Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples
Rapid Radiochemical Method for Isotopic Uranium in Building ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration
Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.
1957-01-01
Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.
Rapid Method for Sodium Hydroxide Fusion of Concrete and ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
1969-12-01
a five-year supply of enriched uranium for reactor fuel . Nevertheless, it seems clear that some foreign enrichment developments are approaching a...produc- tion of fissile material could powerfully influence the assessment of risks and benefits of a nuclear weapons development program . Since... program is likely to include the production of its own relatively pure fissile plutonium. This would involve more rapid cycling and reprocessing of fuel
Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.
2018-05-22
In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.
In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less
Manard, Benjamin T; Wylie, E Miller; Willson, Stephen P
2018-01-01
A portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb) were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). It was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.
PHYSICAL BENEFICATION OF LOW-GRADE URANIUM ORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, J.N.
1958-07-30
Investigations are presented of methods for the physi cal beneficiation of low-grade and other uranium ores. The investlgations which have been in progress since September 1952 cover work done on a variety of natural ores, as well as a certain amount of basic research on mixtures of synthetic or high-grade natural uranium minerais with various gangues. Methods of beneficlation investigated include flotation, wet and dry attroftioning, magnetic separation. electresiatie separation, and misceilaneous minor methods. A rapid, routine method oicolorimeiric determlnation of uranium was also developed in order to facilitaie analyzing of low-grade materials for uranium. This proeedure is presenied inmore » condensed form. (auth)« less
Investigation of uranium molecular species using laser ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curreli, Davide
2017-07-12
The goal of this project is to investigate the dynamic evolution of uranium oxide (UOx) molecular species in a rapidly cooling low-temperature plasma using a coupled experimental and modeling approach. Our purpose is to develop quantitative constraints on the UOx phase chemistry under physical conditions similar to that of a nuclear fireball at the time of debris condensation. This work is motivated by a need to better understand the factors controlling uranium chemical fractionation in post-detonation nuclear debris.
Jung, Hun Bok; Boyanov, Maxim I; Konishi, Hiromi; Sun, Yubing; Mishra, Bhoopesh; Kemner, Kenneth M; Roden, Eric E; Xu, Huifang
2012-07-03
Sorption-desorption experiments show that the majority (ca. 80-90%) of U(VI) presorbed to mesoporous and nanoporous alumina could not be released by extended (2 week) extraction with 50 mM NaHCO(3) in contrast with non-nanoporous α alumina. The extent of reduction of U(VI) presorbed to aluminum oxides was semiquantitatively estimated by comparing the percentages of uranium desorbed by anoxic sodium bicarbonate between AH(2)DS-reacted and unreacted control samples. X-ray absorption spectroscopy confirmed that U(VI) presorbed to non-nanoporous alumina was rapidly and completely reduced to nanoparticulate uraninite by AH(2)DS, whereas reduction of U(VI) presorbed to nanoporous alumina was slow and incomplete (<5% reduction after 1 week). The observed nanopore size-dependent redox behavior of U has important implications in developing efficient remediation techniques for the subsurface uranium contamination because the efficiency of in situ bioremediation depends on how effectively and rapidly U(VI) bound to sediment or soil can be converted to an immobile phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fincke, J.R.; Swank, W.D.; Haggard, D.C.
This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF{sub 6}, Ar, He, and H{sub 2}. The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F{sub 2} to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogenmore » which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF{sub 6} to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value.« less
Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/FeOOH composites.
Wei, Xintao; Liu, Qi; Zhang, Hongsen; Liu, Jingyuan; Chen, Rongrong; Li, Rumin; Li, Zhangshuang; Liu, Peili; Wang, Jun
2018-02-01
Uranium plays an indispensable role in nuclear energy, but there are limited land resources to meet the ever growing demand; therefore, a need exists to develop efficient materials for capturing uranium from water. Herein, we synthesize a promising adsorbent of phytic acid/polyaniline/FeOOH composites (PA/PANI/FeOOH) by oxidative polymerization. Phytic acid, acting asa gelator and dopant, plays an important role in the formation of polyaniline (PANI). The PA/PANI/FeOOH exhibites high adsorption capacity (q m =555.8mgg -1 , T=298K), rapid adsorption rate (within 5min), excellent selectivity and cyclic stability. In addition, the results show that the adsorption isotherm is well fitted to the Langmuir isotherm model, and the adsorption kinetics agree with a pseudo-second order model. XPS analysis indicates that the removal of uranium is mainly attributed to abundant amine and imine groups on the surface of PA/PANI/FeOOH. Importantly, the removal of uranium from low concentrations of simulated seawater is highly efficient with a removal rate exceeding 92%. From our study, superior adsorption capacities, along with a low-cost, environmentally friendly and facile synthesis, reveal PA/PANI/FeOOH asa promising material for uranium capture. Copyright © 2017. Published by Elsevier Inc.
Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong
2013-08-01
This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
Accumulation of uranium by immobilized persimmon tannin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, Takashi; Nakajima, Akira
1994-01-01
We have discovered that the extracted juice of unripe astringent persimmon fruit, designated as kakishibu or shibuol, has an extremely high affinity for uranium. To develop efficient adsorbents for uranium, we tried to immobilize kakishibu (persimmon tannin) with various aldehydes and mineral acids. Persimmon tannin immobilized with glutaraldehyde can accumulate 1.71 g (14 mEq U) of uranium per gram of the adsorbent. The uranium accumulating capacity of this adsorbent is several times greater than that of commercially available chelating resins (2-3 mEq/g). Immobilized persimmon tannin has the most favorable features for uranium recovery; high selective adsorption ability, rapid adsorption rate,more » and applicability in both column and batch systems. The uranium retained on immobilized persimmon tannin can be quantitatively and easily eluted with a very dilute acid, and the adsorbent can thus be easily recycled in the adsorption-desorption process. Immobilized persimmon tannin also has a high affinity for thorium. 23 refs., 13 figs., 7 tabs.« less
Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples
Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.
2015-02-14
Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Khangaonkar, Tarang; Long, Wen
2014-02-07
In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts tomore » the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.« less
Oyola, Yatsandra; Janke, Christopher J.; Dai, Sheng
2016-02-29
The ocean contains uranium with an approximate concentration of 3.34 ppb, which can serve as an incredible supply source to sustain nuclear energy in the United States. Unfortunately, technology currently available to recover uranium from seawater is not efficient enough and mining uranium on land is still more economical. For this study, we have developed polymer-based adsorbents with high uranium adsorption capacities by grafting amidoxime onto high-surface-area polyethylene (PE) fibers. Various process conditions have been screened, in combination with developing a rapid testing protocol (<24 h), to optimize the process. These adsorbents are synthesized through radiation-induced grafting of acrylonitrile (AN)more » and methacrylic acid (MAA) onto PE fibers, followed by the conversion of nitriles to amidoximes and basic conditioning. In addition, the uranium adsorption capacity, measured in units of g U/kg ads, is greatly increased by reducing the diameter of the PE fiber or changing its morphology. An increase in the surface area of the PE polymer fiber allows for more grafting sites that are positioned in more-accessible locations, thereby increasing access to grafted molecules that would normally be located in the interior of a fiber with a larger diameter. Polymer fibers with hollow morphologies are able to adsorb beyond 1 order of magnitude more uranium from simulated seawater than current commercially available adsorbents. Finally, several high-surface-area fibers were tested in natural seawater and were able to extract 5–7 times more uranium than any adsorbent reported to date.« less
Uranium: A Dentist's perspective
Toor, R. S. S.; Brar, G. S.
2012-01-01
Uranium is a naturally occurring radionuclide found in granite and other mineral deposits. In its natural state, it consists of three isotopes (U-234, U-235 and U-238). On an average, 1% – 2% of ingested uranium is absorbed in the gastrointestinal tract in adults. The absorbed uranium rapidly enters the bloodstream and forms a diffusible ionic uranyl hydrogen carbonate complex (UO2HCO3+) which is in equilibrium with a nondiffusible uranyl albumin complex. In the skeleton, the uranyl ion replaces calcium in the hydroxyapatite complex of the bone crystal. Although in North India, there is a risk of radiological toxicity from orally ingested natural uranium, the principal health effects are chemical toxicity. The skeleton and kidney are the primary sites of uranium accumulation. Acute high dose of uranyl nitrate delays tooth eruption, and mandibular growth and development, probably due to its effect on target cells. Based on all previous research and recommendations, the role of a dentist is to educate the masses about the adverse effects of uranium on the overall as well as the dental health. The authors recommended that apart from the discontinuation of the addition of uranium to porcelain, the Public community water supplies must also comply with the Environmental Protection Agency (EPA) standards of uranium levels being not more than 30 ppb (parts per billion). PMID:24478959
Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 The method will be used for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in asphalt matrices samples.
Rim, Jung H.; Armenta, Claudine E.; Gonzales, Edward R.; ...
2015-09-12
This paper describes a new analyte extraction medium called polymer ligand film (PLF) that was developed to rapidly extract radionuclides. PLF is a polymer medium with ligands incorporated in its matrix that selectively and quickly extracts analytes. The main focus of the new technique is to shorten and simplify the procedure for chemically isolating radionuclides for determination through alpha spectroscopy. The PLF system was effective for plutonium and uranium extraction. The PLF was capable of co-extracting or selectively extracting plutonium over uranium depending on the PLF composition. As a result, the PLF and electrodeposited samples had similar alpha spectra resolutions.
NASA Astrophysics Data System (ADS)
Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.
2010-03-01
Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.
Huang, Yishun; Fang, Luting; Zhu, Zhi; Ma, Yanli; Zhou, Leiji; Chen, Xi; Xu, Dunming; Yang, Chaoyong
2016-11-15
Due to uranium's increasing exploitation in nuclear energy and its toxicity to human health, it is of great significance to detect uranium contamination. In particular, development of a rapid, sensitive and portable method is important for personal health care for those who frequently come into contact with uranium ore mining or who investigate leaks at nuclear power plants. The most stable form of uranium in water is uranyl ion (UO2(2+)). In this work, a UO2(2+) responsive smart hydrogel was designed and synthesized for rapid, portable, sensitive detection of UO2(2+). A UO2(2+) dependent DNAzyme complex composed of substrate strand and enzyme strand was utilized to crosslink DNA-grafted polyacrylamide chains to form a DNA hydrogel. Colorimetric analysis was achieved by encapsulating gold nanoparticles (AuNPs) in the DNAzyme-crosslinked hydrogel to indicate the concentration of UO2(2+). Without UO2(2+), the enzyme strand is not active. The presence of UO2(2+) in the sample activates the enzyme strand and triggers the cleavage of the substrate strand from the enzyme strand, thereby decreasing the density of crosslinkers and destabilizing the hydrogel, which then releases the encapsulated AuNPs. As low as 100nM UO2(2+) was visually detected by the naked eye. The target-responsive hydrogel was also demonstrated to be applicable in natural water spiked with UO2(2+). Furthermore, to avoid the visual errors caused by naked eye observation, a previously developed volumetric bar-chart chip (V-Chip) was used to quantitatively detect UO2(2+) concentrations in water by encapsulating Au-Pt nanoparticles in the hydrogel. The UO2(2+) concentrations were visually quantified from the travelling distance of ink-bar on the V-Chip. The method can be used for portable and quantitative detection of uranium in field applications without skilled operators and sophisticated instruments. Copyright © 2016 Elsevier B.V. All rights reserved.
METHOD OF SEPARATING URANIUM SUSPENSIONS
Wigner, E.P.; McAdams, W.A.
1958-08-26
A process is presented for separating colloidally dissed uranium oxides from the heavy water medium in upwhich they are contained. The method consists in treating such dispersions with hydrogen peroxide, thereby converting the uranium to non-colloidal UO/sub 4/, and separating the UO/sub 4/ sfter its rapid settling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shattan, Michael; Stowe, Ashley; McIntosh, Kathryn
Explore feasibility of portable LIBS and micro-XRF systems as methods of field screening for real debris; Develop a LIBS Capability to rapidly screen beads for production quality control; Complete 3D elemental mapping of surrogate debris to determine uranium and other elemental migration patterns during debris formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guohui; Um, Wooyong; Wang, Zheming
The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitatedmore » as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.« less
Wang, Guohui; Um, Wooyong; Wang, Zheming; Reinoso-Maset, Estela; Washton, Nancy M; Mueller, Karl T; Perdrial, Nicolas; O'Day, Peggy A; Chorover, Jon
2017-10-03
The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO 2 )(PO 4 )·3H 2 O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K 2 (UO 2 ) 6 O 4 (OH) 6 ·7H 2 O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10 -12 mol g -1 s -1 . In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10 -10 mol g -1 s -1 . The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.
Rapid extraction and assay of uranium from environmental surface samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Christopher A.; Chouyyok, Wilaiwan; Speakman, Robert J.
Extraction methods enabling faster removal and concentration of uranium compounds for improved trace and low-level assay are demonstrated for standard surface sampling material in support of nuclear safeguards efforts, health monitoring, and other nuclear analysis applications. A key problem with the existing surface sampling swipes is the requirement for complete digestion of sample and sampling matrix. This is a time-consuming and labour-intensive process that limits laboratory throughput, elevates costs, and increases background levels. Various extraction methods are explored for their potential to quickly and efficiently remove different chemical forms of uranium from standard surface sampling material. A combination of carbonatemore » and peroxide solutions is shown to give the most rapid and complete form of uranyl compound extraction and dissolution. This rapid extraction process is demonstrated to be compatible with standard inductive coupled plasma mass spectrometry methods for uranium isotopic assay as well as screening techniques such as x-ray fluorescence. The general approach described has application beyond uranium to other analytes of nuclear forensic interest (e.g., rare earth elements and plutonium) as well as heavy metals for environmental and industrial hygiene monitoring.« less
NASA Astrophysics Data System (ADS)
Metzger, Robert; Riper, Kenneth Van; Lasche, George
2017-09-01
A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.
Measurement of thermal diffusivity of depleted uranium metal microspheres
NASA Astrophysics Data System (ADS)
Humrickhouse-Helmreich, Carissa J.; Corbin, Rob; McDeavitt, Sean M.
2014-03-01
The high void space of nuclear fuels composed of homogeneous uranium metal microspheres may allow them to achieve ultra-high burnup by accommodating fuel swelling and reducing fuel/cladding interactions; however, the relatively low thermal conductivity of microsphere nuclear fuels may limit their application. To support the development of microsphere nuclear fuels, an apparatus was designed in a glovebox and used to measure the apparent thermal diffusivity of a packed bed of depleted uranium (DU) microspheres with argon fill in the void spaces. The developed Crucible Heater Test Assembly (CHTA) recorded radial temperature changes due to an initial heat pulse from a central thin-diameter cartridge heater. Using thermocouple positions and time-temperature data, the apparent thermal diffusivity was calculated. The thermal conductivity of the DU microspheres was calculated based on the thermal diffusivity from the CHTA, known material densities and specific heat capacities, and an assumed 70% packing density based on prior measurements. Results indicate that DU metal microspheres have very low thermal conductivity, relative to solid uranium metal, and rapidly form an oxidation layer even in a low oxygen environment. At 500 °C, the thermal conductivity of the DU metal microsphere bed was 0.431 ± 0.0560 W/m-K compared to the literature value of approximately 32 W/m-K for solid uranium metal.
Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; ...
2015-10-30
In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, whichmore » demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.« less
SOME GEOCHEMICAL METHODS OF URANIUM EXPLORATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illsley, C.T.; Bills, C.W.; Pollock, J.W.
Geochemical research and development projects were carried on to provide basic information which may be applied to exploration or general studies of uranium geology. The applications and limitations of various aspects of geochemistry to uranium geological problems are considerd. Modifications of existing analytical techniques were made and tested in the laboratory and in the field. These include rapid quantitative determination of unranium in water, soil and peat, and of trace amounts of sulfate and phosphate in water. Geochemical anomaly'' has been defined as a significant departure from the average abundance background of an element where the distribution has not beenmore » disturbed by mineralization. The detection and significance of geocthemical anomalies are directly related to the mobility of the element being sought in the zone of weathering. Mobility of uranium is governed by complex physical, chemical, and biological factors. For uranium anomalies in surface materils, the chemicaly factors affecting mobility are the most sigificant. The effects of pH, solubility, coprecipitution, adsorption complexion, or compound formation are discussed in relation to anomalies detected in water, soil, and stream sediments. (auth)« less
Zhivin, Sergey; Guseva Canu, Irina; Samson, Eric; Laurent, Olivier; Grellier, James; Collomb, Philippe; Zablotska, Lydia B; Laurier, Dominique
2016-03-01
Until recently, enrichment of uranium for civil and military purposes in France was carried out by gaseous diffusion using rapidly soluble uranium compounds. We analysed the relationship between exposure to soluble uranium compounds and exposure to external γ-radiation and mortality in a cohort of 4688 French uranium enrichment workers who were employed between 1964 and 2006. Data on individual annual exposure to radiological and non-radiological hazards were collected for workers of the AREVA NC, CEA and Eurodif uranium enrichment plants from job-exposure matrixes and external dosimetry records, differentiating between natural, enriched and depleted uranium. Cause-specific mortality was compared with the French general population via standardised mortality ratios (SMR), and was analysed via Poisson regression using log-linear and linear excess relative risk models. Over the period of follow-up, 131 161 person-years at risk were accrued and 21% of the subjects had died. A strong healthy worker effect was observed: all causes SMR=0.69, 95% CI 0.65 to 0.74. SMR for pleural cancer was significantly increased (2.3, 95% CI 1.06 to 4.4), but was only based on nine cases. Internal uranium and external γ-radiation exposures were not significantly associated with any cause of mortality. This is the first study of French uranium enrichment workers. Although limited in statistical power, further follow-up of this cohort, estimation of internal uranium doses and pooling with similar cohorts should elucidate potential risks associated with exposure to soluble uranium compounds. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
A preliminary report on the rapid fluorimetric determination of uranium in low-grade ores
Grimaldi, F.S.; Levine, Harry
1950-01-01
A simple and very rapid fluorimetric procedure is described for the determination of uranium in low-grade shale and phosphate ores. The best working range is from 0.001 to about 0.04 percent U. The procedure employs batch extraction of uranium nitrate by ethyl acetate, using aluminum nitrate as the salting agent, prior to the visual fluorimetric estimation. The procedure is especially designed to save reagents; only 9.5 g of aluminum nitrate and 10 ml of ethyl acetate being used for one analysis. The solution of the sample by means of a fusion with NaOH-NaNO3 flux is rapid. After fusion the sample is immediately extracted without removing silica and other hydrolytic precipitates. Aluminum nitrate very effectively ties up fluoride and phosphate, thus eliminating steps required for their removal.
Unconventional energy resources: 2007-2008 review
Warwick, Peter D.; ,
2009-01-01
This paper summarizes five 2007–2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.
Atkins, Marnie L; Santos, Isaac R; Perkins, Anita; Maher, Damien T
2016-04-01
The extraction of unconventional gas resources such as shale and coal seam gas (CSG) is rapidly expanding globally and often prevents the opportunity for comprehensive baseline groundwater investigations prior to drilling. Unconventional gas extraction often targets geological layers with high naturally occurring radioactive materials (NORM) and extraction practices may possibly mobilise radionuclides into regional and local drinking water resources. Here, we establish baseline groundwater radon and uranium levels in shallow aquifers overlying a potential CSG target formation in the Richmond River Catchment, Australia. A total of 91 groundwater samples from six different geological units showed highly variable radon activities (0.14-20.33 Bq/L) and uranium levels (0.001-2.77 μg/L) which were well below the Australian Drinking Water Guideline values (radon; 100 Bq/L and uranium; 17 μg/L). Therefore, from a radon and uranium perspective, the regional groundwater does not pose health risks to consumers. Uranium could not explain the distribution of radon in groundwater. Relatively high radon activities (7.88 ± 0.83 Bq/L) in the fractured Lismore Basalt aquifer coincided with very low uranium concentrations (0.04 ± 0.02 μg/L). In the Quaternary Sediments aquifers, a positive correlation between U and HCO3(-) (r(2) = 0.49, p < 0.01) implied the uranium was present as uranyl-carbonate complexes. Since NORM are often enriched in target geological formations containing unconventional gas, establishing radon and uranium concentrations in overlying aquifers comprises an important component of baseline groundwater investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.
SELECTIVE SEPARATION OF URANIUM FROM FERRITIC STAINLESS STEELS
Beaver, R.J.; Cherubini, J.H.
1963-05-14
A process is described for separating uranium from a nuclear fuel element comprising a uranium-containing core and a ferritic stainless steel clad by heating said element in a non-carburizing atmosphere at a temperature in the range 850-1050 un. Concent 85% C, rapidly cooling the heated element through the temperature range 815 un. Concent 85% to 650 EC to avoid annealing said steel, and then contacting the cooled element with an aqueous solution of nitric acid to selectively dissolve the uranium. (AEC)
Report on the Black Hills Alliance.
ERIC Educational Resources Information Center
Ryan, Joe
1979-01-01
A rally to save the Black Hills from coal- and uranium-greedy energy companies was held on July 6 and over 2,000 joined in a 15-mile walk on July 7 in Rapid City, South Dakota. The Black Hills Alliance, an Indian coalition concerned about energy development proposals in the Great Plains, sponsored the gathering. (NQ)
Status of the atomized uranium silicide fuel development at KAERI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, C.K.; Kim, K.H.; Park, H.D.
1997-08-01
While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder.more » In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.« less
Recovery of uranium from seawater by immobilized tannin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, T.; Nakajima, A.
1987-06-01
Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment ofmore » up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.« less
Strandberg, Gerald W.; Shumate, Starling E.; Parrott, John R.
1981-01-01
Uranium accumulated extracellularly on the surfaces of Saccharomyces cerevisiae cells. The rate and extent of accumulation were subject to environmental parameters, such as pH, temperature, and interference by certain anions and cations. Uranium accumulation by Pseudomonas aeruginosa occurred intracellularly and was extremely rapid (<10 s), and no response to environmental parameters could be detected. Metabolism was not required for metal uptake by either organism. Cell-bound uranium reached a concentration of 10 to 15% of the dry cell weight, but only 32% of the S. cerevisiae cells and 44% of the P. aeruginosa cells within a given population possessed visible uranium deposits when examined by electron microscopy. Rates of uranium uptake by S. cerevisiae were increased by chemical pretreatment of the cells. Uranium could be removed chemically from S. cerevisiae cells, and the cells could then be reused as a biosorbent. Images PMID:16345691
Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris
Lovley, D.R.; Widman, P.K.; Woodward, J.C.; Phillips, E.J.P.
1993-01-01
The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium- contaminated waters and waste streams.
PREPARATION OF COMPACTS MADE FROM URANIUM AND BERYLLIUM BY SINTERING
Angier, R.P.
