Sample records for developing murine hippocampus

  1. In vivo silencing of alpha-synuclein using naked siRNA

    PubMed Central

    Lewis, Jada; Melrose, Heather; Bumcrot, David; Hope, Andrew; Zehr, Cynthia; Lincoln, Sarah; Braithwaite, Adam; He, Zhen; Ogholikhan, Sina; Hinkle, Kelly; Kent, Caroline; Toudjarska, Ivanka; Charisse, Klaus; Braich, Ravi; Pandey, Rajendra K; Heckman, Michael; Maraganore, Demetrius M; Crook, Julia; Farrer, Matthew J

    2008-01-01

    Background Overexpression of α-synuclein (SNCA) in families with multiplication mutations causes parkinsonism and subsequent dementia, characterized by diffuse Lewy Body disease post-mortem. Genetic variability in SNCA contributes to risk of idiopathic Parkinson's disease (PD), possibly as a result of overexpression. SNCA downregulation is therefore a valid therapeutic target for PD. Results We have identified human and murine-specific siRNA molecules which reduce SNCA in vitro. As a proof of concept, we demonstrate that direct infusion of chemically modified (naked), murine-specific siRNA into the hippocampus significantly reduces SNCA levels. Reduction of SNCA in the hippocampus and cortex persists for a minimum of 1 week post-infusion with recovery nearing control levels by 3 weeks post-infusion. Conclusion We have developed naked gene-specific siRNAs that silence expression of SNCA in vivo. This approach may prove beneficial toward our understanding of the endogenous functional equilibrium of SNCA, its role in disease, and eventually as a therapeutic strategy for α-synucleinopathies resulting from SNCA overexpression. PMID:18976489

  2. Developmental cigarette smoke exposure II: Hippocampus proteome and metabolome profiles in adult offspring.

    PubMed

    Neal, Rachel E; Jagadapillai, Rekha; Chen, Jing; Webb, Cindy; Stocke, Kendall; Greene, Robert M; Pisano, M Michele

    2016-10-01

    Exposure to cigarette smoke during development is linked to neurodevelopmental delays and cognitive impairment including impulsivity, attention deficit disorder, and lower IQ. Utilizing a murine experimental model of "active" inhalation exposure to cigarette smoke spanning the entirety of gestation and through human third trimester equivalent hippocampal development [gestation day 1 (GD1) through postnatal day 21 (PD21)], we examined hippocampus proteome and metabolome alterations present at a time during which developmental cigarette smoke exposure (CSE)-induced behavioral and cognitive impairments are evident in adult animals from this model system. At six month of age, carbohydrate metabolism and lipid content in the hippocampus of adult offspring remained impacted by prior exposure to cigarette smoke during the critical period of hippocampal ontogenesis indicating limited glycolysis. These findings indicate developmental CSE-induced systemic glucose availability may limit both organism growth and developmental trajectory, including the capacity for learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cannabidiol increases survival and promotes rescue of cognitive function in a murine model of cerebral malaria.

    PubMed

    Campos, A C; Brant, F; Miranda, A S; Machado, F S; Teixeira, A L

    2015-03-19

    Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection that might cause permanent neurological deficits. Cannabidiol (CBD) is a nonpsychotomimetic compound of Cannabis sativa with neuroprotective properties. In the present work, we evaluated the effects of CBD in a murine model of CM. Female mice were infected with Plasmodium berghei ANKA (PbA) and treated with CBD (30mg/kg/day - 3 or 7days i.p.) or vehicle. On 5th day-post-infection (dpi), at the peak of the disease), animals were treated with single or repeated doses of Artesunate, an antimalarial drug. All groups were tested for memory impairment (Novel Object Recognition or Morris Water Maze) and anxiety-like behaviors (Open field or elevated plus maze test) in different stages of the disease (at the peak or after the complete clearance of the disease). Th1/Th2 cytokines and neurotrophins (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) were measured in the prefrontal cortex and hippocampus of experimental groups. PbA-infected mice displayed memory deficits and exhibited increase in anxiety-like behaviors on the 5dpi or after the clearance of the parasitemia, effects prevented by CBD treatment. On 5dpi, TNF-α and IL-6 increased in the hippocampus, while only IL-6 increased in the prefrontal cortex. CBD treatment resulted in an increase in BDNF expression in the hippocampus and decreased levels of proinflammatory cytokines in the hippocampus (TNF-α) and prefrontal cortex (IL-6). Our results indicate that CBD exhibits neuroprotective effects in CM model and might be useful as an adjunctive therapy to prevent neurological symptoms following this disease. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring.

    PubMed

    Bahous, Renata H; Jadavji, Nafisa M; Deng, Liyuan; Cosín-Tomás, Marta; Lu, Jessica; Malysheva, Olga; Leung, Kit-Yi; Ho, Ming-Kai; Pallàs, Mercè; Kaliman, Perla; Greene, Nicholas D E; Bedell, Barry J; Caudill, Marie A; Rozen, Rima

    2017-03-01

    Methylenetetrahydrofolate reductase (MTHFR) generates methyltetrahydrofolate for methylation reactions. Severe MTHFR deficiency results in homocystinuria and neurologic impairment. Mild MTHFR deficiency (677C > T polymorphism) increases risk for complex traits, including neuropsychiatric disorders. Although low dietary folate impacts brain development, recent concerns have focused on high folate intake following food fortification and increased vitamin use. Our goal was to determine whether high dietary folate during pregnancy affects brain development in murine offspring. Female mice were placed on control diet (CD) or folic acid-supplemented diet (FASD) throughout mating, pregnancy and lactation. Three-week-old male pups were evaluated for motor and cognitive function. Tissues from E17.5 embryos, pups and dams were collected for choline/methyl metabolite measurements, immunoblotting or gene expression of relevant enzymes. Brains were examined for morphology of hippocampus and cortex. Pups of FASD mothers displayed short-term memory impairment, decreased hippocampal size and decreased thickness of the dentate gyrus. MTHFR protein levels were reduced in FASD pup livers, with lower concentrations of phosphocholine and glycerophosphocholine in liver and hippocampus, respectively. FASD pup brains showed evidence of altered acetylcholine availability and Dnmt3a mRNA was reduced in cortex and hippocampus. E17.5 embryos and placentas from FASD dams were smaller. MTHFR protein and mRNA were reduced in embryonic liver, with lower concentrations of choline, betaine and phosphocholine. Embryonic brain displayed altered development of cortical layers. In summary, high folate intake during pregnancy leads to pseudo-MTHFR deficiency, disturbed choline/methyl metabolism, embryonic growth delay and memory impairment in offspring. These findings highlight the unintended negative consequences of supplemental folic acid. © The Author 2017. Published by Oxford University Press.

  5. An electron spin resonance study for real-time detection of ascorbyl free radicals after addition of dimethyl sulfoxide in murine hippocampus or plasma during kainic acid-induced seizures.

    PubMed

    Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao

    2010-07-01

    Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.

  6. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.

    PubMed

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression.

  7. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

    PubMed Central

    Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23%) and dentate gyrus (−48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  8. Hypocellularity in the Murine Model for Down Syndrome Ts65Dn Is Not Affected by Adult Neurogenesis

    PubMed Central

    López-Hidalgo, Rosa; Ballestín, Raul; Vega, Jessica; Blasco-Ibáñez, José M.; Crespo, Carlos; Gilabert-Juan, Javier; Nácher, Juan; Varea, Emilio

    2016-01-01

    Down syndrome (DS) is caused by the presence of an extra copy of the chromosome 21 and it is the most common aneuploidy producing intellectual disability. Neural mechanisms underlying this alteration may include defects in the formation of neuronal networks, information processing and brain plasticity. The murine model for DS, Ts65Dn, presents reduced adult neurogenesis. This reduction has been suggested to underlie the hypocellularity of the hippocampus as well as the deficit in olfactory learning in the Ts65Dn mice. Similar alterations have also been observed in individuals with DS. To determine whether the impairment in adult neurogenesis is, in fact, responsible for the hypocellularity in the hippocampus and physiology of the olfactory bulb, we have analyzed cell proliferation and neuronal maturation in the two major adult neurogenic niches in the Ts656Dn mice: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ). Additionally, we carried out a study to determine the survival rate and phenotypic fate of newly generated cells in both regions, injecting 5′BrdU and sacrificing the mice 21 days later, and analyzing the number and phenotype of the remaining 5′BrdU-positive cells. We observed a reduction in the number of proliferating (Ki67 positive) cells and immature (doublecortin positive) neurons in the subgranular and SVZ of Ts65Dn mice, but we did not observe changes in the number of surviving cells or in their phenotype. These data correlated with a lower number of apoptotic cells (cleaved caspase 3 positive) in Ts65Dn. We conclude that although adult Ts65Dn mice have a lower number of proliferating cells, it is compensated by a lower level of cell death. This higher survival rate in Ts65Dn produces a final number of mature cells similar to controls. Therefore, the reduction of adult neurogenesis cannot be held responsible for the neuronal hypocellularity in the hippocampus or for the olfactory learning deficit of Ts65Dn mice. PMID:26973453

  9. Pretreatment with β-adrenergic receptor agonists facilitates induction of LTP and sharp wave ripple complexes in rodent hippocampus.

    PubMed

    Ul Haq, Rizwan; Anderson, Marlene; Liotta, Agustin; Shafiq, Maria; Sherkheli, Muhammad Azhar; Heinemann, Uwe

    2016-12-01

    Norepinephrine, is involved in the enhancement of learning and memory formation by regulating synaptic mechanisms through its ability to activate pre- and post-synaptic adrenergic receptors. Here we show that β-agonists of norepinephrine facilitate the induction of both associational LTP and sharp wave ripples (SPW-Rs) in acute slices of rat hippocampus in area CA3. Surprisingly, this facilitating effect persists when slices are only pretreated with β-receptor agonists followed by wash out and application of the unspecific β-adrenoreceptor (βAR) antagonist propranolol. During application of βAR agonists repeated stimulation resulted in facilitated induction of SPW-Rs. Since SPW-Rs are thought to be involved in memory replay we studied the effects of βAR-agonists on spontaneous SPW-Rs in murine hippocampus and found that amplitude and incidence of SPW-Rs increased. These effects involve cyclic-AMP and the activation of protein kinase A and suggest a supportive role in memory consolidation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Early effects of 16O radiation on neuronal morphology and cognition in a murine model

    NASA Astrophysics Data System (ADS)

    Carr, Hannah; Alexander, Tyler C.; Groves, Thomas; Kiffer, Frederico; Wang, Jing; Price, Elvin; Boerma, Marjan; Allen, Antiño R.

    2018-05-01

    Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.

  11. A loss of function allele for murine Staufen1 leads to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis

    PubMed Central

    Vessey, John P.; Macchi, Paolo; Stein, Joel M.; Mikl, Martin; Hawker, Kelvin N.; Vogelsang, Petra; Wieczorek, Krzysztof; Vendra, Georgia; Riefler, Julia; Tübing, Fabian; Aparicio, Samuel A. J.; Abel, Ted; Kiebler, Michael A.

    2008-01-01

    The dsRNA-binding protein Staufen was the first RNA-binding protein proven to play a role in RNA localization in Drosophila. A mammalian homolog, Staufen1 (Stau1), has been implicated in dendritic RNA localization in neurons, translational control, and mRNA decay. However, the precise mechanisms by which it fulfills these specific roles are only partially understood. To determine its physiological functions, the murine Stau1 gene was disrupted by homologous recombination. Homozygous stau1tm1Apa mutant mice express a truncated Stau1 protein lacking the functional RNA-binding domain 3. The level of the truncated protein is significantly reduced. Cultured hippocampal neurons derived from stau1tm1Apa homozygous mice display deficits in dendritic delivery of Stau1-EYFP and β-actin mRNA-containing ribonucleoprotein particles (RNPs). Furthermore, these neurons have a significantly reduced dendritic tree and develop fewer synapses. Homozygous stau1tm1Apa mutant mice are viable and show no obvious deficits in development, fertility, health, overall brain morphology, and a variety of behavioral assays, e.g., hippocampus-dependent learning. However, we did detect deficits in locomotor activity. Our data suggest that Stau1 is crucial for synapse development in vitro but not critical for normal behavioral function. PMID:18922781

  12. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    PubMed

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  13. Chronic infection with Mycobacterium lepraemurium induces alterations in the hippocampus associated with memory loss.

    PubMed

    Becerril-Villanueva, Enrique; Ponce-Regalado, María Dolores; Pérez-Sánchez, Gilberto; Salazar-Juárez, Alberto; Arreola, Rodrigo; Álvarez-Sánchez, María Elizbeth; Juárez-Ortega, Mario; Falfán-Valencia, Ramcés; Hernández-Pando, Rogelio; Morales-Montor, Jorge; Pavón, Lenin; Rojas-Espinosa, Oscar

    2018-06-13

    Murine leprosy, caused by Mycobacterium lepraemurium (MLM), is a chronic disease that closely resembles human leprosy. Even though this disease does not directly involve the nervous system, we investigated a possible effect on working memory during this chronic infection in Balb/c mice. We evaluated alterations in the dorsal region of the hippocampus and measured peripheral levels of cytokines at 40, 80, and 120 days post-infection. To evaluate working memory, we used the T-maze while a morphometric analysis was conducted in the hippocampus regions CA1, CA2, CA3, and dentate gyrus (DG) to measure morphological changes. In addition, a neurochemical analysis was performed by HPLC. Our results show that, at 40 days post-infection, there was an increase in the bacillary load in the liver and spleen associated to increased levels of IL-4, working memory deterioration, and changes in hippocampal morphology, including degeneration in the four subregions analyzed. Also, we found a decrease in neurotransmitter levels at the same time of infection. Although MLM does not directly infect the nervous system, these findings suggest a possible functional link between the immune system and the central nervous system.

  14. Characterization of Panglial Gap Junction Networks in the Thalamus, Neocortex, and Hippocampus Reveals a Unique Population of Glial Cells

    PubMed Central

    Griemsmann, Stephanie; Höft, Simon P.; Bedner, Peter; Zhang, Jiong; von Staden, Elena; Beinhauer, Anna; Degen, Joachim; Dublin, Pavel; Cope, David W.; Richter, Nadine; Crunelli, Vincenzo; Jabs, Ronald; Willecke, Klaus; Theis, Martin; Seifert, Gerald; Kettenmann, Helmut; Steinhäuser, Christian

    2015-01-01

    The thalamus plays important roles as a relay station for sensory information in the central nervous system (CNS). Although thalamic glial cells participate in this activity, little is known about their properties. In this study, we characterized the formation of coupled networks between astrocytes and oligodendrocytes in the murine ventrobasal thalamus and compared these properties with those in the hippocampus and cortex. Biocytin filling of individual astrocytes or oligodendrocytes revealed large panglial networks in all 3 gray matter regions. Combined analyses of mice with cell type-specific deletion of connexins (Cxs), semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and western blotting showed that Cx30 is the dominant astrocytic Cx in the thalamus. Many thalamic astrocytes even lack expression of Cx43, while in the hippocampus astrocytic coupling is dominated by Cx43. Deletion of Cx30 and Cx47 led to complete loss of panglial coupling, which was restored when one allele of either Cxs was present. Immunohistochemistry revealed a unique antigen profile of thalamic glia and identified an intermediate cell type expressing both Olig2 and Cx43. Our findings further the emerging concept of glial heterogeneity across brain regions. PMID:25037920

  15. The influence of propofol anesthesia exposure on nonaversive memory retrieval and expression of molecules involved in memory process in the dorsal hippocampus in peripubertal rats.

    PubMed

    Pavković, Željko; Milanović, Desanka; Ruždijić, Sabera; Kanazir, Selma; Pešić, Vesna

    2018-06-01

    The effects of anesthetic drugs on postoperative cognitive function in children are not well defined and have not been experimentally addressed. The present study aimed to examine the influence of propofol anesthesia exposure on nonaversive hippocampus-dependent learning and biochemical changes involved in memory process in the dorsal hippocampus, in peripubertal rats as the rodent model of periadolescence. The intersession spatial habituation and the novel object recognition tasks were used to assess spatial and nonspatial, nonaversive hippocampus-dependent learning. The exposure to anesthesia was performed after comparably long acquisition phases in both tasks. Behavioral testing lasted for 2 consecutive days (24-hour retention period). Changes in the expression of molecules involved in memory retrieval/reconsolidation were examined in the dorsal hippocampus by Western blot and immunohistochemistry, at the time of behavioral testing. Exposure to propofol anesthesia resulted in inappropriate assessment of spatial novelty at the beginning of the test session and affected continuation of acquisition in the spatial habituation test. The treatment did not affect recognition of the novel object at the beginning of the test session but it attenuated overall preference to novelty, reflecting retrieval of a weak memory. The expression of phosphorylated extracellular signal-regulated kinase 2 (involved in memory retrieval) was decreased while the level of phosphorylated Ca 2+ /calmodulin-dependent protein kinase IIα and early growth response protein 1 (involved in memory reconsolidation) was increased in the dorsal hippocampus. The level of Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog B (neuronal activity indicator) was increased in the dorsal dentate gyrus. Enhanced exploratory activity was still evident in the propofol anesthesia exposure (PAE) group 48 hour after the treatment in both tasks. In peripubertal rats, propofol anesthesia exposure affects memory retrieval and acquisition of new learning in the spatial and nonspatial, nonaversive learning tasks 24 hour after the treatment, along with the expression of molecules that participate in memory retrieval/reconsolidation in the dorsal hippocampus. These results may have clinical implications, favoring control of basic cognitive functions in older children after the propofol exposure. © 2018 John Wiley & Sons Ltd.

  16. Quantitative assessment of fibroblast growth factor receptor 1 expression in neurons and glia.

    PubMed

    Choubey, Lisha; Collette, Jantzen C; Smith, Karen Müller

    2017-01-01

    Fibroblast growth factors (FGFs) and their receptors (FGFRs) have numerous functions in the developing and adult central nervous system (CNS). For example, the FGFR1 receptor is important for proliferation and fate specification of radial glial cells in the cortex and hippocampus, oligodendrocyte proliferation and regeneration, midline glia morphology and soma translocation, Bergmann glia morphology, and cerebellar morphogenesis. In addition, FGFR1 signaling in astrocytes is required for postnatal maturation of interneurons expressing parvalbumin (PV). FGFR1 is implicated in synapse formation in the hippocampus, and alterations in the expression of Fgfr1 and its ligand, Fgf2 accompany major depression. Understanding which cell types express Fgfr1 during development may elucidate its roles in normal development of the brain as well as illuminate possible causes of certain neuropsychiatric disorders. Here, we used a BAC transgenic reporter line to trace Fgfr1 expression in the developing postnatal murine CNS. The specific transgenic line employed was created by the GENSAT project, tgFGFR1-EGFPGP338Gsat , and includes a gene encoding enhanced green fluorescent protein ( EGFP ) under the regulation of the Fgfr1 promoter, to trace Fgfr1 expression in the developing CNS. Unbiased stereological counts were performed for several cell types in the cortex and hippocampus. This model reveals that Fgfr1 is primarily expressed in glial cells, in both astrocytes and oligodendrocytes, along with some neurons. Dual labeling experiments indicate that the proportion of GFP+ ( Fgfr1 +) cells that are also GFAP+ increases from postnatal day 7 (P7) to 1 month, illuminating dynamic changes in Fgfr1 expression during postnatal development of the cortex. In postnatal neurogenic areas, GFP expression was also observed in SOX2, doublecortin (DCX), and brain lipid-binding protein (BLBP) expressing cells. Fgfr1 is also highly expressed in DCX positive cells of the dentate gyrus (DG), but not in the rostral migratory stream. Fgfr1 driven GFP was also observed in tanycytes and GFAP+ cells of the hypothalamus, as well as in Bergmann glia and astrocytes of the cerebellum. The tgFGFR1-EGFPGP338Gsat mouse model expresses GFP that is congruent with known functions of FGFR1, including hippocampal development, glial cell development, and stem cell proliferation. Understanding which cell types express Fgfr1 may elucidate its role in neuropsychiatric disorders and brain development.

  17. Excess Synaptojanin 1 Contributes to Place Cell Dysfunction and Memory Deficits in the Aging Hippocampus in Three Types of Alzheimer's Disease.

    PubMed

    Miranda, Andre M; Herman, Mathieu; Cheng, Rong; Nahmani, Eden; Barrett, Geoffrey; Micevska, Elizabeta; Fontaine, Gaelle; Potier, Marie-Claude; Head, Elizabeth; Schmitt, Frederick A; Lott, Ira T; Jiménez-Velázquez, Ivonne Z; Antonarakis, Stylianos E; Di Paolo, Gilbert; Lee, Joseph H; Hussaini, S Abid; Marquer, Catherine

    2018-06-05

    The phosphoinositide phosphatase synaptojanin 1 (SYNJ1) is a key regulator of synaptic function. We first tested whether SYNJ1 contributes to phenotypic variations in familial Alzheimer's disease (FAD) and show that SYNJ1 polymorphisms are associated with age of onset in both early- and late-onset human FAD cohorts. We then interrogated whether SYNJ1 levels could directly affect memory. We show that increased SYNJ1 levels in autopsy brains from adults with Down syndrome (DS/AD) are inversely correlated with synaptophysin levels, a direct readout of synaptic integrity. We further report age-dependent cognitive decline in a mouse model overexpressing murine Synj1 to the levels observed in human sporadic AD, triggered through hippocampal hyperexcitability and defects in the spatial reproducibility of place fields. Taken together, our findings suggest that SYNJ1 contributes to memory deficits in the aging hippocampus in all forms of AD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Expression of the ADHD candidate gene Diras2 in the brain.

    PubMed

    Grünewald, Lena; Becker, Nils; Camphausen, Annika; O'Leary, Aet; Lesch, Klaus-Peter; Freudenberg, Florian; Reif, Andreas

    2018-06-01

    The distinct subgroup of the Ras family member 2 (DIRAS2) gene has been found to be associated with attention-deficit/hyperactivity disorder (ADHD) in one of our previous studies. This gene is coding for a small Ras GTPase with unknown function. DIRAS2 is highly expressed in the brain. However, the exact neural expression pattern of this gene was unknown so far. Therefore, we investigated the expressional profile of DIRAS2 in the human and murine brain. In the present study, qPCR analyses in the human and in the developing mouse brain, immunocytological double staining on murine hippocampal primary cells and RNA in situ hybridization (ISH) on brain sections of C57BL/6J wild-type mice, have been used to reveal the expression pattern of DIRAS2 in the brain. We could show that DIRAS2 expression in the human brain is the highest in the hippocampus and the cerebral cortex, which is in line with the ISH results in the mouse brain. During mouse brain development, Diras2 levels strongly increase from prenatal to late postnatal stages. Co-expression studies indicate Diras2 expression in glutamatergic and catecholaminergic neurons. Our findings support the idea of DIRAS2 as a candidate gene for ADHD as the timeline of its expression as well as the brain regions and cell types that show Diras2 expression correspond to those assumed to underlie the pathomechanisms of the disease.

  19. Cadherin-13, a risk gene for ADHD and comorbid disorders, impacts GABAergic function in hippocampus and cognition.

    PubMed

    Rivero, O; Selten, M M; Sich, S; Popp, S; Bacmeister, L; Amendola, E; Negwer, M; Schubert, D; Proft, F; Kiser, D; Schmitt, A G; Gross, C; Kolk, S M; Strekalova, T; van den Hove, D; Resink, T J; Nadif Kasri, N; Lesch, K P

    2015-10-13

    Cadherin-13 (CDH13), a unique glycosylphosphatidylinositol-anchored member of the cadherin family of cell adhesion molecules, has been identified as a risk gene for attention-deficit/hyperactivity disorder (ADHD) and various comorbid neurodevelopmental and psychiatric conditions, including depression, substance abuse, autism spectrum disorder and violent behavior, while the mechanism whereby CDH13 dysfunction influences pathogenesis of neuropsychiatric disorders remains elusive. Here we explored the potential role of CDH13 in the inhibitory modulation of brain activity by investigating synaptic function of GABAergic interneurons. Cellular and subcellular distribution of CDH13 was analyzed in the murine hippocampus and a mouse model with a targeted inactivation of Cdh13 was generated to evaluate how CDH13 modulates synaptic activity of hippocampal interneurons and behavioral domains related to psychopathologic (endo)phenotypes. We show that CDH13 expression in the cornu ammonis (CA) region of the hippocampus is confined to distinct classes of interneurons. Specifically, CDH13 is expressed by numerous parvalbumin and somatostatin-expressing interneurons located in the stratum oriens, where it localizes to both the soma and the presynaptic compartment. Cdh13(-/-) mice show an increase in basal inhibitory, but not excitatory, synaptic transmission in CA1 pyramidal neurons. Associated with these alterations in hippocampal function, Cdh13(-/-) mice display deficits in learning and memory. Taken together, our results indicate that CDH13 is a negative regulator of inhibitory synapses in the hippocampus, and provide insights into how CDH13 dysfunction may contribute to the excitatory/inhibitory imbalance observed in neurodevelopmental disorders, such as ADHD and autism.

  20. Effects of 1H + 16O Charged Particle Irradiation on Short-Term Memory and Hippocampal Physiology in a Murine Model.

    PubMed

    Kiffer, Frederico; Carr, Hannah; Groves, Thomas; Anderson, Julie E; Alexander, Tyler; Wang, Jing; Seawright, John W; Sridharan, Vijayalakshmi; Carter, Gwendolyn; Boerma, Marjan; Allen, Antiño R

    2018-01-01

    Radiation from galactic cosmic rays (GCR) poses a significant health risk for deep-space flight crews. GCR are unique in their extremely high-energy particles. With current spacecraft shielding technology, some of the predominant particles astronauts would be exposed to are 1 H + 16 O. Radiation has been shown to cause cognitive deficits in mice. The hippocampus plays a key role in memory and cognitive tasks; it receives information from the cortex, undergoes dendritic-dependent processing and then relays information back to the cortex. In this study, we investigated the effects of combined 1 H + 16 O irradiation on cognition and dendritic structures in the hippocampus of adult male mice three months postirradiation. Six-month-old male C57BL/6 mice were irradiated first with 1 H (0.5 Gy, 150 MeV/n) and 1 h later with 16 O (0.1 Gy, 600 MeV/n) at the NASA Space Radiation Laboratory (Upton, NY). Three months after irradiation, animals were tested for hippocampus-dependent cognitive performance using the Y-maze. Upon sacrifice, molecular and morphological assessments were performed on hippocampal tissues. During Y-maze testing, the irradiated mice failed to distinguish the novel arm, spending approximately the same amount of time in all three arms during the retention trial relative to sham-treated controls. Irradiated animals also showed changes in expression of glutamate receptor subunits and synaptic density-associated proteins. 1 H + 16 O radiation compromised dendritic morphology in the cornu ammonis 1 and dentate gyrus within the hippocampus. These data indicate cognitive injuries due to 1 H + 16 O at three months postirradiation.

  1. Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy.

    PubMed

    Patel, Dipan C; Wallis, Glenna; Dahle, E Jill; McElroy, Pallavi B; Thomson, Kyle E; Tesi, Raymond J; Szymkowski, David E; West, Peter J; Smeal, Roy M; Patel, Manisha; Fujinami, Robert S; White, H Steve; Wilcox, Karen S

    2017-01-01

    Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler's murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2 -/- mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection.

  2. Hippocampal TNFα Signaling Contributes to Seizure Generation in an Infection-Induced Mouse Model of Limbic Epilepsy

    PubMed Central

    Patel, Dipan C.; Wallis, Glenna; Dahle, E. Jill; McElroy, Pallavi B.; Thomson, Kyle E.; West, Peter J.; Smeal, Roy M.; Patel, Manisha; Fujinami, Robert S.; White, H. Steve

    2017-01-01

    Abstract Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler’s murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2–/– mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection. PMID:28497109

  3. Sense and antisense transcripts of the developmentally regulated murine hsp70.2 gene are expressed in distinct and only partially overlapping areas in the adult brain

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Wolgemuth, D. J.

    1996-01-01

    We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.

  4. Treatment with the GSK3-beta inhibitor Tideglusib improves hippocampal development and memory performance in juvenile, but not adult, Cdkl5 knockout mice.

    PubMed

    Fuchs, Claudia; Fustini, Norma; Trazzi, Stefania; Gennaccaro, Laura; Rimondini, Roberto; Ciani, Elisabetta

    2018-05-01

    Cyclin-dependent kinase-like 5 (CDKL5) disorder is a severe neurodevelopmental disorder characterized by early-onset epileptic seizures, severe developmental delay, and intellectual disability. To date, no effective pharmacological treatments are available to improve the neurological phenotype that is due to mutations in the CDKL5 gene. Murine models of CDKL5 disorder have recently been generated, making the preclinical testing of pharmacological interventions possible. Using a Cdkl5 knockout (KO) mouse model, we recently demonstrated that deficiency of Cdkl5 causes defects in postnatal hippocampal development and hippocampus-dependent learning and memory. These defects were accompanied by an increased activity of GSK3β, an important inhibitory regulator of many neuronal functions. Pharmacological inhibition of GSK3β activity was able to recover hippocampal defects and cognitive performance in juvenile Cdkl5 KO mice, suggesting that GSK3β inhibitors might be a potential therapeutic option for CDKL5 disorder. As GSK3β inhibitors have been shown to have differential medication responses in young people and adults, this study was designed to examine whether GSK3β is a possible therapeutic target both in juvenile and in adult CDKL5 patients. We found that treatment with the GSK3β inhibitor Tideglusib during the juvenile period improved hippocampal development and hippocampus-dependent behaviors in Cdkl5 KO mice, while treatment later on in adulthood had no positive effects. These results suggest that pharmacological interventions aimed at normalizing impaired GSK3β activity might have different age-dependent outcomes in CDKL5 disorder. This is of utmost importance in the development of therapeutic approaches in CDKL5 patients and in the design of rational clinical trials. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Development of short-snouted seahorse (Hippocampus hippocampus, L. 1758): osteological and morphological aspects.

    PubMed

    Novelli, B; Otero-Ferrer, F; Socorro, J A; Caballero, M J; Segade-Botella, A; Molina Domínguez, L

    2017-06-01

    Information about early development after male release lags behind studies of juveniles and adult seahorses, and newborn seahorses, similar in shape to adults, are considered juveniles or fry. During early life, Hippocampus hippocampus present behavioural (shift in habitat, from planktonic to benthic) and morphological changes; for this reasons, the aims of this study are to define the stage of development of H. hippocampus after they are expelled from the male brood pouch and to establish direct or indirect development through an osteological analysis. The ossification process was studied in 120 individuals, from their release to 30 days after birth. To analyse the osteological development, Alcian Blue-Alizarin Red double staining technique for bone and cartilage was adapted to this species. At birth, H. hippocampus presents a mainly cartilaginous structure that ossifies in approximately 1 month. The bony armour composed of bony rings and plates develops in 10 days. The caudal fin, a structure absent in juveniles and adult seahorses, is present at birth and progressively disappears with age. The absence of adult osteological structure in newborns, like coronet, bony rings and plates, head spines and components allowing tail prehensile abilities, suggests a metamorphosis before the juvenile stage. During the indirect development, the metamorphic stage started inside brood pouch and followed outside and leads up to reconsider the status of H. hippocampus newborns.

  6. NFIX Regulates Proliferation and Migration Within the Murine SVZ Neurogenic Niche

    PubMed Central

    Heng, Yee Hsieh Evelyn; Zhou, Bo; Harris, Lachlan; Harvey, Tracey; Smith, Aaron; Horne, Elise; Martynoga, Ben; Andersen, Jimena; Achimastou, Angeliki; Cato, Kathleen; Richards, Linda J.; Gronostajski, Richard M.; Yeo, Giles S.; Guillemot, François; Bailey, Timothy L.; Piper, Michael

    2015-01-01

    Transcription factors of the nuclear factor one (NFI) family play a pivotal role in the development of the nervous system. One member, NFIX, regulates the development of the neocortex, hippocampus, and cerebellum. Postnatal Nfix−/− mice also display abnormalities within the subventricular zone (SVZ) lining the lateral ventricles, a region of the brain comprising a neurogenic niche that provides ongoing neurogenesis throughout life. Specifically, Nfix−/− mice exhibit more PAX6-expressing progenitor cells within the SVZ. However, the mechanism underlying the development of this phenotype remains undefined. Here, we reveal that NFIX contributes to multiple facets of SVZ development. Postnatal Nfix−/− mice exhibit increased levels of proliferation within the SVZ, both in vivo and in vitro as assessed by a neurosphere assay. Furthermore, we show that the migration of SVZ-derived neuroblasts to the olfactory bulb is impaired, and that the olfactory bulbs of postnatal Nfix−/− mice are smaller. We also demonstrate that gliogenesis within the rostral migratory stream is delayed in the absence of Nfix, and reveal that Gdnf (glial-derived neurotrophic factor), a known attractant for SVZ-derived neuroblasts, is a target for transcriptional activation by NFIX. Collectively, these findings suggest that NFIX regulates both proliferation and migration during the development of the SVZ neurogenic niche. PMID:25331604

  7. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

    PubMed

    Ghazizadeh, Vahid; Nazıroğlu, Mustafa

    2014-09-01

    Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

  8. Morphological alterations in the hippocampus of the Ts65Dn mouse model for Down Syndrome correlate with structural plasticity markers.

    PubMed

    Villarroya, Olga; Ballestín, Raúl; López-Hidalgo, Rosa; Mulet, Maria; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan; Gilabert-Juan, Javier; Varea, Emilio

    2018-01-01

    Down syndrome (DS) is the most common chromosomal aneuploidy. Although trisomy on chromosome 21 can display variable phenotypes, there is a common feature among all DS individuals: the presence of intellectual disability. This condition is partially attributed to abnormalities found in the hippocampus of individuals with DS and in the murine model for DS, Ts65Dn. To check if all hippocampal areas were equally affected in 4-5 month adult Ts65Dn mice, we analysed the morphology of dentate gyrus granule cells and cornu ammonis pyramidal neurons using Sholl method on Golgi-Cox impregnated neurons. Structural plasticity has been analysed using immunohistochemistry for plasticity molecules followed by densitometric analysis (Brain Derived Neurotrophic Factor (BDNF), Polysialylated form of the Neural Cell Adhesion Molecule (PSA-NCAM) and the Growth Associated Protein 43 (GAP43)). We observed an impairment in the dendritic arborisation of granule cells, but not in the pyramidal neurons in the Ts65Dn mice. When we analysed the expression of molecules related to structural plasticity in trisomic mouse hippocampus, we observed a reduction in the expression of BDNF and PSA-NCAM, and an increment in the expression of GAP43. These alterations were restricted to the regions related to dentate granule cells suggesting an interrelation. Therefore the impairment in dendritic arborisation and molecular plasticity is not a general feature of all Down syndrome principal neurons. Pharmacological manipulations of the levels of plasticity molecules could provide a way to restore granule cell morphology and function.

  9. Hippocampal and posterior parietal contributions to developmental increases in visual short-term memory capacity.

    PubMed

    von Allmen, David Yoh; Wurmitzer, Karoline; Klaver, Peter

    2014-10-01

    Developmental increases in visual short-term memory (VSTM) capacity have been associated with changes in attention processing limitations and changes in neural activity within neural networks including the posterior parietal cortex (PPC). A growing body of evidence suggests that the hippocampus plays a role in VSTM, but it is unknown whether the hippocampus contributes to the capacity increase across development. We investigated the functional development of the hippocampus and PPC in 57 children, adolescents and adults (age 8-27 years) who performed a visuo-spatial change detection task. A negative relationship between age and VSTM related activity was found in the right posterior hippocampus that was paralleled by a positive age-activity relationship in the right PPC. In the posterior hippocampus, VSTM related activity predicted individual capacity in children, whereas neural activity in the right anterior hippocampus predicted individual capacity in adults. The findings provide first evidence that VSTM development is supported by an integrated neural network that involves hippocampal and posterior parietal regions.

  10. Expression pattern of the thrombopoietin receptor (Mpl) in the murine central nervous system.

    PubMed

    Ivanova, Anna; Wuerfel, Jens; Zhang, Juan; Hoffmann, Olaf; Ballmaier, Matthias; Dame, Christof

    2010-07-28

    Thrombopoietin (Thpo) and its receptor (Mpl), which regulate megakaryopoiesis, are expressed in the central nervous system (CNS), where Thpo is thought to exert pro-apoptotic effects on newly generated neurons. Mpl expression has been analysed in brain tissue on transcript level and in cultured primary rat neurons and astrocytes on protein level. Herein, we analysed Mpl expression in the developing and adult murine CNS by immunohistochemistry and investigated the brain of mice with homozygous Mpl deficiency (Mpl-/-) by MRI. Mpl was not detectable at developmental stages E12 to E15 in any resident cells of the CNS. From E18 onwards, robust Mpl expression was found in various brain areas, including cerebral cortex, olfactory bulb, thalamus, hypothalamus, medulla, pons, and the grey matter of spinal cord. However, major developmental changes became obvious: In the subventricular zone of the cerebral cortex Mpl expression occurred only during late gestation, while in the hippocampus Mpl expression was detectable for first time at stage P4. In the white matter of the cerebellum Mpl expression was restricted to the perinatal period. In the adult cerebellum, Mpl expression switched to Purkinje cell. The majority of other Mpl-positive cells were NeuN-positive neurons. None of the cells could be double-labelled with astrocyte marker GFAP. Mpl-/- mice showed no gross abnormalities of the brain. Our data locate Mpl expression to neurons at different subdivisions of the spinal cord, rhombencephalon, midbrain and prosencephalon. Besides neuronal cells Mpl protein is also expressed in Purkinje cells of the adult cerebellum.

  11. Developing an Animal Model of Human Amnesia: The Role of the Hippocampus

    ERIC Educational Resources Information Center

    Kesner, Raymond P.; Goodrich-Hunsaker, Naomi J.

    2010-01-01

    This review summarizes a series of experiments aimed at answering the question whether the hippocampus in rats can serve as an animal model of amnesia. It is recognized that a comparison of the functions of the rat hippocampus with human hippocampus is difficult, because of differences in methodology, differences in complexity of life experiences,…

  12. Functional Convergence of Neurons Generated in the Developing and Adult Hippocampus

    PubMed Central

    Piatti, Verónica C; Morgenstern, Nicolás A; Zhao, Chunmei; van Praag, Henriette; Gage, Fred H; Schinder, Alejandro F

    2006-01-01

    The dentate gyrus of the hippocampus contains neural progenitor cells (NPCs) that generate neurons throughout life. Developing neurons of the adult hippocampus have been described in depth. However, little is known about their functional properties as they become fully mature dentate granule cells (DGCs). To compare mature DGCs generated during development and adulthood, NPCs were labeled at both time points using retroviruses expressing different fluorescent proteins. Sequential electrophysiological recordings from neighboring neurons of different ages were carried out to quantitatively study their major synaptic inputs: excitatory projections from the entorhinal cortex and inhibitory afferents from local interneurons. Our results show that DGCs generated in the developing and adult hippocampus display a remarkably similar afferent connectivity with regard to both glutamate and GABA, the major neurotransmitters. We also demonstrate that adult-born neurons can fire action potentials in response to an excitatory drive, exhibiting a firing behavior comparable to that of neurons generated during development. We propose that neurons born in the developing and adult hippocampus constitute a functionally homogeneous neuronal population. These observations are critical to understanding the role of adult neurogenesis in hippocampal function. PMID:17121455

  13. Normative volumetric data of the developing hippocampus in children based on magnetic resonance imaging.

    PubMed

    Pfluger, T; Weil, S; Weis, S; Vollmar, C; Heiss, D; Egger, J; Scheck, R; Hahn, K

    1999-04-01

    To acquire normative data of the hippocampus and its postnatal growth in 50 children (age, 1 month to 15 years) without epilepsy. Morphometry of the hippocampus was carried out by using a spoiled FLASH 3D sequence (sagittal orientation), whereas the volume of the brain was assessed with a T2-weighted spin-echo sequence (transverse orientation). The volume of the hippocampus and the brain was determined by following Cavalieri's principle. Growth curves of the brain and hippocampus were fitted to a nonlinear Boltzmann sigmoidal equation. Intra-/interobserver coefficient of variation was 2.0/4.9% for hippocampal volume measurements and 2.0/2.1% for brain volumetry. A significant difference in volume was noted between the right and left hippocampus (p < 0.001), with the right side being larger on average by 0.10 cc. Correlation coefficients of growth curves ranged between 0.71 and 0.94. Growth curves demonstrated a faster development of the hippocampus in girls. A steeper slope of hippocampal growth as compared with brain growth was found in girls, whereas in boys, the slope of brain growth was steeper. Our findings will be of help in evaluating vulnerable phases of the hippocampal formation with accelerated growth, thereby leading to a better understanding of the development of hippocampal sclerosis in early childhood.

  14. Neuronal connections, cell formation and cell migration in the perinatal human hippocampal dentate gyrus.

    PubMed

    Seress, L

    1998-06-01

    Jean Piaget's "stage theory" suggests that cognitive development proceeds in discrete steps, among which the first is the sensorimotor period that occupies the first two years. In recent years it became clear that an intact and mature hippocampus is necessary for memory formation both in experimental animals and in human. In the present experiments the perinatal morphological development of the human hippocampus was studied to describe structural changes that may correlate with the developmental changes of intellectual growth. Our results suggest that cell formation in the human hippocampus terminates several weeks before birth, but immature cells migrate to their final positions through the first six postnatal months. The newborn hippocampus contains all cell types and cell layers that are characteristic for the adult hippocampus. However, changes of the light microscopic features of the postsynaptic target neurons of hippocampal granule cells indicate that connections between granule cells and their target neurons are immature at birth and develop through an extended period of time that may last for three years. Since this neuronal connection is the first link in the chain of the main hippocampal synaptic circuitry, it may be suggested that human hippocampus is functionally impaired at birth. This period of light microscopic morphological maturation correlates well with the time period of Piaget's first stage of cognitive development. It can also be suggested that the prolonged postnatal development of some neuronal circuitries in the human hippocampus may be responsible for the psychological phenomenon of "infantile amnesia", that is the lack of memory traces from the early postnatal period.

  15. Consequences of excessive plasticity in the hippocampus induced by perinatal asphyxia.

    PubMed

    Saraceno, G E; Caceres, L G; Guelman, L R; Castilla, R; Udovin, L D; Ellisman, M H; Brocco, M A; Capani, F

    2016-12-01

    Perinatal asphyxia (PA) is one of the most frequent risk factors for several neurodevelopmental disorders (NDDs) of presumed multifactorial etiology. Dysfunction of neuronal connectivity is thought to play a central role in the pathophysiology of NDDs. Because underlying causes of some NDDs begin before/during birth, we asked whether this clinical condition might affect accurate establishment of neural circuits in the hippocampus as a consequence of disturbed brain plasticity. We used a murine model that mimics the pathophysiological processes of perinatal asphyxia. Histological analyses of neurons (NeuN), dendrites (MAP-2), neurofilaments (NF-M/Hp) and correlative electron microscopy studies of dendritic spines were performed in Stratum radiatum of the hippocampal CA1 area after postnatal ontogenesis. Protein and mRNA analyses were achieved by Western blot and RT-qPCR. Behavioral tests were also carried out. NeuN abnormal staining and spine density were increased. RT-qPCR assays revealed a β-actin mRNA over-expression, while Western blot analysis showed higher β-actin protein levels in synaptosomal fractions in experimental group. M6a expression, protein involved in filopodium formation and synaptogenesis, was also increased. Furthermore, we found that PI3K/Akt/GSK3 pathway signaling, which is involved in synaptogenesis, was activated. Moreover, asphyctic animals showed habituation memory changes in the open field test. Our results suggest that abnormal synaptogenesis induced by PA as a consequence of excessive brain plasticity during brain development may contribute to the etiology of the NDDs. Consequences of this altered synaptic maturation can underlie some of the later behavioral deficits observed in NDDs. Copyright © 2016. Published by Elsevier Inc.

  16. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    PubMed

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep. © 2013 International Society for Neurochemistry.

  17. Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells.

    PubMed

    Nguyen, The Duy; Widera, Darius; Greiner, Johannes; Müller, Janine; Martin, Ina; Slotta, Carsten; Hauser, Stefan; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2013-12-01

    Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.

  18. History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation.

    PubMed

    El-Falougy, H; Benuska, J

    2006-01-01

    The complex structures in the cerebral hemispheres is included under one term, the limbic system. Our conception of this system and its special functions rises from the comparative neuroanatomical and neurophysiological studies. The components of the limbic system are the hippocampus, gyrus parahippocampalis, gyrus dentatus, gyrus cinguli, corpus amygdaloideum, nuclei anteriores thalami, hypothalamus and gyrus paraterminalis Because of its unique macroscopic and microscopic structure, the hippocampus is a conspicuous part of the limbic system. During phylogenetic development, the hippocampus developed from a simple cortical plate in amphibians into complex three-dimensional convoluted structure in mammals. In the last few decades, structures of the limbic system were extensively studied. Attention was directed to the physiological functions and pathological changes of the hippocampus. Experimental studies proved that the hippocampus has a very important role in the process of learning and memory. Another important functions of the hippocampus as a part of the limbic system is its role in regulation of sexual and emotional behaviour. The term "hippocampal formation" is defined as the complex of six structures: gyrus dentatus, hippocampus proprius, subiculum proprium, presubiculum, parasubiculum and area entorhinalis In this work we attempt to present a brief review of knowledge about the hippocampus from the point of view of history, anatomical nomenclature, comparative anatomy and functions (Tab. 1, Fig. 2, Ref. 33).

  19. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    PubMed Central

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961

  20. Adult Onset-hypothyroidism has Minimal Effects on Synaptic Transmission in the Hippocampus of Rats Independent of Hypothermia

    EPA Science Inventory

    Introduction: Thyroid hormones (TH) influence central nervous system (CNS) function during development and in adulthood. The hippocampus, a brain area critical for learning and memory is sensitive to TH insufficiency. Synaptic transmission in the hippocampus is impaired following...

  1. Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity

    PubMed Central

    Kalus, Ina; Salmen, Benedikt; Viebahn, Christoph; von Figura, Kurt; Schmitz, Dietmar; D'Hooge, Rudi; Dierks, Thomas

    2009-01-01

    The extracellular sulfatases Sulf1 and Sulf2 remove specific 6-O-sulfate groups from heparan sulfate, thereby modulating numerous signalling pathways underlying development and homeostasis. In vitro data have suggested that the two enzymes show functional redundancy. To elucidate their in vivo functions and to further address the question of a putative redundancy, we have generated Sulf1- and Sulf2-deficient mice. Phenotypic analysis of these animals revealed higher embryonic lethality of Sulf2 knockout mice, which can be associated with neuroanatomical malformations during embryogenesis. Sulf1 seems not to be essential for developmental or postnatal viability, as mice deficient in this sulfatase show no overt phenotype. However, neurite outgrowth deficits were observed in hippocampal and cerebellar neurons of both mutant mouse lines, suggesting that not only Sulf2 but also Sulf1 function plays a role in the developing nervous system. Behavioural analysis revealed differential deficits with regard to cage activity and spatial learning for Sulf1- and Sulf2-deficient mouse lines. In addition, Sulf1-specific deficits were shown for synaptic plasticity in the CA1 region of the hippocampus, associated with a reduced spine density. These results reveal that Sulf1 and Sulf2 fulfil non-redundant functions in vivo in the development and maintenance of the murine nervous system. PMID:20394677

  2. NEOCORTICAL ACTIVATION OF THE HIPPOCAMPUS DURING SLEEP IN INFANT RATS

    PubMed Central

    Mohns, Ethan J.; Blumberg, Mark S.

    2010-01-01

    We recently reported that the majority of hippocampal neurons in newborn rats increase their activity in association with myoclonic twitches, which are indicative of active sleep. Because spindle bursts in the developing somatosensory neocortex occur in response to sensory feedback from myoclonic twitching, we hypothesized that the state-dependent activity of the newborn hippocampus arises from sensory feedback that sequentially activates the neocortex and then hippocampus, constituting an early form of neocortical-hippocampal communication. Here, in unanesthetized 5–6-day-old rats, we test this hypothesis by recording simultaneously from forelimb and barrel regions of somatosensory neocortex and dorsal hippocampus during periods of spontaneous sleep and wakefulness and in response to peripheral stimulation. Myoclonic twitches were consistently followed by neocortical spindle bursts, which were in turn consistently followed by bursts of hippocampal unit activity; moreover, spindle burst power was positively correlated with hippocampal unit activity. In addition, exogenous stimulation consistently evoked this neocortical-to-hippocampal sequence of activation. Finally, parahippocampal lesions that disrupted functional connections between the neocortex and hippocampus effectively disrupted the transmission of both spontaneous and evoked neocortical activity to the hippocampus. These findings suggest that sleep-related motor activity contributes to the development of neocortical and hippocampal circuits and provides a foundation upon which coordinated activity between these two forebrain structures develops. PMID:20203203

  3. Effect of acute alarm odor exposure and biological sex on generalized avoidance and glutamatergic signaling in the hippocampus of Wistar rats.

    PubMed

    Homiack, Damek; O'Cinneide, Emma; Hajmurad, Sema; Dohanich, Gary P; Schrader, Laura A

    2018-06-19

    Post-traumatic stress disorder (PTSD) is characterized by the development of paradoxical memory disturbances including intrusive memories and amnesia for specific details of the traumatic experience. Despite evidence that women are at higher risk to develop PTSD, most animal research has focused on the processes by which male rodents develop adaptive fear memory. As such, the mechanisms contributing to sex differences in the development of PTSD-like memory disturbances are poorly understood. In this investigation, we exposed adult male and female Wistar rats to the synthetic alarm odor 2,4,5-trimethylthiazole (TMT) to assess development of generalized fear behavior and rapid modulation of glutamate uptake and signaling cascades associated with hippocampus-dependent long-term memory. We report that female Wistar rats exposed to alarm odor exhibit context discrimination impairments relative to TMT-exposed male rats, suggesting the intriguing possibility that females are at greater risk in developing generalized fear memories. Mechanistically, alarm odor exposure rapidly modulated signaling cascades consistent with activation of the CREB shut-off cascade in the male, but not the female hippocampus. Moreover, TMT exposure dampened glutamate uptake and affected expression of the glutamate transporter, GLT-1 in the hippocampus. Taken together, these results provide evidence for rapid sex-dependent modulation of CREB signaling in the hippocampus by alarm odor exposure which may contribute to the development of generalized fear.

  4. Dopamine-dependent effects on basal and glutamate stimulated network dynamics in cultured hippocampal neurons.

    PubMed

    Li, Yan; Chen, Xin; Dzakpasu, Rhonda; Conant, Katherine

    2017-02-01

    Oscillatory activity occurs in cortical and hippocampal networks with specific frequency ranges thought to be critical to working memory, attention, differentiation of neuronal precursors, and memory trace replay. Synchronized activity within relatively large neuronal populations is influenced by firing and bursting frequency within individual cells, and the latter is modulated by changes in intrinsic membrane excitability and synaptic transmission. Published work suggests that dopamine, a potent modulator of learning and memory, acts on dopamine receptor 1-like dopamine receptors to influence the phosphorylation and trafficking of glutamate receptor subunits, along with long-term potentiation of excitatory synaptic transmission in striatum and prefrontal cortex. Prior studies also suggest that dopamine can influence voltage gated ion channel function and membrane excitability in these regions. Fewer studies have examined dopamine's effect on related endpoints in hippocampus, or potential consequences in terms of network burst dynamics. In this study, we record action potential activity using a microelectrode array system to examine the ability of dopamine to modulate baseline and glutamate-stimulated bursting activity in an in vitro network of cultured murine hippocampal neurons. We show that dopamine stimulates a dopamine type-1 receptor-dependent increase in number of overall bursts within minutes of its application. Notably, however, at the concentration used herein, dopamine did not increase the overall synchrony of bursts between electrodes. Although the number of bursts normalizes by 40 min, bursting in response to a subsequent glutamate challenge is enhanced by dopamine pretreatment. Dopamine-dependent potentiation of glutamate-stimulated bursting was not observed when the two modulators were administered concurrently. In parallel, pretreatment of murine hippocampal cultures with dopamine stimulated lasting increases in the phosphorylation of the glutamate receptor subunit GluA1 at serine 845. This effect is consistent with the possibility that enhanced membrane insertion of GluAs may contribute to a more slowly evolving dopamine-dependent potentiation of glutamate-stimulated bursting. Together, these results are consistent with the possibility that dopamine can influence hippocampal bursting by at least two temporally distinct mechanisms, contributing to an emerging appreciation of dopamine-dependent effects on network activity in the hippocampus. © 2016 International Society for Neurochemistry.

  5. Evidence for Hippocampus-Dependent Contextual Learning at Postnatal Day 17 in the Rat

    ERIC Educational Resources Information Center

    Foster, Jennifer A.; Burman, Michael A.

    2010-01-01

    Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully…

  6. Chronic traumatic stress impairs memory in mice: Potential roles of acetylcholine, neuroinflammation and corticotropin releasing factor expression in the hippocampus.

    PubMed

    Bhakta, Ami; Gavini, Kartheek; Yang, Euitaek; Lyman-Henley, Lani; Parameshwaran, Kodeeswaran

    2017-09-29

    Chronic stress in humans can result in multiple adverse psychiatric and neurobiological outcomes, including memory deficits. These adverse outcomes can be more severe if each episode of stress is very traumatic. When compared to acute or short term stress relatively little is known about the effects of chronic traumatic stress on memory and molecular changes in hippocampus, a brain area involved in memory processing. Here we studied the effects of chronic traumatic stress in mice by exposing them to adult Long Evan rats for 28 consecutive days and subsequently analyzing behavioral outcomes and the changes in the hippocampus. Results show that stressed mice developed memory deficits when assayed with radial arm maze tasks. However, chronic traumatic stress did not induce anxiety, locomotor hyperactivity or anhedonia. In the hippocampus of stressed mice interleukin-1β protein expression was increased along with decreased corticotropin releasing hormone (CRH) gene expression. Furthermore, there was a reduction in acetylcholine levels in the hippocampus of stressed mice. There were no changes in brain derived neurotrophic factor (BDNF) or nerve growth factor (NGF) levels in the hippocampus of stressed mice. Gene expression of immediate early genes (Zif268, Arc, C-Fos) as well as glucocorticoid and mineralocorticoid receptors were also not affected by chronic stress. These data demonstrate that chronic traumatic stress followed by a recovery period might lead to development of resilience resulting in the development of selected, most vulnerable behavioral alterations and molecular changes in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Growth and metabolism of murine and bovine embryos in bovine uterine flushing-supplemented culture media.

    PubMed Central

    Rondeau, M; Guay, P; Goff, A K; Cooke, G M

    1996-01-01

    The aim of this study was to compare the development and metabolic activity of cultured murine and bovine embryos in 2 standard media (HAM F-10 and RPMI) in the presence or absence of bovine uterine flushings. Murine morulae (n = 653) and day 7 bovine embryos (n = 273) were cultured for 18 h or 36 h in either HAM F-10 or RPMI in the presence or absence of bovine uterine flushings. After culture, the development, quality, and metabolic activity (glucose utilization or methionine uptake and incorporation) of embryos was assessed. It was found that HAM F-10 (without uterine flushings) was a more suitable medium than RPMI for optimal development and metabolism of murine and bovine embryos. Poor quality and development, as well as decreased metabolism, were evident after culture of murine embryos in RPMI; in contrast, this medium had no adverse effects on bovine embryos in culture. Supplementation of HAM F-10 with bovine uterine flushings improved the growth of murine embryos and the protein synthesis (as measured by an increased methionine incorporation) for both murine and bovine embryos. However, supplementation with bovine uterine flushings could not overcome deficiencies of an inappropriate medium (RPMI) for murine embryos. Supplementation of a well-defined culture medium with uterine flushings increased metabolism of embryos in culture, and thus might help to increase pregnancy rates after transfer of such embryos to recipient cows. PMID:8825988

  8. Post-stress facilitation of serotonergic, but not noradrenergic, neurotransmission in the dorsal hippocampus prevents learned helplessness development in rats.

    PubMed

    Joca, Sâmia Regiane Lourenço; Zanelati, Tatiane; Guimarães, Francisco Silveira

    2006-05-04

    Recent pieces of evidence suggest that the dorsal hippocampus may mediate adaptation to severe and inescapable stress, possibly by the facilitation of serotonergic and/or noradrenergic neurotransmission. Chronic social stress and high corticosteroid levels would impair this coping mechanism, predisposing animals to learned helplessness. To test the hypothesis that increasing serotonin or noradrenaline levels in the dorsal hippocampus would attenuate the development of learned helplessness (LH), rats received inescapable foot shock (IS) and were tested in a shuttle box 24 h latter. Prestressed animals showed impairment of escape responses. This effect was prevented by bilateral intrahippocampal injections of zimelidine (100 nmol/0.5 microl), a serotonin reuptake blocker, immediately after IS. This effect was not observed when zimelidine was administered before or 2 h after IS. Bilateral intrahippocampal injections of desipramine (3 or 30 nmol/0.5 microl), a noradrenaline reuptake blocker, before IS or immediately after it did not prevent LH development. Desipramine (30 nmol) enhanced LH development when injected before IS. These data suggest that poststress facilitation of hippocampal serotonergic, but not noradrenergic, neurotransmission in the dorsal hippocampus facilitates adaptation to severe inescapable stress. Antidepressant effects of noradrenaline-selective drugs seem to depend on other structures than the dorsal hippocampus.

  9. Regulated Proteolytic Processing of Reelin through Interplay of Tissue Plasminogen Activator (tPA), ADAMTS-4, ADAMTS-5, and Their Modulators

    PubMed Central

    Krstic, Dimitrije; Rodriguez, Myriam; Knuesel, Irene

    2012-01-01

    The extracellular signaling protein Reelin, indispensable for proper neuronal migration and cortical layering during development, is also expressed in the adult brain where it modulates synaptic functions. It has been shown that proteolytic processing of Reelin decreases its signaling activity and promotes Reelin aggregation in vitro, and that proteolytic processing is affected in various neurological disorders, including Alzheimer's disease (AD). However, neither the pathophysiological significance of dysregulated Reelin cleavage, nor the involved proteases and their modulators are known. Here we identified the serine protease tissue plasminogen activator (tPA) and two matrix metalloproteinases, ADAMTS-4 and ADAMTS-5, as Reelin cleaving enzymes. Moreover, we assessed the influence of several endogenous protease inhibitors, including tissue inhibitors of metalloproteinases (TIMPs), α-2-Macroglobulin, and multiple serpins, as well as matrix metalloproteinase 9 (MMP-9) on Reelin cleavage, and described their complex interplay in the regulation of this process. Finally, we could demonstrate that in the murine hippocampus, the expression levels and localization of Reelin proteases largely overlap with that of Reelin. While this pattern remained stable during normal aging, changes in their protein levels coincided with accelerated Reelin aggregation in a mouse model of AD. PMID:23082219

  10. A Distributed Representation of Remembered Time

    DTIC Science & Technology

    2015-11-19

    hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...The hippocampus , time, and memory across scales. Journal of Experimental Psychology: General., 142(4), 1211-30. doi: 10.1037/a0033621 Howard, M. W...accomplished this goal by developing a computational framework that describes a wide range of functional cellular correlates in the hippocampus and

  11. An automated system using spatial oversampling for optical mapping in murine atria. Development and validation with monophasic and transmembrane action potentials.

    PubMed

    Yu, Ting Yue; Syeda, Fahima; Holmes, Andrew P; Osborne, Benjamin; Dehghani, Hamid; Brain, Keith L; Kirchhof, Paulus; Fabritz, Larissa

    2014-08-01

    We developed and validated a new optical mapping system for quantification of electrical activation and repolarisation in murine atria. The system makes use of a novel 2nd generation complementary metal-oxide-semiconductor (CMOS) camera with deliberate oversampling to allow both assessment of electrical activation with high spatial and temporal resolution (128 × 2048 pixels) and reliable assessment of atrial murine repolarisation using post-processing of signals. Optical recordings were taken from isolated, superfused and electrically stimulated murine left atria. The system reliably describes activation sequences, identifies areas of functional block, and allows quantification of conduction velocities and vectors. Furthermore, the system records murine atrial action potentials with comparable duration to both monophasic and transmembrane action potentials in murine atria. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Release of endogenous amino acids from the hippocampus and brain stem from developing and adult mice in ischemia.

    PubMed

    Oja, Simo S; Saransaari, Pirjo

    2009-09-01

    The release of neurotransmitters and modulators has been studied mostly using labeled preloaded compounds. For several reasons, however, the estimated release may not reliably reflect the release of endogenous compounds. The basal and K(+)-evoked release of the neuroactive endogenous amino acids GABA, glycine, taurine, L-glutamate and L-aspartate was now studied in slices from the hippocampus and brain stem from 7-day-old and 3-month-old mice under control and ischemic conditions. The release of synaptically not active L-glutamine, L-alanine, L-threonine and L-serine was assessed for comparison. The estimates for the hippocampus and brainstem were markedly different and also different in developing and adult mice. GABA release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite, in the hippocampus in particular. K(+) stimulation enhanced glycine release more in the mature than immature brain stem while in the hippocampus the converse was observed. Ischemia enhanced the release of all neuroactive amino acids in both brain regions, the effects being relatively most pronounced in the case of GABA, aspartate and glutamate in the hippocampus in 3-month-old mice, and taurine in 7-day-old and glycine in 3-month-old mice in the brain stem. These results are qualitatively similar to those obtained on earlier experiments with labeled preloaded amino acids. However, the magnitudes of the release cannot be quite correctly estimated using radioactive labels. In developing mice only taurine release may counteract the harmful effects of excitatory amino acids in ischemia in both hippocampus and brain stem.

  13. Decrease in level of APG-2, a member of the heat shock protein 110 family, in murine brain following systemic administration of kainic acid.

    PubMed

    Ogita, K; Takagi, R; Oyama, N; Okuda, H; Ito, F; Okui, M; Shimizu, N; Yoneda, Y

    2001-09-01

    APG-2 belongs to the heat shock protein 110 family. Although kainic acid (KA)-induced seizures are known to elicit expression of inducible heat shock protein 70 (HSP70) in the brain, no investigation has been carried out on the APG-2 level after excitatory amino acid-induced seizures. By means of an immunoblot assay, we determined the levels of HSP70 and APG-2 in discrete brain structures of mice after a single intraperitoneal injection of KA or N-methyl-D-aspartic acid (NMDA). APG-2 level was significantly decreased in frontal cortex, hippocampus, and striatum three days after the administration of KA, while HSP70 level was increased in these regions following the administration. In any of these regions, APG-2 levels were returned to the control levels 10 days after the administration. However, no significant changes were observed in levels of both HSP70 and APG-2 in hypothalamus, midbrain, medulla-pons, and cerebellum of the mice. By contrast, NMDA administration did not significantly affect both levels in any of the regions examined. These findings indicate that the transient decrease in APG-2 expression is one of the intracellular events elicited by signals peculiar to KA, but not by those peculiar to NMDA, in telencephalon of murine brain.

  14. Automatic detection of the hippocampal region associated with Alzheimer's disease from microscopic images of mice brain

    NASA Astrophysics Data System (ADS)

    Albaidhani, Tahseen; Hawkes, Cheryl; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    The hippocampus is the region of the brain that is primarily associated with memory and spatial navigation. It is one of the first brain regions to be damaged when a person suffers from Alzheimer's disease. Recent research in this field has focussed on the assessment of damage to different blood vessels within the hippocampal region from a high throughput brain microscopic images. The ultimate aim of our research is the creation of an automatic system to count and classify different blood vessels such as capillaries, veins, and arteries in the hippocampus region. This work should provide biologists with efficient and accurate tools in their investigation of the causes of Alzheimer's disease. Locating the boundary of the Region of Interest in the hippocampus from microscopic images of mice brain is the first essential stage towards developing such a system. This task benefits from the variation in colour channels and texture between the two sides of the hippocampus and the boundary region. Accordingly, the developed initial step of our research to locating the hippocampus edge uses a colour-based segmentation of the brain image followed by Hough transforms on the colour channel that isolate the hippocampus region. The output is then used to split the brain image into two sides of the detected section of the boundary: the inside region and the outside region. Experimental results on a sufficiently number of microscopic images demonstrate the effectiveness of the developed solution.

  15. Sex differences and left-right asymmetries in expression of insulin and insulin-like growth factor-1 receptors in developing rat hippocampus.

    PubMed

    Hami, Javad; Sadr-Nabavi, Ariane; Sankian, Mojtaba; Haghir, Hossein

    2012-04-01

    Sex differences and laterality of rat hippocampus with respect to insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression as two important contributors to/regulators of developmental and cognitive functions were examined using real-time PCR and western blot analysis at P0, P7 and P14. Expression of the IGF-1R gene was lowest at P0 in all studied hippocampi. In males, we found the highest expression at P7 in the right hippocampus, and at P14 in the left one. In contrast, the peaked IGF-1R expression occurred at P7 in female hippocampi independent of laterality. Hippocampal InsR expression in males decreased significantly between P0 and P7, followed by a marked upregulation at P14. Conversely, the expression of InsR in females peaked at P7 and then decreased again significantly at P14. We found significant interhemispheric differences in IGF-1R mRNA levels in both male and female hippocampi at different time points. In contrast, we only found significant interhemispheric differences in InsR mRNA expression in P14 male rats, with higher values in the left hippocampus. Interestingly, changes in mRNA expression and in protein levels followed the same developmental pattern, indicating that IGF-1R and InsR transcription is not subject to modulatory effects during the first two weeks of development. These findings indicate that there are prominent interhemispheric and sex differences in IGF-1R and InsR expression in the developing rat hippocampus, suggesting a probable mechanism for the control of gender and laterality differences in development and function of the hippocampus.

  16. Bidirectional global spontaneous network activity precedes the canonical unidirectional circuit organization in the developing hippocampus.

    PubMed

    Shi, Yulin; Ikrar, Taruna; Olivas, Nicholas D; Xu, Xiangmin

    2014-06-15

    Spontaneous network activity is believed to sculpt developing neural circuits. Spontaneous giant depolarizing potentials (GDPs) were first identified with single-cell recordings from rat CA3 pyramidal neurons, but here we identify and characterize a large-scale spontaneous network activity we term global network activation (GNA) in the developing mouse hippocampal slices, which is measured macroscopically by fast voltage-sensitive dye imaging. The initiation and propagation of GNA in the mouse is largely GABA-independent and dominated by glutamatergic transmission via AMPA receptors. Despite the fact that signal propagation in the adult hippocampus is strongly unidirectional through the canonical trisynaptic circuit (dentate gyrus [DG] to CA3 to CA1), spontaneous GNA in the developing hippocampus originates in distal CA3 and propagates both forward to CA1 and backward to DG. Photostimulation-evoked GNA also shows prominent backward propagation in the developing hippocampus from CA3 to DG. Mouse GNA is strongly correlated to electrophysiological recordings of highly localized single-cell and local field potential events. Photostimulation mapping of neural circuitry demonstrates that the enhancement of local circuit connections to excitatory pyramidal neurons occurs over the same time course as GNA and reveals the underlying pathways accounting for GNA backward propagation from CA3 to DG. The disappearance of GNA coincides with a transition to the adult-like unidirectional circuit organization at about 2 weeks of age. Taken together, our findings strongly suggest a critical link between GNA activity and maturation of functional circuit connections in the developing hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  17. Cognitive memory and mapping in a brain-like system for robotic navigation.

    PubMed

    Tang, Huajin; Huang, Weiwei; Narayanamoorthy, Aditya; Yan, Rui

    2017-03-01

    Electrophysiological studies in animals may provide a great insight into developing brain-like models of spatial cognition for robots. These studies suggest that the spatial ability of animals requires proper functioning of the hippocampus and the entorhinal cortex (EC). The involvement of the hippocampus in spatial cognition has been extensively studied, both in animal as well as in theoretical studies, such as in the brain-based models by Edelman and colleagues. In this work, we extend these earlier models, with a particular focus on the spatial coding properties of the EC and how it functions as an interface between the hippocampus and the neocortex, as proposed by previous work. By realizing the cognitive memory and mapping functions of the hippocampus and the EC, respectively, we develop a neurobiologically-inspired system to enable a mobile robot to perform task-based navigation in a maze environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Anti-IL17 treatment ameliorates Down syndrome phenotypes in mice.

    PubMed

    Rueda, Noemí; Vidal, Verónica; García-Cerro, Susana; Narcís, Josep Oriol; Llorens-Martín, María; Corrales, Andrea; Lantigua, Sara; Iglesias, Marcos; Merino, Jesús; Merino, Ramón; Martínez-Cué, Carmen

    2018-05-16

    Down syndrome (DS) is characterized by structural and functional anomalies that are present prenatally and that lead to intellectual disabilities. Later in life, the cognitive abilities of DS individuals progressively deteriorate due to the development of Alzheimer's disease (AD)-associated neuropathology (i.e., β-amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), neurodegeneration, synaptic pathology, neuroinflammation and increased oxidative stress). Increasing evidence has shown that among these pathological processes, neuroinflammation plays a predominant role in AD etiopathology. In AD mouse models, increased neuroinflammation appears earlier than Aβ plaques and NFTs, and in DS and AD models, neuroinflammation exacerbates the levels of soluble and insoluble Aβ species, favoring neurodegeneration. The Ts65Dn (TS) mouse, the most commonly used murine model of DS, recapitulates many alterations present in both DS and AD individuals, including enhanced neuroinflammation. In this study, we observed an altered neuroinflammatory milieu in the hippocampus of the TS mouse model. Pro-inflammatory mediators that were elevated in the hippocampus of this model included pro-inflammatory cytokine IL17A, which has a fundamental role in mediating brain damage in neuroinflammatory processes. Here, we analyzed the ability of an anti-IL17A antibody to reduce the neuropathological alterations that are present in TS mice during early neurodevelopmental stages (i.e., hippocampal neurogenesis and hypocellularity) or that are aggravated in later-life stages (i.e., cognitive abilities, cholinergic neuronal loss and increased cellular senescence, APP expression, Aβ peptide expression and neuroinflammation). Administration of anti-IL17 for 5 months, starting at the age of 7 months, partially improved the cognitive abilities of the TS mice, reduced the expression of several pro-inflammatory cytokines and the density of activated microglia and normalized the APP and Aβ 1-42 levels in the hippocampi of the TS mice. These results suggest that IL17-mediated neuroinflammation is involved in several AD phenotypes in TS mice and provide a new therapeutic target to reduce these pathological characteristics. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effects of morphine on brain plasticity.

    PubMed

    Beltrán-Campos, V; Silva-Vera, M; García-Campos, M L; Díaz-Cintra, S

    2015-04-01

    Morphine shares with other opiates and drugs of abuse the ability to modify the plasticity of brain areas that regulate the morphology of dendrites and spines, which are the primary sites of excitatory synapses in regions of the brain involved in incentive motivation, rewards, and learning. In this review we discuss the impact of morphine use during the prenatal period of brain development and its long-term consequences in murines, and then link those consequences to similar effects occurring in human neonates and adults. Repeated exposure to morphine as treatment for pain in terminally ill patients produces long-term changes in the density of postsynaptic sites (dendrites and spines) in sensitive areas of the brain, such as the prefrontal cortex, the limbic system (hippocampus, amygdala), and caudate nuclei and nucleus accumbens. This article reviews the cellular mechanisms and receptors involved, primarily dopaminergic and glutamatergic receptors, as well as synaptic plasticity brought about by changes in dendritic spines in these areas. The actions of morphine on both developing and adult brains produce alterations in the plasticity of excitatory postsynaptic sites of the brain areas involved in limbic system functions (reward and learning). Doctors need further studies on plasticity in dendrites and spines and on signaling molecules, such as calcium, in order to improve treatments for addiction. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  20. Noopept stimulates the expression of NGF and BDNF in rat hippocampus.

    PubMed

    Ostrovskaya, R U; Gudasheva, T A; Zaplina, A P; Vahitova, Ju V; Salimgareeva, M H; Jamidanov, R S; Seredenin, S B

    2008-09-01

    We studied the effect of original dipeptide preparation Noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111) with nootropic and neuroprotective properties on the expression of mRNA for neurotropic factors NGF and BDNF in rat hippocampus. Expression of NGF and BDNF mRNA in the cerebral cortex and hippocampus was studied by Northern blot analysis. Taking into account the fact that pharmacological activity of Noopept is realized after both acute and chronic treatment, we studied the effect of single and long-term treatment (28 days) with this drug. Expression of the studied neurotropic factors in the cerebral cortex was below the control after single administration of Noopept, while chronic administration caused a slight increase in BDNF expression. In the hippocampus, expression of mRNA for both neurotrophins increased after acute administration of Noopept. Chronic treatment with Noopept was not followed by the development of tolerance, but even potentiated the neurotrophic effect. These changes probably play a role in neuronal restoration. We showed that the nootropic drug increases expression of neurotrophic factors in the hippocampus. Our results are consistent with the hypothesis that neurotrophin synthesis in the hippocampus determines cognitive function, particularly in consolidation and delayed memory retrieval. Published data show that neurotrophic factor deficiency in the hippocampus is observed not only in advanced Alzheimer's disease, but also at the stage of mild cognitive impairment (pre-disease state). In light of this our findings suggest that Noopept holds much promise to prevent the development of Alzheimer's disease in patients with mild cognitive impairment. Moreover, therapeutic effectiveness of Noopept should be evaluated at the initial stage of Alzheimer's disease.

