human T-cell adaptive responses are in critical demand to test human-specific therapeutics. We previously showed that humanized mice immunized with long-lived induced-dendritic cells loaded with the pp65 viral antigen (iDCpp65) exhibited a faster development and maturation of T cells. Herein, we evaluated these effects in a long-term (36 weeks) nonclinical model using two stem cell donors to assess efficacy and safety. Relative to baseline, iDCpp65 immunization boosted the output of effector memory CD4 + T cells in peripheral blood and lymph nodes. No weight loss, human malignancies, or systemic graft-versus-host (GVH) disease were observed. However, for one reconstitution cohort, some mice immunized with iDCpp65 showed GVH-like signs on the skin. Histopathology analyses of the inflamed skin revealed intrafollicular and perifollicular human CD4 + cells near F4/80 + mouse macrophages around hair follicles. In spleen, CD4 + cells formed large clusters surrounded by mouse macrophages. In plasma, high levels of human T helper 2-type inflammatory cytokines were detectable, which activated in vitro the STAT5 pathway of murine macrophages. Despite this inflammatory pattern, human CD8 + T cells from mice with GVH reacted against the pp65 antigen in vitro. These results uncover a dynamic cross-species interaction between human memory T cells and mouse macrophages in the skin and lymphatic tissues of humanized mice. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. A role for NF-κB activity in skin hyperplasia and the development of keratoacanthomata in mice.

    PubMed

    Poligone, Brian; Hayden, Matthew S; Chen, Luojing; Pentland, Alice P; Jimi, Eijiro; Ghosh, Sankar

    2013-01-01

    Previous studies have implicated NF-κB signaling in both cutaneous development and oncogenesis. However, these studies have been limited in part by the lethality that results from extreme over- or under-expression of NF-κB in available mouse models. Even cre-driven tissue specific expression of transgenes, or targeted deletion of NF-κB can cause cell death. Therefore, the present study was undertaken to evaluate a novel mouse model of enhanced NF-κB activity in the skin. A knock-in homologous recombination technique was utilized to develop a mouse model (referred to as PD mice) with increased NF-κB activity. The data show that increased NF-κB activity leads to hyperproliferation and dysplasia of the mouse epidermis. Chemical carcinogenesis in the context of enhanced NF-κB activity promotes the development of keratoacanthomata. Our findings support an important role for NF-κB in keratinocyte dysplasia. We have found that enhanced NF-κB activity renders keratinocytes susceptible to hyperproliferation and keratoacanthoma (KA) development but is not sufficient for transformation and SCC development. We therefore propose that NF-κB activation in the absence of additional oncogenic events can promote TNF-dependent, actinic keratosis-like dysplasia and TNF-independent, KAs upon chemical carcinogensis. These studies suggest that resolution of KA cannot occur when NF-κB activation is constitutively enforced.

  11. Induction of alternative proinflammatory cytokines accounts for sustained psoriasiform skin inflammation in IL-17C+IL-6KO mice

    PubMed Central

    Fritz, Yi; Klenotic, Philip A.; Swindell, William R.; Yin, ZhiQiang; Groft, Sarah G.; Zhang, Li; Baliwag, Jaymie; Camhi, Maya I.; Diaconu, Doina; Young, Andrew B.; Foster, Alexander M.; Johnston, Andrew; Gudjonsson, Johann E.; McCormick, Thomas S.; Ward, Nicole L.

    2016-01-01

    IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. Additionally, de novo psoriasis onset has been reported following IL-6 blockade in rheumatoid arthritis patients. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6 deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation, however this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, Epgn and S100a8/a9 to levels higher than those found in IL-17C+ mice. Comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin, revealed significant correlation among transcripts of psoriasis patient skin and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why arthritis patients being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective. PMID:27984037

  12. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    PubMed Central

    Kumar, Amit; Li, Xinran; Sandoval, Michael A; Rodriguez, B Leticia; Sloat, Brian R; Cui, Zhengrong

    2011-01-01

    Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection. PMID:21753877

  13. Metabolism of Skin-Absorbed Resveratrol into Its Glucuronized Form in Mouse Skin

    PubMed Central

    Pluskal, Tomáš; Ito, Ken; Hori, Kousuke; Ebe, Masahiro; Yanagida, Mitsuhiro; Kondoh, Hiroshi

    2014-01-01

    Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV. PMID:25506824

  14. Armed Forces Institute of Regenerative Medicine

    DTIC Science & Technology

    2009-01-01

    constructs healed faster than controls and were able to self -organize into skin that appeared almost identical to normal mouse skin. Research...mouse model using the device. They also determined that printed constructs healed faster than controls and were able to self - organize into skin...iiiAFIRM Annual Report 2009 IV Scarless Wound Healing IV-1 Background

  15. CARCINOGENIC EVALUATION OF 2,3-DIMETHYL-2,3-DINITROBUTANE VIA THE MOUSE SKIN BIOASSAY

    EPA Science Inventory

    Female SENCAR mice initiated with 2,3-dimethyl-2,3dimethyl-2,3-dinitrobutane (DMDNB) and promoted with 12-0-tetradecanoylphorol-13-acetate (TPA) via the SENCAR mouse skin bioassy did not exhibit a significant increase in skin tumors. The mice received 20 mg kg-1 DMDNE divided int...

  16. Inflammatory biomarkers of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced skin injury in SKH-1 hairless mice.

    PubMed

    Tewari-Singh, Neera; Rana, Sumeet; Gu, Mallikarjuna; Pal, Arttatrana; Orlicky, David J; White, Carl W; Agarwal, Rajesh

    2009-03-01

    Sulfur mustard (HD) is an alkylating and cytotoxic chemical warfare agent, which inflicts severe skin toxicity and an inflammatory response. Effective medical countermeasures against HD-caused skin toxicity are lacking due to limited knowledge of related mechanisms, which is mainly attributed to the requirement of more applicable and efficient animal skin toxicity models. Using a less toxic analog of HD, chloroethyl ethyl sulfide (CEES), we identified quantifiable inflammatory biomarkers of CEES-induced skin injury in dose- (0.05-2 mg) and time- (3-168 h) response experiments, and developed a CEES-induced skin toxicity SKH-1 hairless mouse model. Topical CEES treatment at high doses caused a significant dose-dependent increase in skin bi-fold thickness indicating edema. Histopathological evaluation of CEES-treated skin sections revealed increases in epidermal and dermal thickness, number of pyknotic basal keratinocytes, dermal capillaries, neutrophils, macrophages, mast cells, and desquamation of epidermis. CEES-induced dose-dependent increases in epidermal cell apoptosis and basal cell proliferation were demonstrated by the terminal deoxynucleotidyl transferase (tdt)-mediated dUTP-biotin nick end labeling and proliferative cell nuclear antigen stainings, respectively. Following an increase in the mast cells, myeloperoxidase activity in the inflamed skin peaked at 24 h after CEES exposure coinciding with neutrophil infiltration. F4/80 staining of skin integuments revealed an increase in the number of macrophages after 24 h of CEES exposure. In conclusion, these results establish CEES-induced quantifiable inflammatory biomarkers in a more applicable and efficient SKH-1 hairless mouse model, which could be valuable for agent efficacy studies to develop potential prophylactic and therapeutic interventions for HD-induced skin toxicity.

  17. Identification of Stmm3 locus Conferring Resistance to Late-stage Chemically Induced Skin Papillomas on Mouse Chromosome 4 by Congenic Mappingand Allele-specific Alteration Analysis

    PubMed Central

    Saito, Megumi; Okumura, Kazuhiro; Miura, Ikuo; Wakana, Shigeharu; Kominami, Ryo; Wakabayashi, Yuichi

    2014-01-01

    Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to chemically induced skin papillomas on chromosome 4 and 7 with a large number of [(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 4. We used linkage analysis and a congenic mouse strain, FVB.MSM-Stmm3 to refine the location of Stmm3 (Skin tumor modifier of MSM 3) locus within a physical interval of about 34 Mb on distal chromosome 4. In addition, we used patterns of allele-specific imbalances in tumors from N2 and N10 congenic mice to narrow down further the region of Stmm3 locus to a physical distance of about 25 Mb. Furthermore, immunohistochemical analysis showed papillomas from congenic mice had less proliferative activity. These results suggest that Stmm3 responsible genes may have an influence on papilloma formation in the two-stage skin carcinogenesis by regulating papilloma growth rather than development. PMID:25077764

  18. Loss of Desmocollin 3 in Skin Tumor Development and Progression

    PubMed Central

    Chen, Jiangli; O’Shea, Charlene; Fitzpatrick, James E.; Koster, Maranke I.; Koch, Peter J.

    2011-01-01

    Desmocollin 3 (DSC3) is a desmosomal cadherin that is required for maintaining cell adhesion in the epidermis as demonstrated by the intra-epidermal blistering observed in Dsc3 null skin. Recently, it has been suggested that deregulated expression of DSC3 occurs in certain human tumor types. It is not clear whether DSC3 plays a role in the development or progression of cancers arising in stratified epithelia such as the epidermis. To address this issue, we generated a mouse model in which Dsc3 expression is ablated in K-Ras oncogene-induced skin tumors. Our results demonstrate that loss of Dsc3 leads to an increase in K-Ras induced skin tumors. We hypothesize that acantholysis-induced epidermal hyperplasia in the Dsc3 null epidermis facilitates Ras-induced tumor development. Further, we demonstrate that spontaneous loss of DSC3 expression is a common occurrence during human and mouse skin tumor progression. This loss occurs in tumor cells invading the dermis. Interestingly, other desmosomal proteins are still expressed in tumor cells that lack DSC3, suggesting a specific function of DSC3 loss in tumor progression. While loss of DSC3 on the skin surface leads to epidermal blistering, it does not appear to induce loss of cell-cell adhesion in tumor cells invading the dermis, most likely due to a protection of these cells within the dermis from mechanical stress. We thus hypothesize that DSC3 can contribute to the progression of tumors both by cell adhesion-dependent (skin surface) and likely by cell adhesion-independent (invading tumor cells) mechanisms. PMID:21681825

  19. Exogenous peripheral blood mononuclear cells affect the healing process of deep-degree burns

    PubMed Central

    Yu, Guanying; Li, Yaonan; Ye, Lan; Wang, Xinglei; Zhang, Jixun; Dong, Zhengxue; Jiang, Duyin

    2017-01-01

    The regenerative repair of deep-degree (second degree) burned skin remains a notable challenge in the treatment of burn injury, despite improvements being made with regards to treatment modality and the emergence of novel therapies. Fetal skin constitutes an attractive target for investigating scarless healing of burned skin. To investigate the inflammatory response during scarless healing of burned fetal skin, the present study developed a nude mouse model, which was implanted with normal human fetal skin and burned fetal skin. Subsequently, human peripheral blood mononuclear cells (PBMCs) were used to treat the nude mouse model carrying the burned fetal skin. The expression levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinases (TIMP)-1 were investigated during this process. In the present study, fetal skin was subcutaneously implanted into the nude mice to establish the murine model. Hematoxylin and eosin staining was used to detect alterations in the skin during the development of fetal skin and during the healing process of deep-degree burned fetal skin. The expression levels of MMP-9 and TIMP-1 were determined using immunochemical staining, and their staining intensity was evaluated by mean optical density. The results demonstrated that fetal skin subcutaneously implanted into the dorsal skin flap of nude mice developed similarly to the normal growth process in the womb. In addition, the scarless healing process was clearly observed in the mice carrying the burned fetal skin. A total of 2 weeks was required to complete scarless healing. Following treatment with PBMCs, the burned fetal skin generated inflammatory factors and enhanced the inflammatory response, which consequently resulted in a reduction in the speed of healing and in the formation of scars. Therefore, exogenous PBMCs may alter the lowered immune response environment, which is required for scarless healing, resulting in scar formation. In conclusion, the present study indicated that the involvement of inflammatory cells is important during the healing process of deep-degree burned skin, and MMP-9 and TIMP-1 may serve important roles in the process of scar formation. PMID:28990101

  20. Selective Matrix (Hyaluronan) Interaction with CD44 and RhoGTPase Signaling Promotes Keratinocyte Functions and Overcomes Age-related Epidermal Dysfunction

    PubMed Central

    Bourguignon, Lilly Y.W.; Wong, Gabriel; Xia, Weiliang; Man, Mao-Qiang; Holleran, Walter M.; Elias, Peter M.

    2013-01-01

    Background Mouse epidermal chronologic aging is closely associated with aberrant matrix (hyaluronan, HA) -size distribution/production and impaired keratinocyte proliferation/differentiation, leading to a marked thinning of the epidermis with functional consequence that causes a slower recovery of permeability barrier function. Objective The goal of this study is to demonstrate mechanism-based, corrective therapeutic strategies using topical applications of small HA (HAS) and/or large HA (HAL) [or a sequential small HA (HAS) and large HA(HAL) (HAs-»HAL) treatment] as well as RhoGTPase signaling perturbation agents to regulate HA/CD44-mediated signaling, thereby restoring normal epidermal function, and permeability barrier homeostasis in aged mouse skin. Methods A number of biochemical, cell biological/molecular, pharmacological and physiological approaches were used to investigate matrix HA-CD44-mediated RhoGTPase signaling in regulating epidermal functions and skin aging. Results In this study we demonstrated that topical application of small HA (HAS) promotes keratinocyte proliferation and increases skin thickness, while it fails to upregulate keratinocyte differentiation or permeability barrier repair in aged mouse skin. In contrast, large HA (HAL) induces only minimal changes in keratinocyte proliferation and skin thickness, but restores keratinocyte differentiation and improves permeability barrier function in aged epidermis. Since neither HAS nor HAL corrects these epidermal defects in aged CD44 knock-out mice, CD44 likely mediates HA-associated epidermal functions in aged mouse skin. Finally, blockade of Rho-kinase activity with Y27632 or protein kinase-Nγ activity with Ro31-8220 significantly decreased the HA (HAS or HAL)-mediated changes in epidermal function in aged mouse skin. Conclusion The results of our study show first that HA application of different sizes regulates epidermal proliferation, differentiation and barrier function in aged mouse skin. Second, manipulation of matrix (HA) interaction with CD44 and RhoGTPase signaling could provide further novel therapeutic approaches that could be targeted for the treatment of various aging-related skin disorders. PMID:23790635

  1. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  2. Wound healing in mammals and amphibians: toward limb regeneration in mammals.

    PubMed

    Kawasumi, Aiko; Sagawa, Natsume; Hayashi, Shinichi; Yokoyama, Hitoshi; Tamura, Koji

    2013-01-01

    Mammalian fetal skin regenerates perfectly, but adult skin repairs by the formation of scar tissue. The cause of this imperfect repair by adult skin is not understood. In contrast, wounded adult amphibian (urodeles and anurans) skin is like mammalian fetal skin in that it repairs by regeneration, not scarring. Scar-free wound repair in adult Xenopus is associated with expression of the paired homeobox transcription factor Prx1 by mesenchymal cells of the wound, a feature shared by mesenchymal cells of the regeneration blastema of the axolotl limb. Furthermore, mesenchymal cells of Xenopus skin wounds that harbor the mouse Prx1-limb-enhancer as a transgene exhibit activation of the enhancer despite the fact that they are Xenopus cells, suggesting that the mouse Prx1 enhancer possesses all elements required for its activation in skin wound healing, even though activation of the same enhancer in the mouse is not seen in the wounded skin of an adult mouse. Elucidation of the role of the Prx1 gene in amphibian skin wound healing will help to clarify the molecular mechanisms of scarless wound healing. Shifting the molecular mechanism of wound repair in mammals to that of amphibians, including reactivation of the Prx1-limb-enhancer, will be an important clue to stimulate scarless wound repair in mammalian adult skin. Finding or creating Prx1-positive stem cells in adult mammal skin by activating the Prx1-limb-enhancer may be a fast and reliable way to provide for scarless skin wound repair, and even directly lead to limb regeneration in mammals.

  3. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    PubMed

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  4. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing.

    PubMed

    Kur-Piotrowska, Anna; Kopcewicz, Marta; Kozak, Leslie P; Sachadyn, Pawel; Grabowska, Anna; Gawronska-Kozak, Barbara

    2017-01-09

    Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny among mammals. The resemblance of gene expression profiles in the skin of both nude and E14 mice are direct or indirect consequences of the Foxn1 deficiency. Foxn1 appears to regulate the balance between cell proliferation and differentiation and its inactivity creates a pro-regenerative environment.

  5. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    PubMed

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  6. Norathyriol Suppresses Skin Cancers Induced by Solar Ultraviolet Radiation by Targeting ERK Kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jixia; Malakhova, Margarita; Mottamal, Madhusoodanan

    Ultraviolet (UV) irradiation is the leading factor in the development of skin cancer, prompting great interest in chemopreventive agents for this disease. In this study, we report the discovery of norathyriol, a plant-derived chemopreventive compound identified through an in silico virtual screening of the Chinese Medicine Library. Norathyriol is a metabolite of mangiferin found in mango, Hypericum elegans, and Tripterospermum lanceolatum and is known to have anticancer activity. Mechanistic investigations determined that norathyriol acted as an inhibitor of extracellular signal-regulated kinase (ERK)1/2 activity to attenuate UVB-induced phosphorylation in mitogen-activated protein kinases signaling cascades. We confirmed the direct and specific bindingmore » of norathyriol with ERK2 through a cocrystal structural analysis. The xanthone moiety in norathyriol acted as an adenine mimetic to anchor the compound by hydrogen bonds to the hinge region of the protein ATP-binding site on ERK2. Norathyriol inhibited in vitro cell growth in mouse skin epidermal JB6 P+ cells at the level of G{sub 2}-M phase arrest. In mouse skin tumorigenesis assays, norathyriol significantly suppressed solar UV-induced skin carcinogenesis. Further analysis indicated that norathyriol mediates its chemopreventive activity by inhibiting the ERK-dependent activity of transcriptional factors AP-1 and NF-{kappa}B during UV-induced skin carcinogenesis. Taken together, our results identify norathyriol as a safe new chemopreventive agent that is highly effective against development of UV-induced skin cancer.« less

  7. C/EBPα and C/EBPβ Are Required for Sebocyte Differentiation and Stratified Squamous Differentiation in Adult Mouse Skin

    PubMed Central

    House, John S.; Zhu, Songyun; Ranjan, Rakesh; Linder, Keith; Smart, Robert C.

    2010-01-01

    C/EBPα and C/EBPβ are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPα and C/EBPβ in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPα or C/EBPβ alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPα and C/EBPβ in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPα and C/EBPβ in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPα and C/EBPβ are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal. PMID:20352127

  8. C/EBPalpha and C/EBPbeta are required for Sebocyte differentiation and stratified squamous differentiation in adult mouse skin.

    PubMed

    House, John S; Zhu, Songyun; Ranjan, Rakesh; Linder, Keith; Smart, Robert C

    2010-03-23

    C/EBPalpha and C/EBPbeta are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPalpha and C/EBPbeta in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPalpha or C/EBPbeta alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPalpha and C/EBPbeta in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPalpha and C/EBPbeta in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPalpha and C/EBPbeta are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal.

  9. Proteomics of Skin Proteins in Psoriasis: From Discovery and Verification in a Mouse Model to Confirmation in Humans*

    PubMed Central

    Lundberg, Kathleen C.; Fritz, Yi; Johnston, Andrew; Foster, Alexander M.; Baliwag, Jaymie; Gudjonsson, Johann E.; Schlatzer, Daniela; Gokulrangan, Giridharan; McCormick, Thomas S.; Chance, Mark R.; Ward, Nicole L.

    2015-01-01

    Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments. PMID:25351201

  10. Histologic Changes Caused by Application of Lewisite Analogs to Mouse Skin and Human Skin Xenografts

    DTIC Science & Technology

    1985-01-01

    CLASSIICATION OF THIS PAGE (Nh..1 DO&a Eatat1d UNCLAS8inED S6CURmTV CLASSISCATION OP THIS PA•r(em Daf EMo* skin grafts : 1) epidermal cellular nuclear...microscopy. Under light microscopy, we observed the following changes In PDA-treated human skin grafts : I) epidermal cellular nuclear degeneration (apparent...needed. (Oe such model is ti-e human skin grafted athymic nude mouse (4,5). This animal model was recently established at LAIR. PhenyLdichLoroarsine (PDA

  11. Identification of Borrelia protein candidates in mouse skin for potential diagnosis of disseminated Lyme borreliosis.

    PubMed

    Grillon, Antoine; Westermann, Benoît; Cantero, Paola; Jaulhac, Benoît; Voordouw, Maarten J; Kapps, Delphine; Collin, Elody; Barthel, Cathy; Ehret-Sabatier, Laurence; Boulanger, Nathalie

    2017-12-01

    In vector-borne diseases, the skin plays an essential role in the transmission of vector-borne pathogens between the vertebrate host and blood-feeding arthropods and in pathogen persistence. Borrelia burgdorferi sensu lato is a tick-borne bacterium that causes Lyme borreliosis (LB) in humans. This pathogen may establish a long-lasting infection in its natural vertebrate host where it can persist in the skin and some other organs. Using a mouse model, we demonstrate that Borrelia targets the skin regardless of the route of inoculation, and can persist there at low densities that are difficult to detect via qPCR, but that were infective for blood-feeding ticks. Application of immunosuppressive dermocorticoids at 40 days post-infection (PI) significantly enhanced the Borrelia population size in the mouse skin. We used non-targeted (Ge-LC-MS/MS) and targeted (SRM-MS) proteomics to detect several Borrelia-specific proteins in the mouse skin at 40 days PI. Detected Borrelia proteins included flagellin, VlsE and GAPDH. An important problem in LB is the lack of diagnosis methods capable of detecting active infection in humans suffering from disseminated LB. The identification of Borrelia proteins in skin biopsies may provide new approaches for assessing active infection in disseminated manifestations.

  12. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    PubMed

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  13. Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice.

    PubMed

    Fritz, Yi; Klenotic, Philip A; Swindell, William R; Yin, Zhi Qiang; Groft, Sarah G; Zhang, Li; Baliwag, Jaymie; Camhi, Maya I; Diaconu, Doina; Young, Andrew B; Foster, Alexander M; Johnston, Andrew; Gudjonsson, Johann E; McCormick, Thomas S; Ward, Nicole L

    2017-03-01

    IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. In addition, de novo psoriasis onset has been reported after IL-6 blockade in patients with rheumatoid arthritis. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6-deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation; however, this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, Epgn, and S100a8/a9 to levels higher than those found in IL-17C+ mice. A comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin revealed significant correlation among transcripts of skin of patients with psoriasis and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why patients with arthritis being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections.

    PubMed

    Zhang, Yunsong; Zhu, Yingbo; Gupta, Asheesh; Huang, Yingying; Murray, Clinton K; Vrahas, Mark S; Sherwood, Margaret E; Baer, David G; Hamblin, Michael R; Dai, Tianhong

    2014-06-15

    In this study, we investigated the utility of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model. A bioluminescent clinical isolate of multidrug-resistant A. baumannii was obtained. The susceptibility of A. baumannii to blue light (415 nm)-inactivation was compared in vitro to that of human keratinocytes. Repeated cycles of sublethal inactivation of bacterial by blue light were performed to investigate the potential resistance development of A. baumannii to blue light. A mouse model of third degree burn infected with A. baumannii was developed. A single exposure of blue light was initiated 30 minutes after bacterial inoculation to inactivate A. baumannii in mouse burns. It was found that the multidrug-resistant A. baumannii strain was significantly more susceptible than keratinocytes to blue light inactivation. Transmission electron microscopy revealed blue light-induced ultrastructural damage in A. baumannii cells. Fluorescence spectroscopy suggested that endogenous porphyrins exist in A. baumannii cells. Blue light at an exposure of 55.8 J/cm(2) significantly reduced the bacterial burden in mouse burns. No resistance development to blue light inactivation was observed in A. baumannii after 10 cycles of sublethal inactivation of bacteria. No significant DNA damage was detected in mouse skin by means of a skin TUNEL assay after a blue light exposure of 195 J/cm(2). © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Severe Tissue Trauma Triggers the Autoimmune State Systemic Lupus Erythematosus in the MRL/++ Lupus-Prone Mouse

    DTIC Science & Technology

    2009-01-01

    to a trans- planted ’self skin (isograft). We transplanted synge- neic naive skin onto the dorsum of MRL/++ mice 30-40 days post-bum injury. Graft...through molecular mimicry . Nat Med 2005; 11: 85-89. Cooper GS, Dooley MA, Treadwell EL, St Clair EW, Gilkeson GS. Risk factors for development of

  16. Different modes of herpes simplex virus type 1 spread in brain and skin tissues.

    PubMed

    Tsalenchuck, Yael; Tzur, Tomer; Steiner, Israel; Panet, Amos

    2014-02-01

    Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.

  17. Humanized Mouse Model of Skin Inflammation Is Characterized by Disturbed Keratinocyte Differentiation and Influx of IL-17A Producing T Cells

    PubMed Central

    de Oliveira, Vivian L.; Keijsers, Romy R. M. C.; van de Kerkhof, Peter C. M.; Seyger, Marieke M. B.; Fasse, Esther; Svensson, Lars; Latta, Markus; Norsgaard, Hanne; Labuda, Tord; Hupkens, Pieter; van Erp, Piet E. J.; Joosten, Irma; Koenen, Hans J. P. M.

    2012-01-01

    Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our understanding of the dermal immunopathology in humans and benefit the development of novel therapeutics for controlling inflammatory skin diseases. PMID:23094018

  18. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlman, Irene M.; Composto, Gabriella M.

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis andmore » dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.« less

  19. Effects of in utero retinoic acid exposure on mouse pelage hair follicle development.

    PubMed

    García-Fernández, Rosa A; Pérez-Martínez, Claudia; Escudero-Diez, Alfredo; García-Iglesias, Maria J

    2002-06-01

    We investigated in vivo the histological and immunohistochemical responses of mouse hair pelage follicle morphogenesis to prenatal exposure to a potentially nonteratogenic dose of all-trans-retinoic acid (RA), as a basis studying the preventive effect of RA on adult mouse skin carcinogenesis. In pregnant mice, a single oral dose of RA at 30 mg kg-1 body weight given on day 11.5 of gestation caused no RA-induced changes in the morphology or temporal expression patterns of keratins during pelage hair follicle morphogenesis. The only differential effect of RA was a statistically significant increase in the number of BrdU-positive nuclei in hair bulbs from RA exposed fetuses compared with nonexposed mice. The absence of adverse RA effects suggests that this experimental design may represent a valuable protocol for use in studies on the in vivo effects of this retinoid on different skin diseases.

  20. Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms.

    PubMed

    Staniforth, Vanisree; Huang, Wen-Ching; Aravindaram, Kandan; Yang, Ning-Sun

    2012-05-01

    Matrix metalloproteinases MMP-2 and -9 are known to be overexpressed in ultraviolet B (UVB)-irradiated skin tissues and contribute to the acceleration of photoaging and the development of skin cancer. But the specific molecular mechanisms that can control or interfere with the expression and regulation of these MMP-2 and -9 activities in skin are not clearly understood. The aim of the present study was to analyze the suppressive effects of ferulic acid (FA), an abundant phenolic compound present in various dietary and medicinal plants, on UVB radiation-induced MMP-2 and -9 activities in mouse skin. For attenuation of chronic UVB irradiation damage to skin, inhibition of MMP-2 and -9 protein expression was detected using immunohistochemistry analysis. However, the in situ suppressive effects of FA did not interfere with the transcription or translation of MMP-2 and -9, suggesting that its action could be mediated via the proteasome pathway. Histological analyses showed that FA attenuates the degradation of collagen fibers, abnormal accumulation of elastic fibers and epidermal hyperplasia induced by UVB, demonstrating the functional and physiological relevance of FA effects in UVB-irradiated skin tissues. Together, our findings provide a novel and increased insight into the in vivo action of FA and suggest a possible clinical application in skin pathophysiological conditions associated with overexpression of MMP-2 and -9. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model

    PubMed Central

    2014-01-01

    Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235

  2. VCAM-1 blockade delays disease onset, reduces disease severity and inflammatory cells in an atopic dermatitis model.

    PubMed

    Chen, Lin; Lin, Shao-xia; Amin, Sanober; Overbergh, Lut; Maggiolino, Giacomo; Chan, Lawrence S

    2010-01-01

    We investigated the functions of critical adhesion molecules ICAM-1 and VCAM-1 in a keratin-14 IL-4-transgenic (Tg) mouse model of atopic dermatitis, the skin lesions of which are characterized by prominent inflammatory cell infiltration, significantly increased mRNAs and proteins of ICAM-1, VCAM-1, E-selectin, P-selectin, L-selectin, and PSGL-1, and significantly increased numbers of dermal vessels expressing these adhesion molecules. We tested the hypotheses that deletion or blockade of these molecules may impede the inflammation by examining the disease progresses in the Tg mice crossed with ICAM-1-knockout mice and Tg mice received anti-VCAM-1-neutralizing antibody. Although the findings of the ICAM-1-knockout Tg mice (Tg/ICAM-1(-/-)) developed skin lesions similar to wide-type ICAM-1 Tg mice (Tg/ICAM-1(+/+)) were surprising, a compensatory mechanism may account for it: the frequency of VCAM-1 ligand, CD49d, on CD3(+) T cells in the lesional skin significantly increased in the Tg/ICAM-1(-/-) mouse, compared with the Tg/ICAM-1(+/+) mice. In contrast, anti-VCAM-1-treated Tg/ICAM-1(-/-) or Tg/ICAM-1(+/+) mice had significantly delayed onset of skin inflammation compared with isotype antibody-treated groups. Moreover, anti-VCAM-1 significantly reduced the skin inflammation severity in Tg/ICAM-1(+/+) mice, accompanied with reduction of mast cell, eosinophil, and CD3(+) T cell infiltration. VCAM-1 is more critical in developing skin inflammation in this model.

  3. Counterregulation between thymic stromal lymphopoietin- and IL-23-driven immune axes shapes skin inflammation in mice with epidermal barrier defects.

    PubMed

    Li, Jiagui; Leyva-Castillo, Juan Manuel; Hener, Pierre; Eisenmann, Aurelie; Zaafouri, Sarra; Jonca, Nathalie; Serre, Guy; Birling, Marie-Christine; Li, Mei

    2016-07-01

    Epidermal barrier dysfunction has been recognized as a critical factor in the initiation and exacerbation of skin inflammation, particularly in patients with atopic dermatitis (AD) and AD-like congenital disorders, including peeling skin syndrome type B. However, inflammatory responses developed in barrier-defective skin, as well as the underlying mechanisms, remained incompletely understood. We aimed to decipher inflammatory axes and the cytokine network in mouse skin on breakdown of epidermal stratum corneum barrier. We generated Cdsn(iep-/-) mice with corneodesmosin ablation in keratinocytes selectively in an inducible manner. We characterized inflammatory responses and cytokine expression by using histology, immunohistochemistry, ELISA, and quantitative PCR. We combined mouse genetic tools, antibody-mediated neutralization, signal-blocking reagents, and topical antibiotic treatment to explore the inflammatory axes. We show that on breakdown of the epidermal stratum corneum barrier, type 2 and type 17 inflammatory responses are developed simultaneously, driven by thymic stromal lymphopoietin (TSLP) and IL-23, respectively. Importantly, we reveal a counterregulation between these 2 inflammatory axes. Furthermore, we show that protease-activated receptor 2 signaling is involved in mediating the TSLP/type 2 axis, whereas skin bacteria are engaged in induction of the IL-23/type 17 axis. Moreover, we find that IL-1β is induced in skin of Cdsn(iep-/-) mice and that blockade of IL-1 signaling suppresses both TSLP and IL-23 expression and ameliorates skin inflammation. The inflammatory phenotype in barrier-defective skin is shaped by counterregulation between the TSLP/type 2 and IL-23/type 17 axes. Targeting IL-1 signaling could be a promising therapeutic option for controlling skin inflammation in patients with peeling skin syndrome type B and other diseases related to epidermal barrier dysfunction, including AD. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  4. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin.

    PubMed

    Aziz, Moammir Hassan; Afaq, Farrukh; Ahmad, Nihal

    2005-01-01

    Nonmelanoma skin cancer is the most frequently diagnosed malignancy in the United States, and multiple exposures to solar ultraviolet (UV) radiation (particularly its UV-B component, 290-320 nm), is its major cause. 'Chemoprevention' by naturally occurring agents is being appreciated as a newer dimension in the management of neoplasia including skin cancer. We recently demonstrated that resveratrol (trans-3, 5, 4-trihydroxystilbene), an antioxidant found in grapes, red wines and a variety of nuts and berries, imparts protection from acute UV-B-mediated cutaneous damages in SKH-1 hairless mice. Understanding the mechanism of resveratrol-mediated protection of UV responses is important. We earlier demonstrated that resveratrol imparts chemopreventive effects against multiple UV-exposure-mediated modulations in (1) cki-cyclin-cdk network, and (2) mitogen activated protein kinase (MAPK)-pathway. This study was conducted to assess the involvement of inhibitor of apoptosis protein family Survivin during resveratrol-mediated protection from multiple exposures of UV-B (180 mJ/cm(2); on alternate days; for a total of seven exposures) radiations in the SKH-1 hairless mouse skin. Our data demonstrated that topical pre-treatment of resveratrol (10 micromol in 200 microl acetone/mouse) resulted in significant inhibition of UV-B exposure-mediated increases in (1) cellular proliferations (Ki-67 immunostaining), (2) protein levels of epidermal cyclooxygenase-2 and ornithine decarboxylase, established markers of tumor promotion, (3) protein and messenger RNA levels of Survivin, and (4) phosphorylation of survivin in the skin of SKH-1 hairless mouse. Resveratrol pretreatment also resulted in (1) reversal of UV-B-mediated decrease of Smac/DIABLO, and (2) enhancement of UV-B-mediated induction of apoptosis, in mouse skin. Taken together, our study suggested that resveratrol imparts chemopreventive effects against UV-B exposure-mediated damages in SKH-1 hairless mouse skin via inhibiting Survivin and the associated events.

  5. Interleukin-33 Increases Antibacterial Defense by Activation of Inducible Nitric Oxide Synthase in Skin

    PubMed Central

    Jiang, Ziwei; Zhang, Tian; Wang, Yue; Li, Zhiheng; Wu, Yelin; Ji, Shizhao; Xiao, Shichu; Ryffel, Bernhard; Radek, Katherine A.; Xia, Zhaofan; Lai, Yuping

    2014-01-01

    Interleukin-33 (IL-33) is associated with multiple diseases, including asthma, rheumatoid arthritis, tissue injuries and infections. Although IL-33 has been indicated to be involved in Staphylococcus aureus (S. aureus) wound infection, little is known about how IL-33 is regulated as a mechanism to increase host defense against skin bacterial infections. To explore the underlying intricate mechanism we first evaluated the expression of IL-33 in skin from S. aureus-infected human patients. Compared to normal controls, IL-33 was abundantly increased in skin of S. aureus-infected patients. We next developed a S. aureus cutaneous infection mouse model and found that IL-33 was significantly increased in dermal macrophages of infected mouse skin. The expression of IL-33 by macrophages was induced by staphylococcal peptidoglycan (PGN) and lipoteichoic acid (LTA) via activation of toll-like receptor 2(TLR2) –mitogen-activated protein kinase (MAPK)-AKT-signal transducer and activator of transcription 3(STAT3) signaling pathway as PGN and LTA failed to induce IL-33 in Tlr2-deficient peritoneal macrophages, and MAPK,AKT, STAT3 inhibitors significantly decreased PGN- or LTA-induced IL-33. IL-33, in turn, acted on macrophages to induce microbicidal nitric oxygen (NO) release. This induction was dependent on inducible nitric oxide synthase (iNOS) activation, as treatment of macrophages with an inhibitor of iNOS, aminoguanidine, significantly decreased IL-33-induced NO release. Moreover, aminoguanidine significantly blocked the capacity of IL-33 to inhibit the growth of S. aureus, and IL-33 silencing in macrophages significantly increased the survival of S. aureus in macrophages. Furthermore, the administration of IL-33-neutralizing antibody into mouse skin decreased iNOS production but increased the survival of S. aureus in skin. These findings reveal that IL-33 can promote antimicrobial capacity of dermal macrophages, thus enhancing antimicrobial defense against skin bacterial infections. PMID:24586149

  6. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here wemore » examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.« less

  7. Conditional knockout of N-WASP in mouse fibroblast caused keratinocyte hyper proliferation and enhanced wound closure

    PubMed Central

    Jain, Neeraj; Kalailingam, Pazhanichamy; Tan, Kai Wei; Tan, Hui Bing; Sng, Ming Keat; Chan, Jeremy Soon Kiat; Tan, Nguan Soon; Thanabalu, Thirumaran

    2016-01-01

    Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice. PMID:27909303

  8. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model.

    PubMed

    Wu, Wenbo; Lu, Zhiwei; Li, Fei; Wang, Wenjie; Qian, Nannan; Duan, Jinzhi; Zhang, Yu; Wang, Fengchao; Chen, Ting

    2017-02-14

    The prokaryotic CRISPR/Cas9 system has recently emerged as a powerful tool for genome editing in mammalian cells with the potential to bring curative therapies to patients with genetic diseases. However, efficient in vivo delivery of this genome editing machinery and indeed the very feasibility of using these techniques in vivo remain challenging for most tissue types. Here, we show that nonreplicable Cas9/sgRNA ribonucleoproteins can be used to correct genetic defects in skin stem cells of postnatal recessive dystrophic epidermolysis bullosa (RDEB) mice. We developed a method to locally deliver Cas9/sgRNA ribonucleoproteins into the skin of postnatal mice. This method results in rapid gene editing in epidermal stem cells. Using this method, we show that Cas9/sgRNA ribonucleoproteins efficiently excise exon80, which covers the point mutation in our RDEB mouse model, and thus restores the correct localization of the collagen VII protein in vivo. The skin blistering phenotype is also significantly ameliorated after treatment. This study provides an in vivo gene correction strategy using ribonucleoproteins as curative treatment for genetic diseases in skin and potentially in other somatic tissues.

  9. CXCL1 and CXCR2 as potential markers for vital reactions in skin contusions.

    PubMed

    He, Jie-Tao; Huang, Hong-Yan; Qu, Dong; Xue, Ye; Zhang, Kai-Kai; Xie, Xiao-Li; Wang, Qi

    2018-06-01

    Detection of the vitality of wounds is one of the most important issues in forensic practice. This study investigated mRNA and protein levels of CXCL1 and CXCR2 in skin wounds in mice and humans. Western blot analysis of CXCL1 and CXCR2 protein levels showed no difference between wounded and intact skin. However, mRNA levels demonstrated higher expression of CXCL1 and CXCR2 in contused mouse and human skin, compared with intact skin. At postmortem there were no remarkable changes in CXCL1 and CXCR2 mRNA levels in contused mouse skin. Increased mRNA expression was observed in contused mouse skin up to 96 h and 72 h after death for CXCL1 and CXCR2 respectively. In human samples of wounded skin, increased CXCL1 mRNA levels were detected up to 48 h after autopsy in all 5 cases, while increased CXCR2 mRNA levels were observed 48 h after autopsy in 4 of 5 cases. These findings suggest that the levels of CXCL1 and CXCR2 mRNA present in contused skin can be used as potential markers for a vital reaction in forensic practice.

  10. Ultraviolet B exposure activates Stat3 signaling via phosphorylation at tyrosine705 in skin of SKH1 hairless mouse: a target for the management of skin cancer?

    PubMed

    Ahsan, Haseeb; Aziz, Moammir Hasan; Ahmad, Nihal

    2005-07-22

    Understanding the molecular determinants of ultraviolet (UV) response may lead to the development of novel targets; and therefore, better approaches for the management of cancers, which mainly arise due to the exposure of skin to UV (particularly its UVB spectrum). Signal transducer and activator of transcription (Stat) proteins have been shown to activate multiple signaling pathways to contribute to oncogenesis. Here, we studied the regulation of Stat3 during UVB exposure-mediated responses in the skin of SKH-1 hairless mouse, a model regarded to possess relevance to human situations. Our data demonstrated that a single UVB (180 mJ/cm(2)) exposure to the skin of SKH-1 hairless mice resulted in significant upregulation in (i) protein levels of Stat3 and (ii) phosphorylation of Stat3 at tyrosine(705). Further, the activation of Stat3 was found to be associated with a decrease in apoptotic response of UVB and a gradual time-dependent increase in leukocyte infiltration and hyperplasia. In conclusion, we have demonstrated, for the first time, that UVB exposure to skin resulted in an activation of pro-survival protein Stat3. Based on our observation, we suggest that Stat3 could serve as a target for the management of UVB exposure-mediated damages including skin cancer.

  11. Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation.

    PubMed

    Huggenberger, Reto; Ullmann, Stefan; Proulx, Steven T; Pytowski, Bronislaw; Alitalo, Kari; Detmar, Michael

    2010-09-27

    The role of lymphangiogenesis in inflammation has remained unclear. To investigate the role of lymphatic versus blood vasculature in chronic skin inflammation, we inhibited vascular endothelial growth factor (VEGF) receptor (VEGFR) signaling by function-blocking antibodies in the established keratin 14 (K14)-VEGF-A transgenic (Tg) mouse model of chronic cutaneous inflammation. Although treatment with an anti-VEGFR-2 antibody inhibited skin inflammation, epidermal hyperplasia, inflammatory infiltration, and angiogenesis, systemic inhibition of VEGFR-3, surprisingly, increased inflammatory edema formation and inflammatory cell accumulation despite inhibition of lymphangiogenesis. Importantly, chronic Tg delivery of the lymphangiogenic factor VEGF-C to the skin of K14-VEGF-A mice completely inhibited development of chronic skin inflammation, epidermal hyperplasia and abnormal differentiation, and accumulation of CD8 T cells. Similar results were found after Tg delivery of mouse VEGF-D that only activates VEGFR-3 but not VEGFR-2. Moreover, intracutaneous injection of recombinant VEGF-C156S, which only activates VEGFR-3, significantly reduced inflammation. Although lymphatic drainage was inhibited in chronic skin inflammation, it was enhanced by Tg VEGF-C delivery. Together, these results reveal an unanticipated active role of lymphatic vessels in controlling chronic inflammation. Stimulation of functional lymphangiogenesis via VEGFR-3, in addition to antiangiogenic therapy, might therefore serve as a novel strategy to treat chronic inflammatory disorders of the skin and possibly also other organs.

  12. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection.

    PubMed

    Dorandeu, F; Taysse, L; Boudry, I; Foquin, A; Hérodin, F; Mathieu, J; Daulon, S; Cruz, C; Lallement, G

    2011-06-01

    Exposure to lethal chemical warfare agents (CWAs) is no longer only a military issue due to the terrorist threat. Among the CWAs of concern are the organophosphorus nerve agent O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX) and the vesicant sulfur mustard (SM). Although efficient means of decontamination are available, most of them lose their efficacy when decontamination is delayed after exposure of the bare skin. Alternatively, CWA skin penetration can be prevented by topical skin protectants. Active research in skin protection and decontamination is thus paramount. In vivo screening of decontaminants or skin protectants is usually time consuming and may be expensive depending on the animal species used. We were thus looking for a suitable, scientifically sound and cost-effective model, which is easy to handle. The euthymic hairless mouse Crl: SKH-1 (hr/hr) BR is widely used in some skin studies and has previously been described to be suitable for some experiments involving SM or SM analogs. To evaluate the response of this species, we studied the consequences of exposing male anaesthetized SKH-1 mice to either liquid VX or to SM, the latter being used in liquid form or as saturated vapours. Long-term effects of SM burn were also evaluated. The model was then used in the companion paper (Taysse et al.(1)).

  13. Caffeic Acid Inhibits Chronic UVB-Induced Cellular Proliferation Through JAK-STAT3 Signaling in Mouse Skin.

    PubMed

    Agilan, Balupillai; Rajendra Prasad, N; Kanimozhi, Govindasamy; Karthikeyan, Ramasamy; Ganesan, Muthusamy; Mohana, Shanmugam; Velmurugan, Devadasan; Ananthakrishnan, Dhanapalan

    2016-05-01

    Signal transducers and activators of transcription 3 (STAT3) play a critical role in inflammation, proliferation and carcinogenesis. Inhibition of JAK-STAT3 signaling is proved to be a novel target for prevention of UVB-induced skin carcinogenesis. In this study, chronic UVB irradiation (180 mJ cm(-2) ; weekly thrice for 30 weeks) induces the expression of IL-10 and JAK1 that eventually activates the STAT3 which leads to the transcription of proliferative and antiapoptotic markers such as PCNA, Cyclin-D1, Bcl2 and Bcl-xl, respectively. Caffeic acid (CA) inhibits JAK-STAT3 signaling, thereby induces apoptotic cell death by upregulating Bax, Cytochrome-C, Caspase-9 and Caspase-3 expression in mouse skin. Furthermore, TSP-1 is an antiangiogeneic protein, which is involved in the inhibition of angiogenesis and proliferation. Chronic UVB exposure decreased the expression of TSP-1 and pretreatment with CA prevented the UVB-induced loss of TSP-1 in UVB-irradiated mouse skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through modulating the JAK-STAT3 in the mouse skin. © 2016 The American Society of Photobiology.

  14. Assessing delivery and quantifying efficacy of small interfering ribonucleic acid therapeutics in the skin using a dual-axis confocal microscope

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun; Gonzalez-Gonzalez, Emilio; Smith, Bryan R.; Gambhir, Sanjiv S.; Kino, Gordon S.; Solgaard, Olav; Kaspar, Roger L.; Contag, Christopher H.

    2010-05-01

    Transgenic reporter mice and advances in imaging instrumentation are enabling real-time visualization of cellular mechanisms in living subjects and accelerating the development of novel therapies. Innovative confocal microscope designs are improving their utility for microscopic imaging of fluorescent reporters in living animals. We develop dual-axis confocal (DAC) microscopes for such in vivo studies and create mouse models where fluorescent proteins are expressed in the skin for the purpose of advancing skin therapeutics and transdermal delivery tools. Three-dimensional image volumes, through the different skin compartments of the epidermis and dermis, can be acquired in several seconds with the DAC microscope in living mice, and are comparable to histologic analyses of reporter protein expression patterns in skin sections. Intravital imaging with the DAC microscope further enables visualization of green fluorescent protein (GFP) reporter gene expression in the skin over time, and quantification of transdermal delivery of small interfering RNA (siRNA) and therapeutic efficacy. Visualization of transdermal delivery of nucleic acids will play an important role in the development of innovative strategies for treating skin pathologies.

  15. Preclinical study of mouse pluripotent parthenogenetic embryonic stem cell derivatives for the construction of tissue-engineered skin equivalent.

    PubMed

    Rao, Yang; Cui, Jihong; Yin, Lu; Liu, Wei; Liu, Wenguang; Sun, Mei; Yan, Xingrong; Wang, Ling; Chen, Fulin

    2016-10-22

    Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.

  16. CD34 Expression by Hair Follicle Stem Cells Is Required for Skin Tumor Development in Mice

    PubMed Central

    Trempus, Carol S.; Morris, Rebecca J.; Ehinger, Matthew; Elmore, Amy; Bortner, Carl D.; Ito, Mayumi; Cotsarelis, George; Nijhof, Joanne G.W.; Peckham, John; Flagler, Norris; Kissling, Grace; Humble, Margaret M.; King, Leon C.; Adams, Linda D.; Desai, Dhimant; Amin, Shantu; Tennant, Raymond W.

    2007-01-01

    The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice. PMID:17483328

  17. KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin

    PubMed Central

    Richardson, Gavin D.; Bazzi, Hisham; Fantauzzo, Katherine A.; Waters, James M.; Crawford, Heather; Hynd, Phil; Christiano, Angela M.; Jahoda, Colin A. B.

    2009-01-01

    Summary A key initial event in hair follicle morphogenesis is the localised thickening of the skin epithelium to form a placode, partitioning future hair follicle epithelium from interfollicular epidermis. Although many developmental signalling pathways are implicated in follicle morphogenesis, the role of epidermal growth factor (EGF) and keratinocyte growth factor (KGF, also known as FGF7) receptors are not defined. EGF receptor (EGFR) ligands have previously been shown to inhibit developing hair follicles; however, the underlying mechanisms have not been characterised. Here we show that receptors for EGF and KGF undergo marked downregulation in hair follicle placodes from multiple body sites, whereas the expression of endogenous ligands persist throughout hair follicle initiation. Using embryonic skin organ culture, we show that when skin from the sites of primary pelage and whisker follicle development is exposed to increased levels of two ectopic EGFR ligands (HBEGF and amphiregulin) and the FGFR2(IIIb) receptor ligand KGF, follicle formation is inhibited in a time- and dose-dependent manner. We then used downstream molecular markers and microarray profiling to provide evidence that, in response to KGF and EGF signalling, epidermal differentiation is promoted at the expense of hair follicle fate. We propose that hair follicle initiation in placodes requires downregulation of the two pathways in question, both of which are crucial for the ongoing development of the interfollicular epidermis. We have also uncovered a previously unrecognised role for KGF signalling in the formation of hair follicles in the mouse. PMID:19474150

  18. The circadian clock controls sunburn apoptosis and erythema in mouse skin.

    PubMed

    Gaddameedhi, Shobhan; Selby, Christopher P; Kemp, Michael G; Ye, Rui; Sancar, Aziz

    2015-04-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early-morning exposure to UV and minimal following an afternoon exposure. Early-morning exposure to UV also produced maximal activation of ataxia telangiectasia mutated and Rad3-related (Atr)-mediated DNA damage checkpoint signaling, including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. These data provide early evidence that the circadian clock has an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, and thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.

  19. The Circadian Clock Controls Sunburn Apoptosis and Erythema in Mouse Skin

    PubMed Central

    Gaddameedhi, Shobhan; Selby, Christopher P.; Kemp, Michael G.; Ye, Rui; Sancar, Aziz

    2014-01-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication, are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early morning exposure to UV and minimal following an afternoon exposure. Early morning exposure to UV also produced maximal activation of Atr-mediated DNA damage checkpoint signaling including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. To our knowledge these data provide the first evidence that the circadian clock plays an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation. PMID:25431853

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES inducesmore » significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.« less

  1. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  2. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  3. Silibinin Attenuates Sulfur Mustard Analog-Induced Skin Injury by Targeting Multiple Pathways Connecting Oxidative Stress and Inflammation

    PubMed Central

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2012-01-01

    Chemical warfare agent sulfur mustard (HD) inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES)-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM) treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p<0.05) reversal in CEES-induced decrease in cell viability, apoptotic and necrotic cell death, DNA damage, and an increase in oxidative stress. Silibinin (1 mg) applied topically to mouse skin 30 min post-CEES exposure (2 mg), was effective in reversing CEES-induced increases in skin bi-fold (62%) and epidermal thickness (85%), apoptotic cell death (70%), myeloperoxidase activity (complete reversal), induction of iNOS, COX-2, and MMP-9 protein levels (>90%), and activation of transcription factors NF-κB and AP-1 (complete reversal). Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants. PMID:23029417

  4. Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation.

    PubMed

    Tewari-Singh, Neera; Jain, Anil K; Inturi, Swetha; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2012-01-01

    Chemical warfare agent sulfur mustard (HD) inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES)-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM) treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p<0.05) reversal in CEES-induced decrease in cell viability, apoptotic and necrotic cell death, DNA damage, and an increase in oxidative stress. Silibinin (1 mg) applied topically to mouse skin 30 min post-CEES exposure (2 mg), was effective in reversing CEES-induced increases in skin bi-fold (62%) and epidermal thickness (85%), apoptotic cell death (70%), myeloperoxidase activity (complete reversal), induction of iNOS, COX-2, and MMP-9 protein levels (>90%), and activation of transcription factors NF-κB and AP-1 (complete reversal). Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants.

  5. Studying skin tumourigenesis and progression in immunocompetent hairless SKH1-hr mice using chronic 7,12-dimethylbenz(a)anthracene topical applications to develop a useful experimental skin cancer model.

    PubMed

    Thomas, Giju; Tuk, Bastiaan; Song, Ji-Ying; Truong, Hoa; Gerritsen, Hans C; de Gruijl, Frank R; Sterenborg, Henricus J C M

    2017-02-01

    Previous studies have established that 7,12-dimethylbenz(a)anthracene (DMBA) can initiate skin tumourigenesis in conventional furred mouse models by acting on hair follicle stem cells. However, further cancer progression depends on repeated applications of tumour promoter agents. This study evaluated the timeline involved in skin tumourigenesis and progression in immunocompetent hairless SKH1-hr mice with dysfunctional hair follicles using only DMBA with no additional tumour promoter agents. The results showed that topical application of 30 µg (117 nmol) of DMBA over the back and flank regions of the mouse once a week and 15 µg (58.5 nmol) twice a week produced skin tumours after 7-8 weeks. However, by week 14 a heavy benign tumour load required the mice to be euthanized. Lowering the DMBA dose to 15 µg (58.5 nmol) once a week produced tumours more slowly and allowed the mice to be studied for a longer period to week 23. This low-dose DMBA regimen yielded a high percentage of malignant tumours (58.8%) after 23 weekly applications. Additionally DMBA-treated skin showed an increase in mean epidermal thickness in comparison to untreated and acetone-treated skin. Despite the aberrant hair follicles in SKH1-hr mice, this chemically driven skin cancer model in hairless mice can serve as a suitable alternative to the ultraviolet-induced skin cancer models and can be reliably replicated as demonstrated by both the pilot and main experiments.

  6. FK506: therapeutic effects on lupus dermatoses in autoimmune-prone MRL/Mp-lpr/lpr mice.

    PubMed

    Furukawa, F; Imamura, S; Takigawa, M

    1995-01-01

    The effects of FK506, a new immunosuppressive agent, on the development of lupus dermatoses were investigated in the autoimmune-prone MRL/Mp-lpr/lpr (MRL/lpr) mouse, which is an animal model for the spontaneous development of skin lesions similar to those of human lupus erythematosus (LE). FK506 reduced the incidence of skin lesions, lupus nephritis, the titre of serum anti-double-stranded DNA antibodies and the massive T cell proliferation. The incidence and magnitude of IgG deposition at the dermoepidermal junction were not changed. These results suggest that FK506 is a promising immunosuppressive agent for the control of autoimmune skin diseases.

  7. [Effect of ionizing radiation and other factors on the thermal sensitivity of mouse skin].

    PubMed

    Kurpeshev, O K; Konopliannikov, A G

    1987-03-01

    A study was made of the effect of various agents on skin injury by hyperthermia in experiments on noninbred albino mice. The effects of heating were assessed by the frequency of skin necrosis development. The results of the study showed that irradiation of the skin (30 Gy) before heating did not influence its thermosensitivity whereas heating 45-180 days after irradiation proved more effective. Ethanol, metronidazole, thyrocalcitonin and actinomycin D decreased skin thermosensitivity, and cyclohexamide, serotonin, hyperglycemia and applying a tourniquet increased it. The DMF value for actinomycin D depended on the temperature of heating. One should distinguish between true modification of tissue thermosensitivity (determined by cellular factors) and indirect modification (associated with change in volumetric circulation rate).

  8. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    USDA-ARS?s Scientific Manuscript database

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  9. Cross-species identification of genomic drivers of squamous cell carcinoma development across preneoplastic intermediates

    PubMed Central

    Chitsazzadeh, Vida; Coarfa, Cristian; Drummond, Jennifer A.; Nguyen, Tri; Joseph, Aaron; Chilukuri, Suneel; Charpiot, Elizabeth; Adelmann, Charles H.; Ching, Grace; Nguyen, Tran N.; Nicholas, Courtney; Thomas, Valencia D.; Migden, Michael; MacFarlane, Deborah; Thompson, Erika; Shen, Jianjun; Takata, Yoko; McNiece, Kayla; Polansky, Maxim A.; Abbas, Hussein A.; Rajapakshe, Kimal; Gower, Adam; Spira, Avrum; Covington, Kyle R.; Xiao, Weimin; Gunaratne, Preethi; Pickering, Curtis; Frederick, Mitchell; Myers, Jeffrey N.; Shen, Li; Yao, Hui; Su, Xiaoping; Rapini, Ronald P.; Wheeler, David A.; Hawk, Ernest T.; Flores, Elsa R.; Tsai, Kenneth Y.

    2016-01-01

    Cutaneous squamous cell carcinoma (cuSCC) comprises 15–20% of all skin cancers, accounting for over 700,000 cases in USA annually. Most cuSCC arise in association with a distinct precancerous lesion, the actinic keratosis (AK). To identify potential targets for molecularly targeted chemoprevention, here we perform integrated cross-species genomic analysis of cuSCC development through the preneoplastic AK stage using matched human samples and a solar ultraviolet radiation-driven Hairless mouse model. We identify the major transcriptional drivers of this progression sequence, showing that the key genomic changes in cuSCC development occur in the normal skin to AK transition. Our data validate the use of this ultraviolet radiation-driven mouse cuSCC model for cross-species analysis and demonstrate that cuSCC bears deep molecular similarities to multiple carcinogen-driven SCCs from diverse sites, suggesting that cuSCC may serve as an effective, accessible model for multiple SCC types and that common treatment and prevention strategies may be feasible. PMID:27574101

  10. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis

    PubMed Central

    Yasuda, Takuwa; Fukada, Toshiyuki; Nishida, Keigo; Nakayama, Manabu; Matsuda, Masashi; Miura, Ikuo; Fukuda, Shinji; Kabashima, Kenji; Nakaoka, Shinji; Bin, Bum-Ho; Kubo, Masato; Hasegawa, Takanori; Ohara, Osamu; Koseki, Haruhiko; Wakana, Shigeharu

    2016-01-01

    Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis. PMID:27111231

  11. Hyperactivation of JAK1 tyrosine kinase induces stepwise, progressive pruritic dermatitis.

    PubMed

    Yasuda, Takuwa; Fukada, Toshiyuki; Nishida, Keigo; Nakayama, Manabu; Matsuda, Masashi; Miura, Ikuo; Dainichi, Teruki; Fukuda, Shinji; Kabashima, Kenji; Nakaoka, Shinji; Bin, Bum-Ho; Kubo, Masato; Ohno, Hiroshi; Hasegawa, Takanori; Ohara, Osamu; Koseki, Haruhiko; Wakana, Shigeharu; Yoshida, Hisahiro

    2016-06-01

    Skin homeostasis is maintained by the continuous proliferation and differentiation of epidermal cells. The skin forms a strong but flexible barrier against microorganisms as well as physical and chemical insults; however, the physiological mechanisms that maintain this barrier are not fully understood. Here, we have described a mutant mouse that spontaneously develops pruritic dermatitis as the result of an initial defect in skin homeostasis that is followed by induction of a Th2-biased immune response. These mice harbor a mutation that results in a single aa substitution in the JAK1 tyrosine kinase that results in hyperactivation, thereby leading to skin serine protease overexpression and disruption of skin barrier function. Accordingly, treatment with an ointment to maintain normal skin barrier function protected mutant mice from dermatitis onset. Pharmacological inhibition of JAK1 also delayed disease onset. Together, these findings indicate that JAK1-mediated signaling cascades in skin regulate the expression of proteases associated with the maintenance of skin barrier function and demonstrate that perturbation of these pathways can lead to the development of spontaneous pruritic dermatitis.

  12. Plasmodium berghei infection ameliorates atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Kishi, C; Amano, H; Suzue, K; Ishikawa, O

    2014-10-01

    Atopic diseases are more prevalent in industrialized countries than in developing countries. In addition, significant differences in the prevalence of allergic diseases are observed between rural and urban areas within the same country. This difference in prevalence has been attributed to what is called the 'hygiene hypothesis'. Although parasitic infections are known to protect against allergic reactions, the mechanism is still unknown. The aim of this study was to investigate whether or not malarial infections can inhibit atopic dermatitis (AD)-like skin lesions in a mouse model of AD. We used NC/Nga mice which are a model for AD. The NC/Nga mice were intraperitoneally infected with 1 × 10(5) Plasmoduim berghei (Pb) XAT-infected erythrocytes. Malarial infections ameliorated AD-like skin lesions in the NC/Nga mice. This improvement was blocked by the administration of anti-asialo GM1 antibodies, which are anti-natural killer (NK) cells. Additionally, adoptive transfer of NK cells markedly improved AD-like skin lesions in conventional NC/Nga mice; these suggest that the novel protective mechanism associated with malaria parasitic infections is at least, in part, dependent on NK cells. We have experimentally demonstrated for the first time that malarial infections ameliorated AD-like skin lesions in a mouse model of AD. Our study could explain in part the mechanism of the 'hygiene hypothesis', which states that parasitic infections can inhibit the development of allergic diseases. © 2014 The Authors. Allergy Published by John Wiley & Sons Ltd.

  13. Whole-Mount Adult Ear Skin Imaging Reveals Defective Neuro-Vascular Branching Morphogenesis in Obese and Type 2 Diabetic Mouse Models.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke

    2018-01-11

    Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.

  14. Topically applied hypericin exhibits skin penetrability on nude mice.

    PubMed

    Li, Zhuo-Heng; Li, Yuan-Yuan; Hou, Min; Yang, Tao; Lu, Lai-Chun; Xu, Xiao-Yu

    2018-06-13

    Hypericin, a powerful natural photosensitizer in photodynamic therapy (PDT), is suitable for treating skin diseases involving excess capillary proliferation. In the present study, we aimed to evaluate the skin penetrability of topically applied hypericin, expecting a reduced risk of prolonged skin photosensitivity, which often occurs after systemic administration. Firstly, the Franz diffusion cell assays were performed to evaluate the penetration effects of different enhancers, including menthol, propylene glycol, camphanone, azone, and carbamide. In view of above evaluation results, we selected menthol as the enhancer in the subsequent in vivo studies. The setting groups were as follows: the blank control group, the light-exposure control group, the gel-base control group, the hypericin gel group, and a hypericin gel-containing menthol group. Except for the blank control, all other animals were irradiated by a LED light. Then, fluorescence microscopy was performed to examine the distribution of hypericin in the skin of nude mouse. Macroscopic and microscopic analyses were also carried out to detect pathological changes in the skin after topical hypericin-PDT treatment. Immunohistochemistry was used to determine the expression change of PECAM-1. As shown in the results, menthol facilitated hypericin penetrate the skin of nude mice most. The results of in vivo assays revealed that hypericin penetrated nude mouse skin, spread to the dermis, and resulted in obvious photosensitivity reaction on the dermal capillaries. Moreover, skin injured by the photosensitive reaction induced by hypericin-PDT treatment was replaced by normal skin within 7 days. We concluded that topical applied hypericin could penetrate nude mouse skin well and has a great potential in PDT treatment of skin diseases.