1961-04-11
A powder metallurgical method for making high-density compacts of uranium and beryllium is reported. Powdered UBe/sub 9/ and powdered Be are blended, compacted, and then sintered by rapidly heating to a temperature of approximately 1220 to 1280 deg C in an inert atmosphere.
Seybolt, A.U.
1958-04-15
Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.
Incorporation of Uranium: II. Distribution of Uranium Absorbed through the Lungs and the Skin
Walinder, G.; Fries, B.; Billaudelle, U.
1967-01-01
In experiments on mice, rabbits, and piglets the distribution of uranium was studied at different times after exposure. Uranium was administered by inhalation (mice) and through the skin (rabbits and piglets). These investigations show that the uptakes of uranium in different organs of the three species are highly dependent on the amounts administered. There seems to be a saturation effect in the spleen and bone tissue whenever the uranium concentration in the blood exceeds a certain level. The effect in the kidney is completely different. If, in a series of animals, the quantity of uranium is continuously increased, the uptakes by the kidneys increase more rapidly than the quantities administered. This observation seems to be consistent with the toxic effects of uranium on the capillary system in the renal cortex. Polyphloretin phosphate, a compound which reduces permeability, was investigated with respect to its effect on the uptake of uranium deposited in skin wounds in rabbits and piglets. It significantly reduced the absorption of uranium, even from depots in deep wounds. The findings are discussed with reference to the routine screening of persons exposed to uranium at AB Atomenergi. Images PMID:6073090
Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.
Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang
2012-04-01
Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.
SAM lists this method for the qualitative determination of Americium-241, Radium-226, Plutonium-238, Plutonium-239 and isotopic uranium in drinking water samples using alpha spectrometry and radiostrontium using beta counting.
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...
2017-05-09
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
Compatibility of buffered uranium carbides with tungsten.
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1971-01-01
Results of compatibility tests between tungsten and hyperstoichiometric uranium carbide alloys run at 1800 C for 1000 and 2500 hours. These tests compared tungsten-buffered uranium carbide with tungsten-buffered uranium-zirconium carbide. The zirconium carbide addition appeared to widen the homogeneity range of the uranium carbide, making additional carbon available for reaction. Reaction layers could be formed by either of two diffusion paths, one producing UWC2, while the second resulted in the formation of W2C. UWC2 acts as a diffusion barrier for carbon and slows the growth of the reaction layer with time, while carbon diffusion is relatively rapid in W2C, allowing equilibrium to be reached in less than 2500 hours at a temperature of 1800 C.
Effect of rapidly changing river stage on uranium flux through the hyporheic zone.
Fritz, Brad G; Arntzen, Evan V
2007-01-01
Measurement of ground water/surface water interaction within the hyporheic zone is increasingly recognized as an important aspect of subsurface contaminant fate and transport. Understanding the interaction between ground water and surface water is critical in developing a complete conceptual model of contaminant transport through the hyporheic zone. At the Hanford Site near Richland, Washington, ground water contaminated with uranium discharges to the Columbia River through the hyporheic zone. Ground water flux varies according to changes in hydraulic gradient caused by fluctuating river stage, which changes in response to operation of dams on the Columbia River. Piezometers and continuous water quality monitoring probes were installed in the hyporheic zone to provide long-term, high-frequency measurement of hydraulic gradient and estimated uranium concentrations. Subsequently, the flux of water and uranium was calculated for each half-hour time period over a 15-month study period. In addition, measurement of water levels in the near-shore unconfined aquifer enhanced the understanding of the relationship between river stage, aquifer elevation, and uranium flux. Changing river stage resulted in fluctuating hydraulic gradient within the hyporheic zone. Further, influx of river water caused lower uranium concentrations as a result of dilution. The methods employed in this study provide a better understanding of the interaction between surface and ground water in a situation with a dynamically varying vertical hydraulic gradient and illustrate how the combination of relatively standard methods can be used to derive an accurate estimation of water and contaminant flux through the hyporheic zone.
An unusual temperature dependence in the oxidation of oxycarbide layers on uranium
NASA Astrophysics Data System (ADS)
Ellis, Walton P.
1981-09-01
An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.
An unusual temperature dependence in the oxidation of oxycarbide layers on uranium
NASA Astrophysics Data System (ADS)
Ellis, Walton P.
An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.
Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole
Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.
Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole L.
We demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security applications.
Two-dimensional fluorescence spectroscopy of uranium isotopes in femtosecond laser ablation plumes
Phillips, Mark C.; Brumfield, Brian E.; LaHaye, Nicole; ...
2017-06-19
Here, we demonstrate measurement of uranium isotopes in femtosecond laser ablation plumes using two-dimensional fluorescence spectroscopy (2DFS). The high-resolution, tunable CW-laser spectroscopy technique clearly distinguishes atomic absorption from 235U and 238U in natural and highly enriched uranium metal samples. We present analysis of spectral resolution and analytical performance of 2DFS as a function of ambient pressure. Simultaneous measurement using time-resolved absorption spectroscopy provides information on temporal dynamics of the laser ablation plume and saturation behavior of fluorescence signals. The rapid, non-contact measurement is promising for in-field, standoff measurements of uranium enrichment for nuclear safety and security.
The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine
Through assay analysis into an excess of 1 M H 2SO 4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% ofmore » the DG results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO 3, HCl and Na 2CO 3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less
The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions
Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine; ...
2017-07-18
Through assay analysis into an excess of 1 M H 2SO 4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% ofmore » the DG results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO 3, HCl and Na 2CO 3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less
Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.
Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi
2018-02-05
Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.
The mechanism of uranium biosorption by Rhizopus arrhizus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsezos, M.; Volesky, B.
1982-02-01
Biosorption of elements is a little understood phenomenon exhibited by some types of even nonliving microbial biomass. A common fungus Rhizopus arrhizus has been reportd to take up uranium from adqueous solutions to the extent of 180 mg U/sup 6 +//g. The mechanism of uranium sequestering by this type of biomass was studied by using experimental techniques such as electron microscopy, x-ray energy dispersion analysis, IR spectroscopy, and supporting evidence was obtained for a biosorption mechanism consisting of at least three processes. Uranium coordination and adsorption in the cell-wall chitin structure occur simultaneously and rapidly whereas precipitation of uranylhdroxide withinmore » the chitin microcrystalline cell-wall structure takes place at a lower rate. Interference of Fe/sup 2/ and Zn/sup 2 +/ coions with uranium biosorption is indicated.« less
Liquid Thermal Diffusion during the Manhattan Project
NASA Astrophysics Data System (ADS)
Cameron Reed, B.
2011-06-01
On the basis of Manhattan Engineer District documents, a little known Naval Research Laboratory report of 1946, and other sources, I construct a more complete history of the liquid-thermal-diffusion method of uranium enrichment during World War II than is presented in official histories of the Manhattan Project. This method was developed by Philip Abelson (1913-2004) and put into operation at the rapidly-constructed S-50 plant at Oak Ridge, Tennessee, which was responsible for the first stage of uranium enrichment, from 0.72% to 0.85% U-235, producing nearly 45,000 pounds of enriched U-235 by July 1945 at a cost of just under 20 million. I review the history, design, politics, construction, and operation of the S-50 liquid-thermal-diffusion plant.
Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.
Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya
2015-12-01
Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.
2009-05-14
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM
DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.
2008-01-01
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950
Nominations for the 2017 NNSA Pollution Prevention Awards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzman, Sonja L.; Ballesteros Rodriguez, Sonia; Lopez, Lorraine Bonds
In the field of nuclear forensics, one of the biggest challenges is to dissolve postdetonation debris for analysis. Debris generated after a nuclear detonation is a glassy material that is difficult to dissolve with chemicals. Traditionally, concentrated nitric acid, hydrofluoric acid, or sulfuric acid are employed during the dissolution. These acids, due to their corrosive nature, are not suitable for in-field/on-site sample preparations. Uranium oxides are commonly present in nuclear fuel processing plants and nuclear research facilities. In uranium oxides, the level of uranium isotope enrichment is a sensitive indicator for nuclear nonproliferation and is monitored closely by the Internationalmore » Atomic Energy Agency (IAEA) to ensure there is no misuse of nuclear material or technology for nuclear weapons. During an IAEA on-site inspection at a facility, environmental surface swipe samples are collected and transported to the IAEA headquarters or network of analytical laboratories for further processing. Uranium oxide particles collected on the swipe medium are typically dissolved with inorganic acids and are then analyzed for uranium isotopic compositions. To improve the responsiveness of on-site inspections, in-field detection techniques have been recently explored. However, in-field analysis is bottlenecked by time-consuming and hazardous dissolution procedures, as corrosive inorganic acids must be used. Corrosive chemicals are difficult to use in the field due to personnel safety considerations, and the transportation of such chemicals is highly regulated. It was therefore necessary to develop fast uranium oxide dissolution methods using less hazardous chemicals in support of the rapid infield detection of anomalies in declared nuclear processes.« less
Boulyga, S F; Becker, J S
2001-07-01
As a result of the accident at the Chernobyl nuclear power plant (NPP) the environment was contaminated with spent nuclear fuel. The 236U isotope was used in this study to monitor the spent uranium from nuclear fallout in soil samples collected in the vicinity of the Chernobyl NPP. Nuclear track radiography was applied for the identification and extraction of hot radioactive particles from soil samples. A rapid and sensitive analytical procedure was developed for uranium isotopic ratio measurement in environmental samples based on double-focusing inductively coupled plasma mass spectrometry (DF-ICP-MS) with a MicroMist nebulizer and a direct injection high-efficiency nebulizer (DIHEN). The performance of the DF-ICP-MS with a quartz DIHEN and plasma shielded torch was studied. Overall detection efficiencies of 4 x 10(-4) and 10(-3) counts per atom were achieved for 238U in DF-ICP-QMS with the MicroMist nebulizer and DIHEN, respectively. The rate of formation of uranium hydride ions UH+/U+ was 1.2 x 10(-4) and 1.4 x 10(-4), respectively. The precision of short-term measurements of uranium isotopic ratios (n = 5) in 1 microg L(-1) NBS U-020 standard solution was 0.11% (238U/235U) and 1.4% (236U/238U) using a MicroMist nebulizer and 0.25% (235U/238U) and 1.9% (236U/P38U) using a DIHEN. The isotopic composition of all investigated Chernobyl soil samples differed from those of natural uranium; i.e. in these samples the 236U/238U ratio ranged from 10(-5) to 10(-3). Results obtained with ICP-MS, alpha- and gamma-spectrometry showed differences in the migration properties of spent uranium, plutonium, and americium. The isotopic ratio of uranium was also measured in hot particles extracted from soil samples.
McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; ...
2015-09-18
Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this research, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two activemore » bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.« less
McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.
2015-01-01
Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this study, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites. PMID:26382047
Panda, Bandita; Basu, Bhakti; Acharya, Celin; Rajaram, Hema; Apte, Shree Kumar
2017-01-01
Two strains of the nitrogen-fixing cyanobacterium Anabaena, native to Indian paddy fields, displayed differential sensitivity to exposure to uranyl carbonate at neutral pH. Anabaena sp. strain PCC 7120 and Anabaena sp. strain L-31 displayed 50% reduction in survival (LD 50 dose), following 3h exposure to 75μM and 200μM uranyl carbonate, respectively. Uranium responsive proteome alterations were visualized by 2D gel electrophoresis, followed by protein identification by MALDI-ToF mass spectrometry. The two strains displayed significant differences in levels of proteins associated with photosynthesis, carbon metabolism, and oxidative stress alleviation, commensurate with their uranium tolerance. Higher uranium tolerance of Anabaena sp. strain L-31 could be attributed to sustained photosynthesis and carbon metabolism and superior oxidative stress defense, as compared to the uranium sensitive Anabaena sp. strain PCC 7120. Uranium responsive proteome modulations in two nitrogen-fixing strains of Anabaena, native to Indian paddy fields, revealed that rapid adaptation to better oxidative stress management, and maintenance of metabolic and energy homeostasis underlies superior uranium tolerance of Anabaena sp. strain L-31 compared to Anabaena sp. strain PCC 7120. Copyright © 2016 Elsevier B.V. All rights reserved.
Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.
Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P
2016-07-12
Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.
Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour
NASA Astrophysics Data System (ADS)
Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.
2016-07-01
Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.
Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour
Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W; Scott, T.; Moody, M. P.
2016-01-01
Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour. PMID:27403638
Critical analysis of world uranium resources
Hall, Susan; Coleman, Margaret
2013-01-01
The U.S. Department of Energy, Energy Information Administration (EIA) joined with the U.S. Department of the Interior, U.S. Geological Survey (USGS) to analyze the world uranium supply and demand balance. To evaluate short-term primary supply (0–15 years), the analysis focused on Reasonably Assured Resources (RAR), which are resources projected with a high degree of geologic assurance and considered to be economically feasible to mine. Such resources include uranium resources from mines currently in production as well as resources that are in the stages of feasibility or of being permitted. Sources of secondary supply for uranium, such as stockpiles and reprocessed fuel, were also examined. To evaluate long-term primary supply, estimates of uranium from unconventional and from undiscovered resources were analyzed. At 2010 rates of consumption, uranium resources identified in operating or developing mines would fuel the world nuclear fleet for about 30 years. However, projections currently predict an increase in uranium requirements tied to expansion of nuclear energy worldwide. Under a low-demand scenario, requirements through the period ending in 2035 are about 2.1 million tU. In the low demand case, uranium identified in existing and developing mines is adequate to supply requirements. However, whether or not these identified resources will be developed rapidly enough to provide an uninterrupted fuel supply to expanded nuclear facilities could not be determined. On the basis of a scenario of high demand through 2035, 2.6 million tU is required and identified resources in operating or developing mines is inadequate. Beyond 2035, when requirements could exceed resources in these developing properties, other sources will need to be developed from less well-assured resources, deposits not yet at the prefeasibility stage, resources that are currently subeconomic, secondary sources, undiscovered conventional resources, and unconventional uranium supplies. This report’s analysis of 141 mines that are operating or are being actively developed identifies 2.7 million tU of in-situ uranium resources worldwide, approximately 2.1 million tU recoverable after mining and milling losses were deducted. Sixty-four operating mines report a total of 1.4 million tU of in-situ RAR (about 1 million tU recoverable). Seventy-seven developing mines/production centers report 1.3 million tU in-situ Reasonably Assured Resources (RAR) (about 1.1 million tU recoverable), which have a reasonable chance of producing uranium within 5 years. Most of the production is projected to come from conventional underground or open pit mines as opposed to in-situ leach mines. Production capacity in operating mines is about 76,000 tU/yr, and in developing mines is estimated at greater than 52,000 tU/yr. Production capacity in operating mines should be considered a maximum as mines seldom produce up to licensed capacity due to operational difficulties. In 2010, worldwide mines operated at 70 percent of licensed capacity, and production has never exceeded 89 percent of capacity. The capacity in developing mines is not always reported. In this study 35 percent of developing mines did not report a target licensed capacity, so estimates of future capacity may be too low. The Organisation for Economic Co-operation and Development’s Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) estimate an additional 1.4 million tU economically recoverable resources, beyond that identified in operating or developing mines identified in this report. As well, 0.5 million tU in subeconomic resources, and 2.3 million tU in the geologically less certain inferred category are identified worldwide. These agencies estimate 2.2 million tU in secondary sources such as government and commercial stockpiles and re-enriched uranium tails. They also estimate that unconventional uranium supplies (uraniferous phosphate and black shale deposits) may contain up to 7.6 million tU. Although unconventional resources are currently subeconomic, the improvement of extraction techniques or the production of coproducts may make extraction of uranium from these types of deposits profitable. A large undiscovered resource base is reported by these agencies, however this class of resource should be considered speculative and will require intensive exploration programs to adequately define them as mineable. These resources may all contribute to uranium supply that would fuel the world nuclear fleet well beyond that calculated in this report. Production of resources in both operating and developing uranium mines is subject to uncertainties caused by technical, legal, regulatory, and financial challenges that combined to create long timelines between deposit discovery and mine production. This analysis indicates that mine development is proceeding too slowly to fully meet requirements for an expanded nuclear power reactor fleet in the near future (to 2035), and unless adequate secondary or unconventional resources can be identified, imbalances in supply and demand may occur.
Dutova, Ekaterina M; Nikitenkov, Aleksei N; Pokrovskiy, Vitaly D; Banks, David; Frengstad, Bjørn S; Parnachev, Valerii P
2017-11-01
Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software "HydroGeo", has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO 2 pressure (P CO2 , open system) of 10 -2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M - regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550-1000 mg L -1 . Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L -1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO 3 hydrofacies). The secondary minerals are typically "black" uranium oxides of mixed oxidation state (e.g. U 3 O 7 and U 4 O 9 ). For rock U content of 5-50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L -1 , but with typical concentrations of up to 10 μg L -1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and P CO2 (low P CO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals). Copyright © 2017 Elsevier Ltd. All rights reserved.
KINETICS OF THE DISSOLUTION OF URANIUM DIOXIDE IN CARBONATE-BICARBONATE SOLUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schortmann, W.E.; DeSesa, M.A.
The kinetics of the dissolution of uranium dioxide in sodium carbonate- sodium bicarbonate solutions were determined. The study was undertaken in order to obtain fundamental information about the commercial carbonate process for leaching uranium from its ores. A rate equation incorporating the effects of surface area oxygen partial pressure, temperature, and reagent concentrations was empirically developed. A mechanism consisting essentially of two consecutive reactions at steady state is proposed. These reactions are the oxidation of U/ sup 4+/ to U/sup 6+/ and the subsequent formation of the uranyl dicarbonate complexion. Depending on the conditions, either or both of these reactionsmore » can determine the over-all rate. The conversion of uranyl dicarbonate to the uranyl tricarbonate complexion is postulated to be very rapid. In the suggested mechanism, the rate-determining phase of the oxidation is the dissociation of adsorbed molecular oxygen. and both the carbonate and bicarbonate ions play equivalent roles in the formation of the uranyl dicarbonate. As indicated by their high activation energies of about 13 and 14 kcal per mole uranium, both reactions are chemical rather than diffusional processes. A mathematical examination of the proposed mechanism produced a rate equation consistent with the experimental information. The credibility of the mechanism was thereby strengthened. (auth)« less
NASA Technical Reports Server (NTRS)
Francis, A. J.; Dodge, C. J.
1993-01-01
A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.
NASA Astrophysics Data System (ADS)
Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.
1984-04-01
Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.
US Transuranium and Uranium Registries case study on accidental exposure to uranium hexafluoride.
Avtandilashvili, Maia; Puncher, Matthew; McComish, Stacey L; Tolmachev, Sergei Y
2015-03-01
The United States Transuranium and Uranium Registries' (USTUR) whole-body donor (Case 1031) was exposed to an acute inhalation of uranium hexafluoride (UF6) produced from an explosion at a uranium processing plant 65 years prior to his death. The USTUR measurements of tissue samples collected at the autopsy indicated long-term retention of inhaled slightly enriched uranium material (0.85% (235)U) in the deep lungs and thoracic lymph nodes. In the present study, the authors combined the tissue measurement results with historical bioassay data, and analysed them with International Commission on Radiological Protection (ICRP) respiratory tract models and the ICRP Publication 69 systemic model for uranium using maximum likelihood and Bayesian statistical methods. The purpose of the analysis was to estimate intakes and model parameter values that best describe the data, and evaluate their effect on dose assessment. The maximum likelihood analysis, which used the ICRP Publication 66 human respiratory tract model, resulted in a point estimate of 79 mg of uranium for the occupational intake composed of 86% soluble, type F material and 14% insoluble, type S material. For the Bayesian approach, the authors applied the Markov Chain Monte Carlo method, but this time used the revised human respiratory tract model, which is currently being used by ICRP to calculate new dose coefficients for workers. The Bayesian analysis estimated that the mean uranium intake was 160 mg, and calculated the case-specific lung dissolution parameters with their associated uncertainties. The parameters were consistent with the inhaled uranium material being predominantly soluble with a small but significant insoluble component. The 95% posterior range of the rapid dissolution fraction (the fraction of deposited material that is absorbed to blood rapidly) was 0.12 to 0.91 with a median of 0.37. The remaining fraction was absorbed slowly, with a 95% range of 0.000 22 d(-1) to 0.000 36 d(-1) and a median of 0.000 31 d(-1). The effective dose per unit intake calculated using the dissolution parameters derived from the maximum likelihood and the Bayesian analyses was higher than the current ICRP dose coefficient for type F uranium by a factor of 2 or 7, respectively; the higher value of the latter was due to use of the revised respiratory tract model. The dissolution parameter values obtained here may be more appropriate to use for radiation protection purposes when individuals are exposed to a UF6 mixture that contains an insoluble uranium component.
Influence of uranium hydride oxidation on uranium metal behaviour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Hambley, D.; Clarke, S.A.
2013-07-01
This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less
Uranium speciation and stability after reductive immobilization in aquifer sediments
NASA Astrophysics Data System (ADS)
Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan
2011-11-01
It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkes, Douglas E.; Senor, David J.; Casella, Andrew M.
Numerous global programs are focused on the continued development of existing and new research and test reactor fuels to achieve maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Some of these programs are focused on development and qualification of a fuel design that consists of a uranium-molybdenum (U-Mo) alloy dispersed in an aluminum matrix as one option for reactor conversion. The current paper extends a failure model originally developed for UO2-stainless steel dispersion fuels and used currently available thermal-mechanical property information for the materials ofmore » interest in the current proposed design. A number of fabrication and irradiation parameters were investigated to understand the conditions at which failure of the matrix, classified as pore formation in the matrix, might occur. The results compared well with experimental observations published as part of the Reduced Enrichment for Research and Test Reactors (RERTR)-6 and -7 mini-plate experiments. Fission rate, a function of the 235U enrichment, appeared to be the most influential parameter in premature failure, mainly as a result of increased interaction layer formation and operational temperature, which coincidentally decreased the yield strength of the matrix and caused more rapid fission gas production and recoil into the surrounding matrix material. Addition of silicon to the matrix appeared effective at reducing the rate of interaction layer formation and can extend the performance of a fuel plate under a certain set of irradiation conditions, primarily moderate heat flux and burnup. Increasing the dispersed fuel particle diameter may also be effective, but only when combined with other parameters, e.g., lower enrichment and increased Si concentration. The model may serve as a valuable tool in initial experimental design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.