  1. Characterization of N-methyl-D-aspartate-evoked taurine release in the developing and adult mouse hippocampus.

    PubMed

    Saransaari, P; Oja, S S

    2003-01-01

    Taurine is an inhibitory amino acid acting as an osmoregulator and neuroromodulator in the brain, with neuroprotective properties. The ionotropic glutamate receptor agonist N-methyl-D-aspartate (NMDA) greatly potentiates taurine release from brain preparations in both normal and ischemic conditions, the effect being particularly marked in the developing hippocampus. We now characterized the regulation of NMDA-stimulated taurine release from hippocampal slices from adult (3-month-old) and developing (7-day-old) mouse using a superfusion system. The NMDA-stimulated taurine release was receptor-mediated in both adult and developing mouse hippocampus. In adults, only NO-generating compounds, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and hydroxylamine reduced the release, as did also NO synthase inhibitors, 7-nitroindazole and nitroarginine, indicating that the release is mediated by the NO/cGMP pathway. On the other hand, the regulation of the NMDA-evoked taurine release proved to be somewhat complex in the immature hippocampus. It was not affected by the NOergic compounds, but enhanced by the protein kinase C activator 4 beta-phorbol 12-myristate 13-acetate and adenosine receptor A(1) agonists, N(6)-cyclohexyladenosine and R(-)N(6)-(2-phenylisopropyl)adenosine in a receptor-mediated manner. The activation of both ionotropic 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors and metabotropic glutamate group I receptors also enhanced the evoked release. The NMDA-receptor-stimulated taurine release could be a part of the neuroprotective properties of taurine, being important particularly under cell-damaging conditions in the developing hippocampus and hence preventing excitotoxicity.

  2. Intrauterine growth restriction affects the preterm infant's hippocampus.

    PubMed

    Lodygensky, Gregory A; Seghier, Mohammed L; Warfield, Simon K; Tolsa, Cristina Borradori; Sizonenko, Stephane; Lazeyras, François; Hüppi, Petra S

    2008-04-01

    The hippocampus is known to be vulnerable to hypoxia, stress, and undernutrition, all likely to be present in fetal intrauterine growth restriction (IUGR). The effect of IUGR in preterm infants on the hippocampus was studied using 3D magnetic resonance imaging at term-equivalent age Thirteen preterm infants born with IUGR after placental insufficiency were compared with 13 infants with normal intrauterine growth age matched for gestational age. The hippocampal structural differences were defined using voxel-based morphometry and manual segmentation. The specific neurobehavioral function was evaluated by the Assessment of Preterm Infants' Behavior at term and at 24 mo of corrected age by a Bayley Scales of Infant and Toddler Development. Voxel-based morphometry detected significant gray matter volume differences in the hippocampus between the two groups. This finding was confirmed by manual segmentation of the hippocampus with a reduction of hippocampal volume after IUGR. The hippocampal volume reduction was further associated with functional behavioral differences at term-equivalent age in all six subdomains of the Assessment of Preterm Infants' Behavior but not at 24 mo of corrected age. We conclude that hippocampal development in IUGR is altered and might result from a combination of maternal corticosteroid hormone exposure, hypoxemia, and micronutrient deficiency.

  3. A Critical Role for the Hippocampus in the Valuation of Imagined Outcomes

    PubMed Central

    Lebreton, Maël; Bertoux, Maxime; Boutet, Claire; Lehericy, Stéphane; Dubois, Bruno; Fossati, Philippe; Pessiglione, Mathias

    2013-01-01

    Many choice situations require imagining potential outcomes, a capacity that was shown to involve memory brain regions such as the hippocampus. We reasoned that the quality of hippocampus-mediated simulation might therefore condition the subjective value assigned to imagined outcomes. We developed a novel paradigm to assess the impact of hippocampus structure and function on the propensity to favor imagined outcomes in the context of intertemporal choices. The ecological condition opposed immediate options presented as pictures (hence directly observable) to delayed options presented as texts (hence requiring mental stimulation). To avoid confounding simulation process with delay discounting, we compared this ecological condition to control conditions using the same temporal labels while keeping constant the presentation mode. Behavioral data showed that participants who imagined future options with greater details rated them as more likeable. Functional MRI data confirmed that hippocampus activity could account for subjects assigning higher values to simulated options. Structural MRI data suggested that grey matter density was a significant predictor of hippocampus activation, and therefore of the propensity to favor simulated options. Conversely, patients with hippocampus atrophy due to Alzheimer's disease, but not patients with Fronto-Temporal Dementia, were less inclined to favor options that required mental simulation. We conclude that hippocampus-mediated simulation plays a critical role in providing the motivation to pursue goals that are not present to our senses. PMID:24167442

  4. Analysis of cardiomyocyte movement in the developing murine heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Hisayuki; Yuasa, Shinsuke, E-mail: yuasa@a8.keio.jp; Tabata, Hidenori

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cellmore » cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.« less

  5. Hyperthyroidism modifies ecto-nucleotidase activities in synaptosomes from hippocampus and cerebral cortex of rats in different phases of development.

    PubMed

    Bruno, Alessandra Nejar; Da Silva, Rosane Souza; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Barreto-chaves, Maria Luiza M; Sarkis, João José Freitas

    2003-11-01

    Here we investigate the possible effects of the hyperthyroidism on the hydrolysis of the ATP to adenosine in the synaptosomes of hippocampus, cerebral cortex and blood serum of rats in different developmental phases. Manifestations of hyperthyroidism include anxiety, nervousness, tachycardia, physical hyperactivity and weight loss amongst others. The thyroid hormones modulate a number of physiological functions in central nervous system, including development, function, expression of adenosine A(1) receptors and transport of neuromodulator adenosine. Thus, hyperthyroidism was induced in male Wistar rats (5-, 60-, 150- and 330-day old) by daily injections of L-thyroxine (T4) for 14 days. Nucleotide hydrolysis was decreased by about 14-52% in both hippocampus and cerebral cortex in 5 to 60-day-old rats. These changes were also observed in rat blood serum. In addition, in 11-month-old rats, inhibition of ADP and AMP hydrolysis persisted in the hippocampus, whereas, in cerebral cortex, an increase in AMP hydrolysis was detected. Thus, hyperthyroidism affects the extracellular nucleotides balance and adenosine production, interfering in neurotransmitter release, development and others physiological processes in different systems.

  6. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    PubMed

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  7. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    PubMed

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloid-β peptides mimics only inherited (familiar) Alzheimer's disease, which accounts for <1% of all patients with Alzheimer's disease. The inherited form is even regarded a 'rare' disease according to the regulations for funding of the European Union (www.erare.eu). Here, we show that mice that are double-deficient for neprilysin (encoded by Mme), one major amyloid-β-degrading enzyme, and the ABC transporter ABCC1, a major contributor to amyloid-β clearance from the brain, develop various aspects of sporadic Alzheimer's disease mimicking the clinical stage of mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloid-β oligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows investigations without artificial overexpression of inherited Alzheimer's disease genes. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. A Key Role for Nectin-1 in the Ventral Hippocampus in Contextual Fear Memory

    PubMed Central

    Grosse, Jocelyn; Krummenacher, Claude; Sandi, Carmen

    2013-01-01

    Nectins are cell adhesion molecules that are widely expressed in the brain. Nectin expression shows a dynamic spatiotemporal regulation, playing a role in neural migratory processes during development. Nectin-1 and nectin-3 and their heterophilic trans-interactions are important for the proper formation of synapses. In the hippocampus, nectin-1 and nectin-3 localize at puncta adherentia junctions and may play a role in synaptic plasticity, a mechanism essential for memory and learning. We evaluated the potential involvement of nectin-1 and nectin-3 in memory consolidation using an emotional learning paradigm. Rats trained for contextual fear conditioning showed transient nectin-1—but not nectin-3—protein upregulation in synapse-enriched hippocampal fractions at about 2 h posttraining. The upregulation of nectin-1 was found exclusively in the ventral hippocampus and was apparent in the synaptoneurosomal fraction. This upregulation was induced by contextual fear conditioning but not by exposure to context or shock alone. When an antibody against nectin-1, R165, was infused in the ventral-hippocampus immediately after training, contextual fear memory was impaired. However, treatment with the antibody in the dorsal hippocampus had no effect in contextual fear memory formation. Similarly, treatment with the antibody in the ventral hippocampus did not interfere with acoustic memory formation. Further control experiments indicated that the effects of ventral hippocampal infusion of the nectin-1 antibody in contextual fear memory cannot be ascribed to memory non-specific effects such as changes in anxiety-like behavior or locomotor behavior. Therefore, we conclude that nectin-1 recruitment to the perisynaptic environment in the ventral hippocampus plays an important role in the formation of contextual fear memories. Our results suggest that these mechanisms could be involved in the connection of emotional and contextual information processed in the amygdala and dorsal hippocampus, respectively, thus opening new venues for the development of treatments to psychopathological alterations linked to impaired contextualization of emotions. PMID:23418609

  9. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study.

    PubMed

    Hami, Javad; Kheradmand, Hamed; Haghir, Hossein

    2014-03-01

    Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus.

  10. MRI and MRS alterations in the preclinical phase of murine prion disease: association with neuropathological and behavioural changes.

    PubMed

    Broom, Kerry A; Anthony, Daniel C; Lowe, John P; Griffin, Julian L; Scott, Helen; Blamire, Andrew M; Styles, Peter; Perry, V Hugh; Sibson, Nicola R

    2007-06-01

    Prion diseases are fatal chronic neurodegenerative diseases. Previous qualitative magnetic resonance imaging (MRI) and spectroscopy (MRS) studies report conflicting results in the symptomatic stages of the disease, but little work has been carried out during the earlier stages of the disease. Here we have used the murine ME7 model of prion disease to quantitatively investigate MRI and MRS changes during the period prior to the onset of overt clinical signs (20+ weeks) and have correlated these with pathological and behavioural abnormalities. Using in vivo MRI, at the later stages of the preclinical period (18 weeks) the diffusion of tissue water was significantly reduced, coinciding with significant microglial activation and behavioural hyperactivity. Using in vivo MRS, we found early (12 weeks) decreases in the ratio of N-acetyl aspartate to both choline (NAA/Cho) and creatine (NAA/Cr) in the thalamus and hippocampus, which were associated with early behavioural deficits. Ex vivo MRS of brain extracts confirmed and extended these findings, showing early (8-12 weeks) decreases in both the neuronal metabolites NAA and glutamate, and the metabolic metabolites lactate and glucose. Increases in the glial metabolite myo-inositol were observed at later stages when microglial and astrocyte activation is substantial. These changes in MRI and MRS signals, which precede overt clinical signs of disease, could provide insights into the pathogenesis of this disease and may enable early detection of pathology.

  11. In vivo detection of free radicals in mouse septic encephalopathy using molecular MRI and immuno-spin trapping.

    PubMed

    Towner, Rheal A; Garteiser, Philippe; Bozza, Fernando; Smith, Nataliya; Saunders, Debra; d' Avila, Joana C P; Magno, Flora; Oliveira, Marcus F; Ehrenshaft, Marilyn; Lupu, Florea; Silasi-Mansat, Robert; Ramirez, Dario C; Gomez-Mejiba, Sandra E; Mason, Ronald P; Castro Faria-Neto, Hugo C

    2013-12-01

    Free radicals are known to play a major role in sepsis. Combined immuno-spin trapping and molecular magnetic resonance imaging (MRI) was used to detect in vivo and in situ levels of free radicals in murine septic encephalopathy after cecal ligation and puncture (CLP). DMPO (5,5-dimethyl pyrroline N-oxide) was injected over 6h after CLP, before administration of an anti-DMPO probe (anti-DMPO antibody bound to albumin-gadolinium-diethylene triamine pentaacetic acid-biotin MRI targeting contrast agent). In vitro assessment of the anti-DMPO probe in oxidatively stressed mouse astrocytes significantly decreased T1 relaxation (p < 0.0001) compared to controls. MRI detected the presence of anti-DMPO adducts via a substantial decrease in %T1 change within the hippocampus, striatum, occipital, and medial cortex brain regions (p < 0.01 for all) in septic animals compared to shams, which was sustained for over 60 min (p < 0.05 for all). Fluorescently labeled streptavidin was used to target the anti-DMPO probe biotin, which was elevated in septic brain, liver, and lungs compared to sham. Ex vivo DMPO adducts (qualitative) and oxidative products, including 4-hydroxynonenal and 3-nitrotyrosine (quantitative, p < 0.05 for both), were elevated in septic brains compared to shams. This is the first study that has reported on the detection of in vivo and in situ levels of free radicals in murine septic encephalopathy. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Mechanisms for widespread hippocampal involvement in cognition

    PubMed Central

    Shohamy, Daphna; Turk-Browne, Nicholas B.

    2014-01-01

    The quintessential memory system in the human brain — the hippocampus and surrounding medial temporal lobe (MTL) — is often treated as a module for the formation of conscious, or declarative memories. However, growing evidence suggests that the hippocampus plays a broader role in memory and cognition and that theories organizing memory into strictly dedicated systems may need to be updated. We first consider the historical evidence for the specialized role of the hippocampus in declarative memory. Then, we describe the serendipitous encounter that motivated this special section, based on parallel research from our labs that suggested a more pervasive contribution of the hippocampus to cognition beyond declarative memory. Finally, we develop a theoretical framework that describes two general mechanisms for how the hippocampus interacts with other brain systems and cognitive processes: the Memory Modulation Hypothesis, in which mnemonic representations in the hippocampus modulate the operation of other systems, and the Adaptive Function Hypothesis, in which specialized computations in the hippocampus are recruited as a component of both mnemonic and non-mnemonic functions. This framework is consistent with an emerging view that the most fertile ground for discovery in cognitive psychology and neuroscience lies at the interface between parts of the mind and brain that have traditionally been studied in isolation. PMID:24246058

  13. Adult onset-hypothyroidism increases response latency and long-term potentiation (LTP) in rat hippocampus

    EPA Science Inventory

    Thyroid hormones (TH) influence central nervous system (CNS) function during both development and in adulthood. The hippocampus is critical for some types of learning and memory and is particularly sensitive to thyroid hormone deficiency. Hypothyroidism in adulthood has been ass...

  14. Structural development of the hippocampus and episodic memory: developmental differences along the anterior/posterior axis.

    PubMed

    DeMaster, Dana; Pathman, Thanujeni; Lee, Joshua K; Ghetti, Simona

    2014-11-01

    The hippocampus is critically involved in episodic memory, yet relatively little is known about how the development of this structure contributes to the development of episodic memory during middle to late childhood. Previous research has inconsistently reported associations between hippocampal volume and episodic memory performance during this period. We argue that this inconsistency may be due to assessing the hippocampus as a whole, and propose to examine associations separately for subregions along the longitudinal axis of the hippocampus. In the present study, we examined age-related differences in volumes of the hippocampal head, body, and tail, and collected episodic memory measures in children ages 8-11 years and young adults (N = 62). We found that adults had a smaller right hippocampal head, larger hippocampal body bilaterally, and smaller right hippocampal tail compared with children. In adults, but not in children, better episodic memory performance was associated with smaller right hippocampal head and larger hippocampal body. In children, but not in adults, better episodic memory was associated with larger left hippocampal tail. Overall, the results suggest that protracted development of hippocampal subregions contribute to age-related differences in episodic memory. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. The Learning Hippocampus: Education and Experience-Dependent Plasticity

    ERIC Educational Resources Information Center

    Wenger, Elisabeth; Lövdén, Martin

    2016-01-01

    The hippocampal formation of the brain plays a crucial role in declarative learning and memory while at the same time being particularly susceptible to environmental influences. Education requires a well-functioning hippocampus, but may also influence the development of this brain structure. Understanding these bidirectional influences may have…

  16. Reward-Based Learning Drives Rapid Sensory Signals in Medial Prefrontal Cortex and Dorsal Hippocampus Necessary for Goal-Directed Behavior.

    PubMed

    Le Merre, Pierre; Esmaeili, Vahid; Charrière, Eloïse; Galan, Katia; Salin, Paul-A; Petersen, Carl C H; Crochet, Sylvain

    2018-01-03

    The neural circuits underlying learning and execution of goal-directed behaviors remain to be determined. Here, through electrophysiological recordings, we investigated fast sensory processing across multiple cortical areas as mice learned to lick a reward spout in response to a brief deflection of a single whisker. Sensory-evoked signals were absent from medial prefrontal cortex and dorsal hippocampus in naive mice, but developed with task learning and correlated with behavioral performance in mice trained in the detection task. The sensory responses in medial prefrontal cortex and dorsal hippocampus occurred with short latencies of less than 50 ms after whisker deflection. Pharmacological and optogenetic inactivation of medial prefrontal cortex or dorsal hippocampus impaired behavioral performance. Neuronal activity in medial prefrontal cortex and dorsal hippocampus thus appears to contribute directly to task performance, perhaps providing top-down control of learned, context-dependent transformation of sensory input into goal-directed motor output. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Human hippocampus arbitrates approach-avoidance conflict.

    PubMed

    Bach, Dominik R; Guitart-Masip, Marc; Packard, Pau A; Miró, Júlia; Falip, Mercè; Fuentemilla, Lluís; Dolan, Raymond J

    2014-03-03

    Animal models of human anxiety often invoke a conflict between approach and avoidance. In these, a key behavioral assay comprises passive avoidance of potential threat and inhibition, both thought to be controlled by ventral hippocampus. Efforts to translate these approaches to clinical contexts are hampered by the fact that it is not known whether humans manifest analogous approach-avoidance dispositions and, if so, whether they share a homologous neurobiological substrate. Here, we developed a paradigm to investigate the role of human hippocampus in arbitrating an approach-avoidance conflict under varying levels of potential threat. Across four experiments, subjects showed analogous behavior by adapting both passive avoidance behavior and behavioral inhibition to threat level. Using functional magnetic resonance imaging (fMRI), we observe that threat level engages the anterior hippocampus, the human homolog of rodent ventral hippocampus. Testing patients with selective hippocampal lesions, we demonstrate a causal role for the hippocampus with patients showing reduced passive avoidance behavior and inhibition across all threat levels. Our data provide the first human assay for approach-avoidance conflict akin to that of animal anxiety models. The findings bridge rodent and human research on passive avoidance and behavioral inhibition and furnish a framework for addressing the neuronal underpinnings of human anxiety disorders, where our data indicate a major role for the hippocampus. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Combining Theory, Model, and Experiment to Explain How Intrinsic Theta Rhythms Are Generated in an In Vitro Whole Hippocampus Preparation without Oscillatory Inputs

    PubMed Central

    Ferguson, Katie A.

    2017-01-01

    Abstract Scientists have observed local field potential theta rhythms (3–12 Hz) in the hippocampus for decades, but understanding the mechanisms underlying their generation is complicated by their diversity in pharmacological and frequency profiles. In addition, interactions with other brain structures and oscillatory drives to the hippocampus during distinct brain states has made it difficult to identify hippocampus-specific properties directly involved in theta generation. To overcome this, we develop cellular-based network models using a whole hippocampus in vitro preparation that spontaneously generates theta rhythms. Building on theoretical and computational analyses, we find that spike frequency adaptation and postinhibitory rebound constitute a basis for theta generation in large, minimally connected CA1 pyramidal (PYR) cell network models with fast-firing parvalbumin-positive (PV+) inhibitory cells. Sparse firing of PYR cells and large excitatory currents onto PV+ cells are present as in experiments. The particular theta frequency is more controlled by PYR-to-PV+ cell interactions rather than PV+-to-PYR cell interactions. We identify two scenarios by which theta rhythms can emerge, and they can be differentiated by the ratio of excitatory to inhibitory currents to PV+ cells, but not to PYR cells. Only one of the scenarios is consistent with data from the whole hippocampus preparation, which leads to the prediction that the connection probability from PV+ to PYR cells needs to be larger than from PYR to PV+ cells. Our models can serve as a platform on which to build and develop an understanding of in vivo theta generation. PMID:28791333

  19. Improved Murine Blastocyst Quality and Development in a Single Culture Medium Compared to Sequential Culture Media

    PubMed Central

    Hennings, Justin M.; Zimmer, Randall L.; Nabli, Henda; Davis, J. Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L.

    2015-01-01

    Objective: Validate single versus sequential culture media for murine embryo development. Design: Prospective laboratory experiment. Setting: Assisted Reproduction Laboratory. Animals: Murine embryos. Interventions: Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. Main Outcome Measures: On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4’,6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Results: Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. Conclusions: Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed. PMID:26668049

  20. Improved Murine Blastocyst Quality and Development in a Single Culture Medium Compared to Sequential Culture Media.

    PubMed

    Hennings, Justin M; Zimmer, Randall L; Nabli, Henda; Davis, J Wade; Sutovsky, Peter; Sutovsky, Miriam; Sharpe-Timms, Kathy L

    2016-03-01

    Validate single versus sequential culture media for murine embryo development. Prospective laboratory experiment. Assisted Reproduction Laboratory. Murine embryos. Thawed murine zygotes cultured for 3 or 5 days (d3 or d5) in single or sequential embryo culture media developed for human in vitro fertilization. On d3, zygotes developing to the 8 cell (8C) stage or greater were quantified using 4',6-diamidino-2-phenylindole (DAPI), and quality was assessed by morphological analysis. On d5, the number of embryos reaching the blastocyst stage was counted. DAPI was used to quantify total nuclei and inner cell mass nuclei. Localization of ubiquitin C-terminal hydrolase L1 (UCHL1) and ubiquitin C-terminal hydrolase L3 (UCHL3) was reference points for evaluating cell quality. Comparing outcomes in single versus to sequential media, the odds of embryos developing to the 8C stage on d3 were 2.34 time greater (P = .06). On d5, more embryos reached the blastocyst stage (P = <.0001), hatched, and had significantly more trophoblast cells (P = .005) contributing to the increased total cell number. Also at d5, localization of distinct cytoplasmic UCHL1 and nuclear UCHL3 was found in high-quality hatching blastocysts. Localization of UCHL1 and UCHL3 was diffuse and inappropriately dispersed throughout the cytoplasm in low-quality nonhatching blastocysts. Single medium yields greater cell numbers, an increased growth rate, and more hatching of murine embryos. Cytoplasmic UCHL1 and nuclear UHCL3 localization patterns were indicative of embryo quality. Our conclusions are limited to murine embryos but one might speculate that single medium may also be more beneficial for human embryo culture. Human embryo studies are needed. © The Author(s) 2015.

  1. Multi-scale hippocampal parcellation improves atlas-based segmentation accuracy

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew J.; McHugo, Maureen; Heckers, Stephan; Landman, Bennett A.

    2017-02-01

    Known for its distinct role in memory, the hippocampus is one of the most studied regions of the brain. Recent advances in magnetic resonance imaging have allowed for high-contrast, reproducible imaging of the hippocampus. Typically, a trained rater takes 45 minutes to manually trace the hippocampus and delineate the anterior from the posterior segment at millimeter resolution. As a result, there has been a significant desire for automated and robust segmentation of the hippocampus. In this work we use a population of 195 atlases based on T1-weighted MR images with the left and right hippocampus delineated into the head and body. We initialize the multi-atlas segmentation to a region directly around each lateralized hippocampus to both speed up and improve the accuracy of registration. This initialization allows for incorporation of nearly 200 atlases, an accomplishment which would typically involve hundreds of hours of computation per target image. The proposed segmentation results in a Dice similiarity coefficient over 0.9 for the full hippocampus. This result outperforms a multi-atlas segmentation using the BrainCOLOR atlases (Dice 0.85) and FreeSurfer (Dice 0.75). Furthermore, the head and body delineation resulted in a Dice coefficient over 0.87 for both structures. The head and body volume measurements also show high reproducibility on the Kirby 21 reproducibility population (R2 greater than 0.95, p < 0.05 for all structures). This work signifies the first result in an ongoing work to develop a robust tool for measurement of the hippocampus and other temporal lobe structures.

  2. Parallel Effects of Methamphetamine on Anxiety and CCL3 in Humans and a Genetic Mouse Model of High Methamphetamine Intake

    PubMed Central

    Huckans, Marilyn; Wilhelm, Clare J.; Phillips, Tamara J.; Huang, Elaine T.; Hudson, Rebekah; Loftis, Jennifer M.

    2018-01-01

    Background Methamphetamine (MA) abuse causes immune dysfunction and neuropsychiatric impairment. The mechanisms underlying these deficits remain unidentified. Methods The effects of MA on anxiety-like behavior and immune function were investigated in mice selectively bred to voluntarily consume high amounts of MA [i.e., MA high drinking (MAHDR) mice]. MA (or saline) was administered to mice using a chronic (14-day), binge-like model. Performance in the elevated zero maze (EZM) was determined 5 days after the last MA dose to examine anxiety-like behavior. Cytokine and chemokine expressions were measured in the hippocampus using quantitative polymerase chain reaction (qPCR). Human studies were also conducted to evaluate symptoms of anxiety using the General Anxiety Disorder-7 Scale in adults with and without a history of MA dependence. Plasma samples collected from human research participants were used for confirmatory analysis of murine qPCR results using an enzyme-linked immunosorbent assay. Results During early remission from MA, MAHDR mice exhibited increased anxiety-like behavior on the EZM and reduced expression of chemokine (C-C motif) ligand 3 (ccl3) in the hippocampus relative to saline-treated mice. Human adults actively dependent on MA and those in early remission had elevated symptoms of anxiety as well as reductions in plasma levels of CCL3, relative to adults with no history of MA abuse. Conclusions The results highlight the complex effects of MA on immune and behavioral function and suggest that alterations in CCL3 signaling may contribute to the mood impairments observed during remission from MA addiction. PMID:29402784

  3. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction

    PubMed Central

    Kutlu, Munir Gunes

    2016-01-01

    It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates. PMID:27634143

  4. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2016-10-01

    It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates. © 2016 Kutlu and Gould; Published by Cold Spring Harbor Laboratory Press.

  5. Volume of hippocampal subfields and episodic memory in childhood and adolescence.

    PubMed

    Lee, Joshua K; Ekstrom, Arne D; Ghetti, Simona

    2014-07-01

    Episodic memory critically depends on the hippocampus to bind the features of an experience into memory. Episodic memory develops in childhood and adolescence, and hippocampal changes during this period may contribute to this development. Little is known, however, about how the hippocampus contributes to episodic memory development. The hippocampus is comprised of several cytoarchitectural subfields with functional significance for episodic memory. However, hippocampal subfields have not been assessed in vivo during child development, nor has their relation with episodic memory been assessed during this period. In the present study, high-resolution T2-weighted images of the hippocampus were acquired in 39 children and adolescents aged 8 to 14 years (M=11.30, SD=2.38), and hippocampal subfields were segmented using a protocol previously validated in adult populations. We first validated the method in children and adolescents and examined age-related differences in hippocampal subfields and correlations between subfield volumes and episodic memory. Significant age-related increases in the subfield volume were observed into early adolescence in the right CA3/DG and CA1. The right CA3/DG subfield volumes were positively correlated with accurate episodic memory for item-color relations, and the right CA3/DG and subiculum were negatively correlated with item false alarm rates. Subfield development appears to follow a protracted developmental trajectory, and likely plays a pivotal role in episodic memory development. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana K

    2016-06-01

    Neuropsychological studies in children who are exposed to lead during their early brain development have shown to develop behavioural and cognitive deficit. The aim of the present study was to assess the cellular damage in hippocampus, amygdala and cerebellum of rat pups exposed to lead during different periods of early brain development. Five groups of rat pups were investigated. (a) Control group (n = 8) (mothers of these rats were given normal drinking water throughout gestation and lactation), (b) pregestation lead-exposed group (n = 8) (mothers of these rats were exposed to 0.2% lead acetate in the drinking water for one month before conception), (c) gestation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout gestation [gestation day 01 to day 21]), (d) lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout lactation [postnatal day 01 to day 21]) and (e) gestation and lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate throughout gestation and lactation). On postnatal day 30, rat pups of all the groups were killed. Numbers of surviving neurons in the hippocampus, amygdala and cerebellum regions were counted using cresyl violet staining technique. Histological data indicate that lead exposure caused significant damage to neurons of hippocampus, amygdala and cerebellum regions in all lead-exposed groups except lactation lead-exposed group. The extent of damage to neurons of hippocampus, amygdala and cerebellum regions in lactation lead-exposed group was comparable to gestation and lactation groups even though the duration of lead exposure was much less in lactation lead-exposed group. To conclude, the postnatal period of brain development seems to be more vulnerable to lead neurotoxicity compared to prenatal period of brain development. © The Author(s) 2014.

  7. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    PubMed

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  8. A Stereological Study of Synapse Number in the Epileptic Human Hippocampus

    PubMed Central

    Alonso-Nanclares, Lidia; Kastanauskaite, Asta; Rodriguez, Jose-Rodrigo; Gonzalez-Soriano, Juncal; DeFelipe, Javier

    2011-01-01

    Hippocampal sclerosis is the most frequent pathology encountered in resected mesial temporal structures from patients with intractable temporal lobe epilepsy (TLE). Here, we have used stereological methods to compare the overall density of synapses and neurons between non-sclerotic and sclerotic hippocampal tissue obtained by surgical resection from patients with TLE. Specifically, we examined the possible changes in the subiculum and CA1, regions that seem to be critical for the development and/or maintenance of seizures in these patients. We found a remarkable decrease in synaptic and neuronal density in the sclerotic CA1, and while the subiculum from the sclerotic hippocampus did not display changes in synaptic density, the neuronal density was higher. Since the subiculum from the sclerotic hippocampus displays a significant increase in neuronal density, as well as a various other neurochemical changes, we propose that the apparently normal subiculum from the sclerotic hippocampus suffers profound alterations in neuronal circuits at both the molecular and synaptic level that are likely to be critical for the development or maintenance of seizure activity. PMID:21390290

  9. Tissue-specific distributions of inorganic arsenic and its methylated metabolites, especially in cerebral cortex, cerebellum and hippocampus of mice after a single oral administration of arsenite.

    PubMed

    Li, Jinlong; Duan, Xiaoxu; Dong, Dandan; Zhang, Yang; Zhao, Lu; Li, Wei; Chen, Jinli; Sun, Guifan; Li, Bing

    2017-09-01

    Groundwater contaminated with inorganic arsenic (iAs) is the main source of human exposure to arsenic and generates a global health issue. In this study, the urinary excretion, as well as the time-course distributions of various arsenic species in murine tissues, especially in different brain regions were determined after a single oral administration of 2.5, 5, 10 and 20mg/kg sodium arsenite (NaAsO 2 ). Our data showed that the peak times of urinary, hepatic and nephritic total arsenic (TAs) were happened at about 1h, then TAs levels decreased gradually and almost could not be observed after 72h. On contrast, the time course of TAs in lung, urinary bladder and different brain regions exhibited an obvious process of accumulation and elimination,and the peak times were nearly at 6h to 9h. TAs levels of 10 and 20mg/kg NaAsO 2 groups were significantly higher than 2.5 and 5mg/kg groups, and the amounts of TAs in 5mg/kg groups were in the order of liver>lung>kidney>urinary bladder>hippocampus>cerebral cortex>cerebellum. In addition, iAs was the most abundant species in liver and kidney, while lung and urinary bladder accumulated the highest concentrations of dimethylated arsenicals (DMA). What's more, the distributions of arsenic species were not homogeneous among different brain regions, as DMA was the sole species in cerebral cortex and cerebellum, while extremely high concentrations and percentages of monomethylated arsenicals (MMA) were found in hippocampus. These results demonstrated that distributions of iAs and its methylated metabolites were tissue-specific and even not homogeneous among different brain regions, which must be considered as to the tissue- and region-specific toxicity of iAs exposure. Our results thus provide useful information for clarifying and reducing the uncertainty in the risk assessment for this metalloid. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Time-Dependent Alterations in the Expression of NMDA Receptor Subunits along the Dorsoventral Hippocampal Axis in an Animal Model of Nascent Psychosis.

    PubMed

    Dubovyk, Valentyna; Manahan-Vaughan, Denise

    2018-04-10

    Psychosis is a mental condition that is characterized by hallucinations, delusions, disordered thought, as well as socio-emotional and cognitive impairments. Once developed, it tends to progress into a chronic psychotic illness. Here, the duration of untreated psychosis plays a crucial role: the earlier the treatment begins, relative to the first episode of the disease, the better the patient's functional prognosis. To what extent the success of early interventions relate to progressive changes at the neurotransmitter receptor level is as yet unclear. In fact, very little is known as to how molecular changes develop, transform, and become established following the first psychotic event. One neurotransmitter receptor for which a specific role in psychosis has been discussed is the N-methyl-d-aspartate receptor (NMDAR). This receptor is especially important for information encoding in the hippocampus. The hippocampus is one of the loci of functional change in psychosis, to which a role in the pathophysiology of psychosis has been ascribed. Here, we examined whether changes in NMDAR subunit expression occur along the dorsoventral axis of the hippocampus 1 week and 3 months after systemic treatment with an NMDAR antagonist (MK801) that initiates a psychosis-like state in adult rats. We found early (1 week) upregulation of the GluN2B levels in the dorso-intermediate hippocampus and late (3 month) downregulation of GluN2A expression across the entire CA1 region. The ventral hippocampus did not exhibit subunit expression changes. These data suggest that a differing vulnerability of the hippocampal longitudinal axis may occur in response to MK801-treatment and provide a time-resolved view of the putative development of pathological changes of NMDAR subunit expression in the hippocampus that initiate with an emulated first episode and progress through to the chronic stabilization of a psychosis-like state in rodents.

  11. Medial temporal structures and memory functions in adolescents with heavy cannabis use

    PubMed Central

    Ashtari, Manzar; Avants, Brian; Cyckowski, Laura; Cervellione, Kelly L.; Roofeh, David; Cook, Philip; Gee, James; Sevy, Serge; Kumra, Sanjiv

    2011-01-01

    Converging lines of evidence suggest an adverse effect of heavy cannabis use on adolescent brain development, particularly on the hippocampus. In this preliminary study, we compared hippocampal morphology in 14 “treatment-seeking” adolescents (aged 18-20) with a history of prior heavy-cannabis use (5.8 joints/day) after an average of 6.7 months of drug abstinence, and 14 demographically matched normal controls. Participants underwent a high-resolution 3D MRI as well as cognitive testing including the California Verbal Learning Test (CVLT). Heavy-cannabis users showed significantly smaller volumes of the right (p< .04) and left (p< .02) hippocampus, but no significant differences in the amygdala region compared to controls. In controls, larger hippocampus volumes were observed to be significantly correlated with higher CVLT verbal learning and memory scores, but these relationships were not observed in cannabis users. In cannabis users, a smaller right hippocampus volume was correlated with a higher amount of cannabis use (r= - .57, p< .03). These data support a hypothesis that heavy-cannabis use may have an adverse effect on hippocampus development. These findings, after an average 6.7 month of supervised abstinence, lend support to a theory that cannabis use may impart long-term structural and functional damage. Alternatively, the observed hippocampal volumetric abnormalities may represent a risk factor for cannabis dependence. These data have potential significance for understanding the observed relationship between early cannabis exposure during adolescence and subsequent development of adult psychopathology reported in the literature for schizophrenia and related psychotic disorders. PMID:21296361

  12. CD8+ T Cells Contribute to the Development of Coronary Arteritis in the Lactobacillus casei Cell Wall Extract-Induced Murine Model of Kawasaki Disease.

    PubMed

    Noval Rivas, Magali; Lee, Youngho; Wakita, Daiko; Chiba, Norika; Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Fishbein, Michael C; Lehman, Thomas J A; Crother, Timothy R; Arditi, Moshe

    2017-02-01

    Kawasaki disease (KD) is the leading cause of acquired heart disease among children in developed countries. Coronary lesions in KD in humans are characterized by an increased presence of infiltrating CD3+ T cells; however, the specific contributions of the different T cell subpopulations in coronary arteritis development remain unknown. Therefore, we sought to investigate the function of CD4+ and CD8+ T cells, Treg cells, and natural killer (NK) T cells in the pathogenesis of KD. We addressed the function of T cell subsets in KD development by using a well-established murine model of Lactobacillus casei cell wall extract (LCWE)-induced KD vasculitis. We determined which T cell subsets were required for development of KD vasculitis by using several knockout murine strains and depleting monoclonal antibodies. LCWE-injected mice developed coronary lesions characterized by the presence of inflammatory cell infiltrates. Frequently, this chronic inflammation resulted in complete occlusion of the coronary arteries due to luminal myofibroblast proliferation (LMP) as well as the development of coronary arteritis and aortitis. We found that CD8+ T cells, but not CD4+ T cells, NK T cells, or Treg cells, were required for development of KD vasculitis. The LCWE-induced murine model of KD vasculitis mimics many histologic features of the disease in humans, such as the presence of CD8+ T cells and LMP in coronary artery lesions as well as epicardial coronary arteritis. Moreover, CD8+ T cells functionally contribute to the development of KD vasculitis in this murine model. Therapeutic strategies targeting infiltrating CD8+ T cells might be useful in the management of KD in humans. © 2016, American College of Rheumatology.

  13. Neuroprotection mediated by inhibition of calpain during acute viral encephalitis

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Mirchia, Kanish; Sauer, Brian M.; McGovern, Renee M.; Reid, Joel M.; Buenz, Eric J.

    2016-01-01

    Neurologic complications associated with viral encephalitis, including seizures and cognitive impairment, are a global health issue, especially in children. We previously showed that hippocampal injury during acute picornavirus infection in mice is associated with calpain activation and is the result of neuronal death triggered by brain-infiltrating inflammatory monocytes. We therefore hypothesized that treatment with a calpain inhibitor would protect neurons from immune-mediated bystander injury. C57BL/6J mice infected with the Daniel’s strain of Theiler’s murine encephalomyelitis virus were treated with the FDA-approved drug ritonavir using a dosing regimen that resulted in plasma concentrations within the therapeutic range for calpain inhibition. Ritonavir treatment significantly reduced calpain activity in the hippocampus, protected hippocampal neurons from death, preserved cognitive performance, and suppressed seizure escalation, even when therapy was initiated 36 hours after disease onset. Calpain inhibition by ritonavir may be a powerful tool for preserving neurons and cognitive function and preventing neural circuit dysregulation in humans with neuroinflammatory disorders. PMID:27345730

  14. mTORC2 controls actin polymerization required for consolidation of long-term memory

    PubMed Central

    Huang, Wei; Zhu, Ping Jun; Zhang, Shixing; Zhou, Hongyi; Stoica, Loredana; Galiano, Mauricio; Krnjević, Krešimir; Roman, Gregg; Costa-Mattioli, Mauro

    2013-01-01

    A major goal of biomedical research has been the identification of molecular mechanisms that can enhance memory. Here we report a novel signaling pathway that regulates the conversion from short- to long-term memory. The mTOR complex 2 (mTORC2), which contains the key regulatory protein Rictor (Rapamycin-Insensitive Companion of mTOR), was discovered only recently, and little is known about its physiological role. We show that conditional deletion of rictor in the postnatal murine forebrain greatly reduces mTORC2 activity and selectively impairs both long-term memory (LTM) and the late (but not the early) phase of hippocampal long-term potentiation (LTP). Actin polymerization is reduced in the hippocampus of mTORC2-deficient mice and its restoration rescues both L-LTP and LTM. More importantly, a compound that selectively promotes mTORC2 activity converts early-LTP into late-LTP and enhances LTM. These findings indicate that mTORC2 could be a novel therapeutic target for the treatment of cognitive dysfunction. PMID:23455608

  15. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice

    PubMed Central

    Poole, Rachel L.; Braak, David; Gould, Thomas J.

    2015-01-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, this suggests that the developing hippocampus may be sensitive to the effects of caffeine. PMID:25827925

  16. Volumetric and morphological characteristics of the hippocampus are associated with progression to schizophrenia in patients with first-episode psychosis.

    PubMed

    Sauras, R; Keymer, A; Alonso-Solis, A; Díaz, A; Molins, C; Nuñez, F; Rabella, M; Roldán, A; Grasa, E; Alvarez, E; Portella, M J; Corripio, I

    2017-09-01

    Abnormalities in the hippocampus have been implicated in the pathophysiology of psychosis. However, it is still unclear whether certain abnormalities are a pre-existing vulnerability factor, a sign of disease progression or a consequence of environmental factors. We hypothesized that first-episode psychosis patients who progress to schizophrenia after one year of follow up will display greater volumetric and morphological changes from the very beginning of the disorder. We studied the hippocampus of 41 patients with a first-episode psychosis and 41 matched healthy controls. MRI was performed at the time of the inclusion in the study. After one year, the whole sample was reevaluated and divided in two groups depending on the diagnoses (schizophrenia vs. non-schizophrenia). Patients who progressed to schizophrenia showed a significantly smaller left hippocampus volume than control group and no-schizophrenia group (F=3.54; df=2, 77; P=0.03). We also found significant differences in the morphology of the anterior hippocampus (CA1) of patients with first-episode psychosis who developed schizophrenia compared with patients who did not. These results are consistent with the assumption of hyperfunctioning dopaminergic cortico-subcortical circuits in schizophrenia, which might be related with an alteration of subcortical structures, such as the hippocampus, along the course of the disease. According with these results, hippocampus abnormalities may serve as a prognostic marker of clinical outcome in patients with a first-episode psychosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Learning and memory depend on fibroblast growth factor receptor 2 functioning in hippocampus.

    PubMed

    Stevens, Hanna E; Jiang, Ginger Y; Schwartz, Michael L; Vaccarino, Flora M

    2012-06-15

    Fibroblast growth factor (FGF) signaling controls self-renewal of neural stem cells during embryonic telencephalic development. FGF receptor 2 (FGFR2) has a significant role in the production of cortical neurons during embryogenesis, but its role in the hippocampus during development and in adulthood has not been described. Here we dissociate the role of FGFR2 in the hippocampus during development and during adulthood with the use of embryonic knockout and inducible knockout mice. Embryonic knockout of FGFR2 causes a reduction of hippocampal volume and impairment in adult spatial memory in mice. Spatial reference memory, as assessed by performance on the water maze probe trial, was correlated with reduced hippocampal parvalbumin+ cells, whereas short-term learning was correlated with reduction in immature neurons in the dentate gyrus. Furthermore, short-term learning and newly generated neurons in the dentate gyrus were deficient even when FGFR2 was lacking only in adulthood. Taken together, these findings support a dual role for FGFR2 in hippocampal short-term learning and long-term reference memory, which appear to depend on the abundance of two separate cellular components, parvalbumin interneurons and newly generated granule cells in the hippocampus. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Effects of acute and chronic methamphetamine administration on cynomolgus monkey hippocampus structure and cellular transcriptome.

    PubMed

    Choi, Mi Ran; Chun, Ji-Won; Kwak, Su Min; Bang, Sol Hee; Jin, Yeung-Bae; Lee, Youngjeon; Kim, Han-Na; Chang, Kyu-Tae; Chai, Young Gyu; Lee, Sang-Rae; Kim, Dai-Jin

    2018-05-23

    Methamphetamine (MA), a psychostimulant abused worldwide, gives rise to neurotoxicity in the hippocampus, resulting in cognitive impairments and hippocampal volume reduction. The cellular and molecular mechanisms associated with hippocampal impairments due to MA remain unknown. The aim of this study was to investigate the effects of MA on structural alterations and gene expressions in the hippocampus. We analyzed the pattern of volumetric changes in the hippocampus using magnetic resonance imaging (MRI) after acute and chronic administration of MA to cynomolgus macaques. In addition, we performed large-scale transcriptome profiling in the hippocampus using RNA-Seq technology. The hippocampus in response to acute and chronic MA exhibited a significant volumetric atrophy compared with the hippocampus of controls. The genes associated with cytoskeleton organization and phagocytosis were downregulated in the acute MA-treated group compared to the control group. On the other hand, genes associated with synaptic transmission, regulation of neuron differentiation and regulation of neurogenesis were downregulated in the chronic MA-treated group. We confirmed that expression patterns for ADM, BMP4, CHRD, PDYN, UBA1, profilin 2 (PFN2), ENO2 and NSE mRNAs were similar to the results from RNA-Seq based on quantitative RT-PCR. In particular, PFN2 mRNA and protein expression levels, which play important roles in actin cytoskeleton dynamics, were decreased by acute and chronic MA administration. These results not only aid the understanding of cellular and molecular mechanisms regulated by MA in the hippocampus but also suggest basic information aiding biomarker and novel drug development for treating hippocampal impairment caused by MA abuse. Copyright © 2017. Published by Elsevier Inc.

  19. Protective upregulation of activating transcription factor-3 against glutamate neurotoxicity in neuronal cells under ischemia.

    PubMed

    Takarada, Takeshi; Kou, Miki; Hida, Miho; Fukumori, Ryo; Nakamura, Saki; Kutsukake, Takaya; Kuramoto, Nobuyuki; Hinoi, Eiichi; Yoneda, Yukio

    2016-05-01

    This study evaluates the pathological role of the stress sensor activating transcription factor-3 (ATF3) in ischemic neurotoxicity. Upregulation of the transcript and protein for ATF3 was seen 2-10 hr after reperfusion in the ipsilateral cerebral hemisphere of mice with transient middle cerebral artery occlusion for 2 hr. Immunohistochemical analysis confirmed the expression of ATF3 by cells immunoreactive for a neuronal marker in neocortex, hippocampus, and striatum within 2 hr after reperfusion. In murine neocortical neurons previously cultured under ischemic conditions for 2 hr, transient upregulation of both Atf3 and ATF3 expression was similarly found during subsequent culture for 2-24 hr under normoxia. Lentiviral overexpression of ATF3 ameliorated the neurotoxicity of glutamate (Glu) in cultured murine neurons along with a slight but statistically significant inhibition of both Fluo-3 and rhodamine-2 fluorescence increases by N-methyl-D-aspartate. Similarly, transient upregulation was seen in Atf3 and ATF3 expression during the culture for 48 hr in neuronal Neuro2A cells previously cultured under ischemic conditions for 2 hr. Luciferase reporter analysis with ATF3 promoter together with immunoblotting revealed the possible involvement of several transcription factors responsive to extracellular and intracellular stressors in the transactivation of the Atf3 gene in Neuro2A cells. ATF3 could be upregulated to play a role in mechanisms underlying mitigation of the neurotoxicity mediated by the endogenous neurotoxin Glu at an early stage after ischemic signal inputs. © 2016 Wiley Periodicals, Inc.

  20. Toxoplasma gondii Infection in the Brain Inhibits Neuronal Degeneration and Learning and Memory Impairments in a Murine Model of Alzheimer's Disease

    PubMed Central

    Shin, Ki Young; Hwang, Young Sang; Lim, Hyoungsub; Lee, Sung Joong; Moon, Jung-Ho; Lee, Sang Hyung; Suh, Yoo-Hun; Chai, Jong-Yil; Shin, Eun-Hee

    2012-01-01

    Immunosuppression is a characteristic feature of Toxoplasma gondii-infected murine hosts. The present study aimed to determine the effect of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of Alzheimer's disease (AD) in Tg2576 AD mice. Mice were infected with a cyst-forming strain (ME49) of T. gondii, and levels of inflammatory mediators (IFN-γ and nitric oxide), anti-inflammatory cytokines (IL-10 and TGF-β), neuronal damage, and β-amyloid plaque deposition were examined in brain tissues and/or in BV-2 microglial cells. In addition, behavioral tests, including the water maze and Y-maze tests, were performed on T. gondii-infected and uninfected Tg2576 mice. Results revealed that whereas the level of IFN-γ was unchanged, the levels of anti-inflammatory cytokines were significantly higher in T. gondii-infected mice than in uninfected mice, and in BV-2 cells treated with T. gondii lysate antigen. Furthermore, nitrite production from primary cultured brain microglial cells and BV-2 cells was reduced by the addition of T. gondii lysate antigen (TLA), and β-amyloid plaque deposition in the cortex and hippocampus of Tg2576 mouse brains was remarkably lower in T. gondii-infected AD mice than in uninfected controls. In addition, water maze and Y-maze test results revealed retarded cognitive capacities in uninfected mice as compared with infected mice. These findings demonstrate the favorable effects of the immunosuppression induced by T. gondii infection on the pathogenesis and progression of AD in Tg2576 mice. PMID:22470449

  1. Developmental changes in hippocampal shape among preadolescent children.

    PubMed

    Lin, Muqing; Fwu, Peter T; Buss, Claudia; Davis, Elysia P; Head, Kevin; Muftuler, L Tugan; Sandman, Curt A; Su, Min-Ying

    2013-11-01

    It is known that the largest developmental changes in the hippocampus take place during the prenatal period and during the first two years of postnatal life. Few studies have been conducted to address the normal developmental trajectory of the hippocampus during childhood. In this study shape analysis was applied to study the normal developing hippocampus in a group of 103 typically developing 6- to 10-year-old preadolescent children. The individual brain was normalized to a template, and then the hippocampus was manually segmented and further divided into the head, body, and tail sub-regions. Three different methods were applied for hippocampal shape analysis: radial distance mapping, surface-based template registration using the robust point matching (RPM) algorithm, and volume-based template registration using the Demons algorithm. All three methods show that the older children have bilateral expanded head segments compared to the younger children. The results analyzed based on radial distance to the centerline were consistent with those analyzed using template-based registration methods. In analyses stratified by sex, it was found that the age-associated anatomical changes were similar in boys and girls, but the age-association was strongest in girls. Total hippocampal volume and sub-regional volumes analyzed using manual segmentation did not show a significant age-association. Our results suggest that shape analysis is sensitive to detect sub-regional differences that are not revealed in volumetric analysis. The three methods presented in this study may be applied in future studies to investigate the normal developmental trajectory of the hippocampus in children. They may be further applied to detect early deviations from the normal developmental trajectory in young children for evaluating susceptibility for psychopathological disorders involving hippocampus. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK.

    PubMed

    Rawashdeh, Oliver; Jilg, Antje; Maronde, Erik; Fahrenkrug, Jan; Stehle, Jörg H

    2016-09-01

    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~ 24 h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1(-/-) ) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6 kinase) into the nucleus. In hippocampal neurons from Per1(-/-) mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus, sculpturing time-of-day-dependent memory formation. This molecular mechanism constitutes the functional link between circadian rhythms and learning efficiency. In hippocampal neurons of wild-type mice, pP90RSK translocates into the nucleus upon stimulation with forskolin (left), whereas in Period1-knockout (Per1(-/-) ) mice (right) the kinase is trapped at the nuclear periphery, unable to efficiently phosphorylate nuclear CREB. Consequently, the presence of PER1 in hippocampal neurons is a prerequisite for the time-of-day-dependent phosphorylation of CREB, as it regulates the shuttling of pP90RSK into the nucleus. Representative immunofluorescence images show a temporal difference in phosphorylated cAMP response element-binding protein (pCREB; green color) levels in all regions of the dorsal hippocampus between a wild-type C3H mouse (WT; left) and a Period1-knockout (Per1(-/-) ; right) mouse. Images were taken 2 h after lights on, thus, when fluctuating levels of pCREB peak in WT mouse hippocampus. Insets show a representative hippocampal neuron, in response to activating cAMP signaling, stained for the neuronal marker NeuN (red), the nuclear marker DAPI (blue) and the activated CREB kinase pP90RSK (green). The image was taken 2 h after light onset (at the peak of the endogenous CREB phosphorylation that fluctuates with time of day). Magnification: 100X, inset 400X. Read the Editorial Highlight for this article on page 650. Cover image for this issue: doi: 10.1111/jnc.13332. © 2016 International Society for Neurochemistry.

  3. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Male Rats

    EPA Pesticide Factsheets

    behavioral measures of learning and memory in adult offspring of rats treated with thyroid hormone synthesis inhibitor, propylthiouracil.Electrophysiological measures of 'memory' in form of plasticity model known as long term potentiation (LTP)Molecular changes induced by LTPThis dataset is associated with the following publication:Gilbert , M., K. Sanchez-Huerta, and C. Wood. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats. ENDOCRINOLOGY. Endocrine Society, 157(2): 774-87, (2016).

  4. Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat

    PubMed Central

    McKim, Daniel B.; Niraula, Anzela; Tarr, Andrew J.; Wohleb, Eric S.

    2016-01-01

    Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance. SIGNIFICANCE STATEMENT Repeated exposure to stress alters the homeostatic environment of the brain, giving rise to various cognitive and mood disorders that impair everyday functioning and overall quality of life. The brain, previously thought of as an immune-privileged organ, is now known to communicate extensively with the peripheral immune system. This brain–body communication plays a significant role in various stress-induced inflammatory conditions, also characterized by psychological impairments. Findings from this study implicate neuroimmune activation rather than impaired neurogenesis in stress-induced cognitive deficits. This idea opens up possibilities for novel immune interventions in the treatment of cognitive and mood disturbances, while also adding to the complexity surrounding the functional implications of adult neurogenesis. PMID:26937001

  5. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    PubMed Central

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  6. Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats.

    PubMed

    Xing, Yingshou; Chen, Wenxi; Wang, Yanran; Jing, Wei; Gao, Shan; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-03-01

    Previous research has shown that dorsal hippocampus plays an important role in spatial memory process. Music exposure can enhance brain-derived neurotrophic factor (BDNF) expression level in dorsal hippocampus (DH) and thus enhance spatial cognition ability. But whether music experience may affect different subregions of DH in the same degree remains unclear. Here, we studied the effects of exposure to Mozart K.448 on learning behavior in developing rats using the classical Morris water maze task. The results showed that early music exposure could enhance significantly learning performance of the rats in the water maze test. Meanwhile, the BDNF/TrkB level of dorsal hippocampus CA3 (dCA3) and dentate gyrus (dDG) was significantly enhanced in rats exposed to Mozart music as compared to those without music exposure. In contrast, the BDNF/TrkB level of dorsal hippocampus CA1 (dCA1) was not affected. The results suggest that the spatial memory improvement by music exposure in rats may be associated with the enhanced BDNF/TrkB level of dCA3 and dDG. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs.

    PubMed

    Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R

    2001-07-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.

  8. Disruption of the midkine gene (Mdk) resulted in altered expression of a calcium binding protein in the hippocampus of infant mice and their abnormal behaviour.

    PubMed

    Nakamura, E; Kadomatsu, K; Yuasa, S; Muramatsu, H; Mamiya, T; Nabeshima, T; Fan, Q W; Ishiguro, K; Igakura, T; Matsubara, S; Kaname, T; Horiba, M; Saito, H; Muramatsu, T

    1998-12-01

    Midkine (MK) is a growth factor implicated in the development and repair of various tissues, especially neural tissues. However, its in vivo function has not been clarified. Knockout mice lacking the MK gene (Mdk) showed no gross abnormalities. We closely analysed postnatal brain development in Mdk(-/-) mice using calcium binding proteins as markers to distinguish neuronal subpopulations. Intense and prolonged calretinin expression was found in the dentate gyrus granule cell layer of the hippocampus of infant Mdk(-/-) mice. In infant Mdk(+/+) mice, calretinin expression in the granule cell layer was weaker, and had disappeared by 4 weeks after birth, when calretinin expression still persisted in Mdk(-/-) mice. Furthermore, 4 weeks after birth, Mdk(-/-) mice showed a deficit in their working memory, as revealed by a Y-maze test, and had an increased anxiety, as demonstrated by the elevated plus-maze test. Midkine plays an important role in the regulation of postnatal development of the hippocampus.

  9. Temporary conductive hearing loss in early life impairs spatial memory of rats in adulthood.

    PubMed

    Zhao, Han; Wang, Li; Chen, Liang; Zhang, Jinsheng; Sun, Wei; Salvi, Richard J; Huang, Yi-Na; Wang, Ming; Chen, Lin

    2018-05-31

    It is known that an interruption of acoustic input in early life will result in abnormal development of the auditory system. Here, we further show that this negative impact actually spans beyond the auditory system to the hippocampus, a system critical for spatial memory. We induced a temporary conductive hearing loss (TCHL) in P14 rats by perforating the eardrum and allowing it to heal. The Morris water maze and Y-maze tests were deployed to evaluate spatial memory of the rats. Electrophysiological recordings and anatomical analysis were made to evaluate functional and structural changes in the hippocampus following TCHL. The rats with the TCHL had nearly normal hearing at P42, but had a decreased performance with the Morris water maze and Y-maze tests compared with the control group. A functional deficit in the hippocampus of the rats with the TCHL was found as revealed by the depressed long-term potentiation and the reduced NMDA receptor-mediated postsynaptic current. A structural deficit in the hippocampus of those animals was also found as revealed the abnormal expression of the NMDA receptors, the decreased number of dendritic spines, the reduced postsynaptic density and the reduced level of neurogenesis. Our study demonstrates that even temporary auditory sensory deprivation in early life of rats results in abnormal development of the hippocampus and consequently impairs spatial memory in adulthood. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.

  10. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    PubMed

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Human and Murine Innate Immune Cell Populations Display Common and Distinct Response Patterns during Their In Vitro Interaction with the Pathogenic Mold Aspergillus fumigatus.

    PubMed

    Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen

    2017-01-01

    Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus . However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus . For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus . Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host-pathogen interaction studies.

  12. Human and Murine Innate Immune Cell Populations Display Common and Distinct Response Patterns during Their In Vitro Interaction with the Pathogenic Mold Aspergillus fumigatus

    PubMed Central

    Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B.; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen

    2017-01-01

    Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host–pathogen interaction studies. PMID:29270175

  13. Aging impairs dendrite morphogenesis of newborn neurons and is rescued by 7, 8-dihydroxyflavone.

    PubMed

    Wang, Xiaoting; Romine, Jennifer Lynn; Gao, Xiang; Chen, Jinhui

    2017-04-01

    All aging individuals will develop some degree of decline in cognitive capacity as time progresses. The molecular and cellular mechanisms leading to age-related cognitive decline are still not fully understood. Through our previous research, we discovered that active neural progenitor cells selectively become more quiescent in response to aging, thus leading to the decline of neurogenesis in the aged hippocampus. Here, we further find that aging impaired dendrite development of newborn neurons. Currently, no effective approach is available to increase neurogenesis or promote dendrite development of newborn neurons in the aging brain. We found that systemically administration of 7, 8-dihydroxyflavone (DHF), a small molecule imitating brain-derived neurotrophic factor (BDNF), significantly enhanced dendrite length in the newborn neurons, while it did not promote survival of immature neurons, in the hippocampus of 12-month-old mice. DHF-promoted dendrite development of newborn neurons in the hippocampus may enhance their function in the aging animal leading to a possible improvement in cognition. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Comparison of optical projection tomography and optical coherence tomography for assessment of murine embryonic development

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Vadakkan, Tegy; Piazza, Victor; Udan, Ryan; Frazier, Michael V.; Janecek, Trevor; Dickinson, Mary E.; Larin, Kirill V.

    2015-03-01

    The murine model is a common model for studying developmental diseases. In this study, we compare the performance of the relatively new method of Optical Projection Tomography (OPT) to the well-established technique of Optical Coherence Tomography (OCT) to assess murine embryonic development at three stages, 9.5, 11.5, and 13.5 days post conception. While both methods can provide spatial resolution at the micrometer scale, OPT can provide superior imaging depth compared to OCT. However, OPT requires samples to be fixed, placed in an immobilization media such as agar, and cleared before imaging. Because OCT does not require fixing, it can be used to image embryos in vivo and in utero. In this study, we compare the efficacy of OPT and OCT for imaging murine embryonic development. The data demonstrate the superior capability of OPT for imaging fine structures with high resolution in optically-cleared embryos while only OCT can provide structural and functional imaging of live embryos ex vivo and in utero with micrometer scale resolution.

  15. The hippocampi of children with chromosome 22q11.2 deletion syndrome have localized anterior alterations that predict severity of anxiety.

    PubMed

    Scott, Julia A; Goodrich-Hunsaker, Naomi; Kalish, Kristopher; Lee, Aaron; Hunsaker, Michael R; Schumann, Cynthia M; Carmichael, Owen T; Simon, Tony J

    2016-04-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) have an elevated risk for schizophrenia, which increases with history of childhood anxiety. Altered hippocampal morphology is a common neuroanatomical feature of 22q11.2DS and idiopathic schizophrenia. Relating hippocampal structure in children with 22q11.2DS to anxiety and impaired cognitive ability could lead to hippocampus-based characterization of psychosis-proneness in this at-risk population. We measured hippocampal volume using a semiautomated approach on MRIs collected from typically developing children and children with 22q11.2DS. We then analyzed hippocampal morphology with Localized Components Analysis. We tested the modulating roles of diagnostic group, hippocampal volume, sex and age on local hippocampal shape components. Lastly, volume and shape components were tested as covariates of IQ and anxiety. We included 48 typically developing children and 69 children with 22q11.2DS in our study. Hippocampal volume was reduced bilaterally in children with 22q11.2DS, and these children showed greater variation in the shape of the anterior hippocampus than typically developing children. Children with 22q11.2DS had greater inward deformation of the anterior hippocampus than typically developing children. Greater inward deformation of the anterior hippocampus was associated with greater severity of anxiety, specifically fear of physical injury, within the 22q11.2DS group. Shape alterations are not specific to hippocampal subfields. Alterations in the structure of the anterior hippocampus likely affect function and may impact limbic circuitry. We suggest these alterations potentially contribute to anxiety symptoms in individuals with 22q11.2DS through modulatory pathways. Altered hippocampal morphology may be uniquely linked to anxiety risk factors for schizophrenia, which could be a powerful neuroanatomical marker of schizophrenia risk and hence protection.

  16. Prenatal caffeine intake differently affects synaptic proteins during fetal brain development.

    PubMed

    Mioranzza, Sabrina; Nunes, Fernanda; Marques, Daniela M; Fioreze, Gabriela T; Rocha, Andréia S; Botton, Paulo Henrique S; Costa, Marcelo S; Porciúncula, Lisiane O

    2014-08-01

    Caffeine is the psychostimulant most consumed worldwide. However, little is known about its effects during fetal brain development. In this study, adult female Wistar rats received caffeine in drinking water (0.1, 0.3 and 1.0 g/L) during the active cycle in weekdays, two weeks before mating and throughout pregnancy. Cerebral cortex and hippocampus from embryonic stages 18 or 20 (E18 or E20, respectively) were collected for immunodetection of the following synaptic proteins: brain-derived neurotrophic factor (BDNF), TrkB receptor, Sonic Hedgehog (Shh), Growth Associated Protein 43 (GAP-43) and Synaptosomal-associated Protein 25 (SNAP-25). Besides, the estimation of NeuN-stained nuclei (mature neurons) and non-neuronal nuclei was verified in both brain regions and embryonic periods. Caffeine (1.0 g/L) decreased the body weight of embryos at E20. Cortical BDNF at E18 was decreased by caffeine (1.0 g/L), while it increased at E20, with no major effects on TrkB receptors. In the hippocampus, caffeine decreased TrkB receptor only at E18, with no effects on BDNF. Moderate and high doses of caffeine promoted an increase in Shh in both brain regions at E18, and in the hippocampus at E20. Caffeine (0.3g/L) decreased GAP-43 only in the hippocampus at E18. The NeuN-stained nuclei increased in the cortex at E20 by lower dose and in the hippocampus at E18 by moderate dose. Our data revealed that caffeine transitorily affect synaptic proteins during fetal brain development. The increased number of NeuN-stained nuclei by prenatal caffeine suggests a possible acceleration of the telencephalon maturation. Although some modifications in the synaptic proteins were transient, our data suggest that caffeine even in lower doses may alter the fetal brain development. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.

  17. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Xiaohong, E-mail: xuxh63@zjnu.cn; Li Tao; Luo Qingqing

    Bisphenol-A (BPA), an endocrine disruptor, is found to influence development of brain and behaviors in rodents. The previous study indicated that perinatal exposure to BPA impaired learning-memory and inhibited N-methyl-D-aspartate receptor (NMDAR) subunits expressions in hippocampus during the postnatal development in rats; and in cultured hippocampal neurons, BPA rapidly promotes dynamic changes in dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDAR subunit NR2B. In the present study, we examined the rapid effect of BPA on passive avoidance memory and NMDAR in the developing hippocampus of Sprague-Dawley rats at the age of postnatal day 18. The results showedmore » that BPA or estradiol benzoate (EB) rapidly extended the latency to step down from the platform 1 h after footshock and increased the phosphorylation levels of NR1, NR2B, and mitogen-activated extracellular signal-regulated kinase (ERK) in hippocampus within 1 h. While 24 h after BPA or EB treatment, the improved memory and the increased phosphorylation levels of NR1, NR2B, ERK disappeared. Furthermore, pre-treatment with an estrogen receptors (ERs) antagonist, ICI182,780, or an ERK-activating kinase inhibitor, U0126, significantly attenuated EB- or BPA-induced phosphorylations of NR1, NR2B, and ERK within 1 h. These data suggest that BPA rapidly enhanced short-term passive avoidance memory in the developing rats. A non-genomic effect via ERs may mediate the modulation of the phosphorylation of NMDAR subunits NR1 and NR2B through ERK signaling pathway. - Highlights: > BPA rapidly extended the latency to step down from platform 1 h after footshock. > BPA rapidly increased pNR1, pNR2B, and pERK in hippocampus within 1 h. > ERs antagonist or MEK inhibitor attenuated BPA-induced pNR1, pNR2B, and pERK.« less

  18. Prostaglandin E/sub 2/ localization and receptor identification within the developing murine secondary palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.

    1986-01-01

    Transient elevations in murine secondary palatal adenosine 3',5'-monophosphate (cAMP) levels occur during palate ontogeny. Since palatal processes exposed to dibutyryl cAMP differentiate precociously, increases in palatal cAMP levels are of interest. Prostaglandin E/sub 2/ (PGE/sub 2/), which is synthesized by murine embryonic palate mesenchyme cells (MEPM), regulates cAMP levels in adult tissues via specific membrane bound receptors coupled to adenylate cyclase. Therefore, a PGE/sub 2/ receptor-adenylate cyclase systems was proposed in the developing murine secondary palate. Utilizing a radioligand binding assay, it was determined that murine palatal tissue on day 13 of gestation contained PGE/sub 2/ receptors that were saturable,more » of high affinity and low capacity. Specific (/sup 3/H)-PGE/sub 2/ binding was reversible by 30 min. The order of prostanoid binding affinity at specific PGE/sub 2/ binding sites was E/sub 2/ > F/sub 2//sub ..cap alpha../ > A/sub 2/ > E/sub 1/ = D/sub 2/ indicating specificity of the receptor for PGE/sub 2/. The ability of MEPM cells to respond to PGE/sub 2/ with dose-dependent accumulations of intracellular cAMP demonstrated the functional nature of these binding sites. Analysis of palatal PGE/sub 2/ receptor characteristics on days 12 and 14 of palate development indicated temporal alterations in receptor affinity and density during palate ontogeny.« less

  19. Magnolol protects against trimethyltin-induced neuronal damage and glial activation in vitro and in vivo.

    PubMed

    Kim, Da Jung; Kim, Yong Sik

    2016-03-01

    Trimethyltin (TMT), an organotin with potent neurotoxic effects by selectively damaging to hippocampus, is used as a tool for creating an experimental model of neurodegeneration. In the present study, we investigated the protective effects of magnolol, a natural biphenolic compound, on TMT-induced neurodegeneration and glial activation in vitro and in vivo. In HT22 murine neuroblastoma cells, TMT induced necrotic/apoptotic cell death and oxidative stress, including intracellular reactive oxygen species (ROS), protein carbonylation, induction of heme oxygenase-1 (HO-1), and activation of all mitogen-activated protein kinases (MAPKs) family proteins. However, magnolol treatment significantly suppressed neuronal cell death by inhibiting TMT-mediated ROS generation and activation of JNK and p38 MAPKs. In BV-2 microglial cells, magnolol efficiently attenuated TMT-induced microglial activation via suppression of ROS generation and activation of JNK, p38 MAPKs, and nuclear factor-κB (NF-κB) signaling. In an in vivo mouse study, TMT induced massive neuronal damage and enhanced oxidative stress at day 2. We also observed a concomitant increase in glial cells and inducible nitric oxide synthase (iNOS) expression on the same day. These features of TMT toxicity were reversed by treatment of magnolol. We observed that p-JNK and p-p38 MAPK levels were increased in the mouse hippocampus at day 1 after TMT treatment and that magnolol blocked TMT-induced JNK and p38 MAPK activation. Magnolol administration prevented TMT-induced hippocampal neurodegeneration and glial activation, possibly through the regulation of TMT-mediated ROS generation and MAPK activation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function.

    PubMed

    Etherton, Mark; Földy, Csaba; Sharma, Manu; Tabuchi, Katsuhiko; Liu, Xinran; Shamloo, Mehrdad; Malenka, Robert C; Südhof, Thomas C

    2011-08-16

    Multiple independent mutations in neuroligin genes were identified in patients with familial autism, including the R451C substitution in neuroligin-3 (NL3). Previous studies showed that NL3(R451C) knock-in mice exhibited modestly impaired social behaviors, enhanced water maze learning abilities, and increased synaptic inhibition in the somatosensory cortex, and they suggested that the behavioral changes in these mice may be caused by a general shift of synaptic transmission to inhibition. Here, we confirm that NL3(R451C) mutant mice behaviorally exhibit social interaction deficits and electrophysiologically display increased synaptic inhibition in the somatosensory cortex. Unexpectedly, however, we find that the NL3(R451C) mutation produced a strikingly different phenotype in the hippocampus. Specifically, in the hippocampal CA1 region, the NL3(R451C) mutation caused an ∼1.5-fold increase in AMPA receptor-mediated excitatory synaptic transmission, dramatically altered the kinetics of NMDA receptor-mediated synaptic responses, induced an approximately twofold up-regulation of NMDA receptors containing NR2B subunits, and enhanced long-term potentiation almost twofold. NL3 KO mice did not exhibit any of these changes. Quantitative light microscopy and EM revealed that the NL3(R451C) mutation increased dendritic branching and altered the structure of synapses in the stratum radiatum of the hippocampus. Thus, in NL3(R451C) mutant mice, a single point mutation in a synaptic cell adhesion molecule causes context-dependent changes in synaptic transmission; these changes are consistent with the broad impact of this mutation on murine and human behaviors, suggesting that NL3 controls excitatory and inhibitory synapse properties in a region- and circuit-specific manner.

  1. A "double hit" murine model for schizophrenia shows alterations in the structure and neurochemistry of the medial prefrontal cortex and the hippocampus.

    PubMed

    Gilabert-Juan, Javier; Belles, Maria; Saez, Ana Rosa; Carceller, Hector; Zamarbide-Fores, Sara; Moltó, Maria Dolores; Nacher, Juan

    2013-11-01

    Both alterations in neurodevelopment and aversive experiences during childhood and adolescence seem important risk factors for schizophrenia. Animal models reproducing these alterations mimic some of the symptoms, constituting a valid approach to study the etiopathology of this disorder. Among these models, the perinatal injection of N-methyl-d-aspartate receptor antagonists and the postweaning social isolation rearing are among the most widely used. Our aim is to combine them in a "double hit" model, which should produce a wider spectrum of alterations. Lister Hooded rats have been subjected to a single injection of MK-801 at postnatal day 7 and socially isolated from postweaning to adulthood. These animals presented increased body weight gain and volume reductions in their medial prefrontal cortex (mPFC) and hippocampus. They also showed an increased number of activated pyramidal neurons and alterations in the numbers of parvalbumin and calbindin expressing interneurons in the mPFC. The expressions of the polysialylated form of the neural cell adhesion molecule and GAD67 are decreased in the mPFC. The mRNA level of calbindin was decreased, while that of calretinin was increased in the mPFC. The mRNA level of ERbB4, a gene associated to schizophrenia, was also altered in this region. All these structural and neurochemical alterations, specially in cortical inhibitory circuits, are similar to those found in schizophrenic patients and are more numerous than in each of the single models. Consequently, the present "double hit" model may be a better tool to study the neurobiological basis of schizophrenia and to explore new therapeutic approaches. © 2013.

  2. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents

    PubMed Central

    Cavegn, Nicole; van Dijk, R. Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T.; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern Africa [Namaqua rock mouse (Micaelamys namaquensis), red veld rat (Aethomys chrysophilus), highveld gerbil (Tatera brantsii), and spiny mouse (Acomys spinosissimus)] with data from wild European Muridae [long-tailed wood mice (Apodemus sylvaticus), pygmy field mice (Apodemus microps), yellow-necked wood mice (Apodemus flavicollis), and house mice (Mus musculus domesticus)] from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and Doublecortin(DCX)-positive cells to total granule cells (GCs), is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower AHN compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat) show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups. PMID:23616743

  3. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion.

    PubMed

    Hain, Elisabeth G; Sparenberg, Maria; Rasińska, Justyna; Klein, Charlotte; Akyüz, Levent; Steiner, Barbara

    2018-05-26

    Parkinson's disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis. Wildtype C57Bl/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and neurogenic factors were assessed, and protein levels of serum cytokines were measured. Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular response without reversing dopaminergic cell loss. Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a therapeutic option to restore adult neurogenesis in PD.