  15. Topical application of ochratoxin A causes DNA damage and tumor initiation in mouse skin.

    PubMed

    Kumar, Rahul; Ansari, Kausar M; Chaudhari, Bhushan P; Dhawan, Alok; Dwivedi, Premendra D; Jain, Swatantra K; Das, Mukul

    2012-01-01

    Skin cancer is one of the most common forms of cancer and 2-3 million new cases are being diagnosed globally each year. Along with UV rays, environmental pollutants/chemicals including mycotoxins, contaminants of various foods and feed stuffs, could be one of the aetiological factors of skin cancer. In the present study, we evaluated the DNA damaging potential and dermal carcinogenicity of a mycotoxin, ochratoxin A (OTA), with the rationale that dermal exposure to OTA in workers may occur during their involvement in pre and post harvest stages of agriculture. A single topical application of OTA (20-80 µg/mouse) resulted in significant DNA damage along with elevated γ-H2AX level in skin. Alteration in oxidative stress markers such as lipid peroxidation, protein carbonyl, glutathione content and antioxidant enzymes was observed in a dose (20-80 µg/mouse) and time-dependent (12-72 h) manner. The oxidative stress was further emphasized by the suppression of Nrf2 translocation to nucleus following a single topical application of OTA (80 µg/mouse) after 24 h. OTA (80 µg/mouse) application for 12-72 h caused significant enhancement in- (a) reactive oxygen species generation, (b) activation of ERK1/2, p38 and JNK MAPKs, (c) cell cycle arrest at G0/G1 phase (37-67%), (d) induction of apoptosis (2.0-11.0 fold), (e) expression of p53, p21/waf1, (f) Bax/Bcl-2 ratio, (g) cytochrome c level, (h) activities of caspase 9 (1.2-1.8 fold) and 3 (1.7-2.2 fold) as well as poly ADP ribose polymerase cleavage. In a two-stage mouse skin tumorigenesis protocol, it was observed that a single topical application of OTA (80 µg/mouse) followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 24 week leads to tumor formation. These results suggest that OTA has skin tumor initiating property which may be related to oxidative stress, MAPKs signaling and DNA damage.

  16. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo

    PubMed Central

    Rashighi, Mehdi; Agarwal, Priti; Richmond, Jillian M; Harris, Tajie H; Dresser, Karen; Su, Mingwan; Zhou, Youwen; Deng, April; Hunter, Chris A; Luster, Andrew D; Harris, John E

    2014-01-01

    Vitiligo is an autoimmune disease of the skin that results in disfiguring white spots. There are no FDA-approved treatments for vitiligo, and most off-label treatments yield unsatisfactory results. Vitiligo patients have increased numbers of autoreactive, melanocyte-specific CD8+ T cells in the skin and blood, which are directly responsible for melanocyte destruction. Here we report that gene expression in lesional skin from vitiligo patients reveals an IFN-γ-specific signature, including the chemokine CXCL10. CXCL10 is elevated in both vitiligo patient skin and serum and CXCR3, its receptor, is expressed on pathogenic T cells. To address the function of CXCL10 in vitiligo, we employed a mouse model of disease that also exhibits an IFN-γ-specific gene signature, expression of CXCL10 in the skin, and upregulation of CXCR3 on antigen-specific T cells. Mice that receive Cxcr3−/− T cells develop minimal depigmentation, as do mice lacking Cxcl10 or treated with CXCL10 neutralizing antibody. CXCL9 promotes autoreactive T cell global recruitment to the skin but not effector function while, in contrast, CXCL10 is required for effector function and localization within the skin. Surprisingly, CXCL10 neutralization in mice with established, widespread depigmentation induces reversal of disease, evidenced by repigmentation. These data identify a critical role for CXCL10 in both the progression and maintenance of vitiligo, and thereby support inhibiting CXCL10 as a targeted treatment strategy. PMID:24523323

  17. Epidermolysis Bullosa Acquisita: Autoimmunity to Anchoring Fibril Collagen

    PubMed Central

    Chen, Mei; Kim, Gene H.; Prakash, Lori; Woodley, David T.

    2012-01-01

    Epidermolysis bullosa acquisita (EBA) is a rare and acquired autoimmune subepidermal bullous disease of the skin and mucosa. EBA includes various distinct clinical manifestations resembling Bullous Pemphigus, Brunsting-Perry pemphigoid, or cicatricial pemphigoid. These patients have autoantibodies against type VII collagen, an integral component of anchoring fibrils, which are responsible for attaching the dermis to the epidermis. Destruction or perturbation of the normally functioning anchoring fibrils clinically results in skin fragility, blisters, erosions, scars, milia and nail loss, all features reminiscent of genetic dystrophic epidermolysis bullosa. These anti-type VII collagen antibodies are “pathogenic” because when injected into a mouse, the mouse develops an EBA-like blistering disease. Currently treatment is often unsatisfactory, however some success has been achieved with colchichine, dapsone, photopheresis, plasmaphresis, infliximab, rituximab and IVIG. PMID:21955050

  18. Characterization of cDNAs encoding the chick retinoic acid receptor gamma 2 and preferential distribution of retinoic acid receptor gamma transcripts during chick skin development.

    PubMed

    Michaille, J J; Blanchet, S; Kanzler, B; Garnier, J M; Dhouailly, D

    1994-12-01

    Retinoic acid receptors alpha, beta and gamma (RAR alpha, beta and gamma) are ligand-inductible transcriptional activators which belong to the steroid/thyroid hormone receptor superfamily. At least two major isoforms (1 and 2) of each RAR arise by differential use of two promoters and alternative splicing. In mouse, the three RAR genes are expressed in stage- and tissue-specific patterns during embryonic development. In order to understand the role of the different RARs in chick, RAR gamma 2 cDNAs were isolated from an 8.5-day (stage 35 of Hamburger and Hamilton) chick embryo skin library. The deduced chick RAR gamma 2 amino acid sequence displays uncommon features such as 21 specific amino acid replacements, 12 of them being clustered in the amino-terminal region (domains A2 and B), and a truncated acidic carboxy-terminal region (F domain). However, the pattern of RAR gamma expression in chick embryo resembles that reported in mouse, particularly in skin where RAR gamma expression occurs in both the dermal and epidermal layers at the beginning of feather formation, and is subsequently restricted to the differentiating epidermal cells. Northern blot analysis suggests that different RAR gamma isoforms could be successively required during chick development.

  19. Antioxidant Therapies for Ulcerative Dermatitis: A Potential Model for Skin Picking Disorder

    PubMed Central

    George, Nneka M.; Whitaker, Julia; Vieira, Giovana; Geronimo, Jerome T.; Bellinger, Dwight A.; Fletcher, Craig A.; Garner, Joseph P.

    2015-01-01

    Skin Picking Disorder affects 4% of the general population, with serious quality of life impacts, and potentially life threatening complications. Standard psychoactive medications do not help most patients. Similarly, Mouse Ulcerative Dermatitis (skin lesions caused by excessive abnormal grooming behavior) is very common in widely used inbred strains of mice, and represents a serious animal welfare issue and cause of mortality. Treatment options for Ulcerative Dermatitis are largely palliative and ineffective. We have proposed mouse Ulcerative Dermatitis as a model for human Skin Picking Disorder based on similar epidemiology, behavior, and its comorbidity and mechanistic overlap with hair pulling (trichotillomania). We predicted that mouse Ulcerative Dermatitis would be treated by N-Acetylcysteine, as this compound is highly effective in treating both Skin Picking Disorder and Trichotillomania. Furthermore, we hypothesized that N-Acetylcysteine’s mode of action is as a precursor to the production of the endogenous antioxidant glutathione in the brain, and therefore intranasal glutathione would also treat Ulcerative Dermatitis. Accordingly, we show in a heterogenous prospective trial, the significant reduction in Ulcerative Dermatitis lesion severity in mice receiving either N-acetylcysteine (oral administration) or glutathione (intranasal). The majority of mice treated with N-acetylcysteine improved slowly throughout the course of the study. Roughly half of the mice treated with glutathione showed complete resolution of lesion within 2-4 weeks, while the remainder did not respond. These findings are the first to show that the use of N-acetylcysteine and Glutathione can be curative for mouse Ulcerative Dermatitis. These findings lend additional support for mouse Ulcerative Dermatitis as a model of Skin Picking Disorder and also support oxidative stress and glutathione synthesis as the mechanism of action for these compounds. As N-Acetylcysteine is poorly tolerated by many patients, intranasal glutathione warrants further study as potential therapy in Skin Picking, trichotillomania and other body-focused repetitive behavior disorders. PMID:26167859

  20. Antioxidant Therapies for Ulcerative Dermatitis: A Potential Model for Skin Picking Disorder.

    PubMed

    George, Nneka M; Whitaker, Julia; Vieira, Giovana; Geronimo, Jerome T; Bellinger, Dwight A; Fletcher, Craig A; Garner, Joseph P

    2015-01-01

    Skin Picking Disorder affects 4% of the general population, with serious quality of life impacts, and potentially life threatening complications. Standard psychoactive medications do not help most patients. Similarly, Mouse Ulcerative Dermatitis (skin lesions caused by excessive abnormal grooming behavior) is very common in widely used inbred strains of mice, and represents a serious animal welfare issue and cause of mortality. Treatment options for Ulcerative Dermatitis are largely palliative and ineffective. We have proposed mouse Ulcerative Dermatitis as a model for human Skin Picking Disorder based on similar epidemiology, behavior, and its comorbidity and mechanistic overlap with hair pulling (trichotillomania). We predicted that mouse Ulcerative Dermatitis would be treated by N-Acetylcysteine, as this compound is highly effective in treating both Skin Picking Disorder and Trichotillomania. Furthermore, we hypothesized that N-Acetylcysteine's mode of action is as a precursor to the production of the endogenous antioxidant glutathione in the brain, and therefore intranasal glutathione would also treat Ulcerative Dermatitis. Accordingly, we show in a heterogenous prospective trial, the significant reduction in Ulcerative Dermatitis lesion severity in mice receiving either N-acetylcysteine (oral administration) or glutathione (intranasal). The majority of mice treated with N-acetylcysteine improved slowly throughout the course of the study. Roughly half of the mice treated with glutathione showed complete resolution of lesion within 2-4 weeks, while the remainder did not respond. These findings are the first to show that the use of N-acetylcysteine and Glutathione can be curative for mouse Ulcerative Dermatitis. These findings lend additional support for mouse Ulcerative Dermatitis as a model of Skin Picking Disorder and also support oxidative stress and glutathione synthesis as the mechanism of action for these compounds. As N-Acetylcysteine is poorly tolerated by many patients, intranasal glutathione warrants further study as potential therapy in Skin Picking, trichotillomania and other body-focused repetitive behavior disorders.

  1. Acute and long-term transcriptional responses in sulfur mustard-exposed SKH-1 hairless mouse skin.

    PubMed

    Vallet, V; Poyot, T; Cléry-Barraud, C; Coulon, D; Sentenac, C; Peinnequin, A; Boudry, I

    2012-03-01

    Sulfur mustard (HD) ranks among the alkylating chemical warfare agents. Skin contact with HD produces an inflammatory response that evolves into separation at the epidermal-dermal junction conducting to blistering and epidermis necrosis. Up to now, current treatment strategies of HD burns have solely consisted in symptomatic management of skin damage. Therapeutic efficacy studies are still being conducted; classically using appropriate animal skin toxicity models. In order to substantiate the use of SKH-1 hairless mouse as an appropriate model for HD-induced skin lesions, we investigate the time-dependent quantitative gene expression of various selected transcripts associated to the dorsal skin exposure to HD saturated vapors. Using quantitative real time polymerase chain reaction (RT-qPCR), the expression of interleukins (IL-1β and IL-6), tumor necrosis factor (TNF)-α, macrophage inflammatory proteins (MIP)-2α (also called Cxcl2) and MIP-1αR (also called Ccr1), matrix metalloproteases (MMP-9 and MMP-2), laminin γ2 monomer (Lamc2) and keratin (K)1 was determined up to 21 days after HD challenge in order to allow enough time for wound repair to begin. Specific transcript RT-qPCR analysis demonstrated that IL-6, IL-1β, Ccr1, Cxcl2 mRNA levels increased as early as 6 h in HD-exposed skins and remained up-regulated over a 14-day period. Topical application of HD also significantly up-regulated MMP-9, TNF-α, and Lamc2 expression at specific time points. In contrast, MMP-2 mRNA levels remained unaffected by HD over the time-period considered, whereas that long-term study revealed that K1 mRNA level significantly increased only 21 days after HD challenge. Our study hereby provides first-hand evidence to substantiate a long period variation expression in the inflammatory cytokine, MMPs and structural components following cutaneous HD exposure in hairless mouse SKH-1. Our data credit the use of SKH-1 for investigating mechanisms of HD-induced skin toxicity and for the development of pharmacological countermeasures.

  2. In vivo analysis of THz wave irradiation induced acute inflammatory response in skin by laser-scanning confocal microscopy.

    PubMed

    Hwang, Yoonha; Ahn, Jinhyo; Mun, Jungho; Bae, Sangyoon; Jeong, Young Uk; Vinokurov, Nikolay A; Kim, Pilhan

    2014-05-19

    The recent development of THz sources in a wide range of THz frequencies and power levels has led to greatly increased interest in potential biomedical applications such as cancer and burn wound diagnosis. However, despite its importance in realizing THz wave based applications, our knowledge of how THz wave irradiation can affect a live tissue at the cellular level is very limited. In this study, an acute inflammatory response caused by pulsed THz wave irradiation on the skin of a live mouse was analyzed at the cellular level using intravital laser-scanning confocal microscopy. Pulsed THz wave (2.7 THz, 4 μs pulsewidth, 61.4 μJ per pulse, 3Hz repetition), generated using compact FEL, was used to irradiate an anesthetized mouse's ear skin with an average power of 260 mW/cm(2) for 30 minutes using a high-precision focused THz wave irradiation setup. In contrast to in vitro analysis using cultured cells at similar power levels of CW THz wave irradiation, no temperature change at the surface of the ear skin was observed when skin was examined with an IR camera. To monitor any potential inflammatory response, resident neutrophils in the same area of ear skin were repeatedly visualized before and after THz wave irradiation using a custom-built laser-scanning confocal microscopy system optimized for in vivo visualization. While non-irradiated control skin area showed no changes in the number of resident neutrophils, a massive recruitment of newly infiltrated neutrophils was observed in the THz wave irradiated skin area after 6 hours, which suggests an induction of acute inflammatory response by the pulsed THz wave irradiation on the skin via a non-thermal process.

  3. Temporal aspects of tumorigenic response to individual and mixed carcinogens. [Response of mouse skin to benzo(a)pyrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, R.E.; Burns, F.J.

    1976-02-01

    Results are reported from experiments that involved either single or multiple doses of benzo(a)pyrene in mouse skin followed by prolonged observation. Preliminary results indicate linearity in dose and time and no evidence of recovery or enhancement for multiple doses of initiator given for extended periods of time. (auth)

  4. Fabrication and characterization of a 3-D non-homogeneous tissue-like mouse phantom for optical imaging

    NASA Astrophysics Data System (ADS)

    Avtzi, Stella; Zacharopoulos, Athanasios; Psycharakis, Stylianos; Zacharakis, Giannis

    2013-11-01

    In vivo optical imaging of biological tissue not only requires the development of new theoretical models and experimental procedures, but also the design and construction of realistic tissue-mimicking phantoms. However, most of the phantoms available currently in literature or the market, have either simple geometrical shapes (cubes, slabs, cylinders) or when realistic in shape they use homogeneous approximations of the tissue or animal under investigation. The goal of this study is to develop a non-homogeneous realistic phantom that matches the anatomical geometry and optical characteristics of the mouse head in the visible and near-infrared spectral range. The fabrication of the phantom consisted of three stages. Initially, anatomical information extracted from either mouse head atlases or structural imaging modalities (MRI, XCT) was used to design a digital phantom comprising of the three main layers of the mouse head; the brain, skull and skin. Based on that, initial prototypes were manufactured by using accurate 3D printing, allowing complex objects to be built layer by layer with sub-millimeter resolution. During the second stage the fabrication of individual molds was performed by embedding the prototypes into a rubber-like silicone mixture. In the final stage the detailed phantom was constructed by loading the molds with epoxy resin of controlled optical properties. The optical properties of the resin were regulated by using appropriate quantities of India ink and intralipid. The final phantom consisted of 3 layers, each one with different absorption and scattering coefficient (μa,μs) to simulate the region of the mouse brain, skull and skin.

  5. Interleukin-17 receptor A maintains and protects the skin barrier to prevent allergic skin inflammation1

    PubMed Central

    Floudas, Achilleas; Saunders, Sean P.; Moran, Tara; Schwartz, Christian; Hams, Emily; Fitzgerald, Denise C.; Johnston, James A.; Ogg, Graham S.; McKenzie, Andrew N.; Walsh, Patrick T.; Fallon, Padraic G.

    2017-01-01

    Atopic dermatitis (AD) is a common inflammatory skin disease affecting up to 20% of children and 3% of adults worldwide and is associated with dysregulation of the skin barrier. While type 2 responses are implicated in AD, emerging evidence indicates potential role for the IL-17A signalling axis in AD pathogenesis. In this study we show that in the filaggrin mutant mouse model of spontaneous AD, IL-17RA deficiency (Il17ra-/-) resulted in severe exacerbation of skin inflammation. Interestingly, Il17ra-/- mice without the filaggrin mutation also developed spontaneous progressive skin inflammation with eosinophilia, increased levels of thymic stromal lymphopoietin (TSLP) and IL-5 in the skin. Il17ra-/- mice have a defective skin barrier with altered filaggrin expression. The barrier dysregulation and spontaneous skin inflammation in Il17ra-/- mice was dependent on TSLP, but not the other alarmins IL-25 and IL-33. The associated skin inflammation was mediated by IL-5 expressing pathogenic effector (pe) Th2 cells and was independent of TCRγδ T cells and IL-22. An absence of IL-17RA in non-hematopoietic cells, but not in the hematopoietic cells, was required for the development of spontaneous skin inflammation. Skin microbiome dysbiosis developed in the absence of IL-17RA, with antibiotic intervention resulting in significant amelioration of skin inflammation and reductions in skin infiltrating peTh2 cells and TSLP. This study describes a previously unappreciated protective role for IL-17RA signalling in regulation of the skin barrier and maintenance of skin immune homeostasis. PMID:28615416

  6. Catalytic Antioxidant Aeol 10150 Treatment Ameliorates Sulfur Mustard Analog 2-Chloroethyl Ethyl Sulfide Associated Cutaneous Toxic Effects

    PubMed Central

    Tewari-Singh, Neera; Inturi, Swetha; Jain, Anil K.; Agarwal, Chapla; Orlicky, David J; White, Carl W.; Agarwal, Rajesh; Day, Brian J.

    2014-01-01

    Our previous studies and other published reports with the chemical warfare agent sulfur mustard (SM) and its analog 2-chloroethyl ethyl sulfide (CEES) have indicated a role of oxidative stress in skin injuries caused by these vesicating agents. We examined the effects of the catalytic antioxidant AEOL 10150 in attenuation of CEES-induced toxicity in our established skin injury models (skin epidermal cells and SKH-1 hairless mice) to validate the role of oxidative stress in the pathophysiology of mustard vesicating agents. Treatment of mouse epidermal JB6 and human HaCaT cells with AEOL 10150 (50 μM) 1 h post CEES exposure resulted in significant (p<0.05) reversal of CEES-induced decreases in both cell viability and DNA synthesis. Similarly, AEOL 10150 treatment 1 h after CEES exposure attenuated CEES-induced DNA damage in these cells. Similar AEOL 10150 treatments also caused significant (p<0.05) reversal of CEES-induced decreases in cell viability in normal human epidermal keratinocytes. Cytoplasmic and mitochondrial reactive oxygen species measurements showed that AEOL 10150 treatment drastically ameliorated the CEES-induced oxidative stress in both JB6 and HaCaT cells. Based on AEOL 10150 pharmacokinetic studies in SKH-1 mouse skin, mice were treated with topical formulation plus subcutaneous (injection; 5 mg/kg) AEOL 10150, 1 h after CEES (4 mg/mouse) exposure and every 4 h thereafter for 12 h. This AEOL 10150 treatment regimen resulted in over 50% (p<0.05) reversal in CEES-induced skin bi-fold and epidermal thickness, myeloperoxidase activity, and DNA oxidation in mouse skin. Results from this study demonstrate potential therapeutic efficacy of AEOL 10150 against CEES-mediated cutaneous lesions supporting AEOL 10150 as a medical countermeasure against SM-induced skin injuries. PMID:24815113

  7. Notch pathway signaling in the skin antagonizes Merkel cell development.

    PubMed

    Logan, Gregory J; Wright, Margaret C; Kubicki, Adam C; Maricich, Stephen M

    2018-02-15

    Merkel cells are mechanosensitive skin cells derived from the epidermal lineage whose development requires expression of the basic helix-loop-helix transcription factor Atoh1. The genes and pathways involved in regulating Merkel cell development during embryogenesis are poorly understood. Notch pathway signaling antagonizes Atoh1 expression in many developing body regions, so we hypothesized that Notch signaling might inhibit Merkel cell development. We found that conditional, constitutive overexpression of the Notch intracellular domain (NICD) in mouse epidermis significantly decreased Merkel cell numbers in whisker follicles and touch domes of hairy skin. Conversely, conditional deletion of the obligate NICD binding partner RBPj in the epidermis significantly increased Merkel cell numbers in whisker follicles, led to the development of ectopic Merkel cells outside of touch domes in hairy skin epidermis, and altered the distribution of Merkel cells in touch domes. Deletion of the downstream Notch effector gene Hes1 also significantly increased Merkel cell numbers in whisker follicles. Together, these data demonstrate that Notch signaling regulates Merkel cell production and patterning. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Hair and skin sterols in normal mice and those with deficient dehydrosterol reductase (DHCR7), the enzyme associated with Smith-Lemli-Opitz syndrome.

    PubMed

    Serra, Montserrat; Matabosch, Xavier; Ying, Lee; Watson, Gordon; Shackleton, Cedric

    2010-11-01

    Our recent studies have focused on cholesterol synthesis in mouse models for 7-dehydrosterolreductase (DHCR7) deficiency, also known as Smith-Lemli-Opitz syndrome. Investigations of such mutants have relied on tissue and blood levels of the cholesterol precursor 7-dehydrocholesterol (7DHC) and its 8-dehydro isomer. In this investigation by gas chromatography/mass spectrometry (GC/MS) we have identified and quantified cholesterol and its precursors (7DHC, desmosterol, lathosterol, lanosterol and cholest-7,24-dien-3β-ol) in mouse hair. The components were characterized and their concentrations were compared to those found in mouse skin and serum. Hair appeared unique in that desmosterol was a major sterol component, almost matching in concentration cholesterol itself. In DHCR7 deficient mice, dehydrodesmosterol (DHD) was the dominant hair Δ(7) sterol. Mutant mouse hair had much higher concentrations of 7-dehydrosterols relative to cholesterol than did serum or tissue at all ages studied. The 7DHC/C ratio in hair was typically about sevenfold the value in serum or skin and the DHD/D ratio was 100× that of the serum 7DHC/C ratio. Mutant mice compensate for their DHCR7 deficiency with maturity, and the tissue and blood 7DHC/C become close to normal. That hair retains high relative concentrations of the dehydro precursors suggests that the apparent up-regulation of Dhcr7 seen in liver is slower to develop at the site of hair cholesterol synthesis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Myricetin suppresses UVB-induced wrinkle formation and MMP-9 expression by inhibiting Raf

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Kim, Ho Young; Oh, Mi Hyun; Byun, Sanguine; Lim, Sung Hwan; Heo, Yong-Seok; Kang, Nam Joo; Bode, Ann M.; Dong, Zigang; Lee, Hyong Joo

    2010-01-01

    Chronic exposure to solar ultraviolet (UV) light causes skin photoaging. Many studies have shown that naturally occurring phytochemicals have anti-photoaging effects, but their direct target molecule(s) and mechanism(s) remain unclear. We found that myricetin, a major flavonoid in berries and red wine, inhibited wrinkle formation in mouse skin induced by chronic UVB irradiation (0.18 J/cm2, 3 days/wk for 15 wk). Myricetin treatment reduced UVB-induced epidermal thickening of mouse skin and also suppressed UVB-induced matrix metalloproteinase-9 (MMP-9) protein expression and enzyme activity. Myricetin appeared to exert its anti-aging effects by suppressing UVB-induced Raf kinase activity and subsequent attenuation of UVB-induced phosphorylation of MEK and ERK in mouse skin. In vitro and in vivo pull-down assays revealed that myricetin bound with Raf in an ATP-noncompetitive manner. Overall, these results indicate that myricetin exerts potent anti-photoaging activity by regulating MMP-9 expression through the suppression of Raf kinase activity. PMID:20093107

  10. Inhibitory effect of rose hip (Rosa canina L.) on melanogenesis in mouse melanoma cells and on pigmentation in brown guinea pigs.

    PubMed

    Fujii, Takashi; Ikeda, Katsumi; Saito, Morio

    2011-01-01

    The compounds present in rose hips exerting an inhibitory action against melanogenesis in B16 mouse melanoma cells were investigated by dividing an aqueous extract of rose hips (RE) into four fractions. The 50% ethanol eluate from a DIAION HP-20 column significantly reduced the production of melanin and was mainly composed of procyanidin glycosides. We also found that this 50% ethanol eluate reduced the intracellular tyrosinase activity and also had a direct inhibitory effect on tyrosinase obtained as a protein mixture from the melanoma cell lysate. We also investigated the effect of orally administering RE on skin pigmentation in brown guinea pigs, and found that the pigmentation was inhibited together with the tyrosinase activity in the skin. These data collectively suggest that proanthocyanidins from RE inhibited melanogenesis in mouse melanoma cells and guinea pig skin, and could be useful as a skin-whitening agent when taken orally.

  11. Interaction of primary mast cells with Borrelia burgdorferi (sensu stricto): role in transmission and dissemination in C57BL/6 mice.

    PubMed

    Bernard, Quentin; Wang, Zhenping; Di Nardo, Anna; Boulanger, Nathalie

    2017-06-27

    Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis is a bacterium transmitted by hard ticks, Ixodes spp. Bacteria are injected into the host skin during the tick blood meal with tick saliva. There, Borrelia and saliva interact together with skin cells such as keratinocytes, fibroblasts, mast cells and other specific immune cells before disseminating to target organs. To study the role of mast cells in the transmission of Lyme borreliosis, we isolated mouse primary mast cells from bone marrow and incubated them in the presence of Borrelia burgdorferi (sensu stricto) and tick salivary gland extract. We further analyzed their potential role in vivo, in a mouse model of deficient in mast cells (Kit wsh-/- mice). To our knowledge, we report here for the first time the bacteria ability to induce the inflammatory response of mouse primary mast cells. We show that OspC, a major surface lipoprotein involved in the early transmission of Borrelia, induces the degranulation of primary mast cells but has a limited effect on the overall inflammatory response of these cells. In contrast, whole bacteria have an opposite effect. We also show that mast cell activation is significantly inhibited by tick salivary gland extract. Finally, we demonstrate that mast cells are likely not the only host cells involved in the early transmission and dissemination of Borrelia since the use of mast cell deficient Kit wsh-/- mice shows a limited impact on these two processes in the context of this mouse genetic background. The absence of mast cells did not change the replication rate of Borrelia in the skin. However, in the absence of mast cells, Borrelia dissemination to the joints was faster. Mast cells do not control skin bacterial proliferation during primary infection and the establishment of the primary infection, as shown in the C57BL/6 mouse model studied. Nevertheless, the Borrelia induced cytotokine modulation on mast cells might be involved in long term and/or repeated infections and protect from Lyme borreliosis due to the development of a hypersensitivity to tick saliva.

  12. Simultaneous dual modality optical and MR imaging of mouse dorsal skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Salek, Mir Farrokh; Pagel, Mark D.; Gmitro, Arthur F.

    2011-02-01

    Optical imaging and MRI have both been used extensively to study tumor microenvironment. The two imaging modalities are complementary and can be used to cross-validate one another for specific measurements. We have developed a modular platform that is capable of doing optical microscopy inside an MRI instrument. To do this, an optical relay system transfers the image to outside of the MR bore to a commercial grade CCD camera. This enables simultaneous optical and MR imaging of the same tissue and thus creates the ideal situation for comparative or complementary studies using both modalities. Initial experiments have been done using GFP labeled prostate cancer cells implanted in mouse dorsal skin fold window chamber. Vascular hemodynamics and vascular permeability were studied using our imaging system. Towards this goal, we developed a dual MR-Optical contrast agent by labeling BSA with both Gd-DTPA and Alexa Fluor. Overall system design and results of these preliminary vascular studies are presented.

  13. Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang

    2013-02-01

    Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications.

  14. Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research

    Cancer.gov

    The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients develop a characteristic rash with leukocyte infiltration into the skin accompanied by pruritus (itching), scaling of the skin, hair loss, and even changes in skin cell differentiation. The side effects can become so severe that patients take reduced doses, which can limit efficacy, or stop treatment altogether. To understand how EGFR inhibitors cause these skin changes in the hopes of identifying a means of preventing them, Stuart Yuspa, M.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues examined patient samples and generated a mouse model of EGFR loss in the skin.

  15. Metabolic inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE) in skin, lung and liver of human, rat and mouse.

    PubMed

    Boogaard, P J; van Elburg, P A; de Kloe, K P; Watson, W P; van Sittert, N J

    1999-10-01

    The inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE), one of the most abundant isomers of the epoxy-resin Carduras E-10 glycidyl ester, was studied in subcellular fractions of human, C3H mouse and F344 rat liver, lung and skin. C10GE is chemically very stable and resistant to aqueous hydrolysis, but it was rapidly metabolized in both cytosolic and microsomal fractions of all organs by epoxide hydrolase (EH)-catalysed hydrolysis of the epoxide moiety as well as carboxylesterase (CE)-catalysed hydrolysis of the ester bond. In cytosol the epoxide group was also efficiently conjugated with glutathione, catalysed by glutathione S-transferase (GST), but this conjugation was much less important than hydrolysis in human as well as rodent samples. Although CE-catalysed hydrolysis of C10GE would theoretically give rise to the formation of glycidol, a directly acting mutagen, it is highly unlikely that any significant level of glycidol would occur in vivo since reported rates of inactivation of glycidol exceed the total rate of hydrolysis of C10GE. The overall rates of inactivation in vitro decreased in the following order: mouse > rat > human. Scaling of the data in vitro to clearances in vivo suggests that the detoxifying capacity in the rodents is similar and about an order of magnitude greater than in human. Nevertheless, the rate of inactivation is 2-3 orders of magnitude greater than for simple epoxides such as butadiene monoxide and about one order of magnitude higher than for the diglycidyl ether of bisphenol A (BADGE). The transdermal penetration and metabolism of [14C]-C10GE was studied in fresh full-thickness mouse, and dermatomized human and rat skin. Of the total radioactivity applied on the skin, only 0.24+/-0.06 (SD), 1.8+/-0.2 and 6.8+/-0.6% penetrated through human, mouse and rat skin respectively. The corresponding apparent skin permeability constants were 0.81, 6.42 and 26.4 x 10(-6) cm/h. During transdermal penetration, [14C]-C10GE was extensively hydrolysed to the corresponding diol and the free acid. Only 0.01, 0.11 and 0.21]% of the applied dose was absorbed unchanged through the human, mouse and rat skin respectively.

  16. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention.

    PubMed

    Bridgeman, Bryan B; Wang, Pu; Ye, Boping; Pelling, Jill C; Volpert, Olga V; Tong, Xin

    2016-05-01

    Ultraviolet B (UVB) radiation is the major environmental risk factor for developing skin cancer, the most common cancer worldwide, which is characterized by aberrant activation of Akt/mTOR (mammalian target of rapamycin). Importantly, the link between UV irradiation and mTOR signaling has not been fully established. Apigenin is a naturally occurring flavonoid that has been shown to inhibit UV-induced skin cancer. Previously, we have demonstrated that apigenin activates AMP-activated protein kinase (AMPK), which leads to suppression of basal mTOR activity in cultured keratinocytes. Here, we demonstrated that apigenin inhibited UVB-induced mTOR activation, cell proliferation and cell cycle progression in mouse skin and in mouse epidermal keratinocytes. Interestingly, UVB induced mTOR signaling via PI3K/Akt pathway, however, the inhibition of UVB-induced mTOR signaling by apigenin was not Akt-dependent. Instead, it was driven by AMPK activation. In addition, mTOR inhibition by apigenin in keratinocytes enhanced autophagy, which was responsible, at least in part, for the decreased proliferation in keratinocytes. In contrast, apigenin did not alter UVB-induced apoptosis. Taken together, our results indicate the important role of mTOR inhibition in UVB protection by apigenin, and provide a new target and strategy for better prevention of UV-induced skin cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Increased retinoic acid levels through ablation of Cyp26b1 determine the processes of embryonic skin barrier formation and peridermal development

    PubMed Central

    Okano, Junko; Lichti, Ulrike; Mamiya, Satoru; Aronova, Maria; Zhang, Guofeng; Yuspa, Stuart H.; Hamada, Hiroshi; Sakai, Yasuo; Morasso, Maria I.

    2012-01-01

    The process by which the periderm transitions to stratified epidermis with the establishment of the skin barrier is unknown. Understanding the cellular and molecular processes involved is crucial for the treatment of human pathologies, where abnormal skin development and barrier dysfunction are associated with hypothermia and perinatal dehydration. For the first time, we demonstrate that retinoic acid (RA) levels are important for periderm desquamation, embryonic skin differentiation and barrier formation. Although excess exogenous RA has been known to have teratogenic effects, little is known about the consequences of elevated endogenous retinoids in skin during embryogenesis. Absence of cytochrome P450, family 26, subfamily b, polypeptide 1 (Cyp26b1), a retinoic-acid-degrading enzyme, results in aberrant epidermal differentiation and filaggrin expression, defective cornified envelopes and skin barrier formation, in conjunction with peridermal retention. We show that these alterations are RA dependent because administration of exogenous RA in vivo and to organotypic skin cultures phenocopy Cyp26b1−/− skin abnormalities. Furthermore, utilizing the Flaky tail (Ft/Ft) mice, a mouse model for human ichthyosis, characterized by mutations in the filaggrin gene, we establish that proper differentiation and barrier formation is a prerequisite for periderm sloughing. These results are important in understanding pathologies associated with abnormal embryonic skin development and barrier dysfunction. PMID:22366455

  18. Anti-skin-aging benefits of exopolymers from Aureobasidium pullulans SM2001.

    PubMed

    Kim, Kyung Hu; Park, Soo Jin; Lee, Ji Eun; Lee, Young Joon; Song, Chang Hyun; Choi, Seong Hun; Ku, Sae Kwang; Kang, Su Jin

    2014-01-01

    There have been many attempts to search for affordable and effective functional cosmetic ingredients, especially from natural sources. As research into developing a functional cosmetic ingredient, we investigated whether exopolymers from Aureobasidium pullulans SM2001 (E-AP-SM2001) exert antioxidant, antiwrinkle, whitening, and skin moisturizing effects. Antioxidant effects of E-AP-SM2001 were determined by measuring free radical scavenging capacity and superoxide dismutase (SOD)-like activity. Antiwrinkle effects were assessed through the inhibition of hyaluronidase, elastase, collagenase, and matrix metalloproteinase (MMP)-1. Whitening effects were measured by tyrosinase inhibition assay, and by melanin formation test in B16/F10 melanoma cells. Skin moisturizing effects were detected by mouse skin water content test. E-AP-SM2001 showed potent DPPH radical scavenging activity and SOD-like effects. Additionally, hyaluronidase, elastase, collagenase, and MMP-1 activities were significantly inhibited by E-AP-SM2001. We also observed that E-AP-SM2001 effectively reduced melanin production by B16/F10 melanoma cells and mushroom tyrosinase activities. Furthermore, significant increases in skin water content were detected in E-AP-SM2001- treated mouse skin, as compared with vehicle-treated control skin. Notably, a mask pack containing E-AP-SM2001 showed a >twofold more extensive moisturizing effect compared with one containing Saccharomycopsis ferment filtrate. Our results suggest that E-AP-SM2001 has adequate antiaging, antiwrinkle, and whitening benefits and skin moisturizing effect. These effects involve reducing hyaluronidase, elastase, collagenase, and MMP-1 activities, as well as inhibition of melanin production and tyrosinase activities. Therefore, the antioxidant E-AP-SM2001 may serve as a predictable functional ingredient.

  19. A natural dye, Niram improves atopic dermatitis through down-regulation of TSLP.

    PubMed

    Han, Na-Ra; Park, Jin-Young; Jang, Jae-Bum; Jeong, Hyun-Ja; Kim, Hyung-Min

    2014-11-01

    Naju Jjok (Polygonum tinctorium Lour.) has been known to treat skin diseases in traditional Korean medicine. A natural textile dye, Niram made from Naju Jjok has traditionally been used to dye clothes. Thymic stromal lymphopoietin (TSLP) plays an important role in the development of atopic dermatitis (AD). Thus, we investigated that Niram might ameliorate AD through regulation of TSLP. Niram significantly inhibited the levels of TSLP through blockade of caspase-1/receptor-interacting protein 2 pathway in stimulated mast cells. Further, Niram ameliorated clinical symptoms in AD mouse. Niram significantly inhibited the infiltration of inflammatory cells in lesional skin. The levels of TSLP, caspase-1, IL-4, and IL-6 were inhibited in lesional skin applied topically with Niram. Niram significantly inhibited the serum levels of IgE and histamine in AD mouse. Finally, Niram significantly inhibited the levels of TSLP in polyriboinosinic polyribocytidylic acid-stimulated human keratinocyte HaCaT cells. These results establish Niram as a functional dye embracing the aspects of not only a traditional use but also a pharmacological effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis

    PubMed Central

    Zhao, Yan; Bao, Lei; Chan, Lawrence S.; DiPietro, Luisa A.; Chen, Lin

    2016-01-01

    Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies. PMID:26752054

  1. Genetic heterogeneity of skin microvasculature

    PubMed Central

    Liu, Fang; Smith, Jason; Zhang, Zhen; Cole, Richard; Herron, Bruce J

    2010-01-01

    Angiogenesis, the formation of new blood vessels from existing vasculature, is a complex process that is essential for normal embryonic development. Current models for experimental evaluation of angiogenesis often use tissue from large vessels like the aorta and umbilical vein, which are phenotypically distinct from microvasculature. We demonstrate that the utilization of skin to measure microvascular angiogenesis in embryonic and adult tissues is an efficient way to quantify microvasculature angiogenesis. We validate this approach and demonstrate its added value by showing significant differences in angiogenesis in monogenic and polygenic mouse models. We discovered that the pattern of angiogenic response among inbred mouse strains in this ex vivo assay differ from the strain distributions of previous in vivo angiogenesis assays. The difference between the ex vivo and in vivo assays may be related to systemic factors present in whole animals. Expression analysis of cultured skin biopsies from strains of mice with opposing angiogenic response were performed to identify pathways that contribute to differential angiogenic response. Increased expression of negative regulators of angiogenesis in C57Bl/6J mice was associated with lower growth rates. PMID:20170648

  2. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-10-01

    Dry skin has been clinically associated with visceral diseases, including liver disease, as well as for our previously reported small intestinal injury mouse model, which have abnormalities in skin barrier function. To clarify this disease-induced skin disruption, we used a dextran sulphate sodium (DSS)-induced colitis mouse model. Following treatment with DSS, damage to the colon and skin was monitored using histological and protein analysis methods as well as the detection of inflammatory mediators in the plasma. Notably, transepidermal water loss was higher, and skin hydration was lower in DSS-treated mice compared to controls. Tumor necrosis factor-alpha (TNF-α), interleukin 6 and NO2-/NO3- levels were also upregulated in the plasma, and a decrease in body weight and colon length was observed in DSS-treated mice. However, when administered TNF-α antibody or an iNOS inhibitor, no change in skin condition was observed, indicating that another signalling mechanism is utilized. Interestingly, the number of tryptase-expressing mast cells, known for their role in immune function via cholinergic signal transduction, was elevated. To evaluate the function of cholinergic signalling in this context, atropine (a muscarinic cholinoceptor antagonist) or hexamethonium (a nicotinic cholinergic ganglion-blocking agent) was administered to DSS-treated mice. Our data indicate that muscarinic acetylcholine receptors (mAChRs) are the primary receptors functioning in colon-to-skin signal transduction, as DSS-induced skin disruption was suppressed by atropine. Thus, skin disruption is likely associated with DSS-induced colitis, and the activation of mast cells via mAChRs is critical to this association. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    PubMed

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.

  4. Polyamines and Nonmelanoma Skin Cancer

    PubMed Central

    Gilmour, Susan K.

    2007-01-01

    Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer. PMID:17234230

  5. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity.

    PubMed

    Raza, Kaisar; Singh, Bhupinder; Lohan, Shikha; Sharma, Gajanand; Negi, Poonam; Yachha, Yukhti; Katare, Om Prakash

    2013-11-01

    Tretinoin (TRE) is a widely used retinoid for the topical treatment of acne, psoriasis, skin cancer and photoaging. Despite unmatchable efficacy, it is associated with several vexatious side effects like marked skin erythema, peeling and irritation, eventually leading to poor patient compliance. Its photo-instability and high lipophilicity also pose challenges in the development of a suitable topical product. The present study, therefore, aims to develop biocompatible lipid-based nanocarriers of TRE to improve its skin delivery, photostability, biocompatibility and pharmacodynamic efficacy. The TRE-loaded liposomes, ethosomes, solid lipid nanoparticles (SLNs) and nanostructured lipidic carriers (NLCs) were prepared and characterized for micromeritics, surface charge, percent drug efficiency and morphology. Bioadhesive hydrogels of the developed systems were also evaluated for rheological characterization, photostability, ex vivo skin permeation and retention employing porcine skin, and anti-psoriatic activity in mouse tail model. Nanoparticulate carriers (SLNs, NLCs) offered enhanced photostability, skin transport and anti-psoriatic activity vis-à-vis the vesicular carriers (liposomes, ethosomes) and the marketed product. However, all the developed nanocarriers were found to be more biocompatible and effective than the marketed product. These encouraging findings can guide in proper selection of topical carriers among diversity of such available carriers systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Effects of Human Mesenchymal Stem Cells Transduced with Superoxide Dismutase on Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice.

    PubMed

    Sah, Shyam Kishor; Park, Kyung Ho; Yun, Chae-Ok; Kang, Kyung-Sun; Kim, Tae-Yoon

    2016-02-10

    The immunomodulatory and anti-inflammatory properties of mesenchymal stem cells (MSCs) have been proposed in several autoimmune diseases and successfully tested in animal models, but their contribution to psoriasis and underlying pathways remains elusive. Likewise, an increased or prolonged presence of reactive oxygen species and aberrant antioxidant systems in skin are known to contribute to the development of psoriasis and therefore effective antioxidant therapy is highly required. We explored the feasibility of using extracellular superoxide dismutase (SOD3)-transduced allogeneic MSCs as a novel therapeutic approach in a mouse model of imiquimod (IMQ)-induced psoriasis-like inflammation and investigated the poorly understood underlying mechanism. In addition, the chronicity and late-phase response of inflammation were evaluated during continued activation of antigen receptors by applying a booster dose of IMQ. Subcutaneous injection of allogeneic SOD3-transduced MSCs significantly prevented psoriasis development in our IMQ-induced mouse model, likely through a suppression of proliferation and infiltration of various effector cells into skin with a concomitant modulated cytokine and chemokine expression and inhibition of signaling pathways such as toll-like receptor-7, nuclear factor-kappa B, p38 mitogen-activated kinase, and Janus kinase-signal transducer and activator of transcription, as well as adenosine receptor activation. Our data offer a novel therapeutic approach to chronic inflammatory skin diseases such as psoriasis by leveraging immunomodulatory effects of MSCs as well as SOD3 expression.

  7. CORRELATION OF CARCINOGENIC POTENCY WITH MOUSE SKIN 32P-POSTLABELING AND LAC Z-MUTATION DATE FOR DMBA AN ITS K-REGION SULPHUR ISOSTERE: COMPARISON WITH ACTIVITIES OBSERVED IN STANDARD GENOTOXICITY ASSAYS

    EPA Science Inventory

    6,11-Dimethylbenzo(b]naphtho[2,3-d]thiophene (S-DMBA) is one of several carcinogenic analogs of the reference mouse skin carcinogen 7,12-dimethylbenz[alanthracene (OMBA)Demonstration of the weak carcinogenicity of S-DMBA by Tilak in 1946 established at that early stage the inadeq...

  8. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development.

    PubMed

    Fujii, Tomoaki; Tamura, Masaru; Tanaka, Shigekazu; Kato, Yoriko; Yamamoto, Hiromi; Mizushina, Youichi; Shiroishi, Toshihiko

    2008-08-01

    Members of the novel gene family Gasdermin (Gsdm) are exclusively expressed in a highly tissue-specific manner in the epithelium of skin and the gastrointestinal tract. Based on their expression patterns and the phenotype of the Gsdma3 spontaneous mutations, it is inferred that the Gsdm family genes are involved in epithelial cell growth and/or differentiations in different tissues. To investigate possible roles of the Gsdm gene family in the development of intestinal tracts, we generated a Gsdmd mutant mouse, which is a solitary member of the Gsdmd subfamily and which is predominantly expressed in the intestinal tract by means of targeted disruption. In the mutant homozygotes, we found no abnormality of intestinal tract morphology. Moreover, in mutant mice, there was normal differentiation of all constituent cell types of the intestinal epithelium. Thus, this study clearly shows that Gsdmd is not essential for development of mouse intestinal tract or epithelial cell differentiation.

  9. Transdermal Delivery of siRNA through Microneedle Array

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  10. Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent.

    PubMed

    Parra, Alexander; Clares, Beatriz; Rosselló, Ana; Garduño-Ramírez, María L; Abrego, Guadalupe; García, María L; Calpena, Ana C

    2016-03-30

    The purpose of this study was the development of poly(d,l-lactide-co-glycolide) acid (PLGA) nanoparticles (NPs) for the dermal delivery of carprofen (CP). The developed nanovehicle was then lyophilized using hydroxypropyl-β-cyclodextrin (HPβCD) as cryoprotectant. The ex vivo permeation profiles were evaluated using Franz diffusion cells using three different types of skin membranes: human, porcine and bovine. Furthermore, biomechanical properties of skin (trans-epidermal water loss and skin hydration) were tested. Finally, the in vivo skin irritation and the anti-inflammatory efficacy were also assayed. Results demonstrated the achievement of NPs 187.32 nm sized with homogeneous distribution, negatively charged surface (-23.39 mV) and high CP entrapment efficiency (75.38%). Permeation studies showed similar diffusion values between human and porcine skins and higher for bovine. No signs of skin irritation were observed in rabbits. Topically applied NPs significantly decreased in vivo inflammation compared to the reference drug in a TPA-induced mouse ear edema model. Thus, it was concluded that NPs containing CP may be a useful tool for the dermal treatment of local inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Acute skin lesions following psoralen plus ultraviolet A radiation investigated by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Z. M.; Zhong, H. Q.; Zhai, J.; Wang, C. X.; Xiong, H. L.; Guo, Z. Y.

    2013-08-01

    Psoralen plus ultraviolet A radiation (PUVA) therapy is a very important clinical treatment of skin diseases such as vitiligo and psoriasis, but associated with an increased risk of skin photodamage, especially photoaging. In this work, optical coherence tomography (OCT), a novel non-invasive imaging technology, was introduced to investigate in vivo the photodamage induced by PUVA qualitatively and quantitatively. Balb/c mouse dorsal skin was treated with 8-methoxypsoralen (8-MOP), and then exposed to UVA radiation. OCT images of the tissues were obtained by an OCT system with a 1310 nm central wavelength. Skin thickness and the attenuation coefficient were extracted from the OCT images to analyze the degree of injury to mouse skin. The results demonstrated that PUVA-treated skin showed an increase in skin thickness, and a reduction of attenuation coefficient in the OCT signal compared with the control groups. The data also showed good correlation with the results observed in histological sections using hematoxylin and eosin staining. In conclusion, OCT is a promising tool for photobiological studies aimed at assessing the effect of PUVA therapy in vivo.

  12. Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome.

    PubMed

    Tanaka, Shigekazu; Mizushina, Youichi; Kato, Yoriko; Tamura, Masaru; Shiroishi, Toshihiko

    2013-10-03

    Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well.

  13. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealedmore » that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.« less

  14. Investigating backward scattered second harmonic generation from various mouse collagen tissues

    NASA Astrophysics Data System (ADS)

    Shen, Mengzhe; Tian, Yunxian; Chong, Shau Poh; Zhao, Jianhua; Zeng, Haishan; Tang, Shuo

    2014-02-01

    A confocal multiphoton microscopy system with various detection pinholes was used to differentiate backward scattered second harmonic generation (BS-SHG) from backward generated SHG (BG-SHG) based on the fact that BS-SHG is more scattered and therefore has a much bigger spot size than BG-SHG. BS-SHG is quantified from two types of mouse tissues, such as Achilles tendon, and skin, and at various focal depths. It is found that the BS-SHG contributes less to the total backward SHG for the skin than Achilles tendon with thicknesses of around three hundred micrometers. For tissue with larger F/B intensity ratio such as Achilles tendon, increasing the tissue thickness reduces it tremendously. However, for tissue with smaller F/B intensity ratio, tissue thickness increment does not alter it significantly. In addition, larger F/B intensity ratio might be related with a greater scattering coefficient from our Achilles tendon and skin comparison. When the focal point is moved deeper into tissue, the contribution of BS-SHG is found to decrease due to a reduced pass length of the forward propagated photons. On the contrary, when the tissue thickness increases, the contribution of the BS-SHG is increased. These observations for thicker skin tissues are related with our F/B intensity ratio measurement for thin mouse skin sample in terms of that the magnitude of backward generated SHG are dominant among the total backward SHG in mouse skin tissue. Considering the phase mismatching condition in the forward and backward directions, these results may indicate that quasi-phase matching originating from the regular structure of collagen could help with reducing the phase mismatch especially in the backward direction.

  15. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    PubMed Central

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2012-01-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FTTM). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100–1000 µM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. PMID:21457723

  16. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide.

    PubMed

    Black, Adrienne T; Hayden, Patrick J; Casillas, Robert P; Heck, Diane E; Gerecke, Donald R; Sinko, Patrick J; Laskin, Debra L; Laskin, Jeffrey D

    2011-06-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Transplanting Human Skin Grafts onto Nude Mice to Model Skin Scars.

    PubMed

    Ding, Jie; Tredget, Edward E

    2017-01-01

    Hypertrophic scar (HTS) is a common outcome of deep dermal wound healing mainly followed mechanical, chemical, and thermal injuries in the skin. Because of the lack of the most effective prevention and treatment, it is particularly important to establish an ideal dermal animal model for improving the understanding of the pathogenesis and exploring therapeutic approaches of HTS. Compared to other dermal fibrotic animal models in rabbits, red Duroc pigs, guinea pigs, rats, and mice, the approach that uses normal human split-thickness skin grafted onto nude or other immunodeficient mice which develop scars that resemble human HTS offers the advantages of lower cost, easier manipulation, and shorter research period. In this chapter, we will introduce the detailed procedures to create the ideal dermal fibrotic mouse model.

  18. Methylation and Esterification of Magnolol for Ameliorating Cutaneous Targeting and Therapeutic Index by Topical Application.

    PubMed

    Lin, Chwan-Fwu; Hung, Chi-Feng; Aljuffali, Ibrahim A; Huang, Yu-Ling; Liao, Wei-Chun; Fang, Jia-You

    2016-09-01

    As a continuing effort to elucidate the impact of structure modification upon cutaneous absorption behavior, we attempted to assess the skin permeation of magnolol by methylation and acetylation. Diacetylmagnolol and 2-O-acetyl-2'-O-methylmagnolol (AMM) were designed and synthesized in this study. The anti-inflammatory activity against stimulated neutrophils and keratinocytes was evaluated to check the bioactivity of the analogues. In vitro skin absorption was investigated using nude mouse and pig skin models at both equimolar and saturated doses. Magnolol generally showed the strongest anti-inflammatory potential, followed by diacetylmagnolol and AMM. The antibacterial activity was observed for magnolol and diacetylmagnolol but not AMM. Diacetylmagnolol and AMM could be partly hydrolyzed to magnolol and 2-O-methylmagnolol after entering the skin. The hydrolysis rate of diacetylmagnolol was faster than that of AMM. The lipophilicity played a crucial role in cutaneous absorption, with AMM exhibiting the highest skin deposition. AMM accumulation within nude mouse skin was about 2.5-fold greater than that of magnolol and diacetylmagnolol. On the other hand, the transdermal penetration across the skin was lessened by methylation and esterification. This led to a superior skin targeting of AMM. Although the pharmacological activity of AMM was low, the high skin uptake and bioconversion into 2-O-methylmagnolol in the skin contributed to a greater therapeutic index (TI, skin deposition x inflammatory inhibition percentage) compared to the others. The accumulation of AMM in the hair follicles was 77.12 nmol/cm(2), which was significantly greater than that with magnolol (44.84 nmol/cm(2)) and diacetylmagnolol (26.96 nmol/cm(2)). The synthetic analogues were tolerable to the nude mouse skin. Based on the experimental results, we may suggest topically applied AMM as a potent and safe candidate for the treatment of cutaneous inflammation.

  19. In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation.

    PubMed

    Hegde, Vikas; Hickerson, Robyn P; Nainamalai, Sitheswaran; Campbell, Paul A; Smith, Frances J D; McLean, W H Irwin; Pedrioli, Deena M Leslie

    2014-12-28

    Therapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis--the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available "self-delivery" modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and "self-delivery" siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  20. Oncostatin M overexpression induces skin inflammation but is not required in the mouse model of imiquimod-induced psoriasis-like inflammation.

    PubMed

    Pohin, Mathilde; Guesdon, William; Mekouo, Adela Andrine Tagne; Rabeony, Hanitriniaina; Paris, Isabelle; Atanassov, Hristo; Favot, Laure; Mcheik, Jiad; Bernard, François-Xavier; Richards, Carl D; Amiaud, Jérôme; Blanchard, Frédéric; Lecron, Jean-Claude; Morel, Franck; Jégou, Jean-François

    2016-07-01

    Oncostatin M (OSM) has been reported to be overexpressed in psoriasis skin lesions and to exert proinflammatory effects in vitro on human keratinocytes. Here, we report the proinflammatory role of OSM in vivo in a mouse model of skin inflammation induced by intradermal injection of murine OSM-encoding adenovirus (AdOSM) and compare with that induced by IL-6 injection. Here, we show that OSM potently regulates the expression of genes involved in skin inflammation and epidermal differentiation in murine primary keratinocytes. In vivo, intradermal injection of AdOSM in mouse ears provoked robust skin inflammation with epidermal thickening and keratinocyte proliferation, while minimal effect was observed after AdIL-6 injection. OSM overexpression in the skin increased the expression of the S100A8/9 antimicrobial peptides, CXCL3, CCL2, CCL5, CCL20, and Th1/Th2 cytokines, in correlation with neutrophil and macrophage infiltration. In contrast, OSM downregulated the expression of epidermal differentiation genes, such as cytokeratin-10 or filaggrin. Collectively, these results support the proinflammatory role of OSM when it is overexpressed in the skin. However, OSM expression was not required in the murine model of psoriasis induced by topical application of imiquimod, as demonstrated by the inflammatory phenotype of OSM-deficient mice or wild-type mice treated with anti-OSM antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A method to improve the efficacy of topical eflornithine hydrochloride cream.

    PubMed

    Kumar, Amit; Naguib, Youssef W; Shi, Yan-Chun; Cui, Zhengrong

    2016-06-01

    Facial hirsutism is a cosmetic concern for women and can lead to significant anxiety and lack of self-esteem. Eflornithine cream is indicated for the treatment of facial hirsutism. However, limited success rate and overall patient's satisfaction, even with a long-term and high-frequency application, leave room for improvement. The objective of this study is to test the effect of microneedle treatment on the in vitro skin permeation and the in vivo efficacy of eflornithine cream in a mouse model. In vitro permeation study of eflornithine was performed using Franz diffusion cell. In vivo efficacy study was performed in a mouse model by monitoring the re-growth of hair in the lower dorsal skin of mice after the eflornithine cream was applied onto an area pretreated with microneedles. The skin and the hair follicles in the treated area were also examined histologically. The hair growth inhibitory activity of eflornithine was significantly enhanced when the eflornithine cream was applied onto a mouse skin area pretreated with microneedles, most likely because the micropores created by microneedles allowed the permeation of eflornithine into the skin, as confirmed in an in vitro permeation study. Immunohistochemistry data revealed that cell proliferation in the skin and hair follicles was also significantly inhibited when the eflornithine cream was applied onto a skin area pretreated with microneedles. The integration of microneedle treatment into topical eflornithine therapy represents a potentially viable approach to increase eflornithine's ability to inhibit hair growth.

  2. The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice.

    PubMed

    Shu, Cindy; Smith, Susan M; Melrose, James

    2016-06-01

    This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2(∆3-/∆3-) perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2(∆3-/∆3-) perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2(∆3-/∆3-) mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2(∆3-/∆3-) mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3-12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice.

  3. The plasma membrane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.

    2003-01-01

    NADH oxidases of the external plasma membrane surface (ECTO-NOX proteins) are characterized by oscillations in activity with a regular period length of 24 min. Explants of mouse skin exhibit the oscillatory activity as estimated from the decrease in A(340) suggesting that individual ECTO-NOX molecules must somehow be induced to function synchronously. Transfer of explants of mouse skin from darkness to blue light (495 nm, 2 min, 50 micromol m(-1) s(-1)) resulted in initiation of a new activity maximum (entrainment) with a midpoint 36 min after light exposure followed by maxima every 24 min thereafter. Addition of melatonin resulted in a new maximum 24 min after melatonin addition. The findings suggest that the ECTO-NOX proteins play a central role in the entrainment of the biological clock both by light and by melatonin.

  4. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. Copyright © 2016 John Wiley & Sons, Inc.

  5. Tyrosinase Depletion Prevents the Maturation of Melanosomes in the Mouse Hair Follicle

    PubMed Central

    Paterson, Elyse K.; Fielder, Thomas J.; MacGregor, Grant R.; Ito, Shosuke; Wakamatsu, Kazumasa; Gillen, Daniel L.; Eby, Victoria; Boissy, Raymond E.; Ganesan, Anand K.

    2015-01-01

    The mechanisms that lead to variation in human skin and hair color are not fully understood. To better understand the molecular control of skin and hair color variation, we modulated the expression of Tyrosinase (Tyr), which controls the rate-limiting step of melanogenesis, by expressing a single-copy, tetracycline-inducible shRNA against Tyr in mice. Moderate depletion of TYR was sufficient to alter the appearance of the mouse coat in black, agouti, and yellow coat color backgrounds, even though TYR depletion did not significantly inhibit accumulation of melanin within the mouse hair. Ultra-structural studies revealed that the reduction of Tyr inhibited the accumulation of terminal melanosomes, and inhibited the expression of genes that regulate melanogenesis. These results indicate that color in skin and hair is determined not only by the total amount of melanin within the hair, but also by the relative accumulation of mature melanosomes. PMID:26619124

  6. Pseudoxanthoma elasticum is a metabolic disease.

    PubMed

    Jiang, Qiujie; Endo, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2009-02-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the "metabolic" versus the "PXE cell" hypotheses. We examined a murine PXE model (Abcc6(-/-)) by transplanting muzzle skin from knockout (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, whereas grafting KO mouse muzzle skin onto WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu.

  7. Dietary proanthocyanidins prevent ultraviolet radiation-induced non-melanoma skin cancer through enhanced repair of damaged DNA-dependent activation of immune sensitivity.

    PubMed

    Katiyar, Santosh K; Pal, Harish C; Prasad, Ram

    2017-10-01

    Numerous plant products have been used to prevent and manage a wide variety of diseases for centuries. These products are now considered as promising options for the development of more effective and less toxic alternatives to the systems of medicine developed primarily in developed countries in the modern era. Grape seed proanthocyanidins (GSPs) are of great interest due to their anti-carcinogenic effects that have been demonstrated using various tumor models including ultraviolet (UV) radiation-induced non-melanoma skin cancer. In a pre-clinical mouse model supplementation of a control diet (AIN76A) with GSPs at concentrations of 0.2% and 0.5% (w/w) significantly inhibits the growth and multiplicity of UVB radiation-induced skin tumors. In this review, we summarize the evidence that this inhibition of UVB-induced skin tumor development by dietary GSPs is mediated by a multiplicity of coordinated effects including: (i) Promotion of the repair of damaged DNA by nuclear excision repair mechanisms, and (ii) DNA repair-dependent stimulation of the immune system following the functional activation of dendritic cells and effector T cells. Dietary GSPs hold promise for the development of an effective alternative strategy for the prevention of excessive solar UVB radiation exposure-induced skin diseases including the risk of non-melanoma skin cancer in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Low levels of glutathione are sufficient for survival of keratinocytes after UV irradiation and for healing of mouse skin wounds.

    PubMed

    Telorack, Michèle; Abplanalp, Jeannette; Werner, Sabine

    2016-08-01

    Reduced levels of the cellular antioxidant glutathione are associated with premature skin aging, cancer and impaired wound healing, but the in vivo functions of glutathione in the skin remain largely unknown. Therefore, we analyzed mice lacking the modifier subunit of the glutamate cysteine ligase (Gclm), the enzyme that catalyzes the rate-limiting step of glutathione biosynthesis. Glutathione levels in the skin of these mice were reduced by 70 %. However, neither skin development and homeostasis, nor UVA- or UVB-induced apoptosis in the epidermis were affected. Histomorphometric analysis of excisional wounds did not reveal wound healing abnormalities in young Gclm-deficient mice, while the area of hyperproliferative epithelium as well as keratinocyte proliferation were affected in aged mice. These findings suggest that low levels of glutathione are sufficient for wound repair in young mice, but become rate-limiting upon aging.

  9. Mapping tissue shear modulus on Thiel soft-embalmed mouse skin with shear wave optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.

  10. Multi-glycoside of Tripterygium wilfordii Hook. f. ameliorates imiquimod-induced skin lesions through a STAT3-dependent mechanism involving the inhibition of Th17-mediated inflammatory responses.