The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from {open_quotes}solute{close_quotes} uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 {mu}m-filtered Kalix River water samples increased by a factor of 3 from near the headwaters inmore » the Caledonides to the river mouth while major cation concentrations were relatively constant. {sup 234}U {sup 238}U ratios were high ({delta}{sup 234}U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of {sup 234}U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil {sup 234}U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small {sup 234}U/{sup 238}U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs.« less
Petitot, Fabrice; Lestaevel, Philippe; Tourlonias, Elie; Mazzucco, Charline; Jacquinot, Sébastien; Dhieux, Bernadette; Delissen, Olivia; Tournier, Benjamin B; Gensdarmes, François; Beaunier, Patricia; Dublineau, Isabelle
2013-03-13
Uranium nanoparticles (<100 nm) can be released into the atmosphere during industrial stages of the nuclear fuel cycle and during remediation and decommissioning of nuclear facilities. Explosions and fires in nuclear reactors and the use of ammunition containing depleted uranium can also produce such aerosols. The risk of accidental inhalation of uranium nanoparticles by nuclear workers, military personnel or civilian populations must therefore be taken into account. In order to address this issue, the absorption rate of inhaled uranium nanoparticles needs to be characterised experimentally. For this purpose, rats were exposed to an aerosol containing 10⁷ particles of uranium per cm³ (CMD=38 nm) for 1h in a nose-only inhalation exposure system. Uranium concentrations deposited in the respiratory tract, blood, brain, skeleton and kidneys were determined by ICP-MS. Twenty-seven percent of the inhaled mass of uranium nanoparticles was deposited in the respiratory tract. One-fifth of UO₂ nanoparticles were rapidly cleared from lung (T(½)=2.4 h) and translocated to extrathoracic organs. However, the majority of the particles were cleared slowly (T(½)=141.5 d). Future long-term experimental studies concerning uranium nanoparticles should focus on the potential lung toxicity of the large fraction of particles cleared slowly from the respiratory tract after inhalation exposure. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Rosholt, J.N.
1954-01-01
When an ore sample contains radioactivity other than that attributable to the uranium series in equilibrium, a quantitative analysis of the other emitters must be made in order to determine the source of this activity. Thorium-232, radon-222, and lead-210 have been determined by isolation and subsequent activity analysis of some of their short-lived daughter products. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the ??-particle activity of polonium-214, polonium-212, and polonium-210 is determined by scintillation-counting techniques. Polonium-214 activity is used to determine radon-222, polonium-212 activity for thorium-232, and polonium-210 for lead-210. The development of these methods of radiochemical analysis will facilitate the rapid determination of some of the major sources of natural radioactivity.
In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1: Corrosion in water vapour.
Stitt, C A; Paraskevoulakos, C; Banos, A; Harker, N J; Hallam, K R; Davenport, A; Street, S; Scott, T B
2017-08-11
Uranium encapsulated in grout was exposed to water vapour for extended periods of time. Through synchrotron x-ray powder diffraction and tomography measurements, uranium dioxide was determined the dominant corrosion product over a 50-week time period. The oxide growth rate initiated rapidly, with rates comparable to the U + H 2 O reaction. Over time, the reaction rate decreased and eventually plateaued to a rate similar to the U + H 2 O + O 2 reaction. This behaviour was not attributed to oxygen ingress, but instead the decreasing permeability of the grout, limiting oxidising species access to the metal surface.
Origin of uranium isotope variations in early solar nebula condensates.
Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence
2016-03-01
High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.
Hybrid Interferometric/Dispersive Atomic Spectroscopy For Nuclear Materials Analysis
NASA Astrophysics Data System (ADS)
Morgan, Phyllis K.
Laser-induced breakdown spectroscopy (LIBS) is an optical emission spectroscopy technique that holds promise for detection and rapid analysis of elements relevant for nuclear safeguards and nonproliferation, including the measurement of isotope ratios. One important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.437 nm U II line). Measuring uranium enrichment is important in nuclear nonproliferation and safeguards because the uranium highly enriched in the 235U isotope can be used to construct nuclear weapons. High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. A hybrid interferometric/dispersive spectrometer prototype, which consists of an inexpensive, compact Fabry-Perot etalon integrated with a low to moderate resolution Czerny-Turner spectrometer, was assembled for making high-resolution measurements of nuclear materials in a laboratory setting. To more fully take advantage of this low-cost, compact hybrid spectrometer, a mathematical reconstruction technique was developed to accurately reconstruct relative line strengths from complex spectral patterns with high resolution. Measurement of the mercury 313.1555/313.1844 nm doublet from a mercury-argon lamp yielded a spectral line intensity ratio of 0.682, which agrees well with an independent measurement by an echelle spectrometer and previously reported values. The hybrid instrument was used in LIBS measurements and achieved the resolution needed for isotopic selectivity of LIBS of uranium in ambient air. The samples used were a natural uranium foil (0.7% of 235U) and a uranium foil highly enriched in 235U to 93%. Both samples were provided by the Penn State University's Breazeale Nuclear Reactor. The enrichment of the uranium foils was verified using a high-purity germanium detector and dedicated software for multi-group spectral analysis. Uranium spectral line widths of ˜10 pm were measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium at that wavelength. The 424.167 nm isotope shift (˜6 pm), limited by spectral broadening, was only partially resolved but still discernible. This instrument and reconstruction method could enable the design of significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting nuclear safeguards, treaty verification, nuclear forensics, and a variety of other spectroscopic applications.
Evaporation behavior of lithium, potassium, uranium and rare earth chlorides in pyroprocessing
NASA Astrophysics Data System (ADS)
Jang, Junhyuk; Kim, Tackjin; Park, Sungbin; Kim, Gha-Young; Kim, Sihyoung; Lee, Sungjai
2017-12-01
The evaporation behaviors of Li, K, U, and rare earth (RE) chlorides were examined for the cathode process in pyroprocessing. The evaporation temperatures of the chlorides were evaluated in vacuum by measuring the weight decrease. In addition, an evaporation test up to 1473 K of the cathode process using a surrogate mixture of uranium and chlorides was conducted. It was found that LiCl evaporated more readily than the other chlorides. The weight of LiCl was rapidly decreased at temperatures above 981 K, while that of KCl was decreased above 1035 K, indicating the evaporation. UCl3 evaporated at temperatures above 1103 K. RE chlorides showed a similar evaporation behavior, evaporating first at 1158 K then rapidly evaporating at temperatures above 1230 K. Thus, the order of evaporation with increasing temperature was found to be LiCl < KCl < UCl3 < RE chlorides, with different RE chlorides evaporating at similar temperature. The surrogate test confirmed the observed evaporation trend of the chlorides during the cathode process, and revealed that the contamination of uranium remains by the back-reaction of RE chlorides is negligible.
NASA Astrophysics Data System (ADS)
Nur Krisna, Dwita; Su'ud, Zaki
2017-01-01
Nuclear reactor technology is growing rapidly, especially in developing Nuclear Power Plant (NPP). The utilization of nuclear energy in power generation systems has been progressing phase of the first generation to the fourth generation. This final project paper discusses the analysis neutronic one-cooled fast reactor type Pb-Bi, which is capable of operating up to 20 years without refueling. This reactor uses Thorium Uranium Nitride as fuel and operating on power range 100-500MWtNPPs. The method of calculation used a computer simulation program utilizing the SRAC. SPINNOR reactor is designed with the geometry of hexagonal shaped terrace that radially divided into three regions, namely the outermost regions with highest percentage of fuel, the middle regions with medium percentage of fuel, and most in the area with the lowest percentage. SPINNOR fast reactor operated for 20 years with variations in the percentage of Uranium-233 by 7%, 7.75%, and 8.5%. The neutronic calculation and analysis show that the design can be optimized in a fast reactor for thermal power output SPINNOR 300MWt with a fuel fraction 60% and variations of Uranium-233 enrichment of 7%-8.5%.
The use of unmanned aerial systems for the mapping of legacy uranium mines.
Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Scott, T B
2015-05-01
Historical mining of uranium mineral veins within Cornwall, England, has resulted in a significant amount of legacy radiological contamination spread across numerous long disused mining sites. Factors including the poorly documented and aged condition of these sites as well as the highly localised nature of radioactivity limit the success of traditional survey methods. A newly developed terrain-independent unmanned aerial system [UAS] carrying an integrated gamma radiation mapping unit was used for the radiological characterisation of a single legacy mining site. Using this instrument to produce high-spatial-resolution maps, it was possible to determine the radiologically contaminated land areas and to rapidly identify and quantify the degree of contamination and its isotopic nature. The instrument was demonstrated to be a viable tool for the characterisation of similar sites worldwide. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A model of early formation of uranium molecular oxides in laser-ablated plasmas
NASA Astrophysics Data System (ADS)
Finko, Mikhail; Curreli, Davide; Azer, Magdi; Weisz, David; Crowhurst, Jonathan; Rose, Timothy; Koroglu, Batikan; Radousky, Harry; Zaug, Joseph; Armstrong, Mike
2017-10-01
An important problem within the field of nuclear forensics is fractionation: the formation of post-detonation nuclear debris whose composition does not reflect that of the source weapon. We are investigating uranium fractionation in rapidly cooling plasma using a combined experimental and modeling approach. In particular, we use laser ablation of uranium metal samples to produce a low-temperature plasma with physical conditions similar to a condensing nuclear fireball. Here we present a first plasma-chemistry model of uranium molecular species formation during the early stage of laser ablated plasma evolution in atmospheric oxygen. The system is simulated using a global kinetic model with rate coefficients calculated according to literature data and the application of reaction rate theory. The model allows for a detailed analysis of the evolution of key uranium molecular species and represents the first step in producing a uranium fireball model that is kinetically validated against spatially and temporally resolved spectroscopy measurements. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16- 1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.
Assessment of Local Biodiversity Loss in Uranium Mining-Tales And Its Projections On Global Scale
NASA Astrophysics Data System (ADS)
Sharshenova, D.; Zhamangulova, N.
2015-12-01
In Min-Kush, northern Kyrgyzstan there are 8 mining tales with an estimate of 1 961 000 tones of industrial Uranium. Local ecosystem services have declined rapidly. We analyzed a terrestrial assemblage database of Uranium mine-tale to quantify local biodiversity responses to land use and environmental changes. In the worst-affected habitats species richness reduced by 95.7%, total abundance by 60.9% and rarefaction-based richness by 72.5%. We estimate that, regional mountain ecosystem affected by this pressure reduced average within-sample richness (by 17.01%), total abundance (16.5%) and rarefaction-based richness (14.5%). Business-as-usual scenarios are the widely practiced in the region and moreover, due to economic constraints country can not afford any mitigation scenarios. We project that biodiversity loss and ecosystem service impairment will spread in the region through ground water, soil, plants, animals and microorganisms at the rate of 1km/year. Entire Tian-Shan mountain chain will be in danger within next 5-10 years. Our preliminary data shows that local people live in this area developed various forms of cancer, and the rate of premature death is as high as 40%. Strong international scientific and socio-economic partnership is needed to develop models and predictions.
Sorption and bioreduction of hexavalent uranium at a military facility by the Chesapeake Bay.
Dong, Wenming; Xie, Guibo; Miller, Todd R; Franklin, Mark P; Oxenberg, Tanya Palmateer; Bouwer, Edward J; Ball, William P; Halden, Rolf U
2006-07-01
Directly adjacent to the Chesapeake Bay lies the Aberdeen Proving Ground, a U.S. Army facility where testing of armor-piercing ammunitions has resulted in the deposition of >70,000 kg of depleted uranium (DU) to local soils and sediments. Results of previous environmental monitoring suggested limited mobilization in the impact area and no transport of DU into the nation's largest estuary. To determine if physical and biological reactions constitute mechanisms involved in limiting contaminant transport, the sorption and biotransformation behavior of the radionuclide was studied using geochemical modeling and laboratory microcosms (500 ppb U(VI) initially). An immediate decline in dissolved U(VI) concentrations was observed under both sterile and non-sterile conditions due to rapid association of U(VI) with natural organic matter in the sediment. Reduction of U(VI) to U(IV) occurred only in non-sterile microcosms. In the non-sterile samples, intrinsic bioreduction of uranium involved bacteria of the order Clostridiales and was only moderately enhanced by the addition of acetate (41% vs. 56% in 121 days). Overall, this study demonstrates that the migration of depleted uranium from the APG site into the Chesapeake Bay may be limited by a combination of processes that include rapid sorption of U(VI) species to natural organic matter, followed by slow, intrinsic bioreduction to U(IV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernheim, F.
1971-09-01
The effects of uranium acetate, with and without the addition of NaCl, on the optical density and size of cells of Pseudomonas aeruginosa were compared with the effects of mercuric chloride and cyanogen iodide with and without the addition of NaCl. The addition of uranium acetate to the culture media caused the cells to swell rapidly, with the extent of the change dependent upon the time urarium was allowed to react with the cells before the addition of NaCl. A partial reversal of the effect of uranium on swelling was obtained by the addition of ATP or sodium phosphate. Bothmore » mercuric chloride and cyanogen iodide caused the cells to swell but the addition of phosphates had no effect on the amount of swelling. (CH)« less
Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma
Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor
2015-12-19
An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIBS), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment ( 235U/ 238U), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry–Perot etalon integrated with a low to moderatemore » resolution Czerny–Turner spectrometer, to achieve the resolution needed for isotope selectivity of LIBS of uranium in ambient air. Furthermore, spectral line widths of ~ 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium.« less
Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.
1985-01-01
An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.
1984-01-06
The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors
NASA Technical Reports Server (NTRS)
Roman, W. C.
1979-01-01
An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.
Reading, David G; Croudace, Ian W; Warwick, Phillip E
2017-06-06
There is an increasing demand for rapid and effective analytical tools to support nuclear forensic investigations of seized or suspect materials. Some methods are simply adapted from other scientific disciplines and can effectively be used to rapidly prepare complex materials for subsequent analysis. A novel sample fusion method is developed, tested, and validated to produce homogeneous, flux-free glass beads of geochemical reference materials (GRMs), uranium ores, and uranium ore concentrates (UOC) prior to the analysis of 14 rare earth elements (REE) via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The novelty of the procedure is the production of glass beads using 9 parts high purity synthetic enstatite (MgSiO 3 ) as the glass former with 1 part of sample (sample mass ∼1.5 mg). The beads are rapidly prepared (∼10 min overall time) by fusing the blended mixture on an iridium strip resistance heater in an argon-purged chamber. Many elements can be measured in the glass bead, but the rare earth group in particular is a valuable series in nuclear forensic studies and is well-determined using LA-ICP-MS. The REE data obtained from the GRMs, presented as chondrite normalized patterns, are in very good agreement with consensus patterns. The UOCs have comparable patterns to solution ICP-MS methods and published data. The attractions of the current development are its conservation of sample, speed of preparation, and suitability for microbeam analysis, all of which are favorable for nuclear forensics practitioners and geochemists requiring REE patterns from scarce or valuable samples.
Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe
2013-09-15
Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae. Copyright © 2013 Elsevier B.V. All rights reserved.
Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes
Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; ...
2014-11-17
Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoricmore » acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.« less
NASA Technical Reports Server (NTRS)
Latourrette, T. Z.; Kennedy, A. K.; Wasserburg, G. J.
1993-01-01
Mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs) are derived by partial melting of the upper mantle and are marked by systematic excesses of thorium-230 activity relative to the activity of its parent, uranium-238. Experimental measurements of the distribution of thorium and uranium between the melt and solid residue show that, of the major phases in the upper mantle, only garnet will retain uranium over thorium. This sense of fractionation, which is opposite to that caused by clinopyroxene-melt partitioning, is consistent with the thorium-230 excesses observed in young oceanic basalts. Thus, both MORBs and OIBs must begin partial melting in the garnet stability field or below about 70 kilometers. A calculation shows that the thorium-230-uranium-238 disequilibrium in MORBs can be attributed to dynamic partial melting beginning at 80 kilometers with a melt porosity of 0.2 percent or more. This result requires that melting beneath ridges occurs in a wide region and that the magma rises to the surface at a velocity of at least 0.9 meter per year.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan
2013-10-24
Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes directmore » quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.« less
TOF-SIMS for Rapid Nuclear Forensics Evaluation of Uranium Oxide Particles
2011-03-01
Fraction U-238 nU U metal CRM 112-A NBL Metal Assay and Isotopic .000052458 .0072017 --- .9927458 nUO2 UO2 --- NBL Commercial material...0 .992745 dU U metal CRM 115 NBL Uranium Assay .0000076 .0020291 .0000322 .9979311 dUO2 UO2 --- IBI Labs Commercial material --- .002- .0035...U500* U3O8 CRM U500 NBL Isotopic .005181 .49696 .000755 .49711 U900* U3O8 CRM U900 NBL Isotopic .007777 .90196 .003327 .08693 *Sample
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiswenger, Toya N.; Gallagher, Neal B.; Myers, Tanya L.
The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species,more » including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the spectral discrimination in the longwave IR do so by generating upward-going reststrahlen bands in the reflectance data, but the same minerals have other weaker (overtone) bands, sometimes from the same chemical groups, that are manifest as downward-going transmission-type features in the midwave and shortwave infrared.« less
Cremers, David A; Beddingfield, Alan; Smithwick, Robert; Chinni, Rosemarie C; Jones, C Randy; Beardsley, Burt; Karch, Larry
2012-03-01
The development of field-deployable instruments to monitor radiological, nuclear, and explosive (RNE) threats is of current interest for a number of assessment needs such as the on-site screening of suspect facilities and nuclear forensics. The presence of uranium and plutonium and radiological materials can be determined through monitoring the elemental emission spectrum using relatively low-resolution spectrometers. In addition, uranium compounds, explosives, and chemicals used in nuclear fuel processing (e.g., tributyl-phosphate) can be identified by applying chemometric analysis to the laser-induced breakdown (LIBS) spectrum recorded by these spectrometers. For nuclear forensic applications, however, isotopes of U and Pu and other elements (e.g., H and Li) must also be determined, requiring higher resolution spectrometers given the small magnitude of the isotope shifts for some of these elements (e.g., 25 pm for U and 13 pm for Pu). High-resolution spectrometers will be preferred for several reasons but these must fit into realistic field-based analysis scenarios. To address the need for field instrumentation, we evaluated a previously developed field-deployable hand-held LIBS interrogation probe combined with two relatively new high-resolution spectrometers (λ/Δλ ~75,000 and ~44,000) that have the potential to meet field-based analysis needs. These spectrometers are significantly smaller and lighter in weight than those previously used for isotopic analysis and one unit can provide simultaneous wide spectral coverage and high resolution in a relatively small package. The LIBS interrogation probe was developed initially for use with low resolution compact spectrometers in a person-portable backpack LIBS instrument. Here we present the results of an evaluation of the LIBS probe combined with a high-resolution spectrometer and demonstrate rapid detection of isotopes of uranium and hydrogen and highly enriched samples of (6)Li and (7)Li. © 2012 Society for Applied Spectroscopy
The Toxicity of Depleted Uranium
Briner, Wayne
2010-01-01
Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447
Chronic Exposure to Uranium from Gestation: Effects on Behavior and Neurogenesis in Adulthood
Dinocourt, Céline; Culeux, Cécile; Legrand, Marie; Elie, Christelle; Lestaevel, Philippe
2017-01-01
Uranium exposure leads to cerebral dysfunction involving for instance biochemical, neurochemical and neurobehavioral effects. Most studies have focused on mechanisms in uranium-exposed adult animals. However, recent data on developing animals have shown that the developing brain is also sensitive to uranium. Models of uranium exposure during brain development highlight the need to improve our understanding of the effects of uranium. In a model in which uranium exposure began from the first day of gestation, we studied the neurobehavioral consequences as well as the progression of hippocampal neurogenesis in animals from dams exposed to uranium. Our results show that 2-month-old rats exposed to uranium from gestational day 1 displayed deficits in special memory and a prominent depressive-like phenotype. Cell proliferation was not disturbed in these animals, as shown by 5-bromo-2′deoxyuridine (BrdU)/neuronal specific nuclear protein (NeuN) immunostaining in the dentate gyrus. However, in some animals, the pyramidal cell layer was dispersed in the CA3 region. From our previous results with the same model, the hypothesis of alterations of neurogenesis at prior stages of development is worth considering, but is probably not the only one. Therefore, further investigations are needed to correlate cerebral dysfunction and its underlying mechanistic pathways. PMID:28513543
Chronic Exposure to Uranium from Gestation: Effects on Behavior and Neurogenesis in Adulthood.
Dinocourt, Céline; Culeux, Cécile; Legrand, Marie; Elie, Christelle; Lestaevel, Philippe
2017-05-17
Uranium exposure leads to cerebral dysfunction involving for instance biochemical, neurochemical and neurobehavioral effects. Most studies have focused on mechanisms in uranium-exposed adult animals. However, recent data on developing animals have shown that the developing brain is also sensitive to uranium. Models of uranium exposure during brain development highlight the need to improve our understanding of the effects of uranium. In a model in which uranium exposure began from the first day of gestation, we studied the neurobehavioral consequences as well as the progression of hippocampal neurogenesis in animals from dams exposed to uranium. Our results show that 2-month-old rats exposed to uranium from gestational day 1 displayed deficits in special memory and a prominent depressive-like phenotype. Cell proliferation was not disturbed in these animals, as shown by 5-bromo-2'deoxyuridine (BrdU)/neuronal specific nuclear protein (NeuN) immunostaining in the dentate gyrus. However, in some animals, the pyramidal cell layer was dispersed in the CA3 region. From our previous results with the same model, the hypothesis of alterations of neurogenesis at prior stages of development is worth considering, but is probably not the only one. Therefore, further investigations are needed to correlate cerebral dysfunction and its underlying mechanistic pathways.
Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.
Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia
2011-08-15
There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W
2014-10-01
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...
2014-06-07
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2
NASA Astrophysics Data System (ADS)
Clarkson, Matthew O.; Stirling, Claudine H.; Jenkyns, Hugh C.; Dickson, Alexander J.; Porcelli, Don; Moy, Christopher M.; Pogge von Strandmann, Philip A. E.; Cooke, Ilsa R.; Lenton, Timothy M.
2018-03-01
Oceanic Anoxic Event 2 (OAE 2), occurring ˜94 million years ago, was one of the most extreme carbon cycle and climatic perturbations of the Phanerozoic Eon. It was typified by a rapid rise in atmospheric CO2, global warming, and marine anoxia, leading to the widespread devastation of marine ecosystems. However, the precise timing and extent to which oceanic anoxic conditions expanded during OAE 2 remains unresolved. We present a record of global ocean redox changes during OAE 2 using a combined geochemical and carbon cycle modeling approach. We utilize a continuous, high-resolution record of uranium isotopes in pelagic and platform carbonate sediments to quantify the global extent of seafloor anoxia during OAE 2. This dataset is then compared with a dynamic model of the coupled global carbon, phosphorus, and uranium cycles to test hypotheses for OAE 2 initiation. This unique approach highlights an intra-OAE complexity that has previously been underconstrained, characterized by two expansions of anoxia separated by an episode of globally significant reoxygenation coincident with the “Plenus Cold Event.” Each anoxic expansion event was likely driven by rapid atmospheric CO2 injections from multiphase Large Igneous Province activity.
Uranium Bioreduction and Biomineralization.