  4. Alterations of neurotransmitter norepinephrine and gamma-aminobutyric acid correlate with murine behavioral perturbations related to bisphenol A exposure.

    PubMed

    Ogi, Hiroshi; Itoh, Kyoko; Ikegaya, Hiroshi; Fushiki, Shinji

    2015-09-01

    Humans are commonly exposed to endocrine-disrupting chemical bisphenol A (BPA), giving rise to concern over the psychobehavioral effects of BPA. The aim of this study was to investigate the effects of prenatal and lactational BPA exposure on neurotransmitters, including norepinephrine (NE), gamma-aminobutyric acid (GABA) and glutamate (Glu), and to assess the association with behavioral phenotypes. C57BL/6J mice were orally administered with BPA (500 μg/bwkg/day) or vehicle daily from embryonic day 0 to postnatal week 3 (P3W), through their dams. The IntelliCage behavioral experiments were conducted from P11W to P15W. At around P14-16W, NE, GABA and Glu levels in nine brain regions were measured by high performance liquid chromatography. Furthermore, the associations between the neurotransmitter levels and the behavioral indices were statistically analyzed. In females exposed to BPA, the GABA and Glu levels in almost all regions, and the NE levels in the cortex, hypothalamus and thalamus were higher than those in the controls. In males exposed to BPA, the GABA levels in the amygdala and hippocampus showed lower values, while Glu levels were higher in some regions, compared with the controls. In regard to the associations, the number of "diurnal corner visits without drinking" was correlated with the NE levels in the cortex and thalamus in females. The "nocturnal corner visit duration without drinking" was correlated with the GABA level in the hippocampus in males. These results suggest that prenatal and lactational exposure to low doses of BPA might modulate the NE, GABA and Glu systems, resulting in behavioral alterations. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  5. Computer aided solution for segmenting the neuron line in hippocampal microscope images

    NASA Astrophysics Data System (ADS)

    Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham

    2017-05-01

    The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.

  6. Human-murine transthyretin heterotetramers are kinetically stable and non-amyloidogenic. A lesson in the generation of transgenic models of diseases involving oligomeric proteins.

    PubMed

    Reixach, Natàlia; Foss, Ted R; Santelli, Eugenio; Pascual, Jaime; Kelly, Jeffery W; Buxbaum, Joel N

    2008-01-25

    The transthyretin amyloidoses appear to be caused by rate-limiting tetramer dissociation and partial monomer unfolding of the human serum protein transthyretin, resulting in aggregation and extracellular deposition of amorphous aggregates and amyloid fibrils. Mice transgenic for few copies of amyloid-prone human transthyretin variants, including the aggressive L55P mutant, failed to develop deposits. Silencing the murine transthyretin gene in the presence of the L55P human gene resulted in enhanced tissue deposition. To test the hypothesis that the murine protein interacted with human transthyretin, preventing the dissociation and partial unfolding required for amyloidogenesis, we produced recombinant murine transthyretin and human/murine transthyretin heterotetramers and compared their structures and biophysical properties to recombinant human transthyretin. We found no significant differences between the crystal structures of murine and human homotetramers. Murine transthyretin is not amyloidogenic because the native homotetramer is kinetically stable under physiologic conditions and cannot dissociate into partially unfolded monomers, the misfolding and aggregation precursor. Heterotetramers composed of murine and human subunits are also kinetically stable. These observations explain the lack of transthyretin deposition in transgenics carrying a low copy number of human transthyretin genes. The incorporation of mouse subunits into tetramers otherwise composed of human amyloid-prone transthyretin subunits imposes kinetic stability, preventing dissociation and subsequent amyloidogenesis.

  7. Development of a broadly reactive nested reverse transcription-PCR assay to detect murine noroviruses, and investigation of the prevalence of murine noroviruses in laboratory mice in Japan.

    PubMed

    Kitajima, Masaaki; Oka, Tomoichiro; Tohya, Yukinobu; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko

    2009-09-01

    A broadly reactive nested RT-PCR assay to detect MNV was developed and subsequently used to investigate the prevalence of MNV in laboratory mice in Japan. MNV were detected in 8 (22%) of 37 murine stool specimens by second-round PCR, although no positive band was obtained from any specimen by first-round PCR. Genetic analysis of the second round PCR products showed that MNV sequences detected in this study were closely matched (97.2 approximately 99.1%) to that of MNV-3 (DQ223042). This is the first report demonstrating the prevalence of MNV in Japan.

  8. Whole Brain Irradiation With Hippocampal Sparing and Dose Escalation on Multiple Brain Metastases: A Planning Study on Treatment Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokic, Vesna, E-mail: vesna.prokic@uniklinik-freiburg.de; Wiedenmann, Nicole; Fels, Franziska

    2013-01-01

    Purpose: To develop a new treatment planning strategy in patients with multiple brain metastases. The goal was to perform whole brain irradiation (WBI) with hippocampal sparing and dose escalation on multiple brain metastases. Two treatment concepts were investigated: simultaneously integrated boost (SIB) and WBI followed by stereotactic fractionated radiation therapy sequential concept (SC). Methods and Materials: Treatment plans for both concepts were calculated for 10 patients with 2-8 brain metastases using volumetric modulated arc therapy. In the SIB concept, the prescribed dose was 30 Gy in 12 fractions to the whole brain and 51 Gy in 12 fractions to individualmore » brain metastases. In the SC concept, the prescription was 30 Gy in 12 fractions to the whole brain followed by 18 Gy in 2 fractions to brain metastases. All plans were optimized for dose coverage of whole brain and lesions, simultaneously minimizing dose to the hippocampus. The treatment plans were evaluated on target coverage, homogeneity, and minimal dose to the hippocampus and organs at risk. Results: The SIB concept enabled more successful sparing of the hippocampus; the mean dose to the hippocampus was 7.55 {+-} 0.62 Gy and 6.29 {+-} 0.62 Gy, respectively, when 5-mm and 10-mm avoidance regions around the hippocampus were used, normalized to 2-Gy fractions. In the SC concept, the mean dose to hippocampus was 9.8 {+-} 1.75 Gy. The mean dose to the whole brain (excluding metastases) was 33.2 {+-} 0.7 Gy and 32.7 {+-} 0.96 Gy, respectively, in the SIB concept, for 5-mm and 10-mm hippocampus avoidance regions, and 37.23 {+-} 1.42 Gy in SC. Conclusions: Both concepts, SIB and SC, were able to achieve adequate whole brain coverage and radiosurgery-equivalent dose distributions to individual brain metastases. The SIB technique achieved better sparing of the hippocampus, especially when a10-mm hippocampal avoidance region was used.« less

  9. Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior.

    PubMed

    Wohleb, Eric S; Powell, Nicole D; Godbout, Jonathan P; Sheridan, John F

    2013-08-21

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b(+)/SSC(lo)/Ly6C(hi)) and brain macrophages (CD11b(+)/SSC(lo)/CD45(hi)). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP(+) and GFP(+) bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP(+) mice showed that RSD increased recruitment of GFP(+) macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP(+) macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP(+) BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2(KO)) or fractalkine receptor knockout (CX3CR1(KO))] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2(KO) or CX3CR1(KO) donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety.

  10. Stress-Induced Recruitment of Bone Marrow-Derived Monocytes to the Brain Promotes Anxiety-Like Behavior

    PubMed Central

    Wohleb, Eric S.; Powell, Nicole D.

    2013-01-01

    Social stress is associated with altered immunity and higher incidence of anxiety-related disorders. Repeated social defeat (RSD) is a murine stressor that primes peripheral myeloid cells, activates microglia, and induces anxiety-like behavior. Here we show that RSD-induced anxiety-like behavior corresponded with an exposure-dependent increase in circulating monocytes (CD11b+/SSClo/Ly6Chi) and brain macrophages (CD11b+/SSClo/CD45hi). Moreover, RSD-induced anxiety-like behavior corresponded with brain region-dependent cytokine and chemokine responses involved with myeloid cell recruitment. Next, LysM-GFP+ and GFP+ bone marrow (BM)-chimeric mice were used to determine the neuroanatomical distribution of peripheral myeloid cells recruited to the brain during RSD. LysM-GFP+ mice showed that RSD increased recruitment of GFP+ macrophages to the brain and increased their presence within the perivascular space (PVS). In addition, RSD promoted recruitment of GFP+ macrophages into the PVS and parenchyma of the prefrontal cortex, amygdala, and hippocampus of GFP+ BM-chimeric mice. Furthermore, mice deficient in chemokine receptors associated with monocyte trafficking [chemokine receptor-2 knockout (CCR2KO) or fractalkine receptor knockout (CX3CR1KO)] failed to recruit macrophages to the brain and did not develop anxiety-like behavior following RSD. Last, RSD-induced macrophage trafficking was prevented in BM-chimeric mice generated with CCR2KO or CX3CR1KO donor cells. These findings indicate that monocyte recruitment to the brain in response to social stress represents a novel cellular mechanism that contributes to the development of anxiety. PMID:23966702

  11. Obesity Weighs down Memory through a Mechanism Involving the Neuroepigenetic Dysregulation of Sirt1

    PubMed Central

    Heyward, Frankie D.; Gilliam, Daniel; Coleman, Mark A.; Gavin, Cristin F.; Wang, Jing; Kaas, Garrett; Trieu, Richard; Lewis, John; Moulden, Jerome

    2016-01-01

    Aberrant gene expression within the hippocampus has recently been implicated in the pathogenesis of obesity-induced memory impairment. Whether a dysregulation of epigenetic modifications mediates this disruption in gene transcription has yet to be established. Here we report evidence of obesity-induced alterations in DNA methylation of memory-associated genes, including Sirtuin 1 (Sirt1), within the hippocampus, and thus offer a novel mechanism by which SIRT1 expression within the hippocampus is suppressed during obesity. Forebrain neuron-specific Sirt1 knock-out closely recapitulated the memory deficits exhibited by obese mice, consistent with the hypothesis that the high-fat diet-mediated reduction of hippocampal SIRT1 could be responsible for obesity-linked memory impairment. Obese mice fed a diet supplemented with the SIRT1-activating molecule resveratrol exhibited increased hippocampal SIRT1 activity and preserved hippocampus-dependent memory, further strengthening this conclusion. Thus, our findings suggest that the memory-impairing effects of diet-induced obesity may potentially be mediated by neuroepigenetic dysregulation of SIRT1 within the hippocampus. SIGNIFICANCE STATEMENT Previous studies have implicated transcriptional dysregulation within the hippocampus as being a relevant pathological concomitant of obesity-induced memory impairment, yet a deeper understanding of the basis for, and etiological significance of, transcriptional dysregulation in this context is lacking. Here we present the first evidence of epigenetic dysregulation (i.e., altered DNA methylation and hydroxymethylation) of memory-related genes, including Sirt1, within the hippocampus of obese mice. Furthermore, experiments using transgenic and pharmacological approaches strongly implicate reduced hippocampal SIRT1 as being a principal pathogenic mediator of obesity-induced memory impairment. This paper offers a novel working model that may serve as a conceptual basis for the development of therapeutic interventions for obesity-induced memory impairment. PMID:26818519

  12. Hippocampal-Sparing Whole-Brain Radiotherapy: A 'How-To' Technique Using Helical Tomotherapy and Linear Accelerator-Based Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondi, Vinai; Tolakanahalli, Ranjini; Mehta, Minesh P.

    2010-11-15

    Purpose: Sparing the hippocampus during cranial irradiation poses important technical challenges with respect to contouring and treatment planning. Herein we report our preliminary experience with whole-brain radiotherapy using hippocampal sparing for patients with brain metastases. Methods and Materials: Five anonymous patients previously treated with whole-brain radiotherapy with hippocampal sparing were reviewed. The hippocampus was contoured, and hippocampal avoidance regions were created using a 5-mm volumetric expansion around the hippocampus. Helical tomotherapy and linear accelerator (LINAC)-based intensity-modulated radiotherapy (IMRT) treatment plans were generated for a prescription dose of 30 Gy in 10 fractions. Results: On average, the hippocampal avoidance volume wasmore » 3.3 cm{sup 3}, occupying 2.1% of the whole-brain planned target volume. Helical tomotherapy spared the hippocampus, with a median dose of 5.5 Gy and maximum dose of 12.8 Gy. LINAC-based IMRT spared the hippocampus, with a median dose of 7.8 Gy and maximum dose of 15.3 Gy. On a per-fraction basis, mean dose to the hippocampus (normalized to 2-Gy fractions) was reduced by 87% to 0.49 Gy{sub 2} using helical tomotherapy and by 81% to 0.73 Gy{sub 2} using LINAC-based IMRT. Target coverage and homogeneity was acceptable with both IMRT modalities, with differences largely attributed to more rapid dose fall-off with helical tomotherapy. Conclusion: Modern IMRT techniques allow for sparing of the hippocampus with acceptable target coverage and homogeneity. Based on compelling preclinical evidence, a Phase II cooperative group trial has been developed to test the postulated neurocognitive benefit.« less

  13. Highly efficient gene transfer using a retroviral vector into murine T cells for preclinical chimeric antigen receptor-expressing T cell therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusabuka, Hotaka; Fujiwara, Kento; Tokunaga, Yusuke

    Adoptive immunotherapy using chimeric antigen receptor-expressing T (CAR-T) cells has attracted attention as an efficacious strategy for cancer treatment. To prove the efficacy and safety of CAR-T cell therapy, the elucidation of immunological mechanisms underlying it in mice is required. Although a retroviral vector (Rv) is mainly used for the introduction of CAR to murine T cells, gene transduction efficiency is generally less than 50%. The low transduction efficiency causes poor precision in the functional analysis of CAR-T cells. We attempted to improve the Rv gene transduction protocol to more efficiently generate functional CAR-T cells by optimizing the period ofmore » pre-cultivation and antibody stimulation. In the improved protocol, gene transduction efficiency to murine T cells was more than 90%. In addition, almost all of the prepared murine T cells expressed CAR after puromycin selection. These CAR-T cells had antigen-specific cytotoxic activity and secreted multiple cytokines by antigen stimulation. We believe that our optimized gene transduction protocol for murine T cells contributes to the advancement of T cell biology and development of immunotherapy using genetically engineered T cells. - Highlights: • We established highly efficient gene transduction protocols for murine T cells. • CD8{sup +} CAR-T cells had antigen-specific cytotoxic activity. • CD4{sup +} CAR-T cells secreted multiple cytokines by antigen stimulation. • This finding can contribute to the development of T-cell biology and immunotherapy.« less

  14. Effect of Paullinia cupana Mart. Commercial Extract During the Aging of Middle Age Wistar Rats: Differential Effects on the Hippocampus and Striatum.

    PubMed

    Mingori, Moara Rodrigues; Heimfarth, Luana; Ferreira, Charles Francisco; Gomes, Henrique Mautone; Moresco, Karla Suzana; Delgado, Jeferson; Roncato, Sabrina; Zeidán-Chuliá, Fares; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2017-08-01

    During aging, there is a marked decline in the antioxidant capacity of brain tissue, leading to a gradual loss of the antioxidant/oxidant balance, which causes oxidative damage. The effects of Paullinia cupana Mart. extract, which is described as being rich in caffeine and many polyphenol compounds, on the central nervous system have not been extensively investigated. The aim of this study was to therefore investigate the effect of a commercial guarana extract (CGE) on cognitive function, oxidative stress, and brain homeostasis proteins related to cognitive injury and senescence in middle age, male Wistar rats. Animals were randomly assigned to a group according to their treatment (saline, CGE, or caffeine). Solutions were administered daily by oral gavage for 6 months. Open field and novel object recognition tasks were performed before and after treatment. Biochemical analyses were carried out on the hippocampus and striatum. Our open field data showed an increase in exploratory activity and a decrease in anxiety-like behavior with caffeine but not with the CGE treatment. In the CGE-treated group, catalase activity decreased in the hippocampus and increased in the striatum. Analyses of the hippocampus and striatum indicate that CGE and/or caffeine altered some of the analyzed parameters in a tissue-specific manner. Our data suggest that CGE intake does not improve cognitive development, but modifies the oxidative stress machinery and neurodegenerative-signaling pathway, inhibiting pro-survival pathway molecules in the hippocampus and striatum. This may contribute to the development of unfavorable microenvironments in the brain and neurodegenerative disorders.

  15. Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation

    PubMed Central

    Moscovitch, Morris; Cabeza, Roberto; Winocur, Gordon; Nadel, Lynn

    2016-01-01

    The last decade has seen dramatic technological and conceptual changes in research on episodic memory and the brain. New technologies, and increased use of more naturalistic observations, have enabled investigators to delve deeply into the structures that mediate episodic memory, particularly the hippocampus, and to track functional and structural interactions among brain regions that support it. Conceptually, episodic memory is increasingly being viewed as subject to lifelong transformations that are reflected in the neural substrates that mediate it. In keeping with this dynamic perspective, research on episodic memory (and the hippocampus) has infiltrated domains, from perception to language and from empathy to problem solving, that were once considered outside its boundaries. Using the component process model as a framework, and focusing on the hippocampus, its subfields, and specialization along its longitudinal axis, along with its interaction with other brain regions, we consider these new developments and their implications for the organization of episodic memory and its contribution to functions in other domains. PMID:26726963

  16. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus.

    PubMed

    Groussard, Mathilde; La Joie, Renaud; Rauchs, Géraldine; Landeau, Brigitte; Chételat, Gaël; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis; Platel, Hervé

    2010-10-05

    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus.

  17. Sevoflurane-induced down-regulation of hippocampal oxytocin and arginine vasopressin impairs juvenile social behavioral abilities.

    PubMed

    Zhou, Zhi-Bin; Yang, Xiao-Yu; Yuan, Bao-Long; Niu, Li-Jun; Zhou, Xue; Huang, Wen-Qi; Feng, Xia; Zhou, Li-Hua

    2015-05-01

    Cumulative evidence indicates that early childhood anesthesia can alter a child's future behavioral performance. Animal researchers have found that sevoflurane, the most commonly used anesthetic for children, can produce damage in the neonatal brains of rodents. To further investigate this phenomenon, we focused on the influence of sevoflurane anesthesia on the development of juvenile social behavioral abilities and the pro-social proteins oxytocin (OT) and arginine vasopressin (AVP) in the neonatal hippocampus. A single 6-h sevoflurane exposure for postnatal day 5 mice resulted in decreased OT and AVP messenger RNA (mRNA) and protein levels in the hippocampus. OT and AVP proteins became sparsely distributed in the dorsal hippocampus after the exposure to sevoflurane. Compared with the air-treated group, mice in the sevoflurane-treated group showed signs of impairment in social recognition memory formation and social discrimination ability. Sevoflurane anesthesia reduces OT and AVP activities in the neonatal hippocampus and impairs social recognition memory formation and social discrimination ability in juvenile mice.

  18. Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse

    PubMed Central

    Ahlbeck, Joachim; Song, Lingzhen; Chini, Mattia; Bitzenhofer, Sebastian H

    2018-01-01

    The long-range coupling within prefrontal-hippocampal networks that account for cognitive performance emerges early in life. The discontinuous hippocampal theta bursts have been proposed to drive the generation of neonatal prefrontal oscillations, yet the cellular substrate of these early interactions is still unresolved. Here, we selectively target optogenetic manipulation of glutamatergic projection neurons in the CA1 area of either dorsal or intermediate/ventral hippocampus at neonatal age to elucidate their contribution to the emergence of prefrontal oscillatory entrainment. We show that despite stronger theta and ripples power in dorsal hippocampus, the prefrontal cortex is mainly coupled with intermediate/ventral hippocampus by phase-locking of neuronal firing via dense direct axonal projections. Theta band-confined activation by light of pyramidal neurons in intermediate/ventral but not dorsal CA1 that were transfected by in utero electroporation with high-efficiency channelrhodopsin boosts prefrontal oscillations. Our data causally elucidate the cellular origin of the long-range coupling in the developing brain. PMID:29631696

  19. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval

    PubMed Central

    Ishikawa, Rie; Fukushima, Hotaka; Frankland, Paul W; Kida, Satoshi

    2016-01-01

    Forgetting of recent fear memory is promoted by treatment with memantine (MEM), which increases hippocampal neurogenesis. The approaches for treatment of post-traumatic stress disorder (PTSD) using rodent models have focused on the extinction and reconsolidation of recent, but not remote, memories. Here we show that, following prolonged re-exposure to the conditioning context, enhancers of hippocampal neurogenesis, including MEM, promote forgetting of remote contextual fear memory. However, these interventions are ineffective following shorter re-exposures. Importantly, we find that long, but not short re-exposures activate gene expression in the hippocampus and induce hippocampus-dependent reconsolidation of remote contextual fear memory. Furthermore, remote memory retrieval becomes hippocampus-dependent after the long-time recall, suggesting that remote fear memory returns to a hippocampus dependent state after the long-time recall, thereby allowing enhanced forgetting by increased hippocampal neurogenesis. Forgetting of traumatic memory may contribute to the development of PTSD treatment. DOI: http://dx.doi.org/10.7554/eLife.17464.001 PMID:27669409

  20. Episodic Memory and Beyond: The Hippocampus and Neocortex in Transformation.

    PubMed

    Moscovitch, Morris; Cabeza, Roberto; Winocur, Gordon; Nadel, Lynn

    2016-01-01

    The last decade has seen dramatic technological and conceptual changes in research on episodic memory and the brain. New technologies, and increased use of more naturalistic observations, have enabled investigators to delve deeply into the structures that mediate episodic memory, particularly the hippocampus, and to track functional and structural interactions among brain regions that support it. Conceptually, episodic memory is increasingly being viewed as subject to lifelong transformations that are reflected in the neural substrates that mediate it. In keeping with this dynamic perspective, research on episodic memory (and the hippocampus) has infiltrated domains, from perception to language and from empathy to problem solving, that were once considered outside its boundaries. Using the component process model as a framework, and focusing on the hippocampus, its subfields, and specialization along its longitudinal axis, along with its interaction with other brain regions, we consider these new developments and their implications for the organization of episodic memory and its contribution to functions in other domains.

  1. The Anterior Thalamus is Critical for Overcoming Interference in a Context-Dependent Odor Discrimination Task

    PubMed Central

    Law, L. Matthew; Smith, David M.

    2012-01-01

    The anterior thalamus (AT) is anatomically interconnected with the hippocampus and other structures known to be involved in memory, and the AT is involved in many of the same learning and memory functions as the hippocampus. For example, like the hippocampus, the AT is involved in spatial cognition and episodic memory. The hippocampus also has a well-documented role in contextual memory processes, but it is not known whether the AT is similarly involved in contextual memory. In the present study, we assessed the role of the AT in contextual memory processes by temporarily inactivating the AT and training rats on a recently developed context-based olfactory list learning task, which was designed to assess the use of contextual information to resolve interference. Rats were trained on one list of odor discrimination problems, followed by training on a second list in either the same context or a different context. In order to induce interference, some of the odors appeared on both lists with their predictive value reversed. Control rats that learned the two lists in different contexts performed significantly better than rats that learned the two lists in the same context. However, AT lesions completely abolished this contextual learning advantage, a result that is very similar to the effects of hippocampal inactivation. These findings demonstrate that the AT, like the hippocampus, is involved in contextual memory and suggest that the hippocampus and AT are part of a functional circuit involved in contextual memory. PMID:23025833

  2. Cathepsin C Aggravates Neuroinflammation Involved in Disturbances of Behaviour and Neurochemistry in Acute and Chronic Stress-Induced Murine Model of Depression.

    PubMed

    Zhang, Yanli; Fan, Kai; Liu, Yanna; Liu, Gang; Yang, Xiaohan; Ma, Jianmei

    2018-01-01

    Major depression has been interpreted as an inflammatory disease characterized by cell-mediated immune activation, which is generally triggered by various stresses. Microglia has been thought to be the cellular link between inflammation and depression-like behavioural alterations. The expression of cathepsin C (Cat C), a lysosomal proteinase, is predominantly induced in microglia in neuroinflammation. However, little is known about the role of Cat C in pathophysiology of depression. In the present study, Cat C transgenic mice and wild type mice were subjected to an intraperitoneal injection of LPS (0.5 mg/kg) and 6-week unpredictable chronic mild stress (UCMS) exposure to establish acute and chronic stress-induced depression model. We examined and compared the behavioural and proinflammatory cytokine alterations in serum and depression-targeted brain areas of Cat C differentially expressed mice in stress, as well as indoleamine 2,3-dioxygenase (IDO) and 5-hydroxytryptamine (5HT) levels in brain. The results showed that Cat C overexpression (Cat C OE) promoted peripheral and central inflammatory response with significantly increased TNFα, IL-1β and IL-6 in serum, hippocampus and prefrontal cortex, and resultant upregulation of IDO and downregulation of 5HT expression in brain, and thereby aggravated depression-like behaviours accessed by open field test, forced swim test and tail suspension test. In contrast, Cat C knockdown (Cat C KD) partially prevented inflammation, which may help alleviate the symptoms of depression in mice. To the best of our knowledge, we are the first to demonstrate that Cat C aggravates neuroinflammation involved in disturbances of behaviour and neurochemistry in acute and chronic stress-induced murine model of depression.

  3. Choline Availability During Embryonic Development Alters Progenitor Cell Mitosis in Developing Mouse Hippocampus1,2

    PubMed Central

    Craciunescu, Corneliu N.; Albright, Craig D.; Mar, Mei-Heng; Song, Jiannan; Zeisel, Steven H.

    2006-01-01

    Previously, we reported that dietary choline influences development of the hippocampus in fetal rat brain. It is important to know whether similar effects of choline occur in developing fetal mouse brain because interesting new experimental approaches are now available using several transgenic mouse models. Timed-pregnant mice were fed choline-supplemented (CS), control (CT) or choline-deficient (CD) AIN-76 diet from embryonic day 12 to 17 (E12–17). Fetuses from CD dams had diminished concentrations of phosphocholine and phosphatidylcholine in their brains compared with CT or CS fetuses (P < 0.05). When we analyzed fetal hippocampus on day E17 for cells with mitotic phase–specific expression of phosphorylated histone H3, we detected fewer labeled cells at the ventricular surface of the ventricular zone in the CD group (14.8 ± 1.9) compared with the CT (30.7 ± 1.9) or CS (36.6 ± 2.6) group (P < 0.05). At the same time, we detected more apoptotic cells in E17 hippocampus using morphology in the CD group (11.8 ± 1.4) than in CT (5.6 ± 0.6) or CS (4.2 ± 0.7) group (P < 0.05). This was confirmed using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin anti-digoxigenin fluorescein conjugate antibody nick end-labeling (TUNEL) and activated caspase-3 immunoreactivity. We conclude that the dietary availability of choline to the mouse dam influences progenitor cell proliferation and apoptosis in the fetal brain. J. Nutr. 133: 3614–3618, 2003. PMID:14608083

  4. Developing and validating trace fear conditioning protocols in C57BL/6 mice.

    PubMed

    Burman, Michael A; Simmons, Cassandra A; Hughes, Miles; Lei, Lei

    2014-01-30

    Classical fear conditioning is commonly used to study the biology of fear, anxiety and memory. Previous research demonstrated that delay conditioning requires a neural circuit involving the amygdala, but not usually the hippocampus. Trace and contextual fear conditioning require the amygdala and hippocampus. While these paradigms were developed primarily using rat models, they are increasingly being used in mice. The current studies develop trace fear conditioning and control paradigms to allow for the assessment of trace and delay fear conditioning in C57BL/6N mice. Our initial protocol yielded clear delay and contextual conditioning. However, trace conditioning failed to differentiate from an unpaired group and was not hippocampus-dependent. These results suggested that the protocol needed to be modified to specifically accommodate trace conditioning the mice. In order to reduce unconditioned freezing and increase learning, the final protocol was developed by decreasing the intensity of the tone and by increasing the inter-trial interval. Our final protocol produced trace conditioned freezing that was significantly greater than that followed unpaired stimulus exposure and was disrupted by hippocampus lesions. A review of the literature produced 90 articles using trace conditioning in mice. Few of those articles used any kind of behavioral control group, which is required to rule out non-associative factors causing fearful behavior. Fewer used unpaired groups involving tones and shocks within a session, which is the optimal control group. Our final trace conditioning protocol can be used in future studies examining genetically modified C57BL/6N mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Developing and Validating Trace Fear Conditioning Protocols in C57BL/6 Mice

    PubMed Central

    Burman, Michael A; Simmons, Cassandra A; Hughes, Miles; Lei, Lei

    2013-01-01

    Background Classical fear conditioning is commonly used to study the biology of fear, anxiety and memory. Previous research demonstrated that delay conditioning requires a neural circuit involving the amygdala, but not usually the hippocampus. Trace and contextual fear conditioning require the amygdala and hippocampus. While these paradigms were developed primarily using rat models, they are increasingly being used in mice. New Method The current studies develop trace fear conditioning and control paradigms to allow for the assessment of trace and delay fear conditioning in C57BL/6N mice. Our initial protocol yielded clear delay and contextual conditioning. However, trace conditioning failed to differentiate from an unpaired group and was not hippocampus-dependent. These results suggested that the protocol needed to be modified to specifically accommodate trace conditioning the mice. In order to reduce unconditioned freezing and increase learning, the final protocol was developed by decreasing the intensity of the tone and by increasing the inter-trial interval. Results Our final protocol produced trace conditioned freezing that was significantly greater than that followed unpaired stimulus exposure and was disrupted by hippocampus lesions. Comparison with Existing Methods A review of the literature produced 90 articles using trace conditioning in mice. Few of those articles used any kind of behavioral control group, which is required to rule out non-associative factors causing fearful behavior. Fewer used unpaired groups involving tones and shocks within a session, which is the optimal control group. Conclusions Our final trace conditioning protocol can be used in future studies examining genetically modified C57BL/6N mice. PMID:24269252

  6. [The role of the opiate mechanisms of the hippocampus and substantia nigra in the behavioral and convulsive disorders in picrotoxin-induced kindling].

    PubMed

    Kryzhanovskiĭ, G N; Shandra, A A; Godlevskiĭ, L S; Mazarati, A M; Nguyen, T T

    1991-03-01

    It was shown in the experiments on rats that the repeated picrotoxin administration resulted in the kindling of generalized seizures. Generalized convulsions were followed by the development of either postictal depression or explosiveness. The injection of mu-opiate agonist met-enkephalin into hippocampus of kindled rats resulted in the increase in the severity of seizure reactions which were induced by picrotoxin and also in the increase in the number of animals with postictal explosiveness. The injection of dynorphin-A-1-13 (kappa-opiate agonist) into substantia nigra reticulata induced the locomotor depression which was like one in postictal period and resulted in the decrease of picrotoxin-induced seizures severity. It was concluded that mu-opiate system of hippocampus took part in the formation of generator of pathologically enhanced excitation in the structure during kindling and the development of seizure syndrome, providing also the postictal explosiveness. Kappa-opiate system of substantia nigra plays an important role in the activation of the antiepileptic system, limitation of seizures and the development of postictal depression.

  7. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis.

    PubMed

    O'Neill, Marisol; Huang, Gene O; Lamb, Dolores J

    2017-12-01

    The murine penis model has enriched our understanding of anomalous penile development. The morphologic characterization of the murine penis using conventional serial sectioning methods is labor intensive and prone to errors. To develop a novel application of micro-computerized tomography (micro-CT) with iodine staining for rapid, non-destructive morphologic study of murine penis structure. Penises were dissected from 10 adult wild-type mice and imaged using micro-CT with iodine staining. Images were acquired at 5-μm spatial resolution on a Bruker SkyScan 1272 micro-CT system. After images were acquired, the specimens were washed of any remaining iodine and embedded in paraffin for conventional histologic examination. Histologic and micro-CT measurements for all specimens were made by 2 independent observers. Measurements of penile structures were made on virtual micro-CT sections and histologic slides. The Lin concordance correlation coefficient demonstrated almost perfect strength of agreement for interobserver variability for histologic section (0.9995, 95% CI = 0.9990-0.9997) and micro-CT section (0.9982, 95% CI = 0.9963-0.9991) measurements. Bland-Altman analysis for agreement between the 2 modalities of measurement demonstrated mean differences of -0.029, 0.022, and -0.068 mm for male urogenital mating protuberance, baculum, and penile glans length, respectively. There did not appear to be a bias for overestimation or underestimation of measured lengths and limits of agreement were narrow. The enhanced ability offered by micro-CT to phenotype the murine penis has the potential to improve translational studies examining the molecular pathways contributing to anomalous penile development. The present study describes the first reported use of micro-CT with iodine staining for imaging the murine penis. Producing repeated histologic sections of identical orientation was limited by inherent imperfections in mounting and tissue sectioning, but this was compensated for by using micro-CT reconstructions to identify matching virtual sections. This study demonstrates the successful use of micro-CT with iodine staining, which has the potential for submicron spatial resolution, as a non-destructive method of characterizing murine penile morphology. O'Neill M, Huang GO, Lamb DJ. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis. J Sex Med 2017;14:1533-1539. Copyright © 2017. Published by Elsevier Inc.

  8. New Poly(3-hydroxybutyrate) Microparticles with Paclitaxel Sustained Release for Intraperitoneal Administration.

    PubMed

    Bonartsev, Anton P; Zernov, Anton L; Yakovlev, Sergey G; Zharkova, Irina I; Myshkina, Vera L; Mahina, Tatiana K; Bonartseva, Garina A; Andronova, Natalia V; Smirnova, Galina B; Borisova, Juliya A; Kalishjan, Mikhail S; Shaitan, Konstantin V; Treshalina, Helena M

    2017-01-01

    Poly(hydroxyalkanoates) (PHA) have recently attracted increasing attention due to their biodegradability and high biocompatibility, which makes them suitable for the development of new prolong drug formulations. This study was conducted to develop new prolong paclitaxel (PTX) formulation based on poly(3- hydroxybutyrate) (PHB) microparticles. PHB microparticles loaded with antitumor cytostatic drug PTX were obtained by spray-drying method using Nano Spray Dryer B-90. The PTX release kinetics in vitro from PHB microparticles and their cytotoxity on murine hepatoma cell line MH-22a were studied. Microparticles antitumor activity in vivo was studied using intraperitoneally (i.p.) transplanted tumor models: murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. Uniform PTX release from PHB-microparticles during 2 months was observed. PTX-loaded PHB microparticles have demonstrated a significant antitumor activity versus pure drug both in vitro in murine hepatoma cells and in vivo when administered i.p. to mice with murine Lewis lung carcinoma and xenografts of human breast cancer RMG1. The developed technique of PTX sustained delivery from PHB-microparticles has therapeutic potential as prolong anticancer drug formulation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Taurine release from the developing and ageing hippocampus: stimulation by agonists of ionotropic glutamate receptors.

    PubMed

    Saransaari, P; Oja, S S

    1997-12-30

    The inhibitory amino acid taurine has been held to function as a modulator and osmoregulator in the brain, being of particular importance in the immature brain. The release of preloaded [3H]taurine was now studied in hippocampal slices from developing (7-day-old), adult (3-month-old) and ageing (6-24-month-old) mice focussing on the effects of agonists of ionotropic glutamate receptors. N-methyl-D-aspartate (NMDA), kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) potentiated taurine release concentration-dependently at each age, more so in the immature than in the adult and ageing hippocampus. The effect of kainate was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the developing and aged hippocampus and those of AMPA and NMDA by 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and dizocilpine a(MK-801) at every age studied. This indicates the involvement of NMDA and AMPA receptors in taurine release throughout the life-span of mice, while the kainate-receptor-mediated release does not appear to function in adults. The increased hippocampal taurine release evoked by ionotropic glutamate receptors could act neuroprotectively, counteracting by several mechanisms the harmful effects of the simultaneous release of excitatory amino acids. The substantial release of taurine in the immature hippocampus might be particularly significant in view of the vulnerability of brain tissue to excitotoxicity at early age.

  10. Development of an ex vivo BrdU labeling procedure for the murine LLNA

    EPA Science Inventory

    The murine local lymph node assay (LLNA) is widely used to identify chemicals that may cause allergic contact dermatitis. Exposure to a dermal sensitizer results in proliferation of local lymph node T cells, which has traditionally been measured by in vivo incorporation of [3H]m...

  11. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2013-01-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143

  12. Choline availability during embryonic development alters the localization of calretinin in developing and aging mouse hippocampus.

    PubMed

    Albright, Craig D; Siwek, Donald F; Craciunescu, Corneliu N; Mar, Mei-Heng; Kowall, Neil W; Williams, Christina L; Zeisel, Steven H

    2003-04-01

    Choline availability in the diet during pregnancy alters fetal brain biochemistry with resulting behavioral changes that persist throughout the lifetime of the offspring. In the present study, the effects of dietary choline on the onset of GABAergic neuronal differentiation in developing fetal brain, as demarcated by the expression of calcium binding protein calretinin, are described. In these studies, timed-pregnant mice were fed choline supplemented, control or choline deficient AIN-76 diet from day 12-17 of pregnancy and the brains of their fetuses were studied on day 17 of gestation. In the primordial dentate gyrus, we found that pups from choline deficient-dams had more calretinin protein (330% increase), and pups from choline supplemented-dams had less calretinin protein (70% decrease), than did pups from control-dams. Importantly, decreased calretinin protein was still detectable in hippocampus in aged, 24-month-old mice, born of choline supplemented-dams and maintained since birth on a control diet. Thus, alterations in the level of calretinin protein in fetal brain hippocampus could underlie the known, life long effects of maternal dietary choline availability on brain development and behavior.

  13. iTRAQ proteomic analysis of the hippocampus in a rat model of nicotine-induced conditioned place preference.

    PubMed

    Zhu, Beibei; Li, Xiangyu; Chen, Huan; Wang, Hongjuan; Zhu, Xinchao; Hou, Hongwei; Hu, Qingyuan

    2017-05-13

    Repeated exposures to nicotine are known to result in persistent changes in proteins expression in addiction-related brain regions, such as the striatum, nucleus accumbens and prefrontal cortex, but the changes induced in the protein content of the hippocampus remain poorly studied. This study established a rat model of nicotine-induced conditioned place preference (CPP), and screened for proteins that were differentially expressed in the hippocampus of these rats using isobaric tags for relative and absolute quantitation labeling (iTRAQ) coupled with 2D-LC MS/MS. The nicotine-induced CPP was established by subcutaneously injecting rats with 0.2 mg/kg nicotine. Relative to the control (saline) group, the nicotine group showed 0.67- and 1.5-fold changes in 117 and 10 hippocampal proteins, respectively. These differentially expressed proteins are mainly involved in calcium-mediated signaling, neurotransmitter transport, GABAergic synapse function, long-term synaptic potentiation and nervous system development. Furthermore, RT-PCR was used to confirmed the results of the proteomic analysis. Our findings identify several proteins and cellular signaling pathways potentially involved in the molecular mechanisms in the hippocampus that underlie nicotine addiction. These results provide insights into the mechanisms of nicotine treatment in hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Involvement of Thalamus in Initiation of Epileptic Seizures Induced by Pilocarpine in Mice

    PubMed Central

    Li, Yong-Hua; Li, Jia-Jia; Lu, Qin-Chi; Gong, Hai-Qing; Liang, Pei-Ji

    2014-01-01

    Studies have suggested that thalamus is involved in temporal lobe epilepsy, but the role of thalamus is still unclear. We obtained local filed potentials (LFPs) and single-unit activities from CA1 of hippocampus and parafascicular nucleus of thalamus during the development of epileptic seizures induced by pilocarpine in mice. Two measures, redundancy and directionality index, were used to analyze the electrophysiological characters of neuronal activities and the information flow between thalamus and hippocampus. We found that LFPs became more regular during the seizure in both hippocampus and thalamus, and in some cases LFPs showed a transient disorder at seizure onset. The variation tendency of the peak values of cross-correlation function between neurons matched the variation tendency of the redundancy of LFPs. The information tended to flow from thalamus to hippocampus during seizure initiation period no matter what the information flow direction was before the seizure. In some cases the information flow was symmetrically bidirectional, but none was found in which the information flowed from hippocampus to thalamus during the seizure initiation period. In addition, inactivation of thalamus by tetrodotoxin (TTX) resulted in a suppression of seizures. These results suggest that thalamus may play an important role in the initiation of epileptic seizures. PMID:24778885

  15. Modifiable factors that alter the size of the hippocampus with ageing.

    PubMed

    Fotuhi, Majid; Do, David; Jack, Clifford

    2012-03-13

    The hippocampus is particularly vulnerable to the neurotoxic effects of obesity, diabetes mellitus, hypertension, hypoxic brain injury, obstructive sleep apnoea, bipolar disorder, clinical depression and head trauma. Patients with these conditions often have smaller hippocampi and experience a greater degree of cognitive decline than individuals without these comorbidities. Moreover, hippocampal atrophy is an established indicator for conversion from the normal ageing process to developing mild cognitive impairment and dementia. As such, an important aim is to ascertain which modifiable factors can have a positive effect on the size of the hippocampus throughout life. Observational studies and preliminary clinical trials have raised the possibility that physical exercise, cognitive stimulation and treatment of general medical conditions can reverse age-related atrophy in the hippocampus, or even expand its size. An emerging concept--the dynamic polygon hypothesis--suggests that treatment of modifiable risk factors can increase the volume or prevent atrophy of the hippocampus. According to this hypothesis, a multidisciplinary approach, which involves strategies to both reduce neurotoxicity and increase neurogenesis, is likely to be successful in delaying the onset of cognitive impairment with ageing. Further research on the constellation of interventions that could be most effective is needed before recommendations can be made for implementing preventive and therapeutic strategies.

  16. [Intervention effects of Jiaotai pills on PCPA-induced insomnia in rats].

    PubMed

    Yue, He; Zhou, Xiang-Yu; Li, Chun-Yuan; Zou, Zhong-Jie; Wang, Shu-Mei; Liang, Sheng-Wang; Gong, Meng-Juan

    2016-09-01

    To elucidate the intervention effects of Jiaotai pills(JTP) on p-chlorophenylalanine (PCPA)-induced insomnia in rats and its underlying mechanism, the insomnia model was established by single intraperitoneal injection with PCPA in rats. The locomotor activity of rats was observed, and the levels of nerve growth factor(NGF) in hypothalamus, hippocampus, prefrontal cortex and serum of rats were determined by using ELISA. Moreover, a proton nuclear magnetic resonance(¹H-NMR)-based metabonomic approach was developed to profile insomnia-related metabolites in rat serum and hippocampus and analyze the intervention effects of JTP on changes in underlying biomarkers related to locomotor activity, NGF and insomnia. According to the results, JTP could significantly suppress the locomotor activity of insomnia rats, and increase the NGF levels in hypothalamus, hippocampus, prefrontal cortex and serum of rats with insomnia. The disturbed metabolic state associated with PCPA-induced insomnia in rat serum and hippocampus could be intervened by JTP. Meanwhile, six and five potential biomarkers related to insomnia in rat serum and hippocampus were reversed by administration of JTP. In conclusion, the current study demonstrated that JTP had protective effects against PCPA-induced insomnia in rats, which was probably correlated with regulation of NGF level and metabolism of amino acids, lipids and choline. Copyright© by the Chinese Pharmaceutical Association.

  17. Early network activity propagates bidirectionally between hippocampus and cortex.

    PubMed

    Barger, Zeke; Easton, Curtis R; Neuzil, Kevin E; Moody, William J

    2016-06-01

    Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus-neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca(2+) waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca(2+) elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves-the hippocampus and the piriform cortex-can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function. © 2015 Wiley Periodicals, Inc.

  18. Forebrain Cholinergic Dysfunction and Systemic and Brain Inflammation in Murine Sepsis Survivors

    PubMed Central

    Zaghloul, Nahla; Addorisio, Meghan E.; Silverman, Harold A.; Patel, Hardik L.; Valdés-Ferrer, Sergio I.; Ayasolla, Kamesh R.; Lehner, Kurt R.; Olofsson, Peder S.; Nasim, Mansoor; Metz, Christine N.; Wang, Ping; Ahmed, Mohamed; Chavan, Sangeeta S.; Diamond, Betty; Tracey, Kevin J.; Pavlov, Valentin A.

    2017-01-01

    Sepsis, a complex disorder characterized by immune, metabolic, and neurological dysregulation, is the number one killer in the intensive care unit. Mortality remains alarmingly high even in among sepsis survivors discharged from the hospital. There is no clear strategy for managing this lethal chronic sepsis illness, which is associated with severe functional disabilities and cognitive deterioration. Providing insight into the underlying pathophysiology is desperately needed to direct new therapeutic approaches. Previous studies have shown that brain cholinergic signaling importantly regulates cognition and inflammation. Here, we studied the relationship between peripheral immunometabolic alterations and brain cholinergic and inflammatory states in mouse survivors of cecal ligation and puncture (CLP)-induced sepsis. Within 6 days, CLP resulted in 50% mortality vs. 100% survival in sham-operated controls. As compared to sham controls, sepsis survivors had significantly lower body weight, higher serum TNF, interleukin (IL)-1β, IL-6, CXCL1, IL-10, and HMGB1 levels, a lower TNF response to LPS challenge, and lower serum insulin, leptin, and plasminogen activator inhibitor-1 levels on day 14. In the basal forebrain of mouse sepsis survivors, the number of cholinergic [choline acetyltransferase (ChAT)-positive] neurons was significantly reduced. In the hippocampus and the cortex of mouse sepsis survivors, the activity of acetylcholinesterase (AChE), the enzyme that degrades acetylcholine, as well as the expression of its encoding gene were significantly increased. In addition, the expression of the gene encoding the M1 muscarinic acetylcholine receptor was decreased in the hippocampus. In parallel with these forebrain cholinergic alterations, microglial activation (in the cortex) and increased Il1b and Il6 gene expression (in the cortex), and Il1b gene expression (in the hippocampus) were observed in mouse sepsis survivors. Furthermore, microglial activation was linked to decreased cortical ChAT protein expression and increased AChE activity. These results reinforce the notion of persistent inflammation-immunosuppression and catabolic syndrome in sepsis survivors and characterize a previously unrecognized relationship between forebrain cholinergic dysfunction and neuroinflammation in sepsis survivors. This insight is of interest for new therapeutic approaches that focus on brain cholinergic signaling for patients with chronic sepsis illness, a problem with no specific treatment. PMID:29326685

  19. A novel murine model for evaluating bovine papillomavirus prophylactics/therapeutics for equine sarcoid-like tumours

    PubMed Central

    Bogaert, Lies; Woodham, Andrew W.; Da Silva, Diane M.; Martens, Ann; Meyer, Evelyne

    2015-01-01

    Equine sarcoids are highly recurrent bovine papillomavirus (BPV)-induced fibroblastic neoplasms that are the most common skin tumours in horses. In order to facilitate the study of potential equine sarcoid prophylactics or therapeutics, which can be a slow and costly process in equines, a murine model for BPV-1 protein-expressing equine sarcoid-like tumours was developed in mice through stable transfection of BPV-1 E5 and E6 in a murine fibroblast tumour cell line (K-BALB). Like equine sarcoids, these murine tumour cells (BPV-KB) were of fibroblast origin, were tumorigenic and expressed BPV-1 proteins. As an initial investigation of the preclinical potential of this tumour model for equine sarcoids prophylactics, mice were immunized with BPV-1 E5E6 Venezuelan equine encephalitis virus replicon particles, prior to BPV-KB challenge, which resulted in an increased tumour-free period compared with controls, indicating that the BPV-KB murine model may be a valuable preclinical alternative to equine clinical trials. PMID:26044793

  20. A novel murine model for evaluating bovine papillomavirus prophylactics/therapeutics for equine sarcoid-like tumours.

    PubMed

    Bogaert, Lies; Woodham, Andrew W; Da Silva, Diane M; Martens, Ann; Meyer, Evelyne; Kast, W Martin

    2015-09-01

    Equine sarcoids are highly recurrent bovine papillomavirus (BPV)-induced fibroblastic neoplasms that are the most common skin tumours in horses. In order to facilitate the study of potential equine sarcoid prophylactics or therapeutics, which can be a slow and costly process in equines, a murine model for BPV-1 protein-expressing equine sarcoid-like tumours was developed in mice through stable transfection of BPV-1 E5 and E6 in a murine fibroblast tumour cell line (K-BALB). Like equine sarcoids, these murine tumour cells (BPV-KB) were of fibroblast origin, were tumorigenic and expressed BPV-1 proteins. As an initial investigation of the preclinical potential of this tumour model for equine sarcoids prophylactics, mice were immunized with BPV-1 E5E6 Venezuelan equine encephalitis virus replicon particles, prior to BPV-KB challenge, which resulted in an increased tumour-free period compared with controls, indicating that the BPV-KB murine model may be a valuable preclinical alternative to equine clinical trials.

  1. Examining the Role of the Human Hippocampus in Approach-Avoidance Decision Making Using a Novel Conflict Paradigm and Multivariate Functional Magnetic Resonance Imaging.

    PubMed

    O'Neil, Edward B; Newsome, Rachel N; Li, Iris H N; Thavabalasingam, Sathesan; Ito, Rutsuko; Lee, Andy C H

    2015-11-11

    Rodent models of anxiety have implicated the ventral hippocampus in approach-avoidance conflict processing. Few studies have, however, examined whether the human hippocampus plays a similar role. We developed a novel decision-making paradigm to examine neural activity when participants made approach/avoidance decisions under conditions of high or absent approach-avoidance conflict. Critically, our task required participants to learn the associated reward/punishment values of previously neutral stimuli and controlled for mnemonic and spatial processing demands, both important issues given approach-avoidance behavior in humans is less tied to predation and foraging compared to rodents. Participants played a points-based game where they first attempted to maximize their score by determining which of a series of previously neutral image pairs should be approached or avoided. During functional magnetic resonance imaging, participants were then presented with novel pairings of these images. These pairings consisted of images of congruent or opposing learned valences, the latter creating conditions of high approach-avoidance conflict. A data-driven partial least squares multivariate analysis revealed two reliable patterns of activity, each revealing differential activity in the anterior hippocampus, the homolog of the rodent ventral hippocampus. The first was associated with greater hippocampal involvement during trials with high as opposed to no approach-avoidance conflict, regardless of approach or avoidance behavior. The second pattern encompassed greater hippocampal activity in a more anterior aspect during approach compared to avoid responses, for conflict and no-conflict conditions. Multivoxel pattern classification analyses yielded converging findings, underlining a role of the anterior hippocampus in approach-avoidance conflict decision making. Approach-avoidance conflict has been linked to anxiety and occurs when a stimulus or situation is associated with reward and punishment. Although rodent work has implicated the hippocampus in approach-avoidance conflict processing, there is limited data on whether this role applies to learned, as opposed to innate, incentive values, and whether the human hippocampus plays a similar role. Using functional neuroimaging with a novel decision-making task that controlled for perceptual and mnemonic processing, we found that the human hippocampus was significantly active when approach-avoidance conflict was present for stimuli with learned incentive values. These findings demonstrate a role for the human hippocampus in approach-avoidance decision making that cannot be explained easily by hippocampal-dependent long-term memory or spatial cognition. Copyright © 2015 the authors 0270-6474/15/3515040-11$15.00/0.

  2. The extended trajectory of hippocampal development: implications for early memory development and disorder

    PubMed Central

    Gómez, Rebecca L.; Edgin, Jamie O.

    2015-01-01

    Hippocampus has an extended developmental trajectory, with refinements occurring in the trisynaptic circuit until adolescence. While structural change should suggest a protracted course in behavior, some studies find evidence of precocious hippocampal development in the first postnatal year and continuity in memory processes beyond. However, a number of memory functions, including binding and relational inference, can be cortically supported. Evidence from the animal literature suggests that tasks often associated with hippocampus (Visual Paired Comparison, binding of a visuomotor response) can be mediated by structures external to hippocampus. Thus, a complete examination of memory development will have to rule out cortex as a source of early memory competency. We propose that early memory must show properties associated with full function of the trisynaptic circuit to reflect “adult-like” memory function, mainly 1) rapid encoding of contextual details of overlapping patterns, and 2) retention of these details over sleep-dependent delays. A wealth of evidence suggests that these functions are not apparent until 18–24 months, with behavioral discontinuities reflecting shifts in the neural structures subserving memory beginning approximately at this point in development. We discuss the implications of these observations for theories of memory and for identifying and measuring memory function in populations with typical and atypical hippocampal function. PMID:26437910

  3. Regional differences in the morphological and functional effects of aging on cerebral basement membranes and perivascular drainage of amyloid-β from the mouse brain.

    PubMed

    Hawkes, Cheryl A; Gatherer, Maureen; Sharp, Matthew M; Dorr, Adrienne; Yuen, Ho Ming; Kalaria, Rajesh; Weller, Roy O; Carare, Roxana O

    2013-04-01

    Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  4. Effects of Prenatal Testosterone Exposure on Sexually Dimorphic Gene Expression in the Neonatal Mouse Cortex and Hippocampus

    PubMed Central

    Armoskus, Chris; Mota, Thomas; Moreira, Debbie; Tsai, Houng-Wei

    2014-01-01

    Objective Using gene expression microarrays and reverse transcription with quantitative polymerase chain reaction (RT-qPCR), we have recently identified several novel genes that are differentially expressed in the neonatal male versus female mouse cortex/hippocampus (Armoskus et al.). Since perinatal testosterone (T) secreted by the developing testes masculinizes cortical and hippocampal structures and the behaviors regulated by these brain regions, we hypothesized that sexually dimorphic expression of specific selected genes in these areas might be regulated by T during early development. Methods To test our hypothesis, we treated timed pregnant female mice daily with vehicle or testosterone propionate (TP) starting on embryonic day 16 until the day of birth. The cortex/hippocampus was collected from vehicle- and TP-treated, male and female neonatal pups. Total RNA was extracted from these brain tissues, followed by RT-qPCR to measure relative mRNA levels of seven sex chromosome genes and three autosomal genes that have previously showed sex differences. Results The effect of prenatal TP was confirmed as it stimulated Dhcr24 expression in the neonatal mouse cortex/hippocampus and increased the anogenital distance in females. We found a significant effect of sex, but not TP, on expression of three Y-linked (Ddx3y, Eif2s3y, and Kdm5d), four X-linked (Eif2s3x, Kdm6a, Mid1, and Xist), and one autosomal (Klk8) genes in the neonatal mouse cortex/hippocampus. Conclusion Although most of the selected genes are not directly regulated by prenatal T, their sexually dimorphic expression might play an important role in the control of sexually differentiated cognitive and social behaviors as well as in the etiology of sex-biased neurological disorders and mental illnesses. PMID:25411648

  5. Hippocampal Contribution to Context Encoding across Development Is Disrupted following Early-Life Adversity.

    PubMed

    Lambert, Hilary K; Sheridan, Margaret A; Sambrook, Kelly A; Rosen, Maya L; Askren, Mary K; McLaughlin, Katie A

    2017-02-15

    Context can drastically influence responses to environmental stimuli. For example, a gunshot should provoke a different response at a public park than a shooting range. Little is known about how contextual processing and neural correlates change across human development or about individual differences related to early environmental experiences. Children ( N = 60; 8-19 years, 24 exposed to interpersonal violence) completed a context encoding task during fMRI scanning using a delayed match-to-sample design with neutral, happy, and angry facial cues embedded in realistic background scenes. Outside the scanner, participants completed a memory test for context-face pairings. Context memory and neural correlates of context encoding did not vary with age. Larger hippocampal volume was associated with better context memory. Posterior hippocampus was recruited during context encoding, and greater activation in this region predicted better memory for contexts paired with angry faces. Children exposed to violence had poor memory of contexts paired with angry faces, reduced hippocampal volume, and atypical neural recruitment on encoding trials with angry faces, including reduced hippocampal activation and greater functional connectivity between hippocampus and ventrolateral prefrontal cortex (vlPFC). Greater hippocampus-vlPFC connectivity was associated with worse memory for contexts paired with angry faces. Posterior hippocampus appears to support context encoding, a process that does not exhibit age-related variation from middle childhood to late adolescence. Exposure to dangerous environments in childhood is associated with poor context encoding in the presence of threat, likely due to greater vlPFC-dependent attentional narrowing on threat cues at the expense of hippocampus-dependent processing of the broader context. SIGNIFICANCE STATEMENT The ability to use context to guide reactions to environmental stimuli promotes flexible behavior. Remarkably little research has examined how contextual processing changes across development or about influences of the early environment. We provide evidence for posterior hippocampus involvement in context encoding in youth and lack of age-related variation from middle childhood to late adolescence. Children exposed to interpersonal violence exhibited poor memory of contexts paired with angry faces and atypical neural recruitment during context encoding in the presence of threatening facial cues. Heightened attention to threat following violence exposure may come at the expense of encoding contextual information, which may ultimately contribute to pathological fear expressed in safe contexts. Copyright © 2017 the authors 0270-6474/17/371925-10$15.00/0.

  6. Prolonged maternal separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development.

    PubMed

    Ohta, Ken-Ichi; Suzuki, Shingo; Warita, Katsuhiko; Kaji, Tomohiro; Kusaka, Takashi; Miki, Takanori

    2017-04-01

    Maternal separation (MS) is known to affect hippocampal function such as learning and memory, yet the molecular mechanism remains unknown. We hypothesized that these impairments are attributed to abnormities of neural circuit formation by MS, and focused on brain-derived neurotrophic factor (BDNF) as key factor because BDNF signaling has an essential role in synapse formation during early brain development. Using rat offspring exposed to MS for 6 h/day during postnatal days (PD) 2-20, we estimated BDNF signaling in the hippocampus during brain development. Our results show that MS attenuated BDNF expression and activation of extracellular signal-regulated kinase (ERK) around PD 7. Moreover, plasticity-related immediate early genes, which are transcriptionally regulated by BDNF-ERK signaling, were also reduced by MS around PD 7. Interestingly, detailed analysis revealed that MS particularly reduced expression of BDNF gene and immediate early genes in the cornu ammonis 1 (CA1) of hippocampus at PD 7. Considering that BDNF-ERK signaling is involved in spine formation, we next evaluated spine formation in the hippocampus during the weaning period. Our results show that MS particularly reduced mature spine density in proximal apical dendrites of CA1 pyramidal neurons at PD 21. These results suggest that MS could attenuate BDNF-ERK signaling during primary synaptogenesis with a region-specific manner, which is likely to lead to decreased spine formation and maturation observed in the hippocampal CA1 region. It is speculated that this incomplete spine formation during early brain development has an influence on learning capabilities throughout adulthood. © 2017 International Society for Neurochemistry.

  7. First records of Hippocampus algiricus in the Canary Islands (north-east Atlantic Ocean) with an observation of hybridization with Hippocampus hippocampus.

    PubMed

    Otero-Ferrer, F; Herrera, R; López, A; Socorro, J; Molina, L; Bouza, C

    2015-10-01

    Morphometric and genetic analyses confirmed the first records of the West African seahorse Hippocampus algiricus at Gran Canaria Island (north-east Atlantic Ocean), and also the first evidence of interspecific hybridization in seahorses. These results provide additional data on the distribution of H. algiricus that may help to establish future conservation strategies, and uncover a new potential sympatric scenario between H. algiricus and Hippocampus hippocampus. © 2015 The Fisheries Society of the British Isles.

  8. Structural synaptic plasticity in the hippocampus induced by spatial experience and its implications in information processing.

    PubMed

    Carasatorre, M; Ramírez-Amaya, V; Díaz Cintra, S

    2016-10-01

    Long-lasting memory formation requires that groups of neurons processing new information develop the ability to reproduce the patterns of neural activity acquired by experience. Changes in synaptic efficiency let neurons organise to form ensembles that repeat certain activity patterns again and again. Among other changes in synaptic plasticity, structural modifications tend to be long-lasting which suggests that they underlie long-term memory. There is a large body of evidence supporting that experience promotes changes in the synaptic structure, particularly in the hippocampus. Structural changes to the hippocampus may be functionally implicated in stabilising acquired memories and encoding new information. Copyright © 2012 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. The genus Hippocampus--a review on traditional medicinal uses, chemical constituents and pharmacological properties.

    PubMed

    Chen, Lu; Wang, Xiaoyu; Huang, Baokang

    2015-03-13

    Several species from the genus Hippocampus have been widely used as a traditional medicine or invigorant with long history in China. Five species of them have been recorded in Chinese pharmacopoeia with name Hippocampus (Chinese name Haima [symbol: see text]). The ethnopharmacologial history of this genus indicated that they possess anti-tumor, anti-aging, anti-fatigue, anti-prostatic hyperplasia activities and can be used for the treatment of tumor, aging, fatigue, thrombus, inflammatory, hypertension and impotence. This review focuses on the traditional medicinal uses of Hippocampus species, as well as the phytochemical, pharmacological and toxicological studies on this genus. To provide an overview of the ethnopharmacology, chemical constituents, pharmacology and clinical applications of the genus Hippocampus, and to reveal their therapeutic potentials and being an evidence base for further research works of the Hippocampus. Information on the Hippocampus species was collected from scientific journals, books, thesis and reports based on the Chinese herbal classic literature and worldwide accepted scientific databases via a library and electronic search (PubMed, Elsevier, Scopus, Google Scholar, Springer, Web of Science and CNKI). A survey of literature revealed that the major chemical constituents of Hippocampus are sterides, essential amino acids, fatty acids and microelements. Experimental evidences confirmed that the Hippocampus could be used in treating tumor, aging, fatigue, thrombus, inflammatory, hypertension, prostatic hyperplasia and impotence. The most important function of Hippocampus in TCM is invigorating kidney-yang. The key traditional uses of Hippocampus have been investigated in vitro and in vivo, but their mechanism and clinical trial data are needed, and the sustainable exploitation of the endangered Hippocampus species should be considered. This literature analysis of traditional medicinal uses and experimental chemical and pharmacological data of Hippocampus provide a scientific basis for future research. Hippocampus is a promising traditional medicine and holds great potential for being exploited as healthy products and drugs. Aquaculture and substitutes of Hippocampus are valid approaches to protect Hippocampus form being endangered species. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Age-Dependent Effects of Acute Alcohol Administration in the Hippocampal Phosphoproteome.

    PubMed

    Contreras, Ana; Morales, Lidia; Tebourbi, Ali; Miguéns, Miguel; Olmo, Nuria Del; Pérez-García, Carmen

    2017-12-18

    Alcohol consumption during adolescence is deleterious to the developing brain and leads to persistent deficits in adulthood. Several results provide strong evidence for ethanol-associated alterations in glutamatergic signaling and impaired synaptic plasticity in the hippocampus. Protein phosphorylation is a well-known and well-documented mechanism in memory processes, but information on phosphoprotein alterations in hippocampus after ethanol exposure is limited. This study focuses on age-related changes in the hippocampal phosphoproteome after acute alcohol administration. We have compared the phosphoprotein expression in the hippocampus of adult and adolescent Wistar rats treated with a single dose of ethanol (5 g/kg i.p.), using a proteomic approach including phosphoprotein enrichment by immobilized metal affinity chromatography (IMAC). Our proteomic analysis revealed that 13 proteins were differentially affected by age, ethanol administration, or both. Most of these proteins are involved in neuroprotection and are expressed less in young rats treated with ethanol. We conclude that acute alcohol induces important changes in the expression of phosphoproteins in the hippocampus that could increase the risk of neurodegenerative disorders, especially when the alcohol exposure begins in adolescence.

  11. White matter structural connectivity and episodic memory in early childhood.

    PubMed

    Ngo, Chi T; Alm, Kylie H; Metoki, Athanasia; Hampton, William; Riggins, Tracy; Newcombe, Nora S; Olson, Ingrid R

    2017-12-01

    Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children's performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Theta Oscillations During Active Sleep Synchronize The Developing Rubro-Hippocampal Sensorimotor Network

    PubMed Central

    Rio-Bermudez, Carlos Del; Kim, Jangjin; Sokoloff, Greta; Blumberg, Mark S.

    2017-01-01

    Summary Neuronal oscillations comprise a fundamental mechanism by which distant neural structures establish and express functional connectivity. Long-range functional connectivity between the hippocampus and other forebrain structures is enabled by theta oscillations. Here we show for the first time that the infant rat red nucleus (RN)—a brainstem sensorimotor structure— exhibits theta (4-7 Hz) oscillations restricted primarily to periods of active (REM) sleep. At postnatal day (P) 8, theta is expressed as brief bursts immediately following myoclonic twitches; by P12, theta oscillations are expressed continuously across bouts of active sleep. Simultaneous recordings from the hippocampus and RN at P12 show that theta oscillations in both structures are coherent, co-modulated, and mutually interactive during active sleep. Critically, at P12, inactivation of the medial septum eliminates theta in both structures. The developmental emergence of theta-dependent functional coupling between the hippocampus and RN parallels that between the hippocampus and prefrontal cortex. Accordingly, disruptions in the early expression of theta could underlie the cognitive and sensorimotor deficits associated with neurodevelopmental disorders such as autism and schizophrenia. PMID:28479324

  13. White Matter Structural Connectivity and Episodic Memory in Early Childhood

    PubMed Central

    Ngo, Chi T.; Alm, Kylie H.; Metoki, Athanasia; Hampton, William; Riggins, Tracy; Newcombe, Nora S.; Olson, Ingrid R.

    2018-01-01

    Episodic memory undergoes dramatic improvement in early childhood; the reason for this is poorly understood. In adults, episodic memory relies on a distributed neural network. Key brain regions that supporting these processes include the hippocampus, portions of the parietal cortex, and portions of prefrontal cortex, each of which shows different developmental profiles. Here we asked whether developmental differences in the axonal pathways connecting these regions may account for the robust gains in episodic memory in young children. Using diffusion weighted imaging, we examined whether white matter connectivity between brain regions implicated in episodic memory differed with age, and were associated with memory performance differences in 4- and 6-year-old children. Results revealed that white matter connecting the hippocampus to the inferior parietal lobule significantly predicted children’s performance on episodic memory tasks. In contrast, variation in the white matter connecting the hippocampus to the medial prefrontal cortex did not relate to memory performance. These findings suggest that structural connectivity between the hippocampus and lateral parietal regions is relevant to the development of episodic memory PMID:29175538

  14. Memory and the hippocampus in food-storing birds: a comparative approach.

    PubMed

    Clayton, N S

    1998-01-01

    Comparative studies provide a unique source of evidence for the role of the hippocampus in learning and memory. Within birds and mammals, the hippocampal volume of scatter-hoarding species that cache food in many different locations is enlarged, relative to the remainder of the telencephalon, when compared with than that of species which cache food in one larder, or do not cache at all. Do food-storing species show enhanced memory function in association with the volumetric enlargement of the hippocampus? Comparative studies within the parids (titmice and chickadees) and corvids (jays, nutcrackers and magpies), two families of birds which show natural variation in food-storing behavior, suggest that there may be two kinds of memory specialization associated with scatter-hoarding. First, in terms of spatial memory, several scatter-hoarding species have a more accurate and enduring spatial memory, and a preference to rely more heavily upon spatial cues, than that of closely related species which store less food, or none at all. Second, some scatter-hoarding parids and corvids are also more resistant to memory interference. While the most critical component about a cache site may be its spatial location, there is mounting evidence that food-storing birds remember additional information about the contents and status of cache sites. What is the underlying neural mechanism by which the hippocampus learns and remembers cache sites? The current mammalian dogma is that the neural mechanisms of learning and memory are achieved primarily by variations in synaptic number and efficacy. Recent work on the concomitant development of food-storing, memory and the avian hippocampus illustrates that the avian hippocampus may swell or shrivel by as much as 30% in response to presence or absence of food-storing experience. Memory for food caches triggers a dramatic increase in the total number of number of neurons within the avian hippocampus by altering the rate at which these cells are born and die.

  15. A Chitin-Like Component on Sclerotic Cells of Fonsecaea pedrosoi Inhibits Dectin-1-Mediated Murine Th17 Development by Masking β-Glucans

    PubMed Central

    Li, Ruoyu; Chen, Sharon C.-A.; Liu, Weihuang; Liu, Wei; Chen, Liuqing; Chen, Yao; Zhang, Xu; Tong, Zhongsheng; Xia, Yun; Xia, Ping; Wang, Yan; Duan, Yiqun

    2014-01-01

    Fonsecaea pedrosoi (F. pedrosoi), a major agent of chromoblastomycosis, has been shown to be recognized primarily by C-type lectin receptors (CLRs) in a murine model of chromoblastomycosis. Specifically, the β-glucan receptor, Dectin-1, mediates Th17 development and consequent recruitment of neutrophils, and is evidenced to have the capacity to bind to saprophytic hyphae of F. pedrosoi in vitro. However, when embedded in tissue, most etiological agents of chromoblastomycosis including F. pedrosoi will transform into the sclerotic cells, which are linked to the greatest survival of melanized fungi in tissue. In this study, using immunocompetent and athymic (nu/nu) murine models infected subcutaneously or intraperitoneally with F. pedrosoi, we demonstrated that T lymphocytes play an active role in the resolution of localized footpad infection, and there existed a significantly decreased expression of Th17-defining transcription factor Rorγt and inefficient recruitment of neutrophils in chronically infected spleen where the inoculated mycelium of F. pedrosoi transformed into the sclerotic cells. We also found that Dectin-1-expressing histocytes and neutrophils participated in the enclosure of transformed sclerotic cells in the infectious foci. Furthermore, we induced the formation of sclerotic cells in vitro, and evidenced a significantly decreased binding capacity of human or murine-derived Dectin-1 to the induced sclerotic cells in comparison with the saprophytic mycelial forms. Our analysis of β-glucans-masking components revealed that it is a chitin-like component, but not the mannose moiety on the sclerotic cells, that interferes with the binding of β-glucans by human or murine Dectin-1. Notably, we demonstrated that although Dectin-1 contributed to the development of IL-17A-producing CD3+CD4+ murine splenocytes upon in vitro-stimulation by saprophytic F. pedrosoi, the masking effect of chitin components partly inhibited Dectin-1-mediated Th17 development upon in vitro-stimulation by induced sclerotic cells. Therefore, these findings extend our understanding of the chronicity of chromoblastomycosis. PMID:25490199

  16. Gene expression patterns in the hippocampus during the development and aging of Glud1 (Glutamate Dehydrogenase 1) transgenic and wild type mice.

    PubMed

    Wang, Xinkun; Patel, Nilam D; Hui, Dongwei; Pal, Ranu; Hafez, Mohamed M; Sayed-Ahmed, Mohamed M; Al-Yahya, Abdulaziz A; Michaelis, Elias K

    2014-03-04

    Extraneuronal levels of the neurotransmitter glutamate in brain rise during aging. This is thought to lead to synaptic dysfunction and neuronal injury or death. To study the effects of glutamate hyperactivity in brain, we created transgenic (Tg) mice in which the gene for glutamate dehydrogenase (Glud1) is over-expressed in neurons and in which such overexpression leads to excess synaptic release of glutamate. In this study, we analyzed whole genome expression in the hippocampus, a region important for learning and memory, of 10 day to 20 month old Glud1 and wild type (wt) mice. During development, maturation and aging, both Tg and wt exhibited decreases in the expression of genes related to neurogenesis, neuronal migration, growth, and process elongation, and increases in genes related to neuro-inflammation, voltage-gated channel activity, and regulation of synaptic transmission. Categories of genes that were differentially expressed in Tg vs. wt during development were: synaptic function, cytoskeleton, protein ubiquitination, and mitochondria; and, those differentially expressed during aging were: synaptic function, vesicle transport, calcium signaling, protein kinase activity, cytoskeleton, neuron projection, mitochondria, and protein ubiquitination. Overall, the effects of Glud1 overexpression on the hippocampus transcriptome were greater in the mature and aged than the young. Glutamate hyperactivity caused gene expression changes in the hippocampus at all ages. Some of these changes may result in premature brain aging. The identification of these genomic expression differences is important in understanding the effects of glutamate dysregulation on neuronal function during aging or in neurodegenerative diseases.

  17. Nicotinic Receptors in the Dorsal and Ventral Hippocampus Differentially Modulate Contextual Fear Conditioning

    PubMed Central

    Kenney, Justin W.; Raybuck, Jonathan D.; Gould, Thomas J.

    2012-01-01

    Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning. PMID:22271264

  18. Α2 GABAA receptor sub-units in the ventral hippocampus and α5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory.

    PubMed

    McEown, K; Treit, D

    2013-11-12

    Temporary neuronal inactivation of the ventral hippocampus with the GABAA agonist muscimol suppresses unconditioned fear behavior (anxiety) but inactivation of the dorsal hippocampus does not. On the other hand, inactivating the dorsal hippocampus disrupts fear memory, while inactivating the ventral hippocampus does not. Here we investigate the roles of hippocampal GABAA receptor sub-units in mediating these anxiolytic and amnesic effects of GABAA receptor agonists. We microinfused TPA023 (α2 agonist) or TB-21007 (inverse α5 agonist) into the dorsal or ventral hippocampus prior to testing rats in two animal models of anxiety: the elevated plus-maze and shock-probe burying test. Twenty-four hours later rats were re-tested in the shock-probe chamber with a non-electrified probe to assess their memory of the initial shock-probe experience (i.e., fear memory). We found that TPA023 was anxiolytic in the plus-maze and shock-probe burying tests when microinfused into the ventral hippocampus. However, TPA023 did not affect anxiety-related behavior when infused into the dorsal hippocampus. Conversely, we found that the α5 sub-unit inverse agonist TB-21007 impaired rats' memory of the initial shock-probe experience when infused into the dorsal hippocampus, but not when infused into the ventral hippocampus. This double dissociation suggests that α2 GABAA receptor sub-units in the ventral hippocampus mediate unconditioned fear or anxiety, while α5 GABAA receptor sub-units in the dorsal hippocampus mediate conditioned fear memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice.