    PubMed

    Zhao, Jingxia; Di, Tingting; Wang, Yan; Liu, Xin; Liang, Daiying; Zhang, Guangzhong; Li, Ping

    2016-09-01

    Multi-glycoside of Tripterygium wilfordii Hook. f.(GTW) possesses anti-inflammatory and immunosuppressive properties, and has been used as a traditional treatment for psoriasis for many years, although the underlying immunological mechanisms remain poorly understood. The T helper (Th)17 cell response is considered to play a major role in the pathogenesis of psoriasis. Th17 cells are implicated in the mechanism of pathogenesis of imiquimod (IMQ)‑induced skin inflammation. Using a mouse model, we demonstrated that GTW protected mice from developing psoriasis-like lesions induced by topical IMQ administration. This protection was associated with significantly decreased mRNA levels of Th17 cytokines such as interleukin (IL)-17A, IL-17F and IL-22 in mouse skin samples as well as fewer IL-17-secreting splenic CD4+ lymphocytes in IMQ-exposed mice. There were no significant effects on the proportion of CD4+ interferon (IFN)-γ+ T cells, CD4+IL-4+ T cells and CD4+CD25+Foxp3+ Treg cells in the spleen cells. Taken together with the unchanged mRNA levels of Th1 cytokine IFN-γ, Th2 cytokine IL-4 and Treg cytokine IL-10 in IMQ-exposed mouse skin following GTW administration, our findings suggest that the immunosuppressive effect of GTW in psoriasis is exerted mainly on Th17 cells, rather than on Th1, Th2 or Treg cells. Furthermore, we showed that GTW suppressed Th17 function through the inhibition of STAT3 phosphorylation. These results have the potential to pave the way for the use of GTW as an agent for the treatment of psoriasis.

  11. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice.

    PubMed

    Murakami, A; Nakamura, Y; Torikai, K; Tanaka, T; Koshiba, T; Koshimizu, K; Kuwahara, S; Takahashi, Y; Ogawa, K; Yano, M; Tokuda, H; Nishino, H; Mimaki, Y; Sashida, Y; Kitanaka, S; Ohigashi, H

    2000-09-15

    The intake of citrus fruits has been suggested as a way to prevent the development of some types of human cancer. Nitric oxide (NO) is closely associated with the processes of epithelial carcinogenesis. We attempted a search for NO generation inhibitors in Citrus unshiu. The active constituent was traced by an activity-guiding separation. NO and superoxide (O2-) generation was induced by a combination of lipopolysaccharide and IFN-gamma in mouse macrophage RAW 264.7 cells, and by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated human promyelocyte HL-60, respectively. Expression of inducible NO synthase and cyclooxygenase 2 proteins were detected by Western blotting. The in vivo anti-inflammatory and antitumor promoting activities were evaluated by topical TPA application to ICR mouse skin with measurement of edema formation, epidermal thickness, leukocyte infiltration, hydrogen peroxide production, and the rate of proliferating cell nuclear antigen-stained cells. As a result, nobiletin, a polymethoxyflavonoid, was identified as an inhibitor of both NO and O2- generation. Nobiletin significantly inhibited two distinct stages of skin inflammation induced by double TPA application [first stage priming (leukocyte infiltration) and second stage activation (oxidative insult by leukocytes)] by decreasing the inflammatory parameters. It also suppressed the expression of cyclooxygenase-2 and inducible NO synthase proteins and prostaglandin E2 release. Nobiletin inhibited dimethylbenz[a]anthracene (0.19 micromol)/TPA (1.6 nmol)-induced skin tumor formation at doses of 160 and 320 nmol by reducing the number of tumors per mouse by 61.2% (P < 0.001) and 75.7% (P < 0.001), respectively. The present study suggests that nobiletin is a functionally novel and possible chemopreventive agent in inflammation-associated tumorigenesis.

  12. Fermented Maesil (Prunus mume) with probiotics inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Jung, Bock-Gie; Cho, Sun-Ju; Koh, Hong-Bum; Han, Dong-Un; Lee, Bong-Joo

    2010-04-01

    Maesil (Prunus mume Siebold & Zucc.), a potential source of free radical scavengers and inhibitor of pro-inflammatory mediators, is used in traditional Korean medical preparations as a remedy for skin disorders as have probiotics. The action of a probiotic fermented Maesil preparation on the development of atopic dermatitis (AD)-like skin lesions was determined in a NC/Nga mouse model as an initial step towards the development of a therapeutic feed supplement for use in dogs. Continuous ingestion of the experimental feed markedly inhibited the development of the AD-like skin lesions, as evidenced by a marked decrease in skin signs and reduced inflammation within the skin lesions. Efficacy was confirmed by significant decreases in eosinophil ratio and serum IgE concentration, and a reduction in the number of Staphylococcus aureus recovered from the ear. Relative mRNA expression levels of IL-4, interferon-gamma and tumour necrosis factor-alpha in the spleens of the experimental animals were also decreased and there was an increased serum concentration of IL-10 with a concurrent decreased IL-4 concentration in comparison to a control group. Taken together, the results indicate that some component(s) of fermented Maesil have the ability to suppress the development of AD-like skin lesions, possibly by stimulation of IL-10. Beneficial effects of fermented Maesil may thus be expected in dogs with AD, although this and the nature of the active pathway remain to be explored.

  13. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin.

    PubMed

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-11-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.

  14. Continuous imaging of the blood vessels in tumor mouse dorsal skin window chamber model by using SD-OCT

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben

    2016-03-01

    Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.

  15. Catalytic antioxidant AEOL 10150 treatment ameliorates sulfur mustard analog 2-chloroethyl ethyl sulfide-associated cutaneous toxic effects.

    PubMed

    Tewari-Singh, Neera; Inturi, Swetha; Jain, Anil K; Agarwal, Chapla; Orlicky, David J; White, Carl W; Agarwal, Rajesh; Day, Brian J

    2014-07-01

    Our previous studies and other published reports on the chemical warfare agent sulfur mustard (SM) and its analog 2-chloroethyl ethyl sulfide (CEES) have indicated a role of oxidative stress in skin injuries caused by these vesicating agents. We examined the effects of the catalytic antioxidant AEOL 10150 in the attenuation of CEES-induced toxicity using our established skin injury models (skin epidermal cells and SKH-1 hairless mice) to validate the role of oxidative stress in the pathophysiology of mustard vesicating agents. Treatment of mouse epidermal JB6 and human HaCaT cells with AEOL 10150 (50μM) 1h post-CEES exposure resulted in significant (p < 0.05) reversal of CEES-induced decreases in both cell viability and DNA synthesis. Similarly, AEOL 10150 treatment 1h after CEES exposure attenuated CEES-induced DNA damage in these cells. Similar AEOL 10150 treatments also caused significant (p < 0.05) reversal of CEES-induced decreases in cell viability in normal human epidermal keratinocytes. Cytoplasmic and mitochondrial reactive oxygen species measurements showed that AEOL 10150 treatment drastically ameliorated the CEES-induced oxidative stress in both JB6 and HaCaT cells. Based on AEOL 10150 pharmacokinetic studies in SKH-1 mouse skin, mice were treated with a topical formulation plus subcutaneous injection (5mg/kg) of AEOL 10150 1h after CEES (4mg/mouse) exposure and every 4h thereafter for 12h. This AEOL 10150 treatment regimen resulted in over 50% (p < 0.05) reversal of CEES-induced skin bi-fold and epidermal thickness, myeloperoxidase activity, and DNA oxidation in mouse skin. Results from this study demonstrate the potential therapeutic efficacy of AEOL 10150 against CEES-mediated cutaneous lesions, supporting AEOL 10150 as a medical countermeasure against SM-induced skin injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- | Office of Cancer Genomics

    Cancer.gov

    University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- This data set contains the transcriptional profiles of 20 dorsal skin samples from eight-week-old mice. Mice were generated by crossing FVB/N to Mus spretus mice to generate F1 mice, and then crossing F1 mice back to the FVB/N strain. 10  FVB/N mice lacking Hras1 (aka HrasKO, Hras-/-) and 10  FVB/N mice with wild-type Hras1 were generated. Read the abstract.

  17. Isolation of Mouse Hair Follicle Bulge Stem Cells and Their Functional Analysis in a Reconstitution Assay.

    PubMed

    Zheng, Ying; Hsieh, Jen-Chih; Escandon, Julia; Cotsarelis, George

    2016-01-01

    The hair follicle (HF) is a dynamic structure readily accessible within the skin, and contains various pools of stem cells that have a broad regenerative potential during normal homeostasis and in response to injury. Recent discoveries demonstrating the multipotent capabilities of hair follicle stem cells and the easy access to skin tissue make the HF an attractive source for isolating stem cells and their subsequent application in tissue engineering and regenerative medicine. Here, we describe the isolation and purification of hair follicle bulge stem cells from mouse skin, and hair reconstitution assays that allows the functional analysis of multipotent stem cells.

  18. Selective Ablation of Ctip2/Bcl11b in Epidermal Keratinocytes Triggers Atopic Dermatitis-Like Skin Inflammatory Responses in Adult Mice

    PubMed Central

    Guha, Gunjan; Li, Shan; Kyrylkova, Kateryna; Kioussi, Chrissa; Leid, Mark; Ganguli-Indra, Gitali; Indra, Arup K.

    2012-01-01

    Background Ctip2 is crucial for epidermal homeostasis and protective barrier formation in developing mouse embryos. Selective ablation of Ctip2 in epidermis leads to increased transepidermal water loss (TEWL), impaired epidermal proliferation, terminal differentiation, as well as altered lipid composition during development. However, little is known about the role of Ctip2 in skin homeostasis in adult mice. Methodology/Principal Findings To study the role of Ctip2 in adult skin homeostasis, we utilized Ctip2ep−/− mouse model in which Ctip2 is selectively deleted in epidermal keratinocytes. Measurement of TEWL, followed by histological, immunohistochemical, and RT-qPCR analyses revealed an important role of Ctip2 in barrier maintenance and in regulating adult skin homeostasis. We demonstrated that keratinocytic ablation of Ctip2 leads to atopic dermatitis (AD)-like skin inflammation, characterized by alopecia, pruritus and scaling, as well as extensive infiltration of immune cells including T lymphocytes, mast cells, and eosinophils. We observed increased expression of T-helper 2 (Th2)-type cytokines and chemokines in the mutant skin, as well as systemic immune responses that share similarity with human AD patients. Furthermore, we discovered that thymic stromal lymphopoietin (TSLP) expression was significantly upregulated in the mutant epidermis as early as postnatal day 1 and ChIP assay revealed that TSLP is likely a direct transcriptional target of Ctip2 in epidermal keratinocytes. Conclusions/Significance Our data demonstrated a cell-autonomous role of Ctip2 in barrier maintenance and epidermal homeostasis in adult mice skin. We discovered a crucial non-cell autonomous role of keratinocytic Ctip2 in suppressing skin inflammatory responses by regulating the expression of Th2-type cytokines. It is likely that the epidermal hyperproliferation in the Ctip2-lacking epidermis may be secondary to the compensatory response of the adult epidermis that is defective in barrier functions. Our results establish an initiating role of epidermal TSLP in AD pathogenesis via a novel repressive regulatory mechanism enforced by Ctip2. PMID:23284675

  19. Genome-wide expression profiling of five mouse models identifies similarities and differences with human psoriasis.

    PubMed

    Swindell, William R; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P; Voorhees, John J; Elder, James T; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P; DiGiovanni, John; Pittelkow, Mark R; Ward, Nicole L; Gudjonsson, Johann E

    2011-04-04

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis.

  20. Wound Healing Activity of Extracts and Formulations of Aloe vera, Henna, Adiantum capillus-veneris, and Myrrh on Mouse Dermal Fibroblast Cells.

    PubMed

    Negahdari, Samira; Galehdari, Hamid; Kesmati, Mahnaz; Rezaie, Anahita; Shariati, Gholamreza

    2017-01-01

    Among the most important factors in wound healing pathways are transforming growth factor beta1 and vascular endothelial growth factor. Fibroblasts are the main cell in all phases wound closure. In this study, the extracts of plant materials such as Adiantum capillus-veneris , Commiphora molmol , Aloe vera , and henna and one mixture of them were used to treatment of normal mouse skin fibroblasts. Cytotoxic effects of each extract and their mixture were assessed on mouse skin fibroblasts cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We performed migration assays to assess migration properties of mouse skin fibroblasts cells in response to the extracts. Changes in the gene expression of the Tgf β1 and Vegf-A genes were monitored by real-time polymerase chain reaction. A. capillus-veneris , C. molmol and henna extract improved the expression of Tgfβ1 gene. All used extracts upregulated the expression of Vegf-A gene and promoted the migration of mouse fibroblast cells in vitro . The present study demonstrated that the mentioned herbal extracts might be effective in wound healing, through the improvement in the migration of fibroblast cells and regulating the gene expression of Tgfβ1 and Vegf-A genes in fibroblast cells treated with extracts.

  1. Development of Alopecia Areata Is Associated with Higher Central and Peripheral Hypothalamic–Pituitary–Adrenal Tone in the Skin Graft Induced C3H/HeJ Mouse Model

    PubMed Central

    Zhang, Xingqi; Yu, Mei; Yu, Wayne; Weinberg, Joanne; Shapiro, Jerry; McElwee, Kevin J.

    2016-01-01

    The relationship of the stress response to the pathogenesis of alopecia areata (AA) was investigated by subjecting normal and skin graft-induced, AA-affected C3H/HeJ mice to light ether anesthesia or restraint stress. Plasma corticosterone (CORT), adrenocorticotropic hormone (ACTH), and estradiol (E2) levels were determined by RIA, whereas gene expression in brains, lymphoid organs, and skin was measured by quantitative RT-PCR for corticotropin-releasing hormone (Crh), arginine vasopressin (Avp), proopiomelanocortin (Pomc), glucocorticoid receptor (Nr3c1), mineralo corticoid receptor (Nr3c2), corticotropin-releasing hormone receptor types 1 and 2 (Crhr1, Crhr2), interleukin-12 (Il12), tumor necrosis factor-α (Tnfα), and estrogen receptors type-1 (Esr1) and type-2 (Esr2). AA mice had a marked increase in hypothalamic–pituitary–adrenal (HPA) tone and activity centrally, and peripherally in the skin and lymph nodes. There was also altered interaction between the adrenal and gonadal axes compared with that in normal mice. Stress further exacerbated changes in AA mouse HPA activity both centrally and peripherally. AA mice had significantly blunted CORT and ACTH responses to acute ether stress (physiological stressor) and a deficit in habituation to repeated restraint stress (psychological stressor). The positive correlation of HPA hormone levels with skin Th1 cytokines suggests that altered HPA activity may occur as a consequence of the immune response associated with AA. PMID:19020552

  2. Clinically-Relevant Cutaneous Lesions by Nitrogen Mustard: Useful Biomarkers of Vesicants Skin Injury in SKH-1 Hairless and C57BL/6 Mice

    PubMed Central

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh

    2013-01-01

    A paucity of clinically applicable biomarkers to screen therapies in laboratory is a limitation in the development of countermeasures against cutaneous injuries by chemical weapon, sulfur mustard (SM), and its analog nitrogen mustard (NM). Consequently, we assessed NM-caused progression of clinical cutaneous lesions; notably, skin injury with NM is comparable to SM. Exposure of SKH-1 hairless and C57BL/6 (haired) mice to NM (3.2 mg) for 12–120 h caused clinical sequelae of toxicity, including microblister formation, edema, erythema, altered pigmentation, wounding, xerosis and scaly dry skin. These toxic effects of NM were similar in both mouse strains, except that wounding and altered pigmentation at 12–24 h and appearance of dry skin at 24 and 72 h post-NM exposure were more pronounced in C57BL/6 compared to SKH-1 mice. Conversely, edema, erythema and microblister formation were more prominent in SKH-1 than C57BL/6 mice at 24–72 h after NM exposure. In addition, 40–60% mortality was observed following 120 h of NM exposure in the both mouse strains. Overall, these toxic effects of NM are comparable to those reported in humans and other animal species with SM, and thus represent clinically-relevant cutaneous injury endpoints in screening and optimization of therapies for skin injuries by vesicating agents. PMID:23826320

  3. Sulfur mustard analog induces oxidative stress and activates signaling cascades in the skin of SKH-1 hairless mice.

    PubMed

    Pal, Arttatrana; Tewari-Singh, Neera; Gu, Mallikarjuna; Agarwal, Chapla; Huang, Jie; Day, Brian J; White, Carl W; Agarwal, Rajesh

    2009-12-01

    A monofunctional analog of the chemical warfare agent sulfur mustard (HD), 2-chloroethyl ethyl sulfide (CEES), induces tissue damage similar to HD. Herein we studied the molecular mechanisms associated with CEES-induced skin inflammation and toxicity in SKH-1 hairless mice. Topical CEES exposure caused an increase in oxidative stress as observed by enhanced 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation and an increase in protein oxidation. The CEES-induced increase in the formation of 8-oxo-2-deoxyguanosine indicated DNA oxidation. CEES exposure instigated an increase in the phosphorylation of mitogen-activated protein kinases (MAPKs; ERK1/2, JNK, and p38). After CEES exposure, a significant increase in the phosphorylation of Akt at Ser473 and Thr308 was observed as well as upregulation of its upstream effector, PDK1, in mouse skin tissue. Subsequently, CEES exposure caused activation of AP-1 family proteins and the NF-kappaB pathway, including phosphorylation and degradation of IkappaBalpha in addition to phosphorylation of the NF-kappaB essential modulator. Collectively, our results indicate that CEES induces oxidative stress and the activation of the transcription factors AP-1 and NF-kappaB via upstream signaling pathways including MAPKs and Akt in SKH-1 hairless mouse skin. These novel molecular targets could be supportive in the development of prophylactic and therapeutic interventions against HD-related skin injury.

  4. Gene response of mouse skin to pressure injury in the neck region.

    PubMed

    Ikematsu, Kazuya; Tsuda, Ryouichi; Nakasono, Ichiro

    2006-03-01

    We analyzed the gene expression pattern in mouse skin following compression of the neck by fluorescent mRNA differential display (FDD-PCR). RNA was isolated from the skin tissue immediately or 30 min after ligation at the neck for 25 min resulting in death (Group A-0, Group A-30). Control mice underwent no compression of the neck and were killed by decapitation (Group C-0, Group C-30). FDD-PCR and sequence analysis revealed that the faciogenital dysplasia gene (Rho member families) and secreted frizzled related protein 1 (modulator of Wnt networks) were enhanced only in the Group A-30. In addition, common salivary protein 1 and mouse 0 day neonate skin cDNA clone z4631433E12 from the RIKEN full-length enriched library were also induced in Groups A-0 and A-30. These findings were consistent with the results of statistical analysis by ANOVA following quantitative real-time PCR. No differences in band pattern were observed between Group C-0 and Group C-30. Therefore, our findings suggested that the altered expression of genes was associated with signal transduction. The results may contribute to clarifying the pathophysiology of compression of the skin and may be useful in the diagnosis of suffocation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, E.L.; Boulware, S.; Fields, T.

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase,more » GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.« less

  6. Sulfur mustard cutaneous injury characterization based on SKH-1 mouse model: relevance of non-invasive methods in terms of wound healing process analyses.

    PubMed

    Cléry-Barraud, Cécile; Nguon, Nina; Vallet, Virginie; Sentenac, Catherine; Four, Elise; Arlaud, Carine; Coulon, David; Boudry, Isabelle

    2013-02-01

    To date, sulphur mustard (SM) cutaneous toxicity has been commonly assessed on account of several animal models such as pigs and weanling pigs. Few experiments however, have been carried out on mice so far. In this study, we aimed at quantifying spontaneous wound healing processes after SM exposure on a SKH-1 mouse model through non-invasive methods over an extended period of time. Animals were exposed to 10 μL net SM in a vapor cup system. Measurements of barrier function (Transepidermal water loss), elasticity, skin color exposed to SM vapors were determined by evaporimetry, cutometer and image analysis on 23 animals up to 28 days. Results were subsequently correlated with histological and biochemical analyses. The TEWL parameter stands as a top-ranking criterion to keep track of skin barrier restoration after SM cutaneous intoxication in our SKH-1 mouse model. The R2 and R6 elasticity parameters or L° for the skin color exhibited their ability to be restored after 28 days of SM exposure. Our findings suggest that bio-engineering methods are eligible to evaluate new treatments on SM-induced skin SKH-1 mouse lesions, thus making an allowance for less invasive methods such as histological, genomic or proteomic approaches. © 2012 John Wiley & Sons A/S.

  7. Characterization of hair-follicle side population cells in mouse epidermis and skin tumors

    PubMed Central

    Kim, Sun Hye; Sistrunk, Christopher; Miliani de Marval, Paula L.; Rodriguez-Puebla, Marcelo L.

    2017-01-01

    A subset of cells, termed side-population (SP), which have the ability to efflux Hoeschst 33342, have previously been demonstrated to act as a potential method to isolate stem cells. Numerous stem/progenitor cells have been localized in different regions of the mouse hair follicle (HF). The present study identified a SP in the mouse HF expressing the ABCG2 transporter and MTS24 surface marker. These cells are restricted to the upper isthmus of the HF and have previously been described as progenitor cells. Consistent with their SP characteristic, they demonstrated elevated expression of ABCG2 transporter, which participates in the dye efflux. Analysis of tumor epidermal cell lines revealed a correlation between the number of SP keratinocytes and the grade of malignancy, suggesting that the SP may play a role in malignant progression. Consistent with this idea, the present study observed an increased number of cells expressing ABCG2 and MTS24 in chemically induced skin tumors and skin tumor cell lines. This SP does not express the CD34 surface marker detected in the multipotent stem cells of the bulge region of the HF, which have been defined as tumor initiation cells. The present study concluded that a SP with properties of progenitor cells is localized in the upper isthmus of the HF and is important in mouse skin tumor progression. PMID:29181098

  8. Controversial role of mast cells in skin cancers.

    PubMed

    Varricchi, Gilda; Galdiero, Maria R; Marone, Giancarlo; Granata, Francescopaolo; Borriello, Francesco; Marone, Gianni

    2017-01-01

    Cancer development is a multistep process characterized by genetic and epigenetic alterations during tumor initiation and progression. The stromal microenvironment can promote tumor development. Mast cells, widely distributed throughout all tissues, are a stromal component of many solid and haematologic tumors. Mast cells can be found in human and mouse models of skin cancers such as melanoma, basal and squamous cell carcinomas, primary cutaneous lymphomas, haemangiomas and Merkel cell carcinoma. However, human and animal studies addressing potential functions of mast cells and their mediators in skin cancers have provided conflicting results. In several studies, mast cells play a pro-tumorigenic role, whereas in others, they play an anti-tumorigenic role. Other studies have failed to demonstrate a clear role for tumor-associated mast cells. Many unanswered questions need to be addressed before we understand whether tumor-associated mast cells are adversaries, allies or simply innocent bystanders in different types and subtypes of skin cancers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Functional Conservation of Gsdma Cluster Genes Specifically Duplicated in the Mouse Genome

    PubMed Central

    Tanaka, Shigekazu; Mizushina, Youichi; Kato, Yoriko; Tamura, Masaru; Shiroishi, Toshihiko

    2013-01-01

    Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well. PMID:23979942

  10. RECENT ADVANCES IN ARSENIC CARCINOGENESIS: MODES OF ACTION, ANIMAL MODEL SYSTEMS AND METHYLATED ARSENIC METABOLITES

    EPA Science Inventory


    Abstract:

    Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer -skin, lung, urinary bladder, liver and kidney. Tumors can be produced from eit...

  11. The progression in the mouse skin carcinogenesis model correlates with ERK1/2 signaling.

    PubMed Central

    Katsanakis, Kostas D.; Gorgoulis, Vassilis; Papavassiliou, Athanasios G.; Zoumpourlis, Vassilis K.

    2002-01-01

    BACKGROUND: The ras family of proto-oncogenes encodes for small GTPases that play critical roles in cell-cycle progression and cellular transformation. ERK1/2 MAP kinases are major ras effectors. Tumors in chemically treated mouse skin contain mutations in the Ha-ras proto- oncogene. Amplification and mutation of Ha-ras has been shown to correlate with malignant progression of these tumors. Cell lines isolated from mouse skin tumors represent the stages of tumor development, such as the PDV:PDVC57 cell line pair and B9 squamous carcinoma and A5 spindle cells. PDVC57 cells were selected from PDV cells, which were transformed with dimethyl-benzanthracene (DMBA) in vitro and then transplanted in adult syngeneic mice. The PDV:PDVC57 pair contains ratio of normal:mutant Ha-ras 2:1 and 1:2, respectively. This genetic alteration correlates with more advanced tumorigenic characteristics of PDVC57 compared to PDV. The squamous carcinoma B9 cell clone was isolated from the same primary tumor as A5 spindle cell line. The mutant Ha-ras allele, also present in B9, is amplified and overexpressed in A5 cells. Therefore these cell line pairs represent an in vivo model for studies of Ha-ras and ERK1/2 signaling in mouse tumorigenesis. MATERIALS AND METHODS: The ERK1/2 status in the above mouse cell lines was examined by using various molecular techniques. For the study of the tumorigenic properties and the role of the ras/MEK/ERK1/2 pathway in the cell lines mentioned, phenotypic characteristics, colony formation assay, anchorage-independent growth, and gelatin zymography were assessed, after or without treatment with the MEK inhibitor, PD98059. RESULTS: ERK1/2 phosphorylation was found to be increased in PDVC57 when compared to PDV. This also applies to A5 spindle carcinoma cells when compared to squamous carcinoma and papilloma cells. The above finding was reproduced when transfecting human activated Ha-ras allele into PDV, thus demonstrating that Ha-ras enhances ERK1/2 signaling. To further test whether ERK1/2 activation was required for growth we used the MEK-1 inhibitor, PD98059. The latter inhibited cell proliferation and anchorage-independent growth of squamous and spindle cells. In addition, PD98059 treatment partially reverted the spindle morphology of A5 cells. CONCLUSIONS: These data suggest, for the first time, that oncogenicity and the degree of progression in the mouse skin carcinogenesis model correlates with ERK1/2 signaling. PMID:12477973

  12. The local lymph node assay and skin sensitization testing.

    PubMed

    Kimber, Ian; Dearman, Rebecca J

    2010-01-01

    The mouse local lymph node assay (LLNA) is a method for the identification and characterization of skin sensitization hazards. In this context the method can be used both to identify contact allergens, and also determine the relative skin sensitizing potency as a basis for derivation of effective risk assessments.The assay is based on measurement of proliferative responses by draining lymph node cells induced following topical exposure of mice to test chemicals. Such responses are known to be causally and quantitatively associated with the acquisition of skin sensitization and therefore provide a relevant marker for characterization of contact allergic potential.The LLNA has been the subject of exhaustive evaluation and validation exercises and has been assigned Organization for Economic Cooperation and Development (OECD) test guideline 429. Herein we describe the conduct and interpretation of the LLNA.

  13. Variable patterns of ectopic mineralization in Enpp1asj-2J mice, a model for generalized arterial calcification of infancy

    PubMed Central

    Siu, Sarah Y.; Dyment, Nathaniel A.; Rowe, David W.; Sundberg, John P.; Uitto, Jouni; Li, Qiaoli

    2016-01-01

    Generalized arterial calcification of infancy (GACI) is an autosomal recessive disorder characterized by early onset of extensive mineralization of the cardiovascular system. The classical forms of GACI are caused by mutations in the ENPP1 gene, encoding a membrane-bound pyrophosphatase/phosphodiesterase that hydrolyzes ATP to AMP and inorganic pyrophosphate. The asj-2J mouse harboring a spontaneous mutation in the Enpp1 gene has been characterized as a model for GACI. These mutant mice develop ectopic mineralization in skin and vascular connective tissues as well as in cartilage and collagen-rich tendons and ligaments. This study examined in detail the temporal ectopic mineralization phenotype of connective tissues in this mouse model, utilizing a novel cryo-histological method that does not require decalcification of bones. The wild type, heterozygous, and homozygous mice were administered fluorescent mineralization labels at 4 weeks (calcein), 10 weeks (alizarin complexone), and 11 weeks of age (demeclocycline). Twenty-four hours later, outer ears, muzzle skin, trachea, aorta, shoulders, and vertebrae were collected from these mice and examined for progression of mineralization. The results revealed differential timeline for disease initiation and progression in various tissues of this mouse model. It also highlights the advantages of cryo-histological fluorescent imaging technique to study mineral deposition in mouse models of ectopic mineralization disorders. PMID:27863377

  14. A method to improve the efficacy of topical eflornithine hydrochloride cream

    PubMed Central

    Kumar, Amit; Naguib, Youssef W.; Shi, Yan-chun; Cui, Zhengrong

    2015-01-01

    Context Facial hirsutism is a cosmetic concern for women and can lead to significant anxiety and lack of self-esteem. Eflornithine cream is indicated for the treatment of facial hirsutism. However, limited success rate and overall patient’s satisfaction, even with a long-term and high frequency application, leave room for improvement. Objective The objective of this study is to test the effect of microneedle treatment on the in vitro skin permeation and the in vivo efficacy of eflornithine cream in a mouse model. Materials and method In vitro permeation study of eflornithine was performed using Franz diffusion cell. In vivo efficacy study was performed in a mouse model by monitoring the re-growth of hair in the lower dorsal skin of mice after the eflornithine cream was applied onto an area pretreated with microneedles. The skin and the hair follicles in the treated area were also examined histologically. Results and discussion The hair growth inhibitory activity of eflornithine was significantly enhanced when the eflornithine cream was applied onto a mouse skin area pretreated with microneedles, most likely because the micropores created by microneedles allowed the permeation of eflornithine into the skin, as confirmed in an in vitro permeation study. Immunohistochemistry data revealed that cell proliferation in the skin and hair follicles was also significantly inhibited when the eflornithine cream was applied onto a skin area pretreated with microneedles. Conclusion The integration of microneedle treatment into topical eflornithine therapy represents a potentially viable approach to increase eflornithine’s ability to inhibit hair growth. PMID:25182303

  15. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Loss of keratin K2 expression causes aberrant aggregation of K10, hyperkeratosis, and inflammation.

    PubMed

    Fischer, Heinz; Langbein, Lutz; Reichelt, Julia; Praetzel-Wunder, Silke; Buchberger, Maria; Ghannadan, Minoo; Tschachler, Erwin; Eckhart, Leopold

    2014-10-01

    Keratin K2 is one of the most abundant structural proteins of the epidermis; however, its biological significance has remained elusive. Here we show that suprabasal type II keratins, K1 and K2, are expressed in a mutually exclusive manner at different body sites of the mouse, with K2 being confined to the ear, sole, and tail skin. Deletion of K2 caused acanthosis and hyperkeratosis of the ear and the tail epidermis, corneocyte fragility, increased transepidermal water loss, and local inflammation in the ear skin. The loss of K2 was partially compensated by upregulation of K1 expression. However, a significant portion of K2-deficient suprabasal keratinocytes lacked a regular cytoskeleton and developed massive aggregates of the type I keratin, K10. Aggregate formation, but not hyperkeratosis, was suppressed by the deletion of both K2 and K10, whereas deletion of K10 alone caused clumping of K2 in ear skin. Taken together, this study demonstrates that K2 is a necessary and sufficient binding partner of K10 at distinct body sites of the mouse and that unbalanced expression of these keratins results in aggregate formation.

  17. Application of BALB/c mouse in the local lymph node assay:BrdU-ELISA for the prediction of the skin sensitizing potential of chemicals.

    PubMed

    Hou, Fenxia; Xing, Caihong; Li, Bin; Cheng, Juan; Chen, Wei; Zhang, Man

    2015-01-01

    Allergic contact dermatitis (ACD) is a skin disease characterized by eczema and itching. A considerable proportion of chemicals induce ACD in humans. More than 10,000 substances should be tested for skin sensitization potential under the Registration, Evaluation, Authorization and Restriction of Chemical substances (REACH) regulation. The Local Lymph Node Assay (LLNA) has been designated as the first-choice in vivo assay for sensitization testing by REACH. The LLNA:BrdU-ELISA is a validated non-radioactive modification to the LLNA. For both the LLNA and the LLNA:BrdU-ELISA, CBA/JN mouse is the preferred mouse strain recommended in the regulatory guidelines. However, the availability of CBA/JN mouse in China is only limited to a few animal suppliers, which makes the mouse difficult to obtain. BALB/c mouse, which is widely commercially available, is considered for alternative use but it can only be used in the assay after it has been evaluated by formal validation study. Thus, a validation study was conducted in our laboratory to determine if BALB/c mouse could also be used in the LLNA:BrdU-ELISA. Forty-three test substances including 32 LLNA sensitizers and 11 LLNA non-sensitizers, their vehicles and each concentration used were the same as that used in the formal validation study for the LLNA:BrdU-ELISA using CBA/JN mouse. Female BALB/c mice of 8-10 weeks old were randomly allocated to groups (four mice per group). The test substance (25 μl) or the vehicle alone was applied to the dorsum of both ears daily for 3 consecutive days. A single intraperitoneal injection of 0.5 ml of BrdU (10mg/ml) solution was given on day 5. On day 6, a pair of auricular lymph nodes from each mouse was excised, weighed and stored at -20°C until BrdU-ELISA was conducted. This validation study for the LLNA:BrdU-ELISA using BALB/c mouse correctly identified 30 of 31 sensitizers and 8 of 11 non-sensitizers. The accuracy, sensitivity, specificity, false positive rate, false negative rate, positive predictivity values and negative predictivity values in this study, which could indicate the performance of the LLNA:BrdU-ELISA using BALB/c mouse, were not different statistically from that of the validation study for the LLNA:BrdU-ELISA using CBA/JN mouse. This validation study indicates that BALB/c mouse could be used alternatively in the LLNA:BrdU-ELISA for the prediction of the skin sensitizing potential of chemicals. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  19. Changes in mRNA expression precede changes in microRNA expression in lesional psoriatic skin during treatment with adalimumab.

    PubMed

    Raaby, L; Langkilde, A; Kjellerup, R B; Vinter, H; Khatib, S H; Hjuler, K F; Johansen, C; Iversen, L

    2015-08-01

    Tumour necrosis factor (TNF)-α inhibition is an effective treatment for moderate to severe plaque-type psoriasis. A change in the cytokine expression profile occurs in the skin after 4 days of treatment, preceding any clinical or histological improvements. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression, but miRNA expression has never been studied in psoriatic skin during treatment. To investigate changes in miRNA expression in psoriatic skin during adalimumab treatment and to compare results with changes in miRNA expression in a mouse model of Aldara-induced psoriasis-like skin inflammation. Punch biopsies were obtained from nonlesional and lesional psoriatic skin during adalimumab treatment. In the mouse model of Aldara-induced skin inflammation, biopsies were obtained from TNF-α knockout (KO), IL-17A KO and wild-type mice. miRNA expression levels were analysed with microarray, reverse transcriptase quantitative polymerase chain reaction and in situ hybridization. In psoriatic skin, no changes in miRNA expression were seen 4 days after treatment initiation. After 14 days of treatment, the expression of several miRNAs was normalized towards the level seen in nonlesional skin before treatment. miR-23b expression increased after 14 days of treatment and remained high for 84 days, despite unaltered levels at baseline. In the mouse model of Aldara-induced skin inflammation, the level of miR-146a increased, whereas no regulation was seen for miR-203, miR-214-3p, miR-125a, miR-23b or let-7d-5p. This study demonstrates that the changes seen in the cytokine expression levels after 4 days of treatment with adalimumab are not facilitated by early changes in miRNA expression. © 2015 British Association of Dermatologists.

  20. Differential Plasma Glycoproteome of p19 Skin Cancer Mouse Model Using the Corra Label-Free LC-MS Proteomics Platform.

    PubMed

    Letarte, Simon; Brusniak, Mi-Youn; Campbell, David; Eddes, James; Kemp, Christopher J; Lau, Hollis; Mueller, Lukas; Schmidt, Alexander; Shannon, Paul; Kelly-Spratt, Karen S; Vitek, Olga; Zhang, Hui; Aebersold, Ruedi; Watts, Julian D

    2008-12-01

    A proof-of-concept demonstration of the use of label-free quantitative glycoproteomics for biomarker discovery workflow is presented here, using a mouse model for skin cancer as an example. Blood plasma was collected from 10 control mice, and 10 mice having a mutation in the p19(ARF) gene, conferring them high propensity to develop skin cancer after carcinogen exposure. We enriched for N-glycosylated plasma proteins, ultimately generating deglycosylated forms of the modified tryptic peptides for liquid chromatography mass spectrometry (LC-MS) analyses. LC-MS runs for each sample were then performed with a view to identifying proteins that were differentially abundant between the two mouse populations. We then used a recently developed computational framework, Corra, to perform peak picking and alignment, and to compute the statistical significance of any observed changes in individual peptide abundances. Once determined, the most discriminating peptide features were then fragmented and identified by tandem mass spectrometry with the use of inclusion lists. We next assessed the identified proteins to see if there were sets of proteins indicative of specific biological processes that correlate with the presence of disease, and specifically cancer, according to their functional annotations. As expected for such sick animals, many of the proteins identified were related to host immune response. However, a significant number of proteins also directly associated with processes linked to cancer development, including proteins related to the cell cycle, localisation, trasport, and cell death. Additional analysis of the same samples in profiling mode, and in triplicate, confirmed that replicate MS analysis of the same plasma sample generated less variation than that observed between plasma samples from different individuals, demonstrating that the reproducibility of the LC-MS platform was sufficient for this application. These results thus show that an LC-MS-based workflow can be a useful tool for the generation of candidate proteins of interest as part of a disease biomarker discovery effort.

  1. Differential Plasma Glycoproteome of p19ARF Skin Cancer Mouse Model Using the Corra Label-Free LC-MS Proteomics Platform

    PubMed Central

    Letarte, Simon; Brusniak, Mi-Youn; Campbell, David; Eddes, James; Kemp, Christopher J.; Lau, Hollis; Mueller, Lukas; Schmidt, Alexander; Shannon, Paul; Kelly-Spratt, Karen S.; Vitek, Olga; Zhang, Hui; Aebersold, Ruedi; Watts, Julian D.

    2010-01-01

    A proof-of-concept demonstration of the use of label-free quantitative glycoproteomics for biomarker discovery workflow is presented here, using a mouse model for skin cancer as an example. Blood plasma was collected from 10 control mice, and 10 mice having a mutation in the p19ARF gene, conferring them high propensity to develop skin cancer after carcinogen exposure. We enriched for N-glycosylated plasma proteins, ultimately generating deglycosylated forms of the modified tryptic peptides for liquid chromatography mass spectrometry (LC-MS) analyses. LC-MS runs for each sample were then performed with a view to identifying proteins that were differentially abundant between the two mouse populations. We then used a recently developed computational framework, Corra, to perform peak picking and alignment, and to compute the statistical significance of any observed changes in individual peptide abundances. Once determined, the most discriminating peptide features were then fragmented and identified by tandem mass spectrometry with the use of inclusion lists. We next assessed the identified proteins to see if there were sets of proteins indicative of specific biological processes that correlate with the presence of disease, and specifically cancer, according to their functional annotations. As expected for such sick animals, many of the proteins identified were related to host immune response. However, a significant number of proteins also directly associated with processes linked to cancer development, including proteins related to the cell cycle, localisation, trasport, and cell death. Additional analysis of the same samples in profiling mode, and in triplicate, confirmed that replicate MS analysis of the same plasma sample generated less variation than that observed between plasma samples from different individuals, demonstrating that the reproducibility of the LC-MS platform was sufficient for this application. These results thus show that an LC-MS-based workflow can be a useful tool for the generation of candidate proteins of interest as part of a disease biomarker discovery effort. PMID:20157627

  2. Substance P as an immunomodulatory neuropeptide in a mouse model for autoimmune hair loss (alopecia areata).

    PubMed

    Siebenhaar, Frank; Sharov, Andrey A; Peters, Eva M J; Sharova, Tatyana Y; Syska, Wolfgang; Mardaryev, Andrei N; Freyschmidt-Paul, Pia; Sundberg, John P; Maurer, Marcus; Botchkarev, Vladimir A

    2007-06-01

    Alopecia areata (AA) is an autoimmune disorder of the hair follicle characterized by inflammatory cell infiltrates around actively growing (anagen) hair follicles. Substance P (SP) plays a critical role in the cutaneous neuroimmune network and influences immune cell functions through the neurokinin-1 receptor (NK-1R). To better understand the role of SP as an immunomodulatory neuropeptide in AA, we studied its expression and effects on immune cells in a C3H/HeJ mouse model for AA. During early stages of AA development, the number of SP-immunoreactive nerve fibers in skin is increased, compared to non-affected mice. However, during advanced stages of AA, the number of SP-immunoreactive nerves and SP protein levels in skin are decreased, whereas the expression of the SP-degrading enzyme neutral endopeptidase (NEP) is increased, compared to control skin. In AA, NK-1R is expressed on CD8+ lymphocytes and macrophages accumulating around affected hair follicles. Additional SP supply to the skin of AA-affected mice leads to a significant increase of mast cell degranulation and to accelerated hair follicle regression (catagen), accompanied by an increase of CD8+ cells-expressing granzyme B. These data suggest that SP, NEP, and NK-1R serve as important regulators in the molecular signaling network modulating inflammatory response in autoimmune hair loss.

  3. Genistein and daidzein stimulate hyaluronic acid production in transformed human keratinocyte culture and hairless mouse skin.

    PubMed

    Miyazaki, Kouji; Hanamizu, Tomoko; Iizuka, Ryoko; Chiba, Katsuyoshi

    2002-01-01

    We examined the effects of the soy isoflavones genistein (Gen) and daidzein (Dai) on the production of hyaluronic acid (HA) in a transformed human keratinocyte culture and in hairless mouse skin following topical application for 2 weeks. Gen and Dai, but not the glycosides thereof, significantly enhanced the production of HA in vitro and in vivo. Histochemistry using an HA-binding protein revealed that topical Gen and estradiol raised both the density and intensity of HA staining, which was abundant in the murine dermis. It is suggested that Gen and Dai are not released from their respective glycosides in culture or murine skin. Moreover, topical Gen and Dai may prevent and improve the cutaneous alterations caused by the loss of HA in skin. Copyright 2002 S. Karger AG, Basel

  4. Melanocortin 1 receptor and skin pathophysiology: beyond colour, much more than meets the eye.

    PubMed

    García-Borrón, José Carlos; Olivares, Concepción

    2014-06-01

    The melanocortin 1 receptor (MC1R), a G protein-coupled receptor preferentially expressed in melanocytes, mediates the pigmentary effects of α melanocyte-stimulating hormone (αMSH). MC1R is also expressed in other cutaneous cell types, particularly keratinocytes and dermal fibroblasts, suggesting non-pigmentary actions of the αMSH/MC1R system. Böhm and Stegemann now report a dramatic effect of mouse Mc1r functional status on susceptibility to skin fibrosis and collagen types I and III metabolism, in a study combining the powerful mouse model provided by the natural Mc1r(e/e) knockout and an established model of skin fibrosis. The study underscores the antifibrotic role for the skin αMSH/MC1R system. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. In vivo stepwise multi-photon activation fluorescence imaging of melanin in human skin

    NASA Astrophysics Data System (ADS)

    Lai, Zhenhua; Gu, Zetong; Abbas, Saleh; Lowe, Jared; Sierra, Heidy; Rajadhyaksha, Milind; DiMarzio, Charles

    2014-03-01

    The stepwise multi-photon activated fluorescence (SMPAF) of melanin is a low cost and reliable method of detecting melanin because the activation and excitation can be a continuous-wave (CW) mode near infrared (NIR) laser. Our previous work has demonstrated the melanin SMPAF images in sepia melanin, mouse hair, and mouse skin. In this study, we show the feasibility of using SMPAF to detect melanin in vivo. in vivo melanin SMPAF images of normal skin and benign nevus are demonstrated. SMPAF images add specificity for melanin detection than MPFM images and CRM images. Melanin SMPAF is a promising technology to enable early detection of melanoma for dermatologists.

  6. Iontophoresis of monomeric insulin analogues in vitro: effects of insulin charge and skin pretreatment.

    PubMed

    Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H

    1998-01-23

    The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.

  7. Differential regulation of a fibroblast growth factor-binding protein during skin carcinogenesis and wound healing.

    PubMed

    Kurtz, Andreas; Aigner, Achim; Cabal-Manzano, Rafael H; Butler, Robert E; Hood, Dozier R; Sessions, Roy B; Czubayko, Frank; Wellstein, Anton

    2004-01-01

    The initiation of premalignant lesions is associated with subtle cellular and gene expression changes. Here we describe a severe combined immunodeficiency mouse xenograft model with human adult skin and compare chemical carcinogenesis and wound healing. We focus on a secreted binding protein for fibroblast growth factors (FGF-BP) that enhances the activity of locally stored FGFs and is expressed at high levels in human epithelial cancers. Carcinogen treatment of murine skin induced papilloma within 6 weeks, whereas the human skin grafts displayed no obvious macroscopic alterations. Microscopic studies of the human skin, however, showed p53-positive keratinocytes in the epidermis, increased angiogenesis in the dermis of the treated skin, enhanced proliferation of keratinocytes in the basal layer, and an increase of FGF-BP protein and mRNA expression. In contrast, after surgical wounding of human skin grafts or of mouse skin, FGF-BP expression was upregulated within a few hours and returned to control levels after 2 days with wound closure. Enhanced motility of cultured keratinocytes and dermal fibroblasts by FGF-BP supports a role in wound healing. We conclude that adult human skin xenografts can be used to identify early molecular events during malignant transformation as well as transient changes during wound healing.

  8. Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice.

    PubMed

    Chiu, Hui-Wen; Chen, Cheng-Hsien; Chen, Yi-Jie; Hsu, Yung-Ho

    2017-01-01

    Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to block the epidermal hyperproliferative response to UVB and may play a crucial role in preventing skin photoaging. In the present study, we investigated whether far-infrared (FIR) therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibroblasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procollagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9. FIR inhibited UVB-induced MMP-1 and MMP-9. Treatment with FIR reversed UVB-decreased type I collagen. In addition, FIR induced autophagy by inhibiting the Akt/mTOR signaling pathway. In UVB-induced skin photoaging in a hairless mouse model, FIR treatment resulted in decreased skin thickness in UVB irradiated mice and inhibited the degradation of collagen fibers. Moreover, FIR can increase procollagen type I via the inhibition of MMP-9 and induction of TGF-β in skin tissues. Therefore, our study provides evidence for the beneficial effects of FIR exposure in a model of skin photoaging.

  9. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization

    PubMed Central

    Yoon, Juhan; Oyoshi, Michiko K.; Hoff, Sabine; Chervonsky, Alexander; Oppenheim, Joost J.; Rosenstiel, Philip

    2016-01-01

    Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4+ T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4+ T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD. PMID:27551155

  10. Cell-type-specific roles for COX-2 in UVB-induced skin cancer

    PubMed Central

    Herschman, Harvey

    2014-01-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308

  11. Cell-type-specific roles for COX-2 in UVB-induced skin cancer.

    PubMed

    Jiao, Jing; Mikulec, Carol; Ishikawa, Tomo-o; Magyar, Clara; Dumlao, Darren S; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey

    2014-06-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2(flox/flox) mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2(flox/flox);K14Cre(+) mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2(flox/flox);K14Cre(+) papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2(flox/flox); LysMCre(+) myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin.

    PubMed

    Tang, Sheau-Chung; Liao, Pei-Yun; Hung, Sung-Jen; Ge, Jheng-Siang; Chen, Shiou-Mei; Lai, Ji-Ching; Hsiao, Yu-Ping; Yang, Jen-Hung

    2017-06-01

    Glycolic acid (GA), commonly present in fruits, has been used to treat dermatological diseases. Extensive exposure to solar ultraviolet B (UVB) irradiation plays a crucial role in the induction of skin inflammation. The development of photo prevention from natural materials represents an effective strategy for skin keratinocytes. The aim of this study was to investigate the molecular mechanisms underlying the glycolic acid (GA)-induced reduction of UVB-mediated inflammatory responses. We determined the effects of different concentrations of GA on the inflammatory response of human keratinocytes HaCaT cells and C57BL/6J mice dorsal skin. After GA was topically applied, HaCaT and mice skin were exposed to UVB irradiation. GA reduced the production of UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators [interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, tumor necrosis factor-α, and monocyte chemoattractant protein (MCP-1)] at both mRNA and protein levels. GA inhibited the UVB-induced promoter activity of NF-κB in HaCaT cells. GA attenuated the elevation of senescence associated with β-galactosidase activity but did not affect the wound migration ability. The topical application of GA inhibited the genes expression of IL-1β, IL-6, IL-8, COX-2, and MCP-1 in UVB-exposed mouse skin. The mice to UVB irradiation after GA was topically applied for 9 consecutive days and reported that 1-1.5% of GA exerted anti-inflammatory effects on mouse skin. We clarified the molecular mechanism of GA protection against UVB-induced inflammation by modulating NF-κB signaling pathways and determined the optimal concentration of GA in mice skin exposed to UVB irradiation. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  13. Imiquimod-induced psoriasis-like skin inflammation is suppressed by BET bromodomain inhibitor in mice through RORC/IL-17A pathway modulation.

    PubMed

    Nadeem, Ahmed; Al-Harbi, Naif O; Al-Harbi, Mohamed M; El-Sherbeeny, Ahmed M; Ahmad, Sheikh F; Siddiqui, Nahid; Ansari, Mushtaq A; Zoheir, Khairy M A; Attia, Sabry M; Al-Hosaini, Khaled A; Al-Sharary, Shakir D

    2015-09-01

    Psoriasis is one of the most common skin disorders characterized by erythematous plaques that result from hyperproliferative keratinocytes and infiltration of inflammatory leukocytes into dermis and epidermis. Recent studies suggest that IL-23/IL-17A/IL-22 cytokine axis plays an important role in the pathogenesis of psoriasis. The small molecule bromodomain and extraterminal domain (BET) inhibitors, that disrupt interaction of BET proteins with acetylated histones have recently demonstrated efficacy in various models of inflammation through suppression of several pathways, one of them being synthesis of IL-17A/IL-22 which primarily depends on transcription factor, retinoic acid receptor-related orphan receptor C (RORC). However, the efficacy and mechanistic aspect of a BET inhibitor in mouse model of skin inflammation has not been explored previously. Therefore, this study investigated the role of BET inhibitor, JQ-1 in mouse model of psoriasis-like inflammation. Mice were topically applied imiquimod (IMQ) to develop psoriasis-like inflammation on the shaved back and ear followed by assessment of skin inflammation (myeloperoxidase activity, ear thickness, and histopathology), RORC and its signature cytokines (IL-17A/IL-22). JQ-1 suppressed IMQ-induced skin inflammation as reflected by a decrease in ear thickness/myeloperoxidase activity, and RORC/IL-17A/IL-22 expression. Additionally, a RORα/γ agonist SR1078 was utilized to investigate the role of RORC in BET-mediated skin inflammation. SR1078 reversed the protective effect of JQ-1 on skin inflammation at both histological and molecular levels in the IMQ model. The current study suggests that BET bromodomains are involved in psoriasis-like inflammation through induction of RORC/IL-17A pathway. Therefore, inhibition of BET bromodomains may provide a new therapy against skin inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Mouse allergen exposure and decreased risk of allergic rhinitis in school-aged children.

    PubMed

    Jacobs, Tammy S; Forno, Erick; Brehm, John M; Acosta-Pérez, Edna; Han, Yueh-Ying; Blatter, Joshua; Thorne, Peter; Metwali, Nervana; Colón-Semidey, Angel; Alvarez, María; Canino, Glorisa; Celedón, Juan C

    2014-12-01

    Little is known about exposure to mouse allergen (Mus m 1) and allergic rhinitis (AR). To evaluate the association between mouse allergen exposure and AR in children. We examined the relation between mouse allergen level in house dust and AR in 511 children aged 6 to 14 years in San Juan, Puerto Rico. Study participants were chosen from randomly selected households using a multistage probability sample design. The study protocol included questionnaires, allergy skin testing, and collection of blood and dust samples. AR was defined as current rhinitis symptoms and skin test reactivity to at least one allergen. In the multivariate analyses, mouse allergen level was associated with a 25% decreased odds of AR in participating children (95% confidence interval, 0.62-0.92). Although endotoxin and mouse allergen levels were significantly correlated (r = 0.184, P < .001), the observed inverse association between Mus m 1 and AR was not explained by levels of endotoxin or other markers of microbial or fungal exposure (peptidoglycan and glucan). Mouse allergen exposure is associated with decreased odds of AR in Puerto Rican school-aged children. Copyright © 2014 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Pseudoxanthoma Elasticum is a Metabolic Disease

    PubMed Central

    Jiang, Qiujie; Endoh, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the “metabolic” versus the “PXE cell” hypotheses. We examined a murine PXE model (Abcc6−/−) by transplanting muzzle skin from knock-out (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, while grafting KO mouse muzzle skin onto the WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu. PMID:18685618

  16. [Effect of dibunol liniment on posttraumatic skin regeneration in mice].

    PubMed

    Krutova, T V; Efimov, E A; Korman, D B

    1984-10-01

    The effect of dibunol liniment (5-50 mg/kg) on excised mouse skin was studied. The liniment caused complete skin regeneration with hair and gland formation in the majority of treated mice. Application of the liniment led to a considerable increase in proliferative activity of skin epithelial cells and inhibition of wound area reduction within the first day of healing as compared with controls.

  17. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax andmore » subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.« less

  18. Standardization of deep partial-thickness scald burns in C57BL/6 mice

    PubMed Central

    Medina, Jorge L; Fourcaudot, Andrea B; Sebastian, Eliza A; Shankar, Ravi; Brown, Ammon W; Leung, Kai P

    2018-01-01

    Mouse burn models are used to understand the wound healing process and having a reproducible model is important. The different protocols used by researchers can lead to differences in depth of partial-thickness burn wounds. Additionally, standardizing a protocol for mouse burns in the laboratory for one strain may result in substantially different results in other strains. In our current study we describe the model development of a deep partial-thickness burn in C57BL/6 mice using hot water scalding as the source of thermal injury. As part of our model development we designed a template with specifications to allow for even contact of bare mouse skin (2×3 cm) with hot water while protecting the rest of the mouse. Burn depth was evaluated with H&E, Masson’s trichrome, and TUNEL staining. Final results were validated with pathology analysis. A water temperature of 54°C with a scalding time of 20 seconds produced consistent deep partial-thickness burns with available equipment described. Other than temperature and time, factors such as template materials and cooling steps after the burn could affect the uniformity of the burns. These findings are useful to burn research by providing some key parameters essential for researchers to simplify the development of their own mouse burn models. PMID:29755839

  19. A novel immune competent murine hypertrophic scar contracture model: A tool to elucidate disease mechanism and develop new therapies

    PubMed Central

    Ibrahim, Mohamed Magdy; Bond, Jennifer; Bergeron, Andrew; Miller, Kyle J; Ehanire, Tosan; Quiles, Carlos; Lorden, Elizabeth R; Medina, Manuel A; Fisher, Mark; Klitzman, Bruce; Selim, M Angelica; Leong, Kam W; Levinson, Howard

    2014-01-01

    Hypertrophic scar (HSc) contraction following burn injury causes contractures. Contractures are painful and disfiguring. Current therapies are marginally effective. To study pathogenesis and develop new therapies, a murine model is needed. We have created a validated immune-competent murine HSc model. A third-degree burn was created on dorsum of C57BL/6 mice. Three days postburn, tissue was excised and grafted with ear skin. Graft contraction was analyzed and tissue harvested on different time points. Outcomes were compared with human condition to validate the model. To confirm graft survival, green fluorescent protein (GFP) mice were used, and histologic analysis was performed to differentiate between ear and back skin. Role of panniculus carnosus in contraction was analyzed. Cellularity was assessed with 4′,6-diamidino-2-phenylindole. Collagen maturation was assessed with Picro-sirius red. Mast cells were stained with Toluidine blue. Macrophages were detected with F4/80 immune. Vascularity was assessed with CD31 immune. RNA for contractile proteins was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Elastic moduli of skin and scar tissue were analyzed using a microstrain analyzer. Grafts contracted to ∼45% of their original size by day 14 and maintained their size. Grafting of GFP mouse skin onto wild-type mice, and analysis of dermal thickness and hair follicle density, confirmed graft survival. Interestingly, hair follicles disappeared after grafting and regenerated in ear skin configuration by day 30. Radiological analysis revealed that panniculus carnosus doesn't contribute to contraction. Microscopic analyses showed that grafts show increase in cellularity. Granulation tissue formed after day 3. Collagen analysis revealed increases in collagen maturation over time. CD31 stain revealed increased vascularity. Macrophages and mast cells were increased. qRT-PCR showed up-regulation of transforming growth factor beta, alpha smooth muscle actin, and rho-associated protein kinase 2 in HSc. Tensile testing revealed that human skin and scar tissues are tougher than mouse skin and scar tissues. PMID:25327261

  20. Morphological analysis of the growth stages of in-vivo mouse hair follicles by using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jha, Rakesh Kumar; Kim, Kanghae; Jeon, Mansik; Kim, Jeehyun; Kang, Minyoung; Han, Insook; Kim, Moonkyu

    2016-09-01

    Swept-source optical coherence tomography (SS-OCT), a bio-photonic imaging modality, was used to demonstrate an initial feasibility experiment for detecting morphological variations of in-vivo mouse hair follicles for the anagen and the telogen growth stages. Two C57BL/6 adult male mice, one undergoing the anagen stage and the other undergoing the telogen stage of the hair follicle growth cycle, were selected for the experiment. The OCT cross-sectional images of mice skin were acquired in-vivo within an interval of 15 days, and the observed morphological changes were analyzed. The micro-structural features of mice skin on the 15th experimental day were further compared with corresponding histological observations. The preliminary result of this study provides clear insights into the structural details of mouse skin, confirming the resemblance of the OCT images with the corresponding histological measurements, and ensures the suitability of SS-OCT for non-invasive analysis of hair follicle conditions.

  1. DOSE-RESPONSE STUDIES OF SODIUM ARSENITE IN THE SKIN OF K6/ODC TRANSGENIC MOUSE

    EPA Science Inventory

    It has previously been observed that chronic exposure to inorganic arsenic and/or its metabolites increase(s) tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles w...

  2. Genome-Wide Expression Profiling of Five Mouse Models Identifies Similarities and Differences with Human Psoriasis

    PubMed Central

    Swindell, William R.; Johnston, Andrew; Carbajal, Steve; Han, Gangwen; Wohn, Christian; Lu, Jun; Xing, Xianying; Nair, Rajan P.; Voorhees, John J.; Elder, James T.; Wang, Xiao-Jing; Sano, Shigetoshi; Prens, Errol P.; DiGiovanni, John; Pittelkow, Mark R.; Ward, Nicole L.; Gudjonsson, Johann E.

    2011-01-01

    Development of a suitable mouse model would facilitate the investigation of pathomechanisms underlying human psoriasis and would also assist in development of therapeutic treatments. However, while many psoriasis mouse models have been proposed, no single model recapitulates all features of the human disease, and standardized validation criteria for psoriasis mouse models have not been widely applied. In this study, whole-genome transcriptional profiling is used to compare gene expression patterns manifested by human psoriatic skin lesions with those that occur in five psoriasis mouse models (K5-Tie2, imiquimod, K14-AREG, K5-Stat3C and K5-TGFbeta1). While the cutaneous gene expression profiles associated with each mouse phenotype exhibited statistically significant similarity to the expression profile of psoriasis in humans, each model displayed distinctive sets of similarities and differences in comparison to human psoriasis. For all five models, correspondence to the human disease was strong with respect to genes involved in epidermal development and keratinization. Immune and inflammation-associated gene expression, in contrast, was more variable between models as compared to the human disease. These findings support the value of all five models as research tools, each with identifiable areas of convergence to and divergence from the human disease. Additionally, the approach used in this paper provides an objective and quantitative method for evaluation of proposed mouse models of psoriasis, which can be strategically applied in future studies to score strengths of mouse phenotypes relative to specific aspects of human psoriasis. PMID:21483750

  3. Temporal aspects of tumorigenic response to individual and mixed carcinogens. Comprehensive progress report, June 1, 1975--May 31, 1978. [Mouse skin, rats, hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, R.E.; Burns, F.J.; Altshuler, B.

    1978-02-01

    The research proposed here is designed to obtain a better understanding of the temporal kinetics of tumor induction when one or more carcinogens are present simultaneously or sequentially for prolonged periods of time. Studies done to date under this contract have shown that carcinogenesis in mouse skin by polycyclic aromatic hydrocarbon carcinogens is consistent with the induction of dependent and autonomous cell transformations by the carcinogen followed by the conversion of autonomous tumor cells into malignancies at a rate which is determined by the level of carcinogen exposure. Dependent cell transformations remain latent in the skin unless expressed by amore » promoting agent. Dependent neoplasia appears to follow one-hit kinetics while malignancy is a multihit endpoint. Dose-related and time-related aspects of tumor induction are separable in the initiation-promotion system of mouse skin which along with rat skin and hamster lung is being used as a model for testing hypotheses. Results to date provide the basis for a new interpretation of the linear non-threshold extrapolation model. The broad aim of the study is to provide a basis or rationale for estimating risks associated with prolonged exposures to carcinogens found in the environment and to predict how different tissues and species respond to the same carcinogens.« less

  4. Studies on glyphosate-induced carcinogenicity in mouse skin: a proteomic approach.

    PubMed

    George, Jasmine; Prasad, Sahdeo; Mahmood, Zafar; Shukla, Yogeshwer

    2010-03-10

    Glyphosate is a widely used broad spectrum herbicide, reported to induce various toxic effects in non-target species, but its carcinogenic potential is still unknown. Here we showed the carcinogenic effects of glyphosate using 2-stage mouse skin carcinogenesis model and proteomic analysis. Carcinogenicity study revealed that glyphosate has tumor promoting activity. Proteomic analysis using 2-dimensional gel electrophoresis and mass spectrometry showed that 22 spots were differentially expressed (>2 fold) on glyphosate, 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) application over untreated control. Among them, 9 proteins (translation elongation factor eEF-1 alpha chain, carbonic anhydrase III, annexin II, calcyclin, fab fragment anti-VEGF antibody, peroxiredoxin-2, superoxide dismutase [Cu-Zn], stefin A3, and calgranulin-B) were common and showed similar expression pattern in glyphosate and TPA-treated mouse skin. These proteins are known to be involved in several key processes like apoptosis and growth-inhibition, anti-oxidant responses, etc. The up-regulation of calcyclin, calgranulin-B and down-regulation of superoxide dismutase [Cu-Zn] was further confirmed by immunoblotting, indicating that these proteins can be good candidate biomarkers for skin carcinogenesis induced by glyphosate. Altogether, these results suggested that glyphosate has tumor promoting potential in skin carcinogenesis and its mechanism seems to be similar to TPA. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  5. Preconditioning With Low-Level Laser Irradiation Enhances the Therapeutic Potential of Human Adipose-derived Stem Cells in a Mouse Model of Photoaged Skin.