Wufuer, Rehemanjiang; Wei, Yongyang; Lin, Qinghua; Wang, Huawei; Song, Wenjuan; Liu, Wen; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael
2017-01-01
Following the development of nuclear science and technology, uranium contamination has been an ever increasing concern worldwide because of its potential for migration from the waste repositories and long-term contaminated environments. Physical and chemical techniques for uranium pollution are expensive and challenging. An alternative to these technologies is microbially mediated uranium bioremediation in contaminated water and soil environments due to its reduced cost and environmental friendliness. To date, four basic mechanisms of uranium bioremediation-uranium bioreduction, biosorption, biomineralization, and bioaccumulation-have been established, of which uranium bioreduction and biomineralization have been studied extensively. The objective of this review is to provide an understanding of recent developments in these two fields in relation to relevant microorganisms, mechanisms, influential factors, and obstacles. Copyright © 2017 Elsevier Inc. All rights reserved.
Patterns and Features of Global Uranium Resources and Production
NASA Astrophysics Data System (ADS)
Wang, Feifei; Song, Zisheng; Cheng, Xianghu; Huanhuan, MA
2017-11-01
With the entry into force of the Paris Agreement, the development of clean and low-carbon energy has become the consensus of the world. Nuclear power is one energy that can be vigorously developed today and in the future. Its sustainable development depends on a sufficient supply of uranium resources. It is of great practical significance to understand the distribution pattern of uranium resources and production. Based on the latest international authoritative reports and data, this paper analysed the distribution of uranium resources, the distribution of resources and production in the world, and the developing tendency in future years. The results show that the distribution of uranium resources is uneven in the world, and the discrepancies between different type deposits is very large. Among them, sandstone-type uranium deposits will become the main type owing to their advantages of wide distribution, minor environmental damage, mature mining technology and high economic benefit.
FY16 Status Report for the Uranium-Molybdenum Fuel Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.
2016-09-22
The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less
NASA Astrophysics Data System (ADS)
Knight, Travis W.; Anghaie, Samim
2002-11-01
Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.
Validation of uranium determination in urine by ICP-MS.
Bouvier-Capely, C; Baglan, N; Montègue, A; Ritt, J; Cossonnet, C
2003-08-01
A rapid procedure--dilution of urine+ICP-MS measurement--for the determination of uranium in urine was validated. Large ranges of concentration and isotopic composition were studied on urine samples excreted by occupationally exposed workers. The results were consistent with those obtained by fluorimetry and by alpha spectrometry after a purification procedure, two currently used techniques. However, the proposed procedure is limited for determination of the minor isotope 234U. Thus for worker monitoring, the conversion of 234U mass concentration into activity concentration can lead to an erroneous value of the effective dose, in particular for a contamination at very low level with highly enriched uranium. A solution to avoid this hazard is to perform a chemical purification prior to ICP-MS measurement to lower uncertainty and detection limit for 234U.
Some observations on uranium carbide alloy/tungsten compatibility
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1972-01-01
Chemical compatibility between both pure and thoriated tungsten and uranium carbide alloys was studied at 1800 C for up to 3300 hours. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, dependent upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. The presence of a thermal gradient had no effect on the reactions observed nor did the presence of thoria in the tungsten clad.
Some observations on uranium carbide alloy/tungsten compatibility.
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1972-01-01
Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.
Characterization of low concentration uranium glass working materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.
A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient formore » methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.« less
Australia unlocks her uranium reserves. [Will develop deposits in Northern Territories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, W.E.
1977-11-01
The economic implications of Australia's move to permit the development of uranium mining and to resume exporting uranium have led to forecasts that range from pessimism over unseen factors to an optimistic estimate of $A20 billion and 500,000 jobs. Direct benefits will go to those involved in road construction, mining equipment, and construction camps. The goverment plan calls for mining operations and yellowcake exports from four major uranium mines by 1985. An overview is given of the development plan, which emphasizes an orderly procedure rather than exploitation and excessive competition. The uranium industry is viewed as a stable long-term suppliermore » for international trade. Customers will be required to submit to international Atomic Energy Agency inspection and must guarantee to limit their uranium use to peaceful projects. (DCK)« less
Laboratory-scale uranium RF plasma confinement experiments
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.
Multisource geological data mining and its utilization of uranium resources exploration
NASA Astrophysics Data System (ADS)
Zhang, Jie-lin
2009-10-01
Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.
Uranium isotope separation from 1941 to the present
NASA Astrophysics Data System (ADS)
Maier-Komor, Peter
2010-02-01
Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.
Materials and Methods for Streamlined Laboratory Analysis of Environmental Samples, FY 2016 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addleman, Raymond S.; Naes, Benjamin E.; McNamara, Bruce K.
The International Atomic Energy Agency (IAEA) relies upon laboratory analysis of environmental samples (typically referred to as “swipes”) collected during on-site inspections of safeguarded facilities to support the detection and deterrence of undeclared activities. Unfortunately, chemical processing and assay of the samples is slow and expensive. A rapid, effective, and simple extraction process and analysis method is needed to provide certified results with improved timeliness at reduced costs (principally in the form of reduced labor), while maintaining or improving sensitivity and efficacy. To address these safeguard needs the Pacific Northwest National Laboratory (PNNL) explored and demonstrated improved methods for environmentalmore » sample (ES) analysis. Improvements for both bulk and particle analysis were explored. To facilitate continuity and adoption, the new sampling materials and processing methods will be compatible with existing IAEA protocols for ES analysis. PNNL collaborated with Oak Ridge National Laboratory (ORNL), which performed independent validation of the new bulk analysis methods and compared performance to traditional IAEA’s Network of Analytical Laboratories (NWAL) protocol. ORNL efforts are reported separately. This report describes PNNL’s FY 2016 progress, which was focused on analytical application supporting environmental monitoring of uranium enrichment plants and nuclear fuel processing. In the future the technology could be applied to other safeguard applications and analytes related to fuel manufacturing, reprocessing, etc. PNNL’s FY 2016 efforts were broken into two tasks and a summary of progress, accomplishments and highlights are provided below. Principal progress and accomplishments on Task 1, Optimize Materials and Methods for ICP-MS Environmental Sample Analysis, are listed below. • Completed initial procedure for rapid uranium extraction from ES swipes based upon carbonate-peroxide chemistry (delivered to ORNL for evaluation). • Explored improvements to carbonate-peroxide rapid uranium extraction chemistry. • Evaluated new sampling materials and methods (in collaboration with ORNL). • Demonstrated successful ES extractions from standard and novel swipes for a wide range uranium compounds of interest including UO 2F 2 and UO 2(NO 3) 2, U 3O 8 and uranium ore concentrate. • Completed initial discussions with commercial suppliers of PTFE swipe materials. • Submitted one manuscript for publication. Two additional drafts are being prepared. Principal progress and accomplishments on Task 2, Optimize Materials and Methods for Direct SIMS Environmental Sample Analysis, are listed below. • Designed a SIMS swipe sample holder that retrofits into existing equipment and provides simple, effective, and rapid mounting of ES samples for direct assay while enabling automation and laboratory integration. • Identified preferred conductive sampling materials with better performance characteristics. • Ran samples on the new PNNL NWAL equivalent Cameca 1280 SIMS system. • Obtained excellent agreement between isotopic ratios for certified materials and direct SIMS assay of very low levels of LEU and HEU UO 2F 2 particles on carbon fiber sampling material. Sample activities range from 1 to 500 CPM (uranium mass on sample is dependent upon specific isotope ratio but is frequently in the subnanogram range). • Found that the presence of the UF molecular ions, as measured by SIMS, provides chemical information about the particle that is separate from the uranium isotopics and strongly suggests that those particles originated from an UF6 enrichment activity. • Submitted one manuscript for publication. Another manuscript is in preparation.« less
Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions.
Boonchayaanant, Benjaporn; Nayak, Dipti; Du, Xin; Criddle, Craig S
2009-10-01
Oxidation and mobilization of microbially-generated U(IV) is of great concern for in situ uranium bioremediation. This study investigated the reoxidation of uranium by oxygen and nitrate in a sulfate-reducing enrichment and an iron-reducing enrichment derived from sediment and groundwater from the Field Research Center in Oak Ridge, Tennessee. Both enrichments were capable of reducing U(VI) rapidly. 16S rRNA gene clone libraries of the two enrichments revealed that Desulfovibrio spp. are dominant in the sulfate-reducing enrichment, and Clostridium spp. are dominant in the iron-reducing enrichment. In both the sulfate-reducing enrichment and the iron-reducing enrichment, oxygen reoxidized the previously reduced uranium but to a lesser extent in the iron-reducing enrichment. Moreover, in the iron-reducing enrichment, the reoxidized U(VI) was eventually re-reduced to its previous level. In both, the sulfate-reducing enrichment and the iron-reducing enrichment, uranium reoxidation did not occur in the presence of nitrate. The results indicate that the Clostridium-dominated iron-reducing communities created conditions that were more favorable for uranium stability with respect to reoxidation despite the fact that fewer electron equivalents were added to these systems. The likely reason is that more of the added electrons are present in a form that can reduce oxygen to water and U(VI) back to U(IV).
Oxidative Uranium Release from Anoxic Sediments under Diffusion-Limited Conditions.
Bone, Sharon E; Cahill, Melanie R; Jones, Morris E; Fendorf, Scott; Davis, James; Williams, Kenneth H; Bargar, John R
2017-10-03
Uranium (U) contamination occurs as a result of mining and ore processing; often in alluvial aquifers that contain organic-rich, reduced sediments that accumulate tetravalent U, U(IV). Uranium(IV) is sparingly soluble, but may be mobilized upon exposure to nitrate (NO 3 - ) and oxygen (O 2 ), which become elevated in groundwater due to seasonal fluctuations in the water table. The extent to which oxidative U mobilization can occur depends upon the transport properties of the sediments, the rate of U(IV) oxidation, and the availability of inorganic reductants and organic electron donors that consume oxidants. We investigated the processes governing U release upon exposure of reduced sediments to artificial groundwater containing O 2 or NO 3 - under diffusion-limited conditions. Little U was mobilized during the 85-day reaction, despite rapid diffusion of groundwater within the sediments and the presence of nonuraninite U(IV) species. The production of ferrous iron and sulfide in conjunction with rapid oxidant consumption suggested that the sediments harbored large concentrations of bioavailable organic carbon that fueled anaerobic microbial respiration and stabilized U(IV). Our results suggest that seasonal influxes of O 2 and NO 3 - may cause only localized mobilization of U without leading to export of U from the reducing sediments when ample organic carbon is present.
Development of Novel Sorbents for Uranium Extraction from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wenbin; Taylor-Pashow, Kathryn
2014-01-08
As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recentmore » research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.; Jones, V.
2009-05-27
A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are splitmore » between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead. Multiple vacuum box locations may be set-up to supply several ICP-MS units with purified sample fractions such that a high sample throughput may be achieved, while still allowing for rapid measurement of short-lived actinides by alpha spectrometry.« less
New Fiber Materials with Sorption Capacity at 5.0 g-U/kg Adsorbent under Marine Testing Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Tomonori; Brown, S.; Das, Sadananda
The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) has focused on assuring that nuclear fuel resources are available in the United States for a long term. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. Extraction of the uranium resource in seawater can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uraniummore » recovery from seawater. The goal is to develop advanced adsorbents to make the seawater uranium recovery technology a cost competitive, viable technology. Under this program, Oak Ridge National Laboratory (ORNL) has developed several novel adsorbents, which enhanced the uranium capacity 4-5 times from the state-of-the art Japanese adsorbents. Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. Because of the vast volume of the oceans, the total estimated amount of uranium in seawater is approximately 1000 times larger than its amount in terrestrial resources. However, due to the low concentration, a significant challenge remains for making the extraction of uranium from seawater a commercially viable alternative technology. The biggest challenge for this technology to overcome to efficiently reduce the extraction cost is to develop adsorbents with increased uranium adsorption capacity. Two major approaches were investigated for synthesizing novel adsorbents with enhanced uranium adsorption capacity. One method utilized conventional radiation induced graft polymerization (RIGP) to synthesize adsorbents on high-surface area trunk fibers and the other method utilized a chemical grafting technique, atom-transfer radical polymerization (ATRP). Both approaches have shown promising uranium extraction capacities: RIGP adsorbent achieved 5.00 ± 0.15 g U/kg-ads., while ATRP adsorbent achieved 6.56 ± 0.33 g U/kg-ads., after 56 days of seawater exposure. These achieved values are the highest adsorption capacities ever reported for uranium extraction from seawater. The study successfully demonstrated new fiber materials with sorption capacity at 5.0 g-U/kg adsorbent under marine testing conditions. Further optimization, investigation of other new materials as well as deepening our understanding will develop adsorbents that have even higher uranium adsorption capacity, increased selectivity, and faster kinetics.« less
SYSTEM FOR CONVERSION OF UF$sub 4$ TO UF$sub 6$
Brater, D.G.; Pike, J.W.
1958-12-01
Method and apparatus are presented for rapid and complete conversion of solid, powdered uranium tetrafiuorlde to uranlum hexafluorlde by treating the UF/ sub 4/ with fluorine gas at a temperature of about 800 icient laborato C.
Rapid determination of actinides in asphalt samples
Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.
2014-01-12
A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms.
Cologgi, Dena L; Speers, Allison M; Bullard, Blair A; Kelly, Shelly D; Reguera, Gemma
2014-11-01
Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms
Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.
2014-01-01
Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347
Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique
2016-06-01
The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.
Experiments and Modeling of Uranium Adsorption in the Presence of Other Ions in Simulated Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin; Das, Sadananda; Liao, Wei-Po
2015-11-19
Seawater contains uranium at an average concentration of 3.3 ppb, as well as a variety of other ions at either overwhelmingly higher or similar concentrations, which complicate the recovery of uranium. This report describes an investigation of the effects of various factors such as uranium speciation and presence of salts including sodium, calcium, magnesium, and bicarbonate, as well as trace elements such as vanadium on uranium adsorption kinetics in laboratory experiments. Adsorption models are also developed to describe the experimental data of uranium extraction from seawater. Results show that the presence of calcium and magnesium significantly slows down the uraniummore » adsorption kinetics. Vanadium can replace uranium from amidoxime-based adsorbent in the presence of sodium in the solution. Results also show that bicarbonate in the solution strongly competes with amidoxime for binding uranium, and thus slows down the uranium adsorption kinetics. Developed on the basis of the experimental findings, the model is capable of describing the effects of pH, ionic strength, temperature, and concentration of various species. The results of this work are useful in the understanding of the important factors that control the adsorbent capacity and kinetics of uranium uptake by amidoxime-based adsorbents.« less
Stoliker, Deborah L; Campbell, Kate M; Fox, Patricia M; Singer, David M; Kaviani, Nazila; Carey, Minna; Peck, Nicole E; Bargar, John R; Kent, Douglas B; Davis, James A
2013-08-20
Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).
Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.
2013-01-01
Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).
NASA Astrophysics Data System (ADS)
Lalou, Claude; Fontugne, Michel; Lallemand, Serge E.; Lauriat-Rage, Agnès
1992-04-01
Calyptogena valves included in a carbonate-rich cement, and fragments of a carbonate-rich chimney, have been examined for their stable isotopic (C and O) composition,14C activity and uranium series disequilibrium. The fossil shells were formed essentially with seawater carbon and a negligible contribution of cold seepage organic carbon, as shown by theirδ13C values. This allows the14C method to be used to determine their age. A fairly good concordance between the14C and230Th234U ages of the youngest shells gives confidence in the dating of the older samples using the latter technique. Thus, theCalyptogena are dated at ca. 150,000 and 20,000 yrs B.P. They have been preserved from dissolution by rapid cementation by a supersaturated carbonate solution. The cement is especially rich in uranium (as high as 75 ppm), whose source is seawater; the enrichment is due to local reducing conditions brought about by the bacterial decomposition of the soft tissues of the bivalves shortly after death. TheCalyptogena that probably developed between these two events (the events of ca. 20,000 and 150,000 yrs) have not been preserved from dissolution because, as is presently the case, the cold seepages were undersaturated with calcium carbonate. The two events probably represent periods of intense fluid venting connected with tectonic activity.
Uranium provinces of North America; their definition, distribution, and models
Finch, Warren Irvin
1996-01-01
Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (»1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at »1,280–»1,000, »575, and »225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) » 210–200 Ma, shortly after Late Triassic sedimentation; (2) »155–150 Ma, in Late Jurassic time; and (3) » 135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Peña Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP.Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic–Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America.
Inherently safe in situ uranium recovery
Krumhansl, James L; Brady, Patrick V
2014-04-29
An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.
What Price Energy? Hazards of Uranium Mining in the Southwest.
ERIC Educational Resources Information Center
Barry, Tom
1979-01-01
This article describes the hazards, sickness, death and destruction caused by uranium mining/nuclear energy development in the Southwest focusing on the experiences of several Indian uranium mines. (RTS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.E.; Bourret, S.C.; Krick, M.S.
1996-09-01
Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. We have developed and tested the first prototype of a dual- gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J.E.; Bourret, S.C.; Krick, M.S.
1996-12-31
Neutron coincidence counting (NCC) is used routinely around the world for nondestructive mass assay of uranium and plutonium in many forms, including waste. Compared with other methods, NCC is generally the most flexible, economic, and rapid. Many applications of NCC would benefit from a reduction in counting time required for a fixed random error. The authors have developed and tested the first prototype of a dual-gated, shift-register-based electronics unit that offers the potential of decreased measurement time for all passive and active NCC applications.
Effect of Rapidly Changing River Stage on Uranium Flux through the Hyporheic Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Brad G.; Arntzen, Evan V.
2007-11-01
At the Hanford Site, the flux of uranium contaminated groundwater into the Columbia River varies according to the dynamic changes in hydraulic gradient caused by fluctuating river stage. The river stage changes in response to operations of dams on the Columbia River. Piezometers were installed in the hyporheic zone to facilitate long term, high frequency measurement of water and uranium fluxes into the Columbia River in response to fluctuating river stage. In addition, measurement of the water level in the near shore unconfined aquifer enhanced the understanding of the relationship between fluctuating river stage and uranium flux. The changing rivermore » stage caused head fluctuations in the unconfined aquifer, and resulted in fluctuating hydraulic gradient in the hyporheic zone. Further, influx of river water into the unconfined aquifer caused reduced uranium concentration in near shore groundwater as a result of dilution. Calculated water flux through the hyporheic zone ranged between 0.3 and -0.5 L/min/m2. The flux of uranium through the hyporheic zone exceeded 30 ug/min/m2 during some time periods, but was generally on the order of 3 to 5 ug/min/m2 over the course of this study. It was also found that at this location, the top 20 cm of the hyporheic zone constituted the most restrictive portion of the aquifer, and controlled the flux of water through the hyporheic zone.« less
Safety approaches for high power modular laser operation
NASA Astrophysics Data System (ADS)
Handren, R. T.
1993-03-01
Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.
Removal of uranium from soil samples for ICP-OES analysis of RCRA metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wero, M.; Lederer-Cano, A.; Billy, C.
1995-12-01
Soil samples containing high levels of uranium present unique analytical problems when analyzed for toxic metals (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Tl) because of the spectral interference of uranium in the ICP-OES emission spectrometer. Methods to remove uranium from the digestates of soil samples, known to be high in uranium, have been developed that reduce the initial uranium concentration (1-3%) to less than 500 ppm. UTEVA ion exchange columns, used as an ICP-OES analytical pre-treatment, reduces uranium to acceptable levels, permitting good analytical results of the RCRA metals by ICP-OES.
Development of practical decontamination process for the removal of uranium from gravel.
Kim, Ilgook; Kim, Gye-Nam; Kim, Seung-Soo; Choi, Jong-Won
2018-01-01
In this study, a practical decontamination process was developed to remove uranium from gravel using a soil washing method. The effects of critical parameters including particle size, H 2 SO 4 concentration, temperature, and reaction time on uranium removal were evaluated. The optimal condition for two-stage washing of gravel was found to be particle size of 1-2 mm, 1.0 M H 2 SO 4 , temperature of 60°C, and reaction time of 3 h, which satisfied the required uranium concentration for self-disposal. Furthermore, most of the extracted uranium was removed from the waste solution by precipitation, implying that the treated solution can be reused as washing solution. These results clearly demonstrated that our proposed process can be indeed a practical technique to decontaminate uranium-polluted gravel.
The mechanism of thorium biosorption by Rhizopus arrhizus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsezos, M.; Volesky, B.
1982-04-01
Inactive cells of Rhizopus arrhizus have been documented to exhibit a high thorium biosorptive uptake (170 mg/g) from aqueous solutions. The mechanism of thorium sequestering by this biomass type was investigated following the same method as for the uranium biosorption emchanism. The thorium sequestering mechanism appeared somewhat different from that of uranium. Experimental evidence is presented which indicates that, at optimum biosorption pH (4), thorium coordinates with the nitroge of the chitin cell wall network and, in addition, more thorium is adsorbed by the external section of the fungal cell wall. At pH 2 the overall thorium uptake is reduced.more » The kinetic study of thorium biosorption revealed a very rapid rate of uptake. Unlike uranium at optimum solution pH, Fe/sup 2 +/ and Zn/sup 2 +/ did not interfere significantly with the thorium biosorptive uptake capacity of R. arrhizus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Schanfein
Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxidemore » (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).« less
Chemical aspects of uranium behavior in soils: A review
NASA Astrophysics Data System (ADS)
Vodyanitskii, Yu. N.
2011-08-01
Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.
Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy
2010-01-01
This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a plant’s or an animal’s life history and surrounding environment. Various species of plants, invertebrates, fishes, amphibians, reptiles, birds, and mammals found in the segregation areas that are considered species of concern by State and Federal agencies were included in the development of the site-specific food web. The utilization of subterranean habitats (burrows in uranium-rich areas, burrows in waste rock piles or reclaimed mining areas, mine tunnels) in the seasonally variable but consistently hot, arid environment is of particular concern in the segregation areas. Certain species of reptiles, amphibians, birds, and mammals in the segregation areas spend significant amounts of time in burrows where they can inhale or ingest uranium and other radionuclides through digging, eating, preening, and hibernating. Herbivores may also be exposed though the ingestion of radionuclides that have been aerially deposited on vegetation. Measured tissues concentrations of uranium and other radionuclides are not available for any species of concern in the segregation areas. The sensitivity of these animals to uranium exposure is unknown based on the existing scientific literature, and species-specific uranium presumptive effects levels were only available for two endangered fish species known to inhabit the segregation areas. Overall, the chemical toxicity data available for biological receptors of concern were limited, although chemical and radiation toxicity guidance values are available from several sources. However, caution should be used when directly applying these values to northern Arizona given the unique habitat and life history strategies of biological receptors in the segregation areas and the fact that some guidance values are based on models rather than empirical (laboratory or field) data. No chemical toxicity information based on empirical data is available for reptiles, birds, or wild mammals; therefore, the risks associated with uranium and other radionuclides are unknown for these biota.