    PubMed

    Sasaki, Keita; Omotuyi, Olaposi Idowu; Ueda, Mutsumi; Shinohara, Kazuyuki; Ueda, Hiroshi

    2015-12-04

    Structural and functional changes of the hippocampus are correlated with psychiatric disorders and cognitive dysfunctions. Genetic deletion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is predominantly expressed in cortex and hippocampus, also causes similar psychiatric and cognitive dysfunctions, accompanying down-regulated NMDA receptor signaling. However, little is known of such dysfunctions in hippocampus-specific Hbegf cKO mice. We successfully developed hippocampus-specific cKO mice by crossbreeding floxed Hbegf and Gng7-Cre knock-in mice, as Gng7 promoter-driven Cre is highly expressed in hippocampal neurons as well as striatal medium spiny neurons. In mice lacking hippocampus Hbegf gene, there was a decreased neurogenesis in the subgranular zone (SGZ) of the dentate gyrus as well as down-regulation of PSD-95/NMDA-receptor-NR1/NR2B subunits and related NMDA receptor signaling. Psychiatric, social-behavioral and cognitive abnormalities were also observed in hippocampal cKO mice. Interestingly, D-cycloserine and nefiracetam, positive allosteric modulators (PAMs) of NMDA receptor reversed the apparent reduction in NMDA receptor signaling and most behavioral abnormalities. Furthermore, decreased SGZ neurogenesis in hippocampal cKO mice was reversed by nefiracetam. The present study demonstrates that PAMs of NMDA receptor have pharmacotherapeutic potentials to reverse down-regulated NMDA receptor signaling, neuro-socio-cognitive abnormalities and decreased neurogenesis in hippocampal cKO mice.

  20. Pernicious effects of long-term, continuous 900-MHz electromagnetic field throughout adolescence on hippocampus morphology, biochemistry and pyramidal neuron numbers in 60-day-old Sprague Dawley male rats.

    PubMed

    Kerimoğlu, Gökçen; Hancı, Hatice; Baş, Orhan; Aslan, Ali; Erol, Hüseyin Serkan; Turgut, Alpgiray; Kaya, Haydar; Çankaya, Soner; Sönmez, Osman Fikret; Odacı, Ersan

    2016-11-01

    The central nervous system (CNS) begins developing in the intrauterine period, a process that continues until adulthood. Contact with chemical substances, drugs or environmental agents such as electromagnetic field (EMF) during adolescence therefore has the potential to disturb the development of the morphological architecture of components of the CNS (such as the hippocampus). The hippocampus is essential to such diverse functions as memory acquisition and integration and spatial maneuvering. EMF can result in severe damage to both the morphology of the hippocampus and its principal functions during adolescence. Although children and adolescents undergo greater exposure to EMF than adults, the information currently available regarding the effects of exposure to EMF during this period is as yet insufficient. This study investigated the 60-day-old male rat hippocampus following exposure to 900 megahertz (MHz) EMF throughout the adolescent period using stereological, histopathological and biochemical analysis techniques. Eighteen male Sprague Dawley rats aged 21days were assigned into control, sham and EMF groups on a random basis. No procedure was performed on the control group rats. The EMF group (EMFGr) was exposed to a 900-MHz EMF for 1h daily from beginning to end of adolescence. The sham group rats were held in the EMF cage but were not exposed to EMF. All rats were sacrificed at 60days of age. Their brains were extracted and halved. The left hemispheres were set aside for biochemical analyses and the right hemispheres were subjected to stereological and histopathological evaluation. Histopathological examination revealed increased numbers of pyknotic neurons with black or dark blue cytoplasm on EMFGr slides stained with cresyl violet. Stereological analyses revealed fewer pyramidal neurons in EMFGr than in the other two groups. Biochemical analyses showed an increase in malondialdehyde and glutathione levels, but a decrease in catalase levels in EMFGr. Our results indicate that oxidative stress-related morphological damage and pyramidal neuron loss may be observed in the rat hippocampus following exposure to 900-MHz EMF throughout the adolescent period. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The diurnal oscillation of MAP (mitogen-activated protein) kinase and adenylyl cyclase activities in the hippocampus depends on the suprachiasmatic nucleus.

    PubMed

    Phan, Trongha X; Phan, Trongha H; Chan, Guy C-K; Sindreu, Carlos B; Eckel-Mahan, Kristin L; Storm, Daniel R

    2011-07-20

    Consolidation of hippocampus-dependent memory is dependent on activation of the cAMP/Erk/MAPK (mitogen-activated protein kinase) signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN 2 d after training for contextual fear memory reduced contextual memory measured 2 weeks after training, indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus.

  2. The Diurnal Oscillation of MAP Kinase and Adenylyl Cyclase Activities in the Hippocampus Depends on the SCN

    PubMed Central

    Phan, Trongha; Chan, Guy; Sindreu, Carlos; Eckel-Mahan, Kristin; Storm, Daniel R.

    2011-01-01

    Consolidation of hippocampus dependent memory is dependent on activation of the cAMP/ Erk/MAPK signal transduction pathway in the hippocampus. Recently, we discovered that adenylyl cyclase and MAPK activities undergo a circadian oscillation in the hippocampus and that inhibition of this oscillation impairs contextual memory. This suggests the interesting possibility that the persistence of hippocampus-dependent memory depends upon the reactivation of MAPK in the hippocampus during the circadian cycle. A key unanswered question is whether the circadian oscillation of this signaling pathway is intrinsic to the hippocampus or is driven by the master circadian clock in the suprachiasmatic nucleus (SCN). To address this question, we ablated the SCN of mice by electrolytic lesion and examined hippocampus-dependent memory as well as adenylyl cyclase and MAPK activities. Electrolytic lesion of the SCN two days after training for contextual fear memory reduced contextual memory measured two weeks after training indicating that maintenance of contextual memory depends on the SCN. Spatial memory was also compromised in SCN-lesioned mice. Furthermore, the diurnal oscillation of adenylyl cyclase and MAPK activities in the hippocampus was destroyed by lesioning of the SCN. These data suggest that hippocampus-dependent long-term memory is dependent on the SCN-controlled oscillation of the adenylyl cyclase/MAPK pathway in the hippocampus. PMID:21775607

  3. Sex Differences in Gray Matter Volume of the Right Anterior Hippocampus Explain Sex Differences in Three-Dimensional Mental Rotation

    PubMed Central

    Wei, Wei; Chen, Chuansheng; Dong, Qi; Zhou, Xinlin

    2016-01-01

    Behavioral studies have reported that males perform better than females in 3-dimensional (3D) mental rotation. Given the important role of the hippocampus in spatial processing, the present study investigated whether structural differences in the hippocampus could explain the sex difference in 3D mental rotation. Results showed that after controlling for brain size, males had a larger anterior hippocampus, whereas females had a larger posterior hippocampus. Gray matter volume (GMV) of the right anterior hippocampus was significantly correlated with 3D mental rotation score. After controlling GMV of the right anterior hippocampus, sex difference in 3D mental rotation was no longer significant. These results suggest that the structural difference between males’ and females’ right anterior hippocampus was a neurobiological substrate for the sex difference in 3D mental rotation. PMID:27895570

  4. Impact of video games on plasticity of the hippocampus.

    PubMed

    West, G L; Konishi, K; Diarra, M; Benady-Chorney, J; Drisdelle, B L; Dahmani, L; Sodums, D J; Lepore, F; Jolicoeur, P; Bohbot, V D

    2017-08-08

    The hippocampus is critical to healthy cognition, yet results in the current study show that action video game players have reduced grey matter within the hippocampus. A subsequent randomised longitudinal training experiment demonstrated that first-person shooting games reduce grey matter within the hippocampus in participants using non-spatial memory strategies. Conversely, participants who use hippocampus-dependent spatial strategies showed increased grey matter in the hippocampus after training. A control group that trained on 3D-platform games displayed growth in either the hippocampus or the functionally connected entorhinal cortex. A third study replicated the effect of action video game training on grey matter in the hippocampus. These results show that video games can be beneficial or detrimental to the hippocampal system depending on the navigation strategy that a person employs and the genre of the game.Molecular Psychiatry advance online publication, 8 August 2017; doi:10.1038/mp.2017.155.

  5. The mutational landscape of MYCN, Lin28b and ALK F1174L driven murine neuroblastoma mimics human disease.

    PubMed

    De Wilde, Bram; Beckers, Anneleen; Lindner, Sven; Kristina, Althoff; De Preter, Katleen; Depuydt, Pauline; Mestdagh, Pieter; Sante, Tom; Lefever, Steve; Hertwig, Falk; Peng, Zhiyu; Shi, Le-Ming; Lee, Sangkyun; Vandermarliere, Elien; Martens, Lennart; Menten, Björn; Schramm, Alexander; Fischer, Matthias; Schulte, Johannes; Vandesompele, Jo; Speleman, Frank

    2018-02-02

    Genetically engineered mouse models have proven to be essential tools for unraveling fundamental aspects of cancer biology and for testing novel therapeutic strategies. To optimally serve these goals, it is essential that the mouse model faithfully recapitulates the human disease. Recently, novel mouse models for neuroblastoma have been developed. Here, we report on the further genomic characterization through exome sequencing and DNA copy number analysis of four of the currently available murine neuroblastoma model systems ( ALK, Th- MYCN, Dbh- MYCN and Lin28b ). The murine tumors revealed a low number of genomic alterations - in keeping with human neuroblastoma - and a positive correlation of the number of genetic lesions with the time to onset of tumor formation was observed. Gene copy number alterations are the hallmark of both murine and human disease and frequently affect syntenic genomic regions. Despite low mutational load, the genes mutated in murine disease were found to be enriched for genes mutated in human disease. Taken together, our study further supports the validity of the tested mouse models for mechanistic and preclinical studies of human neuroblastoma.

  6. Behavioural cues of reproductive status in seahorses Hippocampus abdominalis.

    PubMed

    Whittington, C M; Musolf, K; Sommer, S; Wilson, A B

    2013-07-01

    A method is described to assess the reproductive status of male Hippocampus abdominalis on the basis of behavioural traits. The non-invasive nature of this technique minimizes handling stress and reduces sampling requirements for experimental work. It represents a useful tool to assist researchers in sample collection for studies of reproduction and development in viviparous syngnathids, which are emerging as important model species. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  7. Effects of long-term, low-dose sex hormone replacement therapy on hippocampus and cognition of postmenopausal women of different apoE genotypes.

    PubMed

    Yue, Yun; Hu, Ling; Tian, Qin-jie; Jiang, Jing-mei; Dong, Yi-long; Jin, Zheng-yu; Cheng, Yu-hang; Hong, Xia; Ge, Qin-sheng; Zuo, Ping-ping

    2007-08-01

    To study the effects of long-term, low-dose sex hormone replacement therapy (HRT) on the volume and biochemical changes of the hippocampus in postmenopausal women carrying apolipoprotein E (apoE) gene epsilon3 or epsilon4. Eighty-three postmenopausal women who had used a low dose of HRT for over 4 years were selected as the HRT group, and 99 postmenopausal women with matched age and education were enrolled as the control group. ApoE alleles were analyzed by PCR. Magnetic resonance imaging was performed to determine the volume of the brain hippocampus. Proton magnetic resonance spectroscopy was used to detect the biochemical changes in the anterior cingulate cortex and hippocampus in apoE epsilon4 and epsilon3 carriers. Six common cognitive tests were used to make an overall evaluation of cognitive function. Analysis with the apoE epsilon4 carriers showed that the volume of the hippocampus of the control group were significantly lower than those of the HRT group. The biochemical analysis showed that there was an increase of N-acetylaspartate (NAA)/total creatine (tCr) and a decrease of myoinositol (mI)/tCr in the hippocampus of apoE epsilon4 carriers in the HRT group, compared with the control group. For the apoE epsilon3 carriers, the least squares means (LSMEAN) of the HRT group was higher than that of the control group. This study showed that long-term, low dose HRT might be beneficial for reducing the risk of AD development in vulnerable postmenopausal women. Meanwhile, HRT could increase the LSMEAN of apoE epsilon3 carriers.

  8. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  9. Neuroinflammatory Dynamics Underlie Memory Impairments after Repeated Social Defeat.

    PubMed

    McKim, Daniel B; Niraula, Anzela; Tarr, Andrew J; Wohleb, Eric S; Sheridan, John F; Godbout, Jonathan P

    2016-03-02

    Repeated social defeat (RSD) is a murine stressor that recapitulates key physiological, immunological, and behavioral alterations observed in humans exposed to chronic psychosocial stress. Psychosocial stress promotes prolonged behavioral adaptations that are associated with neuroinflammatory signaling and impaired neuroplasticity. Here, we show that RSD promoted hippocampal neuroinflammatory activation that was characterized by proinflammatory gene expression and by microglia activation and monocyte trafficking that was particularly pronounced within the caudal extent of the hippocampus. Because the hippocampus is a key area involved in neuroplasticity, behavior, and cognition, we hypothesize that stress-induced neuroinflammation impairs hippocampal neurogenesis and promotes cognitive and affective behavioral deficits. We show here that RSD caused transient impairments in spatial memory recall that resolved within 28 d. In assessment of neurogenesis, the number of proliferating neural progenitor cells (NPCs) and the number of young, developing neurons were not affected initially after RSD. Nonetheless, the neuronal differentiation of NPCs that proliferated during RSD was significantly impaired when examined 10 and 28 d later. In addition, social avoidance, a measure of depressive-like behavior associated with caudal hippocampal circuitry, persisted 28 d after RSD. Treatment with minocycline during RSD prevented both microglia activation and monocyte recruitment. Inhibition of this neuroinflammatory activation in turn prevented impairments in spatial memory after RSD but did not prevent deficits in neurogenesis nor did it prevent the persistence of social avoidance behavior. These findings show that neuroinflammatory activation after psychosocial stress impairs spatial memory performance independent of deficits in neurogenesis and social avoidance. Repeated exposure to stress alters the homeostatic environment of the brain, giving rise to various cognitive and mood disorders that impair everyday functioning and overall quality of life. The brain, previously thought of as an immune-privileged organ, is now known to communicate extensively with the peripheral immune system. This brain-body communication plays a significant role in various stress-induced inflammatory conditions, also characterized by psychological impairments. Findings from this study implicate neuroimmune activation rather than impaired neurogenesis in stress-induced cognitive deficits. This idea opens up possibilities for novel immune interventions in the treatment of cognitive and mood disturbances, while also adding to the complexity surrounding the functional implications of adult neurogenesis. Copyright © 2016 the authors 0270-6474/16/362590-15$15.00/0.

  10. Effects of dorsal hippocampus catecholamine depletion on paired-associates learning and place learning in rats.

    PubMed

    Roschlau, Corinna; Hauber, Wolfgang

    2017-04-14

    Growing evidence suggests that the catecholamine (CA) neurotransmitters dopamine and noradrenaline support hippocampus-mediated learning and memory. However, little is known to date about which forms of hippocampus-mediated spatial learning are modulated by CA signaling in the hippocampus. Therefore, in the current study we examined the effects of 6-hydroxydopamine-induced CA depletion in the dorsal hippocampus on two prominent forms of hippocampus-based spatial learning, that is learning of object-location associations (paired-associates learning) as well as learning and choosing actions based on a representation of the context (place learning). Results show that rats with CA depletion of the dorsal hippocampus were able to learn object-location associations in an automated touch screen paired-associates learning (PAL) task. One possibility to explain this negative result is that object-location learning as tested in the touchscreen PAL task seems to require relatively little hippocampal processing. Results further show that in rats with CA depletion of the dorsal hippocampus the use of a response strategy was facilitated in a T-maze spatial learning task. We suspect that impaired hippocampus CA signaling may attenuate hippocampus-based place learning and favor dorsolateral striatum-based response learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus.

    PubMed

    Hennebelle, Marie; Champeil-Potokar, Gaëlle; Lavialle, Monique; Vancassel, Sylvie; Denis, Isabelle

    2014-02-01

    Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized. © 2014 International Life Sciences Institute.

  12. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  13. The extended trajectory of hippocampal development: Implications for early memory development and disorder.

    PubMed

    Gómez, Rebecca L; Edgin, Jamie O

    2016-04-01

    Hippocampus has an extended developmental trajectory, with refinements occurring in the trisynaptic circuit until adolescence. While structural change should suggest a protracted course in behavior, some studies find evidence of precocious hippocampal development in the first postnatal year and continuity in memory processes beyond. However, a number of memory functions, including binding and relational inference, can be cortically supported. Evidence from the animal literature suggests that tasks often associated with hippocampus (visual paired comparison, binding of a visuomotor response) can be mediated by structures external to hippocampus. Thus, a complete examination of memory development will have to rule out cortex as a source of early memory competency. We propose that early memory must show properties associated with full function of the trisynaptic circuit to reflect "adult-like" memory function, mainly (1) rapid encoding of contextual details of overlapping patterns, and (2) retention of these details over sleep-dependent delays. A wealth of evidence suggests that these functions are not apparent until 18-24 months, with behavioral discontinuities reflecting shifts in the neural structures subserving memory beginning approximately at this point in development. We discuss the implications of these observations for theories of memory and for identifying and measuring memory function in populations with typical and atypical hippocampal function. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. [Study on the anti-NTHi infection of Hap recombinant protein in vivo].

    PubMed

    Li, Wan-yi; Wang, Bao-ning; Zuo, Feng-qiong; Zeng, Wei; Feng, Feng; Kuang, Yu; Jiang, Zhong-hua; Li, Ming-yuan

    2010-07-01

    To observe the immune effect of Hap recombinant protein on murine model of bronchopneumonia infected with NTHi, and explore the mechanism about the anti-NTHi infection. The C57BL/6 mice intranasally immunized with purified Hap recombinant protein and CT-B were challenged by NTHi encased in agar beads. The immunifaction of anti-infection was observed through encocyte counting of BALF, bacteria detection of lung and the pathologyical change of lung tissue. In the challenge with NTHi experiment, the inflammatory exudation of the infected murine and pathological change of lung tissue was relieved by combined immunization of Hap recombinant protein and CT-B, and quantity of NTHi in lung of the infected murine was reduced obviously. The Hap recombinant protein also had good ability of anti-NTHi infection in the murine model of NTHi bronchopneumonia. This study could offer the oretical and experimental basis for development of new vaccine against NTHi.

  15. Childhood maltreatment, psychopathology, and the development of hippocampal subregions during adolescence.

    PubMed

    Whittle, Sarah; Simmons, Julian G; Hendriksma, Sylke; Vijayakumar, Nandita; Byrne, Michelle L; Dennison, Meg; Allen, Nicholas B

    2017-02-01

    It is well established that childhood maltreatment has a detrimental impact on the brain, particularly the hippocampus. However, the hippocampus is a functionally and structurally heterogeneous region, and little is known about how maltreatment might affect hippocampal subregion development throughout important periods of plasticity. This study investigated whether childhood maltreatment was associated with the development of hippocampal subregion volumes from early to late adolescence. It also investigated associations between onset of psychiatric disorder and hippocampal subregion volume development. One hundred and sixty-six (85 male) adolescents took part in three magnetic resonance imaging assessments during adolescence (mean age at each assessment: 12.79 [ SD 0.43] years, 16.70 [ SD 0.52] years, and 19.08 [ SD 0.46] years), provided a self-report of childhood maltreatment, and were assessed for Axis I psychopathology. Childhood maltreatment was associated with the development of right total and left cornu ammonis 4 (CA4-DG) volumes from early to late adolescence. Early and late onset psychopathology was associated with the development of right presubiculum and right cornu ammonis 1 (CA1) volumes, respectively. Maltreatment findings appeared to be specific to males, whereas psychopathology findings appeared to be specific to females. These findings provide evidence for possible deleterious effects of childhood maltreatment and early onset psychiatric disorder on the development of different subregions of the hippocampus. Altered development of the right CA1, on the other hand, might precede the development of late-adolescent onset psychopathology. Our results highlight the importance of considering development in research examining associations between stress, mental illness, and hippocampal morphology.

  16. Radiation Damage to Nervous System: Designing Optimal Models for Realistic Neuron Morphology in Hippocampus

    NASA Astrophysics Data System (ADS)

    Batmunkh, Munkhbaatar; Bugay, Alexander; Bayarchimeg, Lkhagvaa; Lkhagva, Oidov

    2018-02-01

    The present study is focused on the development of optimal models of neuron morphology for Monte Carlo microdosimetry simulations of initial radiation-induced events of heavy charged particles in the specific types of cells of the hippocampus, which is the most radiation-sensitive structure of the central nervous system. The neuron geometry and particles track structures were simulated by the Geant4/Geant4-DNA Monte Carlo toolkits. The calculations were made for beams of protons and heavy ions with different energies and doses corresponding to real fluxes of galactic cosmic rays. A simple compartmental model and a complex model with realistic morphology extracted from experimental data were constructed and compared. We estimated the distribution of the energy deposition events and the production of reactive chemical species within the developed models of CA3/CA1 pyramidal neurons and DG granule cells of the rat hippocampus under exposure to different particles with the same dose. Similar distributions of the energy deposition events and concentration of some oxidative radical species were obtained in both the simplified and realistic neuron models.

  17. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Marks, Daniel L.; Ralston, Tyler S.; Boppart, Stephen A.

    2006-03-01

    Optical coherence tomography (OCT) is an emerging high-resolution real-time biomedical imaging technology that has potential as a novel investigational tool in developmental biology and functional genomics. In this study, murine embryos and embryonic hearts are visualized with an OCT system capable of 2-µm axial and 15-µm lateral resolution and with real-time acquisition rates. We present, to our knowledge, the first sets of high-resolution 2- and 3-D OCT images that reveal the internal structures of the mammalian (murine) embryo (E10.5) and embryonic (E14.5 and E17.5) cardiovascular system. Strong correlations are observed between OCT images and corresponding hematoxylin- and eosin-stained histological sections. Real-time in vivo embryonic (E10.5) heart activity is captured by spectral-domain optical coherence tomography, processed, and displayed at a continuous rate of five frames per second. With the ability to obtain not only high-resolution anatomical data but also functional information during cardiovascular development, the OCT technology has the potential to visualize and quantify changes in murine development and in congenital and induced heart disease, as well as enable a wide range of basic in vitro and in vivo research studies in functional genomics.

  18. Stromal Cell-Derived Factor-1 Is Associated with Angiogenesis and Inflammatory Cell Infiltration in Aneurysm Walls

    PubMed Central

    Hoh, Brian L.; Hosaka, Koji; Downes, Daniel P.; Nowicki, Kamil W.; Wilmer, Erin N.; Velat, Gregory J.; Scott, Edward W.

    2013-01-01

    Object A small percentage of cerebral aneurysms rupture, but when they do, the effects are devastating. Current management of unruptured aneurysms consist of surgery, endovascular treatment, or watchful waiting. If the biology of how aneurysms grow and rupture were better known, a novel drug could be developed to prevent unruptured aneurysms from rupturing. Ruptured cerebral aneurysms are characterized by inflammation-mediated wall remodeling. We studied the role of stromal cell-derived factor-1 (SDF-1) in inflammation-mediated wall remodeling in cerebral aneurysms. Methods Human aneurysms; murine carotid aneurysms; and murine intracranial aneurysms were studied by immunohistochemistry. Flow cytometry analysis was performed on blood from mice developing carotid aneurysms or intracranial aneurysms. The effect of SDF-1 on endothelial cells and macrophages was studied by chemotaxis cell migration assay and capillary tube formation assay. Anti-SDF-1 blocking antibody was given to mice and compared to control (vehicle)-administered mice for its effects on the walls of carotid aneurysms and the development of intracranial aneurysms. Results Human aneurysms, murine carotid aneurysms, and murine intracranial aneurysms, all express SDF-1; and mice with developing carotid aneurysms or intracranial aneurysms have increased progenitor cells expressing CXCR4, the receptor for SDF-1 (P<0.01 and P<0.001, respectively). Human aneurysms and murine carotid aneurysms have endothelial cells, macrophages, and capillaries in the walls of the aneurysms; and the presence of capillaries in the walls of human aneurysms is associated with presence of macrophages (P=0.01). SDF-1 promotes endothelial cell and macrophage migration (P<0.01 for each), and promotes capillary tube formation (P<0.001). When mice are given anti-SDF-1 blocking antibody, there is a significant reduction in endothelial cells (P<0.05), capillaries (P<0.05), and cell proliferation (P<0.05) in the aneurysm wall. Mice given anti-SDF-1 blocking antibody develop significantly fewer intracranial aneurysms (33% versus 89% in mice given control IgG)(P<0.05). Conclusions These data suggest SDF-1 associated with angiogenesis and inflammatory cell migration and proliferation in the walls of aneurysms, and may have a role in the development of intracranial aneurysms. PMID:24160472

  19. Alterations of parenchymal microstructure, neuronal connectivity and cerebrovascular resistance at adolescence following mild to moderate traumatic brain injury in early development.

    PubMed

    Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar

    2018-06-01

    TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.

  20. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality.

    PubMed

    Sato, Masaaki; Kawano, Masako; Mizuta, Kotaro; Islam, Tanvir; Lee, Min Goo; Hayashi, Yasunori

    2017-01-01

    The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR.

  1. Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality

    PubMed Central

    Kawano, Masako; Mizuta, Kotaro; Islam, Tanvir; Lee, Min Goo; Hayashi, Yasunori

    2017-01-01

    Abstract The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR. PMID:28484738

  2. The development of a murine model for Forcipomyia taiwana (biting midge) allergy.

    PubMed

    Lee, Mey-Fann; Yang, Kai-Jei; Wang, Nancy M; Chiu, Yung-Tsung; Chen, Pei-Chih; Chen, Yi-Hsing

    2014-01-01

    Forcipomyia taiwana (biting midge) allergy is the most prevalent biting insect allergy in Taiwan. An animal model corresponding to the human immuno-pathologic features of midge allergy is needed for investigating the mechanisms and therapies. This study successfully developed a murine model of Forcipomyia taiwana allergy. BALB/c mice were sensitized intra-peritoneally with midge extract on days 0, 7, 14, 21 then intra-dermally on days 28, 31 and 35. Serum midge-specific IgE, IgG1, and IgG2a were measured every 14 days by indirect ELISA. The mice were challenged intradermally with midge extract at day 40 and then sacrificed. Proliferation and cytokine production of splenocytes after stimulation with midge extract were determined by MTT assay and ELISA, respectively. The cytokine mRNA expression in response to midge stimulation was analyzed by RT-PCR. Serum IgE, total IgG, and IgG1 antibody levels against midge extract were significantly higher in the midge-sensitized mice than in the control mice. After the two-step sensitization, all mice in the midge-sensitized group displayed immediate itch and plasma extravasation reactions in response to challenge with midge extract. Skin histology from midge-sensitized mice showed marked eosinophil and lymphocyte infiltrations similar to that observed in humans. Stimulation of murine splenocytes with midge extract elicited significant proliferation, IL-4, IL-10, IL-13 and IFN-γ protein production, and up-regulation of mRNA in a dose-dependent manner in the midge-sensitized group, but not in the control group. A murine model of midge bite allergy has been successfully developed using a two-step sensitization protocol. The sensitized mice have very similar clinical and immunologic reactions to challenge with midge proteins as the reactions of human to midge bites. This murine model may be a useful platform for future research and the development of treatment strategies for insect bite allergy.

  3. Convection enhanced delivery of carmustine to the murine brainstem: a feasibility study.

    PubMed

    Sewing, A Charlotte P; Caretti, Viola; Lagerweij, Tonny; Schellen, Pepijn; Jansen, Marc H A; van Vuurden, Dannis G; Idema, Sander; Molthoff, Carla F M; Vandertop, W Peter; Kaspers, Gertjan J L; Noske, David P; Hulleman, Esther

    2014-12-30

    Systemic delivery of therapeutic agents remains ineffective against diffuse intrinsic pontine glioma (DIPG), possibly due to an intact blood-brain-barrier (BBB) and to dose-limiting toxicity of systemic chemotherapeutic agents. Convection-enhanced delivery (CED) into the brainstem may provide an effective local delivery alternative for DIPG patients. The aim of this study is to develop a method to perform CED into the murine brainstem and to test this method using the chemotherapeutic agent carmustine (BiCNU). To this end, a newly designed murine CED catheter was tested in vitro and in vivo. After determination of safety and distribution, mice bearing VUMC-DIPG-3 and E98FM-DIPG brainstem tumors were treated with carmustine dissolved in DW 5% or carmustine dissolved in 10% ethanol. Our results show that CED into the murine brainstem is feasible and well tolerated by mice with and without brainstem tumors. CED of carmustine dissolved in 5% DW increased median survival of mice with VUMC-DIPG-3 and E98FM-DIPG tumors with 35% and 25% respectively. Dissolving carmustine in 10% ethanol further improved survival to 45% in mice with E98FM-DIPG tumors. Since genetically engineered and primary DIPG models are currently only available in mice, murine CED studies have clear advantages over CED studies in other animals. CED in the murine brainstem can be performed safely, is well tolerated and can be used to study efficacy of chemotherapeutic agents orthotopically. These results set the foundation for more CED studies in murine DIPG models. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hippocampal volume is decreased in adults with hypothyroidism.

    PubMed

    Cooke, Gillian E; Mullally, Sinead; Correia, Neuman; O'Mara, Shane M; Gibney, James

    2014-03-01

    Thyroid hormones are important for the adult brain, particularly regions of the hippocampus including the dentate gyrus and CA1 and CA3 regions. The hippocampus is a thyroid hormone receptor-rich region of the brain involved in learning and memory. Consequently, alterations in thyroid hormone levels have been reported to impair hippocampal-associated learning and memory, synaptic plasticity, and neurogenesis. While these effects have been shown primarily in developing rats, as well as in adult rats, little is known about the effects in adult humans. There are currently no data regarding structural changes in the hippocampus as a result of adult-onset hypothyroidism. We aimed to establish whether hippocampal volume was reduced in patients with untreated adult-onset hypothyroidism compared to age-matched healthy controls. High-resolution magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scans were performed on 11 untreated hypothyroid adults and 9 age-matched control subjects. Hypothyroidism was diagnosed based on increased levels of thyrotropin (TSH) and reduced levels of free thyroxine (fT4). Volumetric analysis of the right and left hippocampal regions, using functional magnetic resonance imaging of the brain (FMRIB) integrated registration and segmentation tool (FIRST), demonstrated significant volume reduction in the right hippocampus in the hypothyroid patients relative to the control group. These findings provide preliminary evidence that hypothyroidism results in structural deficits in the adult human brain. Decreases in volume in the right hippocampus were evident in patients with adult-onset overt hypothyroidism, supporting some of the findings in animal models.

  5. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats.

    PubMed

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole; Sotty, Florence

    2017-08-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of this study was to determine how administration of the NMDAR antagonist phencyclidine (PCP) during neurodevelopment affects functional network activity within the hippocampus and medial prefrontal cortex (mPFC). We recorded field potentials in vivo after electrical brain stem stimulation and observed a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia. NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead to suppressed evoked theta oscillations in ventral hippocampus in adult rats, while evoked gamma oscillations are enhanced and hypersensitive to an acute challenge with a NMDA receptor antagonist in prefrontal cortex. These observations reveal the significance of neurodevelopmental disturbances in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease. Copyright © 2017 the American Physiological Society.

  6. Respiratory Viral Infection in Neonatal Piglets Causes Marked Microglia Activation in the Hippocampus and Deficits in Spatial Learning

    PubMed Central

    Elmore, Monica R. P.; Burton, Michael D.; Conrad, Matthew S.; Rytych, Jennifer L.; Van Alstine, William G.

    2014-01-01

    Environmental insults during sensitive periods can affect hippocampal development and function, but little is known about peripheral infection, especially in humans and other animals whose brain is gyrencephalic and experiences major perinatal growth. Using a piglet model, the present study showed that inoculation on postnatal day 7 with the porcine reproductive and respiratory syndrome virus (PRRSV) caused microglial activation within the hippocampus with 82% and 43% of isolated microglia being MHC II+ 13 and 20 d after inoculation, respectively. In control piglets, <5% of microglia isolated from the hippocampus were MHC II+. PRRSV piglets were febrile (p < 0.0001), anorectic (p < 0.0001), and weighed less at the end of the study (p = 0.002) compared with control piglets. Increased inflammatory gene expression (e.g., IL-1β, IL-6, TNF-α, and IFN-γ) was seen across multiple brain regions, including the hippocampus, whereas reductions in CD200, NGF, and MBP were evident. In a test of spatial learning, PRRSV piglets took longer to acquire the task, had a longer latency to choice, and had a higher total distance moved. Overall, these data demonstrate that viral respiratory infection is associated with a marked increase in activated microglia in the hippocampus, neuroinflammation, and impaired performance in a spatial cognitive task. As respiratory infections are common in human neonates and infants, approaches to regulate microglial cell activity are likely to be important. PMID:24501353

  7. T cells promote the regeneration of neural precursor cells in the hippocampus of Alzheimer's disease mice.

    PubMed

    Liu, Jing; Ma, Yuxin; Tian, Sumin; Zhang, Li; Zhao, Mengmeng; Zhang, Yaqiong; Xu, Dachuan

    2014-08-15

    Alzheimer's disease is closely associated with disorders of neurogenesis in the brain, and growing evidence supports the involvement of immunological mechanisms in the development of the disease. However, at present, the role of T cells in neuronal regeneration in the brain is unknown. We injected amyloid-beta 1-42 peptide into the hippocampus of six BALB/c wild-type mice and six BALB/c-nude mice with T-cell immunodeficiency to establish an animal model of Alzheimer's disease. A further six mice of each genotype were injected with same volume of normal saline. Immunohistochemistry revealed that the number of regenerated neural progenitor cells in the hippocampus of BALB/c wild-type mice was significantly higher than that in BALB/c-nude mice. Quantitative fluorescence PCR assay showed that the expression levels of peripheral T cell-associated cytokines (interleukin-2, interferon-γ) and hippocampal microglia-related cytokines (interleukin-1β, tumor necrosis factor-α) correlated with the number of regenerated neural progenitor cells in the hippocampus. These results indicate that T cells promote hippocampal neurogenesis in Alzheimer's disease and T-cell immunodeficiency restricts neuronal regeneration in the hippocampus. The mechanism underlying the promotion of neuronal regeneration by T cells is mediated by an increased expression of peripheral T cells and central microglial cytokines in Alzheimer's disease mice. Our findings provide an experimental basis for understanding the role of T cells in Alzheimer's disease.

  8. Low Dose Prenatal Alcohol Exposure Does Not Impair Spatial Learning and Memory in Two Tests in Adult and Aged Rats

    PubMed Central

    Cullen, Carlie L.; Burne, Thomas H. J.; Lavidis, Nickolas A.; Moritz, Karen M.

    2014-01-01

    Consumption of alcohol during pregnancy can have detrimental impacts on the developing hippocampus, which can lead to deficits in learning and memory function. Although high levels of alcohol exposure can lead to severe deficits, there is a lack of research examining the effects of low levels of exposure. This study used a rat model to determine if prenatal exposure to chronic low dose ethanol would result in deficits in learning and memory performance and if this was associated with morphological changes within the hippocampus. Sprague Dawley rats were fed a liquid diet containing 6% (vol/vol) ethanol (EtOH) or an isocaloric control diet throughout gestation. Male and Female offspring underwent behavioural testing at 8 (Adult) or 15 months (Aged) of age. Brains from these animals were collected for stereological analysis of pyramidal neuron number and dendritic morphology within the CA1 and CA3 regions of the dorsal hippocampus. Prenatal ethanol exposed animals did not differ in spatial learning or memory performance in the Morris water maze or Y maze tasks compared to Control offspring. There was no effect of prenatal ethanol exposure on pyramidal cell number or density within the dorsal hippocampus. Overall, this study indicates that chronic low dose prenatal ethanol exposure in this model does not have long term detrimental effects on pyramidal cells within the dorsal hippocampus or impair spatial learning and memory performance. PMID:24978807

  9. [Expression of homeobox gene Msx-1, Msx-2 and Dlx-2 during murine mandibular first molar development].

    PubMed

    Ma, Li; Chen, Zhi; Song, Guang-tai; Fan, Ming-wen; Zhang, Qi; Wang, Zhi-feng

    2003-11-01

    To observe the expression of homeobox gene Msx-1, Msx-2 and Dlx-2 during murine mandibular first molar development. The murine heads or mandibles on embryonic days 11-18 (E11-18) and postnatal day 1-3 (P1-3) were removed, fixed and embedded, 5 micro m serial sections were cut in the coronal plane. Msx-1, Msx-2 and Dlx-2 RNA probes were synthesized by in vitro transcription and labeled with digoxigenin. Msx-1, Msx-2 and Dlx-2 mRNA expression was observed after in situ hybridization. During molar development Msx-1 transcripts appeared only in mesenchymal cells, not in epithelial cells. Msx-2 and Dlx-2 both expressed in the epithelial and mesenchymal cells. At the initiation stage of the molar development Msx-2 and Dlx-2 had similar expression. At the bud stage (E13-14) Msx-2 mRNA signaling was intensive in the enamel organ and slight in the dental mesenchyme; Dlx-2 signaling was stronger in the dental papilla. At cap stage (E15-16) Msx-2 showed prominent mRNA signaling in enamel knot and Dlx-2 was maximal in the dental papilla. At the late bell stage (P2-3) Msx-2 transcripts were observed in odontoblasts but not labeled in ameloblasts, and Dlx-2 transcripts appeared in ameloblasts but no labeling was seen in odontoblasts. Msx-1, Msx-2 and Dlx-2 are expressed in various patterns during murine mandibular first molar development, suggesting they possibly play a role in the interaction between the epithelium and mesenchyme during the molar development.

  10. Induction of Protective CTL Responses in Newborn Mice by a Murine Retrovirus

    NASA Astrophysics Data System (ADS)

    Sarzotti, Marcella; Robbins, Deanna S.; Hoffman, Paul M.

    1996-03-01

    The susceptibility of neonates to virus-induced disease is thought to reflect, in part, the immaturity of their immune systems. However, inoculation of newborn mice with low doses of Cas-Br-M murine leukemia virus induced a protective cytotoxic T lymphocyte (CTL) response. The inability of neonates to develop a CTL response to high doses of virus was not the result of immunological immaturity but correlated with the induction of a nonprotective type 2 cytokine response. Thus, the initial viral dose is critical in the development of protective immunity in newborns.

  11. Hippocampus and amygdala volumes in patients with vaginismus.

    PubMed

    Atmaca, Murad; Baykara, Sema; Ozer, Omer; Korkmaz, Sevda; Akaslan, Unsal; Yildirim, Hanefi

    2016-06-22

    To compare hippocampus and amygdala volumes of patients with vaginismus with those of healthy control subjects. Magnetic resonance imaging was performed on ten patients with vaginismus and ten control subjects matched for age and gender. Volumes of the hippocampus and amygdala were blindly measured. We found that the mean right amygdala volume of patients with vaginismus were smaller than that of the healthy controls. With regard to hippocampus volumes, the mean left and right hippocampus volumes were smaller than those of the healthy controls. Our present findings suggest that there have been hippocampus and amygdala structural abnormalities in patients with vaginismus. These changes provide the notion that vaginismus may be a fear-related condition.

  12. Neuroplastic effects of music lessons on hippocampal volume in children with congenital hypothyroidism.

    PubMed

    Zendel, Benjamin Rich; Willoughby, Karen A; Rovet, Joanne F

    2013-12-04

    Children with congenital hypothyroidism (CH) who experience a neonatal thyroid hormone deficiency have reduced hippocampal volumes compared with healthy controls. Interestingly, evidence suggests that musical training can contribute to structural plasticity in a number of brain areas, including the hippocampus. Therefore, we investigated whether taking music lessons could ameliorate the volumetric reductions of the hippocampus in children with CH. Left and right hippocampal volumes were measured in four groups of children: children with CH with and without music lessons, and healthy controls with and without music lessons. We found that the volume of the right hippocampus was comparable between children with CH who had taken music lessons and the healthy controls. Children with CH who had not taken music lessons had reduced hippocampal volumes compared with the other three groups. These results suggest that music lessons may induce structural neuroplasticity in children with atypical hippocampal development because of early thyroid hormone deficiencies.

  13. Contextual Fear Memories Formed in the Absence of the Dorsal Hippocampus Decay Across Time

    PubMed Central

    Zelikowsky, Moriel; Bissiere, Stephanie; Fanselow, Michael S.

    2012-01-01

    Mammals suffering damage to the hippocampus display a dramatic loss of explicit, recently formed memories (retrograde amnesia). In contrast, deficits in the ability to form new memories following hippocampal damage (anterograde amnesia) can be overcome with sufficient training. By combining contextual fear conditioning with lesions of the dorsal hippocampus in rats, we discovered that while animals can form long-term contextual fear memories in the absence of the hippocampus, these memories decay with time, lacking the permanence that is a hallmark characteristic of normal fear memories. These findings indicate that while it is initially possible to acquire explicit memories when the hippocampus is compromised, these memories cannot transfer from a recent to remote state. This suggests that memories formed outside the hippocampus may nevertheless require the hippocampus to undergo systems consolidation, which has important clinical implications for the treatment of memory disorders. PMID:22399761

  14. A model system for testing gene vectors using murine tumor cells on the chorioallantoic membrane of the chick embryo.

    PubMed

    Dani, Sergio U; Espindola, Rachel

    2002-06-30

    We developed a model system for testing gene vectors, based on the growth of murine tumors on the chorioallantoic membrane (CAM) of embryonic chickens. The ability of selected murine cells to grow on the CAM was rated according to the following criteria: i) formation of tumor masses; ii) metastasis formation; iii) reproducibility; iv) yield, indicated as the number of embryos surviving to assessment time with visible tumors on the CAM; v) maintainability of the cell, both in the original host and the embryonic chick, or 'shuttle maintainability'; vi) detection by the naked eye, and vii) cost/benefit relation. The murine melanoma cell lineage, B16F10, which efficiently forms distinct, pigmented tumor masses and metastases on the CAM, performed better in this model than the murine B61 cell line. In vitro transduction of B16F10 cells with a recombinant adenovirus carrying a construct of the E. coli LacZ gene followed by inoculation onto the CAM resulted in beta-galactosidase expression in the tumor mass growing on the CAM. This model is potentially applicable to preclinical evaluation of gene vectors, especially for gene therapy of cancer.

  15. Biological properties in vitro of a combination of recombinant murine interleukin-3 and granulocyte-macrophage colony-stimulating factor.

    PubMed

    Riklis, I; Kletter, Y; Bleiberg, I; Fabian, I

    1989-04-01

    The effect of recombinant murine interleukin-3 (rIL-3) and recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) on in vitro murine myeloid progenitor cell (CFU-C) growth and on the function of murine resident peritoneal macrophages was investigated. Both rIL-3 and rGM-CSF are known to support the growth of CFU-C and, when combined, were found to act synergistically to induce the development of an increased number of CFU-C. The distribution pattern of myeloid colonies in the presence of these two growth factors was in general similar to that in the presence of rGM-CSF alone. Both rGM-CSF and rIL-3 enhanced the phagocytosis of Candida albicans (CA) by mature macrophages producing an increase in the percentage of phagocytosing cells as well as an increase in the number of yeast particles ingested per cell. No additive effect on the phagocytosis was observed when the two growth factors were added concurrently. rGM-CSF, but not rIL-3, enhanced the killing of CA by macrophages. This killing was inhibited by scavengers of oxygen radicals.

  16. Commonly dysregulated genes in murine APL cells

    PubMed Central

    Yuan, Wenlin; Payton, Jacqueline E.; Holt, Matthew S.; Link, Daniel C.; Watson, Mark A.; DiPersio, John F.; Ley, Timothy J.

    2007-01-01

    To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental “windows,” suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARα under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a “downstream” event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis. PMID:17008535

  17. Neural Representations of Location Outside the Hippocampus

    ERIC Educational Resources Information Center

    Knierim, James J.

    2006-01-01

    Place cells of the rat hippocampus are a dominant model system for understanding the role of the hippocampus in learning and memory at the level of single-unit and neural ensemble responses. A complete understanding of the information processing and computations performed by the hippocampus requires detailed knowledge about the properties of the…

  18. Fluoride and Arsenic Exposure Impairs Learning and Memory and Decreases mGluR5 Expression in the Hippocampus and Cortex in Rats

    PubMed Central

    Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua

    2014-01-01

    Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus. PMID:24759735

  19. Regional-specific effect of fluoxetine on rapidly dividing progenitors along the dorsoventral axis of the hippocampus.

    PubMed

    Zhou, Qi-Gang; Lee, Daehoon; Ro, Eun Jeoung; Suh, Hoonkyo

    2016-10-19

    Hippocampus-dependent cognitive and emotional function appears to be regionally dissociated along the dorsoventral (DV) axis of the hippocampus. Recent observations that adult hippocampal neurogenesis plays a critical role in both cognition and emotion raised an interesting question whether adult neurogenesis within specific subregions of the hippocampus contributes to these distinct functions. We examined the regional-specific and cell type-specific effects of fluoxetine, which requires adult hippocampal neurogenesis to function as an antidepressant, on the proliferation of hippocampal neural stem cells (NSCs). Fluoxetine specifically increased proliferation of NSCs located in the ventral region of the hippocampus while the mitotic index of NSCs in the dorsal portion of the hippocampus remained unaltered. Moreover, within the ventral hippocampus, type II NSC and neuroblast populations specifically responded to fluoxetine, showing increased proliferation; however, proliferation of type I NSCs was unchanged in response to fluoxetine. Activation or inhibition of serotonin receptor 1A (5-HTR1A) recapitulated or abolished the effect of fluoxetine on proliferation of type II NSCs and neuroblast populations in the ventral hippocampus. Our study showed that the effect of fluoxetine on proliferation is dependent upon the type and the position of the NSCs along the DV axis of the hippocampus.

  20. Murine aggregation chimeras and wholemount imaging in airway stem cell biology.

    PubMed

    Rosewell, Ian R; Giangreco, Adam

    2012-01-01

    Local tissue stem cells are known to exist in mammalian lungs but their role in epithelial maintenance remains unclear. We therefore developed murine aggregation chimera and wholemount imaging techniques to assess the contribution of these cells to lung homeostasis and repair. In this chapter we provide further details regarding the generation of murine aggregation chimera mice and their subsequent use in wholemount lung imaging. We also describe methods related to the interpretation of this data that allows for quantitative assessment of airway stem cell activation versus quiescence. Using these techniques, it is possible to compare the growth and differentiation capacity of various lung epithelial cells in normal, repairing, and diseased states.

  1. Choline acetyltransferase in the hippocampus is associated with learning strategy preference in adult male rats.

    PubMed

    Hawley, Wayne R; Witty, Christine F; Daniel, Jill M; Dohanich, Gary P

    2015-08-01

    One principle of the multiple memory systems hypothesis posits that the hippocampus-based and striatum-based memory systems compete for control over learning. Consistent with this notion, previous research indicates that the cholinergic system of the hippocampus plays a role in modulating the preference for a hippocampus-based place learning strategy over a striatum-based stimulus--response learning strategy. Interestingly, in the hippocampus, greater activity and higher protein levels of choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine, are associated with better performance on hippocampus-based learning and memory tasks. With this in mind, the primary aim of the current study was to determine if higher levels of ChAT and the high-affinity choline uptake transporter (CHT) in the hippocampus were associated with a preference for a hippocampus-based place learning strategy on a task that also could be solved by relying on a striatum-based stimulus--response learning strategy. Results confirmed that levels of ChAT in the dorsal region of the hippocampus were associated with a preference for a place learning strategy on a water maze task that could also be solved by adopting a stimulus-response learning strategy. Consistent with previous studies, the current results support the hypothesis that the cholinergic system of the hippocampus plays a role in balancing competition between memory systems that modulate learning strategy preference. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Hippocampus and amygdala volumes in patients with vaginismus

    PubMed Central

    Atmaca, Murad; Baykara, Sema; Ozer, Omer; Korkmaz, Sevda; Akaslan, Unsal; Yildirim, Hanefi

    2016-01-01

    AIM: To compare hippocampus and amygdala volumes of patients with vaginismus with those of healthy control subjects. METHODS: Magnetic resonance imaging was performed on ten patients with vaginismus and ten control subjects matched for age and gender. Volumes of the hippocampus and amygdala were blindly measured. RESULTS: We found that the mean right amygdala volume of patients with vaginismus were smaller than that of the healthy controls. With regard to hippocampus volumes, the mean left and right hippocampus volumes were smaller than those of the healthy controls. CONCLUSION: Our present findings suggest that there have been hippocampus and amygdala structural abnormalities in patients with vaginismus. These changes provide the notion that vaginismus may be a fear-related condition. PMID:27354964

  3. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    PubMed Central

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  4. Murine GRPR and Stathmin Control in Opposite Directions both Cued Fear Extinction and Neural Activities of the Amygdala and Prefrontal Cortex

    PubMed Central

    Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P.

    2012-01-01

    Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction. PMID:22312434

  5. Murine GRPR and stathmin control in opposite directions both cued fear extinction and neural activities of the amygdala and prefrontal cortex.

    PubMed

    Martel, Guillaume; Hevi, Charles; Wong, Alexandra; Zushida, Ko; Uchida, Shusaku; Shumyatsky, Gleb P

    2012-01-01

    Extinction is an integral part of normal healthy fear responses, while it is compromised in several fear-related mental conditions in humans, such as post-traumatic stress disorder (PTSD). Although much research has recently been focused on fear extinction, its molecular and cellular underpinnings are still unclear. The development of animal models for extinction will greatly enhance our approaches to studying its neural circuits and the mechanisms involved. Here, we describe two gene-knockout mouse lines, one with impaired and another with enhanced extinction of learned fear. These mutant mice are based on fear memory-related genes, stathmin and gastrin-releasing peptide receptor (GRPR). Remarkably, both mutant lines showed changes in fear extinction to the cue but not to the context. We performed indirect imaging of neuronal activity on the second day of cued extinction, using immediate-early gene c-Fos. GRPR knockout mice extinguished slower (impaired extinction) than wildtype mice, which was accompanied by an increase in c-Fos activity in the basolateral amygdala and a decrease in the prefrontal cortex. By contrast, stathmin knockout mice extinguished faster (enhanced extinction) and showed a decrease in c-Fos activity in the basolateral amygdala and an increase in the prefrontal cortex. At the same time, c-Fos activity in the dentate gyrus was increased in both mutant lines. These experiments provide genetic evidence that the balance between neuronal activities of the amygdala and prefrontal cortex defines an impairment or facilitation of extinction to the cue while the hippocampus is involved in the context-specificity of extinction.

  6. Elimination of endogenous aberrant kappa chain transcripts from sp2/0-derived hybridoma cells by specific ribozyme cleavage: utility in genetic therapy of HIV-1 infections.

    PubMed Central

    Duan, L; Pomerantz, R J

    1994-01-01

    The pooled degenerate-primer polymerase chain reaction (PCR) technology is now widely used in the amplification and cloning of murine hybridoma-specific immunoglobulin gene cDNAs. The design of primers is mainly based on the highly conserved 5' terminus of immunoglobulin gene variable regions and the constant region in the 3' terminus. Of note, most murine hybridoma cell lines are derived from the Sp2/0 cell line, which is demonstrated to express endogenous aberrant kappa chains (abV kappa). This high-level endogenous abV kappa mixes with specific kappa chains in the hybridomas and interferes with the efficiency of the reverse transcriptase (RT)-PCR cloning strategy. In this report, during the cloning of murine anti-human immunodeficiency virus type I (HIV-1) hybridoma immunoglobulin cDNAs, a specific primer-PCR screening system was developed, based on the abV kappa complementarity-defining region (CDR), to eliminate abV kappa-carrying plasmids. Furthermore, an abV kappa sequence-specific derived ribozyme was developed and packaged in a retroviral expression vector system. This abV kappa ribozyme can be transduced into different murine hybridomas, and expressed intracellularly to potently eliminate endogenous abV kappa RNA. Images PMID:7816635

  7. Staphylococcus aureus leukocidin ED contributes to systemic infection by targeting neutrophils and promoting bacterial growth in vivo

    PubMed Central

    Alonzo, Francis; Benson, Meredith A.; Chen, John; Novick, Richard P.; Shopsin, Bo; Torres, Victor J.

    2011-01-01

    SUMMARY Bloodstream infection with Staphylococcus aureus is common and can be fatal. However, virulence factors that contribute to lethality in S. aureus bloodstream infection are poorly defined. We discovered that LukED, a commonly overlooked leukotoxin, is critical for S. aureus bloodstream infection in mice. We also determined that LukED promotes S. aureus replication in vivo by directly killing phagocytes recruited to sites of hematogenously-seeded tissue. Furthermore, we established that murine neutrophils are the primary target of LukED, as the greater virulence of wild type S. aureus compared to a lukED mutant was abrogated by depleting neutrophils. The in vivo toxicity of LukED toward murine phagocytes is unique among S. aureus leukotoxins, implying its crucial role in pathogenesis. Moreover, the tropism of LukED for murine phagocytes highlights the utility of murine models to study LukED pathobiology, including development and testing of strategies to inhibit toxin activity and control bacterial infection. PMID:22142035

  8. Dopamine loss alters the hippocampus-nucleus accumbens synaptic transmission in the Tg2576 mouse model of Alzheimer's disease.

    PubMed

    Cordella, Alberto; Krashia, Paraskevi; Nobili, Annalisa; Pignataro, Annabella; La Barbera, Livia; Viscomi, Maria Teresa; Valzania, Alessandro; Keller, Flavio; Ammassari-Teule, Martine; Mercuri, Nicola Biagio; Berretta, Nicola; D'Amelio, Marcello

    2018-08-01

    The functional loop involving the ventral tegmental area (VTA), dorsal hippocampus and nucleus accumbens (NAc) plays a pivotal role in the formation of spatial memory and persistent memory traces. In particular, the dopaminergic innervation from the VTA to the hippocampus is critical for hippocampal-related memory function and alterations in the midbrain dopaminergic system are frequently reported in Alzheimer's disease (AD), contributing to age-related decline in memory and non-cognitive functions. However, much less is known about the hippocampus-NAc connectivity in AD. Here, we evaluated the functioning of the hippocampus-to-NAc core connectivity in the Tg2576 mouse model of AD that shows a selective and progressive degeneration of VTA dopaminergic neurons. We show that reduced dopaminergic innervation in the Tg2576 hippocampus results in reduced synaptic plasticity and excitability of dorsal subiculum pyramidal neurons. Importantly, the glutamatergic transmission from the hippocampus to the NAc core is also impaired. Chemogenetic depolarisation of Tg2576 subicular pyramidal neurons with an excitatory Designer Receptor Exclusively Activated by Designer Drugs, or systemic administration of the DA precursor levodopa, can both rescue the deficits in Tg2576 mice. Our data suggest that the dopaminergic signalling in the hippocampus is essential for the proper functioning of the hippocampus-NAc excitatory synaptic transmission. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Behavioral problems after early life stress: contributions of the hippocampus and amygdala.

    PubMed

    Hanson, Jamie L; Nacewicz, Brendon M; Sutterer, Matthew J; Cayo, Amelia A; Schaefer, Stacey M; Rudolph, Karen D; Shirtcliff, Elizabeth A; Pollak, Seth D; Davidson, Richard J

    2015-02-15

    Early life stress (ELS) can compromise development, with higher amounts of adversity linked to behavioral problems. To understand this linkage, a growing body of research has examined two brain regions involved with socioemotional functioning-amygdala and hippocampus. Yet empirical studies have reported increases, decreases, and no differences within human and nonhuman animal samples exposed to different forms of ELS. This divergence in findings may stem from methodological factors, nonlinear effects of ELS, or both. We completed rigorous hand-tracing of the amygdala and hippocampus in three samples of children who experienced different forms of ELS (i.e., physical abuse, early neglect, or low socioeconomic status). Interviews were also conducted with children and their parents or guardians to collect data about cumulative life stress. The same data were also collected in a fourth sample of comparison children who had not experienced any of these forms of ELS. Smaller amygdala volumes were found for children exposed to these different forms of ELS. Smaller hippocampal volumes were also noted for children who were physically abused or from low socioeconomic status households. Smaller amygdala and hippocampal volumes were also associated with greater cumulative stress exposure and behavioral problems. Hippocampal volumes partially mediated the relationship between ELS and greater behavioral problems. This study suggests ELS may shape the development of brain areas involved with emotion processing and regulation in similar ways. Differences in the amygdala and hippocampus may be a shared diathesis for later negative outcomes related to ELS. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Age-Related Impairments in Object-Place Associations Are Not Due to Hippocampal Dysfunction

    PubMed Central

    Hernandez, Abigail R.; Maurer, Andrew P.; Reasor, Jordan E.; Turner, Sean M.; Barthle, Sarah E.; Johnson, Sarah A.; Burke, Sara N.

    2016-01-01

    Age-associated cognitive decline can reduce an individual’s quality of life. As no single neurobiological deficit can account for the wide spectrum of behavioral impairments observed in old age, it is critical to develop an understanding of how interactions between different brain regions change over the life span. The performance of young and aged animals on behaviors that require the hippocampus and cortical regions to interact, however, has not been well characterized. Specifically, the ability to link a spatial location with specific features of a stimulus, such as object identity, relies on the hippocampus, perirhinal and prefrontal cortices. Although aging is associated with dysfunction in each of these brain regions, behavioral measures of functional change within the hippocampus, perirhinal and prefrontal cortices in individual animals are often not correlated. Thus, how dysfunction of a single brain region within this circuit, such as the hippocampus, impacts behaviors that require communication with the perirhinal and prefrontal cortices remains unknown. To address this question, young and aged rats were tested on the interregion dependent object-place paired association task, as well as a hippocampal-dependent test of spatial reference memory. This particular cohort of aged rats did not show deficits on the hippocampal-dependent task, but were significantly impaired at acquiring object-place associations relative to young. These data suggest that behaviors requiring functional connectivity across different regions of the memory network may be particularly sensitive to aging, and can be used to develop models that will clarify the impact of systems-level dysfunction in the elderly. PMID:26413723

  11. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory

    PubMed Central

    Kempadoo, Kimberly A.; Mosharov, Eugene V.; Choi, Se Joon; Sulzer, David; Kandel, Eric R.

    2016-01-01

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory. PMID:27930324

  12. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory.

    PubMed

    Kempadoo, Kimberly A; Mosharov, Eugene V; Choi, Se Joon; Sulzer, David; Kandel, Eric R

    2016-12-20

    Dopamine neurotransmission in the dorsal hippocampus is critical for a range of functions from spatial learning and synaptic plasticity to the deficits underlying psychiatric disorders such as attention-deficit hyperactivity disorder. The ventral tegmental area (VTA) is the presumed source of dopamine in the dorsal hippocampus. However, there is a surprising scarcity of VTA dopamine axons in the dorsal hippocampus despite the dense network of dopamine receptors. We have explored this apparent paradox using optogenetic, biochemical, and behavioral approaches and found that dopaminergic axons and subsequent dopamine release in the dorsal hippocampus originate from neurons of the locus coeruleus (LC). Photostimulation of LC axons produced an increase in dopamine release in the dorsal hippocampus as revealed by high-performance liquid chromatography. Furthermore, optogenetically induced release of dopamine from the LC into the dorsal hippocampus enhanced selective attention and spatial object recognition via the dopamine D1/D5 receptor. These results suggest that spatial learning and memory are energized by the release of dopamine in the dorsal hippocampus from noradrenergic neurons of the LC. The present findings are critical for identifying the neural circuits that enable proper attention selection and successful learning and memory.

  13. Hormones and the hippocampus.

    PubMed

    Lathe, R

    2001-05-01

    Hippocampal lesions produce memory deficits, but the exact function of the hippocampus remains obscure. Evidence is presented that its role in memory may be ancillary to physiological regulation. Molecular studies demonstrate that the hippocampus is a primary target for ligands that reflect body physiology, including ion balance and blood pressure, immunity, pain, reproductive status, satiety and stress. Hippocampal receptors are functional, probably accessible to their ligands, and mediate physiological and cognitive changes. This argues that an early role of the hippocampus may have been in sensing soluble molecules (termed here 'enteroception') in blood and cerebrospinal fluid, perhaps reflecting a common evolutionary origin with the olfactory system ('exteroception'). Functionally, hippocampal enteroception may reflect feedback control; evidence is reviewed that the hippocampus modulates body physiology, including the activity of the hypothalamus-pituitary-adrenal axis, blood pressure, immunity, and reproductive function. It is suggested that the hippocampus operates, in parallel with the amygdala, to modulate body physiology in response to cognitive stimuli. Hippocampal outputs are predominantly inhibitory on downstream neuroendocrine activity; increased synaptic efficacy in the hippocampus (e.g. long-term potentiation) could facilitate throughput inhibition. This may have implications for the role of the hippocampus and long-term potentiation in memory.

  14. Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus.

    PubMed

    Schoenfeld, Timothy J; Rada, Pedro; Pieruzzini, Pedro R; Hsueh, Brian; Gould, Elizabeth

    2013-05-01

    Physical exercise is known to reduce anxiety. The ventral hippocampus has been linked to anxiety regulation but the effects of running on this subregion of the hippocampus have been incompletely explored. Here, we investigated the effects of cold water stress on the hippocampus of sedentary and runner mice and found that while stress increases expression of the protein products of the immediate early genes c-fos and arc in new and mature granule neurons in sedentary mice, it has no such effect in runners. We further showed that running enhances local inhibitory mechanisms in the hippocampus, including increases in stress-induced activation of hippocampal interneurons, expression of vesicular GABA transporter (vGAT), and extracellular GABA release during cold water swim stress. Finally, blocking GABAA receptors in the ventral hippocampus, but not the dorsal hippocampus, with the antagonist bicuculline, reverses the anxiolytic effect of running. Together, these results suggest that running improves anxiety regulation by engaging local inhibitory mechanisms in the ventral hippocampus.

  15. Parsing the Role of the Hippocampus in Approach-Avoidance Conflict.

    PubMed

    Loh, Eleanor; Kurth-Nelson, Zeb; Berron, David; Dayan, Peter; Duzel, Emrah; Dolan, Ray; Guitart-Masip, Marc

    2017-01-01

    The hippocampus plays a central role in the approach-avoidance conflict that is central to the genesis of anxiety. However, its exact functional contribution has yet to be identified. We designed a novel gambling task that generated approach-avoidance conflict while controlling for spatial processing. We fit subjects' behavior using a model that quantified the subjective values of choice options, and recorded neural signals using functional magnetic resonance imaging (fMRI). Distinct functional signals were observed in anterior hippocampus, with inferior hippocampus selectively recruited when subjects rejected a gamble, to a degree that covaried with individual differences in anxiety. The superior anterior hippocampus, in contrast, uniquely demonstrated value signals that were potentiated in the context of approach-avoidance conflict. These results implicate the anterior hippocampus in behavioral avoidance and choice monitoring, in a manner relevant to understanding its role in anxiety. Our findings highlight interactions between subregions of the hippocampus as an important focus for future study. © The Author 2016. Published by Oxford University Press.

  16. Chewing Maintains Hippocampus-Dependent Cognitive Function

    PubMed Central

    Chen, Huayue; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2015-01-01

    Mastication (chewing) is important not only for food intake, but also for preserving and promoting the general health. Recent studies have showed that mastication helps to maintain cognitive functions in the hippocampus, a central nervous system region vital for spatial memory and learning. The purpose of this paper is to review the recent progress of the association between mastication and the hippocampus-dependent cognitive function. There are multiple neural circuits connecting the masticatory organs and the hippocampus. Both animal and human studies indicated that cognitive functioning is influenced by mastication. Masticatory dysfunction is associated with the hippocampal morphological impairments and the hippocampus-dependent spatial memory deficits, especially in elderly. Mastication is an effective behavior for maintaining the hippocampus-dependent cognitive performance, which deteriorates with aging. Therefore, chewing may represent a useful approach in preserving and promoting the hippocampus-dependent cognitive function in older people. We also discussed several possible mechanisms involved in the interaction between mastication and the hippocampal neurogenesis and the future directions for this unique fascinating research. PMID:26078711

  17. Chewing Maintains Hippocampus-Dependent Cognitive Function.

    PubMed

    Chen, Huayue; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2015-01-01

    Mastication (chewing) is important not only for food intake, but also for preserving and promoting the general health. Recent studies have showed that mastication helps to maintain cognitive functions in the hippocampus, a central nervous system region vital for spatial memory and learning. The purpose of this paper is to review the recent progress of the association between mastication and the hippocampus-dependent cognitive function. There are multiple neural circuits connecting the masticatory organs and the hippocampus. Both animal and human studies indicated that cognitive functioning is influenced by mastication. Masticatory dysfunction is associated with the hippocampal morphological impairments and the hippocampus-dependent spatial memory deficits, especially in elderly. Mastication is an effective behavior for maintaining the hippocampus-dependent cognitive performance, which deteriorates with aging. Therefore, chewing may represent a useful approach in preserving and promoting the hippocampus-dependent cognitive function in older people. We also discussed several possible mechanisms involved in the interaction between mastication and the hippocampal neurogenesis and the future directions for this unique fascinating research.

  18. Parsing the Role of the Hippocampus in Approach–Avoidance Conflict

    PubMed Central

    Loh, Eleanor; Kurth-Nelson, Zeb; Berron, David; Dayan, Peter; Duzel, Emrah; Dolan, Ray; Guitart-Masip, Marc

    2017-01-01

    Abstract The hippocampus plays a central role in the approach–avoidance conflict that is central to the genesis of anxiety. However, its exact functional contribution has yet to be identified. We designed a novel gambling task that generated approach–avoidance conflict while controlling for spatial processing. We fit subjects’ behavior using a model that quantified the subjective values of choice options, and recorded neural signals using functional magnetic resonance imaging (fMRI). Distinct functional signals were observed in anterior hippocampus, with inferior hippocampus selectively recruited when subjects rejected a gamble, to a degree that covaried with individual differences in anxiety. The superior anterior hippocampus, in contrast, uniquely demonstrated value signals that were potentiated in the context of approach–avoidance conflict. These results implicate the anterior hippocampus in behavioral avoidance and choice monitoring, in a manner relevant to understanding its role in anxiety. Our findings highlight interactions between subregions of the hippocampus as an important focus for future study. PMID:27993819

  19. Does retigabine affect the development of alcohol dependence?--A pharmaco-EEG study.

    PubMed

    Zwierzyńska, Ewa; Andrzejczak, Dariusz; Pietrzak, Bogusława

    2016-01-12

    New antiepileptic drugs have been investigated for their potential role in the treatment of alcohol dependence. One of these drugs is retigabine and this study examines the effect of retigabine co-administered with ethanol on the development of alcohol dependence and the course of acute withdrawal syndrome. A pharmaco-EEG method was used to examine this impact in selected brain structures of rabbits (midbrain reticular formation, hippocampus and frontal cortex). Retigabine was administered p.o. at a dose of 5mg/kg/day with ethanol ad libitum for 6 weeks and then alone for 2 weeks during an abstinence period. Changes in bioelectric activity, which demonstrated the inhibitory effect of alcohol on the brain structures, were already visible after 2 weeks of ethanol administration. In the abstinence period, changes were of a different nature and significant neuronal hyperactivity was observed, particularly in the midbrain reticular formation and the hippocampus. This findings reveal that retigabine decreased ethanol-induced changes during both alcohol administration and abstinence periods. In particular, the modulatory effect of retigabine on the hippocampus may be a significant element of its mechanism of action in alcohol dependence therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues.

    PubMed

    Inoue, Koichi; Miyazaki, Yasuto; Unno, Keiko; Min, Jun Zhe; Todoroki, Kenichiro; Toyo'oka, Toshimasa

    2016-01-01

    In this study, we developed the stable isotope dilution hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS) technique for the accurate, reasonable and simultaneous quantification of glutamic acid (Glu), glutamine (Gln), pyroglutamic acid (pGlu), γ-aminobutyric acid (GABA) and theanine in mouse brain tissues. The quantification of these analytes was accomplished using stable isotope internal standards and the HILIC separating mode to fully correct the intramolecular cyclization during the electrospray ionization. It was shown that linear calibrations were available with high coefficients of correlation (r(2)  > 0.999, range from 10 pmol/mL to 50 mol/mL). For application of the theanine intake, the determination of Glu, Gln, pGlu, GABA and theanine in the hippocampus and central cortex tissues was performed based on our developed method. In the region of the hippocampus, the concentration levels of Glu and pGlu were significantly reduced during reality-based theanine intake. Conversely, the concentration level of GABA increased. This result showed that transited theanine has an effect on the metabolic balance of Glu analogs in the hippocampus. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment.

    PubMed

    Bai, Feng; Zhang, Zhijun; Watson, David R; Yu, Hui; Shi, Yongmei; Yuan, Yonggui; Zang, Yufeng; Zhu, Chaozhe; Qian, Yun

    2009-06-01

    Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.

  2. Effects of social isolation and re-socialization on cognition and ADAR1 (p110) expression in mice.

    PubMed

    Chen, Wei; An, Dong; Xu, Hong; Cheng, Xiaoxin; Wang, Shiwei; Yu, Weizhi; Yu, Deqin; Zhao, Dan; Sun, Yiping; Deng, Wuguo; Tang, Yiyuan; Yin, Shengming

    2016-01-01

    It has been reported that social isolation stress could be a key factor that leads to cognitive deficit for both humans and rodent models. However, detailed mechanisms are not yet clear. ADAR1 (Adenosine deaminase acting on RNA) is an enzyme involved in RNA editing that has a close relation to cognitive function. We have hypothesized that social isolation stress may impact the expression of ADAR1 in the brain of mice with cognitive deficit. To test our hypothesis, we evaluated the cognition ability of mice isolated for different durations (2, 4, and 8 weeks) using object recognition and object location tests; we also measured ADAR1 expression in hippocampus and cortex using immunohistochemistry and western blot. Our study showed that social isolation stress induced spatial and non-spatial cognition deficits of the tested mice. In addition, social isolation significantly increased both the immunoreactivity and protein expression of ADAR1 (p110) in the hippocampus and frontal cortex. Furthermore, re-socialization could not only recover the cognition deficits, but also bring ADAR1 (p110) immunoreactivity of hippocampus and frontal cortex, as well as ADAR1 (p110) protein expression of hippocampus back to the normal level for the isolated mice in adolescence. In conclusion, social isolation stress significantly increases ADAR1 (p110) expression in the hippocampus and frontal cortex of the mice with cognitive deficit. This finding may open a window to better understand the reasons (e.g., epigenetic change) that are responsible for social isolation-induced cognitive deficit and help the development of novel therapies for the resulted diseases.

  3. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    PubMed

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats.

    PubMed

    Liu, Lei; Hoang-Gia, Trinh; Wu, Hui; Lee, Mi-Ra; Gu, Lijuan; Wang, Chunyan; Yun, Beom-Sik; Wang, Qijun; Ye, Shengquan; Sung, Chang-Keun

    2011-03-25

    Ginsenoside Rb1 (Rb1) is known to improve learning and memory in hippocampus-dependent tasks. However, the cellular mechanism remains unknown. Cell genesis in hippocampus is involved in spatial learning and memory. In the present study, Rb1 was orally administrated to adult rats for 30days. The behavioral training tests indicated that Rb1 improved spatial cognitive performance of rats in Morris water maze (MWM). Furthermore, we investigated the effects of Rb1 on cell genesis in adult rats' hippocampus, using thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. It has been shown that hippocampal cell genesis can be influenced by several factors such as learning and exercise. In order to avoid the effects of the interfering factors, only the rats treated with Rb1 without training in MWM were used to investigate cell genesis in hippocampus. When BrdU was given to the rats 30days prior to being killed, it was shown that oral administration of Rb1 significantly increased cell survival in dentate gyrus and hippocampal subregion CA3. However, when BrdU was injected 2h prior to sacrifice, the results indicated that Rb1 had no significant influence on cell proliferation in the hippocampal subregions. Thus, an increase of cell survival in hippocampus stimulated by Rb1 may be one of the mechanisms by which ginseng facilitates spatial learning and memory. Our study also indicates that Rb1 may be developed as a therapeutic agent for patients with memory impairment. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A unified theory for systems and cellular memory consolidation.

    PubMed

    Dash, Pramod K; Hebert, April E; Runyan, Jason D

    2004-04-01

    The time-limited role of the hippocampus for explicit memory storage has been referred to as systems consolidation where learning-related changes occur first in the hippocampus followed by the gradual development of a more distributed memory trace in the neocortex. Recent experiments are beginning to show that learning induces plasticity-related molecular changes in the neocortex as well as in the hippocampus and with a similar time course. Present memory consolidation theories do not account for these findings. In this report, we present a theory (the C theory) that incorporates these new findings, provides an explanation for the length of time for hippocampal dependency, and that can account for the apparent longer consolidation periods in species with larger brains. This theory proposes that a process of cellular consolidation occurs in the hippocampus and in areas of the neocortex during and shortly after learning resulting in long-term memory storage in both areas. For a limited time, the hippocampus is necessary for memory retrieval, a process involving the coordinated reactivation of these areas. This reactivation is later mediated by longer extrahippocampal connectivity between areas. The delay in hippocampal-independent memory retrieval is the time it takes for gene products in these longer extrahippocampal projections to be transported from the soma to tagged synapses by slow axonal transport. This cellular transport event defines the period of hippocampal dependency and, thus, the duration of memory consolidation. The theoretical description for memory consolidation presented in this review provides alternative explanations for several experimental observations and presents a unification of the concepts of systems and cellular memory consolidation.