    PubMed

    Liao, Xuan; Li, Sheng-Hong; Xie, Guang-Hui; Xie, Shan; Xiao, Li-Ling; Song, Jian-Xing; Liu, Hong-Wei

    2018-02-19

    This study was conducted to explore the therapeutic potential of human adipose-derived stem cells (ADSCs) irradiated with a low-level laser (LLL). Cultured ADSCs were treated with 650-nm GaAlAs laser irradiation at 2, 4 and 8 J cm -2 . Cell proliferation was quantified by MTT assays, cytokine secretion was determined by enzyme-linked immunosorbent assays, and adipogenic differentiation was examined by oil red O staining. Additionally, the expression profiles of putative ADSC surface markers were analyzed by quantitative real-time PCR. In addition, a mouse photoaged skin model was established by UVB irradiation. Effects of GaAlAs laser-treated ADSCs on the thicknesses of the epidermis and dermis were analyzed by hematoxylin and eosin staining. The results showed that GaAlAs laser treatment of cells at a radiant exposure of 4 J cm -2 enhanced ADSC proliferation and adipogenic differentiation and increased secretion of growth factors. Furthermore, GaAlAs laser irradiation upregulated the expression of putative ADSC surface markers. In the mouse model of photoaged skin, ADSCs treated with GaAlAs laser irradiation had markedly decreased the epidermal thickness and increased the dermal thickness of photoaged mouse skin. Our data indicate that LLL irradiation is an effective biostimulator of ADSCs and might enhance the therapeutic potential of ADSCs for clinical use. © 2018 The American Society of Photobiology.

  6. Tumor promoter-induced sulfiredoxin is required for mouse skin tumorigenesis.

    PubMed

    Wu, Lisha; Jiang, Hong; Chawsheen, Hedy A; Mishra, Murli; Young, Matthew R; Gerard, Matthieu; Toledano, Michel B; Colburn, Nancy H; Wei, Qiou

    2014-05-01

    Sulfiredoxin (Srx), the exclusive enzyme that reduces the hyperoxidized inactive form of peroxiredoxins (Prxs), has been found highly expressed in several types of human skin cancer. To determine whether Srx contributed to skin tumorigenesis in vivo, Srx null mice were generated on an FVB background. Mouse skin tumorigenesis was induced by a 7,12-dimethylbenz[α]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) protocol. We found that the number, volume and size of papillomas in Srx(-/-) mice were significantly fewer compared with either wild-type (Wt) or heterozygous (Het) siblings. Histopathological analysis revealed more apoptotic cells in tumors from Srx(-/-) mice. Mechanistic studies in cell culture revealed that Srx was stimulated by TPA in a redox-independent manner. This effect was mediated transcriptionally through the activation of mitogen-activated protein kinase and Jun-N-terminal kinase. We also demonstrated that Srx was capable of reducing hyperoxidized Prxs to facilitate cell survival under oxidative stress conditions. These findings suggested that loss of Srx protected mice, at least partially, from DMBA/TPA-induced skin tumorigenesis. Therefore, Srx has an oncogenic role in skin tumorigenesis and targeting Srx may provide novel strategies for skin cancer prevention or treatment.

  7. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantlymore » decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of silibinin against SM-induced skin injury.« less

  8. Estradiol alters body temperature regulation in the female mouse.

    PubMed

    Krajewski-Hall, Sally J; Blackmore, Elise M; McMinn, Jessi R; Rance, Naomi E

    2018-01-01

    Hot flushes are due to estrogen withdrawal and characterized by the episodic activation of heat dissipation effectors. Recent studies (in humans and rats) have implicated neurokinin 3 (NK 3 ) receptor signaling in the genesis of hot flushes. Although transgenic mice are increasingly used for biomedical research, there is limited information on how 17β-estradiol and NK 3 receptor signaling alters thermoregulation in the mouse. In this study, a method was developed to measure tail skin temperature (T SKIN ) using a small data-logger attached to the surface of the tail, which, when combined with a telemetry probe for core temperature (T CORE ), allowed us to monitor thermoregulation in freely-moving mice over long durations. We report that estradiol treatment of ovariectomized mice reduced T CORE during the light phase (but not the dark phase) while having no effect on T SKIN or activity. Estradiol also lowered T CORE in mice exposed to ambient temperatures ranging from 20 to 36°C. Unlike previous studies in the rat, estradiol treatment of ovariectomized mice did not reduce T SKIN during the dark phase. Subcutaneous injections of an NK 3 receptor agonist (senktide) in ovariectomized mice caused an acute increase in T SKIN and a reduction in T CORE , consistent with the activation of heat dissipation effectors. These changes were reduced by estradiol, suggesting that estradiol lowers the sensitivity of central thermoregulatory pathways to NK 3 receptor activation. Overall, we show that estradiol treatment of ovariectomized mice decreases T CORE during the light phase, reduces the thermoregulatory effects of senktide and modulates thermoregulation differently than previously described in the rat.

  9. Molecular cloning and expression of rat and mouse B61 gene: implications on organogenesis.

    PubMed

    Takahashi, H; Ikeda, T

    1995-09-07

    ECK is a member of EPH receptor protein-tyrosine kinase subfamily and human B61 has been identified as the ligand for ECK recently. In order to better understand the roles of B61-ECK signalling pathway in mammalian development, we have cloned rat and mouse B61 cDNA and examined the expression pattern during rat development. Sequence analysis has revealed that there is a considerable degree of identity among rat, mouse and human B61 (98.0% between rat and mouse, 86.3% between rat and human in amino acid level). Examination of B61 mRNA expression by in situ hybridization analysis revealed tight association of B61 with endothelial cells at an early stage and epithelial cells in various tissues including lung, kidney, intestine, skin at later stage of organogenesis. In the developing skeletal system, B61 is expressed in periosteum, perichondrium and hypertrophic chondrocytes and osteoblasts. In the developing nervous system, expression of B61 is restricted in the neurons of dorsal root ganglia. These expression profiles of B61 in epithelial cells of various organs, developing skeletal system and dorsal root ganglia match those of ECK. Our data suggest that B61 plays pivotal roles in organogenesis, especially vasculogenesis/angiogenesis and epithelial cell proliferation/differentiation.

  10. 7,3′,4′-Trihydroxyisoflavone, a Metabolite of the Soy Isoflavone Daidzein, Suppresses Ultraviolet B-induced Skin Cancer by Targeting Cot and MKK4*

    PubMed Central

    Lee, Dong Eun; Lee, Ki Won; Byun, Sanguine; Jung, Sung Keun; Song, Nury; Lim, Sung Hwan; Heo, Yong-Seok; Kim, Jong Eun; Kang, Nam Joo; Kim, Bo Yeon; Bowden, G. Tim; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2011-01-01

    Nonmelanoma skin cancer is one of the most frequently occurring cancers in the United States. Chronic exposure to UVB irradiation is a major cause of this cancer. Daidzein, along with genistein, is a major isoflavone found in soybeans; however, little is known about the chemopreventive effects of daidzein and its metabolites in UVB-induced skin cancer. Here, we found that 7,3′,4′-trihydroxyisoflavone (THIF), a major metabolite of daidzein, effectively inhibits UVB-induced cyclooxygenase 2 (COX-2) expression through the inhibition of NF-κB transcription activity in mouse skin epidermal JB6 P+ cells. In contrast, daidzein had no effect on COX-2 expression levels. Data from Western blot and kinase assays showed that 7,3′,4′-THIF inhibited Cot and MKK4 activity, thereby suppressing UVB-induced phosphorylation of mitogen-activated protein kinases. Pull-down assays indicated that 7,3′,4′-THIF competed with ATP to inhibit Cot or MKK4 activity. Topical application of 7,3′,4′-THIF clearly suppressed the incidence and multiplicity of UVB-induced tumors in hairless mouse skin. Hairless mouse skin results also showed that 7,3′,4′-THIF inhibits Cot or MKK4 kinase activity directly, resulting in suppressed UVB-induced COX-2 expression. A docking study revealed that 7,3′,4′-THIF, but not daidzein, easily docked to the ATP binding site of Cot and MKK4, which is located between the N- and C-lobes of the kinase domain. Collectively, these results provide insight into the biological actions of 7,3′,4′-THIF, a potential skin cancer chemopreventive agent. PMID:21378167

  11. 7,3',4'-Trihydroxyisoflavone, a metabolite of the soy isoflavone daidzein, suppresses ultraviolet B-induced skin cancer by targeting Cot and MKK4.

    PubMed

    Lee, Dong Eun; Lee, Ki Won; Byun, Sanguine; Jung, Sung Keun; Song, Nury; Lim, Sung Hwan; Heo, Yong-Seok; Kim, Jong Eun; Kang, Nam Joo; Kim, Bo Yeon; Bowden, G Tim; Bode, Ann M; Lee, Hyong Joo; Dong, Zigang

    2011-04-22

    Nonmelanoma skin cancer is one of the most frequently occurring cancers in the United States. Chronic exposure to UVB irradiation is a major cause of this cancer. Daidzein, along with genistein, is a major isoflavone found in soybeans; however, little is known about the chemopreventive effects of daidzein and its metabolites in UVB-induced skin cancer. Here, we found that 7,3',4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, effectively inhibits UVB-induced cyclooxygenase 2 (COX-2) expression through the inhibition of NF-κB transcription activity in mouse skin epidermal JB6 P+ cells. In contrast, daidzein had no effect on COX-2 expression levels. Data from Western blot and kinase assays showed that 7,3',4'-THIF inhibited Cot and MKK4 activity, thereby suppressing UVB-induced phosphorylation of mitogen-activated protein kinases. Pull-down assays indicated that 7,3',4'-THIF competed with ATP to inhibit Cot or MKK4 activity. Topical application of 7,3',4'-THIF clearly suppressed the incidence and multiplicity of UVB-induced tumors in hairless mouse skin. Hairless mouse skin results also showed that 7,3',4'-THIF inhibits Cot or MKK4 kinase activity directly, resulting in suppressed UVB-induced COX-2 expression. A docking study revealed that 7,3',4'-THIF, but not daidzein, easily docked to the ATP binding site of Cot and MKK4, which is located between the N- and C-lobes of the kinase domain. Collectively, these results provide insight into the biological actions of 7,3',4'-THIF, a potential skin cancer chemopreventive agent.

  12. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Enhancement of transdermal protein delivery by photothermal effect of gold nanorods coated on polysaccharide-based hydrogel.

    PubMed

    Haine, Aung Thu; Koga, Yuki; Hashimoto, Yuta; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi; Niidome, Takuro

    2017-10-01

    Transdermal protein delivery is a useful and attractive method for protein therapy and dermal vaccination. However, this delivery method is restricted by the low permeability of the stratum corneum. The purpose of this study was to develop a transdermal delivery system for enhancement of protein permeability into the skin. First, we prepared a transparent gel patch made of polysaccharides with gold nanorods on the gel surface and fluorescein isothiocyanate-modified ovalbumin (FITC-OVA) inside. Next, the gel patch was placed on mouse skin to allow contact with the coated gold nanorods, and irradiated by a continuous-wave laser. The laser irradiation heated the gold nanorods and the skin temperature increased to 43°C, resulting in enhanced translocation of FITC-OVA into the skin. These results confirmed the capability of the transdermal protein delivery system to perforate the stratum corneum and thus facilitate the passage of proteins across the skin. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    PubMed

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  15. Bifidobacterium-fermented soy milk extract stimulates hyaluronic acid production in human skin cells and hairless mouse skin.

    PubMed

    Miyazaki, K; Hanamizu, T; Iizuka, R; Chiba, K

    2003-01-01

    We examined the effects of Bifidobasterium-fermented (BE) and nonfermented (SME) soy milk extracts on the production of hyaluronic acid (HA) in vitro and in vivo. BE, but not SME, significantly enhanced the production of HA in monolayer and organotypic cultures of human keratinocytes, in cultures of human skin fibroblasts, and in hairless mouse skin following topical application for 2 weeks. In the organotypic cultures formed by a similar structure to human epidermis, BE also extended the distribution of HA. Genistein and daidzein, known to stimulate HA production, were detected in BE at a concentration of 0.18 and 0.07 mM, respectively, but not in SME. Therefore, BE has the potential to enhance HA production in the epidermis and dermis, mainly due to genistein released from its glycoside during fermentation. BE is expected to prevent the age-dependent loss of cutaneous HA. Copyright 2003 S. Karger AG, Basel

  16. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    PubMed

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the varying electric pulse amplitude, the amount of topical and transdermal drug delivery to the skin can be controlled. Furthermore, the newly developed monitoring system provides a tool for rapid real-time determination of both, transdermal and topical delivery, when the delivered molecule is fluorescent. © 2013 Elsevier B.V. All rights reserved.

  17. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation.

    PubMed

    Han, Mira; Ban, Jae-Jun; Bae, Jung-Soo; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-11-14

    The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.

  18. Heat loss regulation: role of appendages and torso in the deer mouse and the white rabbit.

    PubMed

    Conley, K E; Porter, W P

    1985-01-01

    Thermal conductance was subdivided into the component conductances of the appendages and torso using a heat transfer analysis for the deer mouse, Peromyscus maniculatus, and the white rabbit, Oryctolagus cuniculus. Our analysis was based on laboratory measurements of skin temperature and respiratory gas exchange made between air temperatures of 8 and 34 degrees C for the deer mouse, and from published data for the white rabbit. Two series conductances to heat transfer for each appendage and torso were evaluated: internal (hin), for blood flow and tissue conduction to the skin surface, and external (hex), for heat loss from the skin surface to the environment. These two series conductances were represented in a single, total conductance (htot). The limit to htot was set by hex and was reached by the torso htot of both animals. The increase in torso htot observed with air temperature for the mouse suggests that a pilomotor change in fur depth occurred. A control of htot below the limit set by hex was achieved by the hin of each appendage. Elevation of mouse thermal conductance (C) resulted from increases in feet, tail, and torso htot. In contrast, the rabbit showed no change in torso htot between 5 and 30 degrees C and ear htot exclusively increased C over these air temperatures. We suggest that the hyperthermia reported for the rabbit at 35 degrees C resulted from C reaching the physical limit set by torso and near hex. Thus the ear alone adjusted rabbit C, whereas the feet, tail, and the torso contributed to the adjustment of mouse C.

  19. The Snowballing Literature on Imiquimod-Induced Skin Inflammation in Mice: A Critical Appraisal

    PubMed Central

    Hawkes, Jason E.; Gudjonsson, Johann E.; Ward, Nicole L.

    2016-01-01

    Since 2009, the imiquimod- or Aldara-induced (3M Pharmaceuticals, St. Paul, MN) model of acute skin inflammation has become the most widely used mouse model in preclinical psoriasis studies. Although this model offers researchers numerous benefits, there are important limitations and possible confounding variables to consider. The imiquimod model requires careful consideration and warrants scrutiny of the data generated by its use. In this perspective, we provide an overview of the advantages and disadvantages of this mouse model and offer suggestions for its use in psoriasis research. PMID:27955901

  20. Isotypes and antigenic profiles of pemphigus foliaceus and pemphigus vulgaris autoantibodies.

    PubMed

    Hacker, Mary K; Janson, Marleen; Fairley, Janet A; Lin, Mong-Shang

    2002-10-01

    In this study we systematically characterized isotype profiles and antigenic and tissue specificity of antidesmoglein autoantibodies from patients with pemphigus foliaceus (PF) and pemphigus vulgaris (PV) using enzyme-linked immunoabsorbent assays (ELISA), indirect immunofluorescence (IIF) staining, and immunoblotting (IB). In PF, we found that IgG1 antidesmoglein-1 (Dsg1) reacts with a linear epitope(s) on the ectodomain of Dsg1, while its IgG4 counterpart recognizes a conformational epitope(s). These two subclasses of anti-Dsg1 are both capable of recognizing tissues from monkey esophagus and adult human skin, but IgG1 is not able to react with mouse skin, which may explain why this isotype of anti-Dsg1 failed to induce PF-like lesions in the passive transfer animal model. In mucosal PV patients, we found that both IgG1 and IgG4 only recognized monkey esophagus tissue by IIF, except in one patient, indicating that these antibodies react with a unique conformational epitope(s) that is present in mucosal but not skin tissue. In generalized PV, IgG1 anti-Dsg3 autoantibodies appeared to recognize a linear epitope(s) on the Dsg3 ectodomain. In contrast, IgG4 anti-Dsg3 antibodies recognized both linear and conformational epitopes on the Dsg3 molecule. Interestingly, the IgG1 anti-Dsg3 antibodies failed to react with human and mouse skin tissues, suggesting that this subclass of autoantibodies may not play an essential role in the development of PV suprabasilar lesions. In summary, we conclude that this study further elucidates the pathological mechanisms of PF and PV autoantibodies by revealing their distinct isotype and antigenic profiles. This information may help us to better understand the autoimmune mechanisms underlying the development of pemphigus.

  1. Spontaneous Development of Cutaneous Squamous Cell Carcinoma in Mice with Cell-specific Deletion of Inhibitor of κB Kinase 2

    PubMed Central

    Kirkley, Kelly S; Walton, Kelly D; Duncan, Colleen; Tjalkens, Ronald B

    2017-01-01

    The deletion of NFκB in epithelial tissues by using skin-specific promoters can cause both tumor formation and severe inflammatory dermatitis, indicating that this signaling pathway is important for the maintenance of immune homeostasis in epithelial tissues. In the present study, we crossed mice transgenic for loxP-Ikbk2 and human Gfap-cre to selectively delete IKK2 in CNS astrocytes. Unexpectedly, a subset of mice developed severe and progressive skin lesions marked by hyperplasia, hyperkeratosis, dysplasia, inflammation, and neoplasia with a subset of lesions diagnosed as squamous cell carcinoma (SCC). The development of lesions was monitored over a 3.5-y period and over 4 filial generations. Average age of onset of was 4 mo of age with 19.5% of mice affected with frequency increasing in progressive generations. Lesion development appeared to correlate not only with unintended IKK2 deletion in GFAP expressing cells of the epidermis, but also with increased expression of TNF in lesioned skin. The skins changes described in these animals are similar to those in transgenic mice with an epidermis-specific deletion of NFκB and thus represents another genetic mouse model that can be used to study the role of NFκB signaling in regulating the development of SCC. PMID:28935002

  2. Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice

    PubMed Central

    Chiu, Hui-Wen; Chen, Cheng-Hsien; Chen, Yi-Jie; Hsu, Yung-Ho

    2017-01-01

    Ultraviolet (UV) induces skin photoaging, which is characterized by thickening, wrinkling, pigmentation, and dryness. Collagen, which is one of the main building blocks of human skin, is regulated by collagen synthesis and collagen breakdown. Autophagy was found to block the epidermal hyperproliferative response to UVB and may play a crucial role in preventing skin photoaging. In the present study, we investigated whether far-infrared (FIR) therapy can inhibit skin photoaging via UVB irradiation in NIH 3T3 mouse embryonic fibroblasts and SKH-1 hairless mice. We found that FIR treatment significantly increased procollagen type I through the induction of the TGF-β/Smad axis. Furthermore, UVB significantly enhanced the expression of matrix metalloproteinase-1 (MMP-1) and MMP-9. FIR inhibited UVB-induced MMP-1 and MMP-9. Treatment with FIR reversed UVB-decreased type I collagen. In addition, FIR induced autophagy by inhibiting the Akt/mTOR signaling pathway. In UVB-induced skin photoaging in a hairless mouse model, FIR treatment resulted in decreased skin thickness in UVB irradiated mice and inhibited the degradation of collagen fibers. Moreover, FIR can increase procollagen type I via the inhibition of MMP-9 and induction of TGF-β in skin tissues. Therefore, our study provides evidence for the beneficial effects of FIR exposure in a model of skin photoaging. PMID:28301572

  3. Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma

    PubMed Central

    Anna, Brozyna; Blazej, Zbytek; Jacqueline, Granese; Andrew, Carlson J.; Jeffrey, Ross; Andrzej, Slominski

    2008-01-01

    Summary Melanoma consists 4–5 % of all skin cancers, but it contributes to 71–80 % of skin cancers deaths. UV light affects cell and tissue homeostasis due to its damaging effects on DNA integrity and modification of expression of a plethora of genes. DNA repair systems protect cells from UV-induced lesions. Several animal models of melanoma have been developed (Xiphophorus, Opossum Monodelphis domestica, mouse models and human skin engrafts into other animals). This review discusses possible links between UV and genes significantly related to melanoma but does not discuss melanoma genetics. These include oncogenes, tumor suppressor genes, genes related to melanocyte-keratinocyte and melanocyte-matrix interaction, growth factors and their receptors, CRH, ACTH, α-MSH, glucocorticoids, ID1, NF-kappaB and vitamin D3. PMID:18846265

  4. A Method for the Immortalization of Newborn Mouse Skin Keratinocytes

    PubMed Central

    Hammiller, Brianna O.; El-Abaseri, Taghrid Bahig; Dlugosz, Andrzej A.; Hansen, Laura A.

    2015-01-01

    Isolation and culture of mouse primary epidermal keratinocytes is a common technique that allows for easy genetic and environmental manipulation. However, due to their limited lifespan in culture, experiments utilizing primary keratinocytes require large numbers of animals, and are time consuming and expensive. To avoid these issues, we developed a method for the immortalization of primary mouse epidermal keratinocytes. Upon isolation of newborn epidermal keratinocytes according to established methods, the cells were cultured long-term in keratinocyte growth factor-containing medium. The cells senesced within a few weeks and eventually, small, slowly growing colonies emerged. After they regained confluency, the cells were passaged and slowly refilled the dish. With several rounds of subculture, the cells adapted to culture conditions, were easily subcultured, maintained normal morphology, and were apparently immortal. The immortalized cells retained the ability to differentiate with increased calcium concentrations, and were maintained to high passage numbers while maintaining a relatively stable karyotype. Analysis of multiple immortalized cell lines as well as primary keratinocyte cultures revealed increased numbers of chromosomes, especially in the primary keratinocytes, and chromosomal aberrations in most of the immortalized cultures and in the primary keratinocytes. Orthotopic grafting of immortalized keratinocytes together with fibroblasts onto nude mouse hosts produced skin while v-rasHa infection of the immortalized keratinocytes prior to grafting produced squamous cell carcinoma. In summary, this method of cell line generation allows for decreased use of animals, reduces the expense and time involved in research, and provides a useful model for cutaneous keratinocyte experimentation. PMID:26284198

  5. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response.

    PubMed

    Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine

    2018-01-01

    The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. cDNA cloning and characterization of mouse DTEF-1 and ETF, members of the TEA/ATTS family of transcription factors.

    PubMed

    Yockey, C E; Shimizu, N

    1998-02-01

    Members of the TEA/ATTS family of transcription factors have been found in most representative eukaryotic organisms. In vertebrates, the TEA family contains at least four members, which share overlapping DNA-binding specificity and have similar transcriptional activation properties. In this article, we describe the cDNA cloning and characterization of the murine TEA proteins DTEF-1 (mDTEF-1) and ETF. Using in situ hybridization analysis of mouse embryos, we found that mDTEF-1 and ETF transcript distributions substantially overlap. ETF is expressed throughout the embryo except in the myocardium early in development, whereas late in development, it is enriched in lung and neuroectoderm. Mouse DTEF-1 is expressed at a much lower level throughout development and is substantially enriched in ectoderm and skin, as well as in the developing pituitary at midgestation. Northern blot analysis of adult mouse tissue total RNA showed that both ETF and mDTEF-1 are abundant in uterus and lung relative to other tissues. Using gel mobility shift assays and GAL4-fusion protein analysis, we demonstrated that the full coding sequences of ETF and mDTEF-1 encode M-CAT/GT-IIC-binding proteins containing activation domains.

  7. Leptin induction following irradiation is a conserved feature in mammalian epithelial cells and tissues.

    PubMed

    Licursi, Valerio; Cestelli Guidi, Mariangela; Del Vecchio, Giorgia; Mannironi, Cecilia; Presutti, Carlo; Amendola, Roberto; Negri, Rodolfo

    2017-09-01

    Leptin (LEP) is a peptide hormone with multiple physiological functions. Besides its systemic actions, it has important peripheral roles such as a mitogen action on keratinocytes following skin lesions. We previously showed that LEP mRNA is significantly induced in response to neutron irradiation in mouse skin and that the protein increases in the irradiated epidermis and in the related subcutaneous adipose tissue. In this work, we investigated the post-transcriptional regulation of LEP by miRNAs and the conservation of LEP's role in radiation response in human cells. We used microarray analysis and real-time polymerase chain reaction (RT-PCR) to analyze modulation of miRNAs potentially targeting LEP in mouse skin following irradiation and bioinformatic analysis of transcriptome of irradiated human cell lines and cancer tissues from radiotherapy-treated patients to evaluate LEP expression. We show that a network of miRNAs potentially targeting LEP mRNA is modulated in irradiated mouse skin and that LEP itself is significantly modulated by irradiation in human epithelial cell lines and in breast cancer tissues from radiotherapy-treated patients. These results confirm and extend the previous evidence that LEP has a general and important role in the response of mammalian cells to irradiation.

  8. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4.

    PubMed

    Chen, Chih-Chiang; Murray, Philip J; Jiang, Ting Xin; Plikus, Maksim V; Chang, Yun-Ting; Lee, Oscar K; Widelitz, Randall B; Chuong, Cheng-Ming

    2014-08-01

    Hair cycling is modulated by factors both intrinsic and extrinsic to hair follicles. Cycling defects lead to conditions such as aging-associated alopecia. Recently, we demonstrated that mouse skin exhibits regenerative hair waves, reflecting a coordinated regenerative behavior in follicle populations. Here, we use this model to explore the regenerative behavior of aging mouse skin. Old mice (>18 months) tracked over several months show that with progressing age, hair waves slow down, wave propagation becomes restricted, and hair cycle domains fragment into smaller domains. Transplanting aged donor mouse skin to a young host can restore donor cycling within a 3 mm range of the interface, suggesting that changes are due to extracellular factors. Therefore, hair stem cells in aged skin can be reactivated. Molecular studies show that extra-follicular modulators Bmp2, Dkk1, and Sfrp4 increase in early anagen. Further, we identify follistatin as an extra-follicular modulator, which is highly expressed in late telogen and early anagen. Indeed, follistatin induces hair wave propagation and its level decreases in aging mice. We present an excitable medium model to simulate the cycling behavior in aging mice and illustrate how the interorgan macroenvironment can regulate the aging process by integrating both "activator" and "inhibitor" signals.

  9. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry.

    PubMed

    Dong, Yang; He, Honghui; Sheng, Wei; Wu, Jian; Ma, Hui

    2017-10-31

    Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.

  10. Effects of the nonsugar fraction of brown sugar on chronic ultraviolet B irradiation-induced photoaging in melanin-possessing hairless mice.

    PubMed

    Sumiyoshi, Maho; Hayashi, Teruaki; Kimura, Yoshiyuki

    2009-04-01

    Brown sugar has been used traditionally for the treatment of skin trouble as a component of soaps or lotions. Symptoms of aging including wrinkles and pigmentation develop earlier in sun-exposed skin than unexposed skin, a phenomenon referred to as photoaging. Ultraviolet B (UVB) radiation is one of the most important environmental factors influencing photoaging. The aim of this study was to clarify whether the nonsugar fraction of brown sugar prevents chronic UVB-induced aging of the skin using melanin-possessing hairless mice. The nonsugar fraction (1% or 3% solution, 50 mul/mouse) was applied topically to the dorsal region every day for 19 weeks. Both solutions prevented an increase in skin thickness and reduction in skin elasticity caused by the UVB. The 3% solution also prevented wrinkles and melanin pigmentation as well as increases in the diameter and length of skin blood vessels. Increases in the expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in UVB-irradiated skin was inhibited by the nonsugar fraction. Prevention of UVB-induced aging of the skin by topical application of the nonsugar fraction of brown sugar may be due to inhibition of increases in MMP-2 and VEGF expression.

  11. Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease?

    PubMed

    Aziz, Moammir Hasan; Reagan-Shaw, Shannon; Wu, Jianqiang; Longley, B Jack; Ahmad, Nihal

    2005-07-01

    According to the World Cancer Report, skin cancer constitutes approximately 30% of all newly diagnosed cancers in the world, and solar ultraviolet (UV) radiation (particularly, its UVB component; 290-320 nm) is an established cause of approximately 90% of skin cancers. The available options have proven to be inadequate for the management of skin cancers. Therefore, there is an urgent need to develop mechanism-based novel approaches for prevention/therapy of skin cancer. In this study, we evaluated the chemopreventive effects of resveratrol against UVB radiation-mediated skin tumorigenesis in the SKH-1 hairless mouse model. For our studies, we used a UVB initiation-promotion protocol in which the control mice were subjected to chronic UVB exposure (180 mJ/cm2, twice weekly, for 28 weeks). The experimental animals received either a pretreatment (30 min before each UVB) or post-treatment (5 min after UVB) of resveratrol (25 or 50 micro mole/0.2 ml acetone/mouse). The mice were followed for skin tumorigenesis and were killed at 24 h after the last UVB exposure, for further studies. The topical application of skin with resveratrol (both pre- and post- treatment) resulted in a highly significant 1) inhibition in tumor incidence, and 2) delay in the onset of tumorigenesis. Interestingly, the post-treatment of resveratrol was found to impart equal protection than the pretreatment; suggesting that resveratrol-mediated responses may not be sunscreen effects. Because Survivin is a critical regulator of survival/death of cells, and its overexpression has been implicated in several cancers, we evaluated its involvement in chemoprevention of UVB-mediated skin carcinogenesis by resveratrol. Our data demonstrated a significant 1) up-regulation of Survivin (both at protein- and mRNA- levels), 2) up-regulation of phospho-Survivin protein, and 3) down-regulation of proapoptotic Smac/DIABLO protein in skin tumors; whereas treatment with resveratrol resulted in the attenuation of these responses. Our study also suggests that resveratrol enhanced apoptosis in UVB-exposure-mediated skin tumors. Our study, for the first time, demonstrated that 1) resveratrol imparts strong chemopreventive effects against UVB exposure-mediated skin carcinogenesis (relevant to human skin cancers), and 2) the chemopreventive effects of resveratrol may, at least in part, be mediated via modulations in Survivin and other associated events. On the basis of our work, it is conceivable to design resveratrol-containing emollient or patch, as well as sunscreen and skin-care products for prevention of skin cancer and other conditions, which are believed to be caused by UV radiation.

  12. Quantification of aortic and cutaneous elastin and collagen morphology in Marfan syndrome by multiphoton microscopy.

    PubMed

    Cui, Jason Z; Tehrani, Arash Y; Jett, Kimberly A; Bernatchez, Pascal; van Breemen, Cornelis; Esfandiarei, Mitra

    2014-09-01

    In a mouse model of Marfan syndrome, conventional Verhoeff-Van Gieson staining displays severe fragmentation, disorganization and loss of the aortic elastic fiber integrity. However, this method involves chemical fixatives and staining, which may alter the native morphology of elastin and collagen. Thus far, quantitative analysis of fiber damage in aorta and skin in Marfan syndrome has not yet been explored. In this study, we have used an advanced noninvasive and label-free imaging technique, multiphoton microscopy to quantify fiber fragmentation, disorganization, and total volumetric density of aortic and cutaneous elastin and collagen in a mouse model of Marfan syndrome. Aorta and skin samples were harvested from Marfan and control mice aged 3-, 6- and 9-month. Elastin and collagen were identified based on two-photon excitation fluorescence and second-harmonic-generation signals, respectively, without exogenous label. Measurement of fiber length indicated significant fragmentation in Marfan vs. control. Fast Fourier transform algorithm analysis demonstrated markedly lower fiber organization in Marfan mice. Significantly reduced volumetric density of elastin and collagen and thinner skin dermis were observed in Marfan mice. Cutaneous content of elastic fibers and thickness of dermis in 3-month Marfan resembled those in the oldest control mice. Our findings of early signs of fiber degradation and thinning of skin dermis support the potential development of a novel non-invasive approach for early diagnosis of Marfan syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Tannic acid modulates NFκB signaling pathway and skin inflammation in NC/Nga mice through PPARγ expression.

    PubMed

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Thandavarayan, Rajarajan Amirthalingam; Pitchaimani, Vigneshwaran; Sreedhar, Remya; Afrin, Rejina; Harima, Meilei; Suzuki, Hiroshi; Nomoto, Mayumi; Miyashita, Shizuka; Suzuki, Kenji; Nakamura, Masahiko; Ueno, Kazuyuki; Watanabe, Kenichi

    2015-12-01

    Polyphenolic compound tannic acid, which is mainly found in grapes and green tea, is a potent antioxidant with anticarcinogenic activities. In this present study, we hypothesized that tannic acid could inhibit nuclear factor (NF)κB signaling and inflammation in atopic dermatitis (AD) NC/Nga mice. We have analyzed the effects of tannic acid on dermatitis severity, histopathology and expression of inflammatory signaling proteins in house dust mite extract induced AD mouse skin. In addition, serum levels of T helper (Th) cytokines (interferon (IFN)γ, interleukin (IL)-4) were measured by enzyme-linked immunosorbent assay. Treatment with tannic acid ameliorated the development of AD-like clinical symptoms and effectively inhibited hyperkeratosis, parakeratosis, acanthosis, mast cells and infiltration of inflammatory cells in the AD mouse skin. Serum levels of IFNγ and IL-4 were significantly down-regulated by tannic acid. Furthermore, tannic acid treatment inhibited DfE induced tumor necrosis factor (TNF)α, high mobility group protein (HMG)B1, receptor for advanced glycation end products (RAGE), extracellular signal-regulated kinase (ERK)1/2, NFκB, cyclooxygenase (COX)2, IL-1β and increased the protein expression of peroxisome proliferator-activated receptor (PPAR)γ. Taken together, our results demonstrate that, DfE induced skin inflammation might be mediated through NFκB signaling and tannic acid may be a potential therapeutic agent for AD, which may possibly act via induction of PPARγ protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Photoprotective effects of methoxycinnamidopropyl polysilsesquioxane.

    PubMed

    Choi, Dae-Kyoung; Jung, Taek Kyu; Lim, Tae-Yeon; Kim, Tae-Heung; Kim, Young Baek; Lee, Jeung-Hoon; Yoon, Kyung-Sup; Yoon, Tae-Jin

    2011-01-01

    A new sunscreen ingredient, methoxycinnamidopropyl polysilsesquioxane (MCP-PSQ), which contains an UV-absorbing p-methoxycinnamoyl group, has been developed synthetically and evaluated using in vitro and in vivo approaches. Previous studies revealed that MCP-PSQ has a raising or boosting effect on the sun protection factor (SPF) of other sunscreen agents. In this study, we demonstrated that MCP-PSQ, an organic/inorganic hybrid compound, has photoprotective effects for human fibroblasts, and for hairless mouse and human skin. MCP-PSQ increases cell viability and suppresses the expression of p53 protein in fibroblasts after UV exposure. In addition, the numbers of sunburn cells and mast cells are reduced by topical application of MCP-PSQ on hairless mouse skin after UV irradiation. A 10% MCP-PSQ cream has higher and similar effects on SPF values for human skin compared to 5% titanium dioxide (TiO(2)) and 5% ethylhexyl methoxycinnamate (EHMC), respectively. The SPF value obtained using the MCP-PSQ cream did not drop after UV irradiation of the cream itself. However, higher dose of UV irradiation is required to guarantee the stability or photostability of the formulation. Further, there were no side effects such as erythema, edema, itch or tingling, suggesting that MCP-PSQ is a good sunscreen agent. © 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  15. Pig but not Human Interferon-γ Initiates Human Cell-Mediated Rejection of Pig Tissue in vivo

    NASA Astrophysics Data System (ADS)

    Sultan, Parvez; Murray, Allan G.; McNiff, Jennifer M.; Lorber, Marc I.; Askenase, Philip W.; Bothwell, Alfred L. M.; Pober, Jordan S.

    1997-08-01

    Split-thickness pig skin was transplanted on severe combined immunodeficient mice so that pig dermal microvessels spontaneously inosculated with mouse microvessels and functioned to perfuse the grafts. Pig endothelial cells in the healed grafts constitutively expressed class I and class II major histocompatibility complex molecules. Major histocompatibility complex molecule expression could be further increased by intradermal injection of pig interferon-γ (IFN-γ ) but not human IFN-γ or tumor necrosis factor. Grafts injected with pig IFN-γ also developed a sparse infiltrate of mouse neutrophils and eosinophils without evidence of injury. Introduction of human peripheral blood mononuclear cells into the animals by intraperitoneal inoculation resulted in sparse perivascular mononuclear cell infiltrates in the grafts confined to the pig dermis. Injection of pig skin grafts on mice that received human peripheral blood mononuclear cells with pig IFN-γ (but not human IFN-γ or heat-inactivated pig IFN-γ ) induced human CD4+ and CD8+ T cells and macrophages to more extensively infiltrate the pig skin grafts and injure pig dermal microvessels. These findings suggest that human T cell-mediated rejection of xenotransplanted pig organs may be prevented if cellular sources of pig interferon (e.g., passenger lymphocytes) are eliminated from the graft.

  16. Cellular reprogramming in skin cancer.

    PubMed

    Song, Ihn Young; Balmain, Allan

    2015-06-01

    Early primitive stem cells have long been viewed as the cancer cells of origin (tumor initiating target cells) due to their intrinsic features of self-renewal and longevity. However, emerging evidence suggests a surprising capacity for normal committed cells to function as reserve stem cells upon reprogramming as a consequence of tissue damage resulting in inflammation and wound healing. This results in an alternative concept positing that tumors may originate from differentiated cells that can re-acquire stem cell properties due to genetic or epigenetic reprogramming. It is likely that both models are correct, and that a continuum of potential cells of origin exists, ranging from early primitive stem cells to committed progenitor or even terminally differentiated cells. A combination of the nature of the target cell and the specific types of gene mutations introduced determine tumor cell lineage, as well as potential for malignant conversion. Evidence from mouse skin models of carcinogenesis suggests that initiated cells at different stages within a stem cell hierarchy have varying degrees of requirement for reprogramming (e.g. inflammation stimuli), depending on their degree of differentiation. This article will present evidence in favor of these concepts that has been developed from studies of several mouse models of skin carcinogenesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. OCT-based in vivo tissue injury mapping

    NASA Astrophysics Data System (ADS)

    Baran, Utku; Li, Yuandong; Wang, Ruikang K.

    2016-03-01

    Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.

  18. Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis.

    PubMed

    Antsiferova, Maria; Martin, Caroline; Huber, Marcel; Feyerabend, Thorsten B; Förster, Anja; Hartmann, Karin; Rodewald, Hans-Reimer; Hohl, Daniel; Werner, Sabine

    2013-12-15

    The growth and differentiation factor activin A is a key regulator of tissue repair, inflammation, fibrosis, and tumorigenesis. However, the cellular targets, which mediate the different activin functions, are still largely unknown. In this study, we show that activin increases the number of mature mast cells in mouse skin in vivo. To determine the relevance of this finding for wound healing and skin carcinogenesis, we mated activin transgenic mice with CreMaster mice, which are characterized by Cre recombinase-mediated mast cell eradication. Using single- and double-mutant mice, we show that loss of mast cells neither affected the stimulatory effect of overexpressed activin on granulation tissue formation and reepithelialization of skin wounds nor its protumorigenic activity in a model of chemically induced skin carcinogenesis. Furthermore, mast cell deficiency did not alter wounding-induced inflammation and new tissue formation or chemically induced angiogenesis and tumorigenesis in mice with normal activin levels. These findings reveal that mast cells are not major targets of activin during wound healing and skin cancer development and also argue against nonredundant functions of mast cells in wound healing and skin carcinogenesis in general.

  19. Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis.

    PubMed

    Sirerol, J Antoni; Feddi, Fatima; Mena, Salvador; Rodriguez, María L; Sirera, Paula; Aupí, Miguel; Pérez, Salvador; Asensi, Miguel; Ortega, Angel; Estrela, José M

    2015-08-01

    The aim of our study was to investigate in the SKH-1 hairless mouse model the effect of pterostilbene (Pter), a natural dimethoxy analog of resveratrol (Resv), against procarcinogenic ultraviolet B radiation (UVB)-induced skin damage. Pter prevented acute UVB (360 mJ/cm(2))-induced increase in skin fold, thickness, and redness, as well as photoaging-associated skin wrinkling and hyperplasia. Pter, but not Resv, effectively prevented chronic UVB (180 mJ/cm(2), three doses/week for 6 months)-induced skin carcinogenesis (90% of Pter-treated mice did not develop skin carcinomas, whereas a large number of tumors were observed in all controls). This anticarcinogenic effect was associated with (a) maintenance of skin antioxidant defenses (i.e., glutathione (GSH) levels, catalase, superoxide, and GSH peroxidase activities) close to control values (untreated mice) and (b) an inhibition of UVB-induced oxidative damage (using as biomarkers 8-hydroxy-2'-deoxyguanosine, protein carbonyls, and isoprostanes). The molecular mechanism underlying the photoprotective effect elicited by Pter was further evaluated using HaCaT immortalized human keratinocytes and was shown to involve potential modulation of the Nrf2-dependent antioxidant response. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Anti-inflammatory and antitumor promotional effects of a novel urinary metabolite, 3',4'-didemethylnobiletin, derived from nobiletin.

    PubMed

    Lai, Ching-Shu; Li, Shiming; Chai, Chee-Yin; Lo, Chih-Yu; Dushenkov, Slavik; Ho, Chi-Tang; Pan, Min-Hsiung; Wang, Ying-Jan

    2008-12-01

    We reported previously that 3',4'-didemethylnobiletin (DDMN) is the major metabolite of nobiletin in mouse urine. In this study, we examined DDMN's molecular mechanism of action and its anti-inflammatory and antitumor properties. We demonstrated that topical application of DDMN effectively inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated transcription of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and ornithine decarboxylase (ODC) messenger RNA and protein expression in mouse skin. Pretreatment with DDMN has resulted in the reduction of TPA-induced nuclear translocation of the nuclear factor-kappa B (NF-kappaB) subunit. DDMN also reduced DNA binding by blocking phosphorylation of inhibitor kappaB (IkappaB) alpha and p65 and caused subsequent degradation of IkappaBalpha. DDMN inhibited TPA-induced phosphorylation and nuclear translocation of the signal transducer and activator of transcription 3. Moreover, DDMN suppressed TPA-induced activation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt and protein kinase C that are upstream of NF-kappaB and activator protien-1. We also found that DDMN significantly inhibited TPA-induced mouse skin inflammation by decreasing inflammatory parameters. Furthermore, DDMN significantly inhibited 7,12-dimethylbenz[a]anthracene/TPA-induced skin tumor formation measured by the tumor multiplicity of papillomas at 20 weeks. Presented data for the first time reveal that DDMN is an effective antitumor agent that functions by downregulating inflammatory iNOS, COX-2 and ODC gene expression in mouse skin. It is suggested that DDMN is a novel functional agent capable of preventing inflammation-associated tumorigenesis.

  1. AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model.

    PubMed

    Cochez, Perrine M; Michiels, Camille; Hendrickx, Emilie; Van Belle, Astrid B; Lemaire, Muriel M; Dauguet, Nicolas; Warnier, Guy; de Heusch, Magali; Togbe, Dieudonnée; Ryffel, Bernhard; Coulie, Pierre G; Renauld, Jean-Christophe; Dumoutier, Laure

    2016-06-01

    IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis. As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr(-/-) mice but less than in wild-type mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4(-) CD8(-) TCRβ(+) T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4(-) CD8(-) TCRβ(+) T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4(-) CD8(-) TCRβ(+) T cells and ILCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Evaluation of RNA quality in fixed and unembedded mouse embryos by different methods.

    PubMed

    Mu, Yuan; Zhou, Hong; Li, Wenyan; Hu, Lichao; Zhang, Yiting

    2013-10-01

    Many miRNAs are highly expressed in spatiotemporal and precise tissue-specific patterns in development. Thus it is necessary to examine their expression pattern in mouse embryos. However, embryos from one pregnant mouse are more than enough for expression analysis such as RT-qPCR, which results in reluctant disposal of remaining embryos. Due to the limitation of short sampling time, it is vitally important to quickly preserve samples to ensure the RNA quality. Thus, it is necessary to develop appropriate methods to fix samples in advance. In this study, two fixatives [methanol/DMSO (4:1) and paraformaldehyde] were applied for embryo (12.5 dpc) fixation and two preservatives (methanol and 30% sucrose) were used for fixed embryo preservation. After storage for one month, the skin, skeletal muscle and brain tissues were dissected from the fixed and unembedded embryos. Total RNAs were extracted by TRIzol® reagent and measured by a spectrophotometer, then were subjected to amplify Actb, Hprt, Gapdh, Rnu6, Snord68 and miR-206-3p by RT-qPCR. Embryos fixed in methanol/DMSO and preserved in 100% methanol at -20°C were able to yield at least 349 bp amplifiable RNA. Although paraformaldehyde fixation and 30% sucrose preservation method only yielded amplicons less than 156 bp, it showed a remarkable ability in preserving small RNAs. Snord68 was expressed stably across skin, skeletal muscle and brain tissues like Rnu6, making its possibility as an internal control for qPCR data normalization. Using Snord68 and/or Rnu6 as internal control, we found that the miR-206-3p expression level in skin was about one quarter of its highest level in the skeletal muscle. Therefore, the techniques in this study would be useful for us to reasonably utilize and preserve precious samples. © 2013.

  3. Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer.

    PubMed

    Shah, Palak; Trinh, Elaine; Qiang, Lei; Xie, Lishi; Hu, Wen-Yang; Prins, Gail S; Pi, Jingbo; He, Yu-Ying

    2017-01-24

    Exposure to inorganic arsenic in contaminated drinking water poses an environmental public health threat for hundreds of millions of people in the US and around the world. Arsenic is a known carcinogen for skin cancer. However, the mechanism by which arsenic induces skin cancer remains poorly understood. Here, we have shown that arsenic induces p62 expression in an autophagy-independent manner in human HaCaT keratinocytes. In mouse skin, chronic arsenic exposure through drinking water increases p62 protein levels in the epidermis. Nrf2 is required for basal and arsenic-induced p62 up-regulation. p62 knockdown reduces arsenic-induced Nrf2 activity, and induces sustained p21 up-regulation. p62 induction is associated with increased proliferation in mouse epidermis. p62 knockdown had little effect on arsenic-induced apoptosis, while it decreased cell proliferation following arsenic treatment. Our findings indicate that arsenic induces p62 expression to regulate the Nrf2 pathway in human keratinocytes and suggest that targeting p62 may help prevent arsenic-induced skin cancer.

  4. Lysyl Oxidase Is Essential for Normal Development and Function of the Respiratory System and for the Integrity of Elastic and Collagen Fibers in Various Tissues

    PubMed Central

    Mäki, Joni M.; Sormunen, Raija; Lippo, Sari; Kaarteenaho-Wiik, Riitta; Soininen, Raija; Myllyharju, Johanna

    2005-01-01

    Lysyl oxidases, a family comprising LOX and four LOX-like enzymes, catalyze crosslinking of elastin and collagens. Mouse Lox was recently shown to be crucial for development of the cardiovascular system because null mice died perinatally of aortic aneurysms and cardiovascular dysfunction. We show here that Lox is also essential for development of the respiratory system and the integrity of elastic and collagen fibers in the lungs and skin. The lungs of E18.5 Lox−/− embryos showed impaired development of the distal and proximal airways. Elastic fibers in E18.5 Lox−/− lungs were markedly less intensely stained and more disperse than in the wild type, especially in the mesenchyme surrounding the distal airways, bronchioles, bronchi, and trachea, and were fragmented in pulmonary arterial walls. The organization of individual collagen fibers into tight bundles was likewise abnormal. Similar elastic and collagen fiber abnormalities were seen in the skin. Lysyl oxidase activity in cultured Lox−/− skin fibroblasts and aortic smooth muscle cells was reduced by ∼80%, indicating that Lox is the main isoenzyme in these cells. LOX abnormalities may thus be critical for the pathogenesis of several common diseases, including pulmonary, skin, and cardiovascular disorders. PMID:16192629

  5. Effect of Thai banana (Musa AA group) in reducing accumulation of oxidation end products in UVB-irradiated mouse skin.

    PubMed

    Leerach, Nontaphat; Yakaew, Swanya; Phimnuan, Preeyawass; Soimee, Wichuda; Nakyai, Wongnapa; Luangbudnark, Witoo; Viyoch, Jarupa

    2017-03-01

    Chronic UVB exposure causes skin disorders and cancer through DNA strand breaks and oxidation of numerous functional groups of proteins and lipids in the skin. In this study, we investigated the effects of Thai banana (Musa AA group, "Khai," and Musa ABB group, "Namwa") on the prevention of UVB-induced skin damage when fed to male ICR mice. Mice were orally fed banana (Khai or Namwa) fruit pulps at dose of 1mg/g body weight/day for 12weeks. The shaved backs of the mice were irradiated with UVB for 12weeks. The intensity dose of UVB-exposure was increased from 54mJ/cm 2 /exposure at week 1 to 126mJ/cm 2 /exposure at week 12. A significant increase in skin thickness, lipid peroxidation, protein oxidation end products, and expression of MMP-1 was observed in UVB-irradiated mouse skin. A reduction in the accumulation of oxidation end products was found in the skin of UVB-irradiated mice receiving Khai. This occurred in conjunction with a reduction in MMP-1 expression, inhibition of epidermal thickening, and induction of γ-GCS expression. The dietary intake of Khai prevented skin damage from chronic UVB exposure by increased γ-GCS expression and reduced oxidation end products included carbonyls, malondialdehyde and 4-hydroxynonenal. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Anti-skin-aging effect of epigallocatechin gallate by regulating epidermal growth factor receptor pathway on aging mouse model induced by d-Galactose.

    PubMed

    Chen, Jiming; Li, Yifan; Zhu, Qiangqiang; Li, Tong; Lu, Hao; Wei, Nan; Huang, Yewei; Shi, Ruoyu; Ma, Xiao; Wang, Xuanjun; Sheng, Jun

    2017-06-01

    Epigallocatechin gallate(EGCG) is a monomer separated from tea catechins, as an well-known antioxidant, which helps fight wrinkles and rejuvenate skin cells. In this study, we investigated the anti-aging effect of EGCG, and to clarify underlying mechanism of skin aging in a d-galactose-induced aging mouse model. Forty-five male mice were divided into 5 groups and treated with different dose of EGCG, Vitamin C (VitC) to mice as a positive control. All groups except vehicle were established aging model induced by d-galactose (200mg/kg/day) that was subcutaneously injected to mice for 8 weeks. Two weeks after injection of d-galactose, EGCG and Vit C groups were simultaneously administered once a day by subcutaneously inject after 5h for injecting d-galactose. The results show that EGCG can be absorbed by the skin. Overall, the conditions of the skin of EGCG-treatment groups were improved, the whole structure of skin were better than control groups, and the levels of oxidative stress and the expression of relate with EGFR proteins were significantly higher than control group after EGCG treatment. All these findings suggest that EGCG can resist skin senility effectively. And the EGFR with relate of downstream proteins are implicated in the skin aging. Copyright © 2017. Published by Elsevier B.V.

  7. Correction of mouse ornithine transcarbamylase deficiency by gene transfer into the germ line.

    PubMed Central

    Cavard, C; Grimber, G; Dubois, N; Chasse, J F; Bennoun, M; Minet-Thuriaux, M; Kamoun, P; Briand, P

    1988-01-01

    The sparse fur with abnormal skin and hair (Spf-ash) mouse is a model for the human X-linked hereditary disorder, ornithine transcarbamylase (OTC) deficiency. In Spf-ash mice, both OTC mRNA and enzyme activity are 5% of control values resulting in hyperammonemia, pronounced orotic aciduria and an abnormal phenotype characterized by growth retardation and sparse fur. Using microinjection, we introduced a construction containing rat OTC cDNA linked to the SV40 early promoter into fertilized eggs of Spf-ash mice. The expression of the transgene resulted in the development of a transgenic mouse whose phenotype and orotic acid excretion are fully normalized. Thus, the possibility of correcting hereditary enzymatic defect by gene transfer of heterologous cDNA coding for the normal enzyme has been demonstrated. Images PMID:3162766

  8. Leptin deficiency in mice counteracts imiquimod (IMQ)-induced psoriasis-like skin inflammation while leptin stimulation induces inflammation in human keratinocytes.

    PubMed

    Stjernholm, Theresa; Ommen, Pernille; Langkilde, Ane; Johansen, Claus; Iversen, Lars; Rosada, Cecilia; Stenderup, Karin

    2017-04-01

    Leptin is an adipocyte-derived cytokine secreted mostly by adipose tissue. Serum leptin levels are elevated in obese individuals and correlate positively with body mass index (BMI). Interestingly, serum leptin levels are also elevated in patients with psoriasis and correlate positively with disease severity. Psoriasis is associated with obesity; patients with psoriasis have a higher incidence of obesity, and obese individuals have a higher risk of developing psoriasis. Additionally, obese patients with psoriasis experience a more severe degree of psoriasis. In this study, we hypothesised that leptin may link psoriasis and obesity and plays an aggravating role in psoriasis. To investigate leptin's role in psoriasis, we applied the widely accepted imiquimod (IMQ)-induced psoriasis-like skin inflammation mouse model on leptin-deficient (ob/ob) mice and evaluated psoriasis severity. Moreover, we stimulated human keratinocytes with leptin and investigated the effect on proliferation and expression of pro-inflammatory proteins. In ob/ob mice, clinical signs of erythema, infiltration and scales in dorsal skin and inflammation in ear skin, as measured by ear thickness, were attenuated and compared with wt mice. Moreover, IL-17A and IL-22 mRNA expression levels, as well as increased epidermal thickness, were significantly less induced. In vitro, the effect of leptin stimulation on human keratinocytes demonstrated increased proliferation and induced secretion of several pro-inflammatory proteins; two hallmarks of psoriasis. In conclusion, leptin deficiency attenuated IMQ-induced psoriasis-like skin inflammation in a mouse model, and leptin stimulation induced a pro-inflammatory phenotype in human keratinocytes, thus, supporting an aggravating role of leptin in psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.

    PubMed

    Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan

    2014-01-01

    Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health.

  10. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice

    PubMed Central

    Bagchi, Sreya; He, Ying; Zhang, Hong; Cao, Liang; Van Rhijn, Ildiko; Moody, D. Branch; Gudjonsson, Johann E.

    2017-01-01

    A large proportion of human T cells are autoreactive to group 1 CD1 proteins, which include CD1a, CD1b, and CD1c. However, the physiological role of the CD1 proteins remains poorly defined. Here, we have generated a double-transgenic mouse model that expresses human CD1b and CD1c molecules (hCD1Tg) as well as a CD1b-autoreactive TCR (HJ1Tg) in the ApoE-deficient background (hCD1Tg HJ1Tg Apoe–/– mice) to determine the role of CD1-autoreactive T cells in hyperlipidemia-associated inflammatory diseases. We found that hCD1Tg HJ1Tg Apoe–/– mice spontaneously developed psoriasiform skin inflammation characterized by T cell and neutrophil infiltration and a Th17-biased cytokine response. Anti–IL-17A treatment ameliorated skin inflammation in vivo. Additionally, phospholipids and cholesterol preferentially accumulated in diseased skin and these autoantigens directly activated CD1b-autoreactive HJ1 T cells. Furthermore, hyperlipidemic serum enhanced IL-6 secretion by CD1b+ DCs and increased IL-17A production by HJ1 T cells. In psoriatic patients, the frequency of CD1b-autoreactive T cells was increased compared with that in healthy controls. Thus, this study has demonstrated the pathogenic role of CD1b-autoreactive T cells under hyperlipidemic conditions in a mouse model of spontaneous skin inflammation. As a large proportion of psoriatic patients are dyslipidemic, this finding is of clinical significance and indicates that self-lipid–reactive T cells might serve as a possible link between hyperlipidemia and psoriasis. PMID:28463230

  11. Mousepox detected in a research facility: case report and failure of mouse antibody production testing to identify Ectromelia virus in contaminated mouse serum.

    PubMed

    Labelle, Philippe; Hahn, Nina E; Fraser, Jenelle K; Kendall, Lonnie V; Ziman, Melanie; James, Edward; Shastri, Nilabh; Griffey, Stephen M

    2009-04-01

    An outbreak of mousepox in a research institution was caused by Ectromelia-contaminated mouse serum that had been used for bone marrow cell culture and the cells subsequently injected into the footpads of mice. The disease initially was diagnosed by identification of gross and microscopic lesions typical for Ectromelia infection, including foci of necrosis in the liver and spleen and eosinophilic intracytoplasmic inclusion bodies in the skin. The source of infection was determined by PCR analysis to be serum obtained from a commercial vendor. To determine whether viral growth in tissue culture was required to induce viral infection, 36 mice (BALB/cJ, C57BL/6J) were experimentally exposed intraperitoneally, intradermally (footpad), or intranasally to contaminated serum or bone marrow cell cultures using the contaminated serum in the culture medium. Mice were euthanized when clinical signs developed or after 12 wk. Necropsy, PCR of spleen, and serum ELISA were performed on all mice. Mice injected with cell cultures and their cage contacts developed mousepox, antibodies to Ectromelia, and lesions, whereas mice injected with serum without cells did not. Mouse antibody production, a tool commonly used to screen biologic materials for viral contamination, failed to detect active Ectromelia contamination in mouse serum.

  12. Tissue distribution and developmental expression of type XVI collagen in the mouse.

    PubMed

    Lai, C H; Chu, M L

    1996-04-01

    The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.

  13. COMPARATIVE GENOTOXIC RESPONSES TO ARSENITE IN GUINEA PIG, MOUSE, RAT AND HUMAN LYMPHOCYTES

    EPA Science Inventory

    Comparative genotoxic responses to arsenite in guinea pig, mouse, rat and human
    lymphocytes.

    Inorganic arsenic is a known human carcinogen causing skin, lung, and bladder cancer following chronic exposures. Yet, long-term laboratory animal carcinogenicity studies have ...

  14. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensionalmore » space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.« less

  15. Characterization of Dendritic Cells Subpopulations in Skin and Afferent Lymph in the Swine Model

    PubMed Central

    Marquet, Florian; Bonneau, Michel; Pascale, Florentina; Urien, Celine; Kang, Chantal; Schwartz-Cornil, Isabelle; Bertho, Nicolas

    2011-01-01

    Transcutaneous delivery of vaccines to specific skin dendritic cells (DC) subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC) and dermal DC (DDC) that could be divided in 3 subsets according to their phenotypes: (1) the CD163neg/CD172aneg, (2) the CD163highCD172apos and (3) the CD163lowCD172apos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163negCD172low DDC share properties with the CD8+ T cell response-inducing murine skin CD103pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC. PMID:21298011

  16. The murine ufo receptor: molecular cloning, chromosomal localization and in situ expression analysis.

    PubMed

    Faust, M; Ebensperger, C; Schulz, A S; Schleithoff, L; Hameister, H; Bartram, C R; Janssen, J W

    1992-07-01

    We have cloned the mouse homologue of the ufo oncogene. It encodes a novel tyrosine kinase receptor characterized by a unique extracellular domain containing two immunoglobulin-like and two fibronectin type III repeats. Comparison of the predicted ufo amino acid sequences of mouse and man revealed an overall identity of 87.6%. The ufo locus maps to mouse chromosome 7A3-B1 and thereby extends the known conserved linkage group between mouse chromosome 7 and human chromosome 19. RNA in situ hybridization analysis established the onset of specific ufo expression in the late embryogenesis at day 12.5 post coitum (p.c.) and localized ufo transcription to distinct substructures of a broad spectrum of developing tissues (e.g. subepidermal cells of the skin, mesenchymal cells of the periosteum). In adult animals ufo is expressed in cells forming organ capsules as well as in connective tissue structures. ufo may function as a signal transducer between specific cell types of mesodermal origin.

  17. Mouse models for human hair loss disorders

    PubMed Central

    Porter, Rebecca M

    2003-01-01

    The outer surface of the hand, limb and body is covered by the epidermis, which is elaborated into a number of specialized appendages, evolved not only to protect and reinforce the skin but also for social signalling. The most prominent of these appendages is the hair follicle. Hair follicles are remarkable because of their prolific growth characteristics and their complexity of differentiation. After initial embryonic morphogenesis, the hair follicle undergoes repeated cycles of regression and regeneration throughout the lifetime of the organism. Studies of mouse mutants with hair loss phenotypes have suggested that the mechanisms controlling the hair cycle probably involve many of the major signalling molecules used elsewhere in development, although the complete pathway of hair follicle growth control is not yet understood. Mouse studies have also led to the discovery of genes underlying several human disorders. Future studies of mouse hair-loss mutants are likely to benefit the understanding of human hair loss as well as increasing our knowledge of mechanisms controlling morphogenesis and tumorigenesis. PMID:12587927

  18. Effects of Galla chinensis extracts on UVB-irradiated MMP-1 production in hairless mice.

    PubMed

    Sun, Zheng-wang; Hwang, Eunson; Lee, Hyun Ji; Lee, Tae Youp; Song, Hyun Geun; Park, Sang-Yong; Shin, Heon-Sub; Lee, Don-Gil; Yi, Tae Hoo

    2015-01-01

    Galla chinensis (GAC) is a natural traditional Chinese medicine that has been widely used in folk medicine. Although GAC compounds (mainly gallic acid and methyl gallate) possess strong antiviral, antibacterial, anticancer, and antioxidant activities, there is no report regarding topical or oral administration of GAC compounds on UVB irradiation-induced photoaging in hairless mice (SKH: HR-1). In the present study, we examined cell viability, intracellular reactive oxygen species (ROS), matrix metalloproteinase-1 (MMP-1), and interleukin-6 (IL-6) in skin fibroblasts and keratinocytes induced by UVB in vitro. We also studied skin damage by measuring skin thickness, elasticity, wrinkling and levels of protein MMP-1, elastin, procollagen type I, and transforming growth factor-β1 (TGF-β1) in hairless mouse skin chronically irradiated by UVB in vivo. GAC treatment significantly prevented skin photoaging by reducing the levels of ROS, MMP-1, and IL-6 and promoting production of elastin, procollagen type I, and TGF-β1. According to the results of H&E staining and Masson's trichrome staining, GAC reduced skin thickness and wrinkle formation while it increased skin elasticity. The effects of GAC on UVB-induced skin photoaging may be due to suppressed MMP-1 expression. These findings could be referenced for the development of new agents that target UVB-induced photoaging.