Novel Sensor for the In Situ Measurement of Uranium Fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatfield, Kirk
2015-02-10
The goal of this project was to develop a sensor that incorporates the field-tested concepts of the passive flux meter to provide direct in situ measures of flux for uranium and groundwater in porous media. Measurable contaminant fluxes [J] are essentially the product of concentration [C] and groundwater flux or specific discharge [q ]. The sensor measures [J] and [q] by changes in contaminant and tracer amounts respectively on a sorbent. By using measurement rather than inference from static parameters, the sensor can directly advance conceptual and computational models for field scale simulations. The sensor was deployed in conjunction withmore » DOE in obtaining field-scale quantification of subsurface processes affecting uranium transport (e.g., advection) and transformation (e.g., uranium attenuation) at the Rifle IFRC Site in Rifle, Colorado. Project results have expanded our current understanding of how field-scale spatial variations in fluxes of uranium, groundwater and salient electron donor/acceptors are coupled to spatial variations in measured microbial biomass/community composition, effective field-scale uranium mass balances, attenuation, and stability. The coupling between uranium, various nutrients and micro flora can be used to estimate field-scale rates of uranium attenuation and field-scale transitions in microbial communities. This research focuses on uranium (VI), but the sensor principles and design are applicable to field-scale fate and transport of other radionuclides. Laboratory studies focused on sorbent selection and calibration, along with sensor development and validation under controlled conditions. Field studies were conducted at the Rifle IFRC Site in Rifle, Colorado. These studies were closely coordinated with existing SBR (formerly ERSP) projects to complement data collection. Small field tests were conducted during the first two years that focused on evaluating field-scale deployment procedures and validating sensor performance under controlled field conditions. In the third and fourth year a suite of larger field studies were conducted. For these studies, the uranium flux sensor was used with uranium speciation measurements and molecular-biological tools to characterize microbial community and active biomass at synonymous wells distributed in a large grid. These field efforts quantified spatial changes in uranium flux and field-scale rates of uranium attenuation (ambient and stimulated), uranium stability, and quantitatively assessed how fluxes and effective reaction rates were coupled to spatial variations in microbial community and active biomass. Analyses of data from these field experiments were used to generate estimates of Monod kinetic parameters that are ‘effective’ in nature and optimal for modeling uranium fate and transport at the field-scale. This project provided the opportunity to develop the first sensor that provides direct measures of both uranium (VI) and groundwater flux. A multidisciplinary team was assembled to include two geochemists, a microbiologist, and two quantitative contaminant hydrologists. Now that the project is complete, the sensor can be deployed at DOE sites to evaluate field-scale uranium attenuation, source behavior, the efficacy of remediation, and off-site risk. Because the sensor requires no power, it can be deployed at remote sites for periods of days to months. The fundamental science derived from this project can be used to advance the development of predictive models for various transport and attenuation processes in aquifers. Proper development of these models is critical for long-term stewardship of contaminated sites in the context of predicting uranium source behavior, remediation performance, and off-site risk.« less
Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature
Wiechert, Alexander I.; Das, Sadananda; Yiacoumi, Sotira
2017-01-01
Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uranium adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1−L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. This model may be used for predicting uranium uptake by other amidoxime materials. PMID:29113060
NASA Astrophysics Data System (ADS)
Malin, Stephanie A.
Renewal of nuclear energy development has been proposed as one viable solution for reducing greenhouse gas emissions and impacts of climate change. This discussion became concrete as the first uranium mill proposed since the end of the Cold War, the Pinon Ridge Uranium Mill, received state permits in January 2011 to process uranium in southwest Colorado's Paradox Valley. Though environmental contamination from previous uranium activity caused one local community to be bulldozed to the ground, local support for renewed uranium activity emerges among local residents in communities like Nucla, Naturita, and Bedrock, Colorado. Regionally, however, a coalition of organized, oppositionbased grassroots groups fights the decision to permit the mill. Combined, these events allow social scientists a natural laboratory through which to view social repercussions of nuclear energy development. In this dissertation, I use a Polanyian theoretical framework to analyze social, political-economic, and environmental contexts of social movements surrounding PR Mill. My overarching research problem is: How might Polanyian double movement theory be applied to and made empirically testable within the social and environmental context of uranium development? I intended this analysis to inform energy policy debates regarding renewable energy. In Chapter 1, I found various forms of social dislocation lead to two divergent social movement outcomes. Economic social dislocation led to strong mill support among most local residents, according to archival, in-depth interview, and survey data. On the other hand, residents in regional communities experienced two other types of social dislocation -- another kind of economic dislocation, related to concern over boom-bust economies, and environmental health dislocations related to uranium exposure, creating conditions for a regional movement in opposition to PR Mill. In Chapter 2, I focus on regulations and find that two divergent social movements -- a support movement locally and a countermovement against the mill regionally -- emerge also as a result of strong faith in regulations, regulators, and Energy Fuels countered by marked distrust in regulations, regulators, and Energy Fuels, respectively. In Chapter 3, I advance Polanyi's double movement theory by comparing different emergent social movements surrounding uranium, showing that historically different circumstances surrounding uranium can help create conditions for divergent social movements.
Materials for the Recovery of Uranium from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Mayes, Richard T.; Saito, Tomonori
More than 1000× uranium exists in the oceans than exists in terrestrial ores. With nuclear power generation expected to increase over the coming decades, access to this unconventional reserve is a matter of energy security. With origins in the mid-1950’s, materials have been developed for the selective recovery of seawater uranium for more than six decades, with a renewed interest in particular since 2010. This review comprehensively surveys materials developed from 2000 – 2016 for recovery of seawater uranium, in particular including recent developments in inorganic materials, polymer adsorbents and related research pertaining to amidoxime, and nanostructured materials such asmore » metal-organic frameworks, porous-organic polymers, and mesoporous carbons. In conclusion, challenges of performing reliable and reproducible uranium adsorption studies are also discussed, as well as the standardization of parameters necessary to ensure valid comparisons between different adsorbents.« less
Materials for the Recovery of Uranium from Seawater
Abney, Carter W.; Mayes, Richard T.; Saito, Tomonori; ...
2017-11-22
More than 1000× uranium exists in the oceans than exists in terrestrial ores. With nuclear power generation expected to increase over the coming decades, access to this unconventional reserve is a matter of energy security. With origins in the mid-1950’s, materials have been developed for the selective recovery of seawater uranium for more than six decades, with a renewed interest in particular since 2010. This review comprehensively surveys materials developed from 2000 – 2016 for recovery of seawater uranium, in particular including recent developments in inorganic materials, polymer adsorbents and related research pertaining to amidoxime, and nanostructured materials such asmore » metal-organic frameworks, porous-organic polymers, and mesoporous carbons. In conclusion, challenges of performing reliable and reproducible uranium adsorption studies are also discussed, as well as the standardization of parameters necessary to ensure valid comparisons between different adsorbents.« less
Rapidly-formed ferromanganese deposit from the eastern Pacific Hess Deep
Burnett, W.C.; Piper, D.Z.
1977-01-01
A thick ferromanganese deposit encrusting fresh basaltic glass has been dredged from the Hess Deep in the eastern Pacific. Contiguous layers within the Fe-Mn crust have been analysed for uranium-series isotopes and metal contents. The rate of accumulation of the deposit, based on the decline of uranium-unsupported 230Th, is calculated to be approximately 50 mm per 106 yr. Based on hydration-rind dating of the underlying glass and an 'exposure age' calculation, this rate is concluded to be too slow, and an accretion rate on the order of 1 mm per 103 yr is more consistent with our data. ?? 1977 Nature Publishing Group.
Federal Guidance Report No. 8: Guidance for the Control of Radiation Hazards in Uranium Mining
This report contains background material used in the development of guidance concerning radiation protection in the mining of uranium ore, and seeks to provide guidance for long-term radiation protection in uranium mining.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, R.T.; Strand, J.R.; Reid, B.E.
Uranium favorability of the Sangre de Cristo Formation (Pennsylvanian-Permian) in the Las Vegas basin has been evaluated. The Las Vegas basin project area, located in Colfax, Mora, and San Miguel Counties, New Mexico, comprises about 3,489 sq mi. The formation contains sedimentologic and stratigraphic characteristics that are considered favorable for uranium deposition. Field investigations consisted of section measuring, rock sampling, and ground radiometric reconnaissance. North-south and east-west cross sections of the basin were prepared from well logs and measured sections. Petrographic, chemical, and spectrographic analyses were conducted on selected samples. Stratigraphic and sedimentologic information were used to determine depositional environments.more » The most favorable potential host rocks include red to pink, coarse-grained, poorly sorted, feldspathic to arkosic lenticular sandstones with stacked sandstone thicknesses of more than 20 ft and sandstone-to-shale ratios between 1:1 and 2:1. The sandstone is interbedded with mudstone and contains carbonaceous debris and anomalous concentrations of uranium locally. Areas of maximum favorability are found in a braided-stream, alluvial-plain depositional environment in the north-central part of the Las Vegas basin. There, carbonaceous material is well preserved, probably due to rapid subsidence and burial. Furthermore, uranium favorability is highest in the lower half of the formation because carbonaceous wood and plant fragments, as well as known uranium deposits, are concentrated in this zone. Piedmont deposits in the north and east, and meander-belt, alluvial-plain deposits in the south, are not considered favorable because of the paucity of uranium deposits and a minimum of carbonaceous material.« less
Carvalho, Fernando P; Oliveira, João M; Faria, Isabel
2009-11-01
Two large uranium mines, Quinta do Bispo and Cunha Baixa, district of Viseu, North of Portugal, were exploited until 1991. Sulfuric acid was used for in situ uranium leaching in Cunha Baixa mine and for heap leaching of low grade ores at both mines. Large amounts of mining and milling residues were accumulated nearby. Since closure of mines, the treatment of acid mine waters has been maintained and treated water is released into surface water lines. Analysis of radionuclides in the soluble phase and in the suspended matter of water samples from the uranium mines, from the creeks receiving the discharges of mine effluents, from the rivers and from wells in this area, show an enhancement of radioactivity levels. For example, downstream the discharge of mine effluents into Castelo Stream, the concentrations of dissolved uranium isotopes and uranium daughters were up to 14 times the concentrations measured upstream; (238)U concentration in suspended particulate matter of Castelo Stream reached 72 kBq kg(-1), which is about 170 times higher than background concentrations in Mondego River. Nevertheless, radionuclide concentrations decreased rapidly to near background values within a distance of about 7 kilometers from the discharge point. Enhancement of radioactivity in underground waters was positively correlated with a decrease in water pH and with an increase of sulfate ion concentration, pointing out to Cunha Baixa mine as the source of groundwater contamination. The radiotoxic exposure risk arising from using these well waters as drinking water and as irrigation water is discussed and implementation of environmental remediation measures is advised.
Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.
Stewart, Brandy D; Cismasu, A Cristina; Williams, Kenneth H; Peyton, Brent M; Nico, Peter S
2015-09-01
Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.
Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slocum, Alex
The U.S. Department of Energy in October 2014 awarded the Massachusetts Institute of Technology (MIT) a Nuclear Energy University Program grant (DE-NE0008268) to investigate the design and testing of a symbiotic system to harvest uranium from seawater. As defined in the proposal, the goals for the project are: 1. Address the design of machines for seawater uranium mining. 2. Develop design rules for a uranium harvesting system that would be integrated into an offshore wind power tower. 3. Fabricate a 1/50th size scale prototype for bench and pool-testing to verify initial analysis and theory. 4. Design, build, and test amore » second 1/10th size scale prototype in the ocean for more comprehensive testing and validation. This report describes work done as part of DE-NE0008268 from 10/01/2014 to 11/30/2017 entitled, “Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System.” This effort is part of the Seawater Uranium Recovery Program. This report details the publications and presentations to date on the project, an introduction to the project’s goals and background research into previous work done to achieve these goals thus far. From there, the report describes an algorithm developed during the project used to optimize the adsorption of uranium by changing mechanical parameters such as immersion time and adsorbent reuses is described. Next, a design tool developed as part of the project to determine the global feasibility of symbiotic uranium harvesting systems. Additionally, the report details work done on shell enclosures for uranium adsorption. Moving on, the results from the design, building, and testing of a 1/50th physical scale prototype of a highly feasible symbiotic uranium harvester is described. Then, the report describes the results from flume experiment used to determine the affect of enclosure shells on the uptake of uranium by the adsorbent they enclose. From there the report details the design of a Symbiotic Machine for Ocean uRanium Extraction (SMORE). Next, the results of the 1/10th scale physical scale prototype of a highly feasible symbiotic uranium harvester are presented. The report then details the design and results of an experiment to examine the hydrodynamic effects of a uranium harvester on the offshore wind turbine it is attached to using a 1/150th Froude scale tow tank test. Finally, the report details the results of an initial cost-analysis for the production of uranium from seawater from such a symbiotic device.« less
Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores
2018-07-01
The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
Predicting equilibrium uranium isotope fractionation in crystals and solution
NASA Astrophysics Data System (ADS)
Schauble, E. A.
2015-12-01
Despite the rapidly growing interest in using 238U/235U measurements as a proxy for changes in oxygen abundance in surface and near-surface environments, the present theoretical understanding of uranium isotope fractionation is limited to a few simple gas-phase molecules and analogues of dissolved species (e.g., 1,2,3). Understanding uranium isotope fractionation behavior in more complicated species, such as crystals and adsorption complexes, will help in the design and interpretation of experiments and field studies, and may suggest other uses for 38U/235U measurements. In this study, a recently developed first-principles method for estimating the nuclear volume component of field shift fractionation in crystals and complex molecular species (4) is combined with mass-dependent fractionation theory to predict equilibrium 38U/235U fractionations in aqueous and crystalline uranium compounds, including uraninite (UO2). The nuclear field shift effect, caused by the interaction of electrons with the finite volume of the positive charge distribution in uranium nuclei, is estimated using Density Functional Theory and the Projector Augmented Wave method (DFT-PAW). Tests against relativistic electronic structure calculations and Mössbauer isomer shift data indicate that the DFT-PAW method is reasonably accurate, while being much better suited to models of complex and crystalline species. Initial results confirm previous predictions that the nuclear volume effect overwhelms mass depdendent fractionation in U(VI)-U(IV) exchange reactions, leading to higher 238U/235U in U(IV) species (i.e., for UO2 xtal vs. UO22+aq, ln αNV ≈ +1.8‰ , ln αMD ≈ -0.8‰, ln αTotal ≈ +1.0‰ at 25ºC). UO2 and U(H2O)94+, are within ~0.4‰ of each other, while U(VI) species appear to be more variable. This suggests that speciation is likely to significantly affect natural uranium isotope fractionations, in addition to oxidation state. Tentatively, it appears that uranyl-type (UO22+-bearing) structures will tend to have higher 238U/235U than uranate-type structures that lack strong U=O bonds. References: 1. Bigeleisen (1996) JACS 118:3676; 2. Schauble (2006) Eos 87:V21B-0570; 3. Abe et al. (2008) J Chem Phys 128:144309, 129:164309, & Abe et al. (2010) J Chem Phys 133:044309; 4. Schauble (2013) PNAS 110:17714.
Integrated modeling/analyses of thermal-shock effects in SNS targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taleyarkhan, R.P.; Haines, J.
1996-06-01
In a spallation neutron source (SNS), extremely rapid energy pulses are introduced in target materials such as mercury, lead, tungsten, uranium, etc. Shock phenomena in such systems may possibly lead to structural material damage beyond the design basis. As expected, the progression of shock waves and interaction with surrounding materials for liquid targets can be quite different from that in solid targets. The purpose of this paper is to describe ORNL`s modeling framework for `integrated` assessment of thermal-shock issues in liquid and solid target designs. This modeling framework is being developed based upon expertise developed from past reactor safety studies,more » especially those related to the Advanced Neutron Source (ANS) Project. Unlike previous separate-effects modeling approaches employed (for evaluating target behavior when subjected to thermal shocks), the present approach treats the overall problem in a coupled manner using state-of-the-art equations of state for materials of interest (viz., mercury, tungsten and uranium). That is, the modeling framework simultaneously accounts for localized (and distributed) compression pressure pulse generation due to transient heat deposition, the transport of this shock wave outwards, interaction with surrounding boundaries, feedback to mercury from structures, multi-dimensional reflection patterns & stress induced (possible) breakup or fracture.« less
Investigations Into the Reusability of Amidoxime-Based Polymeric Uranium Adsorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Li-Jung; Gill, Gary A.; Strivens, Jonathan E.
Significant advancements in amidoxime-based polymeric adsorbents to extract uranium from seawater are achieved in recent years. The success of uranium adsorbent development can help provide a sustainable supply of fuel for nuclear reactors. To bring down the production cost of this new technology, in addition to the development of novel adsorbents with high uranium capacity and manufacture cost, the development of adsorbent re-using technique is critical because it can further reduce the cost of the adsorbent manufacture. In our last report, the use of high concentrations of bicarbonate solution (3M KHCO3) was identified as a cost-effective, environmental friendly method tomore » strip uranium from amidoxime-based polymeric adsorbents. This study aims to further improve the method for high recovery of uranium capacity in re-uses and to evaluate the performance of adsorbents after multiple re-use cycles. Adsorption of dissolved organic matter (DOM) on the uranium adsorbents during seawater exposure can hinder the uranium adsorption and slow down the adsorption rate. An additional NaOH rinse (0.5 M NaOH, room temperature) was applied after the 3 M KHCO3 elution to remove natural organic matter from adsorbents. The combination of 3 M KHCO3 elution and 0.5 M NaOH rinse significantly improves the recovery of uranium adsorption capacity in the re-used adsorbents. In the first re-use, most ORNL adsorbents tested achieve ~100% recovery by using 3 M KHCO3 elution + 0.5 M NaOH rinse approach, in comparison to 54% recovery when only 3 M KHCO3 elution was applied. A significant drop in capacity was observed when the adsorbents went through more than one re-use. FTIR spectra revealed that degradation of amidoxime ligands occurs during seawater exposure, and is more significant the longer the exposure time. Significantly elevated ratios of Ca/U and Mg/U in re-used adsorbents support the decrease in abundance of amidoxime ligands and increase carboxylate group from FT-IR analysis. The impact of the length of seawater exposure cycle in adsorbent re-use was evaluated by comparing the adsorption capacity for a common adsorbent formulation (ORNL AI8 formulation) under different exposure cycle (28 days and 42 days). Adsorbents with a 28 days seawater exposure cycle had higher recovery of uranium capacity than adsorbent with 42 days of seawater exposure. Under different cumulative seawater exposure time, the adsorbent with 28 days seawater exposure cycle also had less amidoxime ligands degradation than the adsorbent with 42 days seawater exposure cycle. These observations support the negative impact of prolonged seawater exposure on amidoxime ligands stability. Recovery of uranium capacity in re-uses also varies across different adsorbent formulations. Among three different ORNL adsorbents tested (AI8, AF8, AF1-DMSO), AI8 had the best recovery in each re-use, followed by AF8 and then AF1-DMSO. This demonstrates that continuing efforts on developing new adsorbents with high capacity and stability is critical. The overall performance of adsorbents in multiple re-use cycles can be evaluated by calculation total harvestable uranium, the summation of adsorbed uranium from each seawater exposure cycle. In this assessment, the ORNL AI8 braid with 28 days seawater exposure cycle can reach total harvestable uranium 10g Uranium/kg adsorbent in ~140 days; while the same type of braid but with 42 days seawater exposure cycle reach the same level in ~170 days. Notably, the performance of total harvestable uranium also varies among different adsorbent formulations (AI8 > AF1-DMSO > AF8). Short seawater exposure cycle is associated with high re-use frequency. The development of low-cost offshore adsorbent deployment/extraction is essential for high frequency reuse operation. This study also highlights the importance to examine the re-use performance of newly developed uranium adsorbents for selection of optimal adsorbents for ocean deployment.« less
Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature
Ladshaw, Austin P.; Wiechert, Alexander I.; Das, Sadananda; ...
2017-11-04
Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uraniummore » adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.« less
Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias
2010-09-01
Cutaneous contamination represents the second highest contamination pathway in the nuclear industry. Despite that the entry of actinides such as uranium into the body through intact or wounded skin can induce a high internal exposure, no specific emergency treatment for cutaneous contamination exists. In the present work, an innovative formulation dedicated to uranium skin decontamination was developed. The galenic form consists in an oil-in-water nanoemulsion, which contains a tricarboxylic calixarene known for its high uranium affinity and selectivity. The physicochemical characterization of this topical form revealed that calixarene molecules are located at the surface of the dispersed oil droplets of the nanoemulsion, being thus potentially available for uranium chelation. It was demonstrated in preliminary in vitro experiments by using an adapted ultrafiltration method that the calixarene nanoemulsion was able to extract and retain more than 80% of uranium from an aqueous uranyl nitrate contamination solution. First ex vivo experiments carried out in Franz diffusion cells on pig ear skin explants during 24 h showed that the immediate application of the calixarene nanoemulsion on a skin contaminated by a uranyl nitrate solution allowed a uranium transcutaneous diffusion decrease of about 98% through intact and excoriated skins. The calixarene nanoemulsion developed in this study thus seems to be an efficient emergency system for uranium skin decontamination.
Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin P.; Wiechert, Alexander I.; Das, Sadananda
Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uraniummore » adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.« less
ERIC Educational Resources Information Center
Finch, Warren I.
1978-01-01
The results of President Carter's policy on non-proliferation of nuclear weapons are expected to slow the growth rate in energy consumption, put the development of the breeder reactor in question, halt plans to reprocess and recycle uranium and plutonium, and expand facilities to supply enriched uranium. (Author/MA)
Park, Jong-Ho; Choi, Eun-Ju
2016-11-01
A method to determine the quantity and isotopic ratios of uranium in individual micro-particles simultaneously by isotope dilution thermal ionization mass spectrometry (ID-TIMS) has been developed. This method consists of sequential sample and spike loading, ID-TIMS for isotopic measurement, and application of a series of mathematical procedures to remove the contribution of uranium in the spike. The homogeneity of evaporation and ionization of uranium content was confirmed by the consistent ratio of n((233)U)/n((238)U) determined by TIMS measurements. Verification of the method was performed using U030 solution droplets and U030 particles. Good agreements of resulting uranium quantity, n((235)U)/n((238)U), and n((236)U)/n((238)U) with the estimated or certified values showed the validity of this newly developed method for particle analysis when simultaneous determination of the quantity and isotopic ratios of uranium is required. Copyright © 2016 Elsevier B.V. All rights reserved.
A graphene oxide/amidoxime hydrogel for enhanced uranium capture
Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun
2016-01-01
The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649
NASA Astrophysics Data System (ADS)
Biswas, Sujoy; Pathak, P. N.; Roy, S. B.