  6. Differential Regulation of Cell Proliferation and Apoptosis by Melatonin Receptor Subtype-Signaling in the Adult Murine Brain.

    PubMed

    Fredrich, Michaela; Christ, Elmar; Korf, Horst-Werner

    2018-06-27


    Background/Aims: Zeitgeber time (ZT)-dependent changes in cell proliferation and apoptosis are regulated by melatonin receptor (MT)-mediated signaling in the adult hippocampus and hypothalamic-hypophyseal system. There are two G-protein-coupled MT-subtypes, MT1 and MT2. Therefore, the present study examined which MT-subtype is required for regulation of ZT-dependent changes in cell proliferation and/or apoptosis in the adult murine brain and pituitary. Adult melatonin-proficient (C3H) mice with targeted deletion of MT1 (MT1 KO) or MT2 (MT2 KO) were adapted to a 12-hour light, 12-hour dark photoperiod and sacrificed at ZT00, ZT06, ZT12, and ZT18. Immunohistochemistry for Ki67 or activated caspase-3 served to quantify proliferating and apoptotic cells in the hippocampal subgranular zone (SGZ) and granule cell layer, the hypothalamic median eminence (ME), and the hypophyseal pars tuberalis. ZT-dependent changes in cell proliferation were found exclusively in the SGZ and ME of MT1 KO mice, while apoptosis showed no ZT-dependent changes in the regions analyzed, neither in MT1 nor in MT2 KO mice. Comparison with our previous studies in C3H mice with functional MTs and MT1/2 KO mice revealed that MT2-mediated signaling is required and sufficient for ZT-dependent changes in cell proliferation in the SGZ and ME, while ZT-dependent changes in apoptosis require signaling from both MT-subtypes. Our results indicate that generation and timing of ZT-dependent changes in cell proliferation and apoptosis by melatonin require different MT-subtype-constellations and emphasize the importance to shed light on the specific function of each receptor-subtype in different tissues and physiological conditions.
    . ©2018S. Karger AG, Basel.

  7. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation.

    PubMed

    Reis, Karina Pires; Heimfarth, Luana; Pierozan, Paula; Ferreira, Fernanda; Loureiro, Samanta Oliveira; Fernandes, Carolina Gonçalves; Carvalho, Rônan Vivian; Pessoa-Pureur, Regina

    2015-11-01

    Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Traumatic injury to the immature frontal lobe: a new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits.

    PubMed

    Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D

    2013-01-01

    Traumatic brain injury in children commonly involves the frontal lobes and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here, we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p)21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 or 7 days later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to the bregma. While cell death and accumulated β-amyloid precursor protein were characteristic features of the pericontusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory likely reflects several variables, including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. © 2013 S. Karger AG, Basel.

  9. Traumatic injury to the immature frontal lobe: A new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits

    PubMed Central

    Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D

    2014-01-01

    Traumatic brain injury in children commonly involves the frontal lobes, and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p) 21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 and 7 d later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to Bregma. While cell death and accumulated beta-amyloid precursor protein were characteristic features of the peri-contusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory, likely reflect several variables including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. PMID:24247103

  10. Hippocampus at 25

    PubMed Central

    Eichenbaum, Howard; Amaral, David G.; Buffalo, Elizabeth A.; Buzsáki, György; Cohen, Neal; Davachi, Lila; Frank, Loren; Heckers, Stephan; Morris, Richard G. M.; Moser, Edvard I.; Nadel, Lynn; O'Keefe, John; Preston, Alison; Ranganath, Charan; Silva, Alcino; Witter, Menno

    2017-01-01

    The journal Hippocampus has passed the milestone of 25 years of publications on the topic of a highly studied brain structure, and its closely associated brain areas. In a recent celebration of this event, a Boston memory group invited 16 speakers to address the question of progress in understanding the hippocampus that has been achieved. Here we present a summary of these talks organized as progress on four main themes: (1) Understanding the hippocampus in terms of its interactions with multiple cortical areas within the medial temporal lobe memory system, (2) understanding the relationship between memory and spatial information processing functions of the hippocampal region, (3) understanding the role of temporal organization in spatial and memory processing by the hippocampus, and (4) understanding how the hippocampus integrates related events into networks of memories. PMID:27399159

  11. GENE EXPRESSION PROFILES IN THE DEVELOPING RAT CEREBELLUM AND HIPPOCAMPUS

    EPA Science Inventory

    Development of the nervous system is a complex program, involving coordinated growth of axons and their targets. In rodents, rapid brain growth occurs during early postnatal development. At this time, several fundamental processes, such as dendritic and axonal outgrowth and the e...

  12. (+)-Borneol suppresses conditioned fear recall and anxiety-like behaviors in mice.

    PubMed

    Cao, Bo; Ni, Huan-Yu; Li, Jun; Zhou, Ying; Bian, Xin-Lan; Tao, Yan; Cai, Cheng-Yun; Qin, Cheng; Wu, Hai-Yin; Chang, Lei; Luo, Chun-Xia; Zhu, Dong-Ya

    2018-01-08

    Fear- and anxiety-related psychiatric disorders have been one of the major chronic diseases afflicting patients for decades, and new compounds for treating such disorders remain to be developed. (+)-Borneol, a bicyclic monoterpene found in several species of Artemisia and Dipterocarpaceae, is widely used for anxiety, pain and anesthesia in Chinese medicine. Meanwhile, it can potentiate GABA (γ-aminobutyric acid) activity directly in recombinant GABAA receptors. The present study was to investigate the effects of (+)-Borneol on both contextual and cued fear recall. Interestingly, microinjection of (+)-Borneol into the dorsal hippocampus inhibited 24 h and 7 d contextual fear, whereas its infusion into ventral hippocampus only reduced 24 h cued fear responses. Moreover, microinjection of (+)-Borneol into dorsal but not ventral hippocampus suppressed anxiety-like behaviors in the open field test, light/dark exploration and the elevated plus maze test. As selective GABA A receptor antagonist bicuculline reversed the effect of (+)-Borneol on contextual fear paradigm and the drug potentiated GABA-evoked currents in acute hippocampus slices, modulation of the GABAergic neurotransmission may explain the effects of (+)-Borneol. Our findings suggest that (+)-Borneol can serve as a new therapeutic in fear- and anxiety-related disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo.

    PubMed

    Pfeiffer, Thomas; Poll, Stefanie; Bancelin, Stephane; Angibaud, Julie; Inavalli, Vvg Krishna; Keppler, Kevin; Mittag, Manuel; Fuhrmann, Martin; Nägerl, U Valentin

    2018-06-22

    Rewiring neural circuits by the formation and elimination of synapses is thought to be a key cellular mechanism of learning and memory in the mammalian brain. Dendritic spines are the postsynaptic structural component of excitatory synapses, and their experience-dependent plasticity has been extensively studied in mouse superficial cortex using two-photon microscopy in vivo. By contrast, very little is known about spine plasticity in the hippocampus, which is the archetypical memory center of the brain, mostly because it is difficult to visualize dendritic spines in this deeply embedded structure with sufficient spatial resolution. We developed chronic 2P-STED microscopy in mouse hippocampus, using a 'hippocampal window' based on resection of cortical tissue and a long working distance objective for optical access. We observed a two-fold higher spine density than previous studies and measured a spine turnover of ~40% within 4 days, which depended on spine size. We thus provide direct evidence for a high level of structural rewiring of synaptic circuits and new insights into the structure-dynamics relationship of hippocampal spines. Having established chronic super-resolution microscopy in the hippocampus in vivo, our study enables longitudinal and correlative analyses of nanoscale neuroanatomical structures with genetic, molecular and behavioral experiments. © 2018, Pfeiffer et al.

  14. The hippocampus and memory for orderly stimulus relations

    PubMed Central

    Dusek, Jeffery A.; Eichenbaum, Howard

    1997-01-01

    Human declarative memory involves a systematic organization of information that supports generalizations and inferences from acquired knowledge. This kind of memory depends on the hippocampal region in humans, but the extent to which animals also have declarative memory, and whether inferential expression of memory depends on the hippocampus in animals, remains a major challenge in cognitive neuroscience. To examine these issues, we used a test of transitive inference pioneered by Piaget to assess capacities for systematic organization of knowledge and logical inference in children. In our adaptation of the test, rats were trained on a set of four overlapping odor discrimination problems that could be encoded either separately or as a single representation of orderly relations among the odor stimuli. Normal rats learned the problems and demonstrated the relational memory organization through appropriate transitive inferences about items not presented together during training. By contrast, after disconnection of the hippocampus from either its cortical or subcortical pathway, rats succeeded in acquiring the separate discrimination problems but did not demonstrate transitive inference, indicating that they had failed to develop or could not inferentially express the orderly organization of the stimulus elements. These findings strongly support the view that the hippocampus mediates a general declarative memory capacity in animals, as it does in humans. PMID:9192700

  15. Gap junctions between CA3 pyramidal cells contribute to network synchronization in neonatal hippocampus.

    PubMed

    Molchanova, Svetlana M; Huupponen, Johanna; Lauri, Sari E; Taira, Tomi

    2016-08-01

    Direct electrical coupling between neurons through gap junctions is prominent during development, when synaptic connectivity is scarce, providing the additional intercellular connectivity. However, functional studies of gap junctions are hampered by the unspecificity of pharmacological tools available. Here we have investigated gap-junctional coupling between CA3 pyramidal cells in neonatal hippocampus and its contribution to early network activity. Four different gap junction inhibitors, including the general blocker carbenoxolone, decreased the frequency of network activity bursts in CA3 area of hippocampus of P3-6 rats, suggesting the involvement of electrical connections in the generation of spontaneous network activity. In CA3 pyramidal cells, spikelets evoked by local stimulation of stratum oriens, were inhibited by carbenoxolone, but not by inhibitors of glutamatergic and GABAergic synaptic transmission, signifying the presence of electrical connectivity through axo-axonic gap junctions. Carbenoxolone also decreased the success rate of firing antidromic action potentials in response to stimulation, and changed the pattern of spontaneous action potential firing of CA3 pyramidal cells. Altogether, these data suggest that electrical coupling of CA3 pyramidal cells contribute to the generation of the early network events in neonatal hippocampus by modulating their firing pattern and synchronization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer’s Disease

    PubMed Central

    Konishi, Kyoko; Joober, Ridha; Poirier, Judes; MacDonald, Kathleen; Chakravarty, Mallar; Patel, Raihaan; Breitner, John; Bohbot, Véronique D.

    2018-01-01

    Early detection of Alzheimer’s disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy. PMID:29278888

  17. Hippocampal Regulation of Contextual Cue-Induced Reinstatement of Cocaine-Seeking Behavior

    PubMed Central

    Atkins, Alison L.; Mashhoon, Yasmin; Kantak, Kathleen M.

    2008-01-01

    Associations between cocaine and cues facilitate development and maintenance of addiction. We hypothesized that the ventral hippocampus is important for acquisition of these associations. Rats were trained to self-administer cocaine, with or without pre-exposure to distinct sets of cocaine- and saline-paired contextual cues. Next, rats were conditioned for 3 days with the distinct sets of contextual cues paired with cocaine and saline along with distinct discrete cues. Vehicle or lidocaine was infused into the ventral hippocampus prior to conditioning sessions. Following extinction, reinstatement of cocaine-seeking behavior was examined following exposure to contextual cues, discrete cues, or their combination. Inactivation of the ventral hippocampus during conditioning blocked acquisition of the association between cocaine and cocaine-paired contextual cues in that only lidocaine-treated rats with short-term cue exposure failed to reinstate responding in the presence of cocaine-paired contextual cues. Lidocaine also prevented rats in both cue exposure groups from discriminating between cocaine-and saline-paired contextual cues during reinstatement tests. Reinstatement induced by cocaine-paired discrete cues or by contextual and discrete cues together was not impaired for either cue exposure condition. The hippocampus is important for acquisition of the association between cocaine and context and in maintaining discrimination between cocaine-relevant and -irrelevant contextual cues. PMID:18499239

  18. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer's Disease.

    PubMed

    Konishi, Kyoko; Joober, Ridha; Poirier, Judes; MacDonald, Kathleen; Chakravarty, Mallar; Patel, Raihaan; Breitner, John; Bohbot, Véronique D

    2018-01-01

    Early detection of Alzheimer's disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy.

  19. Maternal consumption of high-fat diet and grape juice modulates global histone H4 acetylation levels in offspring hippocampus: A preliminary study.

    PubMed

    Gonçalves, Luciana Kneib; da Silva, Ivy Reichert Vital; Cechinel, Laura Reck; Frusciante, Marina Rocha; de Mello, Alexandre Silva; Elsner, Viviane Rostirola; Funchal, Claudia; Dani, Caroline

    2017-11-20

    This study aimed to investigate the impact of maternal consumption of a hyperlipid diet and grape juice on global histone H4 acetylation levels in the offsprinǵs hippocampus at different stages of development. During pregnancy and lactation of offspring, dams were divided into 4 groups: control diet (CD), high-fat diet (HFD), control diet and purple grape juice (PGJCD) and purple grape juice and high-fat diet (PGJHFD). Male Wistar rats were euthanized at 21days of age (PN21, adolescents) and at 50days of age (PN50, adults). The maternal consumption of grape juice increased global histone H4 acetylation levels in hippocampus of adolescents pups (PN21), an indicative of enhanced transcriptional activity and increased gene expression. On the other hand, the maternal high-fat diet diminished significantly this epigenetic marker in the adult phase (PN50), suggesting gene silencing. These preliminary findings demonstrated that the maternal choices are able to induce changes on histone H4 acetylation status in hippocampus of the offspring, which may modulate the expression of specific genes. Interestingly, this response occurs in an age and stimuli-dependent manner and strongly reinforce the importance of maternal choices during gestation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. ApcMin, A Mutation in the Murine Apc Gene, Predisposes to Mammary Carcinomas and Focal Alveolar Hyperplasias

    NASA Astrophysics Data System (ADS)

    Moser, Amy Rapaich; Mattes, Ellen M.; Dove, William F.; Lindstrom, Mary J.; Haag, Jill D.; Gould, Michael N.

    1993-10-01

    ApcMin (Min, multiple intestinal neoplasia) is a point mutation in the murine homolog of the APC gene. Min/+ mice develop multiple intestinal adenomas, as do humans carrying germ-line mutations in APC. Female mice carrying Min are also prone to develop mammary tumors. Min/+ mammary glands are more sensitive to chemical carcinogenesis than are +/+ mammary glands. Transplantation of mammary cells from Min/+ or +/+ donors into +/+ hosts demonstrates that the propensity to develop mammary tumors is intrinsic to the Min/+ mammary cells. Long-term grafts of Min/+ mammary glands also gave rise to focal alveolar hyperplasias, indicating that the presence of the Min mutation also has a role in the development of these lesions.

  1. Levothyroxine replacement therapy with vitamin E supplementation prevents the oxidative stress and apoptosis in hippocampus of hypothyroid rats.

    PubMed

    Guo, Yanyun; Wan, Si Yuan; Zhong, Xing; Zhong, Ming Kui; Pan, Tian Rong

    2014-01-01

    To examine the effect of levothyroxine (L-T4), vitamin E or both on oxidative stress status and hippocampal apoptosis in a propylthiouracil (PTU)-induced hypothyroid rat model. Sprague-Dawley rats were randomly divided into five groups: Control, PTU+PTU+L-T4+PTU+Vit E, PTU+Vit E+L-T4. In each group we assessed levels of serum triiodothyronine (T3), tetraiodothyronine (T4), thyroid stimulating hormone (TSH), hippocampus cellular apoptosis index (AI), hippocampus nicotinamide adenine denucleotide hydrogen (NADPH)oxidase and superoxide dismutase (SOD). 1) Compared with the control group, NADPH oxidase levels were significantly increased, and SOD levels were significantly reduced in the PTU groups (p<0.05). 2) Compared to the PTU group, SOD levels were significantly increased in the PTU+Vit E and PTU+L-T4+Vit E group (p<0.05). NADPH oxidase levels were significantly decreased in the PTU+L-T4, PTU+Vit E and PTU+ L-T4+Vit E group (p<0.05). 3) Compared with the control group, hippocampus AI increased significantly in the PTU group (p<0.05). Compared with the PTU group, hippocampus AI was significantly reduced in the PTU+L-T4 group and PTU+L-T4+Vit E group (p<0.05). 4) Hippocampus AI was positively correlated with NADPH oxidase expression levels in hippocampus tissue (r=0.644, p<0.01). Levothyroxine replacement therapy combined with vitamin E reduces hippocampus AI by improving oxidative stress. This study suggested that the mechanisms of hippocampus tissue injury in a hypothyroid rat model is related to hippocampus apoptosis from increased oxidative stress.

  2. Breast Cancer Affects Both the Hippocampus Volume and the Episodic Autobiographical Memory Retrieval

    PubMed Central

    Bergouignan, Loretxu; Lefranc, Jean Pierre; Chupin, Marie; Morel, Nastassja; Spano, Jean Philippe; Fossati, Philippe

    2011-01-01

    Background Neuroimaging studies show the hippocampus is a crucial node in the neural network supporting episodic autobiographical memory retrieval. Stress-related psychiatric disorders, namely Major Depression and Post Traumatic Stress Disorder (PTSD), are related to reduced hippocampus volume. However, this is not the case for remitted breast cancer patients with co-morbid stress-related psychiatric disorders. This exception may be due to the fact that, consequently to the cancer experience as such, this population might already be characterized by a reduced hippocampus with an episodic autobiographical memory deficit. Methodology We scanned, with a 3T Siemens TRIO, 16 patients who had lived through a “standard experience of breast cancer” (breast cancer and a standard treatment in remission since 18 month) in the absence of any associated stress-related psychiatric or neurological disorder and 21 matched controls. We then assessed their episodic autobiographical memory retrieval ability. Principal Findings Remitted breast cancer patients had both a significantly smaller hippocampus and a significant deficit in episodic autobiographical memory retrieval. The hippocampus atrophy was characterized by a smaller posterior hippocampus. The posterior hippocampus volume was intimately related to the ability to retrieve negative memories and to the past experience of breast cancer or not. Conclusions/Significance These results provide two main findings: (1) we identify a new population with a specific reduction in posterior hippocampus volume that is independent of any psychiatric or neurological pathology; (2) we show the intimate relation of the posterior hippocampus to the ability to retrieve episodic autobiographical memories. These are significant findings as it is the first demonstration that indicates considerable long-term effects of living through the experience of breast cancer and shows very specific hippocampal atrophy with a functional deficit without any presence of psychiatric pathology. PMID:22016764

  3. Growth differentiation factor‑5 induces tenomodulin expression via phosphorylation of p38 and promotes viability of murine mesenchymal stem cells from compact bone.

    PubMed

    Qu, Yanlong; Zhou, Li; Lv, Bing; Wang, Chunlei; Li, Pengwei

    2018-03-01

    Growth differentiation factor (GDF)‑5 serves a role in tissue development and tenomodulin serves an important role in the development of tendons. The effects of GDF‑5 on mesenchymal stem cells (MSCs), particularly with regards to tendon bioengineering, are poorly understood. The present study aimed to investigate the effects of GDF‑5 on cell viability and tenomodulin expression in MSCs from murine compact bone. MSCs were isolated from murine compact bones and confirmed by flow cytometric analysis. In addition, the adipogenic, osteoblastic and chondrocyte differentiation capabilities of the MSCs were determined. MSCs were treated with GDF‑5 and the effects of GDF‑5 on MSC viability were determined. The mRNA and protein expression levels of tenomodulin were detected by reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. MSCs from murine compact bone were successfully isolated. GDF‑5 had optimal effects on cell viability at 100 ng/ml (+36.9% of control group without GDF‑5 treatment, P<0.01) and its effects peaked after 6 days of treatment (+56.6% of control group, P<0.001). Compared with the control group, treatment with 100 ng/ml GDF‑5 for 4 days enhanced the mRNA expression levels of tenomodulin (3.56±0.94 vs. 1.02±0.25; P<0.05). In addition, p38 was activated by GDF‑5, as determined by enhanced expression levels of phosphorylated p38 (p‑p38). The GDF‑5‑induced protein expression levels of p‑p38 and tenomodulin were markedly inhibited following treatment with SB203580, an inhibitor of p38 mitogen‑activated protein kinase. These results suggested that GDF‑5 treatment may increase tenomodulin protein expression via phosphorylation of p38 in MSCs from murine compact bone. These findings may aid the future development of tendon bioengineering.

  4. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells.

    PubMed

    Kochenderfer, James N; Yu, Zhiya; Frasheri, Dorina; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-11

    Adoptive T-cell therapy with anti-CD19 chimeric antigen receptor (CAR)-expressing T cells is a new approach for treating advanced B-cell malignancies. To evaluate anti-CD19-CAR-transduced T cells in a murine model of adoptive T-cell therapy, we developed a CAR that specifically recognized murine CD19. We used T cells that were retrovirally transduced with this CAR to treat mice bearing a syngeneic lymphoma that naturally expressed the self-antigen murine CD19. One infusion of anti-CD19-CAR-transduced T cells completely eliminated normal B cells from mice for at least 143 days. Anti-CD19-CAR-transduced T cells eradicated intraperitoneally injected lymphoma cells and large subcutaneous lymphoma masses. The antilymphoma efficacy of anti-CD19-CAR-transduced T cells was critically dependent on irradiation of mice before anti-CD19-CAR-transduced T-cell infusion. Anti-CD19-CAR-transduced T cells had superior antilymphoma efficacy compared with the anti-CD19 monoclonal antibody from which the anti-CD19 CAR was derived. Our results demonstrated impressive antilymphoma activity and profound destruction of normal B cells caused by anti-CD19-CAR-transduced T cells in a clinically relevant murine model.

  5. IL-9-Producing Mast Cell Precursors and Food Allergy

    DTIC Science & Technology

    2017-10-01

    established genetically modified murine strains, a new reconstitution model of experimental food allergy, and the system to acquire duodenal biopsy...development in vivo using murine model of food allergy. Other Subtasks which are designed to study the molecular mechanisms underlying the FcεR signaling...for effective MMC9 expansion using FcεR deficient mice (Fig. 6). The cellular and molecular mechanisms underlining the FcεR signaling pathway will

  6. Hippocampus at 25.

    PubMed

    Eichenbaum, Howard; Amaral, David G; Buffalo, Elizabeth A; Buzsáki, György; Cohen, Neal; Davachi, Lila; Frank, Loren; Heckers, Stephan; Morris, Richard G M; Moser, Edvard I; Nadel, Lynn; O'Keefe, John; Preston, Alison; Ranganath, Charan; Silva, Alcino; Witter, Menno

    2016-10-01

    The journal Hippocampus has passed the milestone of 25 years of publications on the topic of a highly studied brain structure, and its closely associated brain areas. In a recent celebration of this event, a Boston memory group invited 16 speakers to address the question of progress in understanding the hippocampus that has been achieved. Here we present a summary of these talks organized as progress on four main themes: (1) Understanding the hippocampus in terms of its interactions with multiple cortical areas within the medial temporal lobe memory system, (2) understanding the relationship between memory and spatial information processing functions of the hippocampal region, (3) understanding the role of temporal organization in spatial and memory processing by the hippocampus, and (4) understanding how the hippocampus integrates related events into networks of memories. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Diminished gray matter in the hippocampus of cannabis users: possible protective effects of cannabidiol.

    PubMed

    Demirakca, Traute; Sartorius, Alexander; Ende, Gabriele; Meyer, Nadja; Welzel, Helga; Skopp, Gisela; Mann, Karl; Hermann, Derik

    2011-04-01

    Chronic cannabis use has been associated with memory deficits and a volume reduction of the hippocampus, but none of the studies accounted for different effects of tetrahydrocannabinol (THC) and cannabidiol (CBD). Using a voxel based morphometry approach optimized for small subcortical structures (DARTEL) gray matter (GM) concentration and volume of the hippocampus were measured in 11 chronic recreational cannabis users and 13 healthy controls, and correlated with THC and CBD from hair analyses. GM volume was calculated by modulating VBM using Jacobian determinants derived from the spatial normalization. Cannabis users showed lower GM volume located in a cluster of the right anterior hippocampus (P(uncorr)=0.002; effect size Cohen's d=1.34). In a regression analysis an inverse correlation of the ratio THC/CBD with the volume of the right hippocampus (P(uncorr) p<0.001, Cohen's d=3.43) was observed. Furthermore Cannabidiol correlated positively with GM concentration (unmodulated VBM data), but not with GM volume (modulated VBM) in the bilateral hippocampus (P=0.03 after correction for hippocampal volume; left hippocampus Cohen's d=4.37 and right hippocampus 4.65). Lower volume in the right hippocampus in chronic cannabis users was corroborated. Higher THC and lower CBD was associated with this volume reduction indicating neurotoxic effects of THC and neuroprotective effects of CBD. This confirms existing preclinical and clinical results. As a possible mechanism the influence of cannabinoids on hippocampal neurogenesis is suggested. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. The hippocampus and exploration: dynamically evolving behavior and neural representations

    PubMed Central

    Johnson, Adam; Varberg, Zachary; Benhardus, James; Maahs, Anthony; Schrater, Paul

    2012-01-01

    We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation. PMID:22848196

  9. Propagation of cortical spreading depression into the hippocampus: The role of the entorhinal cortex.

    PubMed

    Martens-Mantai, Tanja; Speckmann, Erwin-Josef; Gorji, Ali

    2014-07-22

    Propagation of cortical spreading depression (CSD) to the subcortical structures could be the underlying mechanism of some neurological deficits in migraine with aura. The entorhinal cortex (EC) as a gray matter bridge between the neocortex and subcortical regions plays an important role in this propagation. In vitro combined neocortex-hippocampus brain slices were used to study the propagation pattern of CSD between the neocortex and the hippocampus. The effects of different compounds as well as tetanic electrical stimulations in the EC on propagation of CSD to the hippocampus were investigated. Repetitive induction of CSD by KCl injection in the somatosensory cortex enhanced the probability of CSD entrance to the hippocampus via EC. Local application of AMPA receptor blocker CNQX and cannabinoid receptor agonist WIN 55212-2 in EC facilitated the propagation of CSD to the hippocampus, whereas application of NMDA receptor blocker APV and GABA A receptor blocker bicuculline in this region reduced the probability of CSD penetration to the hippocampus. Application of tetanic stimulation in EC also facilitated the propagation of CSD entrance to the hippocampus. Our data suggest the importance of synaptic plasticity of EC in filtering the propagation of CSD into subcortical structures and possibly the occurrence of concomitant neurological deficits. Synapse, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  10. Neonatal hyperglycemia alters the neurochemical profile, dendritic arborization and gene expression in the developing rat hippocampus.

    PubMed

    Rao, Raghavendra; Nashawaty, Motaz; Fatima, Saher; Ennis, Kathleen; Tkac, Ivan

    2018-05-01

    Hyperglycemia (blood glucose concentration >150 mg/dL) is common in extremely low gestational age newborns (ELGANs; birth at <28 week gestation). Hyperglycemia increases the risk of brain injury in the neonatal period. The long-term effects are not well understood. In adult rats, hyperglycemia alters hippocampal energy metabolism. The effects of hyperglycemia on the developing hippocampus were studied in rat pups. In Experiment 1, recurrent hyperglycemia of graded severity (moderate hyperglycemia (moderate-HG), mean blood glucose 214.6 ± 11.6 mg/dL; severe hyperglycemia (severe-HG), 338.9 ± 21.7 mg/dL; control, 137.7 ± 2.6 mg/dL) was induced from postnatal day (P) 3 to P12. On P30, the hippocampal neurochemical profile was determined using in vivo 1 H MR spectroscopy. Dendritic arborization in the hippocampal CA1 region was determined using microtubule-associated protein (MAP)-2 immunohistochemistry. In Experiment 2, continuous hyperglycemia (mean blood glucose 275.3 ± 25.8 mg/dL; control, 142.3 ± 2.6 mg/dL) was induced from P2 to P6 by injecting streptozotocin (STZ) on P2. The mRNA expression of glycogen synthase 1 (Gys1), lactate dehydrogenase (Ldh), glucose transporters 1 (Glut1) and 3 (Glut3) and monocarboxylate transporters 1 (Mct1), 2 (Mct2) and 4 (Mct4) in the hippocampus was determined on P6. In Experiment 1, MRS demonstrated lower lactate concentration and glutamate/glutamine (Glu/Gln) ratio in the severe-HG group, compared with the control group (p < 0.05). Phosphocreatine/creatine ratio was higher in both hyperglycemia groups (p < 0.05). MAP-2 histochemistry demonstrated longer apical segment length, indicating abnormal synaptic efficacy in both hyperglycemia groups (p < 0.05). Experiment 2 showed lower Glut1, Gys1 and Mct4 expression and higher Mct1 expression in the hyperglycemia group, relative to the control group (p < 0.05). These results suggest that hyperglycemia alters substrate transport, lactate homeostasis, dendritogenesis and Glu-Gln cycling in the developing hippocampus. Abnormal neurochemical profile and dendritic structure due to hyperglycemia may partially explain the long-term hippocampus-mediated cognitive deficits in human ELGANs. Copyright © 2018 John Wiley & Sons, Ltd.

  11. Maternal anxiety and infants' hippocampal development: timing matters.

    PubMed

    Qiu, A; Rifkin-Graboi, A; Chen, H; Chong, Y-S; Kwek, K; Gluckman, P D; Fortier, M V; Meaney, M J

    2013-09-24

    Exposure to maternal anxiety predicts offspring brain development. However, because children's brains are commonly assessed years after birth, the timing of such maternal influences in humans is unclear. This study aimed to examine the consequences of antenatal and postnatal exposure to maternal anxiety upon early infant development of the hippocampus, a key structure for stress regulation. A total of 175 neonates underwent magnetic resonance imaging (MRI) at birth and among them 35 had repeated scans at 6 months of age. Maternal anxiety was assessed using the State-Trait Anxiety Inventory (STAI) at week 26 of pregnancy and 3 months after delivery. Regression analyses showed that antenatal maternal anxiety did not influence bilateral hippocampal volume at birth. However, children of mothers reporting increased anxiety during pregnancy showed slower growth of both the left and right hippocampus over the first 6 months of life. This effect of antenatal maternal anxiety upon right hippocampal growth became statistically stronger when controlling for postnatal maternal anxiety. Furthermore, a strong positive association between postnatal maternal anxiety and right hippocampal growth was detected, whereas a strong negative association between postnatal maternal anxiety and the left hippocampal volume at 6 months of life was found. Hence, the postnatal growth of bilateral hippocampi shows distinct responses to postnatal maternal anxiety. The size of the left hippocampus during early development is likely to reflect the influence of the exposure to perinatal maternal anxiety, whereas right hippocampal growth is constrained by antenatal maternal anxiety, but enhanced in response to increased postnatal maternal anxiety.

  12. Effect of prenatal exposure to mobile phone on pyramidal cell numbers in the mouse hippocampus: a stereological study.

    PubMed

    Rağbetli, Murat Cetin; Aydinlioğlu, Atif; Koyun, Necat; Rağbetli, Cennet; Karayel, Metin

    2009-01-01

    Because of the possible risk factor for the health, World Health Organization (WHO) recommended the study with animals on the developing nervous system concerning the exposure to radiofrequency (RF) field. A few studies related to hippocampal exposure are available, which indicate the impact of RF field in some parameters. The present study investigated the effect of exposure to mobile phone on developing hippocampus. Male and female Swiss albino mice were housed as control and mobile phone exposed groups. The pregnant animals in tested group were exposed to the effects of mobile phone in a room possessing the exposure system. The left hemispheres of the brains were processed by frozen microtome. The sections obtained were stained with Hematoxylin & Eosin. For cell counting by the optical fractionator method, a pilot study was first performed. Hippocampal areas were analyzed using Axiovision software running on a personal computer. The optical dissector, systematically and randomly spaced, was focused to the widest profile of the pyramidal cell nucleus. No significant difference in pyramidal cell number of total Cornu Ammonis (CA) sectors of hippocampus was found between the control and the mobile phone exposed groups (p > .05). It was concluded that further study is needed in this field due to popular use of mobile telephones and relatively high exposure to the developing brain.

  13. An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin.

    PubMed

    Groves, Rachel B; Coulman, Sion A; Birchall, James C; Evans, Sam L

    2013-02-01

    The mechanical characteristics of skin are extremely complex and have not been satisfactorily simulated by conventional engineering models. The ability to predict human skin behaviour and to evaluate changes in the mechanical properties of the tissue would inform engineering design and would prove valuable in a diversity of disciplines, for example the pharmaceutical and cosmetic industries, which currently rely upon experiments performed in animal models. The aim of this study was to develop a predictive anisotropic, hyperelastic constitutive model of human skin and to validate this model using laboratory data. As a corollary, the mechanical characteristics of human and murine skin have been compared. A novel experimental design, using tensile tests on circular skin specimens, and an optimisation procedure were adopted for laboratory experiments to identify the material parameters of the tissue. Uniaxial tensile tests were performed along three load axes on excised murine and human skin samples, using a single set of material parameters for each skin sample. A finite element model was developed using the transversely isotropic, hyperelastic constitutive model of Weiss et al. (1996) and was embedded within a Veronda-Westmann isotropic material matrix, using three fibre families to create anisotropic behaviour. The model was able to represent the nonlinear, anisotropic behaviour of the skin well. Additionally, examination of the optimal material coefficients and the experimental data permitted quantification of the mechanical differences between human and murine skin. Differences between the skin types, most notably the extension of the skin at low load, have highlighted some of the limitations of murine skin as a biomechanical model of the human tissue. The development of accurate, predictive computational models of human tissue, such as skin, to reduce, refine or replace animal models and to inform developments in the medical, engineering and cosmetic fields, is a significant challenge but is highly desirable. Concurrent advances in computer technology and our understanding of human physiology must be utilised to produce more accurate and accessible predictive models, such as the finite element model described in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Early development of the longsnout seahorse Hippocampus reidi (Syngnathidae) within the male brood pouch.

    PubMed

    Novelli, B; Otero Ferrer, F; Socorro, J A; Molina Domínguez, L

    2018-06-01

    Fertilized and unfertilized eggs and embryos of the longsnout seahorse Hippocampus reidi were collected at different stages of development and provided the basis for a description of morphological development from fertilization until release from the paternal pouch. Images of fertilized eggs, as well as their rupture after a few minutes in seawater are reported for the first time. The yolk sac transitioned from ovoid to spherical shape and was reabsorbed progressively until release. The tail began rising from the surface of the deuteroplasm while embryos were in the egg envelope. Embryos lacked a primordial fin fold and developed some species characteristics, such as rays in the dorsal fin, before resorption of the yolk sac. At release, juvenile seahorses were in an advanced stage of development even if they lacked important adult characteristics, such as ring plates and coronet. The tail was not prehensile in juveniles at release; a small caudal fin was present, although this fin is lost in adults. © 2018 The Fisheries Society of the British Isles.

  15. The influence of puberty on subcortical brain development.

    PubMed

    Goddings, Anne-Lise; Mills, Kathryn L; Clasen, Liv S; Giedd, Jay N; Viner, Russell M; Blakemore, Sarah-Jayne

    2014-03-01

    Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7-20years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development. © 2013. Published by Elsevier Inc. All rights reserved.

  16. The influence of puberty on subcortical brain development

    PubMed Central

    Goddings, Anne-Lise; Mills, Kathryn L.; Clasen, Liv S.; Giedd, Jay N.; Viner, Russell M.; Blakemore, Sarah-Jayne

    2014-01-01

    Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7–20 years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development. PMID:24121203

  17. Neural Changes Underlying the Development of Episodic Memory During Middle Childhood

    PubMed Central

    Ghetti, Simona; Bunge, Silvia A.

    2012-01-01

    Episodic memory is central to the human experience. In typically developing children, episodic memory improves rapidly during middle childhood. While the developmental cognitive neuroscience of episodic memory remains largely uncharted, recent research has begun to provide important insights. It has long been assumed that hippocampus-dependent binding mechanisms are in place by early childhood, and that improvements in episodic memory observed during middle childhood result from the protracted development of the prefrontal cortex. We revisit the notion that binding mechanisms are age-invariant, and propose that changes in the hippocampus and its projections to cortical regions also contribute to the development of episodic memory. We further review the role of developmental changes in lateral prefrontal and parietal cortices in this development. Finally, we discuss changes in white matter tracts connecting brain regions that are critical for episodic memory. Overall, we argue that changes in episodic memory emerge from the concerted effort of a network of relevant brain structures. PMID:22770728

  18. Prenatal exposure to bisphenol A impacts midbrain dopamine neurons and hippocampal spine synapses in non-human primates

    PubMed Central

    Elsworth, John D.; Jentsch, J. David; VandeVoort, Catherine A.; Roth, Robert H.; Redmond, D. Eugene; Leranth, Csaba

    2013-01-01

    Prevalent use of bisphenol-A (BPA) in the manufacture of resins, plastics and paper products has led to frequent exposure of most people to this endocrine disruptor. Some rodent studies have suggested that BPA can exert detrimental effects on brain development. However as rodent models cannot be relied on to predict consequences of human exposure to BPA during development, it is important to investigate the effects of BPA on non-human primate brain development. Previous research suggests that BPA preferentially targets dopamine neurons in ventral mesencephalon and glutamatergic neurons in hippocampus, so the present work examined the susceptibility of these systems to low dose BPA exposure at the fetal and juvenile stages of development in non-human primates. Exposure of pregnant rhesus monkeys to relatively low levels of BPA during the final 2 months of gestation, induced abnormalities in fetal ventral mesencephalon and hippocampus. Specifically, light microscopy revealed a decrease in tyrosine hydroxylase-expressing (dopamine) neurons in the midbrain of BPA-exposed fetuses and electron microscopy identified a reduction in spine synapses in the CA1 region of hippocampus. In contrast, administration of BPA to juvenile vervet monkeys (14–18 months of age) was without effect on these indices, or on dopamine and serotonin concentrations in striatum and prefrontal cortex, or on performance of a cognitive task that tests working memory capacity. These data indicate that BPA exerts an age-dependent detrimental impact on primate brain development, at blood levels within the range measured in humans having only environmental contact with BPA. PMID:23337607

  19. Absence of fear renewal and functional connections between prefrontal cortex and hippocampus in infant mice.

    PubMed

    Li, Liyu; Gao, Xiaoli; Zhou, Qiang

    2018-04-20

    Impairment in fear extinction is widely viewed as a major contributor to, or even an underlying mechanism of, the pathogenesis of anxiety disorders and PTSD. Children with traumatic experience have a higher risk for developing anxiety disorders and PTSD in the adult. Little is known about the nature of fear memory extinction and its underlying mechanism during this period. Here we showed that while renewal of fear memory is context-specific in adult mice, it is absent in infant mice (P17). Using local injection of GABAa receptor antagonist picrotoxin, we found that there is no functional connectivity between infralimbic prefrontal cortex and hippocampus in P17 mice, while prefrontal cortex projection to amygdala is functioning. Hence, the lack of fear renewal is likely caused by the lack of connections between hippocampus and prefrontal cortex which are known to be involved in the regulation of extinction memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Chronic ethanol exposure and folic acid supplementation: fetal growth and folate status in the maternal and fetal guinea pig.

    PubMed

    Hewitt, Amy J; Knuff, Amber L; Jefkins, Matthew J; Collier, Christine P; Reynolds, James N; Brien, James F

    2011-05-01

    Chronic ethanol exposure (CEE) can produce developmental abnormalities in the CNS of the embryo and developing fetus. Folic acid (FA) is an important nutrient during pregnancy and low folate status exacerbates ethanol-induced teratogenicity. This study tested the hypotheses that (1) CEE depletes folate stores in the mother and fetus; and (2) maternal FA supplementation maintains folate stores. CEE decreased fetal body, brain, hippocampus weights, and brain to body weight ratio but not hippocampus to body weight ratio. These effects of CEE were not mitigated by maternal FA administration. The FA regimen prevented the CEE-induced decrease of term fetal liver folate. However, it did not affect maternal liver folate or fetal RBC folate at term, and did not mitigate the nutritional deficit-induced decrease of term fetal hippocampus folate. This study suggests that maternal FA supplementation may have differential effects on folate status in the mother and the fetus. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. STS-90 Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this forth day of the STS-90 mission, the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk continue work with the Escher Staircase Behavior Testing of Adult Rats experiment. This is the first of two behavior testing sessions with the adult rats being used for this experiment. The rats will have a 'hyper drive' unit placed on their head which has recording electrodes made of microscopic wires that are positioned in the brain to record activity in the hippocampus. The hippocampus is that portion of the brain used to develop spatial maps to help us navigate from one place to the other. With the 'hyper drive' units in place, the rats will then be put through a maze or on a track. While the rat is maneuvering on the maze or track, the cell activity of the hippocampus will be measured and recorded.

  2. Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus.

    PubMed

    Song, Xiaoyu; Liu, Bo; Cui, Lingyu; Zhou, Biao; Liu, Weiwei; Xu, Fanxing; Hayashi, Toshihiko; Hattori, Shunji; Ushiki-Kaku, Yuko; Tashiro, Shin-Ichi; Ikejima, Takashi

    2017-10-01

    Depression is one of the most frequent psychiatric disorders of Alzheimer's disease (AD). Depression and anxiety are associated with increased risk of developing AD. Silibinin, a flavonoid derived from milk thistle (Silybum marianum), has been used as a hepato-protectant in the clinical treatment of liver diseases. In this study, the effect of silibinin on Aβ-induced anxiety/depression-like behaviors in rats was investigated. Silibinin significantly attenuated anxiety/depression-like behaviors caused by Aβ1-42-treatment as shown in tail suspension test (TST), elevated plus maze (EPM) and forced swimming tests (FST). Moreover, silibinin was able to attenuate the neuronal damage in the hippocampus of Aβ1-42-injected rats. Silibinin-treatment up-regulated the function through BDNF/TrkB pathway and attenuated autophagy in the hippocampus. Our study provides a new insight into the protective effects of silibinin in the treatment of anxiety/depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Longevity of Hippocampus-Dependent Memory Is Orchestrated by the Locus Coeruleus-Noradrenergic System

    PubMed Central

    2017-01-01

    The locus coeruleus is connected to the dorsal hippocampus via strong fiber projections. It becomes activated after arousal and novelty, whereupon noradrenaline is released in the hippocampus. Noradrenaline from the locus coeruleus is involved in modulating the encoding, consolidation, retrieval, and reversal of hippocampus-based memory. Memory storage can be modified by the activation of the locus coeruleus and subsequent facilitation of hippocampal long-term plasticity in the forms of long-term depression and long-term potentiation. Recent evidence indicates that noradrenaline and dopamine are coreleased in the hippocampus from locus coeruleus terminals, thus fostering neuromodulation of long-term synaptic plasticity and memory. Noradrenaline is an inductor of epigenetic modifications regulating transcriptional control of synaptic long-term plasticity to gate the endurance of memory storage. In conclusion, locus coeruleus activation primes the persistence of hippocampus-based long-term memory. PMID:28695015

  4. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the hippocampal Ammon's horn and, particularly, on the CA1 field pyramidal neurons, as well as on afferences to the hippocampus which needs to be further investigated.

  5. Essential role of GluD1 in dendritic spine development and GluN2B to GluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of GluN2B inhibition in correcting hyperconnectivity.

    PubMed

    Gupta, Subhash C; Yadav, Roopali; Pavuluri, Ratnamala; Morley, Barbara J; Stairs, Dustin J; Dravid, Shashank M

    2015-06-01

    The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC and hippocampus. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2B-containing receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders such as autism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI.

    PubMed

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-10-01

    The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Dissociation between dorsal and ventral hippocampal theta oscillations during decision-making.

    PubMed

    Schmidt, Brandy; Hinman, James R; Jacobson, Tara K; Szkudlarek, Emily; Argraves, Melissa; Escabí, Monty A; Markus, Etan J

    2013-04-03

    Hippocampal theta oscillations are postulated to support mnemonic processes in humans and rodents. Theta oscillations facilitate encoding and spatial navigation, but to date, it has been difficult to dissociate the effects of volitional movement from the cognitive demands of a task. Therefore, we examined whether volitional movement or cognitive demands exerted a greater modulating factor over theta oscillations during decision-making. Given the anatomical, electrophysiological, and functional dissociations along the dorsal-ventral axis, theta oscillations were simultaneously recorded in the dorsal and ventral hippocampus in rats trained to switch between place and motor-response strategies. Stark differences in theta characteristics were found between the dorsal and ventral hippocampus in frequency, power, and coherence. Theta power increased in the dorsal, but decreased in the ventral hippocampus, during the decision-making epoch. Interestingly, the relationship between running speed and theta power was uncoupled during the decision-making epoch, a phenomenon limited to the dorsal hippocampus. Theta frequency increased in both the dorsal and ventral hippocampus during the decision epoch, although this effect was greater in the dorsal hippocampus. Despite these differences, ventral hippocampal theta was responsive to the navigation task; theta frequency, power, and coherence were all affected by cognitive demands. Theta coherence increased within the dorsal hippocampus during the decision-making epoch on all three tasks. However, coherence selectively increased throughout the hippocampus (dorsal to ventral) on the task with new hippocampal learning. Interestingly, most results were consistent across tasks, regardless of hippocampal-dependent learning. These data indicate increased integration and cooperation throughout the hippocampus during information processing.

  8. Hippocampus and Amygdala Morphology in Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Plessen, Kerstin J.; Bansal, Ravi; Zhu, Hongtu; Whiteman, Ronald; Amat, Jose; Quackenbush, Georgette A.; Martin, Laura; Durkin, Kathleen; Blair, Clancy; Royal, Jason; Hugdahl, Kenneth; Peterson, Bradley S.

    2008-01-01

    Context Limbic structures are implicated in the genesis of attention-deficit/hyperactivity disorder (ADHD) by the presence of mood and cognitive disturbances in affected individuals and by elevated rates of mood disorders in family members of probands with ADHD. Objective To study the morphology of the hippocampus and amygdala in children with ADHD. Design A cross-sectional case-control study of the hippocampus and amygdala using anatomical magnetic resonance imaging. Settings University research institute. Patients One hundred fourteen individuals aged 6 to 18 years, 51 with combined-type ADHD and 63 healthy controls. Main Outcome Measures Volumes and measures of surface morphology for the hippocampus and amygdala. Results The hippocampus was larger bilaterally in the ADHD group than in the control group (t=3.35; P<.002). Detailed surface analyses of the hippocampus further localized these differences to an enlarged head of the hippocampus in the ADHD group. Although conventional measures did not detect significant differences in amygdalar volumes, surface analyses indicated the presence of reduced size bilaterally over the area of the basolateral complex. Correlations with prefrontal measures suggested abnormal connectivity between the amygdala and prefrontal cortex in the ADHD group. Enlarged subregions of the hippocampus tended to accompany fewer symptoms. Conclusions The enlarged hippocampus in children and adolescents with ADHD may represent a compensatory response to the presence of disturbances in the perception of time, temporal processing (eg, delay aversion), and stimulus seeking associated with ADHD. Disrupted connections between the amygdala and orbitofrontal cortex may contribute to behavioral disinhibition. Our findings suggest involvement of the limbic system in the pathophysiology of ADHD. PMID:16818869

  9. Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures.

    PubMed

    Morales, P; Reyes, P; Klawitter, V; Huaiquín, P; Bustamante, D; Fiedler, J; Herrera-Marschitz, M

    2005-01-01

    The present report summarizes studies combining an in vivo and in vitro approach, where asphyxia is induced in vivo at delivery time of Wistar rats, and the long term effects on hippocampus neurocircuitry are investigated in vitro with organotypic cultures plated at postnatal day seven. The cultures preserved hippocampus layering and regional subdivisions shown in vivo, and only few dying cells were observed when assayed with a viability test at day in vitro 27. When properly fixed, cultures from asphyxia-exposed animals showed a decreased amount of microtubule-associated protein-2 immunocytochemically positive cells (approximately 30%), as compared with that from controls. The decrease in microtubule-associated protein-2 immunocytochemistry was particularly prominent in Ammon's horn 1 and dentate gyrus regions (approximately 40%). 5-Bromo-2'deoxyuridine labeling revealed a two-fold increase in cellular proliferation in cultures from asphyxia-exposed, compared with that from control animals. Furthermore, confocal microscopy and quantification using the optical disector technique demonstrated that in cultures from asphyxia-exposed animals approximately 30% of 5-bromo-2'deoxyuridine-positive cells were also positive to microtubule-associated protein-2, a marker for neuronal phenotype. That proportion was approximately 20% in cultures from control animals. Glial fibrillary acidic protein-immunocytochemistry and Fast Red nuclear staining revealed that the core of the hippocampus culture was surrounded by a well-developed network of glial fibrillary acidic protein-positive cells and glial fibrillary acidic protein-processes providing an apparent protective shield around the hippocampus. That shield was less developed in cultures from asphyxia-exposed animals. The increased mitotic activity observed in this study suggests a compensatory mechanism for the long-term impairment induced by perinatal asphyxia, although it is not clear yet if that mechanism leads to neurogenesis, astrogliogenesis, or to further apoptosis.

  10. Subregional volumes of the hippocampus in relation to cognitive function and risk of dementia.

    PubMed

    Evans, Tavia E; Adams, Hieab H H; Licher, Silvan; Wolters, Frank J; van der Lugt, Aad; Ikram, M Kamran; O'Sullivan, Michael J; Vernooij, Meike W; Ikram, M Arfan

    2018-05-18

    Total hippocampal volume has been consistently linked to cognitive function and dementia. Yet, given its complex and parcellated internal structure, the role of subregions of the hippocampus in cognition and risk of dementia remains relatively underexplored. We studied subregions of the hippocampus in a large population-based cohort to further understand their role in cognitive impairment and dementia risk. We studied 5035 dementia- and stroke-free persons from the Rotterdam Study, aged over 45 years. All participants underwent magnetic resonance imaging (1.5 T) between 2005 and 2015. Automatic segmentation of the hippocampus and 12 of its subregions was performed using the FreeSurfer software (version 6.0). A cognitive test battery was performed, and participants were followed up for the development of dementia until 2015. Associations of hippocampal subregion volumes with cognition and incident dementia were examined using linear and Cox regression models, respectively. All analyses were adjusted for age, sex, education, and total hippocampal volume. Mean age was 64.3 years (SD 10.6) with 56% women. Smaller volumes of the hippocampal fimbria, presubiculum and subiculum showed the strongest associations with poor performance on several cognitive domains, including executive function but not memory. During a mean follow-up of 5.5 years, 76 persons developed dementia. Smaller subiculum volume was associated with risk of dementia adjusted for total volume (hazard ratio per SD decrease in volume: 1.75, 95% confidence interval 1.35; 2.26). In a community-dwelling non-demented population, we describe patterns of association between hippocampal subregions with cognition and risk of dementia. Specifically, the subiculum was associated with both poorer cognition and higher risk of dementia. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    PubMed

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation.

    PubMed

    Xu, Falin; Bai, Qiongdan; Zhou, Kai; Ma, Li; Duan, Jiajia; Zhuang, Fangli; Xie, Cuicui; Li, Wenli; Zou, Peng; Zhu, Changlian

    2017-01-01

    To investigate the effects of exposure to an 1800 MHz electromagnetic field on cell death and cell proliferation in the developing brain, postnatal day 7 (P7) and P21 healthy Kunming mice were randomly assigned into the experimental and control groups. The experimental groups were exposed to an 1800 MHz electromagnetic field for 8 h daily for three consecutive days. The thymidine analog 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally 1 h before each exposure session, and all animals were sacrificed 24 h after the last exposure. Cell death and proliferation markers were detected by immunohistochemistry in the dentate gyrus of the hippocampus. Electromagnetic exposure has no influence on cell death in the dentate gyrus of the hippocampus in P7 and P21 mice as indicated by active caspase-3 immunostaining and Fluoro-Jade labeling. The basal cell proliferation in the hippocampus was higher in P7 than in P21 mice as indicated by the number of cells labeled with BrdU and by immunohistochemical staining for phosphor-histone H3 (PHH3) and brain lipid-binding protein (BLBP). Electromagnetic exposure stimulated DNA synthesis in P7 neural stem and progenitor cells, but reduced cell division and the total number of stem cells in the hippocampus as indicated by increased BrdU labeling and reduced PHH3 and BLBP labeling compared to P7 control mice. There were no significant changes in cell proliferation in P21 mice after exposure to the electromagnetic field. These results indicate that interference with stem cell proliferation upon short-term exposure to an 1800 MHz electromagnetic field depends on the developmental stage of the brain.

  13. The impact of neurotechnology on rehabilitation.

    PubMed

    Berger, Theodore W; Gerhardt, Greg; Liker, Mark A; Soussou, Walid

    2008-01-01

    This paper present results of a multi-disciplinary project that is developing a microchip-based neural prosthesis for the hippocampus, a region of the brain responsible for the formation of long-term memories. Damage to the hippocampus is frequently associated with epilepsy, stroke, and dementia (Alzheimer's disease) and is considered to underlie the memory deficits related to these neurological conditions. The essential goals of the multi-laboratory effort include: (1) experimental study of neuron and neural network function--how does the hippocampus encode information? (2) formulation of biologically realistic models of neural system dynamics--can that encoding process be described mathematically to realize a predictive model of how the hippocampus responds to any event? (3) microchip implementation of neural system models--can the mathematical model be realized as a set of electronic circuits to achieve parallel processing, rapid computational speed, and miniaturization? and (4) creation of hybrid neuron-silicon interfaces-can structural and functional connections between electronic devices and neural tissue be achieved for long-term, bi-directional communication with the brain? By integrating solutions to these component problems, we are realizing a microchip-based model of hippocampal nonlinear dynamics that can perform the same function as part of the hippocampus. Through bi-directional communication with other neural tissue that normally provides the inputs and outputs to/from a damaged hippocampal area, the biomimetic model could serve as a neural prosthesis. A proof-of-concept will be presented in which the CA3 region of the hippocampal slice is surgically removed and is replaced by a microchip model of CA3 nonlinear dynamics--the "hybrid" hippocampal circuit displays normal physiological properties. How the work in brain slices is being extended to behaving animals also will be described.

  14. Brain Circuits of Methamphetamine Place Reinforcement Learning: The Role of the Hippocampus-VTA Loop.

    PubMed

    Keleta, Yonas B; Martinez, Joe L

    2012-03-01

    The reinforcing effects of addictive drugs including methamphetamine (METH) involve the midbrain ventral tegmental area (VTA). VTA is primary source of dopamine (DA) to the nucleus accumbens (NAc) and the ventral hippocampus (VHC). These three brain regions are functionally connected through the hippocampal-VTA loop that includes two main neural pathways: the bottom-up pathway and the top-down pathway. In this paper, we take the view that addiction is a learning process. Therefore, we tested the involvement of the hippocampus in reinforcement learning by studying conditioned place preference (CPP) learning by sequentially conditioning each of the three nuclei in either the bottom-up order of conditioning; VTA, then VHC, finally NAc, or the top-down order; VHC, then VTA, finally NAc. Following habituation, the rats underwent experimental modules consisting of two conditioning trials each followed by immediate testing (test 1 and test 2) and two additional tests 24 h (test 3) and/or 1 week following conditioning (test 4). The module was repeated three times for each nucleus. The results showed that METH, but not Ringer's, produced positive CPP following conditioning each brain area in the bottom-up order. In the top-down order, METH, but not Ringer's, produced either an aversive CPP or no learning effect following conditioning each nucleus of interest. In addition, METH place aversion was antagonized by coadministration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK801, suggesting that the aversion learning was an NMDA receptor activation-dependent process. We conclude that the hippocampus is a critical structure in the reward circuit and hence suggest that the development of target-specific therapeutics for the control of addiction emphasizes on the hippocampus-VTA top-down connection.

  15. Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats.

    PubMed

    Wang, K-C; Fan, L-W; Kaizaki, A; Pang, Y; Cai, Z; Tien, L-T

    2013-03-27

    Infection during early neonatal period has been shown to cause lasting neurological disabilities and is associated with the subsequent impairment in development of learning and memory ability and anxiety-related behavior in adults. We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in cognitive deficits in juvenile rats (P21); thus, the goal of the present study was to determine whether neonatal LPS exposure has long-lasting effects in adult rats. After an LPS (1mg/kg) intracerebral (i.c.) injection in postnatal day 5 (P5) Sprague-Dawley female rat pups, neurobehavioral tests were carried out on P21 and P22, P49 and P50 or P70 and P71 and brain injury was examined at 66days after LPS injection (P71). Our data indicate that neonatal LPS exposure resulted in learning deficits in the passive avoidance task, less anxiety-like (anxiolytic-like) responses in the elevated plus-maze task, reductions in the hippocampal volume and the number of neuron-specific nuclear protein (NeuN)+ cells, as well as axonal injury in the CA1 region of the middle dorsal hippocampus in P71 rats. Neonatal LPS exposure also resulted in sustained inflammatory responses in the P71 rat hippocampus, as indicated by an increased number of activated microglia and elevation of interleukin-1β content in the rat hippocampus. This study reveals that neonatal LPS exposure causes persistent injuries to the hippocampus and results in long-lasting learning disabilities, and these effects are related to the chronic inflammation in the rat hippocampus. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas.

    PubMed

    Réus, Gislaine Z; Dos Santos, Maria Augusta B; Abelaira, Helena M; Titus, Stephanie E; Carlessi, Anelise S; Matias, Beatriz I; Bruchchen, Livia; Florentino, Drielly; Vieira, Andriele; Petronilho, Fabricia; Ceretta, Luciane B; Zugno, Alexandra I; Quevedo, João

    2016-03-01

    Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes. Copyright © 2015 John Wiley & Sons, Ltd.

  17. 17β-Estradiol regulates histone alterations associated with memory consolidation and increases Bdnf promoter acetylation in middle-aged female mice

    PubMed Central

    Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.

    2014-01-01

    Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf. PMID:25128537

  18. Intrahippocampal LSD accelerates learning and desensitizes the 5-HT(2A) receptor in the rabbit, Romano et al.

    PubMed

    Romano, Anthony G; Quinn, Jennifer L; Li, Luchuan; Dave, Kuldip D; Schindler, Emmanuelle A; Aloyo, Vincent J; Harvey, John A

    2010-10-01

    Parenteral injections of d-lysergic acid diethylamide (LSD), a serotonin 5-HT(2A) receptor agonist, enhance eyeblink conditioning. Another hallucinogen, (±)-1(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), was shown to elicit a 5-HT(2A)-mediated behavior (head bobs) after injection into the hippocampus, a structure known to mediate trace eyeblink conditioning. This study aims to determine if parenteral injections of the hallucinogens LSD, d,l-2,5-dimethoxy-4-methylamphetamine, and 5-methoxy-dimethyltryptamine elicit the 5-HT(2A)-mediated behavior of head bobs and whether intrahippocampal injections of LSD would produce head bobs and enhance trace eyeblink conditioning. LSD was infused into the dorsal hippocampus just prior to each of eight conditioning sessions. One day after the last infusion of LSD, DOI was infused into the hippocampus to determine whether there had been a desensitization of the 5-HT(2A) receptor as measured by a decrease in DOI-elicited head bobs. Acute parenteral or intrahippocampal LSD elicited a 5-HT(2A) but not a 5-HT(2C)-mediated behavior, and chronic administration enhanced conditioned responding relative to vehicle controls. Rabbits that had been chronically infused with 3 or 10 nmol per side of LSD during Pavlovian conditioning and then infused with DOI demonstrated a smaller increase in head bobs relative to controls. LSD produced its enhancement of Pavlovian conditioning through an effect on 5-HT(2A) receptors located in the dorsal hippocampus. The slight, short-lived enhancement of learning produced by LSD appears to be due to the development of desensitization of the 5-HT(2A) receptor within the hippocampus as a result of repeated administration of its agonist (LSD).

  19. Different patterns of morphological changes in the hippocampus and dentate gyrus accompany the differential expression of disability following nerve injury.

    PubMed

    Kalman, Eszter; Keay, Kevin A

    2014-12-01

    Physical and psychological trauma which results in mood disorders and the disruption of complex behaviours is associated with reductions in hippocampal volume. Clinical evaluation of neuropathic pain reveals mood and behavioural change in a significant number of patients. A rat model of neuropathic injury results in complex behavioural changes in a subpopulation (~30%) of injured rats; these changes are co-morbid with a range of other 'disabilities'. The specific objective of this study was to determine in rats the morphology of the hippocampus and dentate gyrus in individuals with and without complex behavioural disruptions following a constriction injury of the sciatic nerve, and to determine whether rats that develop disabilities following nerve injury have a reduced hippocampal volume compared with injured rats with no disabilities. The social behaviours of nerve-injured rats were evaluated before and after nerve injury. The morphology of the hippocampus of rats with and without behavioural disruptions was compared in serial histological sections. Single-housing and repeated social-interaction testing had no effect on the morphology of either the hippocampus or the dentate gyrus. Rats with transient or ongoing disability identified by behavioural disruption following sciatic nerve injury, show bilateral reductions in hippocampal volume, and lateralised reduction in the dentate gyrus (left side). Disabled rats display a combination of behavioural and physiological changes, which resemble many of the criteria used clinically to diagnose mood disorders. They also show reductions in the volume of the hippocampus similar to people with clinically diagnosed mood disorders. The sciatic nerve injury model reveals a similarity to the human neuropathic pain presentation presenting an anatomically specific focus for the investigation of the neural mechanisms underpinning the co-morbidity of chronic pain and mood disorder. © 2014 Anatomical Society.

  20. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Omega-3 fatty acid supplementation decreases DNA damage in brain of rats subjected to a chemically induced chronic model of Tyrosinemia type II.

    PubMed

    Carvalho-Silva, Milena; Gomes, Lara M; Scaini, Giselli; Rebelo, Joyce; Damiani, Adriani P; Pereira, Maiara; Andrade, Vanessa M; Gava, Fernanda F; Valvassori, Samira S; Schuck, Patricia F; Ferreira, Gustavo C; Streck, Emilio L

    2017-08-01

    Tyrosinemia type II is an inborn error of metabolism caused by a mutation in a gene encoding the enzyme tyrosine aminotransferase leading to an accumulation of tyrosine in the body, and is associated with neurologic and development difficulties in numerous patients. Because the accumulation of tyrosine promotes oxidative stress and DNA damage, the main aim of this study was to investigate the possible antioxidant and neuroprotective effects of omega-3 treatment in a chemically-induced model of Tyrosinemia type II in hippocampus, striatum and cerebral cortex of rats. Our results showed chronic administration of L-tyrosine increased the frequency and the index of DNA damage, as well as the 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in the hippocampus, striatum and cerebral cortex. Moreover, omega-3 fatty acid treatment totally prevented increased DNA damage in the striatum and hippocampus, and partially prevented in the cerebral cortex, whereas the increase in 8-OHdG levels was totally prevented by omega-3 fatty acid treatment in hippocampus, striatum and cerebral cortex. In conclusion, the present study demonstrated that the main accumulating metabolite in Tyrosinemia type II induce DNA damage in hippocampus, striatum and cerebral cortex, possibly mediated by free radical production, and the supplementation with omega-3 fatty acids was able to prevent this damage, suggesting that could be involved in the prevention of oxidative damage to DNA in this disease. Thus, omega-3 fatty acids supplementation to Tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the curren t treatment of this disease.

  2. Hippocampal place cell dysfunction and the effects of muscarinic M1 receptor agonism in a rat model of Alzheimer's disease.

    PubMed

    Galloway, Claire R; Ravipati, Kaushik; Singh, Suyashi; Lebois, Evan P; Cohen, Robert M; Levey, Allan I; Manns, Joseph R

    2018-05-09

    Alzheimer's disease (AD) is a neurodegenerative disease that disproportionately impacts memory and the hippocampus. However, it is unclear how AD pathology influences the activity of surviving neurons in the hippocampus to contribute to the memory symptoms in AD. One well-understood connection between spatial memory and neuronal activity in healthy brains is the activity of place cells, neurons in the hippocampus that fire preferentially in a specific location of a given environment (the place field of the place cell). In the present study, place cells were recorded from the hippocampus in a recently-developed rat model of AD (Tg-F344 AD) at an age (12-20 months) at which the AD rats showed marked spatial memory deficits. Place cells in the CA2 and CA3 pyramidal regions of the hippocampus in AD rats showed sharply reduced spatial fidelity relative to wild-type (WT) rats. In contrast, spiking activity of place cells recorded in region CA1 in AD rats showed good spatial fidelity that was similar to CA1 place cells in WT rats. Oral administration of the M 1 muscarinic acetylcholine receptor agonist VU0364572 impacted place cell firing rates in CA1 and CA2/3 hippocampal regions but did not improve the spatial fidelity of CA2/3 hippocampal place cells in AD rats. The results indicated that, to the extent the spatial memory impairment in AD rats was attributable to hippocampal dysfunction, the memory impairment was more attributable to dysfunction in hippocampal regions CA2 and CA3 rather than CA1. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  3. Maternal betaine supplementation during gestation modifies hippocampal expression of GR and its regulatory miRNAs in neonatal piglets

    PubMed Central

    SUN, Qinwei; LI, Xi; JIA, Yimin; PAN, Shifeng; LI, Runsheng; YANG, Xiaojing; ZHAO, Ruqian

    2016-01-01

    Methyl donor nutrients are critical for embryonic development of brain. Hippocampus is the most susceptible brain region to various factors including prenatal supply of methyl donors. Glucocorticoid receptor (GR) expressed in hippocampus is involved in the regulation of energy homeostasis and stress sensitivity. Hippocampal GR expression is highly susceptible to epigenetic regulation, yet the effect of maternal methyl donor supplementation on epigenetic regulation of GR transcription in offspring hippocampus remains unclear. In this study, we fed sows with betaine (3 g/kg) throughout the gestation and analyzed the hippocampal expression of GR mRNA and its variants, as well as the CpG methylation status of the promoter and the microRNAs predicted to target 3’ UTR of porcine GR gene in neonatal piglets. Total GR mRNA (P<0.01) and its variants GR 1-4 (P<0.05) and 1-9,10 (P<0.01), were significantly higher in the hippocampus of betaine-treated piglets, while the content of GR protein was not significantly changed. The CpGs located in the –1650 ~ –1515 segment of GR gene were hypermethylated (P<0.05). The hippocampal expression of miR-130b (P<0.05), miR-181a (P<0.05) and miR-181d (P<0.01) was significantly up-regulated. The targeting efficacy of miR-130b and miR-181d was validated in vitro using dual-luciferase reporter assay system. Our results demonstrate that maternal betaine supplementation during gestation enhances GR mRNA expression in offspring hippocampus, which involves alterations in miRNAs expression. PMID:26875838

  4. Prenatal Nutritional Deficiency Reprogrammed Postnatal Gene Expression in Mammal Brains: Implications for Schizophrenia

    PubMed Central

    Xu, Jiawei; He, Guang; Zhu, Jingde; Zhou, Xinyao; St Clair, David; Wang, Teng; Xiang, Yuqian; Zhao, Qingzhu; Xing, Qinghe; Liu, Yun; Wang, Lei; Li, Qiaoli

    2015-01-01

    Background: Epidemiological studies have identified prenatal exposure to famine as a risk factor for schizophrenia, and animal models of prenatal malnutrition display structural and functional brain abnormalities implicated in schizophrenia. Methods: The offspring of the RLP50 rat, a recently developed animal model of prenatal famine malnutrition exposure, was used to investigate the changes of gene expression and epigenetic modifications in the brain regions. Microarray gene expression analysis was carried out in the prefrontal cortex and the hippocampus from 8 RLP50 offspring rats and 8 controls. MBD-seq was used to test the changes in DNA methylation in hippocampus depending on prenatal malnutrition exposure. Results: In the prefrontal cortex, offspring of RLP50 exhibit differences in neurotransmitters and olfactory-associated gene expression. In the hippocampus, the differentially-expressed genes are related to synaptic function and transcription regulation. DNA methylome profiling of the hippocampus also shows widespread but systematic epigenetic changes; in most cases (87%) this involves hypermethylation. Remarkably, genes encoded for the plasma membrane are significantly enriched for changes in both gene expression and DNA methylome profiling screens (p = 2.37×10–9 and 5.36×10–9, respectively). Interestingly, Mecp2 and Slc2a1, two genes associated with cognitive impairment, show significant down-regulation, and Slc2a1 is hypermethylated in the hippocampus of the RLP50 offspring. Conclusions: Collectively, our results indicate that prenatal exposure to malnutrition leads to the reprogramming of postnatal brain gene expression and that the epigenetic modifications contribute to the reprogramming. The process may impair learning and memory ability and result in higher susceptibility to schizophrenia. PMID:25522397

  5. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    PubMed

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats

    PubMed Central

    2012-01-01

    Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782

  7. Effects of hypoxic preconditioning on expression of transcription factor NGFI-A in the rat brain after unavoidable stress in the "learned helplessness" model.

    PubMed

    Baranova, K A; Rybnikova, E A; Mironova, V I; Samoilov, M O

    2010-07-01

    We report here our immunocytochemical studies establishing that the development of a depression-like state in rats following unavoidable stress in a "learned helplessness" model is accompanied by stable activation of the expression of transcription factor NGFI-A in the dorsal hippocampus (field CA1) and the magnocellular paraventricular nucleus of the hypothalamus, along with an early wave of post-stress expression, which died down rapidly, in the ventral hippocampus (the dentate gyrus) and a long period of up to five days of high-level expression in the neocortex. In rats subjected to three sessions of preconditioning consisting of moderate hypobaric hypoxia (360 mmHg, 2 h, with intervals of 24 h), which did not form depression in these circumstances, there were significant changes in the dynamics of immunoreactive protein content in the hippocampus, with a stable increase in expression in the ventral hippocampus and only transient and delayed (by five days) expression in field CA1. In the neocortex (layer II), preconditioning eliminated the effects of stress, preventing prolongation of the first wave of NGFI-A expression to five days, while in the magnocellular hypothalamus, conversely, preconditioning stimulated a second (delayed) wave of the expression of this transcription factor. The pattern of NGFI-A expression in the hippocampus, neocortex, and hypothalamus seen in non-preconditioned rats appears to reflect the pathological reaction to aversive stress, which, rather than adaptation, produced depressive disorders. Post-stress modification of the expression of the product of the early gene NGFI-A in the brain induced by hypoxic preconditioning probably plays an important role in increased tolerance to severe psychoemotional stresses and is an important component of antidepressant mechanisms.

  8. Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus

    PubMed Central

    Hsu, Mike S.; Seldin, Marcus; Lee, Darrin J.; Seifert, Gerald; Steinhäuser, Christian; Binder, Devin K.

    2011-01-01

    Mice deficient in the water channel AQP4 demonstrate increased seizure duration in response to hippocampal stimulation as well as impaired extracellular K+ clearance. However, the expression of AQP4 in the hippocampus is not well described. In this study, we investigated i) the developmental, laminar and cell-type specificity of AQP4 expression in the hippocampus; ii) the effect of Kir4.1 deletion on AQP4 expression; and iii) performed Western blot and RT-PCR analyses. AQP4 immunohistochemistry on coronal sections from WT or Kir4.1-/- mice revealed a developmentally-regulated and laminar-specific pattern, with highest expression in the CA1 stratum lacunosummoleculare (SLM) and the molecular layer (ML) of the dentate gyrus (DG). AQP4 was colocalized with the glial markers GFAP and S100ß in the hippocampus, and was also ubiquitously expressed on astrocytic endfeet around blood vessels. No difference in AQP4 immunoreactivity was observed in Kir4.1-/- mice. Electrophysiological and postrecording RT-PCR analyses of individual cells revealed that AQP4 and Kir4.1 were co-expressed in nearly all CA1 astrocytes. In NG2 cells, AQP4 was also expressed at the transcript level. This study is the first to examine subregional AQP4 expression during development of the hippocampus. The strikingly high expression of AQP4 in the CA1 SLM and DG ML identifies these regions as potential sites of astrocytic K+ and H2O regulation. These results begin to delineate the functional capabilities of hippocampal subregions and cell types for K+ and H2O homeostasis, which is critical to excitability and serves as a potential target for modulation in diverse diseases. PMID:21256195

  9. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.

    PubMed

    Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H

    2010-07-20

    We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus.

  10. Effects of gestational ethanol inhalation on hippocampal function in rats.

    EPA Science Inventory

    Recent legislation has increased national emphasis on the development of renewable fuels as alternatives to petroleum fuels. The toxicity of gasoline-ethanol blended fuels to the developing nervous system is of specific concern. The hippocampus, a brain region involved in spatial...

  11. Knowing what from where: Hippocampal connectivity with temporoparietal cortex at rest is linked to individual differences in semantic and topographic memory.