  19. Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Du, Hongyan; Huang, Vincent; Sun, Brandi; Harris, John P; Richardson, Quitin; Shen, Xinggui; Jin, Rong; Li, Guohong; Kevil, Christopher G; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2016-11-01

    Withaferin A (WA), a natural product derived from Withania somnifera, has been used in traditional oriental medicines to treat neurological disorders. Recent studies have demonstrated that this compound may have a potential for cancer treatment and a clinical trial has been launched to test WA in treating melanoma. Herein, WA's chemopreventive potential was tested in a chemically-induced skin carcinogenesis mouse model. Pathological examinations revealed that WA significantly suppressed skin tumor formation. Morphological observations of the skin tissues suggest that WA suppressed cell proliferation rather than inducing apoptosis during skin carcinogenesis. Antibody Micro array analysis demonstrated that WA blocked carcinogen-induced up-regulation of acetyl-CoA carboxylase 1 (ACC1), which was further confirmed in a skin cell transformation model. Overexpression of ACC1 promoted whereas knockdown of ACC1 suppressed anchorage-independent growth and oncogene activation of transformable skin cells. Further studies demonstrated that WA inhibited tumor promotor-induced ACC1 gene transcription by suppressing the activation of activator protein 1. In melanoma cells, WA was also able to suppress the expression levels of ACC1. Finally, results using human skin cancer tissues confirmed the up-regulation of ACC1 in tumors than adjacent normal tissues. In summary, our results suggest that withaferin A may have a potential in chemoprevention and ACC1 may serve as a critical target of WA. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. Synergistically enhanced transdermal permeation and topical analgesia of tetracaine gel containing menthol and ethanol in experimental and clinical studies.

    PubMed

    Fang, Chao; Liu, Yi; Ye, Xun; Rong, Zheng-xing; Feng, Xue-mei; Jiang, Chan-bing; Chen, Hong-zhuan

    2008-03-01

    The aim of this study is to observe the synergistically enhanced percutaneous penetration and skin analgesia of tetracaine gel containing menthol and ethanol through experimental and clinical studies. Four anesthetic gels containing 4% tetracaine in carbomer vehicle named T-gel (containing no menthol or ethanol), 5%M/T-gel (containing 5% menthol), 70%E/T-gel (containing 70% ethanol, an optimal concentration for antiseptic), and 5%M+70%E/T-gel (containing both 5% menthol and 70% ethanol), respectively, were fabricated. The in vitro mouse skin permeation was investigated using a Franz diffusion cell. The mouse skin morphology was examined by a scanning electron microscope. The in vivo skin analgesic effect in mice was evaluated using the von Frey tests. To determine the efficacy of tetracaine gels for managing the pain in human volunteers, a paralleled, double-blinded, placebo-controlled, randomized controlled trial design combined with verbal pain scores (VPS) was performed. The combination of menthol and ethanol (5%M+70%E/T-gel) conferred significantly higher tetracaine diffusion across full-thickness mouse skin than 5%M/T-gel, 70%E/T-gel, and T-gel. The ultra structure changes of mouse skin stratum corneum treated with 5%M+70%E/T-gel were more marked compared with those of any other tetracaine gel. von Frey tests in mice showed a synergistically enhanced effect of menthol and ethanol on the analgesia of tetracaine gel. The mean VPS were significantly lower for volunteers treated with 5%M+70%E/T-gel than those receiving other gels or the EMLA cream. 5%M+70%E/T-gel possessed the shortest anesthesia onset time, the longest anesthesia duration and the strongest anesthesia efficacy. Seventy percent ethanol in 5%M+70%E/T-gel not only improved the analgesic efficacy of the tetracaine gel through synergistically enhanced percutaneous permeation with menthol but also served as an antiseptic agent keeping drug application site from infection. 5%M+70%E/T-gel is a potential topical anesthesia preparation for clinical use.

  1. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer | Office of Cancer Genomics

    Cancer.gov

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways.

  2. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17

    PubMed Central

    Guinea-Viniegra, Juan; Zenz, Rainer; Scheuch, Harald; Jiménez, María; Bakiri, Latifa; Petzelbauer, Peter; Wagner, Erwin F.

    2012-01-01

    Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α–converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs. PMID:22772468

  3. Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Wanglinhan; Zhang, Linlin; Gao, Huiling; Yang, Wenyan; Wang, Shuai; Xing, Lili; Xue, Xinyu

    2018-06-01

    Implantable bioelectronics for analyzing physiological biomarkers has recently been recognized as a promising technique in medical treatment or diagnostics. In this study, we developed a self-powered implantable skin-like glucometer for real-time detection of blood glucose level in vivo. Based on the piezo-enzymatic-reaction coupling effect of GOx@ZnO nanowire, the device under an applied deformation can actively output piezoelectric signal containing the glucose-detecting information. No external electricity power source or battery is needed for this device, and the outputting piezoelectric voltage acts as both the biosensing signal and electricity power. A practical application of the skin-like glucometer implanted in mouse body for detecting blood glucose level has been simply demonstrated. These results provide a new technique path for diabetes prophylaxis and treatment.

  4. Proteomic Analyses of NF1-Interacting Proteins in Keratinocytes

    DTIC Science & Technology

    2015-04-01

    and knockout mice further confirmed the interactions suggested by the proteomic analyses. In relation to the development of psoriasis -like symptoms...in the NF1 null epidermis, we analyzed NF1 expression in a mouse model of psoriasis (imiquimod-induced psoriasis -like skin inflammation) and...knockout of epidermal NF1 to elucidate the molecular underpinnings of psoriasis . 15. SUBJECT TERMS neurofibromin-1 (NF1), psoriasis , inflammation

  5. Induction of Scleroderma Fibrosis in Skin-Humanized Mice by Administration of Anti-Platelet-Derived Growth Factor Receptor Agonistic Autoantibodies.

    PubMed

    Luchetti, Michele M; Moroncini, Gianluca; Jose Escamez, Maria; Svegliati Baroni, Silvia; Spadoni, Tatiana; Grieco, Antonella; Paolini, Chiara; Funaro, Ada; Avvedimento, Enrico V; Larcher, Fernando; Del Rio, Marcela; Gabrielli, Armando

    2016-09-01

    To describe a skin-SCID mouse chimeric model of systemic sclerosis (SSc; scleroderma) fibrosis based on engraftment of ex vivo-bioengineered skin using skin cells derived either from scleroderma patients or from healthy donors. Three-dimensional bioengineered skin containing human keratinocytes and fibroblasts isolated from skin biopsy specimens from healthy donors or SSc patients was generated ex vivo and then grafted onto the backs of SCID mice. The features of the skin grafts were analyzed by immunohistochemistry, and the functional profile of the graft fibroblasts was defined before and after treatment with IgG from healthy controls or SSc patients. Two procedures were used to investigate the involvement of platelet-derived growth factor receptor (PDGFR): 1) nilotinib, a tyrosine kinase inhibitor, was administered to mice before injection of IgG from SSc patient sera (SSc IgG) into the grafts, and 2) human anti-PDGFR monoclonal antibodies were injected into the grafts. Depending on the type of bioengineered skin grafted, the regenerated human skin exhibited either the typical scleroderma phenotype or the healthy human skin architecture. Treatment of animals carrying healthy donor skin grafts with SSc IgG resulted in the appearance of a bona fide scleroderma phenotype, as confirmed by increased collagen deposition and fibroblast activation markers. Results of the experiments involving administration of nilotinib or monoclonal antibodies confirmed the involvement of PDGFR. Our results provide the first in vivo demonstration of the fibrotic properties of anti-PDGFR agonistic antibodies. This bioengineered skin-humanized mouse model can be used to test in vivo the progression of the disease and to monitor response to antifibrotic drugs. © 2016, American College of Rheumatology.

  6. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis

    PubMed Central

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-01-01

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin. To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas. PMID:27506937

  7. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    PubMed

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  8. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin.

    PubMed

    Qiao, W; Li, A G; Owens, P; Xu, X; Wang, X-J; Deng, C-X

    2006-01-12

    Smad4 is the common mediator for TGFbeta signals, which play important functions in many biological processes. To study the role of Smad4 in skin development and epidermal tumorigenesis, we disrupted this gene in skin using the Cre-loxP approach. We showed that absence of Smad4 blocked hair follicle differentiation and cycling, leading to a progressive hair loss of mutant (MT) mice. MT hair follicles exhibited diminished expression of Lef1, and increased proliferative cells in the outer root sheath. Additionally, the skin of MT mice exhibited increased proliferation of basal keratinocytes and epidermal hyperplasia. Furthermore, we provide evidence that the absence of Smad4 resulted in a block of both TGFbeta and bone morphogenetic protein (BMP) signaling pathways, including p21, a well-known cyclin-dependent kinase inhibitor. Consequently, all MT mice developed spontaneous malignant skin tumors from 3 months to 13 months of age. The majority of tumors are malignant squamous cell carcinomas. A most notable finding is that tumorigenesis is accompanied by inactivation of phosphatase and tensin homolog deleted on chromosome 10 (Pten), activation of AKT, fast proliferation and nuclear accumulation of cyclin D1. These observations revealed the essential functions of Smad4-mediated signals in repressing skin tumor formation through the TGFbeta/BMP pathway, which interacts with the Pten signaling pathway.

  9. Self-powered implantable electronic-skin for in situ analysis of urea/uric-acid in body fluids and the potential applications in real-time kidney-disease diagnosis.

    PubMed

    Yang, Wenyan; Han, Wuxiao; Gao, Huiling; Zhang, Linlin; Wang, Shuai; Xing, Lili; Zhang, Yan; Xue, Xinyu

    2018-01-25

    As the concentration of different biomarkers in human body fluids are an important parameter of chronic disease, wearable biosensors for in situ analysis of body fluids with high sensitivity, real-time detection, flexibility and biocompatibility have significant potential therapeutic applications. In this paper, a flexible self-powered implantable electronic-skin (e-skin) for in situ body fluids analysis (urea/uric-acid) as a real-time kidney-disease diagnoser has been proposed based on the piezo-enzymatic-reaction coupling process of ZnO nanowire arrays. It can convert the mechanical energy of body movements into a piezoelectric impulse, and the outputting piezoelectric signal contains the urea/uric-acid concentration information in body fluids. This piezoelectric-biosensing process does not need an external electricity supply or battery. The e-skin was implanted under the abdominal skin of a mouse and provided in situ analysis of the kidney-disease parameters. These results provide a new approach for developing a self-powered in situ body fluids-analysis technique for chronic-disease diagnosis.

  10. Mechanistic applicability domain classification of a local lymph node assay dataset for skin sensitization.

    PubMed

    Roberts, David W; Patlewicz, Grace; Kern, Petra S; Gerberick, Frank; Kimber, Ian; Dearman, Rebecca J; Ryan, Cindy A; Basketter, David A; Aptula, Aynur O

    2007-07-01

    The goal of eliminating animal testing in the predictive identification of chemicals with the intrinsic ability to cause skin sensitization is an important target, the attainment of which has recently been brought into even sharper relief by the EU Cosmetics Directive and the requirements of the REACH legislation. Development of alternative methods requires that the chemicals used to evaluate and validate novel approaches comprise not only confirmed skin sensitizers and non-sensitizers but also substances that span the full chemical mechanistic spectrum associated with skin sensitization. To this end, a recently published database of more than 200 chemicals tested in the mouse local lymph node assay (LLNA) has been examined in relation to various chemical reaction mechanistic domains known to be associated with sensitization. It is demonstrated here that the dataset does cover the main reaction mechanistic domains. In addition, it is shown that assignment to a reaction mechanistic domain is a critical first step in a strategic approach to understanding, ultimately on a quantitative basis, how chemical properties influence the potency of skin sensitizing chemicals. This understanding is necessary if reliable non-animal approaches, including (quantitative) structure-activity relationships (Q)SARs, read-across, and experimental chemistry based models, are to be developed.

  11. IL-22 is required for Th17 cell–mediated pathology in a mouse model of psoriasis-like skin inflammation

    PubMed Central

    Ma, Hak-Ling; Liang, Spencer; Li, Jing; Napierata, Lee; Brown, Tom; Benoit, Stephen; Senices, Mayra; Gill, Davinder; Dunussi-Joannopoulos, Kyriaki; Collins, Mary; Nickerson-Nutter, Cheryl; Fouser, Lynette A.; Young, Deborah A.

    2008-01-01

    Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4+CD45RBhiCD25– cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22–neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell–dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis. PMID:18202747

  12. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation.

    PubMed

    Ma, Hak-Ling; Liang, Spencer; Li, Jing; Napierata, Lee; Brown, Tom; Benoit, Stephen; Senices, Mayra; Gill, Davinder; Dunussi-Joannopoulos, Kyriaki; Collins, Mary; Nickerson-Nutter, Cheryl; Fouser, Lynette A; Young, Deborah A

    2008-02-01

    Psoriasis is a chronic skin disease resulting from the dysregulated interplay between keratinocytes and infiltrating immune cells. We report on a psoriasis-like disease model, which is induced by the transfer of CD4(+)CD45RB(hi)CD25(-) cells to pathogen-free scid/scid mice. Psoriasis-like lesions had elevated levels of antimicrobial peptide and proinflammatory cytokine mRNA. Also, similar to psoriasis, disease progression in this model was dependent on the p40 common to IL-12 and IL-23. To investigate the role of IL-22, a Th17 cytokine, in disease progression, mice were treated with IL-22-neutralizing antibodies. Neutralization of IL-22 prevented the development of disease, reducing acanthosis (thickening of the skin), inflammatory infiltrates, and expression of Th17 cytokines. Direct administration of IL-22 into the skin of normal mice induced both antimicrobial peptide and proinflammatory cytokine gene expression. Our data suggest that IL-22, which acts on keratinocytes and other nonhematopoietic cells, is required for development of the autoreactive Th17 cell-dependent disease in this model of skin inflammation. We propose that IL-22 antagonism might be a promising therapy for the treatment of human psoriasis.

  13. Noninvasive, label-free, three-dimensional imaging of melanoma with confocal photothermal microscopy: Differentiate malignant melanoma from benign tumor tissue

    NASA Astrophysics Data System (ADS)

    He, Jinping; Wang, Nan; Tsurui, Hiromichi; Kato, Masashi; Iida, Machiko; Kobayashi, Takayoshi

    2016-07-01

    Skin cancer is one of the most common cancers. Melanoma accounts for less than 2% of skin cancer cases but causes a large majority of skin cancer deaths. Early detection of malignant melanoma remains the key factor in saving lives. However, the melanoma diagnosis is still clinically challenging. Here, we developed a confocal photothermal microscope for noninvasive, label-free, three-dimensional imaging of melanoma. The axial resolution of confocal photothermal microscope is ~3 times higher than that of commonly used photothermal microscope. Three-dimensional microscopic distribution of melanin in pigmented lesions of mouse skin is obtained directly with this setup. Classic morphometric and fractal analysis of sixteen 3D images (eight for benign melanoma and eight for malignant) showed a capability of pathology of melanoma: melanin density and size become larger during the melanoma growth, and the melanin distribution also becomes more chaotic and unregulated. The results suggested new options for monitoring the melanoma growth and also for the melanoma diagnosis.

  14. UV-screening chitosan nanocontainers: increasing the photostability of encapsulated materials and controlled release

    NASA Astrophysics Data System (ADS)

    Anumansirikul, Nattaporm; Wittayasuporn, Mayura; Klinubol, Patcharawalai; Tachaprutinun, A.; Wanichwecharungruang, Supason P.

    2008-05-01

    Methyl ether terminated poly(ethylene glycol)-4-methoxycinnamoylphthaloylchitosan (PCPLC), a UV absorptive polymer, and methyl ether terminated poly(ethylene glycol)-phthaloylchitosan (PPLC) were synthesized, characterized and self-assembled into stable water-dispersible spherical nanoparticles. The encapsulation of a model compound, 2-ethylhexyl-4-methoxycinnamate (EHMC), was carried out to give particles with 67% (w/w) EHMC loading. The E to Z photoisomerization of EHMC encapsulated inside both particles was monitored and compared to non-encapsulated EHMC. Minimal E to Z photoisomerization was observed when EHMC was encapsulated in PCPLC particles prepared from a polymer with a maximum degree of 4-methoxycinnamoyl substitution. The results indicated that the grafted UVB absorptive chromophore, 4-methoxycinnamoyl moieties, situated at the shell of PCPLC nanoparticles acted as a UV-filtering barrier, protecting the encapsulated EHMC from the UVB radiation, thus minimizing its photoisomerization. In vitro experiments revealed the pH-dependent controlled release of EHMC from PCPLC and PPLC particles. Ex vivo experiments, using a Franz diffusion cell with baby mouse skin, indicated that neither PPLC nor PCPLC particles could penetrate the skin into the receptor medium after a 24 h topical application. When applied on the baby mouse skin, both EHMC-encapsulated PPLC and EHMC-encapsulated PCPLC showed comparable controlled releases of the EHMC. The released EHMC could transdermally penetrate the baby mouse skin.

  15. Designing of mouse model: a new approach for studying sulphur mustard-induced skin lesions.

    PubMed

    Lomash, Vinay; Deb, Utsab; Rai, Renuka; Jadhav, Sunil E; Vijayaraghavan, R; Pant, S C

    2011-08-01

    This study was planned to design a mouse model for studying sulphur mustard (SM)-induced skin injury. SM was applied dermally at dose of 5 or 10 mg kg(-1) in polyethyleneglycol-300 (PEG-300) or dimethylsulphoxide (DMSO) or acetone once. The changes in body weight, organ body weight indices (OBWI) and haematological and oxidative stress parameters were investigated over a period of 3-7 days and supported by histopathological observations. Exposure to SM in PEG-300 or DMSO resulted in a significant depletion in body weight, OBWI, hepatic glutathione (GSH) and elevation in hepatic lipid peroxidation, without affecting the blood GSH and hepatic oxidised glutathione (GSSG) levels. Interestingly, no aforesaid change was observed after dermal application of SM diluted in acetone. These biochemical changes were supported by the histological observations, which revealed pronounced toxic effect and damage to liver, kidney and spleen after dermal application of SM diluted in PEG-300 or DMSO. The skin showed similar microscopic changes after dermal application of SM in all the three diluents, however; the severity of lesions was found to be time and dose dependent. It can be concluded that dermal exposure of SM diluted in acetone can be used to mimic SM-induced skin toxicity without systemic toxicity in a mouse model. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  16. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    NASA Technical Reports Server (NTRS)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  17. In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion

    PubMed Central

    Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping

    2012-01-01

    Objective To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. Materials and methods A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. Results The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. Conclusion The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on mouse skin fibroblasts. PMID:22679361

  18. In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion.

    PubMed

    Zhang, Yong-Tai; Huang, Zhe-Bin; Zhang, Su-Juan; Zhao, Ji-Hui; Wang, Zhi; Liu, Ying; Feng, Nian-Ping

    2012-01-01

    To investigate the cellular uptake of evodiamine and rutaecarpine in a microemulsion in comparison with aqueous suspensions and tinctures. A microemulsion was prepared using the dropwise addition method. Mouse skin fibroblasts were cultured in vitro to investigate the optimal conditions for evodiamine and rutaecarpine uptake with different drug concentrations and administration times. Under optimal conditions, the cellular uptake of microemulsified drugs was assayed and compared to tinctures and aqueous suspensions. Rhodamine B labeling and laser scanning confocal microscopy (LSCM) were used to explore the distribution of fluorochrome transferred with the microemulsion in fibroblasts. Cellular morphology was also investigated, using optical microscopy to evaluate microemulsion-induced cellular toxicity. The maximum cellular drug uptake amounts were obtained with a 20% concentration (v/v) of microemulsion and an 8 hour administration time. Drug uptake by mouse skin fibroblasts was lowest when the drugs were loaded in microemulsion. After incubation with rhodamine B-labeled microemulsion for 8 hours, the highest fluorescence intensity was achieved, and the fluorochrome was primarily distributed in the cytochylema. No obvious cellular morphologic changes were observed with the administration of either the microemulsion or the aqueous suspension; for the tincture group, however, massive cellular necrocytosis was observed. The lower cellular uptake with microemulsion may be due to the fact that most of the drug loaded in the microemulsion vehicle was transported via the intercellular space, while a small quantity of free drug (released from the vehicle) was ingested through transmembrane transport. Mouse skin fibroblasts rarely endocytosed evodiamine and rutaecarpine with a microemulsion as the vehicle. The microemulsion had no obvious effect on cellular morphology, suggesting there is little or no cellular toxicity associated with the administration of microemulsion on mouse skin fibroblasts.

  19. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation.

    PubMed

    Degueurce, Gwendoline; D'Errico, Ilenia; Pich, Christine; Ibberson, Mark; Schütz, Frédéric; Montagner, Alexandra; Sgandurra, Marie; Mury, Lionel; Jafari, Paris; Boda, Akash; Meunier, Julien; Rezzonico, Roger; Brembilla, Nicolò Costantino; Hohl, Daniel; Kolios, Antonios; Hofbauer, Günther; Xenarios, Ioannis; Michalik, Liliane

    2016-08-01

    Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Epidermal ablation of Dlx3 is linked to IL-17–associated skin inflammation

    PubMed Central

    Hwang, Joonsung; Kita, Ryosuke; Kwon, Hyouk-Soo; Choi, Eung Ho; Lee, Seung Hun; Udey, Mark C.; Morasso, Maria I.

    2011-01-01

    In an effort to understand the role of Distal-less 3 (Dlx3) in cutaneous biology and pathophysiology, we generated and characterized a mouse model with epidermal ablation of Dlx3. K14cre;Dlx3Kin/f mice exhibited epidermal hyperproliferation and abnormal differentiation of keratinocytes. Results from subsequent analyses revealed cutaneous inflammation that featured accumulation of IL-17–producing CD4+ T, CD8+ T, and γδ T cells in the skin and lymph nodes of K14cre;Dlx3Kin/f mice. The gene expression signature of K14cre;Dlx3Kin/f skin shared features with lesional psoriatic skin, and Dlx3 expression was markedly and selectively decreased in psoriatic skin. Interestingly, cultured Dlx3 null keratinocytes triggered cytokine production that is potentially linked to inflammatory responses in K14cre;Dlx3Kin/f mice. Thus, Dlx3 ablation in epidermis is linked to altered epidermal differentiation, barrier development, and IL-17–associated skin inflammation. This model provides a platform that will allow the systematic exploration of the contributions of keratinocytes to cutaneous inflammation. PMID:21709238

  1. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    NASA Astrophysics Data System (ADS)

    Zhang, E. Z.; Laufer, J. G.; Pedley, R. B.; Beard, P. C.

    2009-02-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  2. Expression patterns of protein C inhibitor in mouse development.

    PubMed

    Wagenaar, Gerry T M; Uhrin, Pavel; Weipoltshammer, Klara; Almeder, Marlene; Hiemstra, Pieter S; Geiger, Margarethe; Meijers, Joost C M; Schöfer, Christian

    2010-02-01

    Proteolysis of extracellular matrix is an important requirement for embryonic development and is instrumental in processes such as morphogenesis, angiogenesis, and cell migration. Efficient remodeling requires controlled spatio-temporal expression of both the proteases and their inhibitors. Protein C inhibitor (PCI) effectively blocks a range of serine proteases, and recently has been suggested to play a role in cell differentiation and angiogenesis. In this study, we mapped the expression pattern of PCI throughout mouse development using in situ hybridization and immunohistochemistry. We detected a wide-spread, yet distinct expression pattern with prominent PCI levels in skin including vibrissae, and in fore- and hindgut. Further sites of PCI expression were choroid plexus of brain ventricles, heart, skeletal muscles, urogenital tract, and cartilages. A strong and stage-dependent PCI expression was observed in the developing lung. In the pseudoglandular stage, PCI expression was present in distal branching tubules whereas proximal tubules did not express PCI. Later in development, in the saccular stage, PCI expression was restricted to distal bronchioli whereas sacculi did not express PCI. PCI expression declined in postnatal stages and was not detected in adult lungs. In general, embryonic PCI expression indicates multifunctional roles of PCI during mouse development. The expression pattern of PCI during lung development suggests its possible involvement in lung morphogenesis and angiogenesis.

  3. Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Lynch, Barbara; Bonod-Bidaud, Christelle; Ducourthial, Guillaume; Psilodimitrakopoulos, Sotiris; Dokládal, Petr; Allain, Jean-Marc; Schanne-Klein, Marie-Claire; Ruggiero, Florence

    2015-12-01

    Soft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues.

  4. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging.

    PubMed

    Kim, Hyun Mee; Lee, Dong Eun; Park, Soo Dong; Kim, Yong-Tae; Kim, Yu Jin; Jeong, Ji Woong; Jang, Sung Sik; Ahn, Young-Tae; Sim, Jae-Hun; Huh, Chul-Sung; Chung, Dae Kyun; Lee, Jung-Hee

    2014-11-28

    Ultraviolet (UV) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage, including photoaging. In recent years, probiotics have gained interest due to their beneficial effects on skin health, such as inhibiting atopic dermatitis and improving skin immunity or inflammation. However, little is known about the effects of probiotics on UVBinduced photoaging. In this study, we evaluated the effect of Lactobacillus plantarum HY7714 against UVB-induced photoaging in human dermal fibroblasts and hairless mice. The results showed that L. plantarum HY7714 treatment effectively rescued UVB-reduced procollagen expression through the inhibition of UVB-induced matrix metalloproteinase (MMP)-1 expression in human dermal fibroblasts. Data from a western blot showed that L. plantarum HY7714 inhibited the phosphorylation of Jun N-terminal kinase, thereby suppressing the UVB-induced phosphorylation and expression of c-Jun. Oral administration of L. plantarum HY7714 clearly inhibited the number, depth, and area of wrinkles in hairless mouse skin. Histological data showed that L. plantarum HY7714 significantly inhibited UVB-induced epidermal thickness in mice. Western blot and zymography data also revealed that L. plantarum HY7714 effectively inhibited MMP-13 expression as well as MMP-2 and -9 activities in dermal tissue. Collectively, these results provide further insight regarding the skin biological actions of L. plantarum HY7714, a potential skin anti-photoaging agent.

  5. Erbium-yttrium-aluminum-garnet laser irradiation ameliorates skin permeation and follicular delivery of antialopecia drugs.

    PubMed

    Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You

    2014-11-01

    Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm{sup 2}) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fedmore » the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E{sub 2}), proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.« less

  7. Mast Cells Regulate Wound Healing in Diabetes

    PubMed Central

    Tellechea, Ana; Leal, Ermelindo C.; Kafanas, Antonios; Auster, Michael E.; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M.; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C.

    2016-01-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. PMID:27207516

  8. Laser-induced enhancement of transdermal drug delivery for lidocaine through hairless mouse skin

    NASA Astrophysics Data System (ADS)

    Uchizono, Takeyuki; Awazu, Kunio

    2006-02-01

    Transdermal drug delivery system (TDDS), which is one of drug delivery system (DDS) for increasing the effectiveness of drugs, is enhanced absorption of drugs by laser irradiation. The purpose of this study is to investigate the optimum laser parameter for enhancing TDD and to examine the mechanism of TDD enhancement. In this study, hairless mouse skins (in vitro) were irradiated with Er:YAG laser, Nd:YAG laser and free electron laser (FEL), which were set up energy density of 0.5 J/cm2/pulse and exposure time of 5 second. We examined the flux (μg/cm2/h) of lidocaine (C 14H 22N IIO, FW: 234.38) through the skins using high pressure liquid chromatography (HPLC), observed cross section of the irradiated samples using light microscope, and measured electrical resistance of the surface of skins. The HPLC results demonstrated that the TDD of the irradiated samples was enhanced 200-350 times faster than it of the non-irradiated samples. It of Nd:YAG laser, however, had no enhancement. The observation of cross section and the electrical resistance of skins were found to not remove the stratum corneum (SC), completely. These results show that laser irradiations, which has the strong absorption to skins, enhance TDD dramatically with low invasive.

  9. IL27 controls skin tumorigenesis via accumulation of ETAR-positive CD11b cells in the pre-malignant skin

    PubMed Central

    Dibra, Denada; Mitra, Abhisek; Newman, Melissa; Xia, Xueqing; Keenan, Camille; Cutrera, Jeffry J.; Mathis, J. Michael; Wang, Xiao-Jing; Myers, Jeffrey; Li, Shulin

    2016-01-01

    Establishment of a permissive pre-malignant niche in concert with mutant stem are key triggers to initiate skin carcinogenesis. An understudied area of research is finding upstream regulators of both these triggers. IL27, a pleiotropic cytokine with both pro- and anti-inflammatory properties, was found to be a key regulator of both. Two step skin carcinogenesis model and K15-KRASG12D mouse model were used to understand the role of IL27 in skin tumors. CD11b−/− mice and small-molecule of ETAR signaling (ZD4054) inhibitor were used in vivo to understand mechanistically how IL27 promotes skin carcinogenesis. Interestingly, using in vivo studies, IL27 promoted papilloma incidence primarily through IL27 signaling in bone-marrow derived cells. Mechanistically, IL27 initiated the establishment of the pre-malignant niche and expansion of mutated stem cells in K15-KRASG12D mouse model by driving the accumulation of Endothelin A receptor (ETAR)-positive CD11b cells in the skin—a novel category of pro-tumor inflammatory identified in this study. These findings are clinically relevant, as the number of IL27RA-positive cells in the stroma is highly related to tumor de-differentiation in patients with squamous cell carcinomas. PMID:27738312

  10. In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice.

    PubMed

    Guo, Yi; Ramos, Romela Irene; Cho, John S; Donegan, Niles P; Cheung, Ambrose L; Miller, Lloyd S

    2013-02-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents.

  11. Guiding principles for the implementation of non-animal safety assessment approaches for cosmetics: skin sensitisation.

    PubMed

    Goebel, Carsten; Aeby, Pierre; Ade, Nadège; Alépée, Nathalie; Aptula, Aynur; Araki, Daisuke; Dufour, Eric; Gilmour, Nicola; Hibatallah, Jalila; Keller, Detlef; Kern, Petra; Kirst, Annette; Marrec-Fairley, Monique; Maxwell, Gavin; Rowland, Joanna; Safford, Bob; Schellauf, Florian; Schepky, Andreas; Seaman, Chris; Teichert, Thomas; Tessier, Nicolas; Teissier, Silvia; Weltzien, Hans Ulrich; Winkler, Petra; Scheel, Julia

    2012-06-01

    Characterisation of skin sensitisation potential is a key endpoint for the safety assessment of cosmetic ingredients especially when significant dermal exposure to an ingredient is expected. At present the mouse local lymph node assay (LLNA) remains the 'gold standard' test method for this purpose however non-animal test methods are under development that aim to replace the need for new animal test data. COLIPA (the European Cosmetics Association) funds an extensive programme of skin sensitisation research, method development and method evaluation and helped coordinate the early evaluation of the three test methods currently undergoing pre-validation. In May 2010, a COLIPA scientific meeting was held to analyse to what extent skin sensitisation safety assessments for cosmetic ingredients can be made in the absence of animal data. In order to propose guiding principles for the application and further development of non-animal safety assessment strategies it was evaluated how and when non-animal test methods, predictions based on physico-chemical properties (including in silico tools), threshold concepts and weight-of-evidence based hazard characterisation could be used to enable safety decisions. Generation and assessment of potency information from alternative tools which at present is predominantly derived from the LLNA is considered the future key research area. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues.

    PubMed

    Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping

    2015-04-01

    Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Perioperative haemostatic management of haemophilic mice using normal mouse plasma.

    PubMed

    Tatsumi, K; Ohashi, K; Kanegae, K; Shim, I K; Okano, T

    2013-11-01

    Intense haemostatic interventions are required to avoid bleeding complications when surgical procedures are performed on haemophilia patients. The objective of this study was to establish an appropriate protocol for perioperative haemostatic management of haemophilic mice. We assessed the prophylactic haemostatic effects of normal mouse plasma (NMP) on haemophilia B (HB) mice for both a skin flap procedure and a laparotomy. When 500 μL of NMP was administered to the mice, plasma factor IX (FIX:C) levels peaked at 15.1% immediately after intravenous (IV) administration, at 6.1% 2 h after intraperitoneal (IP) administration and at 2.7% 6 h after subcutaneous administration. Administering 500 μL of NMP via IP or IV 30 min in advance enabled the skin flap procedure to be performed safely without any complications. After the laparotomy procedure, several mice in the IP administration group exhibited lethal bleeding, but all mice survived in the IV administration group. Anti-mouse FIX inhibitors did not develop, even after repetitive administrations of NMP. However, human FIX concentrates, especially plasma-derived concentrates, elicited the anti-human FIX inhibitors. The results show that administering 500 μL of NMP via IV or IP 30 min in advance enables surgical procedures to be safely performed on HB mice, and that IV administration is more desirable than IP if the procedure requires opening of the abdominal wall. © 2013 John Wiley & Sons Ltd.

  14. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice.

    PubMed

    Kiraly, Alex J; Soliman, Eman; Jenkins, Audrey; Van Dross, Rukiyah T

    2016-01-01

    Non-melanoma skin cancer (NMSC) is the most prevalent cancer in the United States. NMSC overexpresses cyclooxygenase-2 (COX-2). COX-2 synthesizes prostaglandins such as PGE2 which promote proliferation and tumorigenesis by engaging G-protein-coupled prostaglandin E receptors (EP). Apigenin is a bioflavonoid that blocks mouse skin tumorigenesis induced by the chemical carcinogens, 7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). However, the effect of apigenin on the COX-2 pathway has not been examined in the DMBA/TPA skin tumor model. In the present study, apigenin decreased tumor multiplicity and incidence in DMBA/TPA-treated SKH-1 mice. Analysis of the non-tumor epidermis revealed that apigenin reduced COX-2, PGE2, EP1, and EP2 synthesis and also increased terminal differentiation. In contrast, apigenin did not inhibit the COX-2 pathway or promote terminal differentiation in the tumors. Since fewer tumors developed in apigenin-treated animals which contained reduced epidermal COX-2 levels, our data suggest that apigenin may avert skin tumor development by blocking COX-2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.

    PubMed

    Tanaka, Hiroshi; Yamaba, Hiroyuki; Kosugi, Nobuhiko; Mizutani, Hiroshi; Nakata, Satoru

    2008-04-01

    Solar ultraviolet (UV) irradiation causes damages on human skin and premature skin aging (photoaging). UV-induced reduction of type I collagen in dermis is widely considered primarily induction of wrinkled appearance of photoaging skin. Type I procollagen synthesis is reduced under UV irradiation by blocking transforming growth factor-beta (TGF-beta)/Smad signaling; more specifically, it is down-regulation of TGF-beta type II receptor (T beta RII). Therefore, preventing UV-induced loss of T beta RII results decreased type I collagen reduction in photoaging skin. Zymomonas mobilis is an alcohol fermentable, gram-negative facultative anaerobic bacterium whose effect on skin tissue is scarcely studied. We investigated the protective effects of fermentable metabolite of Z. mobilis (FM of Z. mobilis) against reduction of type I procollagen synthesis of UV-induced down-regulation of T beta RII in human dermal fibroblasts FM of Z. mobilis was obtained from lyophilization of bacterium culture supernatant. The levels of T beta RII and type I procollagen mRNA in human dermal fibroblasts were measured by quantitative real-time RT-PCR, and T beta RII protein levels were assayed by western blotting. T beta RII, type I procollagen, and type I collagen proteins in human dermal fibroblasts or hairless mouse skin were detected by immunostaining. FM of Z. mobilis inhibited down regulation of T beta RII mRNA, and protein levels in UVB irradiated human dermal fibroblasts consequently recover reduced type I procollagen synthesis. These results indicate UVB irradiation inhibits type I procollagen synthesis by suppression of TGF-beta/Smad signaling pathway, and FM of Z. mobilis has inhibitory effect on UVB-induced reduction of type I procollagen synthesis. While short period UVB irradiation decreased both T beta RII and type I procollagen protein levels in hairless mouse skin, topical application of FM of Z. mobilis prevented this decrease. Wrinkle formation in hairless mouse skin surface was accelerated by continuous 5 month UVB irradiation along with a reduction of type I collagen in the dermis, but this change was prevented by topical application of FM of Z. mobilis. From this experimental data, it is suggested that FM of Z. mobilis is effective for suppression of wrinkle formation in photoaging skin by inhibition of type I procollagen synthesis reduction.

  16. Studies on the relationship between epidermal cell turnover kinetics and permeability of hairless mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S.R.

    The primary aim of this study was to develop non-invasive, physical means to quantitatively assess the epidermal turnover kinetics and barrier properties of the skin and relate these to the cutaneous irritation which results from ultraviolet light irradiation and mold thermal burns. After systematically injecting radiolabeled glycine, the appearance of radioactivity at the skin's surface indicated the transit time of radiolabeled cells through the skin. By plotting the data as the cumulative specific activity against time and then fitting them with a third order polynomial equation, it is possible to estimate the turnover time of the stratum corneum. The skinmore » turnover was coordinated with non-invasive transepidermal water loss (TEWL) studies determined with an evaporimeter. In vitro diffusion studies of the permeability of hydrocortisone through UVB irradiated and thermally burned skin were also performed. The studies indicated that irritated skin offers a relatively low diffusional resistance to hydrocortisone. Depending on the severity of the trauma, the increases in hydrocortisone's permeability coefficient through irritated skin ranged from a low of about 2 times normal to a high of about 210 times normal. Trauma-induced changes in hydrocortisone permeability parallel changes in TEWL, proving that the barrier deficient state resulting from rapid epidermal turnover is a general phenomenon.« less

  17. Potential for tyndalized Lactobacillus acidophilus as an effective component in moisturizing skin and anti-wrinkle products.

    PubMed

    Im, A-Rang; Kim, Hui Seong; Hyun, Jin Won; Chae, Sungwook

    2016-08-01

    It is widely accepted that ultraviolet (UV) irradiation induces skin damage. In the present study, a UVB-induced hairless mouse model of skin photoaging was developed to determine whether tyndalized Lactobacillus acidophilus was able to significantly enhance the repair of photodamaged skin. To evaluate the effects of tyndalized L. acidophilus on UVB-induced skin-wrinkle formation in vivo , HR-1 hairless male mice were exposed to UVB radiation and orally administered tyndalized L. acidophilus . Compared with the control group, the UVB irradiation mice displayed a significant increase in transepidermal water loss and a reduction in skin hydration. In mice with UVB-induced photodamage, the effacement of the fine wrinkles by tyndalized L. acidophilus was correlated with dermal collagen synthesis, accompanied by histological changes. Furthermore, western blotting was performed to investigate the protein expression levels of matrix metalloproteinases (MMPs) and mitogen-activated protein kinase. Notably, orally administered tyndalized L. acidophilus reduced the expression levels of MMP-1 and MMP-9. Based upon the aforementioned results, it was determined that tyndalized L. acidophilus effectively inhibited the wrinkle formation induced by UVB irradiation, and that this may be attributed to the downregulation of MMPs. Therefore, tyndalized L. acidophilus may be considered a potential agent for preventing skin photoaging and wrinkle formation.

  18. Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix(Integra artificial skin).

    PubMed

    Kremer, M; Lang, E; Berger, A C

    2000-09-01

    Integra artificial skin (Integra LifeSciences Corp., Plainsboro, NJ, USA) is a dermal template consisting of bovine collagen, chondroitin-6-sulphate and a silastic membrane manufactured as Integra. This product has gained widespread use in the clinical treatment of third degree burn wounds and full thickness skin defects of different aetiologies. The product was designed to significantly reduce the time needed to achieve final wound closure in the treatment of major burn wounds, to optimise the sparse autologous donor skin resources and to improve the durable mechanical quality of the skin substitute. The clinical procedure requires two stages. The first step creates a self neodermis, the second creates a self epidermis on the neodermis. However, it is desirable to cover major burn wounds early in a single step by a skin substitute consisting of a dermal equivalent seeded in vitro with autologous keratinocytes ('composite-skin') out of which a full thickness skin develops in vivo.The goal of this experimental study was to develop a method to integrate human keratinocytes in homogeneous distribution and depth into Integra Artificial Skin. The seeded cell-matrix composites were grafted onto athymic mice in order to evaluate their potential to reconstitute a human epidermis in vivo. We were able to demonstrate that the inoculated human keratinocytes reproducibly displayed a homogeneous pattern of distribution, adherence, proliferation and confluence. The cell-matrix composites grafted in this model exhibited good wound adherence, complete healing, minor wound contraction and had the potential to reconstitute an elastic, functional and durable human skin. Histologically we were able to show that the inoculated human keratinocytes in vivo colonised the matrix in a histomorphologically characteristic epidermal pattern (keratomorula, keratinocyte bubbling) and developed a persisting, stratified, keratinising epidermis which immunohistologically proved to be of human origin. These experimental results demonstrate the establishment of an effective cell cultivation process which may be suitable for scale-up production of the epidermal component as large-scale composite-skin grafts. When seeded into Integratrade mark and grafted onto the nude mouse a replacement skin with normal functioning dermal-epidermal components was developed. These results encourage the design of a clinical trial to assess the function of this composite graft in man.

  19. In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids.

    PubMed

    Pornpattananangkul, Dissaya; Fu, Victoria; Thamphiwatana, Soracha; Zhang, Li; Chen, Michael; Vecchio, James; Gao, Weiwei; Huang, Chun-Ming; Zhang, Liangfang

    2013-10-01

    Propionibacterium acnes (P. acnes) is a Gram-positive bacterium strongly associated with acne infection. While many antimicrobial agents have been used in clinic to treat acne infection by targeting P. acnes, these existing anti-acne agents usually produce considerable side effects. Herein, the development and evaluation of liposomal lauric acids (LipoLA) is reported as a new, effective and safe therapeutic agent for the treatment of acne infection. By incorporating lauric acids into the lipid bilayer of liposomes, it is observed that the resulting LipoLA readily fuse with bacterial membranes, causing effective killing of P. acnes by disrupting bacterial membrane structures. Using a mouse ear model, we demonstrated that the bactericidal property of LipoLA against P. acne is well preserved at physiological conditions. Topically applying LipoLA in a gel form onto the infectious sites leads to eradication of P. acnes bacteria in vivo. Further skin toxicity studies show that LipoLA does not induce acute toxicity to normal mouse skin, while benzoyl peroxide and salicylic acid, the two most popular over-the-counter acne medications, generate moderate to severe skin irritation within 24 h. These results suggest that LipoLA hold a high therapeutic potential for the treatment of acne infection and other P. acnes related diseases. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A subset of skin tumor modifier loci determines survival time of tumor-bearing mice

    PubMed Central

    Nagase, Hiroki; Mao, Jian-Hua; Balmain, Allan

    1999-01-01

    Studies of mouse models of human cancer have established the existence of multiple tumor modifiers that influence parameters of cancer susceptibility such as tumor multiplicity, tumor size, or the probability of malignant progression. We have carried out an analysis of skin tumor susceptibility in interspecific Mus musculus/Mus spretus hybrid mice and have identified another seven loci showing either significant (six loci) or suggestive (one locus) linkage to tumor susceptibility or resistance. A specific search was carried out for skin tumor modifier loci associated with time of survival after development of a malignant tumor. A combination of resistance alleles at three markers [D6Mit15 (Skts12), D7Mit12 (Skts2), and D17Mit7 (Skts10)], all of which are close to or the same as loci associated with carcinoma incidence and/or papilloma multiplicity, is significantly associated with increased survival of mice with carcinomas, whereas the reverse combination of susceptibility alleles is significantly linked to early mortality caused by rapid carcinoma growth (χ2 = 25.22; P = 5.1 × 10−8). These data indicate that host genetic factors may be used to predict carcinoma growth rate and/or survival of individual backcross mice exposed to the same carcinogenic stimulus and suggest that mouse models may provide an approach to the identification of genetic modifiers of cancer survival in humans. PMID:10611333

  1. Skin penetration and retention of L-ascorbic acid 2-phosphate using multilamellar vesicles.

    PubMed

    Yoo, Juno; Shanmugam, Srinivasan; Song, Chung-Kil; Kim, Dae-Duk; Choi, Han-Gon; Yong, Chul-Soon; Woo, Jong-Soo; Yoo, Bong Kyu

    2008-12-01

    Transdermal formulation of L-ascorbic acid 2-phosphate magnesium salt (A2P) was prepared using multilamellar vesicles (MLV). A2P was either physically mixed with or entrapped into three different MLVs of neutral, cationic, and anionic liposome vesicles. For the preparation of neutral MLVs, phosphatidylcholine (PC) and cholesterol (CH) were used. For cationic and anionic MLVs, dioleoyl-trimethylammonium-propane and dimyristoyl glycerophosphate were added as surface charge inducers, respectively, in addition to PC and CH. Particle size of the three A2P-loaded MLVs was submicron, and polydispersity index revealed homogenous distribution of the prepared MLVs except neutral ones. Skin penetration study with hairless mouse skin showed that both physical mixtures of A2P with empty MLVs and A2P-loaded MLVs increased penetration of the drug compared to aqueous A2P solution. During the penetration, however, significant amount of the drug was metabolized into L-ascorbic acid, which has no beneficial effect on stimulation of hair growth. Out of the physical mixtures and A2P-loaded MLVs tested, physical mixture of A2P with empty cationic MLV resulted in the greatest skin penetration and retention in hairless mouse skin.

  2. Cancer Stem-like Cells Act via Distinct Signaling Pathways in Promoting Late Stages of Malignant Progression.

    PubMed

    da Silva-Diz, Victoria; Simón-Extremera, Pilar; Bernat-Peguera, Adrià; de Sostoa, Jana; Urpí, Maria; Penín, Rosa M; Sidelnikova, Diana Pérez; Bermejo, Oriol; Viñals, Joan Maria; Rodolosse, Annie; González-Suárez, Eva; Moruno, Antonio Gómez; Pujana, Miguel Ángel; Esteller, Manel; Villanueva, Alberto; Viñals, Francesc; Muñoz, Purificación

    2016-03-01

    Cancer stem-like cells (CSC) play key roles in long-term tumor propagation and metastasis, but their dynamics during disease progression are not understood. Tumor relapse in patients with initially excised skin squamous cell carcinomas (SCC) is characterized by increased metastatic potential, and SCC progression is associated with an expansion of CSC. Here, we used genetically and chemically-induced mouse models of skin SCC to investigate the signaling pathways contributing to CSC function during disease progression. We found that CSC regulatory mechanisms change in advanced SCC, correlating with aggressive tumor growth and enhanced metastasis. β-Catenin and EGFR signaling, induced in early SCC CSC, were downregulated in advanced SCC. Instead, autocrine FGFR1 and PDGFRα signaling, which have not been previously associated with skin SCC CSC, were upregulated in late CSC and promoted tumor growth and metastasis, respectively. Finally, high-grade and recurrent human skin SCC recapitulated the signaling changes observed in advanced mouse SCC. Collectively, our findings suggest a stage-specific switch in CSC regulation during disease progression that could be therapeutically exploited by targeting the PDGFR and FGFR1 pathways to block relapse and metastasis of advanced human skin SCC. ©2015 American Association for Cancer Research.

  3. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    PubMed

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  4. Gender variations in the optical properties of skin in murine animal models

    NASA Astrophysics Data System (ADS)

    Calabro, Katherine; Curtis, Allison; Galarneau, Jean-Rene; Krucker, Thomas; Bigio, Irving J.

    2011-01-01

    Gender is identified as a significant source of variation in optical reflectance measurements on mouse skin, with variation in the thickness of the dermal layer being the key explanatory variable. For three different mouse strains, the thickness values of the epidermis, dermis, and hypodermis layers, as measured by histology, are correlated to optical reflectance measurements collected with elastic scattering spectroscopy (ESS). In all three strains, males are found to have up to a 50% increase in dermal thickness, resulting in increases of up to 80% in reflectance values and higher observed scattering coefficients, as compared to females. Collagen in the dermis is identified as the primary source of these differences due to its strong scattering nature; increased dermal thickness leads to a greater photon path length through the collagen, as compared to other layers, resulting in a larger scattering signal. A related increase in the observed absorption coefficient in females is also observed. These results emphasize the importance of considering gender during experimental design in studies that involve photon interaction with mouse skin. The results also elucidate the significant impact that relatively small thickness changes can have on observed optical measurements in layered tissue.

  5. Melanocortin MC1 receptor in human genetics and model systems

    PubMed Central

    Beaumont, Kimberley A.; Wong, Shu S.; Ainger, Stephen A.; Liu, Yan Yan; Patel, Mira P.; Millhauser, Glenn L.; Smith, Jennifer J.; Alewood, Paul F.; Leonard, J. Helen; Sturm, Richard A.

    2011-01-01

    The melanocortin MC1 receptor is a G -protein coupled receptor expressed in melanocytes of the skin and hair and is known for its key role in regulation of human pigmentation. Melanocortin MC1 receptor activation after ultraviolet radiation exposure results in a switch from the red/yellow pheomelanin to the brown/black eumelanin pigment synthesis within cutaneous melanocytes; this pigment is then transferred to the surrounding keratinocytes of the skin. The increase in melanin maturation and uptake results in tanning of the skin, providing a physical protection of skin cells from ultraviolet radiation induced DNA damage. Melanocortin MC 1 receptor polymorphism is widespread within the Caucasian population and some variant alleles are associated with red hair colour, fair skin, poor tanning and increased risk of skin cancer. Here we will discuss the use of mouse coat colour models, human genetic association studies, and in vitro cell culture studies to determine the complex functions of the melanocortin MC1 receptor and the molecular mechanisms underlying the association between melanocortin MC1 receptor variant alleles and the red hair colour phenotype. Recent research indicates that melanocortin MC1 receptor has many non-pigmentary functions, and that the increased risk of skin cancer conferred by melanocortin MC1 receptor variant alleles is to some extent independent of pigmentation phenotypes. The use of new transgenic mouse models, the study of novel melanocortin MC1 receptor response genes and the use of more advanced human skin models such as 3D skin reconstruction may provide key elements in understanding the pharmacogenetics of human melanocortin MC1 receptor polymorphism . PMID:21199646

  6. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies.

    PubMed

    Amin, Rehab M; Bhayana, Brijesh; Hamblin, Michael R; Dai, Tianhong

    2016-07-01

    Pseudomonas aeruginosa is among the most common pathogens that cause nosocomial infections and is responsible for about 10% of all hospital-acquired infections. In the present study, we investigated the potential development of tolerance of P. aeruginosa to antimicrobial blue light by carrying 10 successive cycles of sublethal blue light inactivation. The high-performance liquid chromatographic (HPLC) analysis was performed to identify endogenous porphyrins in P. aeruginosa cells. In addition, we tested the effectiveness of antimicrobial blue light in a mouse model of nonlethal skin abrasion infection by using a bioluminescent strain of P. aeruginosa. The results demonstrated that no tolerance was developed to antimicrobial blue light in P. aeruginosa after 10 cycles of sub-lethal inactivation. HPLC analysis showed that P. aeruginosa is capable of producing endogenous porphyrins in particularly, coproporphyrin III, which are assumed to be responsible for the photodynamic effects of blue light alone. P. aeruginosa infection was eradicated by antimicrobial blue light alone (48 J/cm(2) ) without any added photosensitizer molecules in the mouse model. In conclusion, endogenous photosensitization using blue light should gain considerable attention as an effective and safe alternative antimicrobial therapy for skin infections. Lasers Surg. Med. 48:562-568, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer.

    PubMed

    Wallace, John R; Mangas, Kirstie M; Porter, Jessica L; Marcsisin, Renee; Pidot, Sacha J; Howden, Brian; Omansen, Till F; Zeng, Weiguang; Axford, Jason K; Johnson, Paul D R; Stinear, Timothy P

    2017-04-01

    Addressing the transmission enigma of the neglected disease Buruli ulcer (BU) is a World Health Organization priority. In Australia, we have observed an association between mosquitoes harboring the causative agent, Mycobacterium ulcerans, and BU. Here we tested a contaminated skin model of BU transmission by dipping the tails from healthy mice in cultures of the causative agent, Mycobacterium ulcerans. Tails were exposed to mosquito (Aedes notoscriptus and Aedes aegypti) blood feeding or punctured with sterile needles. Two of 12 of mice with M. ulcerans contaminated tails exposed to feeding A. notoscriptus mosquitoes developed BU. There were no mice exposed to A. aegypti that developed BU. Eighty-eight percent of mice (21/24) subjected to contaminated tail needle puncture developed BU. Mouse tails coated only in bacteria did not develop disease. A median incubation time of 12 weeks, consistent with data from human infections, was noted. We then specifically tested the M. ulcerans infectious dose-50 (ID50) in this contaminated skin surface infection model with needle puncture and observed an ID50 of 2.6 colony-forming units. We have uncovered a biologically plausible mechanical transmission mode of BU via natural or anthropogenic skin punctures.

  8. Time course of skin features and inflammatory biomarkers after liquid sulfur mustard exposure in SKH-1 hairless mice.

    PubMed

    Mouret, Stéphane; Wartelle, Julien; Batal, Mohamed; Emorine, Sandy; Bertoni, Marine; Poyot, Thomas; Cléry-Barraud, Cécile; Bakdouri, Nacera El; Peinnequin, André; Douki, Thierry; Boudry, Isabelle

    2015-01-05

    Sulfur mustard (SM) is a strong bifunctional alkylating agent that produces severe tissue injuries characterized by erythema, edema, subepidermal blisters and a delayed inflammatory response after cutaneous exposure. However, despite its long history, SM remains a threat because of the lack of effective medical countermeasures as the molecular mechanisms of these events remain unclear. This limited number of therapeutic options results in part of an absence of appropriate animal models. We propose here to use SKH-1 hairless mouse as the appropriate model for the design of therapeutic strategies against SM-induced skin toxicity. In the present study particular emphasis was placed on histopathological changes associated with inflammatory responses after topical exposure of dorsal skin to three different doses of SM (0.6, 6 and 60mg/kg) corresponding to a superficial, a second-degree and a third-degree burn. Firstly, clinical evaluation of SM-induced skin lesions using non invasive bioengineering methods showed that erythema and impairment of skin barrier increased in a dose-dependent manner. Histological evaluation of skin sections exposed to SM revealed that the time to onset and the severity of symptoms including disorganization of epidermal basal cells, number of pyknotic nuclei, activation of mast cells and neutrophils dermal invasion were dose-dependent. These histopathological changes were associated with a dose- and time-dependent increase in expression of specific mRNA for inflammatory mediators such as interleukins (IL1β and IL6), tumor necrosis factor (TNF)-α, cycloxygenase-2 (COX-2), macrophage inflammatory proteins (MIP-1α, MIP-2 and MIP-1αR) and keratinocyte chemoattractant (KC also called CXCL1) as well as adhesion molecules (L-selectin and vascular cell adhesion molecule (VCAM)) and growth factor (granulocyte colony-stimulating factor (Csf3)). A dose-dependent increase was also noted after SM exposure for mRNA of matrix metalloproteinases (MMP9) and laminin-γ2 which are associated with SM-induced blisters formation. Taken together, our results show that SM-induced skin histopathological changes related to inflammation is similar in SKH-1 hairless mice and humans. SKH-1 mouse is thus a reliable animal model for investigating the SM-induced skin toxicity and to develop efficient treatment against SM-induced inflammatory skin lesions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Transgenic nude mice ubiquitously expressing fluorescent proteins for color-coded imaging of the tumor microenvironment.

    PubMed

    Hoffman, Robert M

    2014-01-01

    We have developed a transgenic green fluorescent protein (GFP) nude mouse with ubiquitous GFP expression. The GFP nude mouse was obtained by crossing nontransgenic nude mice with the transgenic C57/B6 mouse in which the β-actin promoter drives GFP expression in essentially all tissues. In the adult mice, many organs brightly expressed GFP, including the spleen, heart, lungs, spleen, pancreas, esophagus, stomach, and duodenum as well as the circulatory system. The liver expressed GFP at a lesser level. The red fluorescent protein (RFP) transgenic nude mouse was obtained by crossing non-transgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives RFP (DsRed2) expression in essentially all tissues. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, liver, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. The cyan fluorescent protein (CFP) nude mouse was developed by crossing nontransgenic nude mice with the transgenic CK/ECFP mouse in which the β-actin promoter drives expression of CFP in almost all tissues. In the CFP nude mice, the pancreas and reproductive organs displayed the strongest fluorescence signals of all internal organs, which vary in intensity. The GFP, RFP, and CFP nude mice when transplanted with cancer cells of another color are powerful models for color-coded imaging of the tumor microenvironment (TME) at the cellular level.

  10. MicroRNA-146a alleviates chronic skin inflammation in atopic dermatitis through suppression of innate immune responses in keratinocytes.

    PubMed

    Rebane, Ana; Runnel, Toomas; Aab, Alar; Maslovskaja, Julia; Rückert, Beate; Zimmermann, Maya; Plaas, Mario; Kärner, Jaanika; Treis, Angela; Pihlap, Maire; Haljasorg, Uku; Hermann, Helen; Nagy, Nikoletta; Kemeny, Lajos; Erm, Triin; Kingo, Külli; Li, Mei; Boldin, Mark P; Akdis, Cezmi A

    2014-10-01

    Chronic skin inflammation in atopic dermatitis (AD) is associated with elevated expression of proinflammatory genes and activation of innate immune responses in keratinocytes. microRNAs (miRNAs) are short, single-stranded RNA molecules that silence genes via the degradation of target mRNAs or inhibition of translation. The aim of this study was to investigate the role of miR-146a in skin inflammation in AD. RNA and protein expression was analyzed using miRNA and mRNA arrays, RT-quantitative PCR, Western blotting, and immunonohistochemistry. Transfection of miR-146a precursors and inhibitors into human primary keratinocytes, luciferase assays, and MC903-dependent mouse model of AD were used to study miR-146a function. We show that miR-146a expression is increased in keratinocytes and chronic lesional skin of patients with AD. miR-146a inhibited the expression of numerous proinflammatory factors, including IFN-γ-inducible and AD-associated genes CCL5, CCL8, and ubiquitin D (UBD) in human primary keratinocytes stimulated with IFN-γ, TNF-α, or IL-1β. In a mouse model of AD, miR-146a-deficient mice developed stronger inflammation characterized by increased accumulation of infiltrating cells in the dermis, elevated expression of IFN-γ, CCL5, CCL8, and UBD in the skin, and IFN-γ, IL-1β, and UBD in draining lymph nodes. Both tissue culture and in vivo experiments in mice demonstrated that miR-146a-mediated suppression in allergic skin inflammation partially occurs through direct targeting of upstream nuclear factor kappa B signal transducers caspase recruitment domain-containing protein 10 and IL-1 receptor-associated kinase 1. In addition, human CCL5 was determined as a novel, direct target of miR-146a. Our data demonstrate that miR-146a controls nuclear factor kappa B-dependent inflammatory responses in keratinocytes and chronic skin inflammation in AD. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Chemopreventive efficacy of betel leaf extract and its constituents on 7,12-dimethylbenz(a)anthracene induced carcinogenesis and their effect on drug detoxification system in mouse skin.

    PubMed

    Azuine, M A; Amonkar, A J; Bhide, S V

    1991-04-01

    Effects of topically applied betel leaf extract (BLE) and its constituents. beta-carotene, alpha-tocopherol, eugenol and hydroxychavicol on 7,12-dimethylbenz(a)anthracene (DMBA) induced skin tumors were evaluated in two strains of mice. BLE, beta-carotene and alpha-tocopherol, significantly inhibited the tumor formation by 83, 86, 86% in Swiss mice and 92, 94 and 89% in male Swiss bare mice respectively. Hydroxychavicol showed 90% inhibition in Swiss bare mice at 24 weeks of treatment. Eugenol showed minimal protection in both strains of mice. The mean latency period and survivors in BLE, beta-carotene, alpha-tocopherol and hydroxychavicol treated groups were remarkably high as compared to DMBA alone treated group. Intraperitoneal injection of betal leaf constituents showed a significant effect on both glutathione and glutathione S-transferase levels in the Swiss mouse skin.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, J.M.; Whitaker, M.S.; Wesley, J.W.

    The relative carcinogenicities of coal and shale derived liquid crudes was compared with a composite blend of natural petroleum using discontinuous exposure of mouse skin. All of the syncrudes were carcinogenic while the natural crude composite was negative following three times weekly application of 50% w/v solutions for 22 wks followed by a 22 wk observation period. In addition to eliciting progressive squamous carcinomas the syncrudes were also capable of inducing persistent ulcerative dermatitis. This inflammatory or necrotizing potential appeared to be inversely proportional to the carcinogenicity of the material. A measure of the relative solubility of the materials inmore » mouse skin was obtained by quantitation of native fluorescence in frozen sections of skin. There appeared to be a general, although non-quantitative association between fluorescence intensity in sebaceous glands and carcinogenicity in epidermal cells, however it will be necessary to examine a greater number of samples to establish such a correlation.« less

  13. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model.

    PubMed

    Amaro-Ortiz, Alexandra; Vanover, Jillian C; Scott, Timothy L; D'Orazio, John A

    2013-09-07

    Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.

  14. Organ dose conversion coefficients based on a voxel mouse model and MCNP code for external photon irradiation.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Cheng, Jie; Ning, Jing; Yuan, Yong; Pan, Jie; Yang, Guoshan

    2012-01-01

    A set of conversion coefficients from kerma free-in-air to the organ absorbed dose for external photon beams from 10 keV to 10 MeV are presented based on a newly developed voxel mouse model, for the purpose of radiation effect evaluation. The voxel mouse model was developed from colour images of successive cryosections of a normal nude male mouse, in which 14 organs or tissues were segmented manually and filled with different colours, while each colour was tagged by a specific ID number for implementation of mouse model in Monte Carlo N-particle code (MCNP). Monte Carlo simulation with MCNP was carried out to obtain organ dose conversion coefficients for 22 external monoenergetic photon beams between 10 keV and 10 MeV under five different irradiation geometries conditions (left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic). Organ dose conversion coefficients were presented in tables and compared with the published data based on a rat model to investigate the effect of body size and weight on the organ dose. The calculated and comparison results show that the organ dose conversion coefficients varying the photon energy exhibits similar trend for most organs except for the bone and skin, and the organ dose is sensitive to body size and weight at a photon energy approximately <0.1 MeV.

  15. Pharmacological profiling of the TRPV3 channel in recombinant and native assays.

    PubMed

    Grubisha, Olivera; Mogg, Adrian J; Sorge, Jessica L; Ball, Laura-Jayne; Sanger, Helen; Ruble, Cara L A; Folly, Elizabeth A; Ursu, Daniel; Broad, Lisa M

    2014-05-01

    Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. Medium-throughput cellular assays were developed using a Ca(2+) -sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies. © 2013 The British Pharmacological Society.