2012-06-01
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λmax) for UO22+-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol-1 cm-1). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to >24 h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO22+-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is <2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ±2%. This method can be used to determine 2.5-250 μg mL-1 uranium in ore leach solutions with high accuracy and precision.
Dissolution of uranium oxides from simulated environmental swipes using ammonium bifluoride
Meyers, Lisa A.; Yoshida, Thomas M.; Chamberlin, Rebecca M.; ...
2016-11-01
We developed an analytical chemistry method to quantitatively recover microgram quanties of solid uranium oxides from swipe media using ammonium bifluoride (ABF, NH 4HF 2) solution. Recovery of uranium from surrogate swipe media (filter paper) was demonstrated at initial uranium loading levels between 3 and 20 µg filter -1. Moreover, the optimal conditions for extracting U 3O 8 and UO 2 are using 1 % ABF solution and incubating at 80 °C for one hour. The average uranium recoveries are 100 % for U 3O 8, and 90 % for UO 2. Finally, with this method, uranium concentration as lowmore » as 3 µg filter -1 can be recovered for analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-07-01
For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylicmore » acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.« less
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amendedmore » with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.« less
Calibrating rates of early Cambrian evolution
NASA Technical Reports Server (NTRS)
Bowring, Samuel A.; Grotzinger, John P.; Isachsen, Clark E.; Knoll, Andrew H.; Pelechaty, Shane M.; Kolosov, Peter
1993-01-01
An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began about 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.
A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Reimus, P. W.
2013-12-01
In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 μM U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.
Depleted uranium dust from fired munitions: physical, chemical and biological properties.
Mitchel, R E J; Sunder, S
2004-07-01
This paper reports physical, chemical and biological analyses of samples of dust resulting from munitions containing depleted uranium (DU) that had been live-fired and had impacted an armored target. Mass spectroscopic analysis indicated that the average atom% of U was 0.198 +/- 0.10, consistent with depleted uranium. Other major elements present were iron, aluminum, and silicon. About 47% of the total mass was particles with diameters <300 microm, of which about 14% was <10 microm. X-ray diffraction analysis indicated that the uranium was present in the sample as uranium oxides-mainly U3O7 (47%), U3O8 (44%) and UO2 (9%). Depleted uranium dust, instilled into the lungs or implanted into the muscle of rats, contained a rapidly soluble uranium component and a more slowly soluble uranium component. The fraction that underwent dissolution in 7 d declined exponentially with increasing initial burden. At the lower lung burdens tested (<15 microg DU dust/lung) about 14% of the uranium appeared in urine within 7 d. At the higher lung burdens tested (~80-200 microg DU dust/lung) about 5% of the DU appeared in urine within 7 d. In both cases about 50% of that total appeared in urine within the first day. DU implanted in muscle similarly showed that about half of the total excreted within 7 d appeared in the first day. At the lower muscle burdens tested (<15 microg DU dust/injection site) about 9% was solubilized within 7 d. At muscle burdens >35 microg DU dust/injection site about 2% appeared in urine within 7 d. Natural uranium (NU) ore dust was instilled into rat lungs for comparison. The fraction dissolving in lung showed a pattern of exponential decline with increasing initial burden similar to DU. However, the decline was less steep, with about 14% appearing in urine for lung burdens up to about 200 microg NU dust/lung and 5% at lung burdens >1,100 microg NU dust/lung. NU also showed both a fast and a more slowly dissolving component. At the higher lung burdens of both DU and NU that showed lowered urine excretion rates, histological evidence of kidney damage was seen. Kidney damage was not seen with the muscle burdens tested. DU dust produced kidney damage at lower lung burdens and lower urine uranium levels than NU dust, suggesting that other toxic metals in DU dust may contribute to the damage.
78 FR 75579 - Low Enriched Uranium From France
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... From France Determination On the basis of the record \\1\\ developed in the subject five-year review, the... uranium from France would be likely to lead to continuation or recurrence of material injury to an... Commission are contained in USITC Publication 4436 (December 2013), entitled Low Enriched Uranium from France...
Li, W B; Karpas, Z; Salonen, L; Kurttio, P; Muikku, M; Wahl, W; Höllriegl, V; Hoeschen, C; Oeh, U
2009-06-01
To predict uranium in human hair due to chronic exposure through drinking water, a compartment representing human hair was added into the uranium biokinetic model developed by the International Commission on Radiological Protection (ICRP). The hair compartmental model was used to predict uranium excretion in human hair as a bioassay indicator due to elevated uranium intakes. Two excretion pathways, one starting from the compartment of plasma and the other from the compartment of intermediate turnover soft tissue, are assumed to transfer uranium to the compartment of hair. The transfer rate was determined from reported uranium contents in urine and in hair, taking into account the hair growth rate of 0.1 g d(-1). The fractional absorption in the gastrointestinal tract of 0.6% was found to fit best to describe the measured uranium levels among the users of drilled wells in Finland. The ingestion dose coefficient for (238)U, which includes its progeny of (234)Th, (234m)Pa, and (234)Pa, was calculated equal to 1.3 x 10(-8) Sv Bq(-1) according to the hair compartmental model. This estimate is smaller than the value of 4.5 x 10(-8) Sv Bq(-1) published by ICRP for the members of the public. In this new model, excretion of uranium through urine is better represented when excretion to the hair compartment is accounted for and hair analysis can provide a means for assessing the internal body burden of uranium. The model is applicable for chronic exposure as well as for an acute exposure incident. In the latter case, the hair sample can be collected and analyzed even several days after the incident, whereas urinalysis requires sample collection shortly after the exposure. The model developed in this study applies to ingestion intakes of uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, E.C.; Cunnane, J.C.; Brown, N.R.
A combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM) is being used to determine the nature of uranium in soils from the Fernald Environmental Management Project. The information gained from these studies is being used to develop and test remediation technologies. Investigations using SEM have shown that uranium is contained within particles that are typically 1 to 100 {mu}m in diameter. Further analysis with AEM has shown that these uranium-rich regions are made up of discrete uranium-bearing phases. The distribution of these uranium phases was found to be inhomogeneous at themore » microscopic level.« less
Beiswenger, Toya N; Gallagher, Neal B; Myers, Tanya L; Szecsody, James E; Tonkyn, Russell G; Su, Yin-Fong; Sweet, Lucas E; Lewallen, Tricia A; Johnson, Timothy J
2018-02-01
The identification of minerals, including uranium-bearing species, is often a labor-intensive process using X-ray diffraction (XRD), fluorescence, or other solid-phase or wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field applications, handheld infrared (IR) reflectance spectrometers can now also be used in industrial or field environments, with rapid, nondestructive identification possible via analysis of the solid's reflectance spectrum providing information not found in other techniques. In this paper, we report the use of laboratory methods that measure the IR hemispherical reflectance of solids using an integrating sphere and have applied it to the identification of mineral mixtures (i.e., rocks), with widely varying percentages of uranium mineral content. We then apply classical least squares (CLS) and multivariate curve resolution (MCR) methods to better discriminate the minerals (along with two pure uranium chemicals U 3 O 8 and UO 2 ) against many common natural and anthropogenic background materials (e.g., silica sand, asphalt, calcite, K-feldspar) with good success. Ground truth as to mineral content was attained primarily by XRD. Identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g., boltwoodite, tyuyamunite, etc.) or non-uranium minerals. The characteristic IR bands generate unique (or class-specific) bands, typically arising from similar chemical moieties or functional groups in the minerals: uranyls, phosphates, silicates, etc. In some cases, the chemical groups that provide spectral discrimination in the longwave IR reflectance by generating upward-going (reststrahlen) bands can provide discrimination in the midwave and shortwave IR via downward-going absorption features, i.e., weaker overtone or combination bands arising from the same chemical moieties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Aleksandr; Das, Sadananda; Bryantsev, Vyacheslav
SUMMARYBackground: Uranium is used as the basic fuel for nuclear power plants, which generate significant amounts of electricity and have life cycle carbon emissions that are as low as renewable energy sources. The extraction of this valuable energy commodity from the ground remains controversial, however, mainly because of environmental and health impacts. Alternatively, seawater offers an enormous uranium resource that may be tapped at minimal environmental cost. Currently, amidoxime polymers are the most widely considered adsorbent materials for large-scale extraction of uranium from seawater, but they are not perfectly selective for uranyl, UO22+. In particular, the competition between UO22+ andmore » vanadium (VO2+/VO2+) cations poses a significant challenge to the efficient mining of UO22+. Thus, accelerating progress in the discovery and deployment of advanced materials for the recovery of uranium relies on the design of new ligands with high binding affinity and selectivity for uranium over competing metal ions. A cost-effective route to aid the discovery of new ligands is to apply computational methods to rapidly test attractive candidates and elucidate data-driven guidelines for rational design.Objectives: One of the key components in achieving rational design of highly selective ligands is the establishment of computational tools capable of assessing ligand selectivity trends. Therefore, the objectives of this study include:1.Establish first-principles methods, based on computational chemistry techniques, to calculate stability constants for UO22+ and VO2+/VO2+ complexes.2.Develop computational protocols to assess the binding strengths and selectivity of ligands that can be present in the actual poly(acrylamidoxime) adsorbents.3.Develop adsorption models that can use information from first-principles computational methods to predict the adsorption behavior of uranium and vanadium by adsorbents synthesized at ORNL and compare results with experimental data.Results: In the first part of the study, we present an approach based on quantum chemical calculations that achieves high accuracy in reproducing experimental aqueous stability constants for UO22+ and VO2+/VO2+ complexes, providing the essential foundation for prospective screening of existing or even yet unsynthesized ligands with higher selectivity for uranium over vanadium. The developed computational protocols were used to assess the binding strengths and selectivity of aliphatic dicarboxylate ligands that can be present in the actual poly(acrylamidoxime) adsorbents. It was found that simple dicarboxylic functional groups possess low binding affinity and selectivity for uranyl, because their backbones present architectures that are poorly organized for the UO22+ complexation. In the second part of the study, adsorption models were developed and coupled with the results of the molecular studies in an effort to predict the adsorption of uranium and vanadium by the ORNL AF1 fiber adsorbent. These models can account for the effects of ligand surface density, specific surface area, surface charging, and other non-idealities of the adsorbent surface. It was found that by utilizing the reaction schemes and binding strengths proposed by the molecular studies, the adsorption model could accurately predict the uptake of uranium by both the acyclic amidoxime (AO) and cyclic imide dioximate (IDO) ligand in the ORNL laboratory studies, especially in the more neutral pH ranges (pH 5 to 9). The model, however, performed less adequately for predicting the uptake of vanadium for the same adsorbent. By exploring the causes behind the discrepancy between the adsorption model and the ORNL laboratory data, we found that the effect of surface charging was suppressing the total vanadium uptake predicted by the model. An investigation of literature revealed that the crystal structures of the 1:2 vanadium/IDO complex involved a sodium ion (Na+), which neutralized the charge of the adsorbed species. When this charge neutral species was included in the adsorption model, the predictions of the vanadium capacities were significantly improved across all pH ranges. This result suggests that, during adsorption, some surface species may closely associate with, or adsorb, counter-ions from solution to neutralize the charge of the adsorbent surface.Significance: This study is particularly significant when considering whether to produce an otherwise highly attractive ligand that may be synthetically challenging. If such a ligand is predicted by our calculations to achieve the desired uranium vs vanadium selectivity, this substantially reduces the risk of taking on such synthetic challenges. Moreover, the elimination of ligands that are unlikely to show a good uranyl binding affinity can release resources to focus on more promising UO22+- selective ligands. Furthermore, the results can successfully rationalize the experimentally observed loss in selectivity of amidoxime-based fibers« less
Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.
1990-01-01
The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.
Uranium and the Central Nervous System: What Should We Learn from Recent New Tools and Findings?
Dinocourt, Céline
2017-01-01
Increasing industrial and military use of uranium has led to environmental pollution, which may result in uranium reaching the brain and causing cerebral dysfunction. A recent literature review has discussed data published over the last 10 years on uranium and its effects on brain function (Dinocourt C, Legrand M, Dublineau I, et al., Toxicology 337:58-71, 2015). New models of uranium exposure during neonatal brain development and the emergence of new technologies (omics and epigenetics) are of value in identifying new specific targets of uranium. Here we review the latest studies of neurogenesis, epigenetics, and metabolic dysfunctions and the identification of new biomarkers used to establish potential pathophysiological states of neurodevelopmental and neurodegenerative diseases.
Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A
2008-09-01
Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan
2011-01-24
Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitancemore » of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.« less
Lemons, B; Khaing, H; Ward, A; Thakur, P
2018-06-01
A new sequential separation method for the determination of polonium and actinides (Pu, Am and U) in drinking water samples has been developed that can be used for emergency response or routine water analyses. For the first time, the application of TEVA chromatography column in the sequential separation of polonium and plutonium has been studied. This method utilizes a rapid Fe +3 co-precipitation step to remove matrix interferences, followed by plutonium oxidation state adjustment to Pu 4+ and an incubation period of ~ 1 h at 50-60 °C to allow Po 2+ to oxidize to Po 4+ . The polonium and plutonium were then separated on a TEVA column, while separation of americium from uranium was performed on a TRU column. After separation, polonium was micro-precipitated with copper sulfide (CuS), while actinides were micro co-precipitated using neodymium fluoride (NdF 3 ) for counting by the alpha spectrometry. The method is simple, robust and can be performed quickly with excellent removal of interferences, high chemical recovery and very good alpha peak resolution. The efficiency and reliability of the procedures were tested by using spiked samples. The effect of several transition metals (Cu 2+ , Pb 2+ , Fe 3+ , Fe 2+ , and Ni 2+ ) on the performance of this method were also assessed to evaluate the potential matrix effects. Studies indicate that presence of up to 25 mg of these cations in the samples had no adverse effect on the recovery or the resolution of polonium alpha peaks. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigations into Alternative Desorption Agents for Amidoxime-Based Polymeric Uranium Adsorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.
2015-06-01
Amidoxime-based polymeric braid adsorbents that can extract uranium (U) from seawater are being developed to provide a sustainable supply of fuel for nuclear reactors. A critical step in the development of the technology is to develop elution procedures to selectively remove U from the adsorbents and to do so in a manner that allows the adsorbent material to be reused. This study investigates use of high concentrations of bicarbonate along with targeted chelating agents as an alternative means to the mild acid elution procedures currently in use for selectively eluting uranium from amidoxime-based polymeric adsorbents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sari Izumo; Hideo Usui; Mitsuo Tachibana
Evaluation models for determining the manpower needs for dismantling various types of equipment in uranium refining and conversion plant (URCP) have been developed. The models are widely applicable to other uranium handling facilities. Additionally, a simplified model was developed for easily and accurately calculating the manpower needs for dismantling dry conversion process-related equipment (DP equipment). It is important to evaluate beforehand project management data such as manpower needs to prepare an optimized decommissioning plan and implement effective dismantling activity. The Japan Atomic Energy Agency (JAEA) has developed the project management data evaluation system for dismantling activities (PRODIA code), which canmore » generate project management data using evaluation models. For preparing an optimized decommissioning plan, these evaluation models should be established based on the type of nuclear facility and actual dismantling data. In URCP, the dry conversion process of reprocessed uranium and others was operated until 1999, and the equipment related to the main process was dismantled from 2008 to 2011. Actual data such as manpower for dismantling were collected during the dismantling activities, and evaluation models were developed using the collected actual data on the basis of equipment classification considering the characteristics of uranium handling facility. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukovskii, Yu.M.; Luksha, O.P.; Nenarokomov, E.A.
1988-03-01
We have derived a statistical model for the dissolution of uranium dioxide tablets for the 6 to 12 M concentration range and temperatures from 80/sup 0/C to the boiling point. The model differs qualitatively from the dissolution model for ground uranium dioxide. In the indicated range of experimental conditions, the mean-square deviation of the curves for the model from the experimental curves is not greater than 6%.
Cristiano, Bárbara F G; Delgado, José Ubiratan; da Silva, José Wanderley S; de Barros, Pedro D; de Araújo, Radier M S; Dias, Fábio C; Lopes, Ricardo T
2012-09-01
The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havrilla, George Joseph; McIntosh, Kathryn Gallagher; Judge, Elizabeth
2016-10-20
Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers themore » potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd-Lively, Jennifer L
2014-01-01
The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less
Efficient uranium capture by polysulfide/layered double hydroxide composites.
Ma, Shulan; Huang, Lu; Ma, Lijiao; Shim, Yurina; Islam, Saiful M; Wang, Pengli; Zhao, Li-Dong; Wang, Shichao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G
2015-03-18
There is a need to develop highly selective and efficient materials for capturing uranium (normally as UO2(2+)) from nuclear waste and from seawater. We demonstrate the promising adsorption performance of S(x)-LDH composites (LDH is Mg/Al layered double hydroxide, [S(x)](2-) is polysulfide with x = 2, 4) for uranyl ions from a variety of aqueous solutions including seawater. We report high removal capacities (q(m) = 330 mg/g), large K(d)(U) values (10(4)-10(6) mL/g at 1-300 ppm U concentration), and high % removals (>95% at 1-100 ppm, or ∼80% for ppb level seawater) for UO2(2+) species. The S(x)-LDHs are exceptionally efficient for selectively and rapidly capturing UO2(2+) both at high (ppm) and trace (ppb) quantities from the U-containing water including seawater. The maximum adsorption coeffcient value K(d)(U) of 3.4 × 10(6) mL/g (using a V/m ratio of 1000 mL/g) observed is among the highest reported for U adsorbents. In the presence of very high concentrations of competitive ions such as Ca(2+)/Na(+), S(x)-LDH exhibits superior selectivity for UO2(2+), over previously reported sorbents. Under low U concentrations, (S4)(2-) coordinates to UO2(2+) forming anionic complexes retaining in the LDH gallery. At high U concentrations, (S4)(2-) binds to UO2(2+) to generate neutral UO2S4 salts outside the gallery, with NO3(-) entering the interlayer to form NO3-LDH. In the presence of high Cl(-) concentration, Cl(-) preferentially replaces [S4](2-) and intercalates into LDH. Detailed comparison of U removal efficiency of S(x)-LDH with various known sorbents is reported. The excellent uranium adsorption ability along with the environmentally safe, low-cost constituents points to the high potential of S(x)-LDH materials for selective uranium capture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fodor, M.
An ion exchange-complexion separation meihod was developed for the removal of interfering elements in the determination of the uranium content of recovery solutions. By adding (ethylenediamine)tetraacetic acid to the solution, most of the interfering elements can be brought into an anionic complex. Adjusting the soluiion to pH 7 and letting it pass through an Amberlite IRC-50 type cation exchanger of hydrogen form, the uranium remains on the column whereas the interfering elements pass into the effluent. The method was successfully applied in analyzing the recovery solutions of uranium ores. (auth)
Biswas, Sujoy; Pathak, P N; Roy, S B
2012-06-01
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Assuaging Nuclear Energy Risks: The Angarsk International Uranium Enrichment Center
NASA Astrophysics Data System (ADS)
Myers, Astasia
2011-06-01
The recent nuclear renaissance has motivated many countries, especially developing nations, to plan and build nuclear power reactors. However, domestic low enriched uranium demands may trigger nations to construct indigenous enrichment facilities, which could be redirected to fabricate high enriched uranium for nuclear weapons. The potential advantages of establishing multinational uranium enrichment sites are numerous including increased low enrichment uranium access with decreased nuclear proliferation risks. While multinational nuclear initiatives have been discussed, Russia is the first nation to actualize this concept with their Angarsk International Uranium Enrichment Center (IUEC). This paper provides an overview of the historical and modern context of the multinational nuclear fuel cycle as well as the evolution of Russia's IUEC, which exemplifies how international fuel cycle cooperation is an alternative to domestic facilities.
Is It Time To Consider Global Sharing of Integral Physics Data?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold F. McFarlane
The innocent days of the Atoms for Peace program vanished with the suicide attack on the World Trade Center in New York City that occurred while the GLOBAL 2001 international nuclear fuel cycle conference was convened in Paris. Today’s reality is that maintaining an inventory of unirradiated highly enriched uranium or plutonium for critical experiments requires a facility to accept substantial security cost and intrusion. In the context of a large collection of benchmark integral experiments collected over several decades and the ongoing rapid advances in computer modeling and simulation, there seems to be ample incentive to reduce both themore » number of facilities and material inventory quantities worldwide. As a result of ongoing nonproliferation initiatives, there are viable programs that will accept highly enriched uranium for down blending into commercial fuel. Nevertheless, there are formidable hurdles to overcome before national institutions will voluntarily give up existing nuclear research capabilities. GLOBAL 2005 was the appropriate forum to begin fostering a new spirit of cooperation that could lead to improved international security and better use of precious research and development resources, while ensuring access to existing and future critical experiment data.« less
SUMMARY TECHNICAL REPORT FOR THE PERIOD JANUARY 1, 1961-MARCH 31, 1961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgett, R. ed
1961-05-01
Uranium and TBP Recovery from Waste Solvent. Laboratory and pilot-scale tests were carried out which demonstrated (1) that uranium in waste solvent can be removed by slurrying the solvent with activated charcoal, filtering the slurry, and washing the slurry with water and 3% Na/sub 2/CO/sub 3/ and (2) that TBP can be recovered from the waste solvent by splitting the solvent with HCl and distilling the TBP-rich phase. Improvement of Green Salt Quality. Denitration of ammonium uranyl trinitrate yielded a light, finely divided form of gamma -UO/ sub 3/ with a surface area higher than that of conventional batch potmore » powder; however, its reactivity in reduction and hydrofluorination tests was only moderately higher in comparison. Oxidation-reduction cycles were found to increase the reactivity of UO/sub 2/ toward hydrofluorination. The properties of various UO/sub 2/ samples were determined and correlated with the preparative methods used. Dehydration of Winlo Green Salt. About 27 tons of Winlo green salt was successfully dehydrated to a water content of -0.04% in a hydrofluorination reactor bank in the Green Salt Plant. Recovery of Uranium from MgF/sub 2/ Slag. A process for continuously digesting MgF/sub 2/ slag for uranium recovery was successfully tested on a plant scale. In this process, a water slurry of slag is transferred at a fixed rate and reacted with HCl, and the controlled feed rate reduces the hydrogen concentration. Graphite Liner for Bomb Reduction of Green Salt. An evaluation was made on machined graphite as a replacement for jolt-packed MgF/sub 2/ presently used to line reduction vessels for uranium metal production. Best results were obtained with a onepiece graphite liner fitted inside a steel vessel with an annulus of MgF/sub 2/ between liner and pot. Effects of Feed Material on Ingot Chemical Purity and Yields. The effects of various types of uranium feed stock on the chemical purity and yield of ingots were studied. The following results were obtained: (1) The H content was higher in ingots cast from melts contairing more derby material, (2) the O, N, and C contents of samples from ingot tops were signiicantly lower than those from ingot bottoms, (3) the crude ingot yields were lowest for pigots, briquettes, and heat-shocked grade III derbies, (4) pigots were deleterious to ingot chemical purity, (5) degreased drip crops and dingot extrnsion scrap were deleterious to core-to-good-core yield. Alpha Annealing of Uranium. The effect of a high alpha temperature anneal on the structure and growin index of beta heat treated uranium was evaluated. It was found that longer alpha annealing times gave greater recrystallization and that higher temperatures gave more rapid recrystallization. Delays of up to 6 months between beta heat treatment and alpha anneal did not affect either the recrystallization or the growth index. Billet Drilling. A LeBlond-Carlstedt Rapid Borer was tested as a urarium billet drilling machine and found to give satisfactory results, although some tool breakage occurred. (D.L.C.)« less
A physical model for evaluating uranium nitride specific heat
NASA Astrophysics Data System (ADS)
Baranov, V. G.; Devyatko, Yu. N.; Tenishev, A. V.; Khlunov, A. V.; Khomyakov, O. V.