    PubMed

    Sormaz, Mladen; Jefferies, Elizabeth; Bernhardt, Boris C; Karapanagiotidis, Theodoros; Mollo, Giovanna; Bernasconi, Neda; Bernasconi, Andrea; Hartley, Tom; Smallwood, Jonathan

    2017-05-15

    The hippocampus contributes to episodic, spatial and semantic aspects of memory, yet individual differences within and between these functions are not well-understood. In 136 healthy individuals, we investigated whether these differences reflect variation in the strength of connections between functionally-specialised segments of the hippocampus and diverse cortical regions that participate in different aspects of memory. Better topographical memory was associated with stronger connectivity between lingual gyrus and left anterior, rather than posterior, hippocampus. Better semantic memory was associated with increased connectivity between the intracalcarine/cuneus and left, rather than right, posterior hippocampus. Notably, we observed a double dissociation between semantic and topographical memory: better semantic memory was associated with stronger connectivity between left temporoparietal cortex and left anterior hippocampus, while better topographic memory was linked to stronger connectivity with right anterior hippocampus. Together these data support a division-of-labour account of hippocampal functioning: at the population level, differences in connectivity across the hippocampus reflect functional specialisation for different facets of memory, while variation in these connectivity patterns across individuals is associated with differences in the capacity to retrieve different types of information. In particular, within-hemisphere connectivity between hippocampus and left temporoparietal cortex supports conceptual processing at the expense of spatial ability. Copyright © 2017. Published by Elsevier Inc.

  12. Dysfunction of Iron Metabolism and Iron-Regulatory Proteins in the Rat Hippocampus After Heat Stroke.

    PubMed

    Liu, Jing; Wan, Shengming; Zhang, Yun; Zhang, Shu; Zhang, Hongying; Wu, Shiwen

    2018-05-11

    Heat stroke, the most serious type of heat illness, refers to the presence of hyperthermia (core temperature >40°C), accompanied by central nervous system dysfunction. The hippocampus is a particularly vulnerable region in the early stage of heat stroke. Increasing evidence suggests that dysregulation of brain iron metabolism is involved in many neurodegenerative diseases. However, whether heat stroke causes dysfunction of iron metabolism, as well as iron-regulatory proteins, in the hippocampus remains unknown. The present study was conducted to explore the effects on spatial learning and memory, as well as iron content, ferroportin 1 (Fpn1), and hepcidin expression in the hippocampus after heat stroke in rats. Compared with the Sham group, learning ability and memory declined in rats after heat stroke. Iron concentration was significantly increased in the hippocampus. Expression of Fpn1 protein significantly decreased in the hippocampus, while expression of hepcidin increased. Interestingly, Fpn1 mRNA expression in the hippocampus increased. Our data thereby indicate that heat stroke can decrease learning ability and memory in rats. The mechanism may be related to changes of iron levels, as well as Fpn1 and hepcidin expression, in the hippocampus. Furthermore, hepcidin may rapidly decrease cellular Fpn1 protein levels, even under conditions of iron loading, indicating that hepcidin is a more dominant regulator of Fpn1 than is iron.

  13. Toxicological study of injuries of rat’s hippocampus after lead poisoning by synchrotron microradiography and elemental mapping

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Zhang, Guilin; Xiao, Xianghui; Cai, Zhonghou; Lai, Barry; Hwu, Yeukuang; Yan, Chonghuai; Xu, Jian; Li, Yulan; Tan, Mingguang; Zhang, Chuanfu; Li, Yan

    2010-09-01

    The hippocampus, a major component of the brain, is one of the target nervous organs in lead poisoning. In this work, a rat's hippocampal injury caused by lead was studied. The lead concentrations in blood, bone and hippocampus collected from rats subject to lead poisoning were quantified by Inductively Coupled Plasma Mass Spectrometry while morphological information and elemental distributions in the hippocampus were obtained with synchrotron radiation X-ray phase contrast imaging and synchrotron radiation micro-beam X-ray fluorescence, respectively. For comparison, identical characterization of the specimens from the rats in the control group was done in parallel. Results show that the ratios between the lead content in the treated group and that in the control group of the hippocampus, bone, and blood are about 2.66, 236, and 39.6, respectively. Analysis also revealed that some health elements such as S, K, Cl and P increase in the regions with high lead content in the treated hippocampus. Morphological differences between the normal and lead-exposed hippocampus specimens in some local areas were observed. Explicitly, the structure of the lead-exposed hippocampus was tortuous and irregular, and the density of the neurons in the Dentate Gyrus was significantly lower than that from the control group. The study shows that the synchrotron radiation methods are very powerful for investigating structural injury caused by heavy metals in the nervous system.

  14. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice.

    PubMed

    Lin, Tzu-Wei; Shih, Yao-Hsiang; Chen, Shean-Jen; Lien, Chi-Hsiang; Chang, Chia-Yuan; Huang, Tung-Yi; Chen, Shun-Hua; Jen, Chauying J; Kuo, Yu-Min

    2015-02-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Post-mortem examination and brain imaging studies indicate that neurodegeneration is evident in the hippocampus and amygdala of very early stage AD patients. Exercise training is known to enhance hippocampus- and amygdala-associated neuronal function. Here, we investigated the effects of exercise (running) on the neuronal structure and function of the hippocampus and amygdala in APP/PS1 transgenic (Tg) mice. At 4-months-old, an age before amyloid deposition, the amygdala-associated, but not the hippocampus-associated, long-term memory was impaired in the Tg mice. The dendritic complexities of the amygdalar basolateral neurons, but not those in the hippocampal CA1 and CA3 neurons, were reduced. Furthermore, the levels of BDNF/TrkB signaling molecules (i.e. p-TrkB, p-Akt and p-PKC) were reduced in the amygdala, but not in the hippocampus of the 4-month-old Tg mice. The concentrations of Aβ40 and Aβ42 in the amygdala were higher than those in the hippocampus. Ten weeks of treadmill training (from 1.5- to 4-month-old) increased the hippocampus-associated memory and dendritic arbor of the CA1 and CA3 neurons, and also restored the amygdala-associated memory and the dendritic arbor of amygdalar basolateral neurons in the Tg mice. Similarly, exercise training also increased the levels of p-TrkB, p-AKT and p-PKC in the hippocampus and amygdala. Furthermore, exercise training reduced the levels of soluble Aβ in the amygdala and hippocampus. Exercise training did not change the levels of APP or RAGE, but significantly increased the levels of LRP-1 in both brain regions of the Tg mice. In conclusion, our results suggest that tests of amygdala function should be incorporated into subject selection for early prevention trials. Long-term exercise protects neurons in the amygdala and hippocampus against AD-related degeneration, probably via enhancements of BDNF signaling pathways and Aβ clearance. Physical exercise may serve as a means to delay the onset of AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Advances in the development of enterohemorrhagic Escherichia coli vaccines using murine models of infection

    PubMed Central

    Garcia-Angulo, Victor A.; Kalita, Anjana; Torres, Alfredo G.

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains are food borne pathogens with importance in public health. EHEC colonizes the large intestine and causes diarrhea, hemorrhagic colitis and in some cases, life-threatening hemolytic-uremic syndrome (HUS) due to the production of Shiga toxins (Stx). The lack of effective clinical treatment, sequelae after infection and mortality rate in humans supports the urgent need of prophylactic approaches, such as development of vaccines. Shedding from cattle, the main EHEC reservoir and considered the principal food contamination source, has prompted the development of licensed vaccines that reduce EHEC colonization in ruminants. Although murine models do not fully recapitulate human infection, they are commonly used to evaluate EHEC vaccines and the immune/protective responses elicited in the host. Mice susceptibility differs depending of the EHEC inoculums; therefore, displaying different mortality rates and Stx-mediated renal damage. Therefore, several experimental protocols have being pursued in this model to develop EHEC-specific vaccines. Recent candidate vaccines evaluated include those composed of virulence factors alone or as fused-subunits, DNA-based, attenuated bacteria and bacterial ghosts. In this review, we summarize progress in the design and testing of EHEC vaccines and the use of different strategies for the evaluation of novel EHEC vaccines in the murine model. PMID:23707170

  16. Environmental enrichment reverses histone methylation changes in the aged hippocampus and restores age-related memory deficits.

    PubMed

    Morse, Sarah J; Butler, Anderson A; Davis, Robin L; Soller, Ian J; Lubin, Farah D

    2015-04-01

    A decline in long-term memory (LTM) formation is a common feature of the normal aging process, which corresponds with abnormal expression of memory-related genes in the aged hippocampus. Epigenetic modulation of chromatin structure is required for proper transcriptional control of genes, such as the brain-derived neurotrophic factor (Bdnf) and Zif268 in the hippocampus during the consolidation of new memories. Recently, the view has emerged that aberrant transcriptional regulation of memory-related genes may be reflective of an altered epigenetic landscape within the aged hippocampus, resulting in memory deficits with aging. Here, we found that baseline resting levels for tri-methylation of histone H3 at lysine 4 (H3K4me3) and acetylation of histone H3 at lysine 9 and 14 (H3K9,K14ac) were altered in the aged hippocampus as compared to levels in the hippocampus of young adult rats. Interestingly, object learning failed to increase activity-dependent H3K4me3 and di-methylation of histone H3 at lysine 9 (H3K9me2) levels in the hippocampus of aged adults as compared to young adults. Treatment with the LSD-1 histone demethylase inhibitor, t-PCP, increased baseline resting H3K4me3 and H3K9,K14ac levels in the young adult hippocampus, while young adult rats exhibited similar memory deficits as observed in aged rats. After environmental enrichment (EE), we found that object learning induced increases in H3K4me3 levels around the Bdnf, but not the Zif268, gene region in the aged hippocampus and rescued memory deficits in aged adults. Collectively, these results suggest that histone lysine methylation levels are abnormally regulated in the aged hippocampus and identify histone lysine methylation as a transcriptional mechanism by which EE may serve to restore memory formation with aging.

  17. [Effect of tongluo xingnao effervescent tablet on learning and memory of AD rats and expression of insulin-degrading enzyme in hippocampus].

    PubMed

    Zhang, Yin-Jie; Dai, Yuan; Hu, Yong; Ma, Yun-Tong; Xu, Shi-Jun; Wang, Yong-Yan

    2013-09-01

    To study the effect of Tongluo Xingnao effervescent tablet on learning and memory of dementia rats induced by injection of Abeta25-35 in hippocampus and expression of insulin-degrading enzyme in hippocampus, in order to provide basis for preventing and treating senile dementia. The dementia rat model was established by injecting Abeta25-35 in hippocampus. The rats were divided into the model control group, the Aricept (1.4 mg x kg(-1)) group, and Tongluo Xingnao effervescent tablet high dose (7.56 g x kg(-1)), middle dose (3.78 g x kg(-1)) and low dose (1.59 g x kg(-1)) groups. A sham operation group was established by injecting normal saline in hippocampus. The rats were orally given drugs for 90 days, once a day. Their learning and memory were tested by using Morris water maze. Immunohistochemistry and image analysis were utilized for a quantitative analysis on the expression of insulin-degrading enzyme in hippocampus. Tongluo Xingnao effervescent tablet could significantly shorten the escape latency of rats in the directional navigation test, prolong the retention time in the first quadrant dwell, decrease the retention time in the third quadrant dwell, increase the frequency of crossing the platform, show a more notable statistical significance than the model control group (P < 0.05). Additionally, it could also remarkably increase the average optical density of insulin-degrading enzyme in hippocampus, promote the expression of insulin-degrading enzyme in hippocampus, and show a more notable statistical significance than the model control group (P < 0.05). Tongluo Xingnao effervescent tablet has the effects of improving learning and memory capacity of AD rats and promoting the expression of insulin-degrading enzyme in hippocampus. Its effect in promoting intelligence will be related to increased insulin-degrading enzyme in hippocampus.

  18. Context conditioning and extinction in humans: differential contribution of the hippocampus, amygdala and prefrontal cortex

    PubMed Central

    Lang, Simone; Kroll, Alexander; Lipinski, Slawomira J; Wessa, Michèle; Ridder, Stephanie; Christmann, Christoph; Schad, Lothar R; Flor, Herta

    2009-01-01

    Functional magnetic resonance imaging was used to investigate the role of the hippocampus, amygdala and medial prefrontal cortex (mPFC) in a contextual conditioning and extinction paradigm provoking anxiety. Twenty-one healthy persons participated in a differential context conditioning procedure with two different background colours as contexts. During acquisition increased activity to the conditioned stimulus (CS+) relative to the CS− was found in the left hippocampus and anterior cingulate cortex (ACC). The amygdala, insula and inferior frontal cortex were differentially active during late acquisition. Extinction was accompanied by enhanced activation to CS+ vs. CS− in the dorsal anterior cingulate cortex (dACC). The results are in accordance with animal studies and provide evidence for the important role of the hippocampus in contextual learning in humans. Connectivity analyses revealed correlated activity between the left posterior hippocampus and dACC (BA32) during early acquisition and the dACC, left posterior hippocampus and right amygdala during extinction. These data are consistent with theoretical models that propose an inhibitory effect of the mPFC on the amygdala. The interaction of the mPFC with the hippocampus may reflect the context-specificity of extinction learning. PMID:19200075

  19. Tracking the Time-Dependent Role of the Hippocampus in Memory Recall Using DREADDs.

    PubMed

    Varela, Carmen; Weiss, Sarah; Meyer, Retsina; Halassa, Michael; Biedenkapp, Joseph; Wilson, Matthew A; Goosens, Ki Ann; Bendor, Daniel

    2016-01-01

    The hippocampus is critical for the storage of new autobiographical experiences as memories. Following an initial encoding stage in the hippocampus, memories undergo a process of systems-level consolidation, which leads to greater stability through time and an increased reliance on neocortical areas for retrieval. The extent to which the retrieval of these consolidated memories still requires the hippocampus is unclear, as both spared and severely degraded remote memory recall have been reported following post-training hippocampal lesions. One difficulty in definitively addressing the role of the hippocampus in remote memory retrieval is the precision with which the entire volume of the hippocampal region can be inactivated. To address this issue, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), a chemical-genetic tool capable of highly specific neuronal manipulation over large volumes of brain tissue. We find that remote (>7 weeks after acquisition), but not recent (1-2 days after acquisition) contextual fear memories can be recalled after injection of the DREADD agonist (CNO) in animals expressing the inhibitory DREADD in the entire hippocampus. Our data demonstrate a time-dependent role of the hippocampus in memory retrieval, supporting the standard model of systems consolidation.

  20. Tracking the Time-Dependent Role of the Hippocampus in Memory Recall Using DREADDs

    PubMed Central

    Varela, Carmen; Weiss, Sarah; Meyer, Retsina; Halassa, Michael; Biedenkapp, Joseph; Wilson, Matthew A.; Goosens, Ki Ann

    2016-01-01

    The hippocampus is critical for the storage of new autobiographical experiences as memories. Following an initial encoding stage in the hippocampus, memories undergo a process of systems-level consolidation, which leads to greater stability through time and an increased reliance on neocortical areas for retrieval. The extent to which the retrieval of these consolidated memories still requires the hippocampus is unclear, as both spared and severely degraded remote memory recall have been reported following post-training hippocampal lesions. One difficulty in definitively addressing the role of the hippocampus in remote memory retrieval is the precision with which the entire volume of the hippocampal region can be inactivated. To address this issue, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), a chemical-genetic tool capable of highly specific neuronal manipulation over large volumes of brain tissue. We find that remote (>7 weeks after acquisition), but not recent (1–2 days after acquisition) contextual fear memories can be recalled after injection of the DREADD agonist (CNO) in animals expressing the inhibitory DREADD in the entire hippocampus. Our data demonstrate a time-dependent role of the hippocampus in memory retrieval, supporting the standard model of systems consolidation. PMID:27145133

  1. Sleep-dependent directional coupling between human neocortex and hippocampus.

    PubMed

    Wagner, Tobias; Axmacher, Nikolai; Lehnertz, Klaus; Elger, Christian E; Fell, Jürgen

    2010-02-01

    Complex interactions between neocortex and hippocampus are the neural basis of memory formation. Two-step theories of memory formation suggest that initial encoding of novel information depends on the induction of rapid plasticity within the hippocampus, and is followed by a second sleep-dependent step of memory consolidation. These theories predict information flow from the neocortex into the hippocampus during waking state and in the reverse direction during sleep. However, experimental evidence that interactions between hippocampus and neocortex have a predominant direction which reverses during sleep rely on cross-correlation analysis of data from animal experiments and yielded inconsistent results. Here, we investigated directional coupling in intracranial EEG data from human subjects using a phase-modeling approach which is well suited to reveal functional interdependencies in oscillatory data. In general, we observed that the anterior hippocampus predominantly drives nearby and remote brain regions. Surprisingly, however, the influence of neocortical regions on the hippocampus significantly increased during sleep as compared to waking state. These results question the standard model of hippocampal-neocortical interactions and suggest that sleep-dependent consolidation is accomplished by an active retrieval of hippocampal information by the neocortex. Copyright 2009 Elsevier Srl. All rights reserved.

  2. Voxelized Computational Model for Convection-Enhanced Delivery in the Rat Ventral Hippocampus: Comparison with In Vivo MR Experimental Studies

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Kantorovich, Svetlana; Mareci, Thomas H.; Carney, Paul R.; Sarntinoranont, Malisa

    2012-01-01

    Convection-enhanced delivery (CED) is a promising local delivery technique for overcoming the blood–brain barrier (BBB) and treating diseases of the central nervous system (CNS). For CED, therapeutics are infused directly into brain tissue and the drug agent is spread through the extracellular space, considered to be highly tortuous porous media. In this study, 3D computational models developed using magnetic resonance (MR) diffusion tensor imaging data sets were used to predict CED transport in the rat ventral hippocampus using a voxelized modeling previously developed by our group. Predicted albumin tracer distributions were compared with MR-measured distributions from in vivo CED in the ventral hippocampus up to 10 μL of Gd-DTPA albumin tracer infusion. Predicted and measured tissue distribution volumes and distribution patterns after 5 and 10 μL infusions were found to be comparable. Tracers were found to occupy the underlying landmark structures with preferential transport found in regions with less fluid resistance such as the molecular layer of the dentate gyrus. Also, tracer spread was bounded by high fluid resistance layers such as the granular cell layer and pyramidal cell layer of dentate gyrus. Leakage of tracers into adjacent CSF spaces was observed towards the end of infusions. PMID:22532321

  3. Prenatal lipopolysaccharide exposure increases anxiety-like behaviors and enhances stress-induced corticosterone responses in adult rats.

    PubMed

    Lin, Yu-Lung; Lin, Shu-Yi; Wang, Sabrina

    2012-03-01

    Maternal infection during pregnancy may affect fetal brain development and lead to neurological and mental disorders. Previously, we used lipopolysaccharide [LPS, 33 μg/kg, intraperitoneal injection] exposure on gestation day 10.5 to mimic maternal bacterial infection in rats and found reduced dopaminergic and serotoninergic neurons in the offspring. In the present study, we examined the anxiety and stress responses of the affected offspring and the neurophysiological changes in their brains. Our results show that LPS rats displayed more anxiety-like behaviors and heightened stress responses. Dopamine (DA) in the nucleus accumbens and serotonin (5-HT) in the medial prefrontal cortex and the hippocampus were significantly reduced in LPS rats. Their glucocorticoid receptors in the dorsal hippocampus and the 5-HT(1A) receptors in the dorsal and ventral hippocampus were also reduced. In addition, chronic but not acute fluoxetine treatment reversed the behavioral changes and increased hippocampal 5-HT(1A) receptor expression. This study demonstrates that LPS exposure during a critical time of embryonic development could produce long-term reduction of DA and 5-HT and other neurophysiological changes; such alterations may be associated with the increases in stress response and anxiety-like behaviors in the offspring. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus.

    PubMed

    Risbud, Rashmi M; Lee, Carolyn; Porter, Brenda E

    2011-11-18

    Status epilepticus induces a cascade of protein expression changes contributing to the subsequent development of epilepsy. By identifying the cascade of molecular changes that contribute to the development of epilepsy we hope to be able to design therapeutics for preventing epilepsy. MicroRNAs influence gene expression by altering mRNA stability and/or translation and have been implicated in the pathology of multiple diseases. MiR21 and its co-transcript miR21, microRNAs produced from either the 5' or 3' ends of the same precursor RNA strand, are increased in the hippocampus following status epilepticus. We have identified a miR21 binding site, in the 3' UTR of neurotrophin-3 that inhibits translation. Neurotrophin-3 mRNA levels decrease in the hippocampus following SE concurrent with the increase in miR21. MiR21 levels in cultured hippocampal neurons inversely correlate with neurotrophin-3 mRNA levels. Treatment of hippocampal neuronal cultures with excess K(+)Cl(-), a depolarizing agent mimicking the episode of status epilepticus, also results in an increase in miR21 and a decrease in neurotrophin-3 mRNA. MiR21 is a candidate for regulating neurotrophin-3 signaling in the hippocampus following status epilepticus. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Hippocampal Functioning and Verbal Associative Memory in Adolescents with Congenital Hypothyroidism

    PubMed Central

    Wheeler, Sarah M.; McLelland, Victoria C.; Sheard, Erin; McAndrews, Mary Pat; Rovet, Joanne F.

    2015-01-01

    Thyroid hormone (TH) is essential for normal development of the hippocampus, which is critical for memory and particularly for learning and recalling associations between visual and verbal stimuli. Adolescents with congenital hypothyroidism (CH), who lack TH in late gestation and early life, demonstrate weak verbal recall abilities, reduced hippocampal volumes, and abnormal hippocampal functioning for visually associated material. However, it is not known if their hippocampus functions abnormally when remembering verbal associations. Our objective was to assess hippocampal functioning in CH using functional magnetic resonance imaging (fMRI). Fourteen adolescents with CH and 14 typically developing controls (TDC) were studied. Participants studied pairs of words and then, during fMRI acquisition, made two types of recognition decisions: in one they judged whether the pairs were the same as when seen originally and in the other, whether individual words were seen before regardless of pairing. Hippocampal activation was greater for pairs than items in both groups, but this difference was only significant in TDC. When we directly compared the groups, the right anterior hippocampus was the primary region in which the TDC and CH groups differed for this pair memory effect. Results signify that adolescents with CH show abnormal hippocampal functioning during verbal memory processing. PMID:26539162

  6. Effect of Continuous Propofol Infusion in Rat on Tau Phosphorylation with or without Temperature Control.

    PubMed

    Huang, Chunxia; Ng, Olivia Tsz-Wa; Ho, Yuen-Shan; Irwin, Michael Garnet; Chang, Raymond Chuen-Chung; Wong, Gordon Tin-Chun

    2016-01-01

    Several studies suggest a relationship between anesthesia-induced tau hyperphosphorylation and the development of postoperative cognitive dysfunction. This study further characterized the effects of continuous propofol infusion on tau protein phosphorylation in rats, with or without temperature control. Propofol was administered intravenously to 8-10-week-old male Sprague-Dawley rats and infused to the loss of the righting reflex for 2 h continuously. Proteins from cortex and hippocampus were examined by western blot and immunohistochemistry. Rectal temperature was significantly decreased during propofol infusion. Propofol with hypothermia significantly increased phosphorylation of tau at AT8, AT180, Thr205, and Ser199 in cortex and hippocampus except Ser396. With temperature maintenance, propofol still induced significant elevation of AT8, Thr205, and Ser199 in cortex and hippocampus; however, increase of AT180 and Ser396 was only found in hippocampus and cortex, respectively. Differential effects of propofol with or without hypothermia on multiple tau related kinases, such as Akt/GSK3β, MAPK pathways, or phosphatase (PP2A), were demonstrated in region-specific manner. These findings indicated that propofol increased tau phosphorylation under both normothermic and hypothermic conditions, and temperature control could partially attenuate the hyperphosphorylation of tau. Further studies are warranted to determine the long-term impact of propofol on the tau pathology and cognitive functions.

  7. Therapeutic Effects of TianDiJingWan on the Aβ 25–35-Induced Alzheimer's Disease Model Rats

    PubMed Central

    Li, Zhijie; Tong, Qing; Xu, Huifang; Hu, Li; Zhao, Rong; Zhou, Fang; Pan, Wei; Zhou, Li

    2015-01-01

    The main purpose of this study was to demonstrate the therapeutic effects and mechanism of TDJW, a modern Chinese medicine prescription developed based on the basic traditional Chinese medicine theory of “tonifying the kidney essence,” on the Aβ 25–35-induced AD rats. The AD model was established by the intracerebroventricular administrations of Aβ 25–35 into the hippocampus CA1 tissue of SD male rats. 72 rats were randomly divided into six groups: sham operation, AD model, donepezil, high TDJW group, medium TDJW group, and low TDJW group. After oral administration of TDJW, the results of Morris water maze and step-down test showed that the learning and memory abilities of AD rats were significantly improved. And biochemical measurement demonstrated that Ach and Glu in hippocampus tissues of AD rats were increased as well. Moreover, the Aβ deposits and p-Tau aggregations in hippocampus CA1 tissues of AD rats were attenuated as observed in the micrographs of immunohistochemistry study, and the results of ELISA indicated that the expressions of TNF-α, IL-1β, and IL-6 in hippocampus tissues were significantly decreased. In conclusion, the present study demonstrated that TDJW could be used as a promising therapeutic agent for the clinical applications of AD treatment in patients. PMID:25815030

  8. Long-term Autophagy and Nrf2 Signaling in the Hippocampi of Developing Mice after Carbon Ion Exposure

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Zhao, Ting; Liu, Xiongxiong; Jin, Xiaodong; Liu, Xinguo; Wang, Tieshan; Li, Qiang

    2015-12-01

    To explore charged particle radiation-induced long-term hippocampus damage, we investigated the expression of autophagy and antioxidant Nrf2 signaling-related proteins in the mouse hippocampus after carbon ion radiation. Heads of immature female Balb/c mice were irradiated with carbon ions of different LETs at various doses. Behavioral tests were performed on the mice after maturation. Acute and chronic expression of LC3-II, p62/SQSTM1, nuclear Nrf2, activated caspase-3 and the Bax/Bcl-2 ratio were measured in the hippocampi. Secondary X-ray insult was adopted to amplify potential damages. Long-term behavioral changes were observed in high-LET carbon ion-irradiated mice. There were no differences in the rates of LC3-II induction and p62/SQSTM1 degradation compared to the control group regardless of whether the mice received the secondary X-ray insult. A high nuclear Nrf2 content and low apoptosis level in hippocampal cells subjected to secondary X-rays were observed for the mice exposed to relatively low-LET carbon ions. Therefore, carbon ion exposure in the immature mouse led to an LET-dependent behavioral change after maturation. Although autophagy was intact, the persistently high nuclear Nrf2 content in the hippocampus might account for the unchanged behavioral pattern in mice exposed to the relatively low-LET carbon ions and the subsequent increased radioresistance of the hippocampus.

  9. DNA damage in an animal model of maple syrup urine disease.

    PubMed

    Scaini, Giselli; Jeremias, Isabela C; Morais, Meline O S; Borges, Gabriela D; Munhoz, Bruna P; Leffa, Daniela D; Andrade, Vanessa M; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-06-01

    Maple syrup urine disease is an inborn error of metabolism caused by a severe deficiency of the branched chain alpha-ketoacid dehydrogenase complex. Neurological dysfunction is a common finding in patients with maple syrup urine disease. However, the mechanisms underlying the neuropathology of brain damage in this disorder are poorly understood. In this study, we investigated whether acute or chronic administration of a branched chain amino acid pool (leucine, isoleucine and valine) causes transient DNA damage, as determined by the alkaline comet assay, in the brain and blood of rats during development and whether antioxidant treatment prevented the alterations induced by branched chain amino acids. Our results showed that the acute administration of branched chain amino acids increased the DNA damage frequency and damage index in the hippocampus. However, the chronic administration of branched chain amino acids increased the DNA damage frequency and damage index in both the hippocampus and the striatum, and the antioxidant treatment was able to prevent DNA damage in the hippocampus and striatum. The present study demonstrated that metabolite accumulation in MSUD induces DNA damage in the hippocampus and striatum and that it may be implicated in the neuropathology observed in the affected patients. We demonstrated that the effect of antioxidant treatment (N-acetylcysteine plus deferoxamine) prevented DNA damage, suggesting the involvement of oxidative stress in DNA damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.

    PubMed

    Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C

    2008-07-07

    The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.

  11. Genomic alterations in spontaneous and carcinogen-induced murine melanoma cell lines.

    PubMed

    Melnikova, Vladislava O; Bolshakov, Svetlana V; Walker, Christopher; Ananthaswamy, Honnavara N

    2004-03-25

    We have conducted an analysis of genetic alterations in spontaneous murine melanoma cell line B16F0 and its two metastatic clones, B16F1 and B16F10 and the carcinogen-induced murine melanoma cell lines CM519, CM3205, and K1735. We found that unlike human melanomas, the murine melanoma cell lines did not have activating mutations in the Braf oncogene at exon 11 or 15. However, there were distinct patterns of alterations in the ras, Ink4a/Arf, and p53 genes in the two melanoma groups. In the spontaneous B16 melanoma cell lines, expression of p16Ink4a and p19Arf tumor suppressor proteins was lost as a consequence of a large deletion spanning Ink4a/Arf exons 1alpha, 1beta, and 2. In contrast, the carcinogen-induced melanoma cell lines expressed p16Ink4a but had inactivating mutations in either p19Arf (K1735) or p53 (CM519 and CM3205). Inactivation of p19Arf or p53 in carcinogen-induced melanomas was accompanied by constitutive activation of mitogen-activated protein kinases (MAPKs) and/or mutation-associated activation of N-ras. These results indicate that genetic alterations in p16Ink4a/p19Arf, p53 and ras-MAPK pathways can cooperate in the development of murine melanoma.

  12. A Genomic Analysis of Subclinical Hypothyroidism in Hippocampus and Neocortex of the Developing Brain -- JN

    EPA Science Inventory

    Hypothyroidism during pregnancy and the early postnatal period has severe neurological consequences for the developing offspring. The impact of milder degrees of perturbation of the thyroid axis, typically considered subclinical, however, has not been established. Thyroid hormo...

  13. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner

    PubMed Central

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411

  14. Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus.

    PubMed

    Preethi, Jayakumar; Singh, Hemant K; Venkataraman, Jois Shreyas; Rajan, Koilmani Emmanuvel

    2014-05-01

    Contextual fear conditioning is a paradigm for investigating cellular mechanisms involved in hippocampus-dependent memory. Earlier, we showed that standardised extract of Bacopa monniera (CDRI-08) improves hippocampus-dependent learning in postnatal rats by elevating the level of serotonin (5-hydroxytryptamine, 5-HT), activate 5-HT3A receptors, and cyclic adenosine monophosphate (cAMP) response element binding (CREB) protein. In this study, we have further examined the molecular mechanism of CDRI-08 in hippocampus-dependent memory and compared to the histone deacetylase (HDACs) inhibitor sodium butyrate (NaB). To assess the hippocampus-dependent memory, wistar rat pups were subjected to contextual fear conditioning (CFC) following daily (postnatal days 15-29) administration of vehicle solution (0.5 % gum acacia + 0.9 % saline)/CDRI-08 (80 mg/kg, p.o.)/NaB (1.2 g/kg in PBS, i.p.). CDRI-08/NaB treated group showed enhanced freezing behavior compared to control group when re-exposed to the same context. Administration of CDRI-08/NaB resulted in activation of extracellular signal-regulated kinase ERK/CREB signaling cascade and up-regulation of p300, Ac-H3 and Ac-H4 levels, and down-regulation of HDACs (1, 2) and protein phosphatases (PP1α, PP2A) in hippocampus following CFC. This would subsequently result in an increased brain-derived neurotrophic factor (Bdnf) (exon IV) mRNA in hippocampus. Altogether, our results indicate that CDRI-08 enhances hippocampus-dependent contextual memory by differentially regulating histone acetylation and protein phosphatases in hippocampus.

  15. Daily cycling of nitric oxide synthase (NOS) in the hippocampus of pigeons (C. livia)

    PubMed Central

    2013-01-01

    Background Nitric oxide synthase (NOS) is essential for the synthesis of nitric oxide (NO), a non-conventional neurotransmitter with an important role in synaptic plasticity underlying processes of hippocampus-dependent memory and in the regulation of biological clocks and circadian rhythms. Many studies have shown that both the NOS cytosolic protein content and its enzymatic activity present a circadian variation in different regions of the rodent brain, including the hippocampus. The present study investigated the daily variation of NOS enzymatic activity and the cytosolic content of nNOS in the hippocampus of pigeons. Results Adult pigeons kept under a skeleton photoperiod were assigned to six different groups. Homogenates of the hippocampus obtained at six different times-of-day were used for NOS analyses. Both iNOS activity and nNOS cytosolic protein concentrations were highest during the subjective light phase and lowest in the subjective dark phase of the circadian period. ANOVA showed significant time differences for iNOS enzymatic activity (p < 0.05) and for nNOS protein content (p < 0.05) in the hippocampus. A significant daily rhythm for both iNOS and nNOS was confirmed by analysis with the Cosinor method (p < 0.05). The present findings indicate that the enzymatic activity of iNOS and content of nNOS protein in the hippocampus of pigeons exhibit a daily rhythm, with acrophase values occurring during the behavioral activity phase. Conclusions The data corroborate the reports on circadian variation of NOS in the mammalian hippocampus and can be considered indicative of a dynamic interaction between hippocampus-dependent processes and circadian clock mechanisms. PMID:24176048

  16. Effects of fluoxetine on the amygdala and the hippocampus after administration of a single prolonged stress to male Wistar rates: In vivo proton magnetic resonance spectroscopy findings.

    PubMed

    Han, Fang; Xiao, Bing; Wen, Lili; Shi, Yuxiu

    2015-05-30

    Posttraumatic stress disorder (PTSD) is an anxiety- and memory-based disorder. The hippocampus and amygdala are key areas in mood regulation. Fluoxetine was found to improve the anxiety-related symptoms of PTSD patients. However, little work has directly examined the effects of fluoxetine on the hippocampus and the amygdala. In the present study, male Wistar rats received fluoxetine or vehicle after exposure to a single prolonged stress (SPS), an animal model of PTSD. In vivo proton magnetic resonance spectroscopy ((1)H-MRS) was performed -1, 1, 4, 7 and 14 days after SPS to examine the effects of fluoxetine on neurometabolite changes in amygdala, hippocampus and thalamus. SPS increased the N-acetylaspartate (NAA)/creatine (Cr) and choline moieties (Cho)/Cr ratios in the bilateral amygdala on day 4, decreased the NAA/Cr ratio in the left hippocampus on day 1, and increased both ratios in the right hippocampus on day 14. But no significant change was found in the thalamus. Fluoxetine treatment corrected the SPS increases in the NAA/Cr and Cho/Cr levels in the amygdala on day 4 and in the hippocampus on day 14, but it failed to normalise SPS-associated decreases in NAA/Cr levels in the left hippocampus on day 1. These results suggested that metabolic abnormalities in the amygdala and the hippocampus were involved in SPS, and different effects of fluoxetine in correcting SPS-induced neurometabolite changes among the three areas. These findings have implications for fluoxetine treatment in PTSD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Julius Caesar Arantius (Giulio Cesare Aranzi, 1530-1589) and the hippocampus of the human brain: history behind the discovery.

    PubMed

    Bir, Shyamal C; Ambekar, Sudheer; Kukreja, Sunil; Nanda, Anil

    2015-04-01

    Julius Caesar Arantius is one of the pioneer anatomists and surgeons of the 16th century who discovered the different anatomical structures of the human body. One of his prominent discoveries is the hippocampus. At that time, Arantius originated the term hippocampus, from the Greek word for seahorse (hippos ["horse"] and kampos ["sea monster"]). Arantius published his description of the hippocampus in 1587, in the first chapter of his work titled De Humano Foetu Liber. Numerous nomenclatures of this structure, including "white silkworm," "Ammon's horn," and "ram's horn" were proposed by different scholars at that time. However, the term hippocampus has become the most widely used in the literature.

  18. Can the hippocampus tell time? The temporo-septal engram shift model.

    PubMed

    Lytton, W W; Lipton, P

    1999-08-02

    An essential feature of episodic memory, the type of memory dependent on hippocampus, is that individual memories belong to particular moments in time. Recent PET studies suggest that memory encoding and recall occur at different locations in human hippocampus. Coupled with other attributes of hippocampus, this suggested to us that the septo-temporal hippocampal axis may play an important role in time perception. We propose a temporo-septal engram shift model of hippocampal memory. The model posits that memories gradually move along the hippocampus from a temporal encoding site to ever more septal sites from which they are recalled. We propose that the sense of time is encoded by the location of the engram along the temporo-septal axis.

  19. Ibuprofen Potentiates the In Vivo Antifungal Activity of Fluconazole against Candida albicans Murine Infection

    PubMed Central

    Miranda, Isabel M.; Silva-Dias, Ana; Silva, Ana P.; Rodrigues, Acácio G.; Pina-Vaz, Cidália

    2015-01-01

    Candida albicans is the most prevalent cause of fungemia worldwide. Its ability to develop resistance in patients receiving azole antifungal therapy is well documented. In a murine model of systemic infection, we show that ibuprofen potentiates fluconazole antifungal activity against a fluconazole-resistant strain, drastically reducing the fungal burden and morbidity. The therapeutic combination of fluconazole with ibuprofen may constitute a new approach for the management of antifungal therapeutics to reverse the resistance conferred by efflux pump overexpression. PMID:25845879

  20. MUCI Facilitation of Growth in Chemically Induced Mammary Gland Tumors in Muc-1 Mutant and MUCI Transgenic Mice.

    DTIC Science & Technology

    1998-08-01

    present grant proposed to initiate tumor development using chemical carcinogenesis. Pazos et al. (1991) demonstrated chemical induction of murine...latency of 154 ±19 days. Tumors were mammary adenocarcinomas of the B type of Dunn’s classification ( Pazos , 1991). My hypothesis for these studies was...in rats. Murine response to NMU is only briefly documented in the literature ( Pazos et al., 1991). Following the protocol for NMU induction of mammary

  1. Development and Validation of Radiation-Responsive Protein Bioassays for Biodosimetry Applications

    DTIC Science & Technology

    2005-01-01

    radiation protein biomarker studies using an in vivo murine radiation model. Male BALB/c mice were exposed to 25-cGy 60Co- gamma radiation. Dosimetry ...Csoke, I. Hejja, An on-board TLD system for dose monitor- ing on the International Space Station, Radiation Protection Dosimetry , 84(1-4 Pt1): 321-323...diagnostic information after exposure. Using an ex vivo model system of human peripheral lymphocytes as well as an in vivo murine model, we demonstrated

  2. Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis.

    PubMed

    Milstone, Zachary J; Lawson, Grace; Trivedi, Chinmay M

    2017-12-01

    Craniofacial anomalies involve defective pharyngeal arch development and neural crest function. Copy number variation at 1p35, containing histone deacetylase 1 (Hdac1), or 6q21-22, containing Hdac2, are implicated in patients with craniofacial defects, suggesting an important role in guiding neural crest development. However, the roles of Hdac1 and Hdac2 within neural crest cells remain unknown. The neural crest and its derivatives express both Hdac1 and Hdac2 during early murine development. Ablation of Hdac1 and Hdac2 within murine neural crest progenitor cells cause severe hemorrhage, atrophic pharyngeal arches, defective head morphogenesis, and complete embryonic lethality. Embryos lacking Hdac1 and Hdac2 in the neural crest exhibit decreased proliferation and increased apoptosis in both the neural tube and the first pharyngeal arch. Mechanistically, loss of Hdac1 and Hdac2 upregulates cyclin-dependent kinase inhibitors Cdkn1a, Cdkn1b, Cdkn1c, Cdkn2b, Cdkn2c, and Tp53 within the first pharyngeal arch. Our results show that Hdac1 and Hdac2 function redundantly within the neural crest to regulate proliferation and the development of the pharyngeal arches by means of repression of cyclin-dependent kinase inhibitors. Developmental Dynamics 246:1015-1026, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images

    NASA Astrophysics Data System (ADS)

    Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim

    2014-04-01

    Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.

  4. Studies of the macroscopic and microscopic morphology (hippocampus) of brain in Vencobb broiler

    PubMed Central

    Gupta, Shailesh Kumar; Behera, Kumaresh; Pradhan, C. R.; Mandal, Arun Kumar; Sethy, Kamdev; Behera, Dayanidhi; Shinde, Kuladip Prakash

    2016-01-01

    Aim: The aim of this study was to study the anatomy of different parts of brain and histology of hippocampus of Vencobb broiler chicken. Materials and Methods: A 12 adult experimental birds were sacrificed by cervical dislocation. After separation of the brain, gross anatomy features were studied. Brain tissue was fixed in 10% buffered neutral formalin for 2-3 days, and then routine dehydration process in ascending grades of ethyl alcohol was done. After xylene cleaning, paraffin impregnation was prepared. Paraffin blocks were cut, and slides were stained by Harris hematoxylin and eosin. Photography was carried out both under lower (×10) and higher (×40) magnifications. Results: The brain structure (dorsal view) of Vencobb bird resembled the outline of a playing card symbol of a “spade.” The brain subdivisions are cerebrum, cerebellum, and medulla oblongata. Cerebrum was devoid of usual convolutions (elevations), gyri, depressions (grooves), and sulci. The cerebral hemispheres were tightly apposed along a median sulcus called interhemispheric fissure and cerebrum and cerebellum were separated by a small transverse fissure. The olfactory bulb was small structures, and the pineal body was clearly visible. The optic lobes were partially hidden under cerebral hemispheres, but laterally, it was large, prominent rounded or spherical bodies of the midbrain. The hippocampal area appeared as dorso-medial protrusion. Different types of neurons were distinguished in the hippocampus were pyramidal neurons, pyramidal-like neurons, and multipolar neurons, etc. There was rich vascularization in the form of blood capillaries throughout the hippocampus. Conclusion: Cerebrum was pear shaped and largest part of the brain. Cerebrum hemisphere was smooth devoid of convolutions, gyri, and depressions, but in the surface of cerebellum, there was the presence of a number of transverse depression (grooves) and sulci subdividing into many folds. Olfactory bulb was poorly developed, whereas optic lobes were rounded and large. The exact boundary line of the hippocampus was not discernable. In hippocampus histology, two categories of neuron local circuit neurons and projection neurons, high vascularization and epididymal lining of lateral ventricle were observed. Hippocampal neurons were comparatively larger without any distinct layers. The afferent neurons projected to the medium septum. PMID:27284228

  5. The postnatal 5-HT1A receptor regulates adult anxiety and depression differently via multiple molecules.

    PubMed

    Ishikawa, Chihiro; Shiga, Takashi

    2017-08-01

    Serotonin (5-HT) and the 5-HT 1A receptor during development are known to modulate anxiety and depression in later life. However, the brain mechanisms linking the postnatal 5-HT system and adult behavior remain unknown. Here, we examined the effects of pharmacological 5-HT 1A receptor activation during the postnatal period on anxiety and depression-like behavior in adult BALB/c male mice. To elucidate the underlying mechanisms, we measured mRNA expression of the 5-HT 1A receptor, brain-derived neurotrophic factor (BDNF), GABA A receptor subunits, and AMPA receptor subunits in the medial prefrontal cortex (mPFC), amygdala, and hippocampus. Treatment with the selective 5-HT reuptake inhibitor (fluoxetine) and 5-HT 1A receptor agonist (8-OH-DPAT) during the postnatal period decreased anxiety-like behavior in adulthood, whereas only 8-OH-DPAT treatment increased depression-like behavior. Concomitantly with the behavioral effects, postnatal treatment with fluoxetine and 8-OH-DPAT decreased the mRNA expression of the GABA A receptor α3 subunit in the mPFC and ventral hippocampus in adulthood, while 8-OH-DPAT, but not fluoxetine, decreased the mRNA expression of the 5-HT 1A receptor and BDNF in the mPFC and the GABA A receptor α2 subunit in the mPFC and ventral hippocampus. On the basis of the correlative changes between behavior and mRNA expression, these results suggest that the GABA A receptor α3 subunit in the mPFC and ventral hippocampus may regulate anxiety-like behavior. In contrast, depression-like behavior may be regulated by the 5-HT 1A receptor and BDNF in the mPFC and by the GABA A receptor α2 subunit in the mPFC and ventral hippocampus. In summary, activation of the 5-HT 1A receptor during the postnatal period may reduce anxiety levels, but increase depression levels during adulthood via different multiple molecules in the mPFC and ventral hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease.

    PubMed

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Rahbar Rooshandel, Nahid; Omidzahir, Shila

    2011-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and Beta amyloid (ABeta) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 muL of ABeta (1-40) into the hippocampal fissure. In the present study, ABeta (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. ABeta injection CA1 caused ABeta deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group.

  7. Untangling elevation-related differences in the hippocampus in food-caching mountain chickadees: the effect of a uniform captive environment.

    PubMed

    Freas, C A; Bingman, K; Ladage, L D; Pravosudov, V V

    2013-01-01

    Variation in environmental conditions associated with differential selection on spatial memory has been hypothesized to result in evolutionary changes in the morphology of the hippocampus, a brain region involved in spatial memory. At the same time, it is well known that the morphology of the hippocampus might also be directly affected by environmental conditions. Understanding the role of environment-based plasticity is therefore critical when investigating potential adaptive evolutionary changes in the hippocampus associated with environmental variation. We previously demonstrated large elevation-related variation in hippocampus morphology in mountain chickadees over an extremely small spatial scale. We hypothesized that this variation is related to differential selection pressures associated with differences in winter climate severity along an elevation gradient, which make different demands on spatial memory used for food cache retrieval. Here, we tested whether such variation is experience based, generated by potential differences in the environment, by comparing the hippocampus morphology of chickadees from different elevations maintained in a uniform captive environment in a laboratory with those sampled directly from the wild. In addition, we compared hippocampal neuron soma size in chickadees sampled directly from the wild with those maintained in laboratory conditions with restricted and unrestricted spatial memory use via manipulation of food-caching experiences to test whether memory use can affect neuron soma size. There were significant elevation-related differences in hippocampus volume and the total number of hippocampal neurons, but not in neuron soma size, in captive birds. Captive environmental conditions were associated with a large reduction in hippocampus volume and neuron soma size, but not in the total number of neurons or in neuron soma size in other telencephalic regions. Restriction of memory use while in laboratory conditions produced no significant effects on hippocampal neuron soma size. Overall our results showed that captivity has a strong effect on hippocampus volume, which could be due, at least partly, to a reduction in neuron soma size specifically in the hippocampus, but it did not override elevation-related differences in hippocampus volume or in the total number of hippocampal neurons. These data are consistent with the idea of the adaptive nature of the elevation-related differences associated with selection on spatial memory, while at the same time demonstrating additional environment-based plasticity in hippocampus volume, but not in neuron numbers. Our results, however, cannot rule out that the differences between elevations might still be driven by some developmental or early posthatching conditions/experiences. © 2013 S. Karger AG, Basel.

  8. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm.

    PubMed

    Sawada, Hisashi; Hao, Hiroyuki; Naito, Yoshiro; Oboshi, Makiko; Hirotani, Shinichi; Mitsuno, Masataka; Miyamoto, Yuji; Hirota, Seiichi; Masuyama, Tohru

    2015-06-01

    Although iron is an essential element for maintaining physiological function, excess iron leads to tissue damage caused by oxidative stress and inflammation. Oxidative stress and inflammation play critical roles for the development of abdominal aortic aneurysm (AAA). However, it has not been investigated whether iron plays a role in AAA formation through oxidative stress and inflammation. We, therefore, examined whether iron is involved in the pathophysiology of AAA formation using human AAA walls and murine AAA models. Human aortic walls were collected from 53 patients who underwent cardiovascular surgery (non-AAA=34; AAA=19). Murine AAA was induced by infusion of angiotensin II to apolipoprotein E knockout mice. Iron was accumulated in human and murine AAA walls compared with non-AAA walls. Immunohistochemistry showed that both 8-hydroxy-2'-deoxyguanosine and CD68-positive areas were increased in AAA walls compared with non-AAA walls. The extent of iron accumulated area positively correlated with that of 8-hydroxy-2'-deoxyguanosine expression area and macrophage infiltration area in human and murine AAA walls. We next investigated the effects of dietary iron restriction on AAA formation in mice. Iron restriction reduced the incidence of AAA formation with attenuation of oxidative stress and inflammation. Aortic expression of transferrin receptor 1, intracellular iron transport protein, was increased in human and murine AAA walls, and transferrin receptor 1-positive area was similar to areas where iron accumulated and F4/80 were positive. Iron is involved in the pathophysiology of AAA formation with oxidative stress and inflammation. Dietary iron restriction could be a new therapeutic strategy for AAA progression. © 2015 American Heart Association, Inc.

  9. Amelioration of tissue fibrosis by toll-like receptor 4 knockout in murine models of systemic sclerosis.

    PubMed

    Takahashi, Takehiro; Asano, Yoshihide; Ichimura, Yohei; Toyama, Tetsuo; Taniguchi, Takashi; Noda, Shinji; Akamata, Kaname; Tada, Yayoi; Sugaya, Makoto; Kadono, Takafumi; Sato, Shinichi

    2015-01-01

    Bleomycin-induced fibrosis and the tight skin (TSK/+) mouse are well-established experimental murine models of human systemic sclerosis (SSc). Growing evidence has demonstrated the pivotal role of Toll-like receptors (TLRs) in several autoimmune inflammatory diseases, including SSc. This study was undertaken to determine the role of TLR-4 in the fibrotic processes in these murine models. We generated a murine model of bleomycin-induced SSc using TLR-4(-/-) mice and TLR-4(-/-) ;TSK/+ mice. The mechanisms by which TLR-4 contributes to pathologic tissue fibrosis were investigated in these 2 models by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and flow cytometry. Dermal and lung fibrosis was attenuated in bleomycin-treated TLR-4(-/-) mice compared with their wild-type counterparts. Inflammatory cell infiltration, expression of various inflammatory cytokines, and pathologic angiogenesis induced by bleomycin treatment were suppressed with TLR-4 deletion. Furthermore, the increased expression of interleukin-6 (IL-6) in fibroblasts, endothelial cells, and immune cells in response to bleomycin in vivo and to lipopolysaccharide in vitro was notably abrogated in the absence of TLR-4. Moreover, TLR-4 deletion was associated with alleviated B cell activation and skew toward a Th2/Th17 response against bleomycin treatment. Importantly, in TSK/+ mice, another SSc murine model, TLR-4 abrogation attenuated hypodermal fibrosis. These results indicate the pivotal contribution of TLR-4 to the pathologic tissue fibrosis of SSc murine models. Our results indicate the critical role of TLR-4 signaling in the development of tissue fibrosis, suggesting that biomolecular TLR-4 targeting might be a potential therapeutic approach to SSc. Copyright © 2015 by the American College of Rheumatology.

  10. Murine CMV-Induced Hearing Loss Is Associated with Inner Ear Inflammation and Loss of Spiral Ganglia Neurons

    PubMed Central

    Golemac, Mijo; Pugel, Ester Pernjak; Jonjic, Stipan; Britt, William J.

    2015-01-01

    Congenital human cytomegalovirus (HCMV) occurs in 0.5–1% of live births and approximately 10% of infected infants develop hearing loss. The mechanism(s) of hearing loss remain unknown. We developed a murine model of CMV induced hearing loss in which murine cytomegalovirus (MCMV) infection of newborn mice leads to hematogenous spread of virus to the inner ear, induction of inflammatory responses, and hearing loss. Characteristics of the hearing loss described in infants with congenital HCMV infection were observed including, delayed onset, progressive hearing loss, and unilateral hearing loss in this model and, these characteristics were viral inoculum dependent. Viral antigens were present in the inner ear as were CD3+ mononuclear cells in the spiral ganglion and stria vascularis. Spiral ganglion neuron density was decreased after infection, thus providing a mechanism for hearing loss. The lack of significant inner ear histopathology and persistence of inflammation in cochlea of mice with hearing loss raised the possibility that inflammation was a major component of the mechanism(s) of hearing loss in MCMV infected mice. PMID:25875183

  11. THYROID HORMONE INSUFFICIENCY DURING BRAIN DEVELOPMENT REDUCES PARVALBUMIN IMMUNOREACTIVITY AND INHIBITORY FUNCTION IN THE HIPPOCAMPUS.

    EPA Science Inventory

    The EPA must evaluate the risk of exposure of the developing brain to chemicals with the potential to disrupt thyroid hormone homeostasis. The existing literature identifies morphological and neurochemical indices of severe neonatal hypothyroidism in the early postnatal period i...

  12. Intracerebral beta-endorphin, met-enkephalin and morphine: kindling of seizures and handling-induced potentiation of epileptiform effects.

    PubMed

    Cain, D P; Corcoran, M E

    1984-06-18

    The effects of repeated infusion of small, initially subconvulsive amounts of beta-endorphin, met-enkephalin or morphine sulfate into the amygdala and hippocampus were investigated. beta-endorphin and met-enkephalin evoked epileptiform spiking when infused into the posterior amygdala or ventral hippocampus. Morphine evoked epileptiform spiking when infused into the anterior amygdala. Naloxone blocked or terminated the spiking. Repetition of the infusions led to the gradual development of bilateral generalized convulsions by beta-endorphin and met-enkephalin and to the development of tolerance to morphine. An unexpected observation was that handling, immobilization or conspecific threat potentiated the epileptiform effects of beta-endorphin and morphine in many cases. These results suggest that endogenous opiate mechanisms might play a role in convulsive seizures and that stressful stimuli can exacerbate opiate seizures.

  13. Comparison of vectorial ion transport in primary murine airway and human sinonasal air-liquid interface cultures, models for studies of cystic fibrosis, and other airway diseases.

    PubMed

    Zhang, Shaoyan; Fortenberry, James A; Cohen, Noam A; Sorscher, Eric J; Woodworth, Bradford A

    2009-01-01

    The purpose of this study was to compare vectorial ion transport within murine trachea, murine nasal septa, and human sinonasal cultured epithelium. Our hypothesis is that murine septal epithelium, rather than trachea, will more closely mimic the electrophysiology properties of human sinonasal epithelium. Epithelium from murine trachea, murine septa, and human sinonasal tissue were cultured at an air-liquid interface to confluence and full differentiation. A limited number of homozygous dF508 epithelia were also cultured. Monolayers were mounted in modified Ussing chambers to investigate pharmacologic manipulation of ion transport. The change in forskolin-stimulated current (delta-I(SC), expressed as micro-A/cm(2)) in murine septal (n = 19; 16.84 +/- 2.09) and human sinonasal (n = 18; 12.15 +/- 1.93) cultures was significantly increased over murine tracheal cultures (n = 15; 6.75 +/- 1.35; p = 0.035 and 0.0005, respectively). Forskolin-stimulated I(SC) was inhibited by the specific cystic fibrosis transmembrane regulator (CFTR) inhibitor INH-172 (5 microM). No forskolin-stimulated I(SC) was shown in cultures of dF508 homozygous murine septal epithelium (n = 3). Murine septal I(SC) was largely inhibited by amiloride (12.03 +/- 0.66), whereas human sinonasal cultures had a very limited response (0.70 +/- 0.47; p < 0.0001). The contribution of CFTR to stimulated chloride current as measured by INH-172 was highly significantly different between all groups (murine septa, 19.51 +/- 1.28; human sinonasal, 11.12 +/- 1.58; murine trachea, 4.85 +/- 0.49; p < 0.0001). Human sinonasal and murine septal epithelial cultures represent a useful model for studying CFTR activity and may provide significant advantages over lower airway tissues for investigating upper and lower respiratory pathophysiology.

  14. Regional hippocampal volumes and development predict learning and memory.

    PubMed

    Tamnes, Christian K; Walhovd, Kristine B; Engvig, Andreas; Grydeland, Håkon; Krogsrud, Stine K; Østby, Ylva; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2014-01-01

    The hippocampus is an anatomically and functionally heterogeneous structure, but longitudinal studies of its regional development are scarce and it is not known whether protracted maturation of the hippocampus in adolescence is related to memory development. First, we investigated hippocampal subfield development using 170 longitudinally acquired brain magnetic resonance imaging scans from 85 participants aged 8-21 years. Hippocampal subfield volumes were estimated by the use of automated segmentation of 7 subfields, including the cornu ammonis (CA) sectors and the dentate gyrus (DG), while longitudinal subfield volumetric change was quantified using a nonlinear registration procedure. Second, associations between subfield volumes and change and verbal learning/memory across multiple retention intervals (5 min, 30 min and 1 week) were tested. It was hypothesized that short and intermediate memory would be more closely related to CA2-3/CA4-DG and extended, remote memory to CA1. Change rates were significantly different across hippocampal subfields, but nearly all subfields showed significant volume decreases over time throughout adolescence. Several subfield volumes were larger in the right hemisphere and in males, while for change rates there were no hemisphere or sex differences. Partly in support of the hypotheses, greater volume of CA1 and CA2-3 was related to recall and retention after an extended delay, while longitudinal reduction of CA2-3 and CA4-DG was related to learning. This suggests continued regional development of the hippocampus across adolescence and that volume and volume change in specific subfields differentially predict verbal learning and memory over different retention intervals, but future high-resolution studies are called for. © 2014 S. Karger AG, Basel.

  15. Brain-Derived Neurotrophic Factor Induces Cell Survival and the Migration of Murine Adult Hippocampal Precursor Cells During Differentiation In Vitro.

    PubMed

    Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé

    2017-01-01

    The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.

  16. Alarin-induced antidepressant-like effects and their relationship with hypothalamus-pituitary-adrenal axis activity and brain derived neurotrophic factor levels in mice.

    PubMed

    Wang, Ming; Chen, Qian; Li, Mei; Zhou, Wei; Ma, Tengfei; Wang, Yun; Gu, Shuling

    2014-06-01

    Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory

    ERIC Educational Resources Information Center

    Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert

    2010-01-01

    Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…

  18. Pattern Separation Deficits Following Damage to the Hippocampus

    ERIC Educational Resources Information Center

    Kirwan, C. Brock; Hartshorn, Andrew; Stark, Shauna M.; Goodrich-Hunsaker, Naomi J.; Hopkins, Ramona O.; Stark, Craig E. L.

    2012-01-01

    Computational models of hippocampal function propose that the hippocampus is capable of rapidly storing distinct representations through a process known as pattern separation. This prediction is supported by electrophysiological data from rodents and neuroimaging data from humans. Here, we test the prediction that damage to the hippocampus would…

  19. Experience-Dependent Epigenomic Reorganization in the Hippocampus

    ERIC Educational Resources Information Center

    Duke, Corey G.; Kennedy, Andrew J.; Gavin, Cristin F.; Day, Jeremy J.; Sweatt, J. David

    2017-01-01

    Using a hippocampus-dependent contextual threat learning and memory task, we report widespread, coordinated DNA methylation changes in CA1 hippocampus of Sprague-Dawley rats specific to threat learning at genes involved in synaptic transmission. Experience-dependent alternations in gene expression and DNA methylation were observed as early as 1 h…

  20. Septohippocampal Acetylcholine: Involved in but Not Necessary for Learning and Memory?

    ERIC Educational Resources Information Center

    Parent, Marise B.; Baxter, Mark G.

    2004-01-01

    The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective…

  1. Idiothetic input into object-place configuration as the contribution to memory of the monkey and human hippocampus: a review.

    PubMed

    Gaffan, D

    1998-11-01

    Memory for object-place configurations appears to be a common function of the hippocampus in the human and monkey brain. The nature of the spatial information which enters into these object-configural memories in the primate, and the location of the memories themselves, have remained obscure, however. In the rat, much evidence indicates that the hippocampus processes idiothetic spatial information, an estimate of the animal's current environmental location derived from path integration. I propose that in primates the hippocampus provides idiothetic information about the environmental location of body parts, and that the main function of this information in the primate brain is to become configured with object-identity information provided by temporal lobe cortex outside the hippocampus.

  2. Involvement of posterior cingulate cortex in ketamine-induced psychosis relevant behaviors in rats.

    PubMed

    Ma, Jingyi; Leung, L Stan

    2018-02-15

    The involvement of posterior cingulate cortex (PCC) on ketamine-induced psychosis relevant behaviors was investigated in rats. Bilateral infusion of muscimol, a GABA A receptor agonist, into the PCC significantly antagonized ketamine-induced deficit in prepulse inhibition of a startle reflex (PPI), deficit in gating of hippocampal auditory evoked potentials, and behavioral hyperlocomotion in a dose dependent manner. Local infusion of ketamine directly into the PCC also induced a PPI deficit. Systemic injection of ketamine (3mg/kg,s.c.) induced an increase in power of electrographic activity in the gamma band (30-100Hz) in both the PCC and the hippocampus; peak theta (4-10Hz) power was not significantly altered, but peak theta frequency was increased by ketamine. In order to exclude volume conduction from the hippocampus to PCC, inactivation of the hippocampus was made by local infusion of muscimol into the hippocampus prior to ketamine administration. Muscimol in the hippocampus effectively blocked ketamine-induced increase of gamma power in the hippocampus but not in the PCC, suggesting independent generation of gamma waves in PCC and hippocampus. It is suggested that the PCC is part of the brain network mediating ketamine-induced psychosis related behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Upregulation of MAOA in the hippocampus results in delayed depressive-like behaviors in burn mice.

    PubMed

    Wang, Zhen; Chen, Lu; Rong, Xinzhou; Wang, Xuemin

    2017-04-14

    To observe depressive-like behavior and hippocampus monoamine oxidase A (MAOA) changes in burned mice. We tested depression and anxiety like behaviors of burn C57 mice with the sucrose preference test, forced swimming test (FST), open field test and elevated plus maze test and then detected the MAOA content and MAOA gene transcriptional levels in the hippocampus with western blot analysis and real-time quantitative PCR analysis. We then sought to reverse depressive-like behavior of burned mice with an MAOA inhibitor. (1) Mice showed depressive and anxiety like behaviors one week after they were burned; (2) The content of MAOA in the hippocampus of burned mice was significantly higher than that in control mice (P<0.05); (3) MAOA gene transcription in the hippocampus of burned mice was significantly increased (MAOA mRNA was increased, P<0.05); (4) treatment with a MAOA inhibitor (phenelzine) significantly increased the sucrose preference rate and decreased FST immobility time in burned mice, and also decreased elevated expression of MAOA in the hippocampus of burned mice. Burned mice showed "delayed" depressive-like behavior combined with a degree of anxiety; this phenomenon is likely associated with the increase in MAOA expression in the hippocampus. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  4. Investigation of Propolis’ Effect on Thiobarbituric Acid Reactive Substances and Anti-Oxidant Enzyme Levels of Hippocampus in Diabetic Rats Induced by Streptozotocin

    PubMed Central

    Köksal, Burcu; Emre, Memet Hanifi; Polat, Alaadin

    2015-01-01

    BACKGROUND: Propolis is an organic resinous viscous substance collected from flower bud and plant sprig by bees. Propolis has a potential treatment agent for oxidative damage caused by diabetes in hippocampus due to its flavonoid and phenolic content. AIM: In this study effect of propolis on thiobarbituric acid reactive substances and anti-oxidative enzyme levels of hippocampus in diabetic rats induced by streptozotocin was investigated. MATERIALS AND METHODS: The study involved measuring levels of SOD, CAT, GSH-Px and TBARs in hippocampus tissue of STZ-induced diabetic rats (Adult Male Sprague Dawley rats) after applying propolis for one month. The subjects of the study were composed of 51 rats randomly assigned to four groups (Control, STZ, P+STZ and STZ+P). For analysis of data, Kruskal Wallis Test was utilized. RESULTS: The findings of the study showed that there were no significant difference in the levels of TBARS, SOD, CAT and GSH-Px of hippocampus across the groups. CONCLUSION: Propolis application in four-week duration does not have effect on TBARS, SOD, CAT and GSH-Px levels of hippocampus of diabetic rats. These findings mean that more time for observing oxidative harms on hippocampus is needed. PMID:27275196

  5. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression.

    PubMed

    Klochendler-Yeivin, A; Fiette, L; Barra, J; Muchardt, C; Babinet, C; Yaniv, M

    2000-12-01

    The assembly of eukaryotic DNA into nucleosomes and derived higher order structures constitutes a barrier for transcription, replication and repair. A number of chromatin remodeling complexes, as well as histone acetylation, were shown to facilitate gene activation. To investigate the function of two closely related mammalian SWI/SNF complexes in vivo, we inactivated the murine SNF5/INI1 gene, a common subunit of these two complexes. Mice lacking SNF5 protein stop developing at the peri-implantation stage, showing that the SWI/SNF complex is essential for early development and viability of early embryonic cells. Furthermore, heterozygous mice develop nervous system and soft tissue sarcomas. In these tumors the wild-type allele was lost, providing further evidence that SNF5 functions as a tumor suppressor gene in certain cell types.

  6. The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression

    PubMed Central

    Klochendler-Yeivin, Agnes; Fiette, Laurence; Barra, Jaqueline; Muchardt, Christian; Babinet, Charles; Yaniv, Moshe

    2000-01-01

    The assembly of eukaryotic DNA into nucleosomes and derived higher order structures constitutes a barrier for transcription, replication and repair. A number of chromatin remodeling complexes, as well as histone acetylation, were shown to facilitate gene activation. To investigate the function of two closely related mammalian SWI/SNF complexes in vivo, we inactivated the murine SNF5/INI1 gene, a common subunit of these two complexes. Mice lacking SNF5 protein stop developing at the peri-implantation stage, showing that the SWI/SNF complex is essential for early development and viability of early embryonic cells. Furthermore, heterozygous mice develop nervous system and soft tissue sarcomas. In these tumors the wild-type allele was lost, providing further evidence that SNF5 functions as a tumor suppressor gene in certain cell types. PMID:11263494

  7. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells.

    PubMed

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells.

  8. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  9. Neuroinflammation and physical exercise as modulators of adult hippocampal neural precursor cell behavior.

    PubMed

    Pérez-Domínguez, Martha; Tovar-Y-Romo, Luis B; Zepeda, Angélica

    2018-01-26

    The dentate gyrus of the hippocampus is a plastic structure where adult neurogenesis constitutively occurs. Cell components of the neurogenic niche are source of paracrine as well as membrane-bound factors such as Notch, Bone Morphogenetic Proteins, Wnts, Sonic Hedgehog, cytokines, and growth factors that regulate adult hippocampal neurogenesis and cell fate decision. The integration and coordinated action of multiple extrinsic and intrinsic cues drive a continuous decision process: if adult neural stem cells remain quiescent or proliferate, if they take a neuronal or a glial lineage, and if new cells proliferate, undergo apoptotic death, or survive. The proper balance in the molecular milieu of this neurogenic niche leads to the production of neurons in a higher rate as that of astrocytes. But this rate changes in face of microenvironment modifications as those driven by physical exercise or with neuroinflammation. In this work, we first review the cellular and molecular components of the subgranular zone, focusing on the molecules, active signaling pathways and genetic programs that maintain quiescence, induce proliferation, or promote differentiation. We then summarize the evidence regarding the role of neuroinflammation and physical exercise in the modulation of adult hippocampal neurogenesis with emphasis on the activation of progression from adult neural stem cells to lineage-committed progenitors to their progeny mainly in murine models.

  10. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging.

    PubMed

    Cescon, Matilde; Chen, Peiwen; Castagnaro, Silvia; Gregorio, Ilaria; Bonaldo, Paolo

    2016-05-01

    Collagen VI is an extracellular matrix (ECM) protein with a broad distribution in different tissues and mostly deposited at the close periphery of the cell surface. Previous studies revealed that collagen VI protects neurons from the toxicity of amyloid-βpeptides and from UV-induced damage. However, the physiological role of this protein in the central nervous system (CNS) remains unknown. Here, we established primary neural cultures from murine cortex and hippocampus, and carried out in vitro and in vivo studies in wild-type and collagen VI null (Col6a1-/-) mice. Col6a1-/- neural cultures displayed an increased incidence of spontaneous apoptosis and higher vulnerability to oxidative stress, accompanied by altered regulation of autophagy with increased p62 protein levels and decreased LC3 lipidation. Analysis of brain sections confirmed increased apoptosis and abnormal regulation of autophagy in the CNS of collagen VI-deficient animals. To investigate the in vivo physiological consequences of these CNS defects, we carried out functional studies and found that motor and memory task performances were impaired in aged Col6a1-/-mice. These findings indicate that lack of collagen VI leads to spontaneous apoptosis and defective autophagy in neural cells, and point at a protective role for this ECM protein in the CNS during physiological aging.

  11. Localization of PPARdelta in murine central nervous system: expression in oligodendrocytes and neurons.

    PubMed

    Woods, John W; Tanen, Michael; Figueroa, David J; Biswas, Chhabi; Zycband, Emanuel; Moller, David E; Austin, Christopher P; Berger, Joel P

    2003-06-13

    The peroxisome proliferator-activated receptors (PPARs), PPARdelta, PPARgamma and PPARalpha, comprise a subclass of the supergene family of nuclear receptors. As such they are ligand-regulated transcription factors whose major effects are mediated by altering expression of target genes. PPARdelta has been shown to be ubiquitously expressed in mammals. However, its primary biological role(s) has yet to be defined. Several recent studies have demonstrated that PPARdelta is the most highly expressed PPAR isoform in the central nervous system, but ambiguity still exists as to the specific brain sub-regions and cells in which it is expressed. Here, utilizing novel, isoform-selective PPARdelta riboprobes and an anti-peptide antibody, we performed a series of in situ hybridization and immunolocalization studies to determine the distribution of PPARdelta in the central nervous system (CNS) of mice. We found that PPARdelta mRNA and protein is expressed throughout the brain, with particularly high levels in the entorhinal cortex, hypothalamus and hippocampus, and lower levels in the corpus callosum and caudate putamen. At the cellular level, PPARdelta mRNA and protein were found to be expressed in oligodendrocytes and neurons but not astrocytes. Such results suggest a role for PPARdelta in both myelination and neuronal functioning within the CNS.

  12. Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain.

    PubMed

    Bayod, Sergi; Guzmán-Brambila, Carolina; Sanchez-Roige, Sandra; Lalanza, Jaume F; Kaliman, Perla; Ortuño-Sahagun, Daniel; Escorihuela, Rosa M; Pallàs, Mercè

    2015-02-01

    Regular physical exercise mediates health and longevity promotion involving Sirtuin 1 (SIRT1)-regulated pathways. The anti-aging activity of SIRT1 is achieved, at least in part, by means of fine-tuning the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway by preventing the transition of an originally pro-survival program into a pro-aging mechanism. Additionally, SIRT1 promotes mitochondrial function and reduces the production of reactive oxygen species (ROS) through regulating peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), the master controller of mitochondrial biogenesis. Here, by using senescence-accelerated mice prone 8 (SAMP8) as a model for aging, we determined the effect of wheel-running as a paradigm for long-term voluntary exercise on SIRT1-AMPK pathway and mitochondrial functionality measured by oxidative phosphorylation (OXPHOS) complex content in the hippocampus and cortex. We found differential activation of SIRT1 in both tissues and hippocampal-specific activation of AMPK. These findings correlated well with significant changes in OXPHOS in the hippocampal, but not in the cerebral cortex, area. Collectively, the results revealed greater benefits of the exercise in the wheel-running intervention in a murine model of senescence, which was directly related with mitochondrial function and which was mediated through the modulation of SIRT1 and AMPK pathways.

  13. Reliable Genetic Labeling of Adult-Born Dentate Granule Cells Using Ascl1 CreERT2 and Glast CreERT2 Murine Lines.

    PubMed

    Yang, Sung M; Alvarez, Diego D; Schinder, Alejandro F

    2015-11-18

    Newly generated dentate granule cells (GCs) are relevant for input discrimination in the adult hippocampus. Yet, their precise contribution to information processing remains unclear. To address this question, it is essential to develop approaches to precisely label entire cohorts of adult-born GCs. In this work, we used genetically modified mice to allow conditional expression of tdTomato (Tom) in adult-born GCs and characterized their development and functional integration. Ascl1(CreERT2);CAG(floxStopTom) and Glast(CreERT2);CAG(floxStopTom) mice resulted in indelible expression of Tom in adult neural stem cells and their lineage upon tamoxifen induction. Whole-cell recordings were performed to measure intrinsic excitability, firing behavior, and afferent excitatory connectivity. Developing GCs were also staged by the expression of early and late neuronal markers. The slow development of adult-born GCs characterized here is consistent with previous reports using retroviral approaches that have revealed that a mature phenotype is typically achieved after 6-8 weeks. Our findings demonstrate that Ascl1(CreERT2) and Glast(CreERT2) mouse lines enable simple and reliable labeling of adult-born GC lineages within restricted time windows. Therefore, these mice greatly facilitate tagging new neurons and manipulating their activity, required for understanding adult neurogenesis in the context of network remodeling, learning, and behavior. Our study shows that Ascl1(CreERT2) and Glast(CreERT2) mice lines can be used to label large cohorts of adult-born dentate granule cells with excellent time resolution. Neurons labeled in this manner display developmental and functional profiles that are in full agreement with previous findings using thymidine analogs and retroviral labeling, thus providing an alternative approach to tackle fundamental questions on circuit remodeling. Because of the massive neuronal targeting and the simplicity of this method, genetic labeling will contribute to expand research on adult neurogenesis. Copyright © 2015 the authors 0270-6474/15/3515379-12$15.00/0.