  16. Sulfur mustard induces an endoplasmic reticulum stress response in the mouse ear vesicant model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yoke-Chen; Wang, James D.; Svoboda, Kathy K.

    The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing frommore » 24 h to 168 h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72 h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24 h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury. - Highlights: ► We demonstrated ER stress response in the mouse ear vesicant model. ► We described the asymmetrical nature of wound repair in the MEVM. ► We identified the distribution of various ER stress markers in the MEVM.« less

  17. A UV-independent pathway to melanoma carcinogenesis in the redhair-fairskin background

    PubMed Central

    Mitra, Devarati; Luo, Xi; Morgan, Ann; Wang, Jin; Hoang, Mai P.; Lo, Jennifer; Guerrero, Candace R.; Lennerz, Jochen K.; Mihm, Martin C.; Wargo, Jennifer A.; Robinson, Kathleen C.; Devi, Suprabha P.; Vanover, Jillian C.; D’Orazio, John A.; McMahon, Martin; Bosenberg, Marcus W.; Haigis, Kevin M.; Haber, Daniel A.; Wang, Yinsheng; Fisher, David E.

    2012-01-01

    People with pale skin, red hair, freckles, and an inability to tan—the “redhair/fairskin” phenotype— are at highest risk of developing melanoma, compared to all other pigmentation types1. Genetically, this phenotype is frequently the product of inactivating polymorphisms in the Melanocortin 1 receptor (MC1R) gene. MC1R encodes a cAMP stimulating G-protein coupled receptor that controls pigment production. Minimal receptor activity, as in redhair/fairskin polymorphisms, produces red/yellow pheomelanin pigment, while increasing MC1R activity stimulates production of black/brown eumelanin2. Pheomelanin has weak UV shielding capacity relative to eumelanin and has been shown to amplify UVA-induced reactive oxygen species (ROS) 3–5. Several observations, however, complicate the assumption that melanoma risk is completely UV dependent. For example, unlike non-melanoma skin cancers, melanoma is not restricted to sun-exposed skin and UV signature mutations are infrequently oncogenic drivers6. While linkage of melanoma risk to UV exposure is beyond doubt, UV-independent events are also likely to play a significant role1,7. Here, we introduced into mice carrying an inactivating mutation in the Mc1r gene (who exhibit a phenotype analogous to redhair/fairskin humans), a conditional, melanocyte-targeted allele of the most commonly mutated melanoma oncogene, BRafV600E. We observed a high incidence of invasive melanomas without providing additional gene aberrations or UV exposure. To investigate the mechanism of UV-independent carcinogenesis, we introduced an albino allele, which ablates all pigment production on the Mc1r e/e background. Selective absence of pheomelanin synthesis was protective against melanoma development. In addition, normal Mc1re/e mouse skin was found to have significantly greater oxidative DNA and lipid damage than albino-Mc1re/e mouse skin. These data suggest that the pheomelanin pigment pathway produces UV-independent carcinogenic contributions to melanomagenesis by a mechanism of oxidative damage. While UV protection remains important, additional strategies may be required for optimal melanoma prevention. PMID:23123854

  18. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo.

    PubMed

    Wahedi, Hussain Mustatab; Jeong, Minsun; Chae, Jae Kyoung; Do, Seon Gil; Yoon, Hyeokjun; Kim, Sun Yeou

    2017-05-15

    Cutaneous wound healing is a complex process involving various regulatory factors at the molecular level. Aloe vera is widely used for cell rejuvenation, wound healing, and skin moisturizing. This study aimed to investigate the effects of aloesin from Aloe vera on cutaneous wound healing and mechanisms involved therein. This study consisted of both in vitro and in vivo experiments involving skin cell lines and mouse model to demonstrate the wound healing effects of aloesin by taking into account several parameters ranging from cultured cell migration to wound healing in mice. The activities of Smad signaling molecules (Smad2 and Smad3), MAPKs (ERK and JNK), and migration-related proteins (Cdc42, Rac1, and α-Pak) were assessed after aloesin treatment in cultured cells (1, 5 and 10µM) and mouse skin (0.1% and 0.5%). We also monitored macrophage recruitment, secretion of cytokines and growth factors, tissue development, and angiogenesis after aloesin treatment using IHC analysis and ELISAs. Aloesin increased cell migration via phosphorylation of Cdc42 and Rac1. Aloesin positively regulated the release of cytokines and growth factors (IL-1β, IL-6, TGF-β1 and TNF-α) from macrophages (RAW264.7) and enhanced angiogenesis in endothelial cells (HUVECs). Aloesin treatment accelerated wound closure rates in hairless mice by inducing angiogenesis, collagen deposition and granulation tissue formation. More importantly, aloesin treatment resulted in the activation of Smad and MAPK signaling proteins that are key players in cell migration, angiogenesis and tissue development. Aloesin ameliorates each phase of the wound healing process including inflammation, proliferation and remodeling through MAPK/Rho and Smad signaling pathways. These findings indicate that aloesin has the therapeutic potential for treating cutaneous wounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Mast cells are dispensable in a genetic mouse model of chronic dermatitis.

    PubMed

    Sulcova, Jitka; Meyer, Michael; Guiducci, Eva; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Werner, Sabine

    2015-06-01

    Chronic inflammatory skin diseases, such as atopic dermatitis, affect a large percentage of the population, but the role of different immune cells in the pathogenesis of these disorders is largely unknown. Recently, we found that mice lacking fibroblast growth factor receptor 1 (Fgfr1) and Fgfr2 (K5-R1/R2 mice) in the epidermis have a severe impairment in the epidermal barrier, which leads to the development of a chronic inflammatory skin disease that shares many features with human atopic dermatitis. Using Fgfr1-/Fgfr2-deficient mice, we analyzed the consequences of the loss of mast cells. Mast cells accumulated and degranulated in the skin of young Fgfr1-/Fgfr2-deficient mice, most likely as a consequence of increased expression of the mast cell chemokine Ccl2. The increase in mast cells occurred before the development of histological abnormalities, indicating a functional role of these cells in the inflammatory skin phenotype. To test this hypothesis, we mated the Fgfr1-/Fgfr2-deficient mice with mast cell-deficient CreMaster mice. Surprisingly, loss of mast cells did not or only mildly affect keratinocyte proliferation, epidermal thickness, epidermal barrier function, accumulation and activation of different immune cells, or expression of different proinflammatory cytokines in the skin. These results reveal that mast cells are dispensable for the development of chronic inflammation in response to a defect in the epidermal barrier. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  20. Signaling Molecules in Sulfur Mustard-Induced Cutaneous Injury

    DTIC Science & Technology

    2007-11-27

    vesicant vapors into human skin. J Gen Physiol. 1946;29:441–69. 11. Sabourin CL, Petrali JP, Casillas RP. Alterations in inflammatory cytokine gene...expression in sulfur mustard-exposed mouse skin. J Biochem Mol Toxicol. 2000;14(6):291–302. 12. Sabourin CL, Danne MM, Buxton KL, Casillas RP, Schlager

  1. Response of mouse epidermal cells to single doses of heavy-particles

    NASA Technical Reports Server (NTRS)

    Leith, J. T.; Schilling, W. A.; Welch, G. P.

    1972-01-01

    The survival of mouse epidermal cells to heavy-particles has been studied In Vivo by the Withers clone technique. Experiments with accelerated helium, lithium and carbon ions were performed. The survival curve for the helium ion irradiations used a modified Bragg curve method with a maximum tissue penetration of 465 microns, and indicated that the dose needed to reduce the original cell number to 1 surviving cell/square centimeters was 1525 rads with a D sub o of 95 rads. The LET at the basal cell layer was 28.6 keV per micron. Preliminary experiments with lithium and carbon used treatment doses of 1250 rads with LET's at the surface of the skin of 56 and 193 keV per micron respectively. Penetration depths in skin were 350 and 530 microns for the carbon and lithium ions whose Bragg curves were unmodified. Results indicate a maximum RBE for skin of about 2 using the skin cloning technique. An attempt has been made to relate the epidermal cell survival curve to mortality of the whole animal for helium ions.

  2. Hyperspectral Image Analysis for Skin Tumor Detection

    NASA Astrophysics Data System (ADS)

    Kong, Seong G.; Park, Lae-Jeong

    This chapter presents hyperspectral imaging of fluorescence for nonin-vasive detection of tumorous tissue on mouse skin. Hyperspectral imaging sensors collect two-dimensional (2D) image data of an object in a number of narrow, adjacent spectral bands. This high-resolution measurement of spectral information reveals a continuous emission spectrum for each image pixel useful for skin tumor detection. The hyperspectral image data used in this study are fluorescence intensities of a mouse sample consisting of 21 spectral bands in the visible spectrum of wavelengths ranging from 440 to 640 nm. Fluorescence signals are measured using a laser excitation source with the center wavelength of 337 nm. An acousto-optic tunable filter is used to capture individual spectral band images at a 10-nm resolution. All spectral band images are spatially registered with the reference band image at 490 nm to obtain exact pixel correspondences by compensating the offsets caused during the image capture procedure. The support vector machines with polynomial kernel functions provide decision boundaries with a maximum separation margin to classify malignant tumor and normal tissue from the observed fluorescence spectral signatures for skin tumor detection.

  3. PAMs ameliorates the imiquimod-induced psoriasis-like skin disease in mice by inhibition of translocation of NF-κB and production of inflammatory cytokines.

    PubMed

    Dou, Rongkun; Liu, Zongying; Yuan, Xue; Xiangfei, Danzhou; Bai, Ruixue; Bi, Zhenfei; Yang, Piao; Yang, Yalan; Dong, Yinsong; Su, Wei; Li, Diqiang; Mao, Canquan

    2017-01-01

    Psoriasis is a chronic and persistent inflammatory skin disease seriously affecting the quality of human life. In this study, we reported an ancient formula of Chinese folk medicine, the natural plant antimicrobial solution (PAMs) for its anti-inflammatory effects and proposed the primary mechanisms on inhibiting the inflammatory response in TNF-α/IFN-γ-induced HaCaT cells and imiquimod-induced psoriasis-like skin disease mouse model. Two main functional components of hydroxysafflor Yellow A and allantoin in PAMs were quantified by HPLC to be 94.2±2.2 and 262.9±12.5 μg/mL respectively. PAMs could significantly reduce the gene expression and inflammatory cytokines production of Macrophage-Derived Chemokine (MDC), IL-8 and IL-6 in TNF-α/IFN-γ-induced HaCaT cells. PAMs also significantly ameliorates the psoriatic-like symptoms in a mouse model with the evaluation scores for both the single (scales, thickness, erythema) and cumulative features were in the order of blank control < Dexamethasone < PAMs < 50% ethanol < model groups. The results were further confirmed by hematoxylin-eosin staining, RT-qPCR and immunohistochemistry. The down-regulated gene expression of IL-8, TNF-α, ICAM-1 and IL-23 in mouse tissues was consistent with the results from those of the HaCaT cells. The inhibition of psoriasis-like skin inflammation by PAMs was correlated with the inactivation of the translocation of P65 protein into cellular nucleus, indicating the inhibition of the inflammatory NF-κB signaling pathway. Taken together, these findings suggest that PAMs may be a promising drug candidate for the treatment of inflammatory skin disorders, such as psoriasis.

  4. Monitoring 2-ethylhexyl-4-methoxycinnamate photoisomerization on skin using attenuated total reflection fourier transform infrared spectroscopy.

    PubMed

    Pangnakorn, P; Nonthabenjawan, R; Ekgasit, S; Thammacharoen, C; Pattanaargson Wanichwecharungruang, S

    2007-02-01

    Photoisomerization and photodimerization of a widely used UVB filter, 2-ethylhexy-4-methoxycinnamate (EHMC) on a ZnSe surface and baby mouse (Mus musculus Linn.) skin were monitored using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FT-IR). Differentiation between the E- and the Z-EHMC could be achieved by examining the infrared (IR) peak at 981 cm(-1) (b peak), which corresponds to the CH rocking deformation vibration of Ph-CH=CH- detected only in the E configuration. By plotting the ratios of the peak area of the b peak and an internal standard peak (1060-998 cm(-1)) against mole percentage of Z-isomer in the E-Z mixtures, a linear calibration plot was obtained. Thus, a simple estimation of the mole percentage of each configuration in a sample was obtained. At the same UVB exposure, photostationary equilibrium of the E/Z isomerization on the surface varied with the applied amounts of EHMC. Photoisomerizations on ZnSe and on baby mouse skin were comparable. Less than 10% of E-EHMC changed configuration when the mouse skins applied with 1.0-4.0 mg/cm(2) E-EHMC were exposed to sunlight for 60 min (UVB radiant exposure of approximately 0.30 J/cm(2)). This corresponded to less than 5% loss in UV filtering efficiency. However, at a typical EHMC skin coverage ( approximately 0.2 mg/cm(2)), 0.30 J/cm(2) UVB exposure induced approximately 50% photoisomerization resulting in 25% loss of UV filtering efficiency. No photodimerization was detected even at the extreme EHMC coverage of 4.0 mg/cm(2) after a UVB exposure of 0.90 J/cm(2).

  5. Nevirapine bioactivation and covalent binding in the skin.

    PubMed

    Sharma, Amy M; Klarskov, Klaus; Uetrecht, Jack

    2013-03-18

    Nevirapine (NVP) treatment is associated with serious skin rashes that appear to be immune-mediated. We previously developed a rat model of this skin rash that is immune-mediated and is very similar to the rash in humans. Treatment of rats with the major NVP metabolite, 12-OH-NVP, also caused the rash. Most idiosyncratic drug reactions are caused by reactive metabolites; 12-OH-NVP forms a benzylic sulfate, which was detected in the blood of animals treated with NVP or 12-OH-NVP. This sulfate is presumably formed in the liver; however, the skin also has significant sulfotransferase activity. In this study, we used a serum against NVP to detect covalent binding in the skin of rats. There was a large artifact band in immunoblots of whole skin homogenates that interfered with detection of covalent binding; however, when the skin was separated into dermal and epidermal fractions, covalent binding was clearly present in the epidermis, which is also the location of sulfotransferases. In contrast to rats, treatment of mice with NVP did not result in covalent binding in the skin or skin rash. Although the reaction of 12-OH-NVP sulfate with nucleophiles such as glutathione is slow, incubation of this sulfate with homogenized human and rat skin led to extensive covalent binding. Incubations of 12-OH-NVP with the soluble fraction from a 9,000g centrifugation (S9) of rat or human skin homogenate in the presence of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) produced extensive covalent binding, but no covalent binding was detected with mouse skin S9, which suggests that the reason mice do not develop a rash is that they lack the required sulfotransferase. This is the first study to report covalent binding of NVP to rat and human skin. These data provide strong evidence that covalent binding of NVP in the skin is due to 12-OH-NVP sulfate, which is likely responsible for NVP-induced skin rash. Sulfation may represent a bioactivation pathway for other drugs that cause a skin rash.

  6. Isocitrate dehydrogenase 1 is downregulated during early skin tumorigenesis which can be inhibited by overexpression of manganese superoxide dismutase.

    PubMed

    Robbins, Delira; Wittwer, Jennifer A; Codarin, Sarah; Circu, Magdalena L; Aw, Tak Yee; Huang, Ting-Ting; Van Remmen, Holly; Richardson, Arlan; Wang, David B; Witt, Stephan N; Klein, Ronald L; Zhao, Yunfeng

    2012-08-01

    Isocitrate dehydrogenase 1 (IDH1), a cytosolic enzyme that converts isocitrate to alpha-ketoglutarate, has been shown to be dysregulated during tumorigenesis. However, at what stage of cancer development IDH1 is dysregulated and how IDH1 may affect cell transformation and tumor promotion during early stages of cancer development are unclear. We used a skin cell transformation model and mouse skin epidermal tissues to study the role of IDH1 in early skin tumorigenesis. Our studies demonstrate that both the tumor promoter TPA and UVC irradiation decreased expression and activity levels of IDH1, not IDH2, in the tumor promotable JB6 P+ cell model. Skin epidermal tissues treated with dimethylbenz[α]anthracene/TPA also showed decreases in IDH1 expression and activity. In non-promotable JB6 P-cells, IDH1 was upregulated upon TPA treatment, whereas IDH2 was maintained at similar levels with TPA treatment. Interestingly, IDH1 knockdown enhanced, whereas IDH1 overexpression suppressed, TPA-induced cell transformation. Finally, manganese superoxide dismutase overexpression suppressed tumor promoter induced decreases in IDH1 expression and mitochondrial respiration, while intracellular alpha-ketoglutarate levels were unchanged. These results suggest that decreased IDH1 expression in early stage skin tumorigenesis is highly correlated with tumor promotion. In addition, oxidative stress might contribute to IDH1 inactivation, because manganese superoxide dismutase, a mitochondrial antioxidant enzyme, blocked decreases in IDH1 expression and activity. © 2012 Japanese Cancer Association.

  7. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques.

    PubMed

    Xia, Jixiang; Martinez, Angela; Daniell, Henry; Ebert, Steven N

    2011-06-02

    Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun") delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI) methods. Plasmid DNA carrying the firefly luciferase (LUC) reporter gene under the control of the human Cytomegalovirus (CMV) promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter) using different DNA Loading Ratios (DLRs), and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50) at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results demonstrate that different tissues show different expression kinetics following gene transfer of the same reporter plasmid to different mouse tissues in vivo. We evaluated superficial (skin) and abdominal organ (liver) targets, and found that reporter gene expression peaked within the first two days post-transfer in each case, but declined most rapidly in the skin (3-4 days) compared to liver (10-14 days). This information is essential for designing effective gene therapy strategies in different target tissues.

  8. Immune Status, Strain Background, and Anatomic Site of Inoculation Affect Mouse Papillomavirus (MmuPV1) Induction of Exophytic Papillomas or Endophytic Trichoblastomas

    PubMed Central

    Sundberg, John P.; Proctor, Mary; Ingle, Arvind; Silva, Kathleen A.; Dadras, Soheil S.; Jenson, A. Bennett; Ghim, Shin-je

    2014-01-01

    Papillomaviruses (PVs) induce papillomas, premalignant lesions, and carcinomas in a wide variety of species. PVs are classified first based on their host and tissue tropism and then their genomic diversities. A laboratory mouse papillomavirus, MmuPV1 (formerly MusPV), was horizontally transmitted within an inbred colony of NMRI-Foxn1nu/Foxn1nu (nude; T cell deficient) mice of an unknown period of time. A ground-up, filtered papilloma inoculum was not capable of infecting C57BL/6J wild-type mice; however, immunocompetent, alopecic, S/RV/Cri-ba/ba (bare) mice developed small papillomas at injection sites that regressed. NMRI-Foxn1nu and B6.Cg-Foxn1nu, but not NU/J-Foxn1nu, mice were susceptible to MmuPV1 infection. B6 congenic strains, but not other congenic strains carrying the same allelic mutations, lacking B- and T-cells, but not B-cells alone, were susceptible to infection, indicating that mouse strain and T-cell deficiency are critical to tumor formation. Lesions initially observed were exophytic papillomas around the muzzle, exophytic papillomas on the tail, and condylomas of the vaginal lining which could be induced by separate scarification or simultaneous scarification of MmuPV1 at all four sites. On the dorsal skin, locally invasive, poorly differentiated tumors developed with features similar to human trichoblastomas. Transcriptome analysis revealed significant differences between the normal skin in these anatomic sites and in papillomas versus trichoblastomas. The primarily dysregulated genes involved molecular pathways associated with cancer, cellular development, cellular growth and proliferation, cell morphology, and connective tissue development and function. Although trichoepitheliomas are benign, aggressive tumors, few of the genes commonly associated with basal cell carcinoma or squamous cells carcinoma were highly dysregulated. PMID:25474466

  9. Characterization of skin abnormalities in a mouse model of osteogenesis imperfecta using high resolution magnetic resonance imaging and Fourier transform infrared imaging spectroscopy.

    PubMed

    Canuto, H C; Fishbein, K W; Huang, A; Doty, S B; Herbert, R A; Peckham, J; Pleshko, N; Spencer, R G

    2012-01-01

    Evaluation of the skin phenotype in osteogenesis imperfecta (OI) typically involves biochemical measurements, such as histologic or biochemical assessment of the collagen produced from biopsy-derived dermal fibroblasts. As an alternative, the current study utilized non-invasive magnetic resonance imaging (MRI) microscopy and optical spectroscopy to define biophysical characteristics of skin in an animal model of OI. MRI of skin harvested from control, homozygous oim/oim and heterozygous oim/+ mice demonstrated several differences in anatomic and biophysical properties. Fourier transform infrared imaging spectroscopy (FT-IRIS) was used to interpret observed MRI signal characteristics in terms of chemical composition. Differences between wild-type and OI mouse skin included the appearance of a collagen-depleted lower dermal layer containing prominent hair follicles in the oim/oim mice, accounting for 55% of skin thickness in these. The MRI magnetization transfer rate was lower by 50% in this layer as compared to the upper dermis, consistent with lower collagen content. The MRI transverse relaxation time, T2, was greater by 30% in the dermis of the oim/oim mice compared to controls, consistent with a more highly hydrated collagen network. Similarly, an FT-IRIS-defined measure of collagen integrity was 30% lower in the oim/oim mice. We conclude that characterization of phenotypic differences between the skin of OI and wild-type mice by MRI and FT-IRIS is feasible, and that these techniques provide powerful complementary approaches for the analysis of the skin phenotype in animal models of disease. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Bone Marrow Cell Transfer into Fetal Circulation Can Ameliorate Genetic Skin Diseases by Providing Fibroblasts to the Skin and Inducing Immune Tolerance

    PubMed Central

    Chino, Takenao; Tamai, Katsuto; Yamazaki, Takehiko; Otsuru, Satoru; Kikuchi, Yasushi; Nimura, Keisuke; Endo, Masayuki; Nagai, Miki; Uitto, Jouni; Kitajima, Yasuo; Kaneda, Yasufumi

    2008-01-01

    Recent studies have shown that skin injury recruits bone marrow-derived fibroblasts (BMDFs) to the site of injury to accelerate tissue repair. However, whether uninjured skin can recruit BMDFs to maintain skin homeostasis remains uncertain. Here, we investigated the appearance of BMDFs in normal mouse skin after embryonic bone marrow cell transplantation (E-BMT) with green fluorescent protein-transgenic bone marrow cells (GFP-BMCs) via the vitelline vein, which traverses the uterine wall and is connected to the fetal circulation. At 12 weeks of age, mice treated with E-BMT were observed to have successful engraftment of GFP-BMCs in hematopoietic tissues accompanied by induction of immune tolerance against GFP. We then investigated BMDFs in the skin of the same mice without prior injury and found that a significant number of BMDFs, which generate matrix proteins both in vitro and in vivo, were recruited and maintained after birth. Next, we performed E-BMT in a dystrophic epidermolysis bullosa mouse model (col7a1−/−) lacking type VII collagen in the cutaneous basement membrane zone. E-BMT significantly ameliorated the severity of the dystrophic epidermolysis bullosa phenotype in neonatal mice. Type VII collagen was deposited primarily in the follicular basement membrane zone in the vicinity of the BMDFs. Thus, gene therapy using E-BMT into the fetal circulation may offer a potential treatment option to ameliorate genetic skin diseases that are characterized by fibroblast dysfunction through the introduction of immune-tolerated BMDFs. PMID:18688022

  11. Ultraviolet-C Light for Treatment of Candida albicans Burn Infection in Mice

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Zhao, Jie; St. Denis, Tyler G; Wu, Qiuhe; Xia, Yumin; Huang, Liyi; Sharma, Sulbha K; d’Enfert, Christophe; Hamblin, Michael R

    2011-01-01

    Burn patients are at high risk of invasive fungal infections, which are a leading cause of morbidity, mortality, and related expense exacerbated by the emergence of drug resistant fungal strains. In this study, we investigated the use of UVC light (254-nm) for the treatment of Candida albicans infection in mouse third degree burns. In-vitro studies demonstrated that UVC could selectively kill the pathogenic yeast C. albicans compared to a normal keratinocyte cell line in a light exposure dependent manner. A mouse model of chronic C. albicans infection in non-lethal 3rd degree burns was developed. The C. albicans strain was stably transformed with a version of the Gaussia princeps luciferase gene that allowed real-time bioluminescence imaging of the progression of C. albicans infection. UVC treatment with a single exposure carried out on day 0 (30 minutes post-infection) gave an average 2.16-log10-unit (99.2%) loss of fungal luminescence when 2.92 J/cm2 UVC had been delivered, while UVC 24-hours post-infection gave 1.94-log10-unit (95.8%) reduction of fungal luminescence after 6.48 J/cm2. Statistical analysis demonstrated that UVC treatment carried out both on both day 0 and day 1 significantly reduced the fungal bioburden of infected burns. UVC was found to be superior to a topical antifungal drug, nystatin cream. UVC was tested on normal mouse skin and no gross damage was observed 24 hours after 6.48 J/cm2. DNA lesions (cyclobutane pyrimidine dimers) were observed by immunofluorescence in normal mouse skin immediately after a 6.48 J/cm2 UVC exposure, but the lesions were extensively repaired at 24-hours after UVC exposure. PMID:21208209

  12. Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum.

    PubMed

    Gorgels, Theo G M F; Waarsing, Jan H; Herfs, Marjolein; Versteeg, Daniëlle; Schoensiegel, Frank; Sato, Toshiro; Schlingemann, Reinier O; Ivandic, Boris; Vermeer, Cees; Schurgers, Leon J; Bergen, Arthur A B

    2011-11-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder in which calcification of connective tissue leads to pathology in skin, eye and blood vessels. PXE is caused by mutations in ABCC6. High expression of this transporter in the basolateral hepatocyte membrane suggests that it secretes an as-yet elusive factor into the circulation which prevents ectopic calcification. Utilizing our Abcc6 (-/-) mouse model for PXE, we tested the hypothesis that this factor is vitamin K (precursor) (Borst et al. 2008, Cell Cycle). For 3 months, Abcc6 (-/-) and wild-type mice were put on diets containing either the minimum dose of vitamin K required for normal blood coagulation or a dose that was 100 times higher. Vitamin K was supplied as menaquinone-7 (MK-7). Ectopic calcification was monitored in vivo by monthly micro-CT scans of the snout, as the PXE mouse model develops a characteristic connective tissue mineralization at the base of the whiskers. In addition, calcification of kidney arteries was measured by histology. Results show that supplemental MK-7 had no effect on ectopic calcification in Abcc6 ( -/- ) mice. MK-7 supplementation increased vitamin K levels (in skin, heart and brain) in wild-type and in Abcc6 (-/-) mice. Vitamin K tissue levels did not depend on Abcc6 genotype. In conclusion, dietary MK-7 supplementation increased vitamin K tissue levels in the PXE mouse model but failed to counteract ectopic calcification. Hence, we obtained no support for the hypothesis that Abcc6 transports vitamin K and that PXE can be cured by increasing tissue levels of vitamin K.

  13. An in vitro human skin test for assessing sensitization potential.

    PubMed

    Ahmed, S S; Wang, X N; Fielding, M; Kerry, A; Dickinson, I; Munuswamy, R; Kimber, I; Dickinson, A M

    2016-05-01

    Sensitization to chemicals resulting in an allergy is an important health issue. The current gold-standard method for identification and characterization of skin-sensitizing chemicals was the mouse local lymph node assay (LLNA). However, for a number of reasons there has been an increasing imperative to develop alternative approaches to hazard identification that do not require the use of animals. Here we describe a human in-vitro skin explant test for identification of sensitization hazards and the assessment of relative skin sensitizing potency. This method measures histological damage in human skin as a readout of the immune response induced by the test material. Using this approach we have measured responses to 44 chemicals including skin sensitizers, pre/pro-haptens, respiratory sensitizers, non-sensitizing chemicals (including skin-irritants) and previously misclassified compounds. Based on comparisons with the LLNA, the skin explant test gave 95% specificity, 95% sensitivity, 95% concordance with a correlation coefficient of 0.9. The same specificity and sensitivity were achieved for comparison of results with published human sensitization data with a correlation coefficient of 0.91. The test also successfully identified nickel sulphate as a human skin sensitizer, which was misclassified as negative in the LLNA. In addition, sensitizers and non-sensitizers identified as positive or negative by the skin explant test have induced high/low T cell proliferation and IFNγ production, respectively. Collectively, the data suggests the human in-vitro skin explant test could provide the basis for a novel approach for characterization of the sensitizing activity as a first step in the risk assessment process. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Enhanced responses of lumbar superficial dorsal horn neurons to intradermal PAR-2 agonist but not histamine in a mouse hindpaw dry skin itch model

    PubMed Central

    Akiyama, Tasuku; Carstens, Mirela Iodi

    2011-01-01

    Chronic itch is symptomatic of many skin conditions and systemic diseases. Little is known about pathophysiological alterations in itch-signaling neural pathways associated with chronic itch. We used a mouse model of hindpaw chronic dry skin itch to investigate properties of presumptive itch-signaling neurons. Neurons in the lumbar superficial dorsal horn ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous activity that was inhibited by scratching the plantar surface. Most spontaneously active units exhibited further increases in firing rate following intradermal injection of an agonist of the protease-activated receptor PAR-2, or histamine. The large majority of pruritogen-responsive units also responded to capsaicin and allyl isothiocyanate. For neurons ipsilateral to dry skin treatment, responses elicited by the PAR-2 agonist, but not histamine or mechanical stimuli, were significantly larger compared with neurons ipsilateral to vehicle (water) treatment or neurons recorded in naïve (untreated) mice. The spontaneous activity may signal ongoing itch, while enhanced PAR-2 agonist-evoked responses may underlie hyperknesis (enhanced itch), both of which are symptomatic of many chronic itch conditions. The enhancement of neuronal responses evoked by the PAR-2 agonist, but not by histamine or mechanical stimuli, implies that the dry skin condition selectively sensitized PAR-2 agonist-sensitive primary afferent pruriceptors. PMID:21430273

  15. Enhanced responses of lumbar superficial dorsal horn neurons to intradermal PAR-2 agonist but not histamine in a mouse hindpaw dry skin itch model.

    PubMed

    Akiyama, Tasuku; Carstens, Mirela Iodi; Carstens, E

    2011-06-01

    Chronic itch is symptomatic of many skin conditions and systemic diseases. Little is known about pathophysiological alterations in itch-signaling neural pathways associated with chronic itch. We used a mouse model of hindpaw chronic dry skin itch to investigate properties of presumptive itch-signaling neurons. Neurons in the lumbar superficial dorsal horn ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous activity that was inhibited by scratching the plantar surface. Most spontaneously active units exhibited further increases in firing rate following intradermal injection of an agonist of the protease-activated receptor PAR-2, or histamine. The large majority of pruritogen-responsive units also responded to capsaicin and allyl isothiocyanate. For neurons ipsilateral to dry skin treatment, responses elicited by the PAR-2 agonist, but not histamine or mechanical stimuli, were significantly larger compared with neurons ipsilateral to vehicle (water) treatment or neurons recorded in naïve (untreated) mice. The spontaneous activity may signal ongoing itch, while enhanced PAR-2 agonist-evoked responses may underlie hyperknesis (enhanced itch), both of which are symptomatic of many chronic itch conditions. The enhancement of neuronal responses evoked by the PAR-2 agonist, but not by histamine or mechanical stimuli, implies that the dry skin condition selectively sensitized PAR-2 agonist-sensitive primary afferent pruriceptors.

  16. Inhibition of ultraviolet-B epidermal ornithine decarboxylase induction and skin carcinogenesis in hairless mice by topical indomethacin and triamcinolone acetonide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Connor, M.J.; Breeding, J.

    1982-10-01

    Modulation of ultraviolet-B (UVB) skin carcinogenesis by topical treatment with two antiinflammatory drugs expected to have different mechanisms of action has been studied in the hairless mouse. Indomethacin is a nonsteroidal antiinflammatory agent which may act by inhibiting prostaglandin biosynthesis. Triamcinolone acetonide is a steroidal antiinflammatory agent. Both of these drugs inhibited the induction of epidermal ornithine decarboxylase by UVB when applied topically in a acetone vehicle. A UVB skin tumor study was designed. Groups of mice were irradiated daily with UVB for 20 days, each mouse receiving a total of 17.1 kJ UVB per sq m. Group 1 wasmore » treated with acetone immediately after each irradiation; Group 2 received 700 nmol indomethacin in acetone immediately after each irradiation; Group 3 received 14.4 nmol triamcinolone acetonide in acetone immediately after each irradiation. Mice were killed after 52 weeks, and the tumors were excised and examined histologically. Both topical indomethacin and topical triamcinolone acetonide were effective in reducing the incidence and size of the skin tumors induced by UVB. This evidence supports the hypothesis that the induction of ornithine decarboxylase may be a critical component of UVB skin carcinogenesis and that inhibition of ornithine decarboxylase induction can be used as a screen for agents which will inhibit UVB skin carcinogenesis.« less

  17. Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin.

    PubMed

    Kim, Jong-Eun; Song, Dasom; Kim, Junil; Choi, Jina; Kim, Jong Rhan; Yoon, Hyun-Sun; Bae, Jung-Soo; Han, Mira; Lee, Sein; Hong, Ji Sun; Song, Dayoung; Kim, Seong-Jin; Son, Myoung-Jin; Choi, Sang-Woon; Chung, Jin Ho; Kim, Tae-Aug; Lee, Ki Won

    2016-05-01

    Cacao beans contain various bioactive phytochemicals that could modify the pathogeneses of certain diseases. Here, we report that oral administration of cacao powder (CP) attenuates UVB-induced skin wrinkling by the regulation of genes involved in dermal matrix production and maintenance. Transcriptome analysis revealed that 788 genes are down- or upregulated in the CP supplemented group, compared with the UVB-irradiated mouse skin controls. Among the differentially expressed genes, cathepsin G and serpin B6c play important roles in UVB-induced skin wrinkle formation. Gene regulatory network analysis also identified several candidate regulators responsible for the protective effects of CP supplementation against UVB-induced skin damage. CP also elicited antiwrinkle effects via inhibition of UVB-induced matrix metalloproteinases-1 expression in both the human skin equivalent model and human dermal fibroblasts. Inhibition of UVB-induced activator protein-1 via CP supplementation is likely to affect the expression of matrix metalloproteinases-1. CP supplementation also downregulates the expression of cathepsin G in human dermal fibroblasts. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a major in vivo metabolite of CP, showed effects similar to CP supplementation. These results suggest that cacao extract may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, which leads to an overall reduction in wrinkle formation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands.

    PubMed

    Li, Yong; Stoll, Stefan W; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I; Jones, Jennifer L; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L; Elder, James T

    2016-03-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5' and 3' untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67(+) cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67(+) cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Evolutionary re-wiring of p63 and the epigenomic regulatory landscape in keratinocytes and its potential implications on species-specific gene expression and phenotypes

    PubMed Central

    Sethi, Isha; Gluck, Christian; Zhou, Huiqing

    2017-01-01

    Abstract Although epidermal keratinocyte development and differentiation proceeds in similar fashion between humans and mice, evolutionary pressures have also wrought significant species-specific physiological differences. These differences between species could arise in part, by the rewiring of regulatory network due to changes in the global targets of lineage-specific transcriptional master regulators such as p63. Here we have performed a systematic and comparative analysis of the p63 target gene network within the integrated framework of the transcriptomic and epigenomic landscape of mouse and human keratinocytes. We determined that there exists a core set of ∼1600 genomic regions distributed among enhancers and super-enhancers, which are conserved and occupied by p63 in keratinocytes from both species. Notably, these DNA segments are typified by consensus p63 binding motifs under purifying selection and are associated with genes involved in key keratinocyte and skin-centric biological processes. However, the majority of the p63-bound mouse target regions consist of either murine-specific DNA elements that are not alignable to the human genome or exhibit no p63 binding in the orthologous syntenic regions, typifying an occupancy lost subset. Our results suggest that these evolutionarily divergent regions have undergone significant turnover of p63 binding sites and are associated with an underlying inactive and inaccessible chromatin state, indicative of their selective functional activity in the transcriptional regulatory network in mouse but not human. Furthermore, we demonstrate that this selective targeting of genes by p63 correlates with subtle, but measurable transcriptional differences in mouse and human keratinocytes that converges on major metabolic processes, which often exhibit species-specific trends. Collectively our study offers possible molecular explanation for the observable phenotypic differences between the mouse and human skin and broadly informs on the prevailing principles that govern the tug-of-war between evolutionary forces of rigidity and plasticity over transcriptional regulatory programs. PMID:28505376

  20. Cellulose-ethylenediaminetetraacetic acid conjugates protect mammalian cells from bacterial cells.

    PubMed

    Luo, Jie; Lv, Wei; Deng, Ying; Sun, Yuyu

    2013-04-08

    Cellulose-ethylenediaminetetraacetic acid (EDTA) conjugates were synthesized by the esterification of cellulose with ethylenediaminetetraacetic dianhydride (EDTAD). The new materials provided potent antimicrobial activities against Staphylococcus aureus (S. aureus, Gram-positive bacteria) and Pseudomonas aeruginosa (P. aeruginosa, Gram-negative bacteria), and inhibited the formation of bacterial biofilms. The biocompatibility of the new cellulose-EDTA conjugates was evaluated with mouse skin fibroblasts for up to 14 days. SEM observation and DNA content analysis suggested that the new materials sustained the viability of fibroblast cells. Moreover, in mouse skin fibroblast-bacteria co-culture systems, the new cellulose-EDTA conjugates prevented bacterial biofilm formation and protected the mammalian cells from the bacterial cells for at least one day.

  1. RIG-I antiviral signaling drives interleukin-23 production and psoriasis-like skin disease.

    PubMed

    Zhu, Huiyuan; Lou, Fangzhou; Yin, Qianqian; Gao, Yuanyuan; Sun, Yang; Bai, Jing; Xu, Zhenyao; Liu, Zhaoyuan; Cai, Wei; Ke, Fang; Zhang, Lingyun; Zhou, Hong; Wang, Hong; Wang, Gang; Chen, Xiang; Zhang, Hongxin; Wang, Zhugang; Ginhoux, Florent; Lu, Chuanjian; Su, Bing; Wang, Honglin

    2017-05-01

    Retinoic acid inducible-gene I (RIG-I) functions as one of the major sensors of RNA viruses. DDX58 , which encodes the RIG-I protein, has been newly identified as a susceptibility gene in psoriasis. Here, we show that the activation of RIG-I by 5'ppp-dsRNA, its synthetic ligand, directly causes the production of IL-23 and triggers psoriasis-like skin disease in mice. Repeated injections of IL-23 to the ears failed to induce IL-23 production and a full psoriasis-like skin phenotype, in either germ-free or RIG-I-deficient mice. RIG-I is also critical for a full development of skin inflammation in imiquimod (IMQ)-induced psoriasis-like mouse model. Furthermore, RIG-I-mediated endogenous IL-23 production was mainly confined to the CD11c + dendritic cells (DCs) via nuclear factor-kappa B (NF-κB) signaling, and stimulated RIG-I expression in an auto-regulatory feedback loop. Thus, our data suggest that the dysregulation in the antiviral immune responses of hosts through the innate pattern recognition receptors may trigger the skin inflammatory conditions in the pathophysiology of psoriasis. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Preparation of studies on antibody production against food allergens in mice and effect of flavonoids in simultaneous injection into mouse skin.

    USDA-ARS?s Scientific Manuscript database

    We had tried to evaluate antibody production against food allergens in mouse models. Some food allergens, which were beta-lactoglobulin, ovalbumin, and peanut allergen Ara h 1, were used as immunoges in this experiment. Under the same conditions these allergens were immunized as emulsion with freund...

  3. A Topical Mitochondria-Targeted Redox Cycling Nitroxide Mitigates Oxidative Stress Induced Skin Damage

    PubMed Central

    Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.

    2017-01-01

    Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421

  4. In Vivo Bioluminescence Imaging To Evaluate Systemic and Topical Antibiotics against Community-Acquired Methicillin-Resistant Staphylococcus aureus-Infected Skin Wounds in Mice

    PubMed Central

    Guo, Yi; Ramos, Romela Irene; Cho, John S.; Donegan, Niles P.; Cheung, Ambrose L.

    2013-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents. PMID:23208713

  5. Glucocorticoid effects on contact hypersensitivity and on the cutaneous response to ultraviolet light in the mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, P.M.; Walberg, J.A.; Bradlow, H.L.

    1988-03-01

    A single exposure to 254 nm ultraviolet irradiation (UV) can systemically suppress experimental sensitization to the simple allergen 2,4-dinitro, 1-chlorobenzene (DNCB) in the mouse. We show here that topical application at the site of irradiation of the 21-oic acid methyl ester derivative of the synthetic glucocorticoid triamcinolone acetonide (TAme) prevents UV suppression of sensitization. That is, mice painted with TAme at the site of UV exposure developed normal contact hypersensitivity (CH); mice exposed to UV only, like mice treated with the parent compound triamcinolone acetonide (TA), failed to be sensitized by DNCB applied to a distal site. TAme is inactivatedmore » rapidly by plasma esterases, so its effect is thought to be confined to the skin. Apparently, TAme blocked the cutaneous signal(s) for systemic suppression of CH. Histologically, irradiated skin exhibited mild inflammation and hyperproliferation, but these effects were greatly exaggerated and prolonged in the UV + TAme-treated skin, independent of sensitization at the distal site. The infiltrate consisted mostly of neutrophils and lacked the round cells characteristic of cell-mediated immunity. Apparently, normal immune suppression by UV prevented this vigorous reaction to irradiated skin. Applied together with DNCB. TAme blocked sensitization. It also prevented response to challenge by DNCB in previously sensitized animals. However, unlike the parent compound triamcinolone acetonide (TA), Budesonide or Beclomethasone diproprionate, each of which can penetrate the epidermis in active form, TAme had no effect on sensitization when applied at a distal site. Likewise, TAme did not affect plasma B (17-desoxycortisol) levels, whereas the other three compounds reduced plasma B tenfold, as expected of compounds causing adrenal-pituitary suppression.« less

  6. Estimating skin sensitization potency from a single dose LLNA.

    PubMed

    Roberts, David W

    2015-04-01

    Skin sensitization is an important aspect of safety assessment. The mouse local lymph node assay (LLNA) developed in the 1990 s is an in vivo test used for skin sensitization hazard identification and characterization. More recently a reduced version of the LLNA (rLLNA) has been developed as a means of identifying, but not quantifying, sensitization hazard. The work presented here is aimed at enabling rLLNA data to be used to give quantitative potency information that can be used, inter alia, in modeling and read-across approaches to non-animal based potency estimation. A probit function has been derived enabling estimation of EC3 from a single dose. This has led to development of a modified version of the rLLNA, whereby as a general principle the SI value at 10%, or at a lower concentration if 10% is not testable, is used to calculate the EC3. This version of the rLLNA has been evaluated against a selection of chemicals for which full LLNA data are available, and has been shown to give EC3 values in good agreement with those derived from the full LLNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Sakshi; Department of Biochemistry, Banaras Hindu University; Tripathi, Anurag

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposuremore » also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF-κB. • DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. • No tumor promotion was observed up to 24 weeks of topical application of DON. • Enhanced Peyer's patches and inflammatory cytokines suggested inflammation in skin.« less

  8. Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata) Mitigates 12-O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress Responses of Tumor Promotion Cascade in Mouse Skin

    PubMed Central

    Rahman, Shakilur; Ansari, Rizwan Ahmed; Rehman, Hasibur; Parvez, Suhel; Raisuddin, Sheikh

    2011-01-01

    Nordihydroguaiaretic acid (NDGA) is a phenolic antioxidant found in the leaves and twigs of the evergreen desert shrub, Larrea tridentata (Sesse and Moc. ex DC) Coville (creosote bush). It has a long history of traditional medicinal use by the Native Americans and Mexicans. The modulatory effects of topically applied NDGA was studied on acute inflammatory and oxidative stress responses in mouse skin induced by stage I tumor promoting agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). Double TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion cascade. Pretreatment of NDGA in TPA-treated mice mitigated cutaneous lipid peroxidation and inhibited production of hydrogen peroxide. NDGA treatment also restored reduced glutathione level and activities of antioxidant enzymes. Elevated activities of myeloperoxidase, xanthine oxidase and skin edema formation in TPA-treated mice were also lowered by NDGA indicating a restrained inflammatory response. Furthermore, results of histological study demonstrated inhibitory effect of NDGA on cellular inflammatory responses. This study provides a direct evidence of antioxidative and anti-inflammatory properties of NDGA against TPA-induced cutaneous inflammation and oxidative stress corroborating its chemopreventive potential against skin cancer. PMID:19861506

  9. Mammalian skin cell biology: at the interface between laboratory and clinic.

    PubMed

    Watt, Fiona M

    2014-11-21

    Mammalian skin research represents the convergence of three complementary disciplines: cell biology, mouse genetics, and dermatology. The skin provides a paradigm for current research in cell adhesion, inflammation, and tissue stem cells. Here, I discuss recent insights into the cell biology of skin. Single-cell analysis has revealed that human epidermal stem cells are heterogeneous and differentiate in response to multiple extrinsic signals. Live-cell imaging, optogenetics, and cell ablation experiments show skin cells to be remarkably dynamic. High-throughput, genome-wide approaches have yielded unprecedented insights into the circuitry that controls epidermal stem cell fate. Last, integrative biological analysis of human skin disorders has revealed unexpected functions for elements of the skin that were previously considered purely structural. Copyright © 2014, American Association for the Advancement of Science.

  10. GENE EXPRESSION PROFILING OF MOUSE SKIN AND PAPILLOMAS FOLLOWING CHRONIC EXPOSURE TO MONOMETHYLARSONOUS ACID IN K6/ODC TRANSGENIC MICE

    EPA Science Inventory

    Methylarsonous acid [MMA(III)], a common metabolite of inorganic arsenic metabolism, increases tumor frequency in the skin of K6/ODC transgenic mice following a chronic exposure. To characterize gene expression profiles predictive of MMA(III) exposure and mode of action of carcin...

  11. Modeling AEC—New Approaches to Study Rare Genetic Disorders

    PubMed Central

    Koch, Peter J.; Dinella, Jason; Fete, Mary; Siegfried, Elaine C.; Koster, Maranke I.

    2015-01-01

    Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare monogenetic disorder that is characterized by severe abnormalities in ectoderm-derived tissues, such as skin and its appendages. A major cause of morbidity among affected infants is severe and chronic skin erosions. Currently, supportive care is the only available treatment option for AEC patients. Mutations in TP63, a gene that encodes key regulators of epidermal development, are the genetic cause of AEC. However, it is currently not clear how mutations in TP63 lead to the various defects seen in the patients’ skin. In this review, we will discuss current knowledge of the AEC disease mechanism obtained by studying patient tissue and genetically engineered mouse models designed to mimic aspects of the disorder. We will then focus on new approaches to model AEC, including the use of patient cells and stem cell technology to replicate the disease in a human tissue culture model. The latter approach will advance our understanding of the disease and will allow for the development of new in vitro systems to identify drugs for the treatment of skin erosions in AEC patients. Further, the use of stem cell technology, in particular induced pluripotent stem cells (iPSC), will enable researchers to develop new therapeutic approaches to treat the disease using the patient’s own cells (autologous keratinocyte transplantation) after correction of the disease-causing mutations. PMID:24665072

  12. Transdermal delivery of lercanidipine hydrochloride: effect of chemical enhancers and ultrasound.

    PubMed

    Shetty, Pallavi K; Suthar, Neelam A; Menon, Jyothsna; Deshpande, Praful B; Avadhani, Kiran; Kulkarni, Raghavendra V; Mutalik, Srinivas

    2013-08-01

    The effects of permeation enhancers and sonophoresis on the transdermal permeation of lercanidipine hydrochloride (LRDP) across mouse skin were investigated. Parameters including drug solubility, partition coefficient, drug degradation and drug permeation in skin were determined. Tween-20, dimethyl formamide, propylene glycol, poly ethylene glycol (5% v/v) and different concentration of ethanol were used for permeation enhancement. Low frequency ultrasound was also applied in the presence and absence of permeation enhancers to assess its effect on augmenting the permeation of drug. All the permeation enhancers, except propylene glycol, increased the transdermal permeation of LRDP. Sonophoresis significantly increased the cumulative amount of LRDP permeating through the skin in comparison to passive diffusion. A synergistic effect was noted when sonophoresis was applied in presence of permeation enhancers. The results suggest that the formulation of LRDP with an appropriate penetration enhancer may be useful in the development of a therapeutic system to deliver LRDP across the skin for a prolonged period (i.e., 24 h). The application of ultrasound in association with permeation enhancers could further serve as non-oral and non-invasive drug delivery modality for the immediate therapeutic effect.

  13. Effect of (3,5,6-trimethylpyrazin-2-yl)methyl 2-[4-(2-methylpropyl)phenyl]propanoate (ITE), a newly developed anti-inflammatory drug, on type II collagen-induced arthritis in mice.

    PubMed

    Ma, Tao; Cao, Ying-Lin; Xu, Bei-Bei; Zhou, Xiao-Mian

    2004-06-01

    The effect of (3,5,6-trimethylpyrazin-2-yl)methyl 2-[4-(2-methylpropyl)phenyl]propanoate (ITE) on type II collagen (CII)-induced arthritis in mice was studied. Mice were immunized twice with CII, ITE being given orally once a day for 40 d after the 1st immunization. Clinical assessment showed that ITE had no effect on the day of onset of arthritis but did lowered the incidence rate of arthritis and the arthritis score. And ITE had a marked suppressive effect on the mouse hind paw edema induced by CII. ITE suppressed the delayed-type mouse ear skin reaction to CII but had no effect on the level of serum anti-CII antibodies. These results suggest that ITE inhibits the development of CII-induced arthritis in mice by suppressing delayed-type hypersensitivity to CII.

  14. Outstanding animal studies in allergy II. From atopic barrier and microbiome to allergen-specific immunotherapy.

    PubMed

    Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Roth-Walter, Franziska

    2017-06-01

    Animal studies published within the past 18 months were assessed, focusing on innate and specific immunomodulation, providing knowledge of high translational relevance for human atopic and allergic diseases. Allergic companion animals represent alternative models, but most studies were done in mice. Atopic dermatitis mouse models were refined by the utilization of cytokines like IL-23 and relevant skin allergens or enzymes. A novel IL-6 reporter mouse allows biomonitoring of inflammation. Both skin pH and the (transferable) microflora have a pivotal role in modulating the skin barrier. The microflora of the gastrointestinal mucosa maintains tolerance to dietary compounds and can be disturbed by antiacid drugs. A key mouse study evidenced that dust from Amish households, but not from Hutterites protected mice against asthma. In studies on subcutaneous and sublingual allergen-specific immunotherapy, much focus was given on delivery and adjuvants, using poly-lacto-co-glycolic particles, CpGs, probiotics or Vitamin D3. The epicutaneous and intralymphatic routes showed promising results in mice and horses in terms of prophylactic and therapeutic allergy treatment. In atopic dermatitis, food allergies and asthma, environmental factors, together with the resident microflora and barrier status, decide on sensitization versus tolerance. Also allergen-specific immunotherapy operates with immunomodulatory principles.

  15. Outstanding animal studies in allergy II. From atopic barrier and microbiome to allergen-specific immunotherapy

    PubMed Central

    Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Roth-Walter, Franziska

    2017-01-01

    Purpose of review Animal studies published within the past 18 months were assessed, focusing on innate and specific immunomodulation, providing knowledge of high translational relevance for human atopic and allergic diseases. Recent findings Allergic companion animals represent alternative models, but most studies were done in mice. Atopic dermatitis mouse models were refined by the utilization of cytokines like IL-23 and relevant skin allergens or enzymes. A novel IL-6 reporter mouse allows biomonitoring of inflammation. Both skin pH and the (transferable) microflora have a pivotal role in modulating the skin barrier. The microflora of the gastrointestinal mucosa maintains tolerance to dietary compounds and can be disturbed by antiacid drugs. A key mouse study evidenced that dust from Amish households, but not from Hutterites protected mice against asthma. In studies on subcutaneous and sublingual allergen-specific immunotherapy, much focus was given on delivery and adjuvants, using poly-lacto-co-glycolic particles, CpGs, probiotics or Vitamin D3. The epicutaneous and intralymphatic routes showed promising results in mice and horses in terms of prophylactic and therapeutic allergy treatment. Summary In atopic dermatitis, food allergies and asthma, environmental factors, together with the resident microflora and barrier status, decide on sensitization versus tolerance. Also allergen-specific immunotherapy operates with immunomodulatory principles. PMID:28375932

  16. Comparison between reflectance confocal microscopy and two-photon microscopy in early detection of cutaneous radiation injury in a mouse model in-vivo.

    PubMed

    Jang, Won Hyuk; Kwon, Soonjae; Shim, Sehwan; Jang, Won-Suk; Myung, Jae Kyung; Yang, Sejung; Park, Sunhoo; Kim, Ki Hean

    2018-05-12

    Cutaneous radiation injury (CRI) is a skin injury caused by high dose exposure of ionizing radiation (IR). For proper treatment, early detection of CRI before clinical symptoms is important. Optical microscopic techniques such as reflectance confocal microscopy (RCM) and two-photon microscopy (TPM) have been tested as the early diagnosis method by detecting cellular changes. In this study, RCM and TPM were compared in the detection of cellular changes caused by CRI in an in-vivo mouse model. CRI was induced on the mouse hindlimb skin with various IR doses and the injured skin regions were imaged longitudinally by both modalities until the onset of clinical symptoms. Both RCM and TPM detected the changes of epidermal cells and sebaceous glands before clinical symptoms in different optical contrasts. RCM detected changes of cell morphology and scattering property based on light reflection. TPM detected detail changes of cellular structures based on autofluorescence of cells. Since both RCM and TPM were sensitive to the early-stage CRI by using different contrasts, the optimal method for clinical CRI diagnosis could be either individual methods or their combination. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Competition between skin-sensitizing chemicals in the mouse

    PubMed Central

    Wallington, T. B.; Jones, J. Verrier

    1974-01-01

    The skin contact sensitivity responses to picryl chloride in CBA mice can be reduced by prior sensitization with oxazolone. Initial experiments showed this reduction to be significant when the interval between skin paintings was 7 days. In further experiments to study the time course of this effect, the depression was found to be maximal when the interval between skin paintings was between 3 and 7 days. Prior painting with a non-immunogenic chemical irritant, oil of turpentine, did not depress responses to picryl chloride. The relation of this phenomenon to antigenic competition in antibody production is discussed. PMID:4851120

  18. Emerging Skin T-Cell Functions in Response to Environmental Insults

    PubMed Central

    Suwanpradid, Jutamas; Holcomb, Zachary E.; MacLeod, Amanda S.

    2017-01-01

    Skin is the primary barrier between the body and the outside world, functioning not only as a physical barrier, but also as an immunologic first line of defense. A large number of T cells populate the skin. This review highlights the ability of these cutaneous T cells to regulate skin-specific environmental threats, including microbes, injuries, solar UV radiation, and allergens. Since much of this knowledge has been advanced from murine studies, we focus our review on how the mouse state has informed the human state, emphasizing the key parallels and differences. PMID:27784595

  19. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddens, Lisbeth K.; Superfund Research Center, Oregon State University, Corvallis, OR 97331; Bunde, Kristi L.

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1,more » Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.« less

  20. Webcam mouse using face and eye tracking in various illumination environments.

    PubMed

    Lin, Yuan-Pin; Chao, Yi-Ping; Lin, Chung-Chih; Chen, Jyh-Horng

    2005-01-01

    Nowadays, due to enhancement of computer performance and popular usage of webcam devices, it has become possible to acquire users' gestures for the human-computer-interface with PC via webcam. However, the effects of illumination variation would dramatically decrease the stability and accuracy of skin-based face tracking system; especially for a notebook or portable platform. In this study we present an effective illumination recognition technique, combining K-Nearest Neighbor classifier and adaptive skin model, to realize the real-time tracking system. We have demonstrated that the accuracy of face detection based on the KNN classifier is higher than 92% in various illumination environments. In real-time implementation, the system successfully tracks user face and eyes features at 15 fps under standard notebook platforms. Although KNN classifier only initiates five environments at preliminary stage, the system permits users to define and add their favorite environments to KNN for computer access. Eventually, based on this efficient tracking algorithm, we have developed a "Webcam Mouse" system to control the PC cursor using face and eye tracking. Preliminary studies in "point and click" style PC web games also shows promising applications in consumer electronic markets in the future.

  1. Establishment of an Artificial Tick Feeding System to Study Theileria lestoquardi Infection

    PubMed Central

    Tajeri, Shahin; Razmi, Gholamreza; Haghparast, Alireza

    2016-01-01

    The establishment of good experimental models for Theileria sp. infection is important for theileriosis research. Routinely, infection of ticks is accomplished by feeding on parasite-infected animals (sheep, cows and horses), which raises practical and ethical problems, driving the search for alternative methods of tick infection. Artificial tick feeding systems are based mainly on rearing ticks on host-derived or hand-made artificial membranes. We developed a modified feeding assay for infecting nymphal stages of Hyalomma anatolicum ticks with Theileria lestoquardi, a highly pathogenic parasite of sheep. We compared two different membranes: an artificial silicone membrane and a natural alternative using mouse skin. We observed high attachment rates with mouse skin, whereas in vitro feeding of H. anatolicum nymphs on silicone membranes was unsuccessful. We could infect H. anatolicum nymphs with T. lestoquardi and the emerging adult ticks transmitted infective parasites to sheep. In contrast, similar infections with Rhipicephalus bursa, a representative tick with short mouth-parts that was proposed as a vector for T. lestoquardi, appeared not to be a competent vector tick species. This is the first report of an experimentally controlled infection of H. anatolicum with T. lestoquardi and opens avenues to explore tick-parasite dynamics in detail. PMID:28036364

  2. Photoacoustic Imaging of Epilepsy

    DTIC Science & Technology

    2013-04-01

    mouse brain with the skin and skull intact,” Opt. Lett. 28(19), 1739–1741 (2003). 5. Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and...imaging at centimeter scale depths. To date PAT has been applied to the detection of breast cancer, skin cancer and osteoarthritis in humans [1–3...the hemodynamic changes and reveal the 3D structures in the rat brain. Two small rats (~40g) were imaged with intact skull and skin but hairs on the

  3. Human and mouse eLOX3 have distinct substrate specificities: implications for their linkage with lipoxygenases in skin

    PubMed Central

    Yu, Zheyong; Schneider, Claus; Boeglin, William E.; Brash, Alan R.

    2008-01-01

    Genetic and biochemical evidence suggests a functional link between human 12R-lipoxygenase (12R-LOX) and epidermal lipoxygenase-3 (eLOX3) in normal differentiation of the epidermis; LOX-derived fatty acid hydroperoxide is isomerized by the atypical eLOX3 into a specific epoxyalcohol that is a potential mediator in the pathway. Mouse epidermis expresses a different complement of LOX enzymes, and therefore this metabolic linkage could differ. To test this concept, we compared the substrate specificities of recombinant mouse and human eLOX3 toward sixteen hydroperoxy stereoisomers of arachidonic and linoleic acids. Both enzymes metabolized R-hydroperoxides 2–3 times faster than the corresponding S enantiomers. Whereas 12R-hydroperoxyeicosatetraenoic acid (12R-HPETE) is the best substrate for human eLOX3 (2.4 sec−1; at 30 µM substrate), mouse eLOX3 shows the highest turnover with 8R-HPETE (2.9 sec−1) followed by 8S-HPETE (1.3 sec−1). Novel product structures were characterized from reactions of mouse eLOX3 with 5S-, 8R-, and 8S-HPETEs. 8S-HPETE is converted specifically to a single epoxyalcohol, identified as 10R-hydroxy-8S,9S-epoxyeicosa-5Z,11Z,14Z-trienoic acid. The substrate preference of mouse eLOX3 and the unique occurrence of an 8S-LOX enzyme in mouse skin point to a potential LOX pathway for the production of epoxyalcohol in murine epidermal differentiation. PMID:17045234

  4. A comprehensive evaluation of the carcinogenic potential of middle distillate fuels.

    PubMed

    Nessel, C S

    1999-02-01

    Middle distillate fuels (MDFs), which include jet fuel, kerosene, and diesel fuel, are a class of hydrocarbons distilled from crude oil at approximately 350-700 degrees F (176-371 degrees C). Although MDFs generally do not contain appreciable levels of potentially carcinogenic polycyclic aromatic compounds (PACs), they have produced weak tumorigenic responses in mouse skin characterized by low tumor yield and long latency. Recent studies demonstrated that the tumorigenic effects of these MDFs were dependent upon chronic dermal irritation. In the absence of skin irritation, tumors did not develop. Mechanistic studies suggest that straight-run MDFs containing low levels of PACs cause skin tumors through a nongenotoxic mechanism. MDFs cause chronic skin irritation and injury with repeated application to the skin. They have been found to have little or no activity in the modified Ames mutagenicity assay, lack tumor initiating activity, and are active skin tumor promoters. It has been hypothesized that the tumorigenic response to MDFs results from the promotion of preexisting, spontaneously initiated cells. Two recent studies, a one-year tumor promotion study and a two-year skin painting study, evaluated the role of skin irritation on the tumorigenic activity of MDFs in mice. MDFs were applied in pure and diluted forms to assess the effect of equal weekly doses of irritating and nonirritating test materials. The tumorigenicity of straight-run MDFs correlated to the level of skin irritation. No significant increase in tumor incidence occurred under conditions that resulted in minimal skin irritation and injury. These studies indicate that the tumorigenic activity of MDFs containing low levels of PACs is secondary to chronic skin irritation. These materials should not present a carcinogenic hazard in the absence of prolonged skin irritation.

  5. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Som D.; Katiyar, Santosh K., E-mail: skatiyar@uab.ed; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were thenmore » euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.« less

  6. Aronia melanocarpa Concentrate Ameliorates Pro-Inflammatory Responses in HaCaT Keratinocytes and 12-O-Tetradecanoylphorbol-13-Acetate-Induced Ear Edema in Mice.

    PubMed

    Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-07-01

    Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases.