2013-03-01
Nitride fuel is one of perspective materials for the nuclear industry. But unlike the oxide and carbide uranium and mixed uranium-plutonium fuel, the nitride fuel is less studied. The present article is devoted to the development of a model for calculating UN specific heat on the basis of phonon spectrum data within the solid state theory.
Guéguen, Yann; Roy, Laurence; Hornhardt, Sabine; Badie, Christophe; Hall, Janet; Baatout, Sarah; Pernot, Eileen; Tomasek, Ladislav; Laurent, Olivier; Ebrahimian, Teni; Ibanez, Chrystelle; Grison, Stephane; Kabacik, Sylwia; Laurier, Dominique; Gomolka, Maria
2017-01-01
Despite substantial experimental and epidemiological research, there is limited knowledge of the uranium-induce health effects after chronic low-dose exposures in humans. Biological markers can objectively characterize pathological processes or environmental responses to uranium and confounding agents. The integration of such biological markers into a molecular epidemiological study would be a useful approach to improve and refine estimations of uranium-induced health risks. To initiate such a study, Concerted Uranium Research in Europe (CURE) was established, and involves biologists, epidemiologists and dosimetrists. The aims of the biological work package of CURE were: 1. To identify biomarkers and biological specimens relevant to uranium exposure; 2. To define standard operating procedures (SOPs); and 3. To set up a common protocol (logistic, questionnaire, ethical aspects) to perform a large-scale molecular epidemiologic study in uranium-exposed cohorts. An intensive literature review was performed and led to the identification of biomarkers related to: 1. retention organs (lungs, kidneys and bone); 2. other systems/organs with suspected effects (cardiovascular system, central nervous system and lympho-hematopoietic system); 3. target molecules (DNA damage, genomic instability); and 4. high-throughput methods for the identification of new biomarkers. To obtain high-quality biological materials, SOPs were established for the sampling and storage of different biospecimens. A questionnaire was developed to assess potential confounding factors. The proposed strategy can be adapted to other internal exposures and should improve the characterization of the biological and health effects that are relevant for risk assessment.
Simulation of in situ uranium bioremediation with slow-release organic amendment injection
NASA Astrophysics Data System (ADS)
Zhang, F.; Parker, J.; Ye, M.; Tang, G.; Wu, W.; Mehlhorn, T.; Gihring, T. M.; Schadt, C.; Watson, D. B.; Brooks, S. C.
2010-12-01
In situ bioremediation of a highly uranium-contaminated gravel aquifer with a slow-release electron donor (emulsified edible oil) has been investigated at the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site in east Tennessee. Groundwater at the study location has pH ~6.7 and contains high concentrations of U (5-6 μM), sulfate (1.0-1.2) mM and Ca (3-4 mM). Diluted emulsified oil (20% solution) was injected into three injection wells within 1.5 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. The oil was degraded by indigenous microorganisms with acetate as a major product. Rapid removal of U(VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. The field test data were analyzed using a reaction network with a kinetic model for lipid hydrolysis and glycerol fermentation and equilibrium reactions representing microbial reduction of sulfate, nitrate, iron, uranium, manganese and carbon dioxide based on the thermodynamic approach of Istok et al. (2010) using the parallelized HGC5 code. Model-simulated chemical concentrations and relative abundance of functional microbial populations are compared with field measurements. Application of the thermodynamically-based modeling approach instead of the widely used multi-Monod kinetic rate law to formulate bioreduction reactions substantially reduces the number of reaction parameters that need to be calibrated thus facilitating a more comprehensive representation of microbial community dynamics. The model developed through this study is expected to aid the design of future bioremediation strategies for the site.
Calibrating rates of early Cambrian evolution.
Bowring, S A; Grotzinger, J P; Isachsen, C E; Knoll, A H; Pelechaty, S M; Kolosov, P
1993-09-03
An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began at approximately 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.
Hemingway, B.S.
1982-01-01
Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.
Dibutyl Phosphoric Acid Solubility in High-Acid, Uranium-Bearing Solutions at SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, R.A.
1998-10-02
The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are approximately 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with the dibutylphosphate ion (DBP) which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. Prior SRTC tests (WSRC-TR-98-00188) showed that U-DBPmore » solids precipitate at concentrations potentially attainable during the storage of enriched uranium solutions. Furthermore, evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if the DBP concentration in the resulting solution exceeds 110 mg/L at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. As a follow-up to the earlier studies, SRTC studied the solubility limits for solutions containing acid concentrations above 0.5M HNO3. The data obtained in these tests reveals a shift to higher levels of DBP solubility above 0.5M HNO3 for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified a mixture of different molecular structures for the solids created. The analysis distinguished UO2(DBP)2 as the dominant compound present at low acid concentrations. As the acid concentration increases, the crystalline UO2(DBP)2 shows molecular substitutions and an increase in amorphous content. Further analysis by methods not available at SRS will be needed to better identify the specific compounds present. This data indicates that acidification prior to evaporation can be used to increase the margin of safety for the storage of the EUS solutions. Subsequent experimentation evaluated options for absorbing HDBP from solution using either activated carbon or anion exchange resin. The activated carbon outperformed the anion exchange resin. Activated carbon absorbs DBP rapidly and has demonstrated the capability of absorbing 15 mg of DBP per gram of activated carbon. Analytical results also show that activated carbon absorbs uranium up to 17 mg per gram of carbon. It is speculated that the uranium absorbed is part of a soluble U-DBP complex that has been absorbed. Additional testing must still be performed to 1) establish absorption limits for uranium for anion exchange resin, 2) evaluate desorption characteristics of uranium and DBP, and 3) study the possibility of re-using the absorbent.« less
Developing uranium dicarbide-graphite porous materials for the SPES project
NASA Astrophysics Data System (ADS)
Biasetto, L.; Zanonato, P.; Carturan, S.; Di Bernardo, P.; Colombo, P.; Andrighetto, A.; Prete, G.
2010-09-01
Uranium carbide dispersed in graphite was produced under vacuum by means of carbothermic reduction of different uranium oxides (UO 2, U 3O 8 and UO 3), using graphite as the source of carbon. The thermal process was monitored by mass spectrometry and the gas evolution confirmed the reduction of the U 3O 8 and UO 3 oxides to UO 2 before the carbothermic reaction, that started to occur at T > 1000 °C. XRD analysis confirmed the formation of α-UC 2 and of a minor amount of UC. The morphology of the produced uranium carbide was not affected by the oxides employed as the source of uranium.
National uranium resource evaluation: Newark Quadrangle, Pennsylvania and New Jersey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popper, G.H.P.; Martin, T.S.
1982-04-01
The Newark Quadrangle, Pennsylvania and New Jersey, was evaluated to a depth of 1500 m to identify geologic environments and delineate areas favorable for uranium deposits. Criteria used were those developed for the National Uranium Resource Evaluation program. Results of the investigation indicate that the Precambrian Reading Prong contains environments favorable for anatectic and allogenic uranium deposits. Two suites of rocks are favorable for anatectic-type concentrations: An alaskite-magnetite-gneiss association, and red granite and quartz monzonite. Allogenic uranium concentrations occur in rocks of the marble-skarn-serpentinite association. Environments favorable for peneconcordant sandstone-type uranium deposits occur in the upper one-third of the Catskillmore » Formation, the Mississippian-Pennsylvanian Mauch Chunk-Pottsville transition beds, and the upper half of the Triassic Stockton Formation. The Triassic Lockatong Formation contains environments favorable for carbonaceous shale-type uranium concentrations. The Ordovician Epler Formation and the Cretaceous-Tertiary strata of the Coastal Plain were not evaluated due to time restrictions and lack of outcroup. All other geologic environments are considered unfavorable for uranium deposits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofman, G.L.
1996-09-01
A fuel development campaign that results in an aluminum plate-type fuel of unlimited LEU burnup capability with an uranium loading of 9 grams per cm{sup 3} of meat should be considered an unqualified success. The current worldwide approved and accepted highest loading is 4.8 g cm{sup {minus}3} with U{sub 3}Si{sub 2} as fuel. High-density uranium compounds offer no real density advantage over U{sub 3}Si{sub 2} and have less desirable fabrication and performance characteristics as well. Of the higher-density compounds, U{sub 3}Si has approximately a 30% higher uranium density but the density of the U{sub 6}X compounds would yield the factormore » 1.5 needed to achieve 9 g cm{sup {minus}3} uranium loading. Unfortunately, irradiation tests proved these peritectic compounds have poor swelling behavior. It is for this reason that the authors are turning to uranium alloys. The reason pure uranium was not seriously considered as a dispersion fuel is mainly due to its high rate of growth and swelling at low temperatures. This problem was solved at least for relatively low burnup application in non-dispersion fuel elements with small additions of Si, Fe, and Al. This so called adjusted uranium has nearly the same density as pure {alpha}-uranium and it seems prudent to reconsider this alloy as a dispersant. Further modifications of uranium metal to achieve higher burnup swelling stability involve stabilization of the cubic {gamma} phase at low temperatures where normally {alpha} phase exists. Several low neutron capture cross section elements such as Zr, Nb, Ti and Mo accomplish this in various degrees. The challenge is to produce a suitable form of fuel powder and develop a plate fabrication procedure, as well as obtain high burnup capability through irradiation testing.« less
Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.
2012-07-01
Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The currentmore » Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)« less
Uranium nitride fuel fabrication for SP-100 reactors
NASA Technical Reports Server (NTRS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
1987-01-01
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Uranium nitride fuel fabrication for SP-100 reactors
NASA Astrophysics Data System (ADS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Koch, Joshua C.; Ewing, Stephanie A.; Striegl, Robert G.; McKnight, Diane M.
2013-01-01
In high-latitude catchments where permafrost is present, runoff dynamics are complicated by seasonal active-layer thaw, which may cause a change in the dominant flowpaths as water increasingly contacts mineral soils of low hydraulic conductivity. A 2-year study, conducted in an upland catchment in Alaska (USA) underlain by frozen, well-sorted eolian silt, examined changes in infiltration and runoff with thaw. It was hypothesized that rapid runoff would be maintained by flow through shallow soils during the early summer and deeper preferential flow later in the summer. Seasonal changes in soil moisture, infiltration, and runoff magnitude, location, and chemistry suggest that transport is rapid, even when soils are thawed to their maximum extent. Between June and September, a shift occurred in the location of runoff, consistent with subsurface preferential flow in steep and wet areas. Uranium isotopes suggest that late summer runoff erodes permafrost, indicating that substantial rapid flow may occur along the frozen boundary. Together, throughflow and deep preferential flow may limit upland boreal catchment water and solute storage, and subsequently biogeochemical cycling on seasonal to annual timescales. Deep preferential flow may be important for stream incision, network drainage development, and the release of ancient carbon to ecosystems
Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.
2013-06-01
The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less
Uranium levels in the diet of São Paulo City residents.
Garcia, F; Barioni, A; Arruda-Neto, J D T; Deppman, A; Milian, F; Mesa, J; Rodriguez, O
2006-07-01
Natural levels of uranium in the diet of São Paulo City residents were studied, and radionuclide concentrations were measured by the fission track method on samples of typical adult food items. This information was used to evaluate the daily intake of uranium in individuals living in São Paulo City which is, according to our findings, around 0.97 microg U/day. Using the ICRP Uranium-model, we estimated the uranium accumulation and committed doses in some tissues and organs, as function of time. We compared the output of the ICRP uranium biokinetic model, tailored for the conditions prevailing in São Paulo, with experimental data from other localities. Such comparison was possible by means of a simple method we developed, which allows normalization among experimental results from different regions where distinct values of chronic daily intake are observed.
Semi-automated potentiometric titration method for uranium characterization.
Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T
2012-07-01
The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zirconium determination by cooling curve analysis during the pyroprocessing of used nuclear fuel
NASA Astrophysics Data System (ADS)
Westphal, B. R.; Price, J. C.; Bateman, K. J.; Marsden, K. C.
2015-02-01
An alternative method to sampling and chemical analyses has been developed to monitor the concentration of zirconium in real-time during the casting of uranium products from the pyroprocessing of used nuclear fuel. The method utilizes the solidification characteristics of the uranium products to determine zirconium levels based on standard cooling curve analyses and established binary phase diagram data. Numerous uranium products have been analyzed for their zirconium content and compared against measured zirconium data. From this data, the following equation was derived for the zirconium content of uranium products:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmina, L.A.
A method has been developed for determining uranium, thorium, and ionium (Th/sup 230/) in sea silt from a single sample. The completeness of isolation and radiochemical purity of thorium isotopes have been tested by means of tracers. The method has been proved on samples of sea silt as well as of rocks, ores, and minerals. It is applicable at thorium content from 5 x 10/sup -5/ to x x 10/sup - 4/% when uranium content is x x 10/sup -4/ % and at uranium content up to 70% when ionium contert is x x 10/sup -4/% (uranium equivalent). (tr-auth)
Parra, R; Ulery, A L; Elless, M P; Blaylock, M J
2008-01-01
The phytoremediation of recalcitrant metals such as lead and uranium rely on soil amendments to enhance metal availability within the rhizosphere. Because these amendments may persist in soils, agents that not only biodegrade rapidly but also are effective in triggering metal uptake in plants are needed for metals phytoextraction to be considered as an accepted practice. In this study, several biodegradable organic acids and chelating agents were assessed to determine if these amendments can be used in an effective manner, and if their activity and use is consistent with a proposed class of soil amendments for phytoextraction, here termed transient phytoextraction agents (TPAs). A TPA is proposed as an agent that would exhibit both effectiveness in triggering plant accumulation of the targeted metal while minimizing the risk of migration through rapid degradation or inactivation of the soluble complex. Eleven candidate TPAs (acetic acid, ascorbic acid, citric acid, malic acid, oxalic acid, succinic acid, ethylenediaminedisuccinic acid, dicarboxymethylglutamic acid, nitrilotriacetic acid, BayPure CX 100, and the siderophore desferrioxamine B) were tested in batch studies to evaluate their complexation behavior using contaminated soils, with uranium and lead as the target metals. A growth chamber study was then conducted with Brassica juncea (Indian mustard), Helianthus annuus (sunflower), and Festuca arundinacea (tall fescue) grown in a lead-contaminated soil that was treated with the candidate TPAs to assess phytoextraction effectiveness. For the soils tested, citric acid, oxalic acid, and succinic acid were found to be effective complexing agents for uranium phytoextraction, whereas Baypure CX 100 and citric acid exhibited effectiveness for lead phytoextraction.
Code of Federal Regulations, 2012 CFR
2012-01-01
... uranium or enriching uranium in the isotope 235, zirconium tubes, heavy water or deuterium, nuclear-grade..., irradiated fuel element chopping machines, and hot cells. Nuclear fuel cycle-related research and development...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.
2015-11-30
High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3-H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure inmore » real seawater. The Na 2CO 3-H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.« less
NASA Astrophysics Data System (ADS)
Barefield, James E.; Judge, Elizabeth J.; Campbell, Keri R.; Colgan, James P.; Kilcrease, David P.; Johns, Heather M.; Wiens, Roger C.; McInroy, Rhonda E.; Martinez, Ronald K.; Clegg, Samuel M.
2016-06-01
Laser induced breakdown spectroscopy (LIBS) is a rapid atomic emission spectroscopy technique that can be configured for a variety of applications including space, forensics, and industry. LIBS can also be configured for stand-off distances or in-situ, under vacuum, high pressure, atmospheric or different gas environments, and with different resolving-power spectrometers. The detection of uranium in a complex geological matrix under different measurement schemes is explored in this paper. Although many investigations have been completed in an attempt to detect and quantify uranium in different matrices at in-situ and standoff distances, this work detects and quantifies uranium in a complex matrix under Martian and ambient air conditions. Investigation of uranium detection using a low resolving-power LIBS system at stand-off distances (1.6 m) is also reported. The results are compared to an in-situ LIBS system with medium resolving power and under ambient air conditions. Uranium has many thousands of emission lines in the 200-800 nm spectral region. In the presence of other matrix elements and at lower concentrations, the limit of detection of uranium is significantly reduced. The two measurement methods (low and high resolving-power spectrometers) are compared for limit of detection (LOD). Of the twenty-one potential diagnostic uranium emission lines, seven (409, 424, 434, 435, 436, 591, and 682 nm) have been used to determine the LOD for pitchblende in a dunite matrix using the ChemCam test bed LIBS system. The LOD values determined for uranium transitions in air are 409.013 nm (24,700 ppm), 424.167 nm (23,780 ppm), 434.169 nm (24,390 ppm), 435.574 nm (35,880 ppm), 436.205 nm (19,340 ppm), 591.539 nm (47,310 ppm), and 682.692 nm (18,580 ppm). The corresponding LOD values determined for uranium transitions in 7 Torr CO2 are 424.167 nm (25,760 ppm), 434.169 nm (40,800 ppm), 436.205 nm (32,050 ppm), 591.539 nm (15,340 ppm), and 682.692 nm (29,080 ppm). The LOD values determine for uranium emission lines using the medium resolving power (10,000 λ/Δλ) LIBS system for the dunite matrix in air are 409.013 nm (6120 ppm), 424.167 nm (5356 ppm), 434.169 nm (5693 ppm), 435.574 nm (6329 ppm), 436.205 nm (2142 ppm), and 682.692 nm (10,741 ppm). The corresponding LOD values determined for uranium transitions in a SiO2 matrix are 409.013 nm (272 ppm), 424.167 nm (268 ppm), 434.169 nm (402 ppm), 435.574 nm (1067 ppm), 436.205 nm (482 ppm), and 682.692 nm (720 ppm). The impact of spectral resolution, atmospheric conditions, matrix elements, and measurement distances on LOD is discussed. The measurements will assist one in selecting the proper system components based upon the application and the required analytical performance.
Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2O 7
Odoh, Samuel O.; Shamblin, Jacob; Colla, Christopher A.; ...
2016-03-14
Recent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western USA. The drums contained an unexpected X-ray amorphous reactive form of uranium oxide, U 2O7. Heating hydrated uranyl peroxides produced during in situ mining unintentionally produced U 2O 7. It is a hygroscopic anhydrous uranyl peroxide that reacts rapidly with water to release O 2 gas and form metaschoepite, a uranyl-oxide hydrate. Quantum chemical calculations indicate that the most stable U 2O 7 conformer consists of two bent (UO 2) 2+ uranyl ions bridged by a peroxide group bidentatemore » and parallel to each uranyl ion, and a μ2-O atom, resulting in charge neutrality. A pair distribution function from neutron total scattering supports this structural model. The reactivity of U 2O 7 in water and with water in air is much higher than other uranium oxides, and this can be both hazardous and potentially advantageous in the nuclear fuel cycle.« less
Why Nuclear Forensics Needs New Plasma Chemistry Data
NASA Astrophysics Data System (ADS)
Rose, T.; Armstrong, M.; Chernov, A.; Crowhurst, J.; Dai, Z.; Knight, K.; Koroglu, B.; Radousky, H.; Stavrou, E.; Weisz, D.; Zaug, J.; Azer, M.; Finko, M.; Curreli, D.
2016-10-01
The mechanisms that control the distribution of radionuclides in fallout after a nuclear detonation are not adequately constrained. Current capabilities for assessing post-detonation scenarios often rely on empirical observations and approximations. Deeper insight into chemical condensation requires a coupled experimental, theoretical, and modeling approach. The behavior of uranium during plasma condensation is perplexing. Two independent methods are being developed to investigate gas phase uranium chemistry and speciation during plasma condensation: (1) laser-induced breakdown spectroscopy and (2) a unique steady-state ICP flow reactor. Both methods use laser absorption spectroscopy to obtain in situ data for vapor phase molecular species as they form. We are developing a kinetic model to describe the relative abundance of uranium species in the evolving plasma. Characterization of the uranium-oxygen system will be followed by other chemical components, including `carrier' materials such as silica. The goal is to develop a semi-empirical model to describe the chemical fractionation of uranium during fallout formation. Prepared by LLNL under Contract DE-AC52-07NA27344. This project was sponsored in part by the Department of the Defense, Defense Threat Reduction Agency, under Grant Number HDTRA1-16-1-0020.
NASA Astrophysics Data System (ADS)
Burkes, Douglas E.; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.
2014-07-01
The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world's highest power research reactors from the use of high enriched uranium to low enriched uranium. One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of the thermal-conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify functionality of equipment installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, refine procedures to operate the equipment, and validate models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures, and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a Zr diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.
As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition
NASA Astrophysics Data System (ADS)
Blackwood, Van Stephen
The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.
Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T
2016-12-01
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.
Illicit Trafficking of Natural Radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Steinhaeusler; Lyudmila, Zaitseva
2008-08-07
Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from anmore » operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.« less
Kukreti, B M; Kumar, Pramod; Sharma, G K
2015-10-01
Exploratory drilling was undertaken in the Lostoin block, West Khasi Hills district of Meghalaya based on the geological extension to the major uranium deposit in the basin. Gamma ray logging of drilled boreholes shows considerable subsurface mineralization in the block. However, environmental and exploration related challenges such as climatic, logistic, limited core drilling and poor core recovery etc. in the block severely restricted the study of uranium exploration related index parameters for the block with a high degree confidence. The present study examines these exploration related challenges and develops an integrated approach using representative sampling of reconnoitory boreholes in the block. Experimental findings validate a similar geochemically coherent nature of radio elements (K, Ra and Th) in the Lostoin block uranium hosting environment with respect to the known block of Mahadek basin and uranium enrichment is confirmed by the lower U to Th correlation index (0.268) of hosting environment. A mineralized zone investigation in the block shows parent (refers to the actual parent uranium concentration at a location and not a secondary concentration such as the daughter elements which produce the signal from a total gamma ray measurement) favoring uranium mineralization. The confidence parameters generated under the present study have implications for the assessment of the inferred category of uranium ore in the block and setting up a road map for the systematic exploration of large uranium potential occurring over extended areas in the basin amid prevailing environmental and exploratory impediments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Illicit Trafficking of Natural Radionuclides
NASA Astrophysics Data System (ADS)
Friedrich, Steinhäusler; Lyudmila, Zaitseva
2008-08-01
Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.