  14. Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus.

    PubMed

    Järvelä, Juha T; Lopez-Picon, Francisco R; Plysjuk, Anna; Ruohonen, Saku; Holopainen, Irma E

    2011-04-08

    Status epilepticus (SE) is proposed to lead to an age-dependent acute activation of a repertoire of inflammatory processes, which may contribute to neuronal damage in the hippocampus. The extent and temporal profiles of activation of these processes are well known in the adult brain, but less so in the developing brain. We have now further elucidated to what extent inflammation is activated by SE by investigating the acute expression of several cytokines and subacute glial reactivity in the postnatal rat hippocampus. SE was induced by an intraperitoneal (i.p.) injection of kainic acid (KA) in 9- and 21-day-old (P9 and P21) rats. The mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), matrix metalloproteinase-9 (MMP-9), glial-derived neurotrophic factor (GDNF), interferon gamma (IFN-γ), and transforming growth factor-beta 1 (TGF-β1) were measured from 4 h up to 3 days after KA injection with real-time quantitative PCR (qPCR). IL-1β protein expression was studied with ELISA, GFAP expression with western blotting, and microglial and astrocyte morphology with immunohistochemistry 3 days after SE. SE increased mRNA expression of IL-1β, TNF-α and IL-10 mRNA in hippocampus of both P9 and P21 rats, their induction being more rapid and pronounced in P21 than in P9 rats. MMP-9 expression was augmented similarly in both age groups and GDNF expression augmented only in P21 rats, whereas neither IFN-γ nor TGF-β1 expression was induced in either age group. Microglia and astrocytes exhibited activated morphology in the hippocampus of P21 rats, but not in P9 rats 3 d after SE. Microglial activation was most pronounced in the CA1 region and also detected in the basomedial amygdala. Our results suggest that SE provokes an age-specific cytokine expression in the acute phase, and age-specific glial cell activation in the subacute phase as verified now in the postnatal rat hippocampus. In the juvenile hippocampus, transient increases in cytokine mRNA expression after SE, in contrast to prolonged glial reactivity and region-specific microglial activity after SE, suggest that the inflammatory response is changed from a fulminant and general initial phase to a more moderate and specific subacute response.

  15. Mild Thyroid Hormone Insufficiency During Development Compromises Activity-Dependent Neuroplasticity in the Hippocampus of Adult Make Rats

    EPA Science Inventory

    Severe thyroid hormone (TH) deficiency during critical phases of brain development results in irreversible neurological and cognitive impairments. The mechanisms accounting for this are likely multifactorial, and are not fully understood. Here we pursue the possibility that one i...

  16. Methionine increases BDNF DNA methylation and improves memory in epilepsy.

    PubMed

    Parrish, R Ryley; Buckingham, Susan C; Mascia, Katherine L; Johnson, Jarvis J; Matyjasik, Michal M; Lockhart, Roxanne M; Lubin, Farah D

    2015-04-01

    Temporal lobe epilepsy (TLE) patients exhibit signs of memory impairments even when seizures are pharmacologically controlled. Surprisingly, the underlying molecular mechanisms involved in TLE-associated memory impairments remain elusive. Memory consolidation requires epigenetic transcriptional regulation of genes in the hippocampus; therefore, we aimed to determine how epigenetic DNA methylation mechanisms affect learning-induced transcription of memory-permissive genes in the epileptic hippocampus. Using the kainate rodent model of TLE and focusing on the brain-derived neurotrophic factor (Bdnf) gene as a candidate of DNA methylation-mediated transcription, we analyzed DNA methylation levels in epileptic rats following learning. After detection of aberrant DNA methylation at the Bdnf gene, we investigated functional effects of altered DNA methylation on hippocampus-dependent memory formation in our TLE rodent model. We found that behaviorally driven BdnfDNA methylation was associated with hippocampus-dependent memory deficits. Bisulfite sequencing revealed that decreased BdnfDNA methylation levels strongly correlated with abnormally high levels of BdnfmRNA in the epileptic hippocampus during memory consolidation. Methyl supplementation via methionine (Met) increased BdnfDNA methylation and reduced BdnfmRNA levels in the epileptic hippocampus during memory consolidation. Met administration reduced interictal spike activity, increased theta rhythm power, and reversed memory deficits in epileptic animals. The rescue effect of Met treatment on learning-induced BdnfDNA methylation, Bdnf gene expression, and hippocampus-dependent memory, were attenuated by DNA methyltransferase blockade. Our findings suggest that manipulation of DNA methylation in the epileptic hippocampus should be considered as a viable treatment option to ameliorate memory impairments associated with TLE.

  17. Competitive Trace Theory: A Role for the Hippocampus in Contextual Interference during Retrieval.

    PubMed

    Yassa, Michael A; Reagh, Zachariah M

    2013-01-01

    Much controversy exists regarding the role of the hippocampus in retrieval. The two dominant and competing accounts have been the Standard Model of Systems Consolidation (SMSC) and Multiple Trace Theory (MTT), which specifically make opposing predictions as to the necessity of the hippocampus for retrieval of remote memories. Under SMSC, memories eventually become independent of the hippocampus as they become more reliant on cortical connectivity, and thus the hippocampus is not required for retrieval of remote memories, only recent ones. MTT on the other hand claims that the hippocampus is always required no matter the age of the memory. We argue that this dissociation may be too simplistic, and a continuum model may be better suited to address the role of the hippocampus in retrieval of remote memories. Such a model is presented here with the main function of the hippocampus during retrieval being "recontextualization," or the reconstruction of memory using overlapping traces. As memories get older, they are decontextualized due to competition among partially overlapping traces and become more semantic and reliant on neocortical storage. In this framework dubbed the Competitive Trace Theory (CTT), consolidation events that lead to the strengthening of memories enhance conceptual knowledge (semantic memory) at the expense of contextual details (episodic memory). As a result, remote memories are more likely to have a stronger semantic representation. At the same time, remote memories are also more likely to include illusory details. The CTT is a novel candidate model that may provide some resolution to the memory consolidation debate.

  18. Competitive Trace Theory: A Role for the Hippocampus in Contextual Interference during Retrieval

    PubMed Central

    Yassa, Michael A.; Reagh, Zachariah M.

    2013-01-01

    Much controversy exists regarding the role of the hippocampus in retrieval. The two dominant and competing accounts have been the Standard Model of Systems Consolidation (SMSC) and Multiple Trace Theory (MTT), which specifically make opposing predictions as to the necessity of the hippocampus for retrieval of remote memories. Under SMSC, memories eventually become independent of the hippocampus as they become more reliant on cortical connectivity, and thus the hippocampus is not required for retrieval of remote memories, only recent ones. MTT on the other hand claims that the hippocampus is always required no matter the age of the memory. We argue that this dissociation may be too simplistic, and a continuum model may be better suited to address the role of the hippocampus in retrieval of remote memories. Such a model is presented here with the main function of the hippocampus during retrieval being “recontextualization,” or the reconstruction of memory using overlapping traces. As memories get older, they are decontextualized due to competition among partially overlapping traces and become more semantic and reliant on neocortical storage. In this framework dubbed the Competitive Trace Theory (CTT), consolidation events that lead to the strengthening of memories enhance conceptual knowledge (semantic memory) at the expense of contextual details (episodic memory). As a result, remote memories are more likely to have a stronger semantic representation. At the same time, remote memories are also more likely to include illusory details. The CTT is a novel candidate model that may provide some resolution to the memory consolidation debate. PMID:23964216

  19. Structural Hippocampal Anomalies in a Schizophrenia Population Correlate with Navigation Performance on a Wayfinding Task

    PubMed Central

    Ledoux, Andrée-Anne; Boyer, Patrice; Phillips, Jennifer L.; Labelle, Alain; Smith, Andra; Bohbot, Véronique D.

    2014-01-01

    Episodic memory, related to the hippocampus, has been found to be impaired in schizophrenia. Further, hippocampal anomalies have also been observed in schizophrenia. This study investigated whether average hippocampal gray matter (GM) would differentiate performance on a hippocampus-dependent memory task in patients with schizophrenia and healthy controls. Twenty-one patients with schizophrenia and 22 control participants were scanned with an MRI while being tested on a wayfinding task in a virtual town (e.g., find the grocery store from the school). Regressions were performed for both groups individually and together using GM and performance on the wayfinding task. Results indicate that controls successfully completed the task more often than patients, took less time, and made fewer errors. Additionally, controls had significantly more hippocampal GM than patients. Poor performance was associated with a GM decrease in the right hippocampus for both groups. Within group regressions found an association between right hippocampi GM and performance in controls and an association between the left hippocampi GM and performance in patients. A second analysis revealed that different anatomical GM regions, known to be associated with the hippocampus, such as the parahippocampal cortex, amygdala, medial, and orbital prefrontal cortices, covaried with the hippocampus in the control group. Interestingly, the cuneus and cingulate gyrus also covaried with the hippocampus in the patient group but the orbital frontal cortex did not, supporting the hypothesis of impaired connectivity between the hippocampus and the frontal cortex in schizophrenia. These results present important implications for creating intervention programs aimed at measuring functional and structural changes in the hippocampus in schizophrenia. PMID:24672451

  20. Species and Size Composition of Seahorses (Genus Hippocampus, Family Syngnathidae) in the Coastal Waters and Local Market of Kota Kinabalu, Sabah, Malaysia

    PubMed Central

    Shapawi, Rossita; Anyie, Adrian Leslie; Hussien, Muhammad Ali Syed; Zuldin, Wahidatul Husna

    2015-01-01

    Seahorse diversity (genus Hippocampus, Family Syngnathidae), species identification, size composition and sexual dimorphism were studied from November 2012 to March 2013 in selected coastal waters around Kota Kinabalu, Sabah and the local market trade. Six species of seahorses were identified in the study: (1) Hippocampus barbouri, (2) Hippocampus comes, (3) Hippocampus kelloggi, (4) Hippocampus kuda, (5) Hippocampus spinosissimus and (6) Hippocampus trimaculatus. All six species were sold at the local market, and the dried seahorses were obtained mainly by local fishermen using trawl by-catch method and traded as traditional medicine, souvenirs and other uses. Four species were identified by direct samplings in various different habitats of Kota Kinabalu coastal waters: (1) H. barbouri, (2) H. comes, (3) H. kuda, and (4) H. spinosissimus. Based on the results, H. comes was the largest in size among the four fresh/live species found (mean standard length [SL]: 148.25±1.26 mm), whereas H. barbouri was the smallest species (mean SL: 129±7.81 mm). For the dried samples, H. kelloggi was the largest (mean SL: 245.25±14.55 mm) and H. barbouri was the smallest (mean SL: 127.21±10.01 mm). No significant difference (p>0.05) was observed between the lengths of males and females in every seahorse species, and there was no sexual size dimorphism in any of the species. The findings from the study are significant to provide baseline data for the conservation efforts of these unique marine teleost. PMID:26868706

  1. Species and Size Composition of Seahorses (Genus Hippocampus, Family Syngnathidae) in the Coastal Waters and Local Market of Kota Kinabalu, Sabah, Malaysia.

    PubMed

    Shapawi, Rossita; Anyie, Adrian Leslie; Hussien, Muhammad Ali Syed; Zuldin, Wahidatul Husna

    2015-12-01

    Seahorse diversity (genus Hippocampus, Family Syngnathidae), species identification, size composition and sexual dimorphism were studied from November 2012 to March 2013 in selected coastal waters around Kota Kinabalu, Sabah and the local market trade. Six species of seahorses were identified in the study: (1) Hippocampus barbouri, (2) Hippocampus comes, (3) Hippocampus kelloggi, (4) Hippocampus kuda, (5) Hippocampus spinosissimus and (6) Hippocampus trimaculatus. All six species were sold at the local market, and the dried seahorses were obtained mainly by local fishermen using trawl by-catch method and traded as traditional medicine, souvenirs and other uses. Four species were identified by direct samplings in various different habitats of Kota Kinabalu coastal waters: (1) H. barbouri, (2) H. comes, (3) H. kuda, and (4) H. spinosissimus. Based on the results, H. comes was the largest in size among the four fresh/live species found (mean standard length [SL]: 148.25±1.26 mm), whereas H. barbouri was the smallest species (mean SL: 129±7.81 mm). For the dried samples, H. kelloggi was the largest (mean SL: 245.25±14.55 mm) and H. barbouri was the smallest (mean SL: 127.21±10.01 mm). No significant difference (p>0.05) was observed between the lengths of males and females in every seahorse species, and there was no sexual size dimorphism in any of the species. The findings from the study are significant to provide baseline data for the conservation efforts of these unique marine teleost.

  2. Comparison of 2D and 3D wavelet features for TLE lateralization

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost; Patel, Suresh

    2004-04-01

    Intensity and volume features of the hippocampus from MR images of the brain are known to be useful in detecting the abnormality and consequently candidacy of the hippocampus for temporal lobe epilepsy surgery. However, currently, intracranial EEG exams are required to determine the abnormal hippocampus. These exams are lengthy, painful and costly. The aim of this study is to evaluate texture characteristics of the hippocampi from MR images to help physicians determine the candidate hippocampus for surgery. We studied the MR images of 20 epileptic patients. Intracranial EEG results as well as surgery outcome were used as gold standard. The hippocampi were manually segmented by an expert from T1-weighted MR images. Then the segmented regions were mapped on the corresponding FLAIR images for texture analysis. We calculate the average energy features from 2D wavelet transform of each slice of hippocampus as well as the energy features produced by 3D wavelet transform of the whole hippocampus volume. The 2D wavelet transform is calculated both from the original slices as well as from the slices perpendicular to the principal axis of the hippocampus. In order to calculate the 3D wavelet transform we first rotate each hippocampus to fit it in a rectangular prism and then fill the empty area by extrapolating the intensity values. We combine the resulting features with volume feature and compare their ability to distinguish between normal and abnormal hippocampi using linear classifier and fuzzy c-means clustering algorithm. Experimental results show that the texture features can correctly classify the hippocampi.

  3. Evolution of the hippocampus in reptiles and birds.

    PubMed

    Striedter, Georg F

    2016-02-15

    Although the hippocampus is structurally quite different among reptiles, birds, and mammals, its function in spatial memory is said to be highly conserved. This is surprising, given that structural differences generally reflect functional differences. Here I review this enigma in some detail, identifying several evolutionary changes in hippocampal cytoarchitecture and connectivity. I recognize a lepidosaurid pattern of hippocampal organization (in lizards, snakes, and the tuatara Sphenodon) that differs substantially from the pattern of organization observed in the turtle/archosaur lineage, which includes crocodilians and birds. Although individual subdivisions of the hippocampus are difficult to homologize between these two patterns, both lack a clear homolog of the mammalian dentate gyrus. The strictly trilaminar organization of the ancestral amniote hippocampus was gradually lost in the lineage leading to birds, and birds expanded the system of intrahippocampal axon collaterals, relative to turtles and lizards. These expanded collateral axon branches resemble the extensive collaterals in CA3 of the mammalian hippocampus but probably evolved independently of them. Additional examples of convergent evolution between birds and mammals are the loss of direct inputs to the hippocampus from the primary olfactory cortex and the general expansion of telencephalic regions that communicate reciprocally with the hippocampus. Given this structural convergence, it seems likely that some similarities in the function of the hippocampus between birds and mammals, notably its role in the ability to remember many different locations without extensive training, likewise evolved convergently. The currently available data do not allow for a strong test of this hypothesis, but the hypothesis itself suggests some promising new research directions. © 2015 Wiley Periodicals, Inc.

  4. Neuropathological Changes in Brain Cortex and Hippocampus in a Rat Model of Alzheimer’s Disease

    PubMed Central

    Nobakht, Maliheh; Hoseini, Seyed Mohammad; Mortazavi, Pejman; Sohrabi, Iraj; Esmailzade, Banafshe; Roosh, Nahid Rahbar; Omidzahir, Shila

    2011-01-01

    Background: Alzheimer’s disease (AD) is a neurodegenerative disorder with progressive loss of cognitive abilities and memory loss. The aim of this study was to compare neuropathological changes in hippocampus and brain cortex in a rat model of AD. Methods: Adult male Albino Wistar rats (weighing 250-300 g) were used for behavioral and histopathological studies. The rats were randomly assigned to three groups: control, sham and β-amyloid (Aβ) injection. For behavioral analysis, Y-maze and shuttle box were used, respectively at 14 and 16 days post-lesion. For histological studies, Nissl, modified Bielschowsky and modified Congo red staining were performed. The lesion was induced by injection of 4 µL of Aβ (1-40) into the hippocampal fissure. Results: In the present study, Aβ (1-40) injection into hippocampus could decrease the behavioral indexes and the number of CA1 neurons in hippocampus. Aβ injection CA1 caused Aβ deposition in the hippocampus and less than in cortex. We observed the loss of neurons in the hippocampus and cerebral cortex and certain subcortical regions. Y-maze test and single-trial passive avoidance test showed reduced memory retention in AD group. Conclusion: We found a significant decreased acquisition of passive avoidance and alternation behavior responses in AD group compared to control and sham group (P<0.0001). Compacted amyloid cores were present in the cerebral cortex, hippocampus and white matter, whereas, scattered amyloid cores were seen in cortex and hippocampus of AD group. Also, reduced neuronal density was indicated in AD group. PMID:21725500

  5. Structural hippocampal anomalies in a schizophrenia population correlate with navigation performance on a wayfinding task.

    PubMed

    Ledoux, Andrée-Anne; Boyer, Patrice; Phillips, Jennifer L; Labelle, Alain; Smith, Andra; Bohbot, Véronique D

    2014-01-01

    Episodic memory, related to the hippocampus, has been found to be impaired in schizophrenia. Further, hippocampal anomalies have also been observed in schizophrenia. This study investigated whether average hippocampal gray matter (GM) would differentiate performance on a hippocampus-dependent memory task in patients with schizophrenia and healthy controls. Twenty-one patients with schizophrenia and 22 control participants were scanned with an MRI while being tested on a wayfinding task in a virtual town (e.g., find the grocery store from the school). Regressions were performed for both groups individually and together using GM and performance on the wayfinding task. Results indicate that controls successfully completed the task more often than patients, took less time, and made fewer errors. Additionally, controls had significantly more hippocampal GM than patients. Poor performance was associated with a GM decrease in the right hippocampus for both groups. Within group regressions found an association between right hippocampi GM and performance in controls and an association between the left hippocampi GM and performance in patients. A second analysis revealed that different anatomical GM regions, known to be associated with the hippocampus, such as the parahippocampal cortex, amygdala, medial, and orbital prefrontal cortices, covaried with the hippocampus in the control group. Interestingly, the cuneus and cingulate gyrus also covaried with the hippocampus in the patient group but the orbital frontal cortex did not, supporting the hypothesis of impaired connectivity between the hippocampus and the frontal cortex in schizophrenia. These results present important implications for creating intervention programs aimed at measuring functional and structural changes in the hippocampus in schizophrenia.

  6. Differential Effects of Intrauterine Growth Restriction on the Regional Neurochemical Profile of the Developing Rat Brain.

    PubMed

    Maliszewski-Hall, Anne M; Alexander, Michelle; Tkáč, Ivan; Öz, Gülin; Rao, Raghavendra

    2017-01-01

    Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1 H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague-Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.

  7. Propagation of Epileptiform Activity Can Be Independent of Synaptic Transmission, Gap Junctions, or Diffusion and Is Consistent with Electrical Field Transmission

    PubMed Central

    Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.

    2014-01-01

    The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330

  8. A statistical method for predicting seizure onset zones from human single-neuron recordings

    NASA Astrophysics Data System (ADS)

    Valdez, André B.; Hickman, Erin N.; Treiman, David M.; Smith, Kris A.; Steinmetz, Peter N.

    2013-02-01

    Objective. Clinicians often use depth-electrode recordings to localize human epileptogenic foci. To advance the diagnostic value of these recordings, we applied logistic regression models to single-neuron recordings from depth-electrode microwires to predict seizure onset zones (SOZs). Approach. We collected data from 17 epilepsy patients at the Barrow Neurological Institute and developed logistic regression models to calculate the odds of observing SOZs in the hippocampus, amygdala and ventromedial prefrontal cortex, based on statistics such as the burst interspike interval (ISI). Main results. Analysis of these models showed that, for a single-unit increase in burst ISI ratio, the left hippocampus was approximately 12 times more likely to contain a SOZ; and the right amygdala, 14.5 times more likely. Our models were most accurate for the hippocampus bilaterally (at 85% average sensitivity), and performance was comparable with current diagnostics such as electroencephalography. Significance. Logistic regression models can be combined with single-neuron recording to predict likely SOZs in epilepsy patients being evaluated for resective surgery, providing an automated source of clinically useful information.

  9. Persistent increase of D-aspartate in D-aspartate oxidase mutant mice induces a precocious hippocampal age-dependent synaptic plasticity and spatial memory decay.

    PubMed

    Errico, Francesco; Nisticò, Robert; Napolitano, Francesco; Oliva, Alessandra Bonito; Romano, Rosaria; Barbieri, Federica; Florio, Tullio; Russo, Claudio; Mercuri, Nicola B; Usiello, Alessandro

    2011-11-01

    The atypical amino acid d-aspartate (d-Asp) occurs at considerable amounts in the developing brain of mammals. However, during postnatal life, d-Asp levels diminish following the expression of d-aspartate oxidase (DDO) enzyme. The strict control of DDO over its substrate d-Asp is particularly evident in the hippocampus, a brain region crucially involved in memory, and highly vulnerable to age-related deterioration processes. Herein, we explored the influence of deregulated higher d-Asp brain content on hippocampus-related functions during aging of mice lacking DDO (Ddo(-/-)). Strikingly, we demonstrated that the enhancement of hippocampal synaptic plasticity and cognition in 4/5-month-old Ddo(-/-) mice is followed by an accelerated decay of basal glutamatergic transmission, NMDAR-dependent LTP and hippocampus-related reference memory at 13/14 months of age. Therefore, the precocious deterioration of hippocampal functions observed in mutants highlights for the first time a role for DDO enzyme in controlling the rate of brain aging process in mammals. Copyright © 2009 Elsevier Inc. All rights reserved.

  10. Developmental fluoxetine and prenatal stress effects on serotonin, dopamine, and synaptophysin density in the PFC and hippocampus of offspring at weaning.

    PubMed

    Gemmel, Mary; Rayen, Ine; Lotus, Tiffany; van Donkelaar, Eva; Steinbusch, Harry W; De Lacalle, Sonsoles; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L

    2016-04-01

    Selective serotonin reuptake inhibitor medication exposure during the perinatal period can have a long term impact in adult offspring on neuroplasticity and the serotonergic system, but the impact of these medications during early development is poorly understood. The aim of this study was to determine the effects of developmental exposure to the SSRI, fluoxetine, on the serotonergic system, dopaminergic system, and synaptophysin density in the prefrontal cortex and hippocampus, as well as number of immature neurons in the dentate gyrus, in juvenile rat offspring at weaning. To model aspects of maternal depression, prenatal restraint stress was used. Sprague-Dawley rat offspring were exposed to either prenatal stress and/or fluoxetine. Main findings show that developmental fluoxetine exposure to prenatally stressed offspring decreased 5-HT and 5-HIAA levels and altered the dopaminergic system in the hippocampus. Prenatal stress, regardless of fluoxetine, increased synaptophysin density in the PFC. This work indicates that early exposure to maternal stress and SSRI medication can alter brain monoamine levels and synaptophysin density in offspring at weaning. © 2015 Wiley Periodicals, Inc.

  11. Aß Facilitates LTD at Schaffer Collateral Synapses Preferentially in the Left Hippocampus.

    PubMed

    O'Riordan, Kenneth J; Hu, Neng-Wei; Rowan, Michael J

    2018-02-20

    Promotion of long-term depression (LTD) mechanisms by synaptotoxic soluble oligomers of amyloid-β (Aß) has been proposed to underlie synaptic dysfunction in Alzheimer's disease (AD). Previously, LTD was induced by relatively non-specific electrical stimulation. Exploiting optogenetics, we studied LTD using a more physiologically diffuse spatial pattern of selective pathway activation in the rat hippocampus in vivo. This relatively sparse synaptic LTD requires both the ion channel function and GluN2B subunit of the NMDA receptor but, in contrast to electrically induced LTD, is not facilitated by boosting endogenous muscarinic acetylcholine or metabotropic glutamate 5 receptor activation. Although in the absence of Aß, there is no evidence of hippocampal LTD asymmetry, in the presence of Aß, the induction of LTD is preferentially enhanced in the left hippocampus in an mGluR5-dependent manner. This circuit-selective disruption of synaptic plasticity by Aß provides a route to understanding the development of aberrant brain lateralization in AD. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Effects of preweaning environmental enrichment on hippocampus-dependent learning and memory in developing rats.

    PubMed

    Lu, Cheng-Qiu; Zhong, Le; Yan, Chong-Huai; Tian, Ying; Shen, Xiao-Ming

    2017-02-15

    Previous studies have shown that environmental enrichment (EE) improves learning and memory in adult animals. However, the effects of preweaning EE (preEE) on hippocampus-dependent learning and memory as well as its possible mechanisms are poorly understood. Here we report that preEE enhanced the exploratory activity in rats immediately after weaning, and the EE group showed greater performance in a passive avoidance task than the control group (p<0.05), but not in the locomotion activity. Electrophysiology analysis showed that rats exposed to preEE exhibited larger field excitatory postsynaptic potentials after long-term potentiation induction than those in the control group (p<0.05). The protein levels of phosphorylated extracellular signal-regulated kinases as well as activity-regulated cytoskeleton-associated protein were significantly upregulated in the preEE group compared to the control group (p<0.05). Our results indicate that preEE can enhance hippocampus-dependent learning and memory function as postweaning EE does, and the upregulated activation of the ERK signal transduction pathway may be the underlying molecular mechanism. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Interactions between neurons in the frontal cortex and hippocampus in cats trained to select reinforcements of different value in conditions of cholinergic deficiency.

    PubMed

    Dolbakyan, E E; Merzhanova, G Kh

    2007-09-01

    An operant food-related conditioned reflex was developed in six cats by the "active choice" protocol: short-latency pedal presses were followed by presentation of low-quality reinforcement (bread-meat mix), while long-latency pedal presses were followed by presentation of high-quality reinforcement (meat). Animals differed in terms of their food-procuring strategies, displaying "self-control," "ambivalence," or "impulsivity." Multineuron activity was recorded from the frontal cortex and hippocampus (field CA3). Cross-correlation analysis of interneuronal interactions within (local networks) and between (distributed networks) study structures showed that the numbers of interneuronal interactions in both local and distributed networks were maximal in animals with "self-control." On the background of systemic administration of the muscarinic cholinoreceptor blockers scopolamine and trihexyphenidyl, the numbers of interneuronal interactions decreased, while "common source" influences increased. This correlated with impairment of the reproduction of the selected strategy, primarily affecting the animals' self-controlled behavior. These results show that the "self-control" strategy is determined by the organization of local and distributed networks in the frontal cortex and hippocampus.

  14. Adeno-Associated Viral Vector-Induced Overexpression of Neuropeptide Y Y2 Receptors in the Hippocampus Suppresses Seizures

    ERIC Educational Resources Information Center

    Woldbye, David P. D.; Angehagen, Mikael; Gotzsche, Casper R.; Elbrond-Bek, Heidi; Sorensen, Andreas T.; Christiansen, Soren H.; Olesen, Mikkel V.; Nikitidou, Litsa; Hansen, Thomas v. O.; Kanter-Schlifke, Irene; Kokaia, Merab

    2010-01-01

    Gene therapy using recombinant adeno-associated viral vectors overexpressing neuropeptide Y in the hippocampus exerts seizure-suppressant effects in rodent epilepsy models and is currently considered for clinical application in patients with intractable mesial temporal lobe epilepsy. Seizure suppression by neuropeptide Y in the hippocampus is…

  15. Dopaminergic Modulation of the Persistence of One-Trial Hippocampus-Dependent Memory

    ERIC Educational Resources Information Center

    O'Carroll, Colin M.; Martin, Stephen J.; Sandin, Johan; Frenguelli, Bruno; Morris, Richard G. M.

    2006-01-01

    The persistence of new memory traces in the hippocampus, encoded following appropriate activation of glutamatergic receptors and the induction of synaptic plasticity, can be influenced by heterosynaptic activation of neuromodulatory brain systems. We therefore investigated the effects of a hippocampus-specific blockade of dopamine D1/D5 receptors…

  16. The Hippocampus Supports Encoding of Between-Domain Associations within Working Memory

    ERIC Educational Resources Information Center

    Piekema, Carinne; Kessel, Roy P. C.; Rijpkema, Mark; Fernandez, Guillen

    2009-01-01

    It has been established that the medial temporal lobe, including the hippocampus, is crucial for associative memory. The aim of the current functional magnetic resonance imaging (fMRI) study was to investigate whether the hippocampus is differentially activated for associations between items processed in the same neocortical region (within-domain)…

  17. Recognition Memory and the Hippocampus: A Test of the Hippocampal Contribution to Recollection and Familiarity

    ERIC Educational Resources Information Center

    Jeneson, Annette; Kirwan, C. Brock; Hopkins, Ramona O.; Wixted, John T.; Squire, Larry R.

    2010-01-01

    It has been suggested that the hippocampus selectively supports recollection and that adjacent cortex in the medial temporal lobe can support familiarity. Alternatively, it has been suggested that the hippocampus supports both recollection and familiarity. We tested these suggestions by assessing the performance of patients with hippocampal…

  18. Acetylcholine Release in the Hippocampus and Striatum during Place and Response Training

    ERIC Educational Resources Information Center

    Pych, Jason C.; Chang, Qing; Colon-Rivera, Cynthia; Haag, Renee; Gold, Paul E.

    2005-01-01

    These experiments examined the release of acetylcholine in the hippocampus and striatum when rats were trained, within single sessions, on place or response versions of food-rewarded mazes. Microdialysis samples of extra-cellular fluid were collected from the hippocampus and striatum at 5-min increments before, during, and after training. These…

  19. Genetic disruption of the core circadian clock impairs hippocampus-dependent memory.

    PubMed

    Wardlaw, Sarah M; Phan, Trongha X; Saraf, Amit; Chen, Xuanmao; Storm, Daniel R

    2014-08-01

    Perturbing the circadian system by electrolytically lesioning the suprachiasmatic nucleus (SCN) or varying the environmental light:dark schedule impairs memory, suggesting that memory depends on the circadian system. We used a genetic approach to evaluate the role of the molecular clock in memory. Bmal1-/- mice, which are arrhythmic under constant conditions, were examined for hippocampus-dependent memory, LTP at the Schaffer-collateral synapse, and signal transduction activity in the hippocampus. Bmal1-/- mice exhibit impaired contextual fear and spatial memory. Furthermore, LTP in hippocampal slices from Bmal1-/- mice is also significantly decreased relative to that from wild-type mice. Activation of Erk1,2 MAP kinase (MAPK) during training for contextual fear memory and diurnal oscillation of MAPK activity and cAMP in the hippocampus is also lost in Bmal1-/- mice, suggesting that the memory defects are due to reduction of the memory consolidation pathway in the hippocampus. We conclude that critical signaling events in the hippocampus required for memory depend on BMAL1. © 2014 Wardlaw et al.; Published by Cold Spring Harbor Laboratory Press.

  20. The Necessity of the Hippocampus for Statistical Learning

    PubMed Central

    Covington, Natalie V.; Brown-Schmidt, Sarah; Duff, Melissa C.

    2018-01-01

    Converging evidence points to a role for the hippocampus in statistical learning, but open questions about its necessity remain. Evidence for necessity comes from Schapiro and colleagues who report that a single patient with damage to hippocampus and broader medial temporal lobe cortex was unable to discriminate new from old sequences in several statistical learning tasks. The aim of the current study was to replicate these methods in a larger group of patients who have either damage localized to hippocampus or a broader medial temporal lobe damage, to ascertain the necessity of the hippocampus in statistical learning. Patients with hippocampal damage consistently showed less learning overall compared with healthy comparison participants, consistent with an emerging consensus for hippocampal contributions to statistical learning. Interestingly, lesion size did not reliably predict performance. However, patients with hippocampal damage were not uniformly at chance and demonstrated above-chance performance in some task variants. These results suggest that hippocampus is necessary for statistical learning levels achieved by most healthy comparison participants but significant hippocampal pathology alone does not abolish such learning. PMID:29308986

  1. Effects of infrasound on hippocampus-dependent learning and memory in rats and some underlying mechanisms.

    PubMed

    Yuan, Hua; Long, Hua; Liu, Jing; Qu, Lili; Chen, Jingzao; Mou, Xiang

    2009-09-01

    To investigate the effect of infrasound on the hippocampus-dependent spatial learning and memory as well as its underlying mechanisms, we measured the changes of cognitive abilities, brain-derived neurotrophic factor (BDNF)-tyrosine kinase receptor B (TrkB) signal transduction pathway and neurogenesis in the hippocampus of rats. The results showed that rats exposed to infrasound of 16 Hz at 130 dB for 14 days exhibited longer escape latency from day 2 and shortened time staying in the quadrant P in Morris water maze (MWM). It was found that mRNA and protein expression levels of hippocampal BDNF and TrkB were significantly decreased in real-time PCR and Western blot, and the number of BrdU-labeled cells in hippocampus was also reduced when compared to control. These results provided novel evidences that the infrasound of a certain exposure parameter can impair hippocampus-dependent learning and memory, in which the downregulation of the neuronal plasticity-related BDNF-TrkB signal pathway and less neurogenesis in hippocampus might be involved.

  2. Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes

    PubMed Central

    Tarnawski, Laura; Xian, Xiaojie; Monnerat, Gustavo; Macaulay, Iain C.; Malan, Daniela; Borgman, Andrew; Wu, Sean M.; Fleischmann, Bernd K.; Jovinge, Stefan

    2015-01-01

    In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes. PMID:26323090

  3. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  4. Cell Internal Treatable Microplasma Jets in Cancer Therapies

    NASA Astrophysics Data System (ADS)

    Kim, Jae Young; Wei, Yanzhang; Li, Jinhua; Kim, Sung-O.

    2011-10-01

    We developed a 15- μm-sized, single-cellular-level, and cell-manipulatable microplasma jet device with a microcapillary glass tip and described its potential in physical cancer therapies. The microcapillary tip is a funnel shaped glass tube and its nozzle has an inner diameter of 15 μm and an outer diameter of 20 μm with 20 capillary angle. The electrical and optical properties of this plasma jet and apoptosis results of cultured murine B16F0 melanoma tumor cells and CL.7 fibroblast cells treated with the plasma jets were described. In spite of the small inner diameter and the low gas flow rate of the microplasma jet device, the generated plasma jets are stable enough to treat tumor cells. The microplasma jet was observed inducing apoptosis in cultured murine melanoma tumor cells in a dose-dependent manner. Furthermore, the percentage of apoptotic cells of murine melanoma tumor cells induced by this plasma device was approximately 2.5 times bigger than that of murine fibroblast cells as indicated by an Annex V-FITC method. This highly precise plasma medicine, which enables new directed cancer therapies, can be combined with current cell manipulation and cell culturing technologies without much difficulty.

  5. Binding Affinity, Specificity and Comparative Biodistribution of the Parental Murine Monoclonal Antibody MX35 (Anti-NaPi2b) and Its Humanized Version Rebmab200

    PubMed Central

    Lindegren, Sture; Andrade, Luciana N. S.; Bäck, Tom; Machado, Camila Maria L.; Horta, Bruno Brasil; Buchpiguel, Carlos; Moro, Ana Maria; Okamoto, Oswaldo Keith; Jacobsson, Lars; Cederkrantz, Elin; Washiyama, Kohshin; Aneheim, Emma; Palm, Stig; Jensen, Holger; Tuma, Maria Carolina B.; Chammas, Roger; Hultborn, Ragnar; Albertsson, Per

    2015-01-01

    The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics. PMID:25970341

  6. Binding Affinity, Specificity and Comparative Biodistribution of the Parental Murine Monoclonal Antibody MX35 (Anti-NaPi2b) and Its Humanized Version Rebmab200.

    PubMed

    Lindegren, Sture; Andrade, Luciana N S; Bäck, Tom; Machado, Camila Maria L; Horta, Bruno Brasil; Buchpiguel, Carlos; Moro, Ana Maria; Okamoto, Oswaldo Keith; Jacobsson, Lars; Cederkrantz, Elin; Washiyama, Kohshin; Aneheim, Emma; Palm, Stig; Jensen, Holger; Tuma, Maria Carolina B; Chammas, Roger; Hultborn, Ragnar; Albertsson, Per

    2015-01-01

    The aim of this preclinical study was to evaluate the characteristics of the monoclonal antibody Rebmab200, which is a humanized version of the ovarian-specific murine antibody MX35. This investigation contributes to the foundation for future clinical α-radioimmunotherapy of minimal residual ovarian cancer with 211At-Rebmab200. Here, the biodistribution of 211At-Rebmab200 was evaluated, as was the utility of 99mTc-Rebmab200 for bioimaging. Rebmab200 was directly compared with its murine counterpart MX35 in terms of its in-vitro capacity for binding the immobilized NaPi2B epitope and live cells; we also assessed its biodistribution in nude mice carrying subcutaneous OVCAR-3 tumors. Tumor antigen and cell binding were similar between Rebmab200 and murine MX35, as was biodistribution, including normal tissue uptake and in-vivo tumor binding. We also demonstrated that 99mTc-Rebmab200 can be used for single-photon emission computed tomography of subcutaneous ovarian carcinomas in tumor-bearing mice. Taken together, our data support the further development of Rebmab200 for radioimmunotherapy and diagnostics.

  7. Expression of genes involved in early cell fate decisions in human embryos and their regulation by growth factors.

    PubMed

    Kimber, S J; Sneddon, S F; Bloor, D J; El-Bareg, A M; Hawkhead, J A; Metcalfe, A D; Houghton, F D; Leese, H J; Rutherford, A; Lieberman, B A; Brison, D R

    2008-05-01

    Little is understood about the regulation of gene expression in human preimplantation embryos. We set out to examine the expression in human preimplantation embryos of a number of genes known to be critical for early development of the murine embryo. The expression profile of these genes was analysed throughout preimplantation development and in response to growth factor (GF) stimulation. Developmental expression of a number of genes was similar to that seen in murine embryos (OCT3B/4, CDX2, NANOG). However, GATA6 is expressed throughout preimplantation development in the human. Embryos were cultured in IGF-I, leukaemia inhibitory factor (LIF) or heparin-binding EGF-like growth factor (HBEGF), all of which are known to stimulate the development of human embryos. Our data show that culture in HBEGF and LIF appears to facilitate human embryo expression of a number of genes: ERBB4 (LIF) and LIFR and DSC2 (HBEGF) while in the presence of HBEGF no blastocysts expressed EOMES and when cultured with LIF only two out of nine blastocysts expressed TBN. These data improve our knowledge of the similarities between human and murine embryos and the influence of GFs on human embryo gene expression. Results from this study will improve the understanding of cell fate decisions in early human embryos, which has important implications for both IVF treatment and the derivation of human embryonic stem cells.

  8. Effect of taurine on the concentrations of glutamate, GABA, glutamine and alanine in the rat striatum and hippocampus.

    PubMed

    Molchanova, Svetlana M; Oja, Simos S; Saransaari, Pirjo

    2007-01-01

    Taurine, a non-protein amino acid, acts as an osmoregulator and inhibitory neuromodulator in the brain. Here we studied the effects of intraperitoneal injections of taurine on the concentrations of glutamate and GABA, and their precursors, glutamine and alanine, in the rat striatum and hippocampus. Injections of 0.25, 0.5 and 1 g/kg taurine led to a gradual increase in taurine tissue concentrations in both hippocampus and striatum. Glutamate and GABA also increased in the hippocampus, but not in the striatum. Glutamine increased and alanine decreased markedly in both brain structures. The results corroborate the neuromodulatory role of taurine in the brain. Taurine administration results in an imbalance in inhibitory and excitatory neurotransmission in the glutamatergic (hippocampus) and GABAergic (striatum) brain structures, affecting more markedly the neurotransmitter precursors.

  9. Unilateral hippocampal inactivation or lesion selectively impairs remote contextual fear memory.

    PubMed

    Zhou, Heng; Zhou, Qixin; Xu, Lin

    2016-10-01

    Contextual fear memory depends on the hippocampus, but the role of unilateral hippocampus in this type of memory remains unclear. Herein, pharmacological inactivation or excitotoxic lesions were used to study the role of unilateral hippocampus in the stages of contextual fear memory. The pharmacological experiments revealed that compared with the control groups, unilateral hippocampal blockade did not impair 1-day recent memory following learning, whereas bilateral hippocampal blockade significantly impaired this memory. The lesion experiments showed that compared with the control groups, the formed contextual fear memory was retained for 7 days and that 30-day remote memory was markedly reduced in unilateral hippocampal lesion groups. These results indicate that an intact bilateral hippocampus is required for the formation of remote memory and that unilateral hippocampus is sufficient for recent contextual fear memory.

  10. The hippocampus and visual perception

    PubMed Central

    Lee, Andy C. H.; Yeung, Lok-Kin; Barense, Morgan D.

    2012-01-01

    In this review, we will discuss the idea that the hippocampus may be involved in both memory and perception, contrary to theories that posit functional and neuroanatomical segregation of these processes. This suggestion is based on a number of recent neuropsychological and functional neuroimaging studies that have demonstrated that the hippocampus is involved in the visual discrimination of complex spatial scene stimuli. We argue that these findings cannot be explained by long-term memory or working memory processing or, in the case of patient findings, dysfunction beyond the medial temporal lobe (MTL). Instead, these studies point toward a role for the hippocampus in higher-order spatial perception. We suggest that the hippocampus processes complex conjunctions of spatial features, and that it may be more appropriate to consider the representations for which this structure is critical, rather than the cognitive processes that it mediates. PMID:22529794

  11. Neurogenic Effects of Ghrelin on the Hippocampus.

    PubMed

    Kim, Chanyang; Kim, Sehee; Park, Seungjoon

    2017-03-08

    Mammalian neurogenesis continues throughout adulthood in the subventricular zone of the lateral ventricle and in the subgranular zone of the dentate gyrus in the hippocampus. It is well known that hippocampal neurogenesis is essential in mediating hippocampus-dependent learning and memory. Ghrelin, a peptide hormone mainly synthesized in the stomach, has been shown to play a major role in the regulation of energy metabolism. A plethora of evidence indicates that ghrelin can also exert important effects on neurogenesis in the hippocampus of the adult brain. The aim of this review is to discuss the current role of ghrelin on the in vivo and in vitro regulation of neurogenesis in the adult hippocampus. We will also discuss the possible role of ghrelin in dietary restriction-induced hippocampal neurogenesis and the link between ghrelin-induced hippocampal neurogenesis and cognitive functions.

  12. Cell source determines the immunological impact of biomimetic nanoparticles.

    PubMed

    Evangelopoulos, Michael; Parodi, Alessandro; Martinez, Jonathan O; Yazdi, Iman K; Cevenini, Armando; van de Ven, Anne L; Quattrocchi, Nicoletta; Boada, Christian; Taghipour, Nima; Corbo, Claudia; Brown, Brandon S; Scaria, Shilpa; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio

    2016-03-01

    Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers. Copyright © 2015. Published by Elsevier Ltd.

  13. p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8-16-cell stage during preimplantation development.

    PubMed

    Paliga, Andrew J M; Natale, David R; Watson, Andrew J

    2005-08-01

    The MAPK (mitogen-activated protein kinase) superfamily of proteins consists of four separate signalling cascades: the c-Jun N-terminal kinase or stress-activated protein kinases (JNK/SAPK); the ERKs (extracellular-signal-regulated kinases); the ERK5 or big MAPK1; and the p38 MAPK group of protein kinases, all of which are highly conserved. To date, our studies have focused on defining the role of the p38 MAPK pathway during preimplantation development. p38 MAPK regulates actin filament formation through the downstream kinases MAPKAPK2/3 (MAPK-activated protein kinase 2/3) or MAPKAPK5 [PRAK (p38 regulated/activated kinase)] and subsequently through HSP25/27 (heat-shock protein 25/27). We recently reported that 2-cell-stage murine embryos treated with cytokine-suppressive anti-inflammatory drugs (CSAIDtrade mark; SB203580 and SB220025) display a reversible blockade of development at the 8-16-cell stage, indicating that p38 (MAPK) activity is required to complete murine preimplantation development. In the present study, we have investigated the stage-specific action and role of p38 MAPK in regulating filamentous actin during murine preimplantation development. Treatment of 8-cell-stage embryos with SB203580 and SB220025 (CSAIDtrade mark) resulted in a blockade of preimplantation development, loss of rhodamine phalloidin fluorescence, MK-p (phosphorylated MAPKAPK2/3), HSP-p (phosphorylated HSP25/27) and a redistribution of alpha-catenin immunofluorescence by 12 h of treatment. In contrast, treatment of 2- and 4-cell-stage embryos with CSAIDtrade mark drugs resulted in a loss of MK-p and HSP-p, but did not result in a loss of rhodamine phalloidin fluorescence. All these effects of p38 MAPK inhibition were reversed upon removal of the inhibitor, and development resumed in a delayed but normal manner to the blastocyst stage. Treatment of 8-cell embryos with PD098059 (ERK pathway inhibitor) did not affect development or fluorescence of MK-p, HSP-p or rhodamine phalloidin. Murine preimplantation development becomes dependent on p38 MAPK at the 8-16-cell stage, which corresponds to the stage when p38 MAPK first regulates filamentous actin during early development.

  14. Estradiol does not influence strategy choice but place strategy choice is associated with increased cell proliferation in the hippocampus of female rats.

    PubMed

    Rummel, Julia; Epp, Jonathan R; Galea, Liisa A M

    2010-09-01

    Adult neurogenesis occurs in the hippocampus of most mammals. While the function of adult hippocampal neurogenesis is not known, there is a relationship between neurogenesis and hippocampus-dependent learning and memory. Ovarian hormones can influence learning and memory and strategy choice. In competitive memory tasks, higher levels of estradiol shift female rats towards the use of the place strategy. Previous studies using a cue-competition paradigm find that 36% of male rats will use a hippocampus-dependent place strategy and place strategy users had lower levels of cell proliferation in the hippocampus. Here, we used the same paradigm to test whether endogenous or exogenous ovarian hormones influence strategy choice in the cue-competition paradigm and whether cell proliferation was related to strategy choice. We tested ovariectomized estradiol-treated (10 microg of estradiol benzoate) or sham-operated female rats on alternating blocks of hippocampus-dependent and hippocampus-independent versions of the Morris water task. Rats were then given a probe session with the platform visible and in a novel location. Preferred strategy was classified as place strategy (hippocampus-dependent) if they swam to the old platform location or cue strategy (hippocampus-independent) if they swam to the visible platform. All groups showed a preference for the cue strategy. However, proestrous rats were more likely to be place strategy users than rats not in proestrus. Female place strategy users had increased cell proliferation in the dentate gyrus compared to cue strategy users. Our study suggests that 78% of female rats chose the cue strategy instead of the place strategy. In summary the present results suggest that estradiol does not shift strategy use in this paradigm and that cell proliferation is related to strategy use with greater cell proliferation seen in place strategy users in female rats. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. The Adult Livers of Immunodeficient Mice Support Human Hematopoiesis: Evidence for a Hepatic Mast Cell Population that Develops Early in Human Ontogeny

    PubMed Central

    Muench, Marcus O.; Beyer, Ashley I.; Fomin, Marina E.; Thakker, Rahul; Mulvaney, Usha S.; Nakamura, Masato; Suemizu, Hiroshi; Bárcena, Alicia

    2014-01-01

    The liver plays a vital role in hematopoiesis during mammalian prenatal development but its hematopoietic output declines during the perinatal period. Nonetheless, hepatic hematopoiesis is believed to persist into adulthood. We sought to model human adult-liver hematopoiesis by transplantation of fetal and neonatal hematopoietic stem cells (HSCs) into adult immunodeficient mice. Livers were found to be engrafted with human cells consisting primarily of monocytes and B-cells with lesser contributions by erythrocytes, T-cells, NK-cells and mast-cells. A resident population of CD117++CD203c+ mast cells was also documented in human midgestation liver, indicating that these cells comprise part of the liver's resident immune cell repertoire throughout human ontogeny. The murine liver was shown to support human multilineage hematopoiesis up to 321 days after transplant. Evidence of murine hepatic hematopoiesis was also found in common mouse strains as old as 2 years. Human HSC engraftment of the murine liver was demonstrated by detection of high proliferative-potential colony-forming cells in clonal cultures, observation of CD38−CD34++ and CD133+CD34++ cells by flow cytometry, and hematopoietic reconstitution of secondary transplant recipients of chimeric liver cells. Additionally, chimeric mice with both hematopoietic and endothelial reconstitution were generated by intrasplenic injection of immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene. In conclusion, the murine liver is shown to be a hematopoietic organ throughout adult life that can also support human hematopoiesis in severely immunodeficient strains. Further humanization of the murine liver can be achieved in mice harboring an uPA transgene, which support engraftment of non-hematopoietic cells types. Thus, offering a model system to study the interaction of diverse human liver cell types that regulate hematopoiesis and immune function in the liver. PMID:24819392

  16. Deciding what is possible and impossible following hippocampal damage in humans.

    PubMed

    McCormick, Cornelia; Rosenthal, Clive R; Miller, Thomas D; Maguire, Eleanor A

    2017-03-01

    There is currently much debate about whether the precise role of the hippocampus in scene processing is predominantly constructive, perceptual, or mnemonic. Here, we developed a novel experimental paradigm designed to control for general perceptual and mnemonic demands, thus enabling us to specifically vary the requirement for constructive processing. We tested the ability of patients with selective bilateral hippocampal damage and matched control participants to detect either semantic (e.g., an elephant with butterflies for ears) or constructive (e.g., an endless staircase) violations in realistic images of scenes. Thus, scenes could be semantically or constructively 'possible' or 'impossible'. Importantly, general perceptual and memory requirements were similar for both types of scene. We found that the patients performed comparably to control participants when deciding whether scenes were semantically possible or impossible, but were selectively impaired at judging if scenes were constructively possible or impossible. Post-task debriefing indicated that control participants constructed flexible mental representations of the scenes in order to make constructive judgements, whereas the patients were more constrained and typically focused on specific fragments of the scenes, with little indication of having constructed internal scene models. These results suggest that one contribution the hippocampus makes to scene processing is to construct internal representations of spatially coherent scenes, which may be vital for modelling the world during both perception and memory recall. © 2016 The Authors. Hippocampus Published by Wiley Periodicals, Inc. © 2016 The Authors. Hippocampus Published by Wiley Periodicals, Inc.

  17. Anti-acetylcholinesterase and Antioxidant Activities of Inhaled Juniper Oil on Amyloid Beta (1-42)-Induced Oxidative Stress in the Rat Hippocampus.

    PubMed

    Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian

    2015-05-01

    Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism.

  18. Long-term Autophagy and Nrf2 Signaling in the Hippocampi of Developing Mice after Carbon Ion Exposure

    PubMed Central

    Ye, Fei; Zhao, Ting; Liu, Xiongxiong; Jin, Xiaodong; Liu, Xinguo; Wang, Tieshan; Li, Qiang

    2015-01-01

    To explore charged particle radiation-induced long-term hippocampus damage, we investigated the expression of autophagy and antioxidant Nrf2 signaling-related proteins in the mouse hippocampus after carbon ion radiation. Heads of immature female Balb/c mice were irradiated with carbon ions of different LETs at various doses. Behavioral tests were performed on the mice after maturation. Acute and chronic expression of LC3-II, p62/SQSTM1, nuclear Nrf2, activated caspase-3 and the Bax/Bcl-2 ratio were measured in the hippocampi. Secondary X-ray insult was adopted to amplify potential damages. Long-term behavioral changes were observed in high-LET carbon ion-irradiated mice. There were no differences in the rates of LC3-II induction and p62/SQSTM1 degradation compared to the control group regardless of whether the mice received the secondary X-ray insult. A high nuclear Nrf2 content and low apoptosis level in hippocampal cells subjected to secondary X-rays were observed for the mice exposed to relatively low-LET carbon ions. Therefore, carbon ion exposure in the immature mouse led to an LET-dependent behavioral change after maturation. Although autophagy was intact, the persistently high nuclear Nrf2 content in the hippocampus might account for the unchanged behavioral pattern in mice exposed to the relatively low-LET carbon ions and the subsequent increased radioresistance of the hippocampus. PMID:26689155

  19. Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen testing for mice: sensitivity to dorsal hippocampal dysfunction.

    PubMed

    Kim, Chi Hun; Romberg, Carola; Hvoslef-Eide, Martha; Oomen, Charlotte A; Mar, Adam C; Heath, Christopher J; Berthiaume, Andrée-Anne; Bussey, Timothy J; Saksida, Lisa M

    2015-11-01

    The hippocampus is implicated in many of the cognitive impairments observed in conditions such as Alzheimer's disease (AD) and schizophrenia (SCZ). Often, mice are the species of choice for models of these diseases and the study of the relationship between brain and behaviour more generally. Thus, automated and efficient hippocampal-sensitive cognitive tests for the mouse are important for developing therapeutic targets for these diseases, and understanding brain-behaviour relationships. One promising option is to adapt the touchscreen-based trial-unique nonmatching-to-location (TUNL) task that has been shown to be sensitive to hippocampal dysfunction in the rat. This study aims to adapt the TUNL task for use in mice and to test for hippocampus-dependency of the task. TUNL training protocols were altered such that C57BL/6 mice were able to acquire the task. Following acquisition, dysfunction of the dorsal hippocampus (dHp) was induced using a fibre-sparing excitotoxin, and the effects of manipulation of several task parameters were examined. Mice could acquire the TUNL task using training optimised for the mouse (experiments 1). TUNL was found to be sensitive to dHp dysfunction in the mouse (experiments 2, 3 and 4). In addition, we observed that performance of dHp dysfunction group was somewhat consistently lower when sample locations were presented in the centre of the screen. This study opens up the possibility of testing both mouse and rat models on this flexible and hippocampus-sensitive touchscreen task.

  20. Organotypic Slice Cultures for Studies of Postnatal Neurogenesis

    PubMed Central

    Mosa, Adam J.; Wang, Sabrina; Tan, Yao Fang; Wojtowicz, J. Martin

    2015-01-01

    Here we describe a technique for studying hippocampal postnatal neurogenesis in the rodent brain using the organotypic slice culture technique. This method maintains the characteristic topographical morphology of the hippocampus while allowing direct application of pharmacological agents to the developing hippocampal dentate gyrus. Additionally, slice cultures can be maintained for up to 4 weeks and thus, allow one to study the maturation process of newborn granule neurons. Slice cultures allow for efficient pharmacological manipulation of hippocampal slices while excluding complex variables such as uncertainties related to the deep anatomic location of the hippocampus as well as the blood brain barrier. For these reasons, we sought to optimize organotypic slice cultures specifically for postnatal neurogenesis research. PMID:25867138

  1. A role of NF-E2 in chronic inflammation and clonal evolution in essential thrombocythemia, polycythemia vera and myelofibrosis?

    PubMed

    Hasselbalch, Hans C

    2014-02-01

    A novel murine model for myeloproliferative neoplasms (MPNs) generated by overexpression of the transcription factor NF-E2 has recently been described. Sustained overexpression of NF-E2 in this model induced myeloid expansion with anemia, leukocytosis and thrombocytosis. Herein, it is debated if NF-E2 overexpression also might have induced a sustained state of in vivo leukocyte and platelet activation with chronic and self-perpetuating production of inflammatory products from activated leukocytes and platelets. If so, this novel murine model also may excellently describe the deleterious impact of sustained chronic NF-E2 overexpression during uncontrolled chronic inflammation upon the hematopoietic system--the development of clonal myeloproliferation. Accordingly, this novel murine model may also have delivered the proof of concept of chronic inflammation as a trigger and driver of clonal evolution in MPNs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hippocampal-neocortical functional reorganization underlies children's cognitive development

    PubMed Central

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C.; Menon, Vinod

    2014-01-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development – the transition from procedure-based to memory-based problem solving strategies – are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal fMRI in children, ages 7 to 9, revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Critically, longitudinal improvements in retrieval strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval strategy use continued to improve through adolescence into adulthood, and was associated with decreased activation but more stable inter-problem representations in the hippocampus. Our findings provide novel insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving, and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development. PMID:25129076

  3. Development of a novel mouse glioma model using lentiviral vectors

    PubMed Central

    Marumoto, Tomotoshi; Tashiro, Ayumu; Friedmann-Morvinski, Dinorah; Scadeng, Miriam; Soda, Yasushi; Gage, Fred H; Verma, Inder M

    2009-01-01

    We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP–controlled lentiviral vectors expressing oncogenes. Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein–positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested. Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus. However, tumors were rarely detected when the mice were transduced in the cortex. Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme–like tumors, which contained CD133+ cells, formed tumorspheres and could differentiate into neurons and astrocytes. We suggest that the use of Cre-loxP–controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice. PMID:19122659

  4. Hippocampal-neocortical functional reorganization underlies children's cognitive development.

    PubMed

    Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod

    2014-09-01

    The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.

  5. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity.

    PubMed

    Lupien, Sonia J; Juster, Robert-Paul; Raymond, Catherine; Marin, Marie-France

    2018-04-01

    For the last five decades, science has managed to delineate the mechanisms by which stress hormones can impact on the human brain. Receptors for glucocorticoids are found in the hippocampus, amygdala and frontal cortex, three brain regions involved in memory processing and emotional regulation. Studies have shown that chronic exposure to stress is associated with reduced volume of the hippocampus and that chronic stress can modulate volumes of both the amygdala and frontal cortex, suggesting neurotoxic effects of stress hormones on the brain. Yet, other studies report that exposure to early adversity and/or familial/social stressors can increase vulnerability to stress in adulthood. Models have been recently developed to describe the roles that neurotoxic and vulnerability effects can have on the developing brain. These models suggest that developing early stress interventions could potentially counteract the effects of chronic stress on the brain and results going along with this hypothesis are summarized. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. A Model for Evaluating Topical Antimicrobial Efficacy against Methicillin-Resistant Staphylococcus aureus Biofilms in Superficial Murine Wounds

    PubMed Central

    Renick, Paul J.; Tetens, Shannon P.; Carson, Dennis L.

    2012-01-01

    A wound biofilm model was created by adapting a superficial infection model. Partial-thickness murine wounds were inoculated with methicillin-resistant Staphylococcus aureus (MRSA). Dense biofilm communities developed at the wound surface after 24 h as demonstrated by microscopy and quantitative microbiology. Common topical antimicrobial agents had reduced efficacy when treatment was initiated 24 h after inoculation compared to 4 h after inoculation. This model provides a rapid in vivo test for new agents to treat wound biofilm infections. PMID:22644024

  7. The Aminopeptidase Inhibitor CHR-2863 Is an Orally Bioavailable Inhibitor of Murine Malaria

    PubMed Central

    Skinner-Adams, Tina S.; Peatey, Christopher L.; Anderson, Karen; Trenholme, Katharine R.; Krige, David; Brown, Christopher L.; Stack, Colin; Nsangou, Desire M. M.; Mathews, Rency T.; Thivierge, Karine; Dalton, John P.

    2012-01-01

    Malaria remains a significant risk in many areas of the world, with resistance to the current antimalarial pharmacopeia an ever-increasing problem. The M1 alanine aminopeptidase (PfM1AAP) and M17 leucine aminopeptidase (PfM17LAP) are believed to play a role in the terminal stages of digestion of host hemoglobin and thereby generate a pool of free amino acids that are essential for parasite growth and development. Here, we show that an orally bioavailable aminopeptidase inhibitor, CHR-2863, is efficacious against murine malaria. PMID:22450967

  8. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory

    PubMed Central

    Mattfeld, Aaron T.; Stark, Craig E. L.

    2015-01-01

    The hippocampus and striatum are thought to have different functional roles in learning and memory. It is unknown under what experimental conditions their contributions are dissimilar or converge, and the extent to which they interact over the course of learning. In order to evaluate both the functional contributions of as well as the interactions between the human hippocampus and striatum, the present study used high-resolution functional magnetic resonance imaging (fMRI) and variations of a conditional visuomotor associative learning task that either taxed arbitrary associative learning (Experiment 1) or stimulus-response learning (Experiment 2). In the first experiment we observed changes in activity in the hippocampus and anterior caudate that reflect differences between the two regions consistent with distinct computational principles. In the second experiment we observed activity in the putamen that reflected content specific representations during the learning of arbitrary conditional visuomotor associations. In both experiments the hippocampus and ventral striatum demonstrated dynamic functional coupling during the learning of new arbitrary associations, but not during retrieval of well-learned arbitrary associations using control variants of the tasks that did not preferentially tax one system versus the other. These findings suggest that both the hippocampus and subregions of the dorsal striatum contribute uniquely to the learning of arbitrary associations while the hippocampus and ventral striatum interact over the course of learning. PMID:25560298

  9. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications.

    PubMed

    Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K

    2013-11-01

    The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress. © 2013 British Society for Neuroendocrinology.

  10. Right-hemispheric dominance of spatial memory in split-brain mice.

    PubMed

    Shinohara, Yoshiaki; Hosoya, Aki; Yamasaki, Nobuyuki; Ahmed, Hassan; Hattori, Satoko; Eguchi, Megumi; Yamaguchi, Shun; Miyakawa, Tsuyoshi; Hirase, Hajime; Shigemoto, Ryuichi

    2012-02-01

    Left-right asymmetry of human brain function has been known for a century, although much of molecular and cellular basis of brain laterality remains to be elusive. Recent studies suggest that hippocampal CA3-CA1 excitatory synapses are asymmetrically arranged, however, the functional implication of the asymmetrical circuitry has not been studied at the behavioral level. In order to address the left-right asymmetry of hippocampal function in behaving mice, we analyzed the performance of "split-brain" mice in the Barnes maze. The "split-brain" mice received ventral hippocampal commissure and corpus callosum transection in addition to deprivation of visual input from one eye. In such mice, the hippocampus in the side of visual deprivation receives sensory-driven input. Better spatial task performance was achieved by the mice which were forced to use the right hippocampus than those which were forced to use the left hippocampus. In two-choice spatial maze, forced usage of left hippocampus resulted in a comparable performance to the right counterpart, suggesting that both hippocampal hemispheres are capable of conducting spatial learning. Therefore, the results obtained from the Barnes maze suggest that the usage of the right hippocampus improves the accuracy of spatial memory. Performance of non-spatial yet hippocampus-dependent tasks (e.g. fear conditioning) was not influenced by the laterality of the hippocampus. Copyright © 2010 Wiley Periodicals, Inc.

  11. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression

    PubMed Central

    Nelson, P. Austin; Sage, Jennifer R.; Wood, Suzanne C.; Davenport, Christopher M.; Anagnostaras, Stephan G.; Boulanger, Lisa M.

    2013-01-01

    Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In β2m−/−TAP−/−mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of β2m−/−TAP−/−mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain. PMID:23959708

  12. Robust hippocampal responsivity during retrieval of consolidated associative memory.

    PubMed

    Hattori, Shoai; Chen, Lillian; Weiss, Craig; Disterhoft, John F

    2015-05-01

    A contentious point in memory research is whether or not the hippocampus plays a time-limited role in the consolidation of declarative memories. A widely held view is that declarative memories are initially encoded in the hippocampus, then transferred to the neocortex for long-term storage. Alternate views argue instead that the hippocampus continues to play a role in remote memory recall. These competing theories are largely based on human amnesic and animal lesion/inactivation studies. However, in vivo electrophysiological evidence supporting these views is scarce. Given that other studies examining the role of the hippocampus in remote memory retrieval using lesion and imaging techniques in human and animal models have provided mixed results, it would be particularly useful to gain insight at the in vivo electrophysiological level. Here we report hippocampal single-neuron and theta activity recorded longitudinally during acquisition and remote retrieval of trace eyeblink conditioning. Results from conditioned rabbits were compared to those obtained from yoked pseudo-conditioned control rabbits. Results reveal continued learning-specific hippocampal activity one month after initial acquisition of the task. Our findings yield insight into the normal physiological responses of the hippocampus during memory processes and provide compelling in vivo electrophysiological evidence that the hippocampus is involved in both acquisition and retrieval of consolidated memories. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  13. Synaptic Plasticity and Memory: New Insights from Hippocampal Left-Right Asymmetries.

    PubMed

    El-Gaby, Mohamady; Shipton, Olivia A; Paulsen, Ole

    2015-10-01

    All synapses are not the same. They differ in their morphology, molecular constituents, and malleability. A striking left-right asymmetry in the distribution of different types of synapse was recently uncovered at the CA3-CA1 projection in the mouse hippocampus, whereby afferents from the CA3 in the left hemisphere innervate small, highly plastic synapses on the apical dendrites of CA1 pyramidal neurons, whereas those originating from the right CA3 target larger, more stable synapses. Activity-dependent modification of these synapses is thought to participate in circuit formation and remodeling during development, and further plastic changes may support memory encoding in adulthood. Therefore, exploiting the CA3-CA1 asymmetry provides a promising opportunity to investigate the roles that different types of synapse play in these fundamental properties of the CNS. Here we describe the discovery of these segregated synaptic populations in the mouse hippocampus, and discuss what we have already learnt about synaptic plasticity from this asymmetric arrangement. We then propose models for how the asymmetry could be generated during development, and how the adult hippocampus might use these distinct populations of synapses differentially during learning and memory. Finally, we outline the potential implications of this left-right asymmetry for human hippocampal function, as well as dysfunction in memory disorders such as Alzheimer's disease. © The Author(s) 2014.

  14. Role of the Dorsal Hippocampus in Object Memory Load

    ERIC Educational Resources Information Center

    Sannino, Sara; Russo, Fabio; Torromino, Giulia; Pendolino, Valentina; Calabresi, Paolo; De Leonibus, Elvira

    2012-01-01

    The dorsal hippocampus is crucial for mammalian spatial memory, but its exact role in item memory is still hotly debated. Recent evidence in humans suggested that the hippocampus might be selectively involved in item short-term memory to deal with an increasing memory load. In this study, we sought to test this hypothesis. To this aim we developed…

  15. Correlates of Intellectual Ability with Morphology of the Hippocampus and Amygdala in Healthy Adults

    ERIC Educational Resources Information Center

    Amat, Jose A.; Bansal, Ravi; Whiteman, Ronald; Haggerty, Rita; Royal, Jason; Peterson, Bradley S.

    2008-01-01

    Several prior imaging studies of healthy adults have correlated volumes of the hippocampus and amygdala with measures of general intelligence (IQ), with variable results. In this study, we assessed correlations between volumes of the hippocampus and amygdala and full-scale IQ scores (FSIQ) using a method of image analysis that permits detailed…

  16. Role of Amygdala and Hippocampus in the Neural Circuit Subserving Conditioned Defeat in Syrian Hamsters

    ERIC Educational Resources Information Center

    Markham, Chris M.; Taylor, Stacie L.; Huhman, Kim L.

    2010-01-01

    We examined the roles of the amygdala and hippocampus in the formation of emotionally relevant memories using an ethological model of conditioned fear termed conditioned defeat (CD). Temporary inactivation of the ventral, but not dorsal hippocampus (VH, DH, respectively) using muscimol disrupted the acquisition of CD, whereas pretraining VH…

  17. Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats.

    PubMed

    Gong, Wei-Gang; Wang, Yan-Juan; Zhou, Hong; Li, Xiao-Li; Bai, Feng; Ren, Qing-Guo; Zhang, Zhi-Jun

    2017-04-01

    Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.

  18. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Li, Jia; Li, Shanshan

    2015-07-01

    Curcumin is a natural polyphenolic compound in Curcuma longa with beneficial effects on neuronal protection. This study aims to investigate the action of curcumin in the hippocampus subjected to glutamate neurotoxicity. Glutamate stimulation induced reactive oxygen species (ROS), endoplasmic reticulum stress (ER stress) and TXNIP/NLRP3 inflammasome activation, leading to damage in the hippocampus. Curcumin treatment in the hippocampus or SH-SY5Y cells inhibited IRE1α and PERK phosphorylation with suppression of intracellular ROS production. Curcumin increased AMPK activity and knockdown of AMPKα with specific siRNA abrogated its inhibitory effects on IRE1α and PERK phosphorylation, indicating that AMPK activity was essential for themore » suppression of ER stress. As a result, curcumin reduced TXNIP expression and inhibited NLRP3 inflammasome activation by downregulation of NLRP3 and cleaved caspase-1 induction, and thus reduced IL-1β secretion. Specific fluorescent probe and flow cytometry analysis showed that curcumin prevented mitochondrial malfunction and protected cell survival from glutamate neurotoxicity. Moreover, oral administration of curcumin reduced brain infarct volume and attenuated neuronal damage in rats subjected to middle cerebral artery occlusion. Immunohistochemistry showed that curcumin inhibited p-IRE1α, p-PERK and NLRP3 expression in hippocampus CA1 region. Together, these results showed that curcumin attenuated glutamate neurotoxicity by inhibiting ER stress-associated TXNIP/NLRP3 inflammasome activation via the regulation of AMPK, and thereby protected the hippocampus from ischemic insult. - Highlights: • Curcumin attenuates glutamate neurotoxicity in the hippocampus. • Curcumin suppresses ER stress in glutamate-induced hippocampus slices. • Curcumin inhibits TXNIP/NLRP3 inflammasome activation. • Regulation of AMPK by curcumin contributes to suppressing ER stress.« less

  19. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus.

    PubMed

    Chen, Qian; Xiao, De-Sheng

    2014-01-30

    Adult hippocampus is highly vulnerable to iron-induced oxidative stress. Aerobic exercise has been proposed to reduce oxidative stress but the findings in the hippocampus are conflicting. This study aimed to observe the changes of redox-active iron and concomitant regulation of cellular iron homeostasis in the hippocampus by aerobic exercise, and possible regulatory effect of nitric oxide (NO). A randomized controlled study was designed in the rats with swimming exercise treatment (for 3 months) and/or an unselective inhibitor of NO synthase (NOS) (L-NAME) treatment. The results from the bleomycin-detectable iron assay showed additional redox-active iron in the hippocampus by exercise treatment. The results from nonheme iron content assay, combined with the redox-active iron content, showed increased storage iron content by exercise treatment. NOx (nitrate plus nitrite) assay showed increased NOx content by exercise treatment. The results from the Western blot assay showed decreased ferroportin expression, no changes of TfR1 and DMT1 expressions, increased IRP1 and IRP2 expression, increased expressions of eNOS and nNOS rather than iNOS. In these effects of exercise treatment, the increased redox-active iron content, storage iron content, IRP1 and IRP2 expressions were completely reversed by L-NAME treatment, and decreased ferroportin expression was in part reversed by L-NAME. L-NAME treatment completely inhibited increased NOx and both eNOS and nNOS expression in the hippocampus. Our findings suggest that aerobic exercise could increase the redox-active iron in the hippocampus, indicating an increase in the capacity to generate hydroxyl radicals through the Fenton reactions, and aerobic exercise-induced iron accumulation in the hippocampus might mainly result from the role of the endogenous NO. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats.

    PubMed

    Delcasso, Sébastien; Huh, Namjung; Byeon, Jung Seop; Lee, Jihyun; Jung, Min Whan; Lee, Inah

    2014-11-19

    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies. Copyright © 2014 the authors 0270-6474/14/3415534-14$15.00/0.

  1. Oxidative stress-induced cognitive impairment in obesity can be reversed by vitamin D administration in rats.

    PubMed

    Hajiluian, Ghazaleh; Abbasalizad Farhangi, Mahdieh; Nameni, Ghazaleh; Shahabi, Parviz; Megari-Abbasi, Mehran

    2017-07-06

    There is evidence that obesity leads to cognitive impairments via several markers of oxidative stress including glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase and malondialdehyde (MDA) in the hippocampus. Increased inflammatory markers in the brain have obesity triggering effects. In the current study we aimed to investigate the effects of vitamin D on cognitive function, nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α concentration and markers of oxidative stress in the hippocampus of high-fat diet-induced obese rats. Forty male Wistar rats were divided into two groups: control diet (CD) and high-fat diet (HFD) for 16 weeks; then each group subdivided into two groups including: CD, CD + vitamin D, HFD and HFD + vitamin D. Vitamin D was administered at 500 IU/kg dosage for 5 weeks. Four weeks after supplementation, Morris water maze test was performed. NF-κB and TNF-α concentration in the hippocampus were determined using ELISA kits. Moreover, oxidative stress markers in the hippocampus including GPx, SOD, MDA and CAT concentrations were measured by spectrophotometry methods. HFD significantly increased TNF-α (P = 0.04) and NF-κB (P = 0.01) concentrations in the hippocampus compared with CD. Vitamin D treatment led to a significant reduction in hippocampus NF-κB concentrations in HFD + vitamin D group (P = 0.001); however, vitamin D had no effect on TNF-α concentrations. Moreover, HFD significantly induced oxidative stress by reducing GPx, SOD and increasing MDA concentrations in the hippocampus. Vitamin D supplementation in HFD group also significantly increased GPx, SOD and reduced MDA concentrations. Vitamin D improved hippocampus oxidative stress and inflammatory markers in HFD-induced obese rats and improved cognitive performance. Further studies are needed to better clarify the underlying mechanisms.