  7. Skin test sensitivity to mouse predicts allergic symptoms to nasal challenge in urban adults.

    PubMed

    Chong, Laura K; Ong, Mary Jane; Curtin-Brosnan, Jean; Matsui, Elizabeth C

    2010-01-01

    Epidemiologic studies have shown an association between mouse allergen exposure and asthma morbidity among urban populations, but confirmatory challenge studies in community populations have not been performed. This study was designed to examine the clinical relevance of mouse sensitization using a nasal challenge model. Forty-nine urban adults with asthma underwent skin-prick testing (SPT) and intradermal testing (IDT) with mouse epithelia extract. A positive SPT was defined as a net wheal size ≥3 mm and a positive IDT was defined as a net wheal size ≥6 mm using a 1:100 dilution of extract (1:10 w/v was obtained from Greer Laboratories (Lenoir, NC) as a single lot [Mus m 1 concentration = 2130 ng/mL]). Mouse-specific IgE (m-IgE) was measured by ImmunoCAP (Phadia, Uppsala, Sweden). Nasal challenge was performed with increasing concentrations of mouse epithelia extract and symptoms were assessed by visual analog scale. A positive challenge was defined as a 20-mm increase in the scale. The age range of the 49 participants was 18-50 years; 41% were men and 86% were black. Fourteen participants were SPT(+) to mouse, 15 participants were SPT(-) but (IDT(+)), and 20 participants were negative on both SPT(-) and IDT(-) (SPT(-)/IDT(-)). Sixty-four percent of the SPT(+) group, 40% of the IDT(+) group, and 20% of the SPT(-)/IDT(-) group had a positive nasal challenge. Sixty-seven percent (10/15) of those who were either SPT(+) or m-IgE(+) had a positive nasal challenge. SPT or the combination of SPT plus m-IgE performed best in diagnosing mouse allergy. The great majority of mouse-sensitized urban adults with asthma appear to have clinically relevant sensitization. Urban adults with asthma should be evaluated for mouse sensitization using SPT or SPT plus m-IgE testing.

  8. Identification of Cytoplasmic Proteins Interacting with the Mammary Cell Transforming Domain of Ese-1

    DTIC Science & Technology

    2008-04-01

    antibody:blocking buffer overnight at 4°C in a moisture chamber. To measure auto - fluorescence , cells were incubated overnight at 4°C with blocking buffer...as a monomer and are auto -inhibited by virtue of two inhibitory regions that flank the DBD. Disinhibition, resulting in enhancement of ETS DBD...placenta, lung, kidney, prostate, intestine, breast, skin, retina and other epithelia (7-10). During mouse embryo development, Elf3 mRNA expression

  9. Bimodal spectroscopic evaluation of ultra violet-irradiated mouse skin inflammatory and precancerous stages: instrumentation, spectral feature extraction/selection and classification (k-NN, LDA and SVM)

    NASA Astrophysics Data System (ADS)

    Díaz-Ayil, G.; Amouroux, M.; Blondel, W. C. P. M.; Bourg-Heckly, G.; Leroux, A.; Guillemin, F.; Granjon, Y.

    2009-07-01

    This paper deals with the development and application of in vivo spatially-resolved bimodal spectroscopy (AutoFluorescence AF and Diffuse Reflectance DR), to discriminate various stages of skin precancer in a preclinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A programmable instrumentation was developed for acquiring AF emission spectra using 7 excitation wavelengths: 360, 368, 390, 400, 410, 420 and 430 nm, and DR spectra in the 390-720 nm wavelength range. After various steps of intensity spectra preprocessing (filtering, spectral correction and intensity normalization), several sets of spectral characteristics were extracted and selected based on their discrimination power statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of sensitivity (Se) and specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibers distances and of the numbers of principal components, such that: Se and Sp ≈ 100% when discriminating CH vs. others; Sp ≈ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ≈ 74% and Se ≈ 63%for AH vs. D.

  10. A Bayesian statistical analysis of mouse dermal tumor promotion assay data for evaluating cigarette smoke condensate.

    PubMed

    Kathman, Steven J; Potts, Ryan J; Ayres, Paul H; Harp, Paul R; Wilson, Cody L; Garner, Charles D

    2010-10-01

    The mouse dermal assay has long been used to assess the dermal tumorigenicity of cigarette smoke condensate (CSC). This mouse skin model has been developed for use in carcinogenicity testing utilizing the SENCAR mouse as the standard strain. Though the model has limitations, it remains as the most relevant method available to study the dermal tumor promoting potential of mainstream cigarette smoke. In the typical SENCAR mouse CSC bioassay, CSC is applied for 29 weeks following the application of a tumor initiator such as 7,12-dimethylbenz[a]anthracene (DMBA). Several endpoints are considered for analysis including: the percentage of animals with at least one mass, latency, and number of masses per animal. In this paper, a relatively straightforward analytic model and procedure is presented for analyzing the time course of the incidence of masses. The procedure considered here takes advantage of Bayesian statistical techniques, which provide powerful methods for model fitting and simulation. Two datasets are analyzed to illustrate how the model fits the data, how well the model may perform in predicting data from such trials, and how the model may be used as a decision tool when comparing the dermal tumorigenicity of cigarette smoke condensate from multiple cigarette types. The analysis presented here was developed as a statistical decision tool for differentiating between two or more prototype products based on the dermal tumorigenicity. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. Characterization of the tumor-promoting activity of m-chloroperoxybenzoic acid in SENCAR mouse skin and its inhibition by gallotannin, oligomeric proanthocyanidin, and their monomeric units

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Fatima K. Johnson; Amy W. Davis; Steven W. Newell; Richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet

    1996-01-01

    m-Chloroperoxybenzoic acid (CPBA). which induces ornithine decarboxylase activity as much as 12-0-tetradecanoylphorbol-13-acetate (TPA ), was tested for its ability to induce DNA synthesis, hydroperoxide (HPx) production, and tumor promotion in mouse epidermis in vivo. After an early inhibition, CPBA stimulates...

  12. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    PubMed

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment. © 2015 Wiley Periodicals, Inc.

  13. Involvement of tachykinin receptors in Clostridium perfringens beta-toxin-induced plasma extravasation

    PubMed Central

    Nagahama, Masahiro; Morimitsu, Shinsuke; Kihara, Atsushi; Akita, Masahiko; Setsu, Koujun; Sakurai, Jun

    2003-01-01

    Clostridium perfringens beta-toxin causes dermonecrosis and oedema in the dorsal skin of animals. In the present study, we investigated the mechanisms of oedema induced by the toxin. The toxin induced plasma extravasation in the dorsal skin of Balb/c mice. The extravasation was significantly inhibited by diphenhydramine, a histamine 1 receptor antagonist. However, the toxin did not cause the release of histamine from mouse mastocytoma cells. Tachykinin NK1 receptor antagonists, [D-Pro2, D-Trp7,9]-SP, [D-Pro4, D-Trp7,9]-SP and spantide, inhibited the toxin-induced leakage in a dose-dependent manner. Furthermore, the non-peptide tachykinin NK1 receptor antagonist, SR140333, markedly inhibited the toxin-induced leakage. The leakage induced by the toxin was markedly reduced in capsaicin-pretreated mouse skin but the leakage was not affected by systemic pretreatment with a calcitonin gene-related peptide receptor antagonist (CGRP8-37). The toxin-induced leakage was significantly inhibited by the N-type Ca2+ channel blocker, ω-conotoxin MVIIA, and the bradykinin B2 receptor antagonist, HOE140 (D-Arg-[Hyp3, Thi5, D-Tic7, Oic8]-bradykinin), but was not affected by the selective L-type Ca2+ channel blocker, verapamil, the P-type Ca2+ channel blocker, ω-agatoxin IVA, tetrodotoxin (TTX), the TTX-resistant Na+ channel blocker, carbamazepine, or the sensory nerve conduction blocker, lignocaine. These results suggest that plasma extravasation induced by beta-toxin in mouse skin is mediated via a mechanism involving tachykinin NK1 receptors. PMID:12522069

  14. Oral administration of glucosylceramide ameliorates inflammatory dry-skin condition in chronic oxazolone-induced irritant contact dermatitis in the mouse ear.

    PubMed

    Yeom, Mijung; Kim, Sung-Hun; Lee, Bombi; Han, Jeong-Jun; Chung, Guk Hoon; Choi, Hee-Don; Lee, Hyejung; Hahm, Dae-Hyun

    2012-08-01

    Irritant contact dermatitis (ICD) is an inflammatory skin disease triggered by exposure to a chemical that is toxic or irritating to the skin. A major characteristic of chronic ICD is an inflammatory dry-skin condition with associated itching. Although glucosylceramide (GlcCer) is known to improve the skin barrier function, its mechanism of action is unknown. Using a mouse model of oxazolone-induced chronic ICD, this study investigated the effects of oral administration of GlcCer on inflammatory dry skin. Chronic ICD was induced by repeated application of oxazolone in mice. GlcCer was orally administered once daily throughout the elicitation phase. The beneficial efficacy of GlcCer on cutaneous inflammation was evaluated by assessing ear thickness, lymph node weight, histological findings, and mRNA expression of pro-inflammatory cytokines such as IL-1β and IL-6. Additionally, parameters of the itch-associated response, including scratching behavior, water content of the skin, and aquaporin-3 levels in the lesional ear, were measured. Oral GlcCer administration significantly suppressed mRNA expression of the pro-inflammatory cytokines IL-1β and IL-6. GlcCer also suppressed ear swelling, lymph node weight gains, and infiltration of leukocytes and mast cells in ICD mice. In oxazolone-induced ICD mice, GlcCer significantly inhibited irritant-related scratching behavior and dehydration of the stratum corneum, and decreased aquaporin-3 expression. Our results indicate that GlcCer suppressed inflammation not only by inhibiting cytokine production but also by repairing the skin barrier function, suggesting a potential beneficial role for GlcCer in the improvement of chronic ICD. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Silibinin inhibits ultraviolet B radiation-induced DNA-damage and apoptosis by enhancing interleukin-12 expression in JB6 cells and SKH-1 hairless mouse skin.

    PubMed

    Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh

    2014-06-01

    Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. © 2013 Wiley Periodicals, Inc.

  16. Protective Effect of Botulinum Toxin Type A Against Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice.

    PubMed

    Han, Sang Bum; Kim, Hyeree; Cho, Sang Hyun; Chung, Jin Ho; Kim, Hei Sung

    2017-04-24

    Botulinum neurotoxin (BTX) A possesses various biological activities, including anti-inflammatory and antipruritic actions. Human and animal studies have shown that BTX is effective in treating histamine-induced itch, lichen simplex chronicus, psoriasis, rosacea, allergic rhinitis, and scar prevention. However, its effect on atopic dermatitis (AD) has not been studied yet. To examine the effect of BTX on AD using a mouse model. The primary outcome was skin thickness and transepidermal water loss (TEWL), and the secondary outcome was the alteration in skin severity scores, histological, and laboratory test results. Forty-two NC/Nga mice (a mouse model for AD) were allocated into 6 groups (the untreated, 2-Chloro-1,3,5-trinitrobenzene [TNCB] alone, TNCB + BTX 30 U/kg, TNCB + BTX 60 U/kg, TNCB + vehicle [0.9% saline], TNCB + 0.03% tacrolimus). Those of the BTX group received intradermal injections of BTX on the rostral back once on the day of TNCB sensitization. The effect of BTX in TNCB-treated NC/Nga mice was assessed by measuring skin thickness, TEWL (primary outcome), the skin severity scores, histological changes of test skin including mast cell count, interleukin (IL)-4 mRNA and protein expression, and total serum IgE (secondary outcome). A single intradermal injection of BTX significantly suppressed skin thickness and TEWL in the TNCB-applied skin. The clinical severity scores, acanthosis and mast cell infiltration, were less in the BTX groups. BTX injection also inhibited TNCB-induced increase in IL-4 mRNA and protein expression in mice, but its effect on serum IgE level was not significant. The preliminary results suggest that BTX may be a novel approach to the prevention and supplemental treatment of acute AD lesions.

  17. Efficacy of Glutathione in Ameliorating Sulfur Mustard Analog-Induced Toxicity in Cultured Skin Epidermal Cells and in SKH-1 Mouse Skin In Vivo

    PubMed Central

    Tewari-Singh, Neera; Agarwal, Chapla; Huang, Jie; Day, Brian J.; White, Carl W.

    2011-01-01

    Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective and therapeutic effects of exogenous GSH (1 or 10 mM) in attenuating a CEES-caused decrease in cell viability and DNA synthesis, as well as S and G2M phase arrest in cell cycle progression. However, the protective effect of GSH was stronger than its ability to reverse CEES-induced cytotoxic effect. The observed effect of GSH could be associated with an increase in intracellular GSH levels after its treatment before or after CEES exposure, which strongly depleted cellular GSH levels. N-Acetyl cysteine, a GSH precursor, also showed both protective and therapeutic effects against CEES-caused cytotoxicity. Buthionine sulfoximine, which reduces cellular GSH levels, caused an increased CEES cytotoxicity in both JB6 and HaCaT cells. In further studies translating GSH effects in cell culture, pretreatment of mice with 300 mg/kg GSH via oral gavage 1 h before topical application of CEES resulted in significant protection against CEES-caused increase in skin bifold and epidermal thickness, apoptotic cell death, and myeloperoxidase activity, which could be associated with increased skin GSH levels. Together, these results highlight GSH efficacy in ameliorating CEES-caused skin injury and further support the need for effective antioxidant countermeasures against skin injury by HD exposure. PMID:20974699

  18. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo.

    PubMed

    Tewari-Singh, Neera; Agarwal, Chapla; Huang, Jie; Day, Brian J; White, Carl W; Agarwal, Rajesh

    2011-02-01

    Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective and therapeutic effects of exogenous GSH (1 or 10 mM) in attenuating a CEES-caused decrease in cell viability and DNA synthesis, as well as S and G(2)M phase arrest in cell cycle progression. However, the protective effect of GSH was stronger than its ability to reverse CEES-induced cytotoxic effect. The observed effect of GSH could be associated with an increase in intracellular GSH levels after its treatment before or after CEES exposure, which strongly depleted cellular GSH levels. N-Acetyl cysteine, a GSH precursor, also showed both protective and therapeutic effects against CEES-caused cytotoxicity. Buthionine sulfoximine, which reduces cellular GSH levels, caused an increased CEES cytotoxicity in both JB6 and HaCaT cells. In further studies translating GSH effects in cell culture, pretreatment of mice with 300 mg/kg GSH via oral gavage 1 h before topical application of CEES resulted in significant protection against CEES-caused increase in skin bifold and epidermal thickness, apoptotic cell death, and myeloperoxidase activity, which could be associated with increased skin GSH levels. Together, these results highlight GSH efficacy in ameliorating CEES-caused skin injury and further support the need for effective antioxidant countermeasures against skin injury by HD exposure.

  19. A genome-wide association study identifies multiple loci for variation in human ear morphology.

    PubMed

    Adhikari, Kaustubh; Reales, Guillermo; Smith, Andrew J P; Konka, Esra; Palmen, Jutta; Quinto-Sanchez, Mirsha; Acuña-Alonzo, Victor; Jaramillo, Claudia; Arias, William; Fuentes, Macarena; Pizarro, María; Barquera Lozano, Rodrigo; Macín Pérez, Gastón; Gómez-Valdés, Jorge; Villamil-Ramírez, Hugo; Hunemeier, Tábita; Ramallo, Virginia; Silva de Cerqueira, Caio C; Hurtado, Malena; Villegas, Valeria; Granja, Vanessa; Gallo, Carla; Poletti, Giovanni; Schuler-Faccini, Lavinia; Salzano, Francisco M; Bortolini, Maria-Cátira; Canizales-Quinteros, Samuel; Rothhammer, Francisco; Bedoya, Gabriel; Calderón, Rosario; Rosique, Javier; Cheeseman, Michael; Bhutta, Mahmood F; Humphries, Steve E; Gonzalez-José, Rolando; Headon, Denis; Balding, David; Ruiz-Linares, Andrés

    2015-06-24

    Here we report a genome-wide association study for non-pathological pinna morphology in over 5,000 Latin Americans. We find genome-wide significant association at seven genomic regions affecting: lobe size and attachment, folding of antihelix, helix rolling, ear protrusion and antitragus size (linear regression P values 2 × 10(-8) to 3 × 10(-14)). Four traits are associated with a functional variant in the Ectodysplasin A receptor (EDAR) gene, a key regulator of embryonic skin appendage development. We confirm expression of Edar in the developing mouse ear and that Edar-deficient mice have an abnormally shaped pinna. Two traits are associated with SNPs in a region overlapping the T-Box Protein 15 (TBX15) gene, a major determinant of mouse skeletal development. Strongest association in this region is observed for SNP rs17023457 located in an evolutionarily conserved binding site for the transcription factor Cartilage paired-class homeoprotein 1 (CART1), and we confirm that rs17023457 alters in vitro binding of CART1.

  20. Tumor dosimetry for I-131 trastuzumab therapy in a Her2+ NCI N87 xenograft mouse model using the Siemens SYMBIA E gamma camera with a pinhole collimator

    NASA Astrophysics Data System (ADS)

    Lee, Young Sub; Kim, Jin Su; Deuk Cho, Kyung; Kang, Joo Hyun; Moo Lim, Sang

    2015-07-01

    We performed imaging and therapy using I-131 trastuzumab and a pinhole collimator attached to a conventional gamma camera for human use in a mouse model. The conventional clinical gamma camera with a 2-mm radius-sized pinhole collimator was used for monitoring the animal model after administration of I-131 trastuzumab The highest and lowest radiation-received organs were osteogenic cells (0.349 mSv/MBq) and skin (0.137 mSv/MBq), respectively. The mean coefficients of variation (%CV) of the effective dose equivalent and effective dose were 0.091 and 0.093 mSv/MBq respectively. We showed the feasibility of the pinholeattached conventional gamma camera for human use for the assessment of dosimetry. Mouse dosimetry and prediction of human dosimetry could be used to provide data for the safety and efficacy of newly developed therapeutic schemes.

  1. Cloning and characterization of the mouse XPAC gene.

    PubMed Central

    van Oostrom, C T; de Vries, A; Verbeek, S J; van Kreijl, C F; van Steeg, H

    1994-01-01

    Xeroderma Pigmentosum is a human disease, which is, among others, characterized by a high incidence of (sunlight induced) skin cancer, due to a defect in nucleotide excision repair (NER). The human DNA repair gene XPAC corrects this defect in cells isolated from Xeroderma Pigmentosum complementation group A (XP-A) patients. To enable the development of a transgenic mouse model for XP-A by gene targeting in embryonic stem cells, we cloned and characterized the mouse homologue of the XPAC gene. The mouse XPAC gene was found to consist of 6 exons, spanning approximately 21 kb. The nucleotide sequence of the exons is identical to that of the also cloned the mouse XPAC cDNA. Furthermore, the deduced amino acid sequence of the XPAC protein is the same as the one published previously by Tanaka et al. From CAT assay analysis, the promoter of the XPAC gene appeared to be located within 313 bp upstream of the assumed transcriptional start site. Like the promoters of other eukaryotic DNA repair genes (i.e. ERCC-1 and XPBC/ERCC-3), the mouse XPAC promoter region lacks classical promoter elements like TATA-, GC- and CAAT boxes. However, it contains an unique polypyrimidine-rich box, which is so far only found in genes encoding DNA repair enzymes. The function of this box in the regulation of transcription is still unclear. PMID:8127648

  2. Stokes shift spectroscopy for the early diagnosis of epithelial precancers in DMBA treated mouse skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Jeyasingh, Ebenezar; Singaravelu, Ganesan; Prakasarao, Aruna

    2018-02-01

    In this study, we aim to characterize the tissue transformation in dimethylbenz(a)anthracene (DMBA) treated mouse skin tumor model using stokes shift spectroscopy (SSS) technique for early detection of the neoplastic changes. Stokes shift (SS) spectra measured by scanning both excitation and emission wavelength simultaneously with a fixed wavelength of interval (Δλ=20 nm) in vivo from 33 DMBA treated animals and 6 control animals. The SS spectra of normal (n=6), hyperplasia (n=10), dysplasia (n=10), and WDSCC (n=13) of mice skin shows the distinct peaks around 300, 350, and 386 nm may be attributed to tryptophan, collagen, and NADH respectively. From the observed spectral differences and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers for early neoplastic changes.

  3. Transplantation Immunity in the Isologous Mouse Radiation Chimaera

    PubMed Central

    Bridges, J. B.; Loutit, J. F.; Micklem, H. S.

    1960-01-01

    The survival of skin homo- and heterografts on isologous CBA mouse chimaeras has been investigated. Homografts usually persist for considerably longer than on normal unirradiated mice. Immunization of the host against the appropriate foreign antigens before irradiation neither reduces nor increases the duration of this persistence. When an irradiated non-immune host is restored with bone marrow from an immunized donor, a measure of immunity is transferred. If adult spleen cells from normal or immunized donors are added to the restorative inoculum, strongly antigenic foreign skins are shed with something like normal rapidity, but weakly antigenic skins may be retained for 100 days or more, and even indefinitely. Heterografts do not enjoy a span of survival comparable with that of homografts. These findings are discussed, and it is concluded that two factors are of importance in the prolongation of graft survival: (1) A weakening of the mechanism by which antigens are recognized as foreign, (2) an overall central depression of the immune response. ImagesPLATE IPLATE IIPLATE III PMID:13804388

  4. Reflectance spectroscopy for evaluating hair follicle cycle

    NASA Astrophysics Data System (ADS)

    Liu, Caihua; Guan, Yue; Wang, Jianru; Zhu, Dan

    2014-02-01

    Hair follicle, as a mini-organ with perpetually cycling of telogen, anagen and catagen, provides a valuable experimental model for studying hair and organ regeneration. The transition of hair follicle from telogen to anagen is a significant sign for successful regeneration. So far discrimination of the hair follicle stage is mostly based on canonical histological examination and empirical speculation based on skin color. Hardly a method has been proposed to quantitatively evaluate the hair follicle stage. In this work, a commercial optical fiber spectrometer was applied to monitor diffuse reflectance of mouse skin with hair follicle cycling, and then the change of reflectance was obtained. Histological examination was used to verify the hair follicle stage. In comparison with the histological examination, the skin diffuse reflectance was relatively high for mouse with telogen hair follicles; it decreased once hair follicles transited to anagen stage; then it increased reversely at catagen stage. This study provided a new method to quantitatively evaluate the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  5. Misbehaving macrophages in the pathogenesis of psoriasis.

    PubMed

    Clark, Rachael A; Kupper, Thomas S

    2006-08-01

    Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin--or both. However, these questions have proven difficult to dissect using molecular genetic tools. In the current studies, the authors have used 2 different animal models to address the role of macrophages in disease pathogenesis: Wang et al. use a mouse model in which inflammation is T cell dependent, whereas the model used by Stratis et al. is T cell independent (see the related articles beginning on pages 2105 and 2094, respectively). Strikingly, both groups report an important contribution by macrophages, implying that macrophages can contribute to both epithelial-based and T cell-mediated pathways of inflammation.

  6. Chemopreventive effects of cardamom (Elettaria cardamomum L.) on chemically induced skin carcinogenesis in Swiss albino mice.

    PubMed

    Qiblawi, Samir; Al-Hazimi, Awdah; Al-Mogbel, Mohammed; Hossain, Ashfaque; Bagchi, Debasis

    2012-06-01

    The chemopreventive potential of cardamom was evaluated on 7,12-dimethylbenz[a]anthracene-initiated and croton oil-promoted mouse skin papillomagenesis. A significant reduction in the values of tumor incidence, tumor burden, and tumor yield and the cumulative number of papillomas was observed in mice treated orally with 0.5 mg of cardamom powder in suspension continuously at pre-, peri-, and post-initiational stages of papillomagenesis compared with the control group. The average weight and diameter of tumors recorded were also comparatively lower in the cardamom-treated mouse group. Treatment of cardamom suspension by oral gavage for 15 days resulted in a significant decrease in the lipid peroxidation level of the liver (P < .01). In addition, the reduced glutathione level was significantly elevated in comparison with the control group (P < .05) following cardamom suspension treatment. Taken together, these findings indicate the potential of cardamom as a chemopreventive agent against two-stage skin cancer.

  7. A method to visualize transdermal nickel permeation in mouse skin using a nickel allergy patch

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Hongo, Toshio; Omagari, Daisuke; Komiyama, Kazuo; Oikawa, Masakazu; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test. PMID:26484550

  8. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin

    PubMed Central

    Velarde, Michael C.; Flynn, James M.; Day, Nicholas U.; Melov, Simon; Campisi, Judith

    2012-01-01

    Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo. PMID:22278880

  9. Prevention of oral food allergy sensitization via skin application of food allergen in a mouse model.

    PubMed

    Li, W; Zhang, Z; Saxon, A; Zhang, K

    2012-05-01

    Treatment options for food allergy remain limited. Development of novel approaches for the prevention and/or treatment of severe peanut allergy and other food allergies is urgently needed. The objective of this study was to test whether skin application of food allergen can be used as a prophylactic and/or therapeutic intervention for food allergy. Balb/C mice were given 5 weekly cutaneous application of complete peanut extract (CPE) or ovalbumin (OVA) ranging from 10 to 1000 μg on the shaved back skin, followed by 5 weekly treatments with oral CPE or OVA plus cholera toxin to induce allergic reactivity to the food. At various time points, the immunologic responses and allergic clinical manifestations to allergens were examined. Skin application of a 10-1000 μg dose of CPE or OVA to structurally intact skin did not lead to allergic sensitization to peanut or OVA. Rather, cutaneous allergen application blocked, in a dose-dependent fashion, the subsequent induction of the oral sensitization including inhibiting oral sensitization-induced CPE-specific IgE, IgG1, and IgG2a production, suppressing the peanut anaphylaxis, and modulating the oral sensitization-promoted cytokine production. The cutaneous OVA application also resulted in similar results as seen with CPE application. Cutaneous application of intact skin with peanut or OVA can block the development of orally induced corresponding food allergies, suggesting that allergic tolerance to peanuts and OVA might be achieved via allergen cutaneous application. © 2012 John Wiley & Sons A/S.

  10. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice.

    PubMed

    Viarisio, Daniele; Müller-Decker, Karin; Accardi, Rosita; Robitaille, Alexis; Dürst, Matthias; Beer, Katrin; Jansen, Lars; Flechtenmacher, Christa; Bozza, Matthias; Harbottle, Richard; Voegele, Catherine; Ardin, Maude; Zavadil, Jiri; Caldeira, Sandra; Gissmann, Lutz; Tommasino, Massimo

    2018-01-01

    Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC). Studies in in vitro and in vivo experimental models have highlighted the transforming properties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that beta HPV types may be required only at an initial stage of carcinogenesis, and may become dispensable after full establishment of NMSC. Here, we further investigate the potential role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38 E6/E7 Tg mice accumulate a large number of UV-induced DNA mutations, which increase proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg skin lesions closely resembles that detected in human NMSC, with the highest mutation rate in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion of the viral oncogenes after development of UV-induced skin lesions did not affect the tumour growth. Together, these findings support the concept that beta HPV types act only at an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation.

  11. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice

    PubMed Central

    Müller-Decker, Karin; Accardi, Rosita; Flechtenmacher, Christa; Bozza, Matthias; Harbottle, Richard; Voegele, Catherine; Ardin, Maude; Zavadil, Jiri; Gissmann, Lutz

    2018-01-01

    Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC). Studies in in vitro and in vivo experimental models have highlighted the transforming properties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that beta HPV types may be required only at an initial stage of carcinogenesis, and may become dispensable after full establishment of NMSC. Here, we further investigate the potential role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38 E6/E7 Tg mice accumulate a large number of UV-induced DNA mutations, which increase proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg skin lesions closely resembles that detected in human NMSC, with the highest mutation rate in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion of the viral oncogenes after development of UV-induced skin lesions did not affect the tumour growth. Together, these findings support the concept that beta HPV types act only at an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation. PMID:29324843

  12. Transgenic rat model of childhood-onset dermatitis by overexpressing telomerase reverse transcriptase (TERT).

    PubMed

    Kaneko, Ryosuke; Sato, Atsuko; Hamada, Shun; Yagi, Takeshi; Ohsawa, Ichiro; Ohtsuki, Mamitaro; Kobayashi, Eiji; Hirabayashi, Masumi; Murakami, Takashi

    2016-08-01

    Childhood-onset dermatitis is one of the most common skin disorders in children. Although various mouse models that mirror aspects of dermatitis have become available, there is still a need for an animal model that develops dermatitis in childhood and is more suitable for performing tissue transplantation experiments. There is emerging evidence that peripheral blood T lymphocytes from patients with dermatitis have significantly increased telomerase activity. Here, we developed telomerase reverse transcriptase (TERT)-expressing transgenic (Tg) rats that spontaneously developed eczematous skin inflammation in childhood. Newborn TERT-Tg rats developed visible dermatitis in 56 % of cases, and the skin lesions microscopically showed spongiosis and acanthosis with infiltration of lymphocytes, eosinophils and mast cells. TERT-Tg rats with dermatitis exhibited increased CD4 (2.5-fold) and CD8 (fivefold) T cell numbers compared with dermatitis-free TERT-Tg rats. Stronger TERT activity was observed in the peripheral lymphocytes of dermatitis-positive TERT-Tg rats than those of dermatitis-free TERT-Tg rats. RT-PCR analysis revealed that IL-4 was markedly elevated in the spleen of dermatitis-positive TERT-Tg rats, and that interferon-gamma was increased in the dermatitis lesions. Moreover, skin grafting of TERT-Tg rats with dermatitis onto T cell-deficient nude rats demonstrated that the inflamed skin lesions could not be maintained. Taken together, the results suggest that TERT activation in T lymphocytes is one of the potential predisposing factors for dermatitis. Moreover, our results demonstrated that the TERT-Tg rats mirror aspects of human childhood-onset dermatitis and that these animals represent a potential animal model system for studying childhood-onset dermatitis.

  13. Biodosimetric quantification of short-term synchrotron microbeam versus broad-beam radiation damage to mouse skin using a dermatopathological scoring system

    PubMed Central

    Priyadarshika, R C U; Crosbie, J C; Kumar, B; Rogers, P A W

    2011-01-01

    Objectives Microbeam radiotherapy (MRT) with wafers of microscopically narrow, synchrotron generated X-rays is being used for pre-clinical cancer trials in animal models. It has been shown that high dose MRT can be effective at destroying tumours in animal models, while causing unexpectedly little damage to normal tissue. The aim of this study was to use a dermatopathological scoring system to quantify and compare the acute biological response of normal mouse skin with microplanar and broad-beam (BB) radiation as a basis for biological dosimetry. Method The skin flaps of three groups of mice were irradiated with high entrance doses (200 Gy, 400 Gy and 800 Gy) of MRT and BB and low dose BB (11 Gy, 22 Gy and 44 Gy). The mice were culled at different time-points post-irradiation. Skin sections were evaluated histologically using the following parameters: epidermal cell death, nuclear enlargement, spongiosis, hair follicle damage and dermal inflammation. The fields of irradiation were identified by γH2AX-positive immunostaining. Results The acute radiation damage in skin from high dose MRT was significantly lower than from high dose BB and, importantly, similar to low dose BB. Conclusion The integrated MRT dose was more relevant than the peak or valley dose when comparing with BB fields. In MRT-treated skin, the apoptotic cells of epidermis and hair follicles were not confined to the microbeam paths. PMID:21849367

  14. Dose response evaluation of gene expression profiles in the skin of K6/ODC mice exposed to sodium arsenite.

    PubMed

    Ahlborn, Gene J; Nelson, Gail M; Ward, William O; Knapp, Geremy; Allen, James W; Ouyang, Ming; Roop, Barbara C; Chen, Yan; O'Brien, Thomas; Kitchin, Kirk T; Delker, Don A

    2008-03-15

    Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, we characterized gene expression profiles from analysis of K6/ODC mice administered 0, 0.05, 0.25, 1.0 and 10 ppm sodium arsenite in their drinking water for 4 weeks. Following exposure, total RNA was isolated from mouse skin and processed to biotin-labeled cRNA for microarray analyses. Skin gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 GeneChips, and pathway analysis was conducted with DAVID (NIH), Ingenuity Systems and MetaCore's GeneGo. Differential expression of several key genes was verified through qPCR. Only the highest dose (10 ppm) resulted in significantly altered KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including MAPK, regulation of actin cytoskeleton, Wnt, Jak-Stat, Tight junction, Toll-like, phosphatidylinositol and insulin signaling pathways. Approximately 20 genes exhibited a dose response, including several genes known to be associated with carcinogenesis or tumor progression including cyclin D1, CLIC4, Ephrin A1, STAT3 and DNA methyltransferase 3a. Although transcription changes in all identified genes have not previously been linked to arsenic carcinogenesis, their association with carcinogenesis in other systems suggests that these genes may play a role in the early stages of arsenic-induced skin carcinogenesis and can be considered potential biomarkers.

  15. Mast Cells Regulate Wound Healing in Diabetes.

    PubMed

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin.

    PubMed

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  17. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin

    PubMed Central

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C.; Ambler, Carrie A.

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time. PMID:29535723

  18. Time course pathogenesis of sulphur mustard-induced skin lesions in mouse model.

    PubMed

    Lomash, Vinay; Jadhav, Sunil E; Vijayaraghavan, Rajagopalan; Pant, Satish C

    2013-08-01

    Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarkers, namely, transforming growth factor alpha (TGF-α), fibroblast growth factor (FGF), endothelial nitric oxide synthase (eNOS) and interlukin 6 (IL-6). Histopathological changes were similar to other mammalian species and basal cell damage resembled the histopathological signs observed with vesication in human skin. Inflammatory cell recruitment at the site of injury was supported by differential expressions of IL-6 at various stages. Time-dependent expressions of eNOS played pivotal roles in all the events of wound healing of SM-induced skin lesions. TGF-α and FGF were strongly associated with keratinocyte migration, re-epithelialisation, angiogenesis, fibroblast proliferation and cell differentiation. Furthermore, quantification of the tissue leukocytosis and DNA damage along with semiquantitative estimation of re-epithelialisation, fibroplasia and neovascularisation on histomorphologic scale could be efficiently used for screening the efficacy of orphan drugs against SM-induced skin injury. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  19. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin.

    PubMed

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Thy1.2 YFP-16 Transgenic Mouse Labels a Subset of Large-Diameter Sensory Neurons that Lack TRPV1 Expression

    PubMed Central

    Taylor-Clark, Thomas E.; Wu, Kevin Y.; Thompson, Julie-Ann; Yang, Kiseok; Bahia, Parmvir K.; Ajmo, Joanne M.

    2015-01-01

    The Thy1.2 YFP-16 mouse expresses yellow fluorescent protein (YFP) in specific subsets of peripheral and central neurons. The original characterization of this model suggested that YFP was expressed in all sensory neurons, and this model has been subsequently used to study sensory nerve structure and function. Here, we have characterized the expression of YFP in the sensory ganglia (DRG, trigeminal and vagal) of the Thy1.2 YFP-16 mouse, using biochemical, functional and anatomical analyses. Despite previous reports, we found that YFP was only expressed in approximately half of DRG and trigeminal neurons and less than 10% of vagal neurons. YFP-expression was only found in medium and large-diameter neurons that expressed neurofilament but not TRPV1. YFP-expressing neurons failed to respond to selective agonists for TRPV1, P2X2/3 and TRPM8 channels in Ca2+ imaging assays. Confocal analysis of glabrous skin, hairy skin of the back and ear and skeletal muscle indicated that YFP was expressed in some peripheral terminals with structures consistent with their presumed non-nociceptive nature. In summary, the Thy1.2 YFP-16 mouse expresses robust YFP expression in only a subset of sensory neurons. But this mouse model is not suitable for the study of nociceptive nerves or the function of such nerves in pain and neuropathies. PMID:25746468

  1. Tissue specific mutagenic and carcinogenic responses in NER defective mouse models.

    PubMed

    Wijnhoven, Susan W P; Hoogervorst, Esther M; de Waard, Harm; van der Horst, Gijsbertus T J; van Steeg, Harry

    2007-01-03

    Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can lead to a (partial) defect in GG-NER, TC-NER or both. GG-NER defects in mice predispose to cancer, both spontaneous as well as UV-induced. As such these models (Xpa, Xpc and Xpe) recapitulate the human xeroderma pigmentosum (XP) syndrome. Defects in TC-NER in humans are associated with Cockayne syndrome (CS), a disease not linked to tumor development. Mice with TC-NER defects (Csa and Csb) are - except for the skin - not susceptible to develop (carcinogen-induced) tumors. Some NER factors, i.e. XPB, XPD, XPF, XPG and ERCC1 have functions outside NER, like transcription initiation and inter-strand crosslink repair. Deficiencies in these processes in mice lead to very severe phenotypes, like trichothiodystrophy (TTD) or a combination of XP and CS. In most cases these animals have a (very) short life span, display segmental progeria, but do not develop tumors. Here we will overview the available NER-related mouse models and will discuss their phenotypes in terms of (chemical-induced) tissue-specific tumor development, mutagenesis and premature aging features.

  2. Development and characterization of novel 1-(1-Naphthyl)piperazine-loaded lipid vesicles for prevention of UV-induced skin inflammation.

    PubMed

    Menezes, Ana Catarina; Campos, Patrícia Mazureki; Euletério, Carla; Simões, Sandra; Praça, Fabíola Silva Garcia; Bentley, Maria Vitória Lopes Badra; Ascenso, Andreia

    2016-07-01

    1-(1-Naphthyl)piperazine (1-NPZ) has shown promising effects by inhibiting UV radiation-induced immunosuppression. Ultradeformable vesicles are recent advantageous systems capable of improving the (trans)dermal drug delivery. The aim of this study was to investigate 1-NPZ-loaded transethosomes (NPZ-TE) and 1-NPZ-loaded vesicles containing dimethyl sulfoxide (NPZ-DM) as novel delivery nanosystems, and to uncover their chemopreventive effect against UV-induced acute inflammation. Their physicochemical properties were evaluated as follows: vesicles size and zeta potential by dynamic and electrophoretic light scattering, respectively; vesicle deformability by pressure driven transport; rheological behavior by measuring viscosity and I-NPZ entrapment yield by HPLC. In vitro topical delivery studies were performed in order to evaluate the permeation profile of both formulations, whereas in vivo studies sought to assess the photoprotective effect of the selected formulation on irradiated hairless mice by measuring myeloperoxidase activity and the secretion of proinflammatory cytokines. Either NPZ-TE or NPZ-DM exhibited positive results in terms of physicochemical properties. In vitro data revealed an improved permeation of 1-NPZ across pig ear skin, especially by NPZ-DM. In vivo studies demonstrated that NPZ-DM exposure was capable of preventing UVB-induced inflammation and blocking mediators of inflammation in mouse skin. The successful results here obtained encourage us to continue these studies for the management of inflammatory skin conditions that may lead to the development of skin cancers. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis

    PubMed Central

    Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.

    2018-01-01

    Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372

  4. Expression and function of macrophage migration inhibitory factor in the pathogenesis of UV-induced cutaneous nonmelanoma skin cancer.

    PubMed

    Heise, Ruth; Vetter-Kauczok, Claudia S; Skazik, Claudia; Czaja, Katharina; Marquardt, Yvonne; Lue, Hongqi; Merk, Hans F; Bernhagen, Jürgen; Baron, Jens M

    2012-01-01

    Chronic skin exposure to ultraviolet light stimulates the production of cytokines known to be involved in the initiation of skin cancer. Recent studies in mouse models suggested a role for macrophage migration inhibitory factor (MIF) in the UVB-induced pathogenesis of nonmelanoma skin cancer (NMSC). Our studies aimed at defining the pathophysiological function of MIF in cutaneous inflammatory reactions and in the development and progression of NMSC. Immunohistochemical analysis revealed a moderate expression of MIF in normal human skin samples but an enhanced expression of this cytokine in lesional skin of patients with actinic keratosis or cutaneous SCC. Enzyme-linked immunosorbent assay studies showed a time-dependent increase in MIF secretion after a moderate single-dose UVB irradiation in NHEKs and SCC tumor cells. MIF is known to interact with CXCR2, CXCR4 and CD74. These receptors are not constitutively expressed in keratinocytes and HaCaT cells and their expression is not induced by UVB irradiation either. However, stimulation with IFNγ upregulated CD74 surface expression in these cells. Affymetrix(®) Gene Chip analysis revealed that only keratinocytes prestimulated with IFNγ are responsive to MIF. These findings indicate that MIF may be an important factor in the pathogenesis of NMSC tumorigenesis and progression in an inflammatory environment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  5. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP.

    PubMed

    Yeom, Miji; Lee, HansongI; Shin, Seoungwoo; Park, Deokhoon; Jung, Eunsun

    2018-03-23

    Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.

  6. Immunohistochemical analysis of the distribution of desmoglein 1 and 2 in the skin of dogs and cats.

    PubMed

    Miragliotta, Vincenzo; Coli, Alessandra; Ricciardi, Maria P; Podestà, Adriano; Abramo, Francesca

    2005-11-01

    To compare the distribution of desmoglein (Dsg) 1 and 2 in skin specimens obtained from dogs and cats to provide information about the possible role of the density of Dsg 1 and 2 in the localization of lesions attributable to pemphigus foliaceus in these 2 species. Skin biopsy specimens obtained from 4 dogs and 4 cats. Biopsy specimens were collected from the muzzle, bridge of the nose, ear, dorsum, abdomen, area adjacent to the teats, and footpads of each animal. Immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded skin samples by use of a biotinylated mouse monoclonal anti-Dsg 1 and 2 antibody raised against bovine muzzle. Color development was performed by use of the streptavidin-biotin-peroxidase method with a chromogenic substrate. Immunohistochemical staining yielded a positive reaction in skin samples obtained from all anatomic sites. The intensity and distribution of staining were related to the number of layers of the stratum spinosum. No differences were detected between samples obtained from dogs and cats. No differences in intensity of Dsg 1 and 2 antigen were observed in the stratum spinosum between skin samples obtained from dogs and cats. Analysis of this result suggests that factors other than the distribution of Dsg may be responsible for the differences in localization of primary clinical lesions in dogs and cats with pemphigus foliaceus.

  7. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Prakash; Gupta, Krishna P., E-mail: krishnag522@yahoo.co.in

    2014-07-15

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulationmore » of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations.« less

  8. Pine Oil Effects on Chemical and Thermal Injury in Mice and Cultured Mouse Dorsal Root Ganglion Neurons

    PubMed Central

    Clark, SP; Bollag, WB; Westlund, KN; Ma, F; Falls, G; Xie, D; Johnson, M; Isales, CM; Bhattacharyya, MH

    2013-01-01

    A commercial resin-based pine oil derived from Pinus palustris and Pinus elliottii was the major focus of this investigation. Extracts of pine resins, needles and bark are folk medicines commonly used to treat skin ailments, including burns. The American Burn Association estimates that 500,000 people with burn injuries receive medical treatment each year; one-half of US burn victims are children, most with scald burns. This systematic study was initiated as follow-up to personal anecdotal evidence acquired over more than 10 years by MH Bhattacharyya regarding pine oil’s efficacy for treating burns. The results demonstrate that pine oil counteracted dermal inflammation in both a mouse ear model of contact irritant-induced dermal inflammation and a 2nd degree scald burn to the mouse paw. Furthermore, pine oil significantly counteracted the tactile allodynia and soft tissue injury caused by the scald burn. In mouse dorsal root ganglion (DRG) neuronal cultures, pine oil added to the medium blocked ATP-activated, but not capsaicin-activated, pain pathways, demonstrating specificity. These results together support the hypothesis that a pine-oil-based treatment can be developed to provide effective in-home care for 2nd degree burns. PMID:23595692

  9. Targeting Therapy Resistant Tumor Vessels

    DTIC Science & Technology

    2008-08-01

    No 6 C8161 s.c. xenografts No 5 K14-HPV16 skin cancer No 4 MDA-MB-435 orthotopic xenografts No 4 AGR TRAMP PIN lesions TRAMP PIN lesions Yes 18 TRAMP...CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a. REPORT U b. ABSTRACT U c...Summary We developed three tumor models under this project: 4T1 mouse breast cancer and MDA-MB-435 human cancer xenograft tumors treated with anti

  10. TNF-alpha Expression Patterns as Potential Molecular Biomarker for Human Skin Cells Exposed to Vesicant Chemical Warfare Agents: Sulfur Mustard (HD) and Lewisite (L)

    DTIC Science & Technology

    2004-01-01

    First World War. It was Sabourin et al., 2000). Skin injuries caused by called Hun Stoffe by the Allies and given the HD are complex and involve... Sabourin et al., 2000, Kan et al., 2003) sup- port the involvement of TNF-cx in animal models such as mouse skin and hairless guinea References pigs... Sabourin CLK. Petrali JP. Casillas RP. Alteration in inflamma- Pharmacol Toxicol. 2003:92:20 4 -13. tory cytokine gene expression in sulfur mustard exposed

  11. Photoprotection against the UVB-induced oxidative stress and epidermal damage in mice using leaves of three different varieties of Lepidium meyenii (maca).

    PubMed

    Gonzales-Castañeda, Cynthia; Rivera, Valery; Chirinos, Ana Lucía; Evelson, Pablo; Gonzales, Gustavo Francisco

    2011-08-01

    Skin exposure to ultraviolet (UV) B radiation leads to epidermal damage and generation of reactive oxygen species. The photoprotective effect of extracts of three varieties of leaves (red, yellow, and black) from maca (Lepidium meyenii), a plant from the Peruvian highlands, was assessed in mouse skin exposed to UVB radiation. The hydroalcoholic extracts of three varieties of maca leaves were applied topically to the dorsal skin of young-adult male mice prior to exposition to UVB radiation. The three varieties had UVA/UVB absorptive properties and presented antioxidant activity, being highest with red maca, followed by black and yellow maca. The three varieties of maca leaves prevented the development of sunburn cells, epidermal hyperplasia, leukocytic infiltration, and other alterations produced by UVB radiation. Mice treated with black maca showed the highest superoxide dismutase levels, and mice treated with black and yellow maca showed higher catalase levels in skin, whereas red maca protected the skin and liver against significant increases in the lipid peroxidation activity observed in the unprotected animals. The presence of significant antioxidant activity and the inhibition of lipid peroxidation suggest that the observed protection could be partly attributable to this mechanism. © 2011 The International Society of Dermatology.

  12. Palytoxin: exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis.

    PubMed

    Wattenberg, Elizabeth V

    2007-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na(+),K(+)-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.

  13. Palytoxin: Exploiting a novel skin tumor promoter to explore signal transduction and carcinogenesis

    PubMed Central

    Wattenberg, Elizabeth V.

    2006-01-01

    Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multi-stage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multi-stage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol-12-myristate-13-acetate or PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na+,K+-ATPase. This review focuses on palytoxin-stimulated signaling, and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated. PMID:16855216

  14. Involvement of tumour necrosis factor-α in Clostridium perfringens β-toxin-induced plasma extravasation in mice

    PubMed Central

    Nagahama, M; Kihara, A; Kintoh, H; Oda, M; Sakurai, J

    2008-01-01

    Background and purpose: Clostridium perfringens beta-toxin, an important agent of necrotic enteritis, causes plasma extravasation due to the release of a tachykinin NK1 receptor agonist in mouse skin. In this study, we investigated the role of cytokines in beta-toxin-induced plasma extravasation. Experimental approach: Male Balb/c, C3H/HeN and C3H/HeJ mice were anaesthetized with pentobarbitone and beta-toxin was injected i.d. into shaved dorsal skin. SR140333, capsaicin, chlorpromazine and pentoxifylline were given as pretreatment when required before the injection of the toxin. Cytokines in the dorsal skin were measured by ELISA. Key results: Injection (i.d.) of beta-toxin induced a dose-dependent increase in dermal TNF-α and interleukin (IL)-1β levels with a concomitant increase in plasma extravasation, but not the release of IL-6. SR140333 and capsaicin significantly inhibited the toxin-induced release of TNF-α and IL-1β. The plasma extravasation and the release of TNF-α induced by beta-toxin were significantly inhibited by chlorpromazine and pentoxifylline which inhibit the release of TNF-α. The toxin-induced plasma extravasation in mouse skin was attenuated by pretreatment with a monoclonal antibody against TNF-α, but not anti-IL-1β. Furthermore, the toxin caused an increase in plasma extravasation in both C3H/HeN (TLR4-intact) and C3H/HeJ (TLR4-deficient) mice. In C3H/HeN mice, the toxin-induced leakage was not inhibited by pretreatment with anti-TLR4/MD-2 antibody. Conclusions and implications: These observations show that beta-toxin-induced plasma extravasation in mouse skin is related to the release of TNF-α via the mechanism involving tachykinin NK1 receptors, but not via TLR4. PMID:18264118

  15. Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean

    2017-01-01

    Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies. PMID:28856046

  16. Differential tumor biology effects of double-initiation in a mouse skin chemical carcinogenesis model comparing wild type versus protein kinase Cepsilon overexpression mice.

    PubMed

    Li, Yafan; Wheeler, Deric L; Ananthaswamy, Honnavara N; Verma, Ajit K; Oberley, Terry D

    2007-12-01

    Our previous studies showed that protein kinase Cepsilon (PKCepsilon) verexpression in mouse skin resulted in metastatic squamous cell carcinoma (SCC) elicited by single 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion in the absence of preceding papilloma formation as is typically observed in wild type mice. The present study demonstrates that double-DMBA initiation modulates tumor incidence, multiplicity, and latency period in both wild type and PKCepsilon overexpression transgenic (PKCepsilon-Tg) mice. After 17 weeks (wks) of tumor promotion, a reduction in papilloma multiplicity was observed in double- versus single-DMBA initiated wild type mice. Papilloma multiplicity was inversely correlated with cell death indices of interfollicular keratinocytes, indicating decreased papilloma formation was caused by increased cell death and suggesting the origin of papillomas is in interfollicular epidermis. Double-initiated PKCepsilon-Tg mice had accelerated carcinoma formation and cancer incidence in comparison to single-initiated PKCepsilon-Tg mice. Morphologic analysis of mouse skin following double initiation and tumor promotion showed a similar if not identical series of events to those previously observed following single initiation and tumor promotion: putative preneoplastic cells were observed arising from hyperplastic hair follicles (HFs) with subsequent cancer cell infiltration into the dermis. Single-initiated PKCepsilon-Tg mice exhibited increased mitosis in epidermal cells of HFs during tumor promotion.

  17. Hair Follicular Expression and Function of Group X Secreted Phospholipase A2 in Mouse Skin*

    PubMed Central

    Yamamoto, Kei; Taketomi, Yoshitaka; Isogai, Yuki; Miki, Yoshimi; Sato, Hiroyasu; Masuda, Seiko; Nishito, Yasumasa; Morioka, Kiyokazu; Ishimoto, Yoshikazu; Suzuki, Noriko; Yokota, Yasunori; Hanasaki, Kohji; Ishikawa, Yukio; Ishii, Toshiharu; Kobayashi, Tetsuyuki; Fukami, Kiyoko; Ikeda, Kazutaka; Nakanishi, Hiroki; Taguchi, Ryo; Murakami, Makoto

    2011-01-01

    Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase A2 (PLA2) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA2 (sPLA2-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice overexpressing sPLA2-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle. Additionally, the epidermis and sebaceous glands of PLA2G10-Tg skin were hyperplasic. Proteolytic activation of sPLA2-X in PLA2G10-Tg skin was accompanied by preferential hydrolysis of phosphatidylethanolamine species with polyunsaturated fatty acids as well as elevated production of some if not all eicosanoids. Importantly, the skin of Pla2g10-deficient mice had abnormal hair follicles with noticeable reduction in a subset of hair genes, a hypoplasic outer root sheath, a reduced number of melanin granules, and unexpected up-regulation of prostanoid synthesis. Collectively, our study highlights the spatiotemporal expression of sPLA2-X in hair follicles, the presence of skin-specific machinery leading to sPLA2-X activation, a functional link of sPLA2-X with hair follicle homeostasis, and compartmentalization of the prostanoid pathway in hair follicles and epidermis. PMID:21266583

  18. Flower-deficient mice have reduced susceptibility to skin papilloma formation

    PubMed Central

    Petrova, Evgeniya; López-Gay, Jesús M.; Rhiner, Christa; Moreno, Eduardo

    2012-01-01

    SUMMARY Skin papillomas arise as a result of clonal expansion of mutant cells. It has been proposed that the expansion of pretumoral cell clones is propelled not only by the increased proliferation capacity of mutant cells, but also by active cell selection. Previous studies in Drosophila describe a clonal selection process mediated by the Flower (Fwe) protein, whereby cells that express certain Fwe isoforms are recognized and forced to undergo apoptosis. It was further shown that knock down of fwe expression in Drosophila can prevent the clonal expansion of dMyc-overexpressing pretumoral cells. Here, we study the function of the single predicted mouse homolog of Drosophila Fwe, referred to as mFwe, by clonal overexpression of mFwe isoforms in Drosophila and by analyzing mFwe knock-out mice. We show that clonal overexpression of certain mFwe isoforms in Drosophila also triggers non-autonomous cell death, suggesting that Fwe function is evolutionarily conserved. Although mFwe-deficient mice display a normal phenotype, they develop a significantly lower number of skin papillomas upon exposure to DMBA/TPA two-stage skin carcinogenesis than do treated wild-type and mFwe heterozygous mice. Furthermore, mFwe expression is higher in papillomas and the papilloma-surrounding skin of treated wild-type mice compared with the skin of untreated wild-type mice. Thus, we propose that skin papilloma cells take advantage of mFwe activity to facilitate their clonal expansion. PMID:22362363

  19. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells.

    PubMed

    Saeki, N; Kuwahara, Y; Sasaki, H; Satoh, H; Shiroishi, T

    2000-09-01

    Amplification of proto-oncogenes associated with their over-expression is one of the critical carcinogenic events identified in human cancer cells. In many cases of human gastric cancer, a proto-oncogene ERBB-2 is co-amplified with CAB1 genes physically linked to ERBB-2, and both genes are over-expressed. The amplified region containing ERBB-2 and CAB1 was named 17q12 amplicon from its chromosomal location. The syntenic region corresponding to the 17q12 amplicon is well conserved in mouse. In this study we isolated and characterized a novel mouse gene that locates telomeric to the mouse syntenic region. Northern blot analysis using the mouse cDNA and a cloned partial cDNA of human homolog disclosed a unique expression pattern of the genes. They are expressed predominantly in the gastrointestinal (GI) tract and in the skin at a lower level. Moreover, in the GI tract, the expression is highly restricted to the esophagus and stomach. Thus, we named the mouse gene Gasdermin (Gsdm). This is the first report of a mammalian gene whose expression is restricted to both upper GI tract and skin. Interestingly, in spite of its expression in normal stomach, no transcript was detected by Northern blot analysis in human gastric cancer cells. These data suggest that the loss of the expression of the human homolog is required for the carcinogenesis of gastric tissue and that the gene has an activity adverse to malignant transformation of cells.

  20. A novel p53 mutational hotspot in skin tumors from UV-irradiated Xpc mutant mice alters transactivation functions.

    PubMed

    Inga, Alberto; Nahari, Dorit; Velasco-Miguel, Susana; Friedberg, Errol C; Resnick, Michael A

    2002-08-22

    A mutation in codon 122 of the mouse p53 gene resulting in a T to L amino acid substitution (T122-->L) is frequently associated with skin cancer in UV-irradiated mice that are both homozygous mutant for the nucleotide excision repair (NER) gene Xpc (Xpc(-/-)) and hemizygous mutant for the p53 gene. We investigated the functional consequences of the mouse T122-->L mutation when expressed either in mammalian cells or in the yeast Saccharomyces cerevisiae. Similar to a non-functional allele, high expression of the T122-->L allele in p53(-/-) mouse embryo fibroblasts and human Saos-2 cells failed to suppress growth. However, the T122-->L mutant p53 showed wild-type transactivation levels with Bax and MDM2 promoters when expressed in either cell type and retained transactivation of the p21 and the c-Fos promoters in one cell line. Using a recently developed rheostatable p53 induction system in yeast we assessed the T122-->L transactivation capacity at low levels of protein expression using 12 different p53 response elements (REs). Compared to wild-type p53 the T122-->L protein manifested an unusual transactivation pattern comprising reduced and enhanced activity with specific REs. The high incidence of the T122-->L mutant allele in the Xpc(-/-) background suggests that both genetic and epigenetic conditions may facilitate the emergence of particular functional p53 mutations. Furthermore, the approach that we have taken also provides for the dissection of functions that may be retained in many p53 tumor alleles.

  1. Topical application of nitrosonifedipine, a novel radical scavenger, ameliorates ischemic skin flap necrosis in a mouse model.

    PubMed

    Fukunaga, Yutaka; Izawa-Ishizawa, Yuki; Horinouchi, Yuya; Sairyo, Eriko; Ikeda, Yasumasa; Ishizawa, Keisuke; Tsuchiya, Koichiro; Abe, Yoshiro; Hashimoto, Ichiro; Tamaki, Toshiaki

    2017-04-01

    Ischemic skin flap necrosis can occur in random pattern flaps. An excess amount of reactive oxygen species is generated and causes necrosis in the ischemic tissue. Nitrosonifedipine (NO-NIF) has been demonstrated to possess potent radical scavenging ability. However, there has been no study on the effects of NO-NIF on ischemic skin flap necrosis. Therefore, they evaluated the potential of NO-NIF in ameliorating ischemic skin flap necrosis in a mouse model. A random pattern skin flap (1.0 × 3.0 cm) was elevated on the dorsum of C57BL/6 mice. NO-NIF was administered by topical injection immediately after surgery and every 24 hours thereafter. Flap survival was evaluated on postoperative day 7. Tissue samples from the skin flaps were harvested on postoperative days 1 and 3 to analyze oxidative stress, apoptosis and endothelial dysfunction. The viable area of the flap in the NO-NIF group was significantly increased (78.30 ± 7.041%) compared with that of the control group (47.77 ± 6.549%, p < 0.01). NO-NIF reduced oxidative stress, apoptosis and endothelial dysfunction, which were evidenced by the decrease of malondialdehyde, p22phox protein expression, number of apoptotic cells, phosphorylated p38 MAPK protein expression, and vascular cell adhesion molecule-1 protein expression while endothelial nitric oxide synthase protein expression was increased. In conclusion, they demonstrated that NO-NIF ameliorated ischemic skin flap necrosis by reducing oxidative stress, apoptosis, and endothelial dysfunction. NO-NIF is considered to be a candidate for the treatment of ischemic flap necrosis. © 2017 by the Wound Healing Society.

  2. Sulfur mustard analog, 2-chloroethyl ethyl sulfide-induced skin injury involves DNA damage and induction of inflammatory mediators, in part via oxidative stress, in SKH-1 hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Gu, Mallikarjuna; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh

    2011-01-01

    Bifunctional alkyalating agent, Sulfur mustard (SM)-caused cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 or 4 mg CEES for 9–48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in COX-2, iNOS, and MMP-9 levels, indicating the involvement of DNA damage and inflammation in CEES-caused skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-caused DNA damage and the induction of inflammatory molecules. Oral GSH (300mg/kg) administration 1 h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injuries involve DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injuries in humans by SM. PMID:21722719

  3. Quantitative image analysis of laminin immunoreactivity in skin basement membrane irradiated with 1 GeV/nucleon iron particles

    NASA Technical Reports Server (NTRS)

    Costes, S.; Streuli, C. H.; Barcellos-Hoff, M. H.

    2000-01-01

    We previously reported that laminin immunoreactivity in mouse mammary epithelium is altered shortly after whole-body irradiation with 0.8 Gy from 600 MeV/nucleon iron ions but is unaffected after exposure to sparsely ionizing radiation. This observation led us to propose that the effect could be due to protein damage from the high ionization density of the ion tracks. If so, we predicted that it would be evident soon after radiation exposure in basement membranes of other tissues and would depend on ion fluence. To test this hypothesis, we used immunofluorescence, confocal laser scanning microscopy, and image segmentation techniques to quantify changes in the basement membrane of mouse skin epidermis. At 1 h after exposure to 1 GeV/nucleon iron ions with doses from 0.03 to 1.6 Gy, neither the visual appearance nor the mean pixel intensity of laminin in the basement membrane of mouse dorsal skin epidermis was altered compared to sham-irradiated tissue. This result does not support the hypothesis that particle traversal directly affects laminin protein integrity. However, the mean pixel intensity of laminin immunoreactivity was significantly decreased in epidermal basement membrane at 48 and 96 h after exposure to 0.8 Gy 1 GeV/nucleon iron ions. We confirmed this effect with two additional antibodies raised against affinity-purified laminin 1 and the E3 fragment of the long-arm of laminin 1. In contrast, collagen type IV, another component of the basement membrane, was unaffected. Our studies demonstrate quantitatively that densely ionizing radiation elicits changes in skin microenvironments distinct from those induced by sparsely ionizing radiation. Such effects may might contribute to the carcinogenic potential of densely ionizing radiation by altering cellular signaling cascades mediated by cell-extracellular matrix interactions.

  4. A novel cell-containing device for regenerative medicine: biodegradable nonwoven filters with peripheral blood cells promote wound healing.

    PubMed

    Iwamoto, Ushio; Hori, Hideo; Takami, Yoshihiro; Tokushima, Yasuo; Shinzato, Masanori; Yasutake, Mikitomo; Kitaguchi, Nobuya

    2015-12-01

    The efficacy of skin regeneration devices consisting of nonwoven filters and peripheral blood cells was investigated for wound healing. We previously found that human peripheral blood cells enhanced their production of growth factors, such as transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor, when they were captured on nonwoven filters. Cells on biodegradable filters were expected to serve as a local supply of growth factors and cell sources when they were placed in wounded skin. Nonwoven filters made of biodegradable polylactic acid (PLA) were cut out as 13-mm disks and placed into cell-capturing devices. Mouse peripheral blood was filtered, resulting in PLA filters with mouse peripheral blood cells (m-PBCs) at capture rates of 65.8 ± 5.2%. Then, the filters were attached to full-thickness surgical wounds in a diabetic db/db mouse skin for 14 days as a model of severe chronic wounds. The wound area treated with PLA nonwoven filters with m-PBCs (PLA/B+) was reduced to 8.5 ± 12.2% when compared with day 0, although the non-treated control wounds showed reduction only to 60.6 ± 27.8%. However, the PLA filters without m-PBCs increased the wound area to 162.9 ± 118.7%. By histopathological study, the PLA/B+ groups more effectively accelerated formation of epithelium. The m-PBCs captured on the PLA filters enhanced keratinocyte growth factor (FGF-7) and TGF-β1 productions in vitro, which may be related to wound healing. This device is useful for regeneration of wounded skin and may be adaptable for another application.

  5. Modulation of Sonic hedgehog-induced mouse embryonic stem cell behaviors through E-cadherin expression and Integrin β1-dependent F-actin formation.