  2. Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats.

    PubMed

    Chowdhury, Tara G; Ríos, Mariel B; Chan, Thomas E; Cassataro, Daniela S; Barbarich-Marsteller, Nicole C; Aoki, Chiye

    2014-12-01

    Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and irrational fears of gaining weight. There is no accepted pharmacological treatment for AN, and AN has the highest mortality rate among psychiatric illnesses. Anorexia nervosa most commonly affects females during adolescence, suggesting an effect of sex and hormones on vulnerability to the disease. Activity-based anorexia (ABA) is a rodent model of AN that shares symptoms with AN, including over-exercise, elevation of stress hormones, and genetic links to anxiety traits. We previously reported that ABA in adolescent female rats results in increased apical dendritic branching in CA1 pyramidal cells of the ventral hippocampus at postnatal day 44 (P44). To examine the long-term effects of adolescent ABA (P44) in female rats, we compared the apical branching in the ventral hippocampal CA1 after recovery from ABA (P51) and after a relapse of ABA (P55) with age-matched controls. To examine the age-dependence of the hippocampal plasticity, we examined the effect of ABA during adulthood (P67). We found that while ABA at P44 resulted in increased branching of ventral hippocampal pyramidal cells, relapse of ABA at P55 resulted in decreased branching. ABA induced during adulthood did not have an effect on dendritic branching, suggesting an age-dependence of the vulnerability to structural plasticity. Cells from control animals were found to exhibit a dramatic increase in branching, more than doubling from P44 to P51, followed by pruning from P51 to P55. The proportion of mature spines on dendrites from the P44-ABA animals is similar to that on dendrites from P55-CON animals. These results suggest that the experience of ABA may cause precocious anatomical development of the ventral hippocampus. Importantly, we found that adolescence is a period of continued development of the hippocampus, and increased vulnerability to mental disorders during adolescence may be due to insults during this developmentally critical period. © 2014 Wiley Periodicals, Inc.

  3. Age-dependent long-term structural and functional effects of early life seizures: evidence for a hippocampal critical period influencing plasticity in adulthood

    PubMed Central

    Meyerand, M.E.; Sutula, T.

    2015-01-01

    Neural activity promotes circuit formation in developing systems and during critical periods permanently modifies circuit organization and functional properties. These observations suggest that excessive neural activity, as occurs during seizures, might influence developing neural circuitry with long-term outcomes that depend on age at the time of seizures. We systematically examined long-term structural and functional consequences of seizures induced in rats by kainic acid, pentylenetetrazol, and hyperthermia across postnatal ages from birth through postnatal day 90 in adulthood (P90). Magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and electrophysiological methods at ≥P95 following seizures induced from P1 to P90 demonstrated consistent patterns of gross atrophy, microstructural abnormalities in the corpus callosum and hippocampus, and functional alterations in hippocampal circuitry at ≥P95 that were independent of the method of seizure induction and varied systematically as a function of age at the time of seizures. Three distinct epochs were observed in which seizures resulted in distinct long-term structural and functional outcomes at ≥P95. Seizures prior to P20 resulted in DTI abnormalities in corpus callosum and hippocampus in the absence of gross cerebral atrophy, and increased paired pulse inhibition (PPI) in the dentate gyrus at ≥P95. Seizures after P30 induced a different pattern of DTI abnormalities in the fimbria and hippocampus accompanied by gross cerebral atrophy with increases in lateral ventricular volume, as well as increased PPI in the dentate gyrus at ≥P95. In contrast, seizures between P20-P30 did not result in cerebral atrophy or significant imaging abnormalities in the hippocampus or white matter, but irreversibly decreased PPI in the dentate gyrus compared to normal adult controls. These age-specific long-term structural and functional outcomes identify P20-P30 as a potential critical period in hippocampal development defined by distinctive long-term structural and functional properties in adult hippocampal circuitry, including loss of capacity for seizure-induced plasticity in adulthood that could influence epileptogenesis and other hippocampal – dependent behaviors and functional properties. PMID:25555928

  4. Maternal treatment of rats with the new pyridoindole antioxidant during pregnacy and lactation resulting in improved offspring hippocampal resistance to ischemia in vitro.

    PubMed

    Gáspárová, Zdenka; Snirc, Vladimír; Stolc, Svorad; Dubovický, Michal; Mach, Mojmír; Ujházy, Eduard

    2010-01-01

    Damage to the developing brain may be caused by maternal environment, nutritional deficiencies, failure of protective mechanisms, etc. Further, the developing brain may be damaged by intrauterine ischemia or by ischemia in newborns complicated by perinatal asphyxia. There is an effort to find agents with neuroprotective effect on the developing brain. The aim was to study the effect of the new pyridoindole antioxidant SMe1EC2 on the resistance of offspring hippocampus exposed to ischemia in vitro after treatment of mothers. The electrically evoked responses were determined by extracellular recording from offspring hippocampal slices. The effect of oral treatment of rats with SMe1EC2 over 18 consecutive days, from day 15 of gestation to day 10 post partum (PP) was analyzed in the model of ischemia in vitro measured on the hippocampus of 21-day-old pups, with focus on neuronal function recovery in reoxygenation. Increased recovery of neuronal response was found at the end of 20-min reoxygenation in offspring hippocampal slices exposed to 10-min hypoxia/hypoglycemia from rats whose mothers were treated with the dose of 50 and 250 mg/kg of SMe1EC2, compared to control offspring slices (mothers received vehicle over the same time). The increased offspring hippocampus resistance to hypoxia/hypoglycemia due to 18-day maternal treatment with SMe1EC2 might have been obtained via the transplacental way as well as in the neonatal period via breast milk, skin and saliva. The manifested neuroprotective effect of SMe1EC2 on the developing brain might find exploitation during risk pregnancy and delivery.

  5. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    PubMed

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  6. Inhibition of Rac1 Activity in the Hippocampus Impairs the Forgetting of Contextual Fear Memory.

    PubMed

    Jiang, Lizhu; Mao, Rongrong; Zhou, Qixin; Yang, Yuexiong; Cao, Jun; Ding, Yuqiang; Yang, Yuan; Zhang, Xia; Li, Lingjiang; Xu, Lin

    2016-03-01

    Fear is crucial for survival, whereas hypermnesia of fear can be detrimental. Inhibition of the Rac GTPase is recently reported to impair the forgetting of initially acquired memory in Drosophila. Here, we investigated whether inhibition of Rac1 activity in rat hippocampus could contribute to the hypermnesia of contextual fear. We found that spaced but not massed training of contextual fear conditioning caused inhibition of Rac1 activity in the hippocampus and heightened contextual fear. Furthermore, intrahippocampal injection of the Rac1 inhibitor NSC23766 heightened contextual fear in massed training, while Rac1 activator CN04-A weakened contextual fear in spaced training rats. Our study firstly demonstrates that contextual fear memory in rats is actively regulated by Rac1 activity in the hippocampus, which suggests that the forgetting impairment of traumatic events in posttraumatic stress disorder may be contributed to the pathological inhibition of Rac1 activity in the hippocampus.

  7. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus.

    PubMed

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-08-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions.

  8. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus

    PubMed Central

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-01-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions. PMID:25317156

  9. Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions.

    PubMed

    Li, Xi; Sun, Qinwei; Li, Xian; Cai, Demin; Sui, Shiyan; Jia, Yimin; Song, Haogang; Zhao, Ruqian

    2015-10-01

    The adequate supply of methyl donors is critical for the normal development of brain. The purpose of the present study was to investigate the effects of maternal betaine supplementation on hippocampal gene expression in neonatal piglets and to explore the possible mechanisms. Gestational sows were fed control or betaine-supplemented (3 g/kg) diets throughout the pregnancy. Immediately after birth, male piglets were killed, and the hippocampus was dissected for analyses. The mRNA abundance was determined by reverse transcription real-time polymerase chain reaction. Protein content was measured by Western blot, and DNA methylation was detected by methylated DNA immunoprecipitation assay. Prenatal betaine supplementation did not alter the body weight or the hippocampus weight, but increased the hippocampal DNA content as well as the mRNA expression of proliferation-related genes. Prenatal betaine supplementation increased serum level of methionine (P < 0.05) and up-regulated (P < 0.05) the mRNA and protein expression of betaine-homocysteine methyltransferase, glycine N-methyltransferase and DNA methyltransferase 1 in the neonatal hippocampus. Hippocampal expression of insulin growth factor II (IGF2) and its receptors IGF1R and IGF2R were all significantly up-regulated (P < 0.05) in betaine-treated group, together with a significant activation (P < 0.01) of the downstream extracellular signal-regulated kinase 1/2. Moreover, the differentially methylated region (DMR) 1 and 2 on IGF2 locus was found to be hypermethylated (P < 0.05) in the hippocampus of betaine-treated piglets. These results indicate that maternal betaine supplementation enhances betaine/methionine metabolism and DNA methyltransferase expression, causes hypermethylation of DMR on IGF2 gene, which was associated with augmented expression of IGF2 and cell proliferation/anti-apoptotic markers in the hippocampus of neonatal piglets.

  10. Perinatal fluoxetine effects on social play, the HPA system, and hippocampal plasticity in pre-adolescent male and female rats: Interactions with pre-gestational maternal stress.

    PubMed

    Gemmel, Mary; Hazlett, Mariah; Bögi, Eszter; De Lacalle, Sonsoles; Hill, Lesley A; Kokras, Nikolaos; Hammond, Geoffrey L; Dalla, Christina; Charlier, Thierry D; Pawluski, Jodi L

    2017-10-01

    Selective serotonin reuptake inhibitor medications (SSRIs) are the first lines of treatment for maternal affective disorders, and are prescribed to up to 10% of pregnant women. Concern has been raised about how perinatal exposure to these medications affect offspring neurobehavioral outcomes, particularly those related to social interactions, as recent research has reported conflicting results related to autism spectrum disorder (ASD) risk in children prenatally exposed to SSRIs. Therefore, the aim of this work was to investigate the effects of perinatal exposure to the SSRI fluoxetine on social play behaviors and the hypothalamic pituitary adrenal system, using a model of pre-gestational maternal stress. We also investigated synaptic proteins in the CA2, CA3, and dentate gyrus of the hippocampus, as well as number of immature neurons in the granule cell layer, as both measures of plasticity in the hippocampus have been linked to social behaviors. In pre-adolescent male and female Sprague-Dawley rat offspring, main findings show that perinatal fluoxetine prevents the negative effect of maternal stress on sibling play behavior. However, perinatal fluoxetine increased social aggressive play with a novel conspecific in both sexes and decreased time grooming a novel conspecific in males only. Perinatal fluoxetine also increased serum corticosteroid binding globulin levels, 5-HT levels in the hippocampus, and pre-synaptic density assessed via synaptophysin in the dentate gyrus. Social interaction was significantly correlated with changes in plasticity in the CA2 region of the hippocampus. Pre-gestational maternal stress exposure resulted in significantly decreased rates of hippocampal neurogenesis and synaptophysin density in the dentate gyrus of pre-adolescent males, but not females. Together, these results further characterize the role of perinatal SSRIs, maternal stress prior to conception, and sex/gender on developing social behaviors and related plasticity in the hippocampus of pre-adolescent offspring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-convergence on axonal guidance.

    PubMed

    Kaalund, Sanne S; Venø, Morten T; Bak, Mads; Møller, Rikke S; Laursen, Henning; Madsen, Flemming; Broholm, Helle; Quistorff, Bjørn; Uldall, Peter; Tommerup, Niels; Kauppinen, Sakari; Sabers, Anne; Fluiter, Kees; Møller, Lisbeth B; Nossent, Anne Y; Silahtaroglu, Asli; Kjems, Jørgen; Aronica, Eleonora; Tümer, Zeynep

    2014-12-01

    Mesial temporal lobe epilepsy (MTLE) is one of the most common types of the intractable epilepsies and is most often associated with hippocampal sclerosis (HS), which is characterized by pronounced loss of hippocampal pyramidal neurons. microRNAs (miRNAs) have been shown to be dysregulated in epilepsy and neurodegenerative diseases, and we hypothesized that miRNAs could be involved in the pathogenesis of MTLE and HS. miRNA expression was quantified in hippocampal specimens from human patients using miRNA microarray and quantitative real-time polymerase chain reaction RT-PCR, and by RNA-seq on fetal brain specimens from domestic pigs. In situ hybridization was used to show the spatial distribution of miRNAs in the human hippocampus. The potential effect of miRNAs on targets genes was investigated using the dual luciferase reporter gene assay. miRNA expression profiling showed that 25 miRNAs were up-regulated and 5 were down-regulated in hippocampus biopsies of MTLE/HS patients compared to controls. We showed that miR-204 and miR-218 were significantly down-regulated in MTLE and HS, and both were expressed in neurons in all subfields of normal hippocampus. Moreover, miR-204 and miR-218 showed strong changes in expression during fetal development of the hippocampus in pigs, and we identified four target genes, involved in axonal guidance and synaptic plasticity, ROBO1, GRM1, SLC1A2, and GNAI2, as bona fide targets of miR-218. GRM1 was also shown to be a direct target of miR-204. miR-204 and miR-218 are developmentally regulated in the hippocampus and may contribute to the molecular mechanisms underlying the pathogenesis of MTLE and HS. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  12. Infant Brain Development and Vulnerability to Later Internalizing Difficulties: The Generation R Study

    ERIC Educational Resources Information Center

    Herba, Catherine M.; Roza, Sabine J.; Govaert, Paul; van Rossum, Joram; Hofman, Albert; Jaddoe, Vincent; Verhulst, Frank C.; Tiemeier, Henning

    2010-01-01

    Objective: Although clinical studies have demonstrated smaller subcortical volumes in structures such as the amygdala, hippocampus, caudate nucleus, and thalamus in adults and adolescents with depressive disorders and anxiety, no study has assessed such structures in babies, long before the development of the disorders. This study examined whether…

  13. PERSISTENT IMPAIRMENTS IN SHORT-TERM BUT ENHANCED LONG-TERM SYNAPTIC PLASTICITY IN HIPPOCAMPAL AREA CA1 FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM.

    EPA Science Inventory

    Thyroid hormones (TH) are critical for nervous system development. Deficiency of TH during development impair performance on tasks of learning and memory that rely upon the hippocampus, but the mechanism underlying this impairment is not well understood. The present study was ...

  14. Bone morphogenetic protein signaling in the developing telencephalon controls formation of the hippocampal dentate gyrus and modifies fear-related behavior.

    PubMed

    Caronia, Giuliana; Wilcoxon, Jennifer; Feldman, Polina; Grove, Elizabeth A

    2010-05-05

    The cortical hem is an embryonic signaling center that generates bone morphogenetic proteins (BMPs) and acts as an organizer for the hippocampus. The role of BMP signaling in hippocampal neurogenesis, however, has not been established. We therefore generated mice that were deficient in Bmpr1b constitutively, and deficient in Bmpr1a conditionally in the dorsal telencephalon. In double mutant male and female mice, the dentate gyrus (DG) was dramatically smaller than in control mice, reflecting decreased production of granule neurons at the peak period of DG neurogenesis. Additionally, the pool of cells that generates new DG neurons throughout life was reduced, commensurate with the smaller size of the DG. Effects of diminished BMP signaling on the cortical hem were at least partly responsible for these defects in DG development. Reduction of the DG and its major extrinsic output to CA3 raised the possibility that the DG was functionally compromised. We therefore looked for behavioral deficits in double mutants and found that the mice were less responsive to fear- or anxiety-provoking stimuli, whether the association of the stimulus with fear or anxiety was learned or innate. Given that no anatomical defects appeared in the double mutant telencephalon outside the DG, our observations support a growing literature that implicates the hippocampus in circuitry mediating fear and anxiety. Our results additionally indicate a requirement for BMP signaling in generating the dorsalmost neuronal lineage of the telencephalon, DG granule neurons, and in the development of the stem cell niche that makes neurons in the adult hippocampus.

  15. Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism.

    PubMed Central

    Martínez-Galán, J R; Pedraza, P; Santacana, M; Escobar del Ray, F; Morreale de Escobar, G; Ruiz-Marcos, A

    1997-01-01

    The most severe brain damage associated with thyroid dysfunction during development is observed in neurological cretins from areas with marked iodine deficiency. The damage is irreversible by birth and related to maternal hypothyroxinemia before mid gestation. However, direct evidence of this etiopathogenic mechanism is lacking. Rats were fed diets with a very low iodine content (LID), or LID supplemented with KI. Other rats were fed the breeding diet with a normal iodine content plus a goitrogen, methimazole (MMI). The concentrations of -thyroxine (T4) and 3,5,3'triiodo--thyronine (T3) were determined in the brain of 21-d-old fetuses. The proportion of radial glial cell fibers expressing nestin and glial fibrillary acidic protein was determined in the CA1 region of the hippocampus. T4 and T3 were decreased in the brain of the LID and MMI fetuses, as compared to their respective controls. The number of immature glial cell fibers, expressing nestin, was not affected, but the proportion of mature glial cell fibers, expressing glial fibrillary acidic protein, was significantly decreased by both LID and MMI treatment of the dams. These results show impaired maturation of cells involved in neuronal migration in the hippocampus, a region known to be affected in cretinism, at a stage of development equivalent to mid gestation in humans. The impairment is related to fetal cerebral thyroid hormone deficiency during a period of development when maternal thyroxinemia is believed to play an important role. PMID:9169500

  16. Longitudinal growth and morphology of the hippocampus through childhood: Impact of prematurity and implications for memory and learning.

    PubMed

    Thompson, Deanne K; Omizzolo, Cristina; Adamson, Christopher; Lee, Katherine J; Stargatt, Robyn; Egan, Gary F; Doyle, Lex W; Inder, Terrie E; Anderson, Peter J

    2014-08-01

    The effects of prematurity on hippocampal development through early childhood are largely unknown. The aims of this study were to (1) compare the shape of the very preterm (VPT) hippocampus to that of full-term (FT) children at 7 years of age, and determine if hippocampal shape is associated with memory and learning impairment in VPT children, (2) compare change in shape and volume of the hippocampi from term-equivalent to 7 years of age between VPT and FT children, and determine if development of the hippocampi over time predicts memory and learning impairment in VPT children. T1 and T2 magnetic resonance images were acquired at both term equivalent and 7 years of age in 125 VPT and 25 FT children. Hippocampi were manually segmented and shape was characterized by boundary point distribution models at both time-points. Memory and learning outcomes were measured at 7 years of age. The VPT group demonstrated less hippocampal infolding than the FT group at 7 years. Hippocampal growth between infancy and 7 years was less in the VPT compared with the FT group, but the change in shape was similar between groups. There was little evidence that the measures of hippocampal development were related to memory and learning impairments in the VPT group. This study suggests that the developmental trajectory of the human hippocampus is altered in VPT children, but this does not predict memory and learning impairment. Further research is required to elucidate the mechanisms for memory and learning difficulties in VPT children. Copyright © 2014 Wiley Periodicals, Inc.

  17. Acetylation of histones in neocortex and hippocampus of rats exposed to different modes of hypobaric hypoxia: Implications for brain hypoxic injury and tolerance.

    PubMed

    Samoilov, Mikhail; Churilova, Anna; Gluschenko, Tatjana; Vetrovoy, Oleg; Dyuzhikova, Natalia; Rybnikova, Elena

    2016-03-01

    Acetylation of nucleosome histones results in relaxation of DNA and its availability for the transcriptional regulators, and is generally associated with the enhancement of gene expression. Although it is well known that activation of a variety of pro-adaptive genes represents a key event in the development of brain hypoxic/ischemic tolerance, the role of epigenetic mechanisms, in particular histone acetylation, in this process is still unexplored. The aim of the present study was to investigate changes in acetylation of histones in vulnerable brain neurons using original well-standardized model of hypobaric hypoxia and preconditioning-induced tolerance of the brain. Using quantitative immunohistochemistry and Western blot, effects of severe injurious hypobaric hypoxia (SH, 180mm Hg, 3h) and neuroprotective preconditioning mode (three episodes of 360mm Hg for 2h spaced at 24h) on the levels of the acetylated proteins and acetylated H3 Lys24 (H3K24ac) in the neocortex and hippocampus of rats were studied. SH caused global repression of the acetylation processes in the neocortex (layers II-III, V) and hippocampus (CA1, CA3) by 3-24h, and this effect was prevented by the preconditioning. Moreover, hypoxic preconditioning remarkably increased the acetylation of H3K24 in response to SH in the brain areas examined. The preconditioning hypoxia without subsequent SH also stimulated acetylation processes in the neocortex and hippocampus. The moderately enhanced expression of the acetylated proteins in the preconditioned rats was maintained for 24h, whereas acetylation of H3K24 was intense but transient, peaked at 3h. The novel data obtained in the present study indicate that large activation of the acetylation processes, in particular acetylation of histones might be essential for the development of brain hypoxic tolerance. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Novel Immune-Modulating Cellular Vaccine for Prostate Cancer Immunotherapy

    DTIC Science & Technology

    2015-10-01

    the 3-month timeline and details provided in year 1 report. Anti-murine CTLA4 RNA Murine PAP Murine PSMA Murine PAP no signal sequence (mPAP-SS...Murine PSMA no signal sequence (mPSMA-SS) Year 2 (current) report: In addition to what we proposed to do, we wanted to determine if other...PAP, PSCA, PSMA and STEAP in the prostate cell lines TRAMP-C1 and TRAMP-C2. Both are cell lines that have been generated by in vitro propagation of

  19. Hippocampus in the N. American mink (Mustela vison Brisson, 1756).

    PubMed

    Gościcka, D; Stankiewicz, W; Szpinda, M

    1993-01-01

    In sixty adult minks the hippocampus was dissected and measurements of its individual components were taken. Anatomical studies of the mink have been hardly undertaken, while the studies of the mink's brain can be considered as "terra incognita" (D. Gościcka). This is why it was decided to conduct an examination of the hippocampus of this animal.

  20. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  1. Contributions of Volumetrics of the Hippocampus and Thalamus to Verbal Memory in Temporal Lobe Epilepsy Patients

    ERIC Educational Resources Information Center

    Stewart, Christopher C.; Griffith, H. Randall; Okonkwo, Ozioma C.; Martin, Roy C.; Knowlton, Robert K.; Richardson, Elizabeth J.; Hermann, Bruce P.; Seidenberg, Michael

    2009-01-01

    Recent theories have posited that the hippocampus and thalamus serve distinct, yet related, roles in episodic memory. Whereas the hippocampus has been implicated in long-term memory encoding and storage, the thalamus, as a whole, has been implicated in the selection of items for subsequent encoding and the use of retrieval strategies. However,…

  2. Hippocampus in health and disease: An overview

    PubMed Central

    Anand, Kuljeet Singh; Dhikav, Vikas

    2012-01-01

    Hippocampus is a complex brain structure embedded deep into temporal lobe. It has a major role in learning and memory. It is a plastic and vulnerable structure that gets damaged by a variety of stimuli. Studies have shown that it also gets affected in a variety of neurological and psychiatric disorders. In last decade or so, lot has been learnt about conditions that affect hippocampus and produce changes ranging from molecules to morphology. Progresses in radiological delineation, electrophysiology, and histochemical characterization have made it possible to study this archicerebral structure in greater detail. Present paper attempts to give an overview of hippocampus, both in health and diseases. PMID:23349586

  3. Circulating Estradiol Regulates Brain-Derived Estradiol via Actions at GnRH Receptors to Impact Memory in Ovariectomized Rats.

    PubMed

    Nelson, Britta S; Black, Katelyn L; Daniel, Jill M

    2016-01-01

    Systemic estradiol treatment enhances hippocampus-dependent memory in ovariectomized rats. Although these enhancements are traditionally thought to be due to circulating estradiol, recent data suggest these changes are brought on by hippocampus-derived estradiol, the synthesis of which depends on gonadotropin-releasing hormone (GnRH) activity. The goal of the current work is to test the hypothesis that peripheral estradiol affects hippocampus-dependent memory through brain-derived estradiol regulated via hippocampal GnRH receptor activity. In the first experiment, intracerebroventricular infusion of letrozole, which prevents the synthesis of estradiol, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory in a radial-maze task. In the second experiment, hippocampal infusion of antide, a long-lasting GnRH receptor antagonist, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory. In the third experiment, hippocampal infusion of GnRH enhanced hippocampus-dependent memory, the effects of which were blocked by letrozole infusion. Results indicate that peripheral estradiol-induced enhancement of cognition is mediated by brain-derived estradiol via hippocampal GnRH receptor activity.

  4. Neurosteroids in Adult Hippocampus of Male and Female Rodents: Biosynthesis and Actions of Sex Steroids.

    PubMed

    Hojo, Yasushi; Kawato, Suguru

    2018-01-01

    The brain is not only the target of steroid hormones but also is able to locally synthesize steroids de novo . Evidence of the local production of steroids in the brain has been accumulating in various vertebrates, including teleost fish, amphibia, birds, rodents, non-human primates, and humans. In this review, we mainly focus on the local production of sex steroids in the hippocampal neurons of adult rodents (rats and mice), a center for learning and memory. From the data of the hippocampus of adult male rats, hippocampal principal neurons [pyramidal cells in CA1-CA3 and granule cells in dentate gyrus (DG)] have a complete system for biosynthesis of sex steroids. Liquid chromatography with tandem-mass-spectrometry (LC-MS/MS) enabled us to accurately determine the levels of hippocampal sex steroids including 17β-estradiol (17β-E2), testosterone (T), and dihydrotestosterone (DHT), which are much higher than those in blood. Next, we review the steroid synthesis in the hippocampus of female rats, since previous knowledge had been biased toward the data from males. Recently, we clarified that the levels of hippocampal steroids fluctuate in adult female rats across the estrous cycle. Accurate determination of hippocampal steroids at each stage of the estrous cycle is of importance for providing the account for the fluctuation of female hippocampal functions, including spine density, long-term potentiation (LTP) and long-term depression (LTD), and learning and memory. These functional fluctuations in female had been attributed to the level of circulation-derived steroids. LC-MS/MS analysis revealed that the dendritic spine density in CA1 of adult female hippocampus correlates with the levels of hippocampal progesterone and 17β-E2. Finally, we introduce the direct evidence of the role of hippocampus-synthesized steroids in hippocampal function including neurogenesis, LTP, and memory consolidation. Mild exercise (2 week of treadmill running) elevated synthesis of DHT in the hippocampus, but not in the testis, of male rats, resulting in enhancement of neurogenesis in DG. Concerning synaptic plasticity, hippocampus-synthesized E2 is required for LTP induction, whereas hippocampus-synthesized DHT is required for LTD induction. Furthermore, hippocampus-synthesized E2 is involved in memory consolidation tested by object recognition and object placement tasks, both of which are hippocampus-dependent.

  5. Radiation Fibrosis of the Vocal Fold: From Man to Mouse

    PubMed Central

    Johns, Michael M.; Kolachala, Vasantha; Berg, Eric; Muller, Susan; Creighton, Frances X.; Branski, Ryan C.

    2013-01-01

    Objectives To characterize fundamental late tissue effects in the human vocal fold following radiation therapy. To develop a murine model of radiation fibrosis to ultimately develop both treatment and prevention paradigms. Design Translational study using archived human and fresh murine irradiated vocal fold tissue. Methods 1) Irradiated vocal fold tissue from patients undergoing laryngectomy for loss of function from radiation fibrosis were identified from pathology archives. Histomorphometry, immunohistochemistry, and whole-genome microarray as well as real-time transcriptional analyses was performed. 2) Focused radiation to the head and neck was delivered to mice in a survival fashion. One month following radiation, vocal fold tissue was analyzed with histomorphometry, immunohistochemistry, and real-time PCR transcriptional analysis for selected markers of fibrosis. Results Human irradiated vocal folds demonstrated increased collagen transcription with increased deposition and disorganization of collagen in both the thyroarytenoid muscle and the superficial lamina propria. Fibronectin were increased in the superficial lamina propria. Laminin decreased in the thyroarytenoid muscle. Whole genome microarray analysis demonstrated increased transcription of markers for fibrosis, oxidative stress, inflammation, glycosaminoglycan production and apoptosis. Irradiated murine vocal folds demonstrated increases in collagen and fibronectin transcription and deposition in the lamina propria. Transforming growth factor (TGF)-β increased in the lamina propria. Conclusion Human irradiated vocal folds demonstrate molecular changes leading to fibrosis that underlie loss of vocal fold pliability that occurs in patients following laryngeal irradiation. Irradiated murine tissue demonstrates similar findings, and this mouse model may have utility in creating prevention and treatment strategies for vocal fold radiation fibrosis. PMID:23242839

  6. Cloning and characterization of the murine homolog of the sno proto-oncogene reveals a novel splice variant

    NASA Technical Reports Server (NTRS)

    Pelzer, T.; Lyons, G. E.; Kim, S.; Moreadith, R. W.; Blomqvist, C. G. (Principal Investigator)

    1996-01-01

    The cellular function(s) of the SNO protein remain undefined. To gain a better understanding of possible developmental roles of this cellular proto-oncogene, we have cloned two murine sno cDNAs and have investigated their expression patterns in embryonic and postnatal tissues. A single major transcript of 7.5 kb is detected in multiple tissues by Northern blot. However, reverse transcriptase polymerase chain reaction (RT-PCR) and RNAse protection assays revealed a novel splice variant in every tissue examined. Two isoforms, termed sno N and sno-dE3 (dE3, deletion within exon 3), were identified. The sno-dE3 isoform employs a novel 5' splice site located within the coding region of the third exon and deletes potential kinase recognition motifs. Transcripts of both sno isoforms accumulate ubiquitously but are most abundant in the developing central nervous system. The in situ hybridization patterns of sno expression during murine development suggest potential roles in tissues with a high degree of cellular proliferation. Expression in terminally differentiated tissues such as muscle and neurons indicates that SNO may have multiple functional activities.

  7. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  8. H3K9me3 Inhibition Improves Memory, Promotes Spine Formation, and Increases BDNF Levels in the Aged Hippocampus

    PubMed Central

    Prieto, G. Aleph; Petrosyan, Arpine; Loertscher, Brad M.; Dieskau, André P.; Overman, Larry E.; Cotman, Carl W.

    2016-01-01

    An increasing number of studies show that an altered epigenetic landscape may cause impairments in regulation of learning and memory-related genes within the aged hippocampus, eventually resulting in cognitive deficits in the aged brain. One such epigenetic repressive mark is trimethylation of H3K9 (H3K9me3), which is typically implicated in gene silencing. Here, we identify, for the first time, an essential role for H3K9me3 and its histone methyl transferase (SUV39H1) in mediating hippocampal memory functions. Pharmacological inhibition of SUV39H1 using a novel and selective inhibitor decreased levels of H3K9me3 in the hippocampus of aged mice, and improved performance in the objection location memory and fear conditioning tasks and in a complex spatial environment learning task. The inhibition of SUV39H1 induced an increase in spine density of thin and stubby but not mushroom spines in the hippocampus of aged animals and increased surface GluR1 levels in hippocampal synaptosomes, a key index of spine plasticity. Furthermore, there were changes at BDNF exon I gene promoter, in concert with overall BDNF levels in the hippocampus of drug-treated animals compared with control animals. Together, these data demonstrate that SUV39H1 inhibition and the concomitant H3K9me3 downregulation mediate gene transcription in the hippocampus and reverse age-dependent deficits in hippocampal memory. SIGNIFICANCE STATEMENT Cognitive decline is a debilitating condition associated with not only neurodegenerative diseases but also aging in general. However, effective treatments have been slow to emerge so far. In this study, we demonstrate that epigenetic regulation of key synaptic proteins may be an underlying, yet reversible, cause of this decline. Our findings suggest that histone 3 trimethylation is a probable target for pharmacological intervention that can counteract cognitive decline in the aging brain. Finally, we provide support to the hypothesis that, by manipulating the enzyme that regulates H3K9me3 (using a newly developed specific inhibitor of SUV39H1), it is possible to alter the chromatin state of subjects and restore memory and synaptic function in the aging brain. PMID:27013689

  9. Applications of bioactive material from snakehead fish (Channa striata) for repairing of learning-memory capability and motoric activity: a case study of physiological aging and aging-caused oxidative stress in rats

    NASA Astrophysics Data System (ADS)

    Sunarno, Sunarno; Muflichatun Mardiati, Siti; Rahadian, Rully

    2018-05-01

    Physiological aging and aging due to oxidative stress are a major factor cause accelerated brain aging. Aging is characterized by a decrease of brain function of the hippocampus which is linked to the decline in the capability of learning-memory and motoric activity. The objective of this research is to obtain the important information about the mechanisms of brain antiaging associated with the improvement of hippocampus function, which includes aspects of learning-memory capability and motoric activity as well as mitochondrial ultrastructure profile of hippocampus cornu ammonis cells after treated by fish snakehead fish extract. Snakehead fish in Rawa Pening Semarang District allegedly holds the potential of endemic, which contains bioactive antiaging material that can prevent aging or improve the function of the hippocampus. This research has been conducted using a completely randomized design consisting of four treatments with five replications. The treatments were including rats with physiological aging or aging due to oxidative stress which was treated and without treated with meat extract of snakehead fish. The research was divided into two stages, i.e., determining of learning-memory capability, and determining motoric activity. The measured-parameters are time response to find feed, distance travel, time stereotypes, ambulatory time, and resting time. The result showed that the snakehead fish meat extract might improve function hippocampus, both in physiological aging or aging due to oxidative stress. The capability of learning and memory showed that the rats in both conditions of aging after getting treatment of meat extract of snakehead fish could get a feed in the fourth arm maze faster than rats untreated snakehead fish meat extract. Similarly, the measurement of the distance traveled, time stereotypes, ambulatory time, and resting time showed that rats which received treatment of meat extract of snakehead fish were better than the untreated rats. To conclude, the meat extract of snakehead fish can be used as antiaging material to improve the function of the hippocampus, to improve the capability of learning and memory, to improve motoric activity, and to prevent aging. These findings are expected to provide comprehensive information for the development of antiaging research as an effort to improve public health and to improve learning-memory capability and motoric activity.

  10. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: a dissociation of hippocampal Fos from seizure activity

    PubMed Central

    Kadiyala, Sridhar B.; Papandrea, Dominick; Tuz, Karina; Anderson, Tara M.; Jayakumar, Sachidhanand; Herron, Bruce J.; Ferland, Russell J.

    2014-01-01

    Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2’s seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ~85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype in B6 mice is highly correlated with bilateral Fos expression in the VMH and was not observed in D2 mice, which always express clonic-forebrain seizures upon flurothyl retest. Overall, these results illustrate specific differences in protein and RNA expression in different inbred strains following seizures that precede the reorganizational events that affect seizure susceptibility and changes in seizure semiology over time. PMID:25524858

  11. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: A dissociation of hippocampal Fos from seizure activity.

    PubMed

    Kadiyala, Sridhar B; Papandrea, Dominick; Tuz, Karina; Anderson, Tara M; Jayakumar, Sachidhanand; Herron, Bruce J; Ferland, Russell J

    2015-01-01

    Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2's seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ∼85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype in B6 mice is highly correlated with bilateral Fos expression in the VMH and was not observed in D2 mice, which always express clonic-forebrain seizures upon flurothyl retest. Overall, these results illustrate specific differences in protein and RNA expression in different inbred strains following seizures that precede the reorganizational events that affect seizure susceptibility and changes in seizure semiology over time. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Improved plan quality with automated radiotherapy planning for whole brain with hippocampus sparing: a comparison to the RTOG 0933 trial.

    PubMed

    Krayenbuehl, J; Di Martino, M; Guckenberger, M; Andratschke, N

    2017-10-02

    Whole-brain radiation therapy (WBRT) with hippocampus sparing (HS) has been investigated by the radiation oncology working group (RTOG) 0933 trial for patients with multiple brain metastases. They showed a decrease of adverse neurocognitive effects with HS WBRT compared to WBRT alone. With the development of automated treatment planning system (aTPS) in the last years, a standardization of the plan quality at a high level was achieved. The goal of this study was to evaluate the feasibility of using an aTPS for the treatment of HS WBRT and see if the RTOG 0933 dose constraints could be achieved and improved. Ten consecutive patients treated with HS WBRT were enrolled in this study. 10 × 3 Gy was prescribed according to the RTOG 0933 protocol to 92% of the target volume (whole-brain excluding the hippocampus expanded by 5 mm in 3-dimensions). In contrast to RTOG 0933, the maximum allowed point dose to normal brain was significantly lowered and restricted to 36.5 Gy. All patients were planned with volumetric modulated arc therapy (VMAT) technique using four arcs. Plans were optimized using Auto-Planning (AP) (Philips Radiation Oncology Systems) with one single AP template and optimization. All the constraints from the RTOG 0933 trial were achieved. A significant improvement for the maximal dose to 2% of the brain with a reduction of 4 Gy was achieved (33.5 Gy vs. RTOG 37.5 Gy) and the minimum hippocampus dose was reduced by 10% (8.1 Gy vs. RTOG 9 Gy). A steep dose gradient around the hippocampus was achieved with a mean dose of 27.3 Gy at a distance between 0.5 cm and 1 cm from the hippocampus. The effective working time to optimize a plan was kept below 6'. Automated treatment planning for HS WBRT was able to fulfil all the recommendations from the RTOG 0933 study while significantly improving dose homogeneity and decreasing unnecessary hot spot in the normal brain. With this approach, a standardization of plan quality was achieved and the effective time required for plan optimization was minimized.

  13. Identifying and Characterizing the Effects of Nutrition on Hippocampal Memory123

    PubMed Central

    Monti, Jim M.; Baym, Carol L.; Cohen, Neal J.

    2014-01-01

    In this review we provide evidence linking relational memory to the hippocampus, as well as examples of sensitive relational memory tasks that may help characterize the subtle effects of nutrition on learning and memory. Research into dietary effects on cognition is in its nascent stages, and many studies have cast a wide net with respect to areas of cognition to investigate. However, it may be that nutrition will have a disproportionate effect on particular cognitive domains. Thus, researchers interested in nutrition-cognition interactions may wish to apply a more targeted approach when selecting cognitive domains. We suggest that hippocampus-based relational memory may be extraordinarily sensitive to the effects of nutrition. The hippocampus shows unique plastic capabilities, making its structure and function responsive to an array of lifestyle factors and environmental conditions, including dietary intake. A major function of the hippocampus is relational memory, defined as learning and memory for the constituent elements and facts that comprise events. Here we identify several sensitive tests of relational memory that may be used to examine what may be subtle effects of nutrition on hippocampus and memory. We then turn to the literature on aerobic exercise and cognition to provide examples of translational research programs that have successfully applied this targeted approach centering on the hippocampus and sensitive relational memory tools. Finally, we discuss selected findings from animal and human research on nutrition and the hippocampus and advocate for the role of relational memory tasks in future research. PMID:24829486

  14. Hippocampal Administration of Levothyroxine Impairs Contextual Fear Memory Consolidation in Rats.

    PubMed

    Yu, Dafu; Zhou, Heng; Zou, Lin; Jiang, Yong; Wu, Xiaoqun; Jiang, Lizhu; Zhou, Qixin; Yang, Yuexiong; Xu, Lin; Mao, Rongrong

    2017-01-01

    Thyroid hormone (TH) receptors are highly distributed in the hippocampus, which plays a vital role in memory processes. However, how THs are involved in the different stages of memory process is little known. Herein, we used hippocampus dependent contextual fear conditioning to address the effects of hippocampal THs on the different stages of fear memory. First, we found that a single systemic levothyroxine (LT 4 ) administration increased the level of free triiodothyronine (FT 3 ) and free tetraiodothyroxine (FT 4 ) not only in serum but also in hippocampus. In addition, a single systemic LT 4 administration immediately after fear conditioning significantly impaired fear memory. These results indicated the important role of hippocampal THs in fear memory process. To further confirm the effects of hippocampal THs on the different stages of fear memory, LT 4 (0.4 μg/μl, 1 μl/side) was injected bilaterally into hippocampus. Rats given LT 4 into hippocampus before training or tests had no effect on the acquisition or retrieval of fear memory, however rats given LT 4 into hippocampus either immediately or 2 h after training showed being significantly impaired fear memory, which demonstrated LT 4 administration into hippocampus impairs the consolidation but has no effect on the acquisition and retrieval of fear memory. Furthermore, hippocampal injection of LT 4 did not affect rats' locomotor activity, thigmotaxis and THs level in prefrontal cortex (PFC) and serum. These findings may have important implications for understanding mechanisms underlying contribution of THs to memory disorders.

  15. Hippocampal shape deformation in female patients with unremitting major depressive disorder.

    PubMed

    Tae, W S; Kim, S S; Lee, K U; Nam, E C; Choi, J W; Park, J I

    2011-04-01

    The hippocampal atrophy of MDD has been known, but the region shape contractions of the hippocampus in MDD were inconsistent. Spheric harmonic shape analysis was applied to the hippocampus in female patients with unremitting MDD to evaluate morphometric changes of the hippocampus. Shape analysis was performed by using T1-weighted MR imaging in 21 female patients with MDD and 21 age- and sex-matched healthy controls. Manually segmented hippocampi were parameterized, and the point-to-point-based group difference was compared by using the Hotelling T-squared test. The partial correlation analyses were tested between clinical variables and shape changes. Both hippocampal volumes were small in patients with MDD compared with healthy controls, and the right hippocampal volume was negatively correlated with the number of episodes at marginal significance. Regional shape contractions were found in the ambient gyrus, basal hippocampal head, posterior subiculum, and dorsal hippocampus of the left hemisphere. The right hippocampus showed a similar pattern but was less atrophic compared with the left hippocampus. A negative correlation was found between the HDRS and shape deformation in the CA3, ambient gyrus, posterior subiculum, and gyrus fasciolaris of the left hippocampus. We showed atrophy and regional shape contractions in the hippocampi of patients with MDD, which were more dominant on the left side. The causes of hippocampal damage could be the hypersecretion of glucocorticoids contributing to neuronal death or the failing of adult neurogenesis in the dentate gyrus.

  16. Characterizing the role of the hippocampus during episodic simulation and encoding.

    PubMed

    Thakral, Preston P; Benoit, Roland G; Schacter, Daniel L

    2017-12-01

    The hippocampus has been consistently associated with episodic simulation (i.e., the mental construction of a possible future episode). In a recent study, we identified an anterior-posterior temporal dissociation within the hippocampus during simulation. Specifically, transient simulation-related activity occurred in relatively posterior portions of the hippocampus and sustained activity occurred in anterior portions. In line with previous theoretical proposals of hippocampal function during simulation, the posterior hippocampal activity was interpreted as reflecting a transient retrieval process for the episodic details necessary to construct an episode. In contrast, the sustained anterior hippocampal activity was interpreted as reflecting the continual recruitment of encoding and/or relational processing associated with a simulation. In the present study, we provide a direct test of these interpretations by conducting a subsequent memory analysis of our previously published data to assess whether successful encoding during episodic simulation is associated with the anterior hippocampus. Analyses revealed a subsequent memory effect (i.e., later remembered > later forgotten simulations) in the anterior hippocampus. The subsequent memory effect was transient and not sustained. Taken together, the current findings provide further support for a component process model of hippocampal function during simulation. That is, unique regions of the hippocampus support dissociable processes during simulation, which include the transient retrieval of episodic information, the sustained binding of such information into a coherent episode, and the transient encoding of that episode for later retrieval. © 2017 Wiley Periodicals, Inc.

  17. Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms.

    PubMed

    Barbeau, Emmanuel J; Chauvel, Patrick; Moulin, Christopher J A; Regis, Jean; Liégeois-Chauvel, Catherine

    2017-04-01

    The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks). We found that memory and detection tasks elicited late local field potentials in the hippocampus during the same period, but of opposite polarity (negative during novelty detection tasks, positive during memory tasks, ∼260-600 ms poststimulus onset, P < 0.05). Critically, these potentials had maximal amplitude on the same contact in the hippocampus for each patient. This pattern did not depend on the task as different types of memory and novelty detection tasks were used. It did not depend on the novelty of the stimulus or the difficulty of the task either. Two different hypotheses are discussed to account for this result: it is either due to the activation of CA1 pyramidal neurons by two different pathways such as the monosynaptic and trisynaptic entorhinal-hippocampus pathways, or to the activation of different neuronal populations, that is, differing either functionally (e.g., novelty/familiarity neurons) or located in different regions of the hippocampus (e.g., CA1/subiculum). In either case, these activities may integrate the activity of two distinct large-scale networks implementing externally or internally oriented, mutually exclusive, brain states. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Hippocampal Administration of Levothyroxine Impairs Contextual Fear Memory Consolidation in Rats

    PubMed Central

    Yu, Dafu; Zhou, Heng; Zou, Lin; Jiang, Yong; Wu, Xiaoqun; Jiang, Lizhu; Zhou, Qixin; Yang, Yuexiong; Xu, Lin; Mao, Rongrong

    2017-01-01

    Thyroid hormone (TH) receptors are highly distributed in the hippocampus, which plays a vital role in memory processes. However, how THs are involved in the different stages of memory process is little known. Herein, we used hippocampus dependent contextual fear conditioning to address the effects of hippocampal THs on the different stages of fear memory. First, we found that a single systemic levothyroxine (LT4) administration increased the level of free triiodothyronine (FT3) and free tetraiodothyroxine (FT4) not only in serum but also in hippocampus. In addition, a single systemic LT4 administration immediately after fear conditioning significantly impaired fear memory. These results indicated the important role of hippocampal THs in fear memory process. To further confirm the effects of hippocampal THs on the different stages of fear memory, LT4 (0.4 μg/μl, 1 μl/side) was injected bilaterally into hippocampus. Rats given LT4 into hippocampus before training or tests had no effect on the acquisition or retrieval of fear memory, however rats given LT4 into hippocampus either immediately or 2 h after training showed being significantly impaired fear memory, which demonstrated LT4 administration into hippocampus impairs the consolidation but has no effect on the acquisition and retrieval of fear memory. Furthermore, hippocampal injection of LT4 did not affect rats’ locomotor activity, thigmotaxis and THs level in prefrontal cortex (PFC) and serum. These findings may have important implications for understanding mechanisms underlying contribution of THs to memory disorders. PMID:28824379

  19. Adult neurogenesis is reduced in the dorsal hippocampus of rats displaying learned helplessness behavior.

    PubMed

    Ho, Y C; Wang, S

    2010-11-24

    Clinical and preclinical studies suggest that the hippocampus has a role in the pathophysiology of major depression. In the learned helplessness (LH) animal model of depression after inescapable shocks (ISs) animals that display LH behavior have reduced cell proliferation in the hippocampus; this effect can be reversed by antidepressant treatment. Using this model, we compared rats that displayed LH behavior and rats that did not show LH behavior (NoLH) after ISs to determine whether reduced hippocampal cell proliferation is associated with the manifestation of LH behavior or is a general response to stress. Specifically, we examined cell proliferation, neurogenesis, and synaptic function in dorsal and ventral hippocampus of LH and NoLH animals and control rats that were not shocked. The LH rats had showed reduced cell proliferation, neurogenesis, and synaptic transmission in the dorsal hippocampus, whereas no changes were seen in the ventral hippocampus. These changes were not observed in the NoLH animals. In a group of NoLH rats that received the same amount of electrical shock as the LH rats to control for the unequal shocks received in these two groups, we observed changes in Ki-67(+) cells associated with acute stress. We conclude that reduced hippocampal cell proliferation and neurogenesis are associated with the manifestation of LH behavior and that the dorsal hippocampus is the most affected area. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Directional coupling from the olfactory bulb to the hippocampus during a go/no-go odor discrimination task.

    PubMed

    Gourévitch, Boris; Kay, Leslie M; Martin, Claire

    2010-05-01

    The hippocampus and olfactory regions are anatomically close, and both play a major role in memory formation. However, the way they interact during odor processing is still unclear. In both areas, strong oscillations of the local field potential (LFP) can be recorded, and are modulated by behavior. In particular, in the olfactory system, the beta rhythm (15-35 Hz) is associated with cognitive processing of an olfactory stimulus. Using LFP recordings in the olfactory bulb and dorsal and ventral hippocampus during performance of an olfactory go/no-go task in rats, we previously showed that beta oscillations are also present in the hippocampus, coherent with those in the olfactory bulb, during odor sampling. In this study, we provide further insight into information transfer in the olfacto-hippocampal network by using directional coherence (DCOH estimate), a method based on the temporal relation between two or more signals in the frequency domain. In the theta band (6-12 Hz), coherence between the olfactory bulb (OB) and the hippocampus (HPC) is weak and can be both in the feedback and feedforward directions. However, at this frequency, modulation of the coupling between the dorsal and ventral hippocampus is seen during stimulus expectation versus odor processing. In the beta frequency band (15-35 Hz), analysis showed a strong unidirectional coupling from the OB to dorsal and ventral HPC, indicating that, during odor processing, beta oscillations in the hippocampus are driven by the olfactory bulb.

  1. Suppression of Murine Retrovirus Polypeptide Termination: Effect of Amber Suppressor tRNA on the Cell-Free Translation of Rauscher Murine Leukemia Virus, Moloney Murine Leukemia Virus, and Moloney Murine Sarcoma Virus 124 RNA

    PubMed Central

    Murphy, Edwin C.; Wills, Norma; Arlinghaus, Ralph B.

    1980-01-01

    The effect of suppressor tRNA's on the cell-free translation of several leukemia and sarcoma virus RNAs was examined. Yeast amber suppressor tRNA (amber tRNA) enhanced the synthesis of the Rauscher murine leukemia virus and clone 1 Moloney murine leukemia virus Pr200gag-pol polypeptides by 10- to 45-fold, but at the same time depressed the synthesis of Rauscher murine leukemia virus Pr65gag and Moloney murine leukemia virus Pr63gag. Under suppressor-minus conditions, Moloney murine leukemia virus Pr70gag was present as a closely spaced doublet. Amber tRNA stimulated the synthesis of the “upper” Moloney murine leukemia virus Pr70gag polypeptide. Yeast ochre suppressor tRNA appeared to be ineffective. Quantitative analyses of the kinetics of viral precursor polypeptide accumulation in the presence of amber tRNA showed that during linear protein synthesis, the increase in accumulated Moloney murine leukemia virus Pr200gag-pol coincided closely with the molar loss of Pr63gag. Enhancement of Pr200gag-pol and Pr70gag by amber tRNA persisted in the presence of pactamycin, a drug which blocks the initiation of protein synthesis, thus arguing for the addition of amino acids to the C terminus of Pr63gag as the mechanism behind the amber tRNA effect. Moloney murine sarcoma virus 124 30S RNA was translated into four major polypeptides, Pr63gag, P42, P38, and P23. In the presence of amber tRNA, a new polypeptide, Pr67gag, appeared, whereas Pr63gag synthesis was decreased. Quantitative estimates indicated that for every 1 mol of Pr67gag which appeared, 1 mol of Pr63gag was lost. Images PMID:7373716

  2. [Activation of autophagy pathway in hippocampus and deterioration of learning and memory ability by intermittent hypoxia in rats after cerebral ischemia].

    PubMed

    Guo, Xiangfei; Zhao, Yaning; Li, Jianmin; Liu, Wenqian; Chen, Changxiang

    2016-09-01

    Objective To investigate the effects of different duration of intermittent hypoxia on the autophagy pathway in the hippocampus and the learning and memory ability after cerebral ischemia in rats. Methods 100 male Wistar rats were randomly divided into sham operation (SO) group, ischemia/reperfusion (I/R) group, intermittent hypoxia for 7 days combined with ischemia/reperfusion (IH7-I/R) group, intermittent hypoxia for 14 days combined with ischemia/reperfusion (IH14-I/R) group, intermittent hypoxia for 21 days combined with ischemia/reperfusion (IH21-I/R) group, n =20 in each group. The rats in IH7-I/R group, IH14-I/R group and IH21-I/R group were respectively subjected to intermittent hypoxia for 7, 14 and 21 days prior to I/R modeling by improved Pulsinelli four-vessel occlusion (4-VO). The morphological changes of nerve cells in the hippocampus of rat brain were detected by HE staining; the levels of mammalian target of rapamycin (mTOR) and beclin 1 mRNA in the hippocampus were determined by quantitative real-time PCR; the distribution of mTOR and beclin 1 in the hippocampus was observed by immunohistochemistry; the learning and memory ability of rats was assessed by the Morris water maze test. Results Compared with the SO group, the never cell morphology was damaged, the number of survival neurons in the hippocampus was reduced, the expressions of mTOR and beclin 1 in the hippocampus were strengthened, and the learning and memory ability declined in the I/R group. Compared with the I/R group, the never cell morphology was damaged seriously, the number of survival neurons in the hippocampus decreased, the expressions of mTOR and beclin 1 in the hippocampus increased, and the learning and memory ability dropped in the intermittent hypoxia groups. What's more, the above changes were dependent on the duration of intermittent hypoxia. Conclusion Intermittent hypoxia aggravates the dysfunction of learning and memory after cerebral ischemia and the damages increase with time passing, which are related to mTOR-beclin 1 activation and increasing neuronal cell death.

  3. Production of MPS VII mouse (Gustm(hE540A·mE536A)Sly) doubly tolerant to human and mouse β-glucuronidase

    PubMed Central

    Tomatsu, Shunji; Orii, Koji O.; Vogler, Carole; Grubb, Jeffrey H.; Snella, Elizabeth M.; Gutierrez, Monica; Dieter, Tatiana; Holden, Christopher C.; Sukegawa, Kazuko; Orii, Tadao; Kondo, Naomi; Sly, William S.

    2006-01-01

    Mucopolysaccharidosis VII (MPS VII, Sly syndrome) is an autosomal recessive lysosomal storage disease caused by β-glucuronidase (GUS) deficiency. A naturally occurring mouse model of that disease has been very useful for studying experimental approaches to therapy. However, immune responses can complicate evaluation of the long-term benefits of enzyme replacement or gene therapy delivered to adult MPS VII mice. To make this model useful for studying the long-term effectiveness and side effects of experimental therapies delivered to adult mice, we developed a new MPS VII mouse model, which is tolerant to both human and murine GUS. To achieve this, we used homologous recombination to introduce simultaneously a human cDNA transgene expressing inactive human GUS into intron 9 of the murine Gus gene and a targeted active site mutation (E536A) into the adjacent exon 10. When the heterozygote products of germline transmission were bred to homozygosity, the homozygous mice expressed no GUS enzyme activity but expressed inactive human GUS protein highly and were tolerant to immune challenge with human enzyme. Expression of the mutant murine Gus gene was reduced to about 10% of normal levels, but the inactive murine GUS enzyme also conferred tolerance to murine GUS. This MPS VII mouse model should be useful to evaluate therapeutic responses in adult mice receiving repetitive doses of enzyme or mice receiving gene therapy as adults. Heterozygotes expressed only 9.5–26% of wild-type levels of murine GUS instead of the expected 50%, indicating a dominant-negative effect of the mutant enzyme monomers on the activity of GUS tetramers in different tissues. Corrective gene therapy in this model should provide high enough levels of expression of normal GUS monomers to overcome the dominant negative effect of mutant monomers on newly synthesized GUS tetramers in most tissues. PMID:12700165

  4. Loss of embryonic MET signaling alters profiles of hippocampal interneurons.

    PubMed

    Martins, Gabriela J; Plachez, Céline; Powell, Elizabeth M

    2007-01-01

    Hippocampal interneurons arise in the ventral forebrain and migrate dorsally in response to cues, including hepatocyte growth factor/scatter factor which signals via its receptor MET. Examination of the hippocampus in adult mice in which MET had been inactivated in the embryonic proliferative zones showed an increase in parvalbumin-expressing cells in the dentate gyrus, but a loss of these cells in the CA3 region. An overall loss of calretinin-expressing cells was seen throughout the hippocampus. A similar CA3 deficit of parvalbumin and calretinin cells was observed when MET was eliminated only in postmitotic cells. These data suggest that MET is required for the proper hippocampal development, and embryonic perturbations lead to long-term anatomical defects with possible learning and memory dysfunction.

  5. Three-dimensional alginate spheroid culture system of murine osteosarcoma.

    PubMed

    Akeda, Koji; Nishimura, Akinobu; Satonaka, Haruhiko; Shintani, Ken; Kusuzaki, Katsuyuki; Matsumine, Akihiko; Kasai, Yuichi; Masuda, Koichi; Uchida, Atsumasa

    2009-11-01

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone and often forms pulmonary metastases, which are the most important prognostic factor. For further elucidation of the mechanism underlying the progression and metastasis of human OS, a culture system mimicking the microenvironment of the tumor in vivo is needed. We report a novel three-dimensional (3D) alginate spheroid culture system of murine osteosarcoma. Two different metastatic clones, the parental Dunn and its derivative line LM8, which has a higher metastatic potential to the lungs, were encapsulated in alginate beads to develop the 3D culture system. The beads containing murine OS cells were also transplanted into mice to determine their metastatic potential in vivo. In this culture system, murine OS cells encapsulated in alginate beads were able to grow in a 3D structure with cells detaching from the alginate environment. The number of detaching cells was higher in the LM8 cell line than the Dunn cell line. In the in vivo alginate bead transplantation model, the rate of pulmonary metastasis was higher with LM8 cells compared with that of Dunn cells. The cell characteristics and kinetics in this culture system closely reflect the original malignant potential of the cells in vivo.

  6. A consensus definition of cataplexy in mouse models of narcolepsy.

    PubMed

    Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M

    2009-01-01

    People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.

  7. The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development

    PubMed Central

    Pendeville, Hélène; Carpino, Nick; Marine, Jean-Christophe; Takahashi, Yutaka; Muller, Marc; Martial, Joseph A.; Cleveland, John L.

    2001-01-01

    Overexpression and inhibitor studies have suggested that the c-Myc target gene for ornithine decarboxylase (ODC), the enzyme which converts ornithine to putrescine, plays an important role in diverse biological processes, including cell growth, differentiation, transformation, and apoptosis. To explore the physiological function of ODC in mammalian development, we generated mice harboring a disrupted ODC gene. ODC-heterozygous mice were viable, normal, and fertile. Although zygotic ODC is expressed throughout the embryo prior to implantation, loss of ODC did not block normal development to the blastocyst stage. Embryonic day E3.5 ODC-deficient embryos were capable of uterine implantation and induced maternal decidualization yet failed to develop substantially thereafter. Surprisingly, analysis of ODC-deficient blastocysts suggests that loss of ODC does not affect cell growth per se but rather is required for survival of the pluripotent cells of the inner cell mass. Therefore, ODC plays an essential role in murine development, and proper homeostasis of polyamine pools appears to be required for cell survival prior to gastrulation. PMID:11533243

  8. GABA FUNCTION IS ALTERED FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM: NEUROANATOMICAL AND NEUROPHYSIOLOGICAL EVIDENCE.

    EPA Science Inventory

    Thyroid hormone deficiency during development produces changes in the structure of neurons and glial cells and alters synaptic function in the hippocampus. GABAergic interneurons comprise the bulk of local inhibitory neuronal circuitry and a subpopulation of these interneurons ...

  9. Vasopressin V1 receptor in rat hippocampus is regulated by adrenocortical functions.

    PubMed

    Saito, R; Ishiharada, N; Ban, Y; Honda, K; Takano, Y; Kamiya, H

    1994-05-16

    Two subtypes of arginine vasopressin (AVP) receptors (V1 and V2) have been distinguished. In this study, we examined the characteristics of AVP binding in rat hippocampus and the effects of bilateral adrenalectomy and adrenal steroids on its [3H]AVP binding. [3H]AVP binding to rat liver and the hippocampal membranes was strongly inhibited by the V1 antagonist, OPC-21268. ADX resulted in a significant decrease in the Bmax of AVP binding in the hippocampus. Chronic treatment with aldosterone and corticosterone restored the ADX-induced reduction, but treatment with dexamethasone did not. These results suggest that the AVP V1 receptor in the hippocampus is regulated by adrenocortical neuroregulatory functions.

  10. [Changes in proline-specific peptidase activity in experimental model of retrograde amnesia].

    PubMed

    Nazarova, G A; Zolotov, N N; Krupina, N A; Kraĭneva, V A; Garibova, T L; Voronina, T A

    2007-01-01

    Changes in proline-specific peptidase activity in the frontal cortex and hippocampus were studied using the experimental model of retrograde amnesia in rats. In one group, the amnesia was produced by a single injection of M-cholinergic antagonist scopolamine and the other group received the maximal electroconvulsive stimulation (MES). The amnesic effect was evaluated in passive avoidance test. In the amnesia models under consideration, the activity of prolylendopeptidase was significantly increased in both frontal cortex and hippocampus. The activity of dipeptidyl peptidase IV was significantly decreased in the cortex, whereas in the hippocampus it remained unchanged. Pyracetam inhibited prolylendopeptidase in the cortex and hippocampus, whereas dipeptidyl peptidase IV activity remained unchanged.

  11. Treatment planning and 3D dose verification of whole brain radiation therapy with hippocampal avoidance in rats

    NASA Astrophysics Data System (ADS)

    Yoon, S. W.; Miles, D.; Cramer, C.; Reinsvold, M.; Kirsch, D.; Oldham, M.

    2017-05-01

    Despite increasing use of stereotactic radiosurgery, whole brain radiotherapy (WBRT) continues to have a therapeutic role in a selected subset of patients. Selectively avoiding the hippocampus during such treatment (HA-WBRT) emerged as a strategy to reduce the cognitive morbidity associated with WBRT and gave rise to a recently published the phase II trial (RTOG 0933) and now multiple ongoing clinical trials. While conceptually hippocampal avoidance is supported by pre-clinical evidence showing that the hippocampus plays a vital role in memory, there is minimal pre-clinic data showing that selectively avoiding the hippocampus will reduce radiation-induced cognitive decline. Largely the lack of pre-clinical evidence can be attributed to the technical hurdles associated with delivering precise conformal treatment the rat brain. In this work we develop a novel conformal HA-WBRT technique for Wistar rats, utilizing a 225kVp micro-irradiator with precise 3D-printed radiation blocks designed to spare hippocampus while delivering whole brain dose. The technique was verified on rodent-morphic Presage® 3D dosimeters created from micro-CT scans of Wistar rats with Duke Large Field-of-View Optical Scanner (DLOS) at 1mm isotropic voxel resolution. A 4-field box with parallel opposed AP-PA and two lateral opposed fields was explored with conformal hippocampal sparing aided by 3D-printed radiation blocks. The measured DVH aligned reasonably well with that calculated from SmART Plan Monte Carlo simulations with simulated blocks for 4-field HA-WBRT with both demonstrating hippocampal sparing of 20% volume receiving less than 30% the prescription dose.

  12. A critical role of the human hippocampus in an electrophysiological measure of implicit memory

    PubMed Central

    Addante, Richard James

    2015-01-01

    The hippocampus has traditionally been thought to be critical for conscious explicit memory but not necessary for unconscious implicit memory processing. In a recent study of a group of mild amnesia patients with evidence of MTL damage limited to the hippocampus, subjects were tested on a direct test of item recognition confidence while electroencephalogram (EEG) was acquired, and revealed intact measures of explicit memory from 400–600ms (mid-frontal old-new effect, FN400). The current investigation re-analyzed this data to study event-related potentials (ERPs) of implicit memory, using a recently developed procedure that eliminated declarative memory differences. Prior ERP findings from this technique were first replicated in two independent matched control groups, which exhibited reliable implicit memory effects in posterior scalp regions from 400–600 msec, which were topographically dissociated from the explicit memory effects of familiarity. However, patients were found to be dramatically impaired in implicit memory effects relative to control subjects, as quantified by a reliable condition × group interaction. Several control analysis were conducted to consider alternative factors that could account for the results, including outliers, sample size, age, or contamination by explicit memory, and each of these factors were systematically ruled out. Results suggest that the hippocampus plays a fundamental role in aspects of memory processing that is beyond conscious awareness. The current findings therefore indicate that both memory systems of implicit and explicit memory may rely upon the same neural structures – but function in different physiological ways. PMID:25562828

  13. Progressive Pathological Changes in Neurochemical Profile of the Hippocampus and Early Changes in the Olfactory Bulbs of Tau Transgenic Mice (rTg4510).

    PubMed

    Kim, Jieun; Choi, In-Young; Duff, Karen E; Lee, Phil

    2017-06-01

    Tauopathies such as Alzheimer's disease and frontotemporal lobe degeneration (FTLD-tau) dementia, characterized by pathologic aggregation of the microtubule-associated tau protein and formation of neurofibrillary tangles, have been linked to neurodegeneration and cognitive decline. The early detection of cerebral abnormalities and the identification of biological contributors to the continuous pathologic processes of neurodegeneration in tauopathies critically hinge on sensitive and reliable measures of biomarkers in the living brain. In this study, we measured alterations in a number of key neurochemicals associated with tauopathy-induced neurodegeneration in the hippocampus and the olfactory bulbs of a transgenic mouse model of FTLD-tauopathy, line rTg4510, using in vivo 1 H magnetic resonance spectroscopy at 9.4 T. The rTg4510 line develops tauopathy at a young age (4-5 months), reaching a severe stage by 8-12 months of age. Longitudinal measurement of neurochemical concentrations in the hippocampus of mice from 5 to 12 months of age showed significant progressive changes with distinctive disease staging patterns including N-acetylaspartate, myo-inositol, γ-aminobutyric acid, glutathione and glutamine. The accompanying hippocampal volume loss measured using magnetic resonance imaging showed significant correlation (p < 0.01) with neurochemical measurements. Neurochemical alterations in the olfactory bulbs were more pronounced than those in the hippocampus in rTg4510 mice. These results demonstrate progressive neuropathology in the mouse model and provide potential biomarkers of early neuropathological events and effective noninvasive monitoring of the disease progression and treatment efficacy, which can be easily translated to clinical studies.

  14. A Tale of Two Temporal Coding Strategies: Common and Dissociable Brain Regions Involved in Recency versus Associative Temporal Order Retrieval Strategies.

    PubMed

    Lieberman, Jennifer S; Kyle, Colin T; Schedlbauer, Amber; Stokes, Jared; Ekstrom, Arne D

    2017-04-01

    Numerous studies indicate the importance of the hippocampus to temporal order retrieval. However, behavioral studies suggest that there are different ways to retrieve temporal order information from encoded sequences, one involving an associative strategy (retrieving associations using neighboring items in a list) and another involving a recency strategy (determining which of two items came first). It remains unresolved, however, whether both strategies recruit the hippocampus or only associative strategies, consistent with the hippocampus's role in relational processing. To address this, we developed a paradigm in which we dissociated associative versus recency-based retrieval, involving the same stimulus presentation during retrieval. Associative retrieval involved an increase in RT (and decrease in performance) with greater distances between intervals, consistent with the need to retrieve intervening associations. Recency-based retrieval involved an increase in RT (and decrease in performance) with shorter distances between intervals, suggesting the use of a strength-based coding mechanism to retrieve information. We employed fMRI to determine the neural basis of the different strategies. Both strategies showed significant levels of hippocampal activation and connectivity that did not differ between tasks. In contrast, both univariate and connectivity pattern analyses revealed differences in extrahippocampal areas such as parietal and frontal cortices. A covariate analysis suggested that differences could not be explained by task difficulty alone. Together, these findings suggest that the hippocampus plays a role in both forms of temporal order retrieval, with neocortical networks mediating the different cognitive demands for associative versus recency-based temporal order retrieval.

  15. Perinatal iron deficiency predisposes the developing rat hippocampus to greater injury from mild to moderate hypoxia–ischemia

    PubMed Central

    Rao, Raghavendra; Tkac, Ivan; Townsend, Elise L; Ennis, Kathleen; Gruetter, Rolf; Georgieff, Michael K

    2008-01-01

    The hippocampus is injured in both hypoxia–ischemia (HI) and perinatal iron deficiency that are comorbidities in infants of diabetic mothers and intrauterine growth restricted infants. We hypothesized that preexisting perinatal iron deficiency predisposes the hippocampus to greater injury when exposed to a relatively mild HI injury. Iron-sufficient and iron-deficient rats (hematocrit 40% lower and brain iron concentration 55% lower) were subjected to unilateral HI injury of 15, 30, or 45 mins (n = 12 to 13/HI duration) on postnatal day 14. Sixteen metabolite concentrations were measured from an 11 μL volume on the ipsilateral (HI) and contralateral (control) hippocampi 1 week later using in vivo 1H NMR spectroscopy. The concentrations of creatine, glutamate, myo-inositol, and N-acetylaspartate were lower on the control side in the iron-deficient group (P < 0.02, each). Magnetic resonance imaging showed hippocampal injury in the majority of the iron-deficient rats (58% versus 11%, P < 0.0001) with worsening severity with increasing durations of HI (P = 0.0001). Glucose, glutamate, N-acetylaspartate, and taurine concentrations were decreased and glutamine, lactate and myo-inositol concentrations, and glutamate/glutamine ratio were increased on the HI side in the iron-deficient group (P < 0.01, each), mainly in the 30 and 45 mins HI subgroups (P < 0.02, each). These neurochemical changes likely reflect the histochemically detected neuronal injury and reactive astrocytosis in the iron-deficient group and suggest that perinatal iron deficiency predisposes the hippocampus to greater injury from exposure to a relatively mild HI insult. PMID:16868555

  16. Efficacy of Posaconazole in Murine Experimental Sporotrichosis

    PubMed Central

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio

    2012-01-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology. PMID:22330929

  17. Efficacy of posaconazole in murine experimental sporotrichosis.

    PubMed

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio; Guarro, Josep

    2012-05-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.

  18. Catalase-peroxidase activity has no influence on virulence in a murine model of tuberculosis.

    PubMed

    Cardona, Pere Joan; Gordillo, Sergi; Amat, Isabel; Díaz, Jorge; Lonca, Joan; Vilaplana, Cristina; Pallarés, Angeles; Llatjós, Roger; Ariza, Aurelio; Ausina, Vicenç

    2003-01-01

    The capacity to generate a chronic and persistent infection in the experimental murine model of tuberculosis induced aerogenically by a low-dose inoculum was determined in eight isoniazid-resistant clinical strains of Mycobacterium tuberculosis showing different catalase-peroxidase (C-P) activities. Determination of bacillary concentration in lung and spleen and the percentage of pulmonary parenchyma occupied by granulomas were monitored. Data showed no relation between the lack of C-P activity and the ability to develop a persistent infection, highlighting the potential of C-P negative strains to spread through the community.

  19. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model

    PubMed Central

    Silva-Santos, Sara; van Woerden, Geeske M.; Bruinsma, Caroline F.; Mientjes, Edwin; Jolfaei, Mehrnoush Aghadavoud; Distel, Ben; Kushner, Steven A.; Elgersma, Ype

    2015-01-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder that results from loss of function of the maternal ubiquitin protein ligase E3A (UBE3A) allele. Due to neuron-specific imprinting, the paternal UBE3A copy is silenced. Previous studies in murine models have demonstrated that strategies to activate the paternal Ube3a allele are feasible; however, a recent study showed that pharmacological Ube3a gene reactivation in adulthood failed to rescue the majority of neurocognitive phenotypes in a murine AS model. Here, we performed a systematic study to investigate the possibility that neurocognitive rescue can be achieved by reinstating Ube3a during earlier neurodevelopmental windows. We developed an AS model that allows for temporally controlled Cre-dependent induction of the maternal Ube3a allele and determined that there are distinct neurodevelopmental windows during which Ube3a restoration can rescue AS-relevant phenotypes. Motor deficits were rescued by Ube3a reinstatement in adolescent mice, whereas anxiety, repetitive behavior, and epilepsy were only rescued when Ube3a was reinstated during early development. In contrast, hippocampal synaptic plasticity could be restored at any age. Together, these findings suggest that Ube3a reinstatement early in development may be necessary to prevent or rescue most AS-associated phenotypes and should be considered in future clinical trial design. PMID:25866966

  20. [On the mechanism of noopept action: decrease in activity of stress-induced kinases and increase in expression of neutrophines].

    PubMed

    Ostrovskaia, R U; Vakhitova, Iu V; Salimgareeva, M Kh; Iamidanov, R S; Sadovnikov, S V; Kapitsa, I G; Seredenin, S B

    2010-12-01

    The influence of noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111)--a drug combining the nootrope and neuroprotector properties--on the activity of mitogen-activated protein kinases (MAPKs) and the level of NGF and BDNF gene and protein expression in the frontal cortex, hippocampus, and hypothalamus has been studied in rats. Under conditions of chronic administration (28 days, 0.5 mg/day, i.p.), noopept decreased the activity of stress-induced kinases (SAPK/JNK 46/54 and pERK1/2) in rat hippocampus and increases the level of mRNA of the BDNF gene in both hypothalamus and hippocampus. The content of BDNF protein in the hypothalamus was also somewhat increased. In the context of notions about the activation of stress-induced kinases, as an important factor of amyloidogenesis and tau-protein deposition in brain tissue, and the role of deficiency of the neurotrophic factors in the development of neurodegenerative processes, the observed decrease in the activity of stress-activated MAPKs and increased expression of BDNF as a result of noopept administration suggest thatthis drug hasaspecific activity withrespect to some pathogenetic mechanisms involved in the Alzheimer disease.

Top