    PubMed

    Oh, Ji Young; Suh, Han Na; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Kim, Jun Sung; Chae, Chang Woo; Lee, Chang-Kyu; Han, Ho Jae

    2018-06-22

    Sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behavior in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly described. Thus, we investigated the effect of Shh on the regulation of mESC behaviors as well as the effect of Shh-pretreated mESCs in skin wound healing. The present study investigated the underlying mechanisms of Shh signaling pathway in growth and motility of mESCs using western blot analysis, cell proliferation assay, and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using mouse excisional wound splinting model. Shh induced adherens junction disruption through proteolysis by activating matrix metallopeptidases. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 upregulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, skin wound healing assay revealed that Shh-treated mESCs induced angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation involving FAK/Src and Rac1/Cdc42 signaling pathways in mESCs. This article is protected by copyright. All rights reserved.

  6. Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B[a]P-induced mouse skin tumorigenesis.

    PubMed

    Nigam, Nidhi; George, Jasmine; Srivastava, Smita; Roy, Preeti; Bhui, Kulpreet; Singh, Madhulika; Shukla, Yogeshwer

    2010-03-01

    To unravel the molecular mechanisms underlying the chemopreventive potential of [6]-gingerol, a pungent ingredient of ginger rhizome (Zingiber officinale Roscoe, Zingiberaceae), against benzo[a]pyrene (B[a]P)-induced mouse skin tumorigenesis. Topical treatment of [6]-gingerol (2.5 muM/animal) was given to the animals 30 min prior and post to B[a]P (5 mug/animal) for 32 weeks. At the end of the study period, the skin tumors/tissues were dissected out and examined histopathologically. Flow cytometry was employed for cell cycle analysis. Further immunohistochemical localization of p53 and regulation of related apoptogenic proteins were determined by Western blotting. Chemopreventive properties of [6]-gingerol were reflected by delay in onset of tumorigenesis, reduced cumulative number of tumors, and reduction in tumor volume. Cell cycle analysis revealed that the appearance of sub-G1 peak was significantly elevated in [6]-gingerol treated animals with post treatment showing higher efficacy in preventing tumorigenesis induced by B[a]P. Moreover, elevated apoptotic propensity was observed in tumor tissues than the corresponding non-tumor tissues. Western blot analysis also showed the same pattern of chemoprevention with [6]-gingerol treatment increasing the B[a]P suppressed p53 levels, also evident by immunohistochemistry, and Bax while decreasing the expression of Bcl-2 and Survivin. Further, [6]-gingerol treatment resulted in release of Cytochrome c, Caspases activation, increase in apoptotic protease-activating factor-1 (Apaf-1) as mechanism of apoptosis induction. On the basis of the results we conclude that [6]-gingerol possesses apoptotic potential in mouse skin tumors as mechanism of chemoprevention hence deserves further investigation.

  7. Daily intake of Jeju groundwater improves the skin condition of the model mouse for human atopic dermatitis.

    PubMed

    Tanaka, Akane; Jung, Kyungsook; Matsuda, Akira; Jang, Hyosun; Kajiwara, Naoki; Amagai, Yosuke; Oida, Kumiko; Ahn, Ginnae; Ohmori, Keitaro; Kang, Kyung-goo; Matsuda, Hiroshi

    2013-03-01

    Drinking water is an important nutrient for human health. The mineral ingredients included in drinking water may affect the physical condition of people. Various kinds of natural water are in circulation as bottled water in developed countries; however, its influence on clinical conditions of patients with certain diseases has not been fully evaluated. In this study, effects of the natural groundwater from Jeju Island on clinical symptoms and skin barrier function in atopic dermatitis (AD) were evaluated. NC/Tnd mice, a model for human AD, with moderate to severe dermatitis were used. Mice were given different natural groundwater or tap water for 8 weeks from 4 weeks of age. Clinical skin severity scores were recorded every week. Scratching analysis and measurement of transepidermal water loss were performed every other week. The pathological condition of the dorsal skin was evaluated histologically. Real-time polymerase chain reaction analysis was performed for cytokine expression in the affected skin. The epidermal hyperplasia and allergic inflammation were reduced in atopic mice supplied with Jeju groundwater when compared to those supplied with tap water or other kinds of natural groundwater. The increase in scratching behavior with the aggravation of clinical severity of dermatitis was favorably controlled. Moreover, transepidermal water loss that reflects skin barrier function was recovered. The early inflammation and hypersensitivity in the atopic skin was alleviated in mice supplied with Jeju groundwater, suggesting its profitable potential on the daily care of patients with skin troubles including AD. © 2013 Japanese Dermatological Association.

  8. Development and characterization of a mouse with profound biotinidase deficiency: a biotin-responsive neurocutaneous disorder.

    PubMed

    Pindolia, Kirit; Jordan, Megan; Guo, Caiying; Matthews, Nell; Mock, Donald M; Strovel, Erin; Blitzer, Miriam; Wolf, Barry

    2011-02-01

    Biotinidase deficiency is the primary enzymatic defect in biotin-responsive, late-onset multiple carboxylase deficiency. Untreated children with profound biotinidase deficiency usually exhibit neurological symptoms including lethargy, hypotonia, seizures, developmental delay, sensorineural hearing loss and optic atrophy; and cutaneous symptoms including skin rash, conjunctivitis and alopecia. Although the clinical features of the disorder markedly improve or are prevented with biotin supplementation, some symptoms, once they occur, such as developmental delay, hearing loss and optic atrophy, are usually irreversible. To prevent development of symptoms, the disorder is screened for in the newborn period in essentially all states and in many countries. In order to better understand many aspects of the pathophysiology of the disorder, we have developed a transgenic biotinidase-deficient mouse. The mouse has a null mutation that results in no detectable serum biotinidase activity or cross-reacting material to antibody prepared against biotinidase. When fed a biotin-deficient diet these mice develop neurological and cutaneous symptoms, carboxylase deficiency, mild hyperammonemia, and exhibit increased urinary excretion of 3-hydroxyisovaleric acid and biotin and biotin metabolites. The clinical features are reversed with biotin supplementation. This biotinidase-deficient animal can be used to study systematically many aspects of the disorder and the role of biotinidase, biotin and biocytin in normal and in enzyme-deficient states. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Autoinflammatory Skin Disorders: The Inflammasomme in Focus

    PubMed Central

    Gurung, Prajwal; Kanneganti, Thirumala-Devi

    2016-01-01

    Autoinflammatory skin disorders are a group of heterogeneous diseases that include diseases such as cryopyrin-associated periodic syndrome (CAPS) and familial Mediterranean fever (FMF). Therapeutic strategies targeting IL-1 cytokines have proved helpful in ameliorating some of these diseases. While inflammasomes are the major regulators of IL-1 cytokines, inflammasome-independent complexes can also process IL-1 cytokines. Herein, we focus on recent advances in our understanding of how IL-1 cytokines, stemming from inflammasome-dependent and -independent pathways are involved in the regulation of skin conditions. Importantly, we discuss several mouse models of skin inflammation generated to help elucidate the basic cellular and molecular effects and modulation of IL-1 in the skin. Such models offer perspectives on how these signaling pathways could be targeted to improve therapeutic approaches in the treatment of these rare and debilitating inflammatory skin disorders. PMID:27267764

  10. Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds.

    PubMed

    Shao, Pei-Lin; Liao, Jiunn-Der; Wong, Tak-Wah; Wang, Yi-Cheng; Leu, Steve; Yip, Hon-Kan

    2016-01-01

    Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment on wound healing in a laser-induced skin wound mouse model was investigated. A partial thickness wound was created in the back skin of each mouse and then treated with micro-plasma. Non-invasive methods, namely wound closure kinetics, optical coherence tomography (OCT), and laser Doppler scanning, were used to measure the healing efficiency in the wound area. Neo-tissue growth and the expressions of matrix metallopeptidase-3 (MMP-3) and laminin in the wound area were assessed using histological and immunohistochemistry (IHC) analysis. The results show that micro-plasma treatment promoted wound healing. Micro-plasma treatment significantly reduced the wound bed region. The OCT images and histological analysis indicates more pronounced tissue regrowth in the wound bed region after micro-plasma treatment. The laser Doppler images shows that micro-plasma treatment promoted blood flow in the wound bed region. The IHC results show that the level of laminin increased in the wound bed region after micro-plasma treatment, whereas the level of MMP-3 decreased. Based on these results, micro-plasma has potential to be used to promote the healing of skin wounds clinically.

  11. Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds

    PubMed Central

    Shao, Pei-Lin; Liao, Jiunn-Der; Wong, Tak-Wah; Wang, Yi-Cheng; Leu, Steve; Yip, Hon-Kan

    2016-01-01

    Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment on wound healing in a laser-induced skin wound mouse model was investigated. A partial thickness wound was created in the back skin of each mouse and then treated with micro-plasma. Non-invasive methods, namely wound closure kinetics, optical coherence tomography (OCT), and laser Doppler scanning, were used to measure the healing efficiency in the wound area. Neo-tissue growth and the expressions of matrix metallopeptidase-3 (MMP-3) and laminin in the wound area were assessed using histological and immunohistochemistry (IHC) analysis. The results show that micro-plasma treatment promoted wound healing. Micro-plasma treatment significantly reduced the wound bed region. The OCT images and histological analysis indicates more pronounced tissue regrowth in the wound bed region after micro-plasma treatment. The laser Doppler images shows that micro-plasma treatment promoted blood flow in the wound bed region. The IHC results show that the level of laminin increased in the wound bed region after micro-plasma treatment, whereas the level of MMP-3 decreased. Based on these results, micro-plasma has potential to be used to promote the healing of skin wounds clinically. PMID:27248979

  12. Altered procollagen gene expression in mid-gestational mouse excisional wounds.

    PubMed

    Goldberg, Stephanie R; Quirk, Gerald L; Sykes, Virginia W; Kordula, Tomasz; Lanning, David A

    2007-11-01

    Many pathologic conditions are characterized by excessive tissue contraction and scar formation. Previously, we developed a murine model of excisional wound healing in which mid-gestational wounds heal scarlessly compared with late-gestational wounds. We theorized that variations in procollagen gene expression may contribute to the scarless and rapid closure. Time-dated pregnant FVB strain mice underwent laparotomy and hysterotomy on embryonic days 15 (E15) and 18 (E18). Full-thickness, excisional wounds (3 mm) were made on each of 4 fetuses per doe and then harvested at 32, 48, or 72 h. Control tissue consisted of age-matched normal fetal skin. Procollagen types 1alpha1, 1alpha2, and 3 gene expressions were measured by real-time polymerase chain reaction and normalized to glyceraldehyde-3-phosphate dehydrogenase. Trichrome staining was also performed. Procollagen 1alpha1 expression was decreased in E15 wounds at 32 h compared with their normal skin groups. Procollagen types 1alpha2 and 3 expressions were both increased in the E15 groups compared with the E18 groups at 48 h. At 72 h, the E15 wounds had a collagen density similar to the surrounding normal skin while E18 wounds exhibited increased collagen deposition in a disorganized pattern. This study demonstrates that the pattern of gene expression for types 1 and 3 collagen varies between mid- and late-gestational mouse excisional wounds. These alterations in procollagen expression may contribute to a pattern of collagen deposition in the mid-gestational fetuses that is more favorable for scarless healing with less type 1 and more type 3 collagen.

  13. Pharmacological profiling of the TRPV3 channel in recombinant and native assays

    PubMed Central

    Grubisha, Olivera; Mogg, Adrian J; Sorge, Jessica L; Ball, Laura-Jayne; Sanger, Helen; Ruble, Cara L A; Folly, Elizabeth A; Ursu, Daniel; Broad, Lisa M

    2014-01-01

    Background and Purpose Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking. In this study, we developed medium-throughput recombinant and native cellular assays to assess the detailed pharmacological profile of human, rat and mouse TRPV3 channels. Experimental Approach Medium-throughput cellular assays were developed using a Ca2+-sensitive dye and a fluorescent imaging plate reader. Human and rat TRPV3 pharmacology was examined in recombinant cell lines, while the mouse 308 keratinocyte cell line was used to assess endogenous TRPV3 activity. Key Results A recombinant rat TRPV3 cellular assay was successfully developed after solving a discrepancy in the published rat TRPV3 protein sequence. A medium-throughput, native, mouse TRPV3 keratinocyte assay was also developed and confirmed using genetic approaches. Whereas the recombinant human and rat TRPV3 assays exhibited similar agonist and antagonist profiles, the native mouse assay showed important differences, namely, TRPV3 activity was detected only in the presence of potentiator or during agonist synergy. Furthermore, the native assay was more sensitive to block by some antagonists. Conclusions and Implications Our findings demonstrate similarities but also notable differences in TRPV3 pharmacology between recombinant and native systems. These findings offer insights into TRPV3 function and these assays should aid further research towards developing TRPV3 therapies. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:23848361

  14. Characterization of Neurofibromas of the Skin and Spinal Roots in a Mouse Model

    DTIC Science & Technology

    2011-02-01

    renewal program of stem/progenitor cells can cause tumorigenesis. By utilizing genetically engineered mouse models of neurofibromatosis type 1 (NF1...pathetic ganglia and adrenal medulla and died at birth (Gitler et al., 2003). To circumvent early lethality of the Nf1NC mice, we utilized a previously...Supplemental experimental procedures Tissue Processing For histological analysis, we utilized both paraffin sections and frozen sections. For both

  15. Laboratory Aspects of Biological Warfare Agents

    DTIC Science & Technology

    2016-01-01

    Embryonated chicken egg yolk sacs have typically been the method of choice for culture. They are inoculated when the embryos are 5-7 days old. The... chicken or mouse embryo fibroblasts, J774.16 mouse macrophages, L929 murine fibroblasts, HEL (human embryonic lung) or vero cells are more commonly...the family, Poxviridae, is a legacy of the original grouping of viruses associated with diseases that produced poxes in the skin, however, if

  16. Development and Translational Application of a Minimal Physiologically Based Pharmacokinetic Model for a Monoclonal Antibody against Interleukin 23 (IL-23) in IL-23-Induced Psoriasis-Like Mice.

    PubMed

    Chen, Xi; Jiang, Xiling; Doddareddy, Rajitha; Geist, Brian; McIntosh, Thomas; Jusko, William J; Zhou, Honghui; Wang, Weirong

    2018-04-01

    The interleukin (IL)-23/T h 17/IL-17 immune pathway has been identified to play an important role in the pathogenesis of psoriasis. Many therapeutic proteins targeting IL-23 or IL-17 are currently under development for the treatment of psoriasis. In the present study, a mechanistic pharmacokinetics (PK)/pharmacodynamics (PD) study was conducted to assess the target-binding and disposition kinetics of a monoclonal antibody (mAb), CNTO 3723, and its soluble target, mouse IL-23, in an IL-23-induced psoriasis-like mouse model. A minimal physiologically based pharmacokinetic model with target-mediated drug disposition features was developed to quantitatively assess the kinetics and interrelationship between CNTO 3723 and exogenously administered, recombinant mouse IL-23 in both serum and lesional skin site. Furthermore, translational applications of the developed model were evaluated with incorporation of human PK for ustekinumab, an anti-human IL-23/IL-12 mAb developed for treatment of psoriasis, and human disease pathophysiology information in psoriatic patients. The results agreed well with the observed clinical data for ustekinumab. Our work provides an example on how mechanism-based PK/PD modeling can be applied during early drug discovery and how preclinical data can be used for human efficacious dose projection and guide decision making during early clinical development of therapeutic proteins. Copyright © 2018 by The Author(s).

  17. Dermal Collagen and Lipid Deposition Correlate with Tissue Swelling and Hydraulic Conductivity in Murine Primary Lymphedema

    PubMed Central

    Rutkowski, Joseph M.; Markhus, Carl Erik; Gyenge, Christina C.; Alitalo, Kari; Wiig, Helge; Swartz, Melody A.

    2010-01-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling—predominantly collagen and fat deposition—may dictate tissue swelling and govern interstitial transport in lymphedema. PMID:20110415

  18. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema.

    PubMed

    Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A

    2010-03-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.

  19. Suppressive effect of an aqueous extract of Diospyros kaki calyx on dust mite extract/2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions.

    PubMed

    Yu, Ju-Hee; Jin, Meiling; Choi, Young-Ae; Jeong, Na-Hee; Park, Jeong-Sook; Shin, Tae-Yong; Kim, Sang-Hyun

    2017-08-01

    Atopic dermatitis (AD) is a common chronic inflammatory skin disease, affecting 10-20% of individuals worldwide. Therefore, the discovery of drugs for treating AD is an attractive subject and important to human health. Diospyros kaki and Diospyros kaki (D. kaki) folium exert beneficial effects on allergic inflammation. However, the effect of D. kaki calyx on AD remains elusive. The present study evaluated the effects of an aqueous extract of D. kaki calyx (AEDKC) on AD-like skin lesions using mouse and keratinocyte models. We used a mouse AD model by the repeated skin exposure of house dust mite extract [Dermatophagoides farinae extract (DFE)] and 2,4-dinitrochlorobenzene (DNCB) to the ears. In addition, to determine the underlying mechanism of its operation, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)-activated keratinocytes (HaCaT) were used. Oral administration of AEDKC decreased AD-like skin lesions, as demonstrated by the reduced ear thickness, serum immunoglobulin E (IgE), DFE-specific IgE, IgG2a, histamine level and inflammatory cell infiltration. AEDKC inhibited the expression of pro-inflammatory cytokines and a chemokine via downregulation of nuclear factor-κB and signal transducer and activator of transcription 1 in HaCaT cells. On examination of the AD-related factors in vivo and in vitro, it was confirmed that AEDKC decreased AD-like skin lesions. Taken together, the results suggest that AEDKC is a potential drug candidate for the treatment of AD.

  20. Assuring consumer safety without animal testing: a feasibility case study for skin sensitisation.

    PubMed

    Maxwell, Gavin; Aleksic, Maja; Aptula, Aynur; Carmichael, Paul; Fentem, Julia; Gilmour, Nicola; Mackay, Cameron; Pease, Camilla; Pendlington, Ruth; Reynolds, Fiona; Scott, Daniel; Warner, Guy; Westmoreland, Carl

    2008-11-01

    Allergic Contact Dermatitis (ACD; chemical-induced skin sensitisation) represents a key consumer safety endpoint for the cosmetics industry. At present, animal tests (predominantly the mouse Local Lymph Node Assay) are used to generate skin sensitisation hazard data for use in consumer safety risk assessments. An animal testing ban on chemicals to be used in cosmetics will come into effect in the European Union (EU) from March 2009. This animal testing ban is also linked to an EU marketing ban on products containing any ingredients that have been subsequently tested in animals, from March 2009 or March 2013, depending on the toxicological endpoint of concern. Consequently, the testing of cosmetic ingredients in animals for their potential to induce skin sensitisation will be subject to an EU marketing ban, from March 2013 onwards. Our conceptual framework and strategy to deliver a non-animal approach to consumer safety risk assessment can be summarised as an evaluation of new technologies (e.g. 'omics', informatics), leading to the development of new non-animal (in silico and in vitro) predictive models for the generation and interpretation of new forms of hazard characterisation data, followed by the development of new risk assessment approaches to integrate these new forms of data and information in the context of human exposure. Following the principles of the conceptual framework, we have been investigating existing and developing new technologies, models and approaches, in order to explore the feasibility of delivering consumer safety risk assessment decisions in the absence of new animal data. We present here our progress in implementing this conceptual framework, with the skin sensitisation endpoint used as a case study. 2008 FRAME.

  1. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity.

    PubMed

    Gaudenzio, Nicolas; Marichal, Thomas; Galli, Stephen J; Reber, Laurent L

    2018-01-01

    Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo . This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo . Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.

  2. Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin

    PubMed Central

    Cueni, Leah N.; Chen, Lu; Zhang, Hui; Marino, Daniela; Huggenberger, Reto; Alitalo, Annamari; Bianchi, Roberta

    2010-01-01

    Podoplanin is a small transmembrane protein required for development and function of the lymphatic vascular system. To investigate the effects of interfering with its function, we produced an Fc fusion protein of its ectodomain. We found that podoplanin-Fc inhibited several functions of cultured lymphatic endothelial cells and also specifically suppressed lymphatic vessel growth, but not blood vessel growth, in mouse embryoid bodies in vitro and in mouse corneas in vivo. Using a keratin 14 expression cassette, we created transgenic mice that overexpressed podoplanin-Fc in the skin. No obvious outward phenotype was identified in these mice, but surprisingly, podoplanin-Fc—although produced specifically in the skin—entered the blood circulation and induced disseminated intravascular coagulation, characterized by microthrombi in most organs and by thrombocytopenia, occasionally leading to fatal hemorrhage. These findings reveal an important role of podoplanin in lymphatic vessel formation and indicate the potential of podoplanin-Fc as an inhibitor of lymphangiogenesis. These results also demonstrate the ability of podoplanin to induce platelet aggregation in vivo, which likely represents a major function of lymphatic endothelium. Finally, keratin 14 podoplanin-Fc mice represent a novel genetic animal model of disseminated intravascular coagulation. PMID:20716773

  3. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    PubMed

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Long non-coding RNA expression profile in Cdk5-knockdown mouse skin.

    PubMed

    Ji, Kaiyuan; Fan, Ruiwen; Zhang, Junzhen; Yang, Shanshan; Dong, Changsheng

    2018-06-08

    To elucidate the Cdk5 regulatory molecular mechanism in skin, we generated Cdk5-knockdown mice and subjected their skins to lncRNA sequencing. The results showed that there were 4533 novel lncRNAs from 142 lncRNA families. In total, 693 lncRNAs were significantly differentially expressed. Alignment analysis of the lncRNAs in miRBase identified 45 pre-mRNAs. By KEGG PATHWAY Database analysis, we found that lncRNAs (lnc-NONMMUT064276.2, lnc-NONMMUT075728.1, and lnc-NONMMUT039653.2) may regulate pigmentation by regulating target genes. To reveal potential antisense lncRNA-mRNA interactions, we searched all lncRNA-mRNA duplexes using RNAplex, and found 97 lncRNAs interacted with mRNAs. The luciferase assay confirmed that TCONS_00049140 binded to Krt80 by the co-transfection of pVAX1-TCONS_00049140 and pGL0-Krt80 expression plasmids in 293T cell, based on the bioinformatics analysis. Overexpression of TCONS_00049140 in mouse melanocytes down-regulated Krt80 and resulted in the phenotype of increased cell proliferation and increased melanin production. The results suggested that TCONS_00049140 contributed to skin thickening through Krt80. Our findings provide a direction for research of the molecular mechanism of Cdk5 function. Copyright © 2017. Published by Elsevier B.V.

  5. Stem Cell-Associated Marker Expression in Canine Hair Follicles

    PubMed Central

    Gerhards, Nora M.; Sayar, Beyza S.; Origgi, Francesco C.; Galichet, Arnaud; Müller, Eliane J.; Welle, Monika M.; Wiener, Dominique J.

    2016-01-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. PMID:26739040

  6. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    PubMed

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  7. RNA-Seq analysis of Gtf2ird1 knockout epidermal tissue provides potential insights into molecular mechanisms underpinning Williams-Beuren syndrome.

    PubMed

    Corley, Susan M; Canales, Cesar P; Carmona-Mora, Paulina; Mendoza-Reinosa, Veronica; Beverdam, Annemiek; Hardeman, Edna C; Wilkins, Marc R; Palmer, Stephen J

    2016-06-13

    Williams-Beuren Syndrome (WBS) is a genetic disorder associated with multisystemic abnormalities, including craniofacial dysmorphology and cognitive defects. It is caused by a hemizygous microdeletion involving up to 28 genes in chromosome 7q11.23. Genotype/phenotype analysis of atypical microdeletions implicates two evolutionary-related transcription factors, GTF2I and GTF2IRD1, as prime candidates for the cause of the facial dysmorphology. Using a targeted Gtf2ird1 knockout mouse, we employed massively-parallel sequencing of mRNA (RNA-Seq) to understand changes in the transcriptional landscape associated with inactivation of Gtf2ird1 in lip tissue. We found widespread dysregulation of genes including differential expression of 78 transcription factors or coactivators, several involved in organ development including Hey1, Myf6, Myog, Dlx2, Gli1, Gli2, Lhx2, Pou3f3, Sox2, Foxp3. We also found that the absence of GTF2IRD1 is associated with increased expression of genes involved in cellular proliferation, including growth factors consistent with the observed phenotype of extreme thickening of the epidermis. At the same time, there was a decrease in the expression of genes involved in other signalling mechanisms, including the Wnt pathway, indicating dysregulation in the complex networks necessary for epidermal differentiation and facial skin patterning. Several of the differentially expressed genes have known roles in both tissue development and neurological function, such as the transcription factor Lhx2 which regulates several genes involved in both skin and brain development. Gtf2ird1 inactivation results in widespread gene dysregulation, some of which may be due to the secondary consequences of gene regulatory network disruptions involving several transcription factors and signalling molecules. Genes involved in growth factor signalling and cell cycle progression were identified as particularly important for explaining the skin dysmorphology observed in this mouse model. We have noted that a number of the dysregulated genes have known roles in brain development as well as epidermal differentiation and maintenance. Therefore, this study provides clues as to the underlying mechanisms that may be involved in the broader profile of WBS.

  8. A neonatal mouse model for the evaluation of antibodies and vaccines against coxsackievirus A6.

    PubMed

    Yang, Lisheng; Mao, Qunying; Li, Shuxuan; Gao, Fan; Zhao, Huan; Liu, Yajing; Wan, Junkai; Ye, Xiangzhong; Xia, Ningshao; Cheng, Tong; Liang, Zhenglun

    2016-10-01

    Coxsackievirus A6 (CA6) can induce atypical hand, foot, and mouth disease, which is characterized by severe rash, onychomadesis and a higher rate of infection in adults. Increasing epidemiological data indicated that outbreaks of CA6-associated hand, foot, and mouth disease have markedly increased worldwide in recent years. However, the current body of knowledge on the infection, pathogenic mechanism, and immunogenicity of CA6 is still very limited. In this study, we established the first neonatal mouse model for the evaluation of antibodies and vaccines against CA6. The CA6 strain CA6/141 could infect a one-day-old BALB/c mouse through intraperitoneal and intracerebral routes. The infected mice developed clinical symptoms, such as inactivity, wasting, hind-limb paralysis and even death. Pathological examination indicated that CA6 showed special tropism to skeletal muscles and skin, but not to nervous system or cardiac muscles. Infections with CA6 could induce vesicles in the dermis without a rash in mice, and the CA6 antigen was mainly localized in hair follicles. The strong tropism of CA6 to the skin may be related to its severe clinical features in infants. This mouse model was further applied to evaluate the efficacy of a therapeutic antibody and an experimental vaccine against CA6. A potential mAb 1D5 could fully protect mice from a lethal CA6 infection and also showed good therapeutic effects in the CA6-infected mice. In addition, an inactivated CA6 vaccine was evaluated through maternal immunization and showed 100% protection of neonatal mice from lethal CA6 challenge. Collectively, these results indicate that this infection model will be a useful tool in future studies on vaccines and antiviral reagents against CA6. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure

    PubMed Central

    Schulman, Betsy R. Maller; Liang, Xianping; Stahlhut, Carlos; DelConte, Casey; Stefani, Giovanni; Slack, Frank J.

    2010-01-01

    In the nematode Caenorhabditis elegans, the let-7 microRNA (miRNA) controls the timing of key developmental events and terminal differentiation in part by directly regulating lin-41. C. elegans lin-41 mutants display precocious cell cycle exit and terminal differentiation of epidermal skin cells. lin-41 orthologues are found in more complex organisms including both mice and humans, but their roles are not known. We generated Mlin41 mouse mutants to ascertain a functional role for Mlin41. Strong loss of function Mlin41 gene-trap mutants demonstrated a striking neural tube closure defect during development, and embryonic lethality. Like C. elegans lin-41, Mlin41 also appears to be regulated by the let-7 and mir-125 miRNAs. Since Mlin41 is required for neural tube closure and survival it points to human lin-41 (HLIN41/TRIM71) as a potential human development and disease gene. PMID:19098426

  10. Misbehaving macrophages in the pathogenesis of psoriasis

    PubMed Central

    Clark, Rachael A.; Kupper, Thomas S.

    2006-01-01

    Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin — or both. However, these questions have proven difficult to dissect using molecular genetic tools. In the current studies, the authors have used 2 different animal models to address the role of macrophages in disease pathogenesis: Wang et al. use a mouse model in which inflammation is T cell dependent, whereas the model used by Stratis et al. is T cell independent (see the related articles beginning on pages 2105 and 2094, respectively). Strikingly, both groups report an important contribution by macrophages, implying that macrophages can contribute to both epithelial-based and T cell–mediated pathways of inflammation. PMID:16886055

  11. Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis.

    PubMed

    Qi, Cuiling; Lan, Haimei; Ye, Jie; Li, Weidong; Wei, Ping; Yang, Yang; Guo, Simei; Lan, Tian; Li, Jiangchao; Zhang, Qianqian; He, Xiaodong; Wang, Lijing

    2014-07-01

    Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous cell carcinoma, along with loss of basement membrane, by upregulation of MMP2 expression.

  12. Towards low cost photoacoustic Microscopy system for evaluation of skin health

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Fatima, Afreen; Mohammadian, Nafiseh; Bely, Nicholas; Nasiriavanaki, Mohammadreza

    2016-09-01

    Photoacoustic imaging (PAI) involves both optical and ultrasound imaging, owing to this combination the system is capable of generating high resolution images with good penetration depth. With the growing applications of PAI in neurology, vascular biology, dermatology, ophthalmology, tissue engineering, angiogenesis etc., there is a need to make the system more compact, cheap and effective. Therefore we designed an economical and compact version of PAI systems by replacing expensive and sophisticated lasers with a robust pulsed laser diode of 905 nm wavelength. In this study, we determine the feasibility of the Photoacoustic imaging with a very low excitation energy of 0.1uJ in Photoacoustic microscopy. We developed a low cost portable Photoacoustic Imaging including microscopy (both reflection) Phantom study was performed in this configuration and also ex-vivo image was obtained from mouse skin.

  13. Overexpression of Wnt5a in mouse epidermis causes no psoriasis phenotype but an impairment of hair follicle anagen development.

    PubMed

    Zhu, Xuming; Wu, Yumei; Huang, Sixia; Chen, Yingwei; Tao, Yixin; Wang, Yushu; He, Shigang; Shen, Sanbing; Wu, Ji; Guo, Xizhi; Li, Baojie; He, Lin; Ma, Gang

    2014-12-01

    Increased Wnt5a expression has been observed in psoriatic plaques. However, whether Wnt5a overexpression directly causes psoriasis is unknown. In this study, we generated transgenic (TG) mice with epidermal Wnt5a overexpression under the control of the human K14 promoter. The skin of Wnt5a TG mice was not psoriatic, but characterized with normal proliferation and homeostasis of epidermis. Instead, these TG mice displayed impaired hair follicle transition from telogen to anagen, most likely due to impaired canonical Wnt signalling. These results suggest that increased Wnt5a expression alone is inadequate to induce psoriasis in the skin and possible involvement of Wnt5a in hair follicle cycling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Atopic dermatitis induces the expansion of thymus-derived regulatory T cells exhibiting a Th2-like phenotype in mice.

    PubMed

    Moosbrugger-Martinz, Verena; Tripp, Christoph H; Clausen, Björn E; Schmuth, Matthias; Dubrac, Sandrine

    2016-05-01

    Atopic dermatitis (AD) is a widespread inflammatory skin disease with an early onset, characterized by pruritus, eczematous lesions and skin dryness. This chronic relapsing disease is believed to be primarily a result of a defective epidermal barrier function associated with genetic susceptibility, immune hyper-responsiveness of the skin and environmental factors. Although the important role of abnormal immune reactivity in the pathogenesis of AD is widely accepted, the role of regulatory T cells (Tregs) remains elusive. We found that the Treg population is expanded in a mouse model of AD, i.e. mice topically treated with vitamin D3 (VitD). Moreover, mice with AD-like symptoms exhibit increased inducible T-cell costimulator (ICOS)-, cytotoxic T-lymphocyte antigen-4 (CTLA-4)- and Glycoprotein-A repetitions predominant receptor (GARP)-expressing Tregs in skin-draining lymph nodes. Importantly, the differentiation of Tregs into thymus-derived Tregs is favoured in our mouse model of AD. Emigrated skin-derived dendritic cells are required for Treg induction and Langerhans cells are responsible for the biased expansion of thymus-derived Tregs . Intriguingly, thymus-derived Tregs isolated from mice with AD-like symptoms exhibit a Th2 cytokine profile. Thus, AD might favour the expansion of pathogenic Tregs able to produce Th2 cytokines and to promote the disease instead of alleviating symptoms. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors.

    PubMed

    van de Glind, Gerline C; Rebel, Heggert G; Out-Luiting, Jacoba J; Zoutman, Wim; Tensen, Cornelis P; de Gruijl, Frank R

    2016-12-27

    Lgr6+ cells have been identified as a novel class of proliferating (Ki67+) stem cells in mouse epidermis. We investigated their response to UV exposure in Lgr6-EGFP-Ires-CreERT2/R26R-LacZ haired and hairless mice and whether they become initiating cells of UV- or chemically induced skin tumors. UV overexposure erased Lgr6+ cells (EGFP+) from the interfollicular epidermis (IFE), but - as after wounding - they apparently repopulated the IFE from the hair follicles. Under sub-sunburn chronic UV exposure, Lgr6+ cells and their progeny (LacZ+ after pulse of tamoxifen) diminished strongly in the IFE. Although the inter-tumoral IFE clearly showed Lgr6 progeny, none of the UV- or chemically induced tumors (n = 22 and 41, respectively) appeared to be clonal expansions of Lgr6+ stem cells; i.e. no Lgr6+ cells or progeny in the proliferating tumor bulk. In checking for promoter methylation we found it to occur stochastically for the EGFP-Cre cassette. Lgr6 mRNA measured by qPCR was found to be diminished in skin tumors (also in UV tumors from wt type mice). The ratio of Lgr6/Ki67 was significantly reduced, pointing at a loss of Lgr6+ cells from the proliferative pool. Our data show that Lgr6+ cells are not major tumor-initiating cells in skin carcinogenesis.

  16. Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

    PubMed Central

    van de Glind, Gerline C.; Rebel, Heggert G.; Out-Luiting, Jacoba J.; Zoutman, Wim; Tensen, Cornelis P.; de Gruijl, Frank R.

    2016-01-01

    Lgr6+ cells have been identified as a novel class of proliferating (Ki67+) stem cells in mouse epidermis. We investigated their response to UV exposure in Lgr6-EGFP-Ires-CreERT2/R26R-LacZ haired and hairless mice and whether they become initiating cells of UV- or chemically induced skin tumors. UV overexposure erased Lgr6+ cells (EGFP+) from the interfollicular epidermis (IFE), but - as after wounding - they apparently repopulated the IFE from the hair follicles. Under sub-sunburn chronic UV exposure, Lgr6+ cells and their progeny (LacZ+ after pulse of tamoxifen) diminished strongly in the IFE. Although the inter-tumoral IFE clearly showed Lgr6 progeny, none of the UV- or chemically induced tumors (n = 22 and 41, respectively) appeared to be clonal expansions of Lgr6+ stem cells; i.e. no Lgr6+ cells or progeny in the proliferating tumor bulk. In checking for promoter methylation we found it to occur stochastically for the EGFP-Cre cassette. Lgr6 mRNA measured by qPCR was found to be diminished in skin tumors (also in UV tumors from wt type mice). The ratio of Lgr6/Ki67 was significantly reduced, pointing at a loss of Lgr6+ cells from the proliferative pool. Our data show that Lgr6+ cells are not major tumor-initiating cells in skin carcinogenesis. PMID:27880932

  17. Evaluation of Sparfloxacin Distribution by Mass Spectrometry Imaging in a Phototoxicity Model

    NASA Astrophysics Data System (ADS)

    Boudon, Stéphanie Marie; Morandi, Grégory; Prideaux, Brendan; Staab, Dieter; Junker, Ursula; Odermatt, Alex; Stoeckli, Markus; Bauer, Daniel

    2014-10-01

    Mass spectrometry imaging (MSI) was applied to samples from mouse skin and from a human in vitro 3D skin model in order to assess its suitability in the context of photosafety evaluation. MSI proved to be a suitable method for the detection of the model compound sparfloxacin in biological tissues following systemic administration (oral gavage, 100 mg/kg) and subsequent exposure to simulated sunlight. In the human in vitro 3D skin model, a concentration-dependent increase as well as an irradiation-dependent decrease of sparfloxacin was observed. The MSI data on samples from mouse skin showed high signals of sparfloxacin 8 h after dosing. In contrast, animals irradiated with simulated sunlight showed significantly lower signals for sparfloxacin starting already at 1 h postirradiation, with no measurable intensity at the later time points (3 h and 6 h), suggesting a time- and irradiation-dependent degradation of sparfloxacin. The acquisition resolution of 100 μm proved to be adequate for the visualization of the distribution of sparfloxacin in the gross ear tissue samples, but distinct skin compartments were unable to be resolved. The label-free detection of intact sparfloxacin was only the first step in an attempt to gain a deeper understanding of the phototoxic processes. Further work is needed to identify the degradation products of sparfloxacin implicated in the observed inflammatory processes in order to better understand the origin and the mechanism of the phototoxic reaction.

  18. Effective Skin Cancer Treatment by Topical Co-delivery of Curcumin and STAT3 siRNA Using Cationic Liposomes.

    PubMed

    Jose, Anup; Labala, Suman; Ninave, Kunal Manoj; Gade, Sudeep Kumar; Venuganti, Venkata Vamsi Krishna

    2018-01-01

    The aim of the present study was to evaluate the effectiveness of iontophoretic co-delivery of curcumin and anti-STAT3 siRNA using cationic liposomes against skin cancer. Curcumin was encapsulated in DOTAP-based cationic liposomes and then complexed with STAT3 siRNA. This nanocomplex was characterized for the average particle size, zeta-potential, and encapsulation efficiency. The cell viability studies in B16F10 mouse melanoma cells have shown that the co-delivery of curcumin and STAT3 siRNA significantly (p < 0.05) inhibited the cancer cell growth compared with either liposomal curcumin or STAT3 siRNA alone. The curcumin-loaded liposomes were able to penetrate up to a depth of 160 μm inside the skin after iontophoretic (0.47 mA/cm 2 ) application. The in vivo efficacy studies were performed in the mouse model of melanoma skin cancer. Co-administration of the curcumin and STAT3 siRNA using liposomes significantly (p < 0.05) inhibited the tumor progression as measured by tumor volume and tumor weight compared with either liposomal curcumin or STAT3 siRNA alone. Furthermore, the iontophoretic administration of curcumin-loaded liposome-siRNA complex showed similar effectiveness in inhibiting tumor progression and STAT3 protein suppression compared with intratumoral administration. Taken together, cationic liposomes can be utilized for topical iontophoretic co-delivery of small molecule and siRNA for effective treatment of skin diseases.

  19. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis.

    PubMed

    Alitalo, Annamari K; Proulx, Steven T; Karaman, Sinem; Aebischer, David; Martino, Stefania; Jost, Manuela; Schneider, Nicole; Bry, Maija; Detmar, Michael

    2013-07-15

    VEGF-C and VEGF-D were identified as lymphangiogenic growth factors and later shown to promote tumor metastasis, but their effects on carcinogenesis are poorly understood. Here, we have studied the effects of VEGF-C and VEGF-D on tumor development in the murine multistep chemical carcinogenesis model of squamous cell carcinoma by using a soluble VEGF-C/VEGF-D inhibitor. After topical treatment with a tumor initiator and repeated tumor promoter applications, transgenic mice expressing a soluble VEGF-C/VEGF-D receptor (sVEGFR-3) in the skin developed significantly fewer squamous cell tumors with a delayed onset when compared with wild-type mice or mice expressing sVEGFR-3 lacking the ligand-binding site. Epidermal proliferation was reduced in the carcinogen-treated transgenic skin, whereas epidermal keratinocyte proliferation in vitro was not affected by VEGF-C or VEGF-D, indicating indirect effects of sVEGFR-3 expression. Importantly, transgenic mouse skin was less sensitive to tumor promoter-induced inflammation, with reduced angiogenesis and blood vessel leakage. Cutaneous leukocytes, especially macrophages, were reduced in transgenic skin without major changes in macrophage polarization or blood monocyte numbers. Several macrophage-associated cytokines were also reduced in transgenic papillomas, although the dermal macrophages themselves did not express VEGFR-3. These findings indicate that VEGF-C/VEGF-D are involved in shaping the inflammatory tumor microenvironment that regulates early tumor progression. Our results support the use of VEGF-C/VEGF-D-blocking agents not only to inhibit metastatic progression, but also during the early stages of tumor growth. ©2013 AACR.

  20. The Ion Channel TRPA1 Is Required for Chronic Itch

    PubMed Central

    Wilson, Sarah R.; Nelson, Aislyn M.; Batia, Lyn; Morita, Takeshi; Estandian, Daniel; Owens, David M.; Lumpkin, Ellen A.; Bautista, Diana M.

    2013-01-01

    Chronic itch is a debilitating condition that affects one in 10 people. Little is known about the molecules that mediate chronic itch in primary sensory neurons and skin. We demonstrate that the ion channel TRPA1 is required for chronic itch. Using a mouse model of chronic itch, we show that scratching evoked by impaired skin barrier is abolished in TRPA1-deficient animals. This model recapitulates many of the pathophysiological hallmarks of chronic itch that are observed in prevalent human diseases such as atopic dermatitis and psoriasis, including robust scratching, extensive epidermal hyperplasia, and dramatic changes in gene expression in sensory neurons and skin. Remarkably, TRPA1 is required for both transduction of chronic itch signals to the CNS and for the dramatic skin changes triggered by dry-skin-evoked itch and scratching. These data suggest that TRPA1 regulates both itch transduction and pathophysiological changes in the skin that promote chronic itch. PMID:23719797

  1. Local Inflammation Exacerbates the Severity of Staphylococcus aureus Skin Infection

    PubMed Central

    Montgomery, Christopher P.; Daniels, Melvin D.; Zhao, Fan; Spellberg, Brad; Chong, Anita S.; Daum, Robert S.

    2013-01-01

    Staphylococcus aureus is the leading cause of skin infections. In a mouse model of S. aureus skin infection, we found that lesion size did not correlate with bacterial burden. Athymic nude mice had smaller skin lesions that contained lower levels of myeloperoxidase, IL-17A, and CXCL1, compared with wild type mice, although there was no difference in bacterial burden. T cell deficiency did not explain the difference in lesion size, because TCR βδ (-/-) mice did not have smaller lesions, and adoptive transfer of congenic T cells into athymic nude mice prior to infection did not alter lesion size. The differences observed were specific to the skin, because mortality in a pneumonia model was not different between wild type and athymic nude mice. Thus, the clinical severity of S. aureus skin infection is driven by the inflammatory response to the bacteria, rather than bacterial burden, in a T cell independent manner. PMID:23861974

  2. Autophagy as a melanocytic self-defense mechanism.

    PubMed

    Setaluri, Vijayasaradhi

    2015-05-01

    Defects in autophagy have implications for melanocyte survival and manifestations of skin pigmentary disorders. Zhang et al. (2015) show that mouse melanocytes lacking the autophagy protein Atg7 undergo premature senescence in vitro and accumulate products of oxidative damage, despite activation of the redox response. Interestingly, contrary to previous findings, the melanocyte-specific deficiency in autophagy did not cause major defects in melanosome biogenesis, nor did it produce visually striking changes in mouse coat color.

  3. Characterization of the tumor-promoting activity of m-chloroperoxybenzoic acid in SENCAR mouse skin and its inhibition by gallotannin, oligomeric proanthocyanidin, and their monomeric units

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Fatima K. Johnson; Amy W. Davis; Steven W. Newell; Richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellett

    1996-01-01

    m-Chloroperoxybenzoic acid (CPBA). Which induces ornithine decarboxylase activity as much as 12-0- terradecanoyIp horbol-13-acetate (TPA ). was tested for its ability to induce DNA synthesis. bydroperoxide (HPx) production. and tumor promotion in mouse epidermis in vivo. After an early inhibition. CPBA stimulates DNA synthesis. A response which is maintained between 16...

  4. Angiogenic Signaling in Living Breast Tumor Models

    DTIC Science & Technology

    2010-06-01

    harmonic generation imaging of the diseased state osteogenesis imperfecta : experiment and simulation,” Biophys. J. 94(11), 4504–4514 (2008). 3. O...biopsies, mouse models of breast cancer, and dermis from mouse models of Osteogenesis Imperfecta (OIM) [1–5,7]. The F/B ratio revealed the length scale of...interest in discriminating skin with Osteogenesis Imperfecta [2] from normal dermis [2] and SHG F/B ratio measurements have been used to help determine

  5. Prediction of percutaneous absorption in human using three-dimensional human cultured epidermis LabCyte EPI-MODEL.

    PubMed

    Hikima, Tomohiro; Kaneda, Noriaki; Matsuo, Kyouhei; Tojo, Kakuji

    2012-01-01

    The objective of this study is to establish a relationship of the skin penetration parameters between the three-dimensional cultured human epidermis LabCyte EPI-MODEL (LabCyte) and hairless mouse (HLM) skin penetration in vitro and to predict the skin penetration and plasma concentration profile in human. The skin penetration experiments through LabCyte and HLM skin were investigated using 19 drugs that have a different molecular weight and lipophilicity. The penetration flux for LabCyte reached 30 times larger at maximum than that for HLM skin. The human data can be estimated from the in silico approach with the diffusion coefficient (D), the partition coefficient (K) and the skin surface concentration (C) of drugs by assuming the bi-layer skin model for both LabCyte and HLM skin. The human skin penetration of β-estradiol, prednisolone, testosterone and ethynylestradiol was well agreed between the simulated profiles and in vitro experimental data. Plasma concentration profiles of β-estradiol in human were also simulated and well agreed with the clinical data. The present alternative method may decrease human or animal skin experiment for in vitro skin penetration.

  6. Quantitative relationship between the local lymph node assay and human skin sensitization assays.

    PubMed

    Schneider, K; Akkan, Z

    2004-06-01

    The local lymph node assay (LLNA) is a new test method which allows for the quantitative assessment of sensitizing potency in the mouse. Here, we investigate the quantitative correlation between results from the LLNA and two human sensitization tests--specifically, human repeat insult patch tests (HRIPTs) and human maximization tests (HMTs). Data for 57 substances were evaluated, of which 46 showed skin sensitizing properties in human tests, whereas 11 yielded negative results in humans. For better comparability data from mouse and human tests were transformed to applied doses per skin area, which ranged over four orders of magnitude for the substances considered. Regression analysis for the 46 human sensitizing substances revealed a significant positive correlation between the LLNA and human tests. The correlation was better between LLNA and HRIPT data (n=23; r=0.77) than between LLNA and HMT data (n=38; r=0.65). The observed scattering of data points is related to various uncertainties, in part associated with insufficiencies of data from older HMT studies. Predominantly negative results in the LLNA for another 11 substances which showed no skin sensitizing activity in human maximization tests further corroborate the correspondence between LLNA and human tests. Based on this analysis, the LLNA can be considered a reliable basis for relative potency assessments for skin sensitizers. Proposals are made for the regulatory exploitation of the LLNA: four potency groups can be established, and assignment of substances to these groups according to the outcome of the LLNA can be used to characterize skin sensitizing potency in substance-specific assessments. Moreover, based on these potency groups, a more adequate consideration of sensitizing substances in preparations becomes possible. It is proposed to replace the current single concentration limit for skin sensitizers in preparations, which leads to an all or nothing classification of a preparation as sensitizing to skin ("R43") in the European Union, by differentiated concentration limits derived from the limits for the four potency groups.

  7. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin.

    PubMed

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2'-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Cyanidin-3-Glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signalling pathways in SKH-1 hairless mice skin

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2015-01-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-Glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. PMID:25062774

  9. Controlled insertional mutagenesis using a LINE-1 (ORFeus) gene-trap mouse model.

    PubMed

    O'Donnell, Kathryn A; An, Wenfeng; Schrum, Christina T; Wheelan, Sarah J; Boeke, Jef D

    2013-07-16

    A codon-optimized mouse LINE-1 element, ORFeus, exhibits dramatically higher retrotransposition frequencies compared with its native long interspersed element 1 counterpart. To establish a retrotransposon-mediated mouse model with regulatable and potent mutagenic capabilities, we generated a tetracycline (tet)-regulated ORFeus element harboring a gene-trap cassette. Here, we show that mice expressing tet-ORFeus broadly exhibit robust retrotransposition in somatic tissues when treated with doxycycline. Consistent with a significant mutagenic burden, we observed a reduced number of double transgenic animals when treated with high-level doxycycline during embryogenesis. Transgene induction in skin resulted in a white spotting phenotype due to somatic ORFeus-mediated mutations that likely disrupt melanocyte development. The data suggest a high level of transposition in melanocyte precursors and consequent mutation of genes important for melanoblast proliferation, differentiation, or migration. These findings reveal the utility of a retrotransposon-based mutagenesis system as an alternative to existing DNA transposon systems. Moreover, breeding these mice to different tet-transactivator/reversible tet-transactivator lines supports broad functionality of tet-ORFeus because of the potential for dose-dependent, tissue-specific, and temporal-specific mutagenesis.

  10. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    NASA Astrophysics Data System (ADS)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  11. Autoimmune and infectious skin diseases that target desmogleins

    PubMed Central

    AMAGAI, Masayuki

    2010-01-01

    Desmosomes are intercellular adhesive junctions of epithelial cells that contain two major transmembrane components, the desmogleins (Dsg) and desmocollins (Dsc), which are cadherin-type cell–cell adhesion molecules and are anchored to intermediate filaments of keratin through interactions with plakoglobin and desmoplakin. Desmosomes play an important role in maintaining the proper structure and barrier function of the epidermis and mucous epithelia. Four Dsg isoforms have been identified to date, Dsg1–Dsg4, and are involved in several skin and heart diseases. Dsg1 and Dsg3 are the two major Dsg isoforms in the skin and mucous membranes, and are targeted by IgG autoantibodies in pemphigus, an autoimmune disease of the skin and mucous membranes. Dsg1 is also targeted by exfoliative toxin (ET) released by Staphylococcus aureus in the infectious skin diseases bullous impetigo and staphylococcal scalded skin syndrome (SSSS). ET is a unique serine protease that shows lock and key specificity to Dsg1. Dsg2 is expressed in all tissues possessing desmosomes, including simple epithelia and myocardia, and mutations in this gene are responsible for arrhythmogenic right ventricular cardiomyopathy/dysplasia. Dsg4 plays an important adhesive role mainly in hair follicles, and Dsg4 mutations cause abnormal hair development. Recently, an active disease model for pemphigus was generated by a unique approach using autoantigen-deficient mice that do not acquire tolerance against the defective autoantigen. Adoptive transfer of Dsg3−/− lymphocytes into mice expressing Dsg3 induces stable anti-Dsg3 IgG production with development of the pemphigus phenotype. This mouse model is a valuable tool with which to investigate immunological mechanisms of harmful IgG autoantibody production in pemphigus. Further investigation of desmoglein molecules will continue to provide insight into the unsolved pathophysiological mechanisms of diseases and aid in the development of novel therapeutic strategies with minimal side effects. PMID:20467217

  12. Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters.

    PubMed

    Fujiki, H; Suganuma, M; Yoshizawa, S; Kanazawa, H; Sugimura, T; Manam, S; Kahn, S M; Jiang, W; Hoshina, S; Weinstein, I B

    1989-01-01

    Three okadaic acid class tumor promoters, okadaic acid, dinophysistoxin-1, and calyculin A, have potent tumor-promoting activity in two-stage carcinogenesis experiments on mouse skin. DNA isolated from tumors induced by 7,12-dimethylbenz[a]anthracene (DMBA) and each of these tumor promoters revealed the same mutation at the second nucleotide of codon 61 (CAA----CTA) in the c-Ha-ras gene, determined by the polymerase chain reaction procedure and DNA sequencing. Three potent 12-O-tetradecanoylphorbol-13-acetate (TPA)-type tumor promoters, TPA, teleocidin, and aplysiatoxin, showed the same effects. These results provide strong evidence that this mutation in the c-Ha-ras gene is due to a direct effect of DMBA rather than a selective effect of specific tumor promoters.

  13. Ionizing Radiation Affects Gene Expression in Mouse Skin and Bone

    NASA Technical Reports Server (NTRS)

    Terada, Masahiro; Tahimic, Candice; Sowa, Marianne B.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Alwood, Joshua; Globus, Ruth K.

    2017-01-01

    Future long-duration space exploration beyond low earth orbit will increase human exposure to space radiation and microgravity conditions as well as associated risks to skeletal health. In animal studies, radiation exposure (greater than 1 Gy) is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Definitive measurements and detection of bone loss typically require large and specialized equipment which can make their application to long duration space missions logistically challenging. Towards the goal of developing non-invasive and less complicated monitoring methods to predict astronauts' health during spaceflight, we examined whether radiation induced gene expression changes in skin may be predictive of the responses of skeletal tissue to radiation exposure. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR) after exposure to total body irradiation (IR). To investigate the effects of irradiation on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated), and IR (0.5 Gy 56Fe 600 MeV/n and 0.5 Gy 1H 150 MeV/n), euthanized at one and 11 days post-irradiation (IR). To determine the extent of bone loss, tibiae were harvested and cancellous microarchitecture in the proximal tibia quantified ex vivo using microcomputed tomography (microCT). Statistical analysis was performed using Student's t-test. At one day post-IR, expression of FGF18 in skin was significantly greater (3.8X) than sham-irradiated controls, but did not differ at 11 days post IR. Expression levels of other genes associated with antioxidant response (Nfe2l2, FoxO3 and Sod1) and the cell cycle (Trp53, Cdkn1a, Gadd45g) did not significantly differ between the control and IR groups at either time point. Radiation exposure resulted in a 27.0% increase in FGF18-positive hair follicles at one day post-IR and returned to basal levels at 11 days post-IR. A similar trend was observed from FGF18 gene expression analysis of skin. In bone (femora), there was an increase in the expression of the pro-osteoclastogenic cytokine, MCP-1, one day after IR compared to non-irradiated controls. FGF18 expression in skin and MCP- 1 expression in bone were found to be positively correlated (P less than 0.002, r=0.8779). Further, microcomputed tomography analysis of tibia from these animals showed reduced cancellous bone volume (-9.9%) at 11 days post- IR. These results suggest that measurements of early radiation induced changes in FGF18 gene expression in skin may have value for predicting subsequent loss of cancellous bone mass. Further research may lead to the development of a relatively simple diagnostic tool for bone loss, with the advantage that hair follicles and skin are relatively easy to acquire from human subjects.

  14. Dietary glucosylceramide enhances tight junction function in skin epidermis via induction of claudin-1.

    PubMed

    Kawada, Chinatsu; Hasegawa, Tatsuya; Watanabe, Mutsuto; Nomura, Yoshihiro

    2013-01-01

    Dietary glucosylceramide increased the expression of claudin-1 in UVB-irradiated mouse epidermis. Sphingosine and phytosphingosine, metabolites of glucosylceramide, increased trans-epithelial electrical resistance, and phytosphingosine increased claudin-1 mRNA expression in cultured keratinocytes. Our results indicate that the skin barrier improvement induced by dietary glucosylceramide might be due to enhancement of tight junction function, mediated by increased expression of claudin-1 induced by sphingoid metabolites.

  15. BMP signaling in the development of the mouse esophagus and forestomach

    PubMed Central

    Rodriguez, Pavel; Da Silva, Susana; Oxburgh, Leif; Wang, Fan; Hogan, Brigid L. M.; Que, Jianwen

    2010-01-01

    The stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26CAG-loxpstoploxp-caBmprIa) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1aflox/flox embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach. PMID:21068065

  16. Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis.

    PubMed

    Lei, Ling; Zhao, Cheng; Qin, Fang; He, Zhi-Yi; Wang, Xu; Zhong, Xiao-Ning

    2016-01-01

    Systemic sclerosis (SSc) is characterised by fibrosis of the skin and internal organs, such as the lungs. Enhanced Th17 responses are associated with skin fibrosis in patients with SSc, however, whether they are associated with lung fibrosis has not been clarified. This study aimed to investigate the potential association of Th17 responses with the skin and pulmonary fibrosis as well as the potential mechanisms in a mouse bleomycin (BLM) model of SSc. BALB/c mice were injected subcutaneously with phosphate buffered saline (PBS) (control) or BLM for 28 days and the skin and pulmonary inflammation and fibrosis were characterized by histology. The percentages of circulating, skin and pulmonary infiltrating Th17 cells and the contents of collagen in mice were analysed. The levels of RORγt, IL-17A, IL-6 and TGF-β1 mRNA transcripts in the skin and lungs were determined by quantitative RTPCR and the levels of serum IL-17A, IL-6 and TGF-β1 were determined by ELISA. Furthermore, the effect of rIL-17A on the proliferation of pulmonary fibroblasts and their cytokine expression was analysed. The potential association of Th17 responses with the severity of skin and lung fibrosis was analysed. In comparison with the control mice, significantly increased skin and pulmonary inflammation and fibrosis and higher levels of hydroxyproline were detected in the BLM mice. Significantly higher frequency of circulating, skin and lung infiltrating Th17 cells and higher levels of serum, skin and lung IL-17A, TGF-β1, IL-6 and RORγt were detected in the BLM mice. The concentrations of serum IL-17A were correlated positively with the percentages of Th17 cells and the contents of skin hydroxyproline in the BLM mice. The levels of IL-17A expression were positively correlated with the skin and lung inflammatory scores as well as the skin fibrosis in the BLM mice. In addition, IL-17A significantly enhanced pulmonary fibroblast proliferation and their type I collagen, TGF-β and IL-6 expression in vitro, which were attenuated by treatment with anti-IL-17A. Our results indicate that Th17 cells participate in the pathogenesis of skin and lung fibrosis by enhancing fibroblast proliferation and cytokine production in a mouse BLM model of SSc.

  17. Allergen-induced dermatitis causes alterations in cutaneous retinoid-mediated signaling in mice.

    PubMed

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases.

  18. Allergen-Induced Dermatitis Causes Alterations in Cutaneous Retinoid-Mediated Signaling in Mice

    PubMed Central

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Dubrac, Sandrine; Rühl, Ralph

    2013-01-01

    Nuclear receptor-mediated signaling via RARs and PPARδ is involved in the regulation of skin homeostasis. Moreover, activation of both RAR and PPARδ was shown to alter skin inflammation. Endogenous all-trans retinoic acid (ATRA) can activate both receptors depending on specific transport proteins: Fabp5 initiates PPARδ signaling whereas Crabp2 promotes RAR signaling. Repetitive topical applications of ovalbumin (OVA) in combination with intraperitoneal injections of OVA or only intraperitoneal OVA applications were used to induce allergic dermatitis. In our mouse model, expression of IL-4, and Hbegf increased whereas expression of involucrin, Abca12 and Spink5 decreased in inflamed skin, demonstrating altered immune response and epidermal barrier homeostasis. Comprehensive gene expression analysis showed alterations of the cutaneous retinoid metabolism and retinoid-mediated signaling in allergic skin immune response. Notably, ATRA synthesis was increased as indicated by the elevated expression of retinaldehyde dehydrogenases and increased levels of ATRA. Consequently, the expression pattern of genes downstream to RAR was altered. Furthermore, the increased ratio of Fabp5 vs. Crabp2 may indicate an up-regulation of the PPARδ pathway in allergen-induced dermatitis in addition to the altered RAR signaling. Thus, our findings suggest that ATRA levels, RAR-mediated signaling and signaling involved in PPARδ pathways are mainly increased in allergen-induced dermatitis and may contribute to the development and/or maintenance of allergic skin diseases. PMID:23977003

  19. TRPA1 and CGRP antagonists counteract vesicant-induced skin injury and inflammation.

    PubMed

    Achanta, Satyanarayana; Chintagari, Narendranath Reddy; Brackmann, Marian; Balakrishna, Shrilatha; Jordt, Sven-Eric

    2018-09-01

    The skin is highly sensitive to the chemical warfare agent in mustard gas, sulfur mustard (SM) that initiates a delayed injury response characterized by erythema, inflammation and severe vesication (blistering). Although SM poses a continuing threat, used as recently as in the Syrian conflict, no mechanism-based antidotes against SM are available. Recent studies demonstrated that Transient Receptor Potential Ankyrin 1 (TRPA1), a chemosensory cation channel in sensory nerves innervating the skin, is activated by SM and 2-chloroethyl ethyl sulfide (CEES), an SM analog, in vitro, suggesting it may promote vesicant injury. Here, we investigated the effects of TRPA1 inhibitors, and an inhibitor of Calcitonin Gene Related Peptide (CGRP), a neurogenic inflammatory peptide released upon TRPA1 activation, in a CEES-induced mouse ear vesicant model (CEES-MEVM). TRPA1 inhibitors (HC-030031 and A-967079) and a CGRP inhibitor (MK-8825) reduced skin edema, pro-inflammatory cytokines (IL-1β, CXCL1/KC), MMP-9, a protease implicated in skin damage, and improved histopathological outcomes. These findings suggest that TRPA1 and neurogenic inflammation contribute to the deleterious effects of vesicants in vivo, activated either directly by alkylation, or indirectly, by reactive intermediates or pro-inflammatory mediators. TRPA1 and CGRP inhibitors represent new leads that could be considered for validation and further development in other vesicant injury models. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Chronic centrosome amplification without tumorigenesis

    PubMed Central

    Vitre, Benjamin; Holland, Andrew J.; Kulukian, Anita; Shoshani, Ofer; Hirai, Maretoshi; Wang, Yin; Maldonado, Marcus; Cho, Thomas; Boubaker, Jihane; Swing, Deborah A.; Tessarollo, Lino; Evans, Sylvia M.; Fuchs, Elaine; Cleveland, Don W.

    2015-01-01

    Centrosomes are microtubule-organizing centers that facilitate bipolar mitotic spindle assembly and chromosome segregation. Recognizing that centrosome amplification is a common feature of aneuploid cancer cells, we tested whether supernumerary centrosomes are sufficient to drive tumor development. To do this, we constructed and analyzed mice in which centrosome amplification can be induced by a Cre-recombinase–mediated increase in expression of Polo-like kinase 4 (Plk4). Elevated Plk4 in mouse fibroblasts produced supernumerary centrosomes and enhanced the expected mitotic errors, but proliferation continued only after inactivation of the p53 tumor suppressor. Increasing Plk4 levels in mice with functional p53 produced centrosome amplification in liver and skin, but this did not promote spontaneous tumor development in these tissues or enhance the growth of chemically induced skin tumors. In the absence of p53, Plk4 overexpression generated widespread centrosome amplification, but did not drive additional tumors or affect development of the fatal thymic lymphomas that arise in animals lacking p53. We conclude that, independent of p53 status, supernumerary centrosomes are not sufficient to drive tumor formation. PMID:26578792

Top