The measurement of U(VI) and Np(IV) mass transfer in a single stage centrifugal contactor
NASA Astrophysics Data System (ADS)
May, I.; Birkett, E. J.; Denniss, I. S.; Gaubert, E. T.; Jobson, M.
2000-07-01
BNFL currently operates two reprocessing plants for the conversion of spent nuclear fuel into uranium and plutonium products for fabrication into uranium oxide and mixed uranium and plutonium oxide (MOX) fuels. To safeguard the future commercial viability of this process, BNFL is developing novel single cycle flowsheets that can be operated in conjunction with intensified centrifugal contactors.
Bruce, F.R.
1962-07-24
A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)
Portable field kit for determining uranium in water
McHugh, John B.
1979-01-01
The pressing need for on-site field analyses of the uranium content of surface and ground waters has promoted the development of a simple, light-weight, relatively cheap, portable kit to make such determinations in the field. Forty to sixty water samples per day can be analyzed for uranium to less than 0.2 parts per billion. The kit was tested in the field with excellent results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James
The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater.more » The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous-flow natural seawater at the Pacific Northwest National Laboratory (PNNL). Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis were used to characterize the adsorbent at different stages of adsorbent preparation and treatment. The study can be divided into two parts: (A) investigation of optimal parameters for KOH adsorbent conditioning and (B) investigation of other possible agents for alkali conditioning, including cost analysis on the basis of uranium production. In the first part of the study, tests with simulated seawater containing 8 ppm uranium showed that the uranium adsorption capacity increased with an increase in the KOH concentration and conditioning time and temperature at each of the KOH concentrations used. FTIR and solid state NMR studies indicated that KOH conditioning converts the amidoxime functional groups into more hydrophilic carboxylate. The longer the KOH conditioning time, up to three hours, the higher was the loading capacity from the simulated seawater solution which is composed of only uranyl, sodium, chloride, and carbonate ions. Marine testing with natural seawater, on the other hand, showed that the uranium adsorption capacity of the adsorbent increased with KOH conditioning temperature, and gradually decreased with increasing KOH conditioning time from one hour to three hours at 80 C. This behavior is due to the conversion of amidoxime to carboxylate. The carboxylate groups are needed to increase the hydrophilicity of the adsorbent; however, conversion of a significant amount of amidoxime to carboxylate leads to loss in selectivity toward uranyl ions. Thus, there is an optimum KOH conditioning time for each temperature at which an optimum ratio between amidoxime and carboxylate is reached. For the case of base conditioning with 0.44 M KOH at 80 C, the optimal conditioning time is 1 hour, with respect to the highest uranium loading capacity from natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na 2CO 3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...« less
Comprehensive Evaluation of Soil Near Uranium Tailings, Beishan City, China.
Xun, Yan; Zhang, Xinjia; Chaoliang, Chen; Luo, Xuegang; Zhang, Yu
2018-06-01
To evaluate the impact of uranium tailings on soil composition and soil microbial, six soil samples at different distance from the uranium tailings (Beishan City, China) were collected for further analysis. Concentrations of radionuclides ( 238 U and 232 Th), heavy metals (Mn, Cd, Cr, Ni, Zn, and Pb) and organochlorine pesticide were determined by ICP-MS and GC, they were significantly higher than those of the control. And the Average Well Color Development as well as the Shannon, the Evenness, and the Simpson index were calculated to evaluate the soil microbial diversity. The carbon utilization model of soil microbial community was also analyzed by Biolog-eco. All results indicated that uranium tailings leaded to excessive radionuclides and heavy metals, and decreased the diversity of the soil microbial community. Our study will provide a valuable basis for soil quality evaluation around uranium tailing repositories and lay a foundation for the management and recovery of uranium tailings.
The new nuclear west: Uranium milling as community on Colorado's western slope
NASA Astrophysics Data System (ADS)
Tidwell, Abraham S. D.
In mid-2007, Energy Fuels, a Toronto-based uranium mining and milling company, announced their intent to build Piñon Ridge, the first new conventional uranium mill in the United States in 30 years. The prospect of a return to uranium milling has mobilized community support to bring back an industry some see as both familiar and capable of supporting and growing their communities. Using transcripts generated during the Colorado Department of Public Health and Environment's public meetings and hearings during 2010 and 2012, this study examines how proponents of the mill frame the socioeconomic advantages of bringing the industry back. Applying Kinsella's bounded constitutive model of communication, this study shows that the community and the uranium mill are bound in a "sorge-enframing" duality where the care generated by each binds the other to the recalcitrant nature of the uranium industry and preconceived notions of socioeconomic development, respectively.
Use of ion beams to simulate reaction of reactor fuels with their cladding
NASA Astrophysics Data System (ADS)
Birtcher, R. C.; Baldo, P.
2006-01-01
Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27Al(p,γ)28Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 °C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm2/dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery.
Li, Juan; Yang, Xiaodan; Bai, Chiyao; Tian, Yin; Li, Bo; Zhang, Shuang; Yang, Xiaoyu; Ding, Songdong; Xia, Chuanqin; Tan, Xinyu; Ma, Lijian; Li, Shoujian
2015-01-01
A novel COF-based material (COF-COOH) containing large amounts of carboxylic groups was prepared for the first time by using a simple and effective one-step synthetic method, in which the cheap and commercially available raw materials, trimesoyl chloride and p-phenylenediamine, were used. The as-synthesized COF-COOH was modified with previously synthesized 2-(2,4-dihydroxyphenyl)-benzimidazole (HBI) by "grafting to" method, and a new solid-phase extractant (COF-HBI) with highly efficient sorption performance for uranium(VI) was consequently obtained. A series of characterizations demonstrated that COF-COOH and COF-HBI exhibited great thermostabilities and irradiation stabilities. Sorption behavior of the COF-based materials toward U(VI) was compared in simulated nuclear industrial effluent containing UO2(2+) and 11 undesired ions, and the UO2(2+) sorption amount of COF-HBI was 81 mg g(-1), accounting for approximately 58% of the total sorption amount, which was much higher than the sorption selectivity of COF-COOH to UO2(2+) (39%). Batch sorption experiment results indicated that the uranium(VI) sorption on COF-HBI was a pH dependent, rapid (sorption equilibrium was reached in 30 min), endothermic and spontaneous process. In the most favorable conditions, the equilibrium sorption capacity of the adsorbent for uranium could reach 211 mg g(-1). Copyright © 2014 Elsevier Inc. All rights reserved.
Lung cancer in a nonsmoking underground uranium miner.
Mulloy, K B; James, D S; Mohs, K; Kornfeld, M
2001-01-01
Working in mines is associated with acute and chronic occupational disorders. Most of the uranium mining in the United States took place in the Four Corners region of the Southwest (Arizona, Colorado, New Mexico, and Utah) and on Native American lands. Although the uranium industry collapsed in the late 1980s, the industry employed several thousand individuals who continue to be at increased risk for developing lung cancers. We present the case of a 72-year-old Navajo male who worked for 17 years as an underground uranium miner and who developed lung cancer 22 years after leaving the industry. His total occupational exposure to radon progeny was estimated at 506 working level months. The miner was a life-long nonsmoker and had no other significant occupational or environmental exposures. On the chest X-ray taken at admission into the hospital, a right lower lung zone infiltrate was detected. The patient was treated for community-acquired pneumonia and developed respiratory failure requiring mechanical ventilation. Respiratory failure worsened and the patient died 19 days after presenting. On autopsy, a 2.5 cm squamous cell carcinoma of the right lung arising from the lower lobe bronchus, a right broncho-esophageal fistula, and a right lower lung abscess were found. Malignant respiratory disease in uranium miners may be from several occupational exposures; for example, radon decay products, silica, and possibly diesel exhaust are respiratory carcinogens that were commonly encountered. In response to a growing number of affected uranium miners, the Radiation Exposure Compensation Act (RECA) was passed by the U.S. Congress in 1990 to make partial restitution to individuals harmed by radiation exposure resulting from underground uranium mining and above-ground nuclear tests in Nevada. PMID:11333194
Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor
NASA Technical Reports Server (NTRS)
Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.
1973-01-01
From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.
2016-07-01
Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. Wemore » demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piechowicz, Marek; Abney, Carter W.; Thacker, Nathan C.
The amidoxime group (-RNH2NOH) has long been used to extract uranium from seawater on account of its high affinity toward uranium. The development of tunable sorbent materials for uranium sequestration remains a research priority as well as a significant challenge. Herein, we report the design, synthesis, and uranium sorption properties of bis-amidoxime-functionalized polymeric materials (BAP 1–3). Bifunctional amidoxime monomers were copolymerized with an acrylamide cross-linker to obtain bis-amidoxime incorporation as high as 2 mmol g–1 after five synthetic steps. The resulting sorbents were able to uptake nearly 600 mg of uranium per gram of polymer after 37 days of contactmore » with a seawater simulant containing 8 ppm uranium. Moreover, the polymeric materials exhibited low vanadium uptake with a maximum capacity of 128 mg of vanadium per gram of polymer. This computationally predicted and experimentally realized selectivity of uranium over vanadium, nearly 5 to 1 w/w, is one of the highest reported to date and represents an advancement in the rational design of sorbent materials with high uptake capacity and selectivity.« less
Uptake of uranium from seawater by amidoxime-based polymeric adsorbent marine testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, C.; Kim, J.; Oyola, Y.
2013-07-01
Amidoxime-based polymer adsorbents in the form of functionalized fibers were prepared at the Oak Ridge National Laboratory (ORNL) and screened in laboratory experiments, in terms of uranium uptake capacity, using spiked uranium solution and seawater samples. Batch laboratory experiments conducted with 5-gallon seawater tanks provided equilibrium information. Based on results from 5-gallon experiments, the best adsorbent was selected for field-testing of uranium adsorption from seawater. Flow-through column tests have been performed at different marine sites to investigate the uranium uptake rate and equilibrium capacity under diverse biogeochemistry. The maximum amount of uranium uptake from seawater tests at Sequim, WA, wasmore » 3.3 mg U/g adsorbent after eight weeks of contact of the adsorbent with seawater. This amount was three times higher than the maximum adsorption capacity achieved in this study by a leading adsorbent developed by the Japan Atomic Energy Agency (JAEA), which was 1.1 mg U/g adsorbent at equilibrium. The initial uranium uptake rate of the ORNL adsorbent was 2.6 times higher than that of the JAEA adsorbent under similar conditions. A mathematical model derived from the mass balance of uranium was employed to describe the data. (authors)« less
Depleted Uranium Uses Research and Development
Documents News FAQs Internet Resources Glossary Home » DU Uses Depleted Uranium Uses Research & Uses | DUF6 Management | DUF6 Conversion Facility EISs | Documents News | FAQs | Internet Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungseung; Tsouris, Constantinos; Oyola, Yatsandra
2014-04-09
Uranium recovery from seawater has been investigated for several decades for the purpose of securing nuclear fuel for energy production. In this study, field column experiments have been performed at the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL) using a laboratory-proven, amidoxime-based polymeric adsorbent developed at the Oak Ridge National Laboratory (ORNL). The adsorbent was packed either in in-line filters or in flow-through columns. The maximum amount of uranium uptake from seawater was 3.3 mg of U/g of adsorbent after 8 weeks of contact between the adsorbent and seawater. This uranium adsorption amount was about 3 timesmore » higher than the maximum amount achieved in this study by a leading adsorbent developed at the Japan Atomic Energy Agency (JAEA).« less
Bayramoglu, Gulay; Akbulut, Aydin; Arica, M Yakup
2015-11-01
This study investigates the potential application of the polyethyleneimine- (PEI) and amidoxime-modified Spirulina (Arthrospira) platensis biomasses for the removal of uranium ion in batch mode using the native biomass as a control system. The uranium ion adsorption was also characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra, zeta potential analysis, and surface area measurement studies. The effects of pH, biomass amount, contact time, initial uranium ion concentration, and ionic strength were evaluated by using native and modified algal biomass preparations. The uranium ion removal was rapid, with more than 70% of total adsorption taking place in 40 min, and equilibrium was established within 60 min. From the experimental data, it was found that the amount of adsorption uranium ion on the algal preparations decreased in the following series: amidoxime-modified algal biomass > PEI-modified algal biomass > native algal biomass. Maximum adsorption capacities of amidoxime- and PEI-modified, and native algal biomasses were found to be 366.8, 279.5, and 194.6 mg/g, respectively, in batchwise studies. The adsorption rate of U(VI) ion by amidoxime-modified algal biomass was higher than those of the native and PEI-modified counterparts. The adsorption processes on all the algal biomass preparations followed by the Dubinin-Radushkevitch (D-R) and Temkin isotherms and pseudo-second-order kinetic models. The thermodynamic parameters were determined at four different temperatures (i.e., 15, 25, 35, and 45 °C) using the thermodynamics constant of the Temkin isotherm model. The ΔH° and ΔG° values of U(VI) ion adsorption on algal preparations show endothermic heat of adsorption; higher temperatures favor the process. The native and modified algal biomass preparations were regenerated using 10 mM HNO3. These results show that amidoxime-modified algal biomass can be a potential candidate for effective removal of U(VI) ion from aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Li; Wang, Yilin; Werner, Philipp
Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ~45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure.more » Simultaneously, the so-called "Zhang-Rice state", which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.« less
Performance and Mechanism of Uranium Adsorption from Seawater to Poly(dopamine)-Inspired Sorbents.
Wu, Fengcheng; Pu, Ning; Ye, Gang; Sun, Taoxiang; Wang, Zhe; Song, Yang; Wang, Wenqing; Huo, Xiaomei; Lu, Yuexiang; Chen, Jing
2017-04-18
Developing facile and robust technologies for effective enrichment of uranium from seawater is of great significance for resource sustainability and environmental safety. By exploiting mussel-inspired polydopamine (PDA) chemistry, diverse types of PDA-functionalized sorbents including magnetic nanoparticle (MNP), ordered mesoporous carbon (OMC), and glass fiber carpet (GFC) were synthesized. The PDA functional layers with abundant catechol and amine/imine groups provided an excellent platform for binding to uranium. Due to the distinctive structure of PDA, the sorbents exhibited multistage kinetics which was simultaneously controlled by chemisorption and intralayer diffusion. Applying the diverse PDA-modified sorbents for enrichment of low concentration (parts per billion) uranium in laboratory-prepared solutions and unpurified seawater was fully evaluated under different scenarios: that is, by batch adsorption for MNP and OMC and by selective filtration for GFC. Moreover, high-resolution X-ray photoelectron spectroscopic and extended X-ray absorption fine structure studies were performed for probing the underlying coordination mechanism between PDA and U(VI). The catechol hydroxyls of PDA were identified as the main bidentate ligands to coordinate U(VI) at the equatorial plane. This study assessed the potential of versatile PDA chemistry for development of efficient uranium sorbents and provided new insights into the interaction mechanism between PDA and uranium.
Rapid separation and purification of uranium and plutonium from dilute-matrix samples
Armstrong, Christopher R.; Ticknor, Brian W.; Hall, Gregory; ...
2014-03-11
This work presents a streamlined separation and purification approach for trace uranium and plutonium from dilute (carrier-free) matrices. The method, effective for nanogram quantities of U and femtogram to picogram quantities of Pu, is ideally suited for environmental swipe samples that contain a small amount of collected bulk material. As such, it may be applicable for processing swipe samples such as those collected in IAEA inspection activities as well as swipes that are loaded with unknown analytes, such as those implemented in interlaboratory round-robin or proficiency tests. Additionally, the simplified actinide separation could find use in internal laboratory monitoring ofmore » clean room conditions prior to or following more extensive chemical processing. We describe key modifications to conventional techniques that result in a relatively rapid, cost-effective, and efficient U and Pu separation process. We demonstrate the efficacy of implementing anion exchange chromatography in a single column approach. We also show that hydrobromic acid is an effective substitute in lieu of hydroiodoic acid for eluting Pu. Lastly, we show that nitric acid is an effective digestion agent in lieu of perchloric acid and/or hydrofluoric acid. A step by step procedure of this process is detailed.« less
Knight, Andrew W.; Eitrheim, Eric S.; Nelson, Andrew W.; Nelson, Steven; Schultz, Michael K.
2017-01-01
Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with 14C-derived age of the material. PMID:24681438
Kraemer, T.F.; Doughten, M.W.; Bullen, T.D.
2002-01-01
A method is described that allows precise determination of 234U/238U activity ratios (UAR) in most natural waters using commonly available inductively coupled plasma/mass spectrometry (ICP/MS) instrumentation and accessories. The precision achieved by this technique (??0.5% RSD, 1 sigma) is intermediate between thermal ionization mass spectrometry (??0.25% RSID, 1 sigma) and alpha particle spectrometry (??5% RSD, 1 sigma). It is precise and rapid enough to allow analysis of a large number of samples in a short period of time at low cost using standard, commercially available quadrupole instrumentation with ultrasonic nebulizer and desolvator accessories. UARs have been analyzed successfully in fresh to moderately saline waters with U concentrations of from less than 1 ??g/L to nearly 100 ??g/L. An example of the uses of these data is shown for a study of surface-water mixing in the North Platte River in western Nebraska. This rapid and easy technique should encourage the wider use of uranium isotopes in surface-water and groundwater investigations, both for qualitative (e.g. identifying sources of water) and quantitative (e.g. determining end-member mixing ratios purposes.
Detection of uranium using laser-induced breakdown spectroscopy.
Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia
2009-11-01
The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance.
Experience of on-site disposal of production uranium-graphite nuclear reactor.
Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G
2018-04-01
The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Kleeck, M.; Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439; Willit, J.
A monolithic uranium molybdenum alloy clad in zirconium has been proposed as a low enriched uranium (LEU) fuel option for research and test reactors, as part of the Reduced Enrichment for Research and Test Reactors program. Scrap from the fuel's manufacture will contain a significant portion of recoverable LEU. Pyroprocessing has been identified as an option to perform this recovery. A model of a pyroprocessing recovery procedure has been developed to assist in refining the LEU recovery process and designing the facility. Corrosion theory and a two mechanism transport model were implemented on a Mat-Lab platform to perform the modeling.more » In developing this model, improved anodic behavior prediction became necessary since a dense uranium-rich salt film was observed at the anode surface during electrorefining experiments. Experiments were conducted on uranium metal to determine the film's character and the conditions under which it forms. The electro-refiner salt used in all the experiments was eutectic LiCl/KCl containing UCl{sub 3}. The anodic film material was analyzed with ICP-OES to determine its composition. Both cyclic voltammetry and potentiodynamic scans were conducted at operating temperatures between 475 and 575 C. degrees to interrogate the electrochemical behavior of the uranium. The results show that an anodic film was produced on the uranium electrode. The film initially passivated the surface of the uranium on the working electrode. At high over potentials after a trans-passive region, the current observed was nearly equal to the current observed at the initial active level. Analytical results support the presence of K{sub 2}UCl{sub 6} at the uranium surface, within the error of the analytical method.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.
2015-12-01
The Fuel Resources Program at the U.S. Department of Energy’s (DOE), Office of Nuclear Energy (DOE-NE) is developing adsorbent technology to extract uranium from seawater. This technology is being developed to provide a sustainable and economically viable supply of uranium fuel for nuclear reactors (DOE, 2010). Among the key environmental variables to understand for adsorbent deployment in the coastal ocean is what effect flow-rates or linear velocity has on uranium adsorption capacity. The goal is to find a flow conditions that optimize uranium adsorption capacity in the shortest exposure time. Understanding these criteria will be critical in choosing a locationmore » for deployment of a marine adsorbent farm. The objective of this study was to identify at what linear velocity the adsorption kinetics for uranium extraction starts to drop off due to limitations in mass transport of uranium to the surface of the adsorbent fibers. Two independent laboratory-based experimental approaches using flow-through columns and recirculating flumes for adsorbent exposure were used to assess the effect of flow-rate (linear velocity) on the kinetic uptake of uranium on amidoxime-based polymeric adsorbent material. Time series observations over a 56 day period were conducted with flow-through columns over a 35-fold range in linear velocity from 0.29 to 10.2 cm/s, while the flume study was conducted over a narrower 11-fold range, from 0.48 to 5.52 cm/s. These ranges were specifically chosen to focus on the lower end of oceanic currents and expand above and below the linear velocity of ~ 2.5 cm/s adopted for marine testing of adsorbent material at PNNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.
A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500more » and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.« less
Mukherjee, Arpan; Wheaton, Garrett H.; Blum, Paul H.; Kelly, Robert M.
2012-01-01
Thermoacidophilic archaea are found in heavy metal-rich environments, and, in some cases, these microorganisms are causative agents of metal mobilization through cellular processes related to their bioenergetics. Given the nature of their habitats, these microorganisms must deal with the potentially toxic effect of heavy metals. Here, we show that two thermoacidophilic Metallosphaera species with nearly identical (99.99%) genomes differed significantly in their sensitivity and reactivity to uranium (U). Metallosphaera prunae, isolated from a smoldering heap on a uranium mine in Thüringen, Germany, could be viewed as a “spontaneous mutant” of Metallosphaera sedula, an isolate from Pisciarelli Solfatara near Naples. Metallosphaera prunae tolerated triuranium octaoxide (U3O8) and soluble uranium [U(VI)] to a much greater extent than M. sedula. Within 15 min following exposure to “U(VI) shock,” M. sedula, and not M. prunae, exhibited transcriptomic features associated with severe stress response. Furthermore, within 15 min post-U(VI) shock, M. prunae, and not M. sedula, showed evidence of substantial degradation of cellular RNA, suggesting that transcriptional and translational processes were aborted as a dynamic mechanism for resisting U toxicity; by 60 min post-U(VI) shock, RNA integrity in M. prunae recovered, and known modes for heavy metal resistance were activated. In addition, M. sedula rapidly oxidized solid U3O8 to soluble U(VI) for bioenergetic purposes, a chemolithoautotrophic feature not previously reported. M. prunae, however, did not solubilize solid U3O8 to any significant extent, thereby not exacerbating U(VI) toxicity. These results point to uranium extremophily as an adaptive, rather than intrinsic, feature for Metallosphaera species, driven by environmental factors. PMID:23010932
Thermal diffusivity and conductivity of thorium- uranium mixed oxides
NASA Astrophysics Data System (ADS)
Saoudi, M.; Staicu, D.; Mouris, J.; Bergeron, A.; Hamilton, H.; Naji, M.; Freis, D.; Cologna, M.
2018-03-01
Thorium-uranium oxide pellets with high densities were prepared at the Canadian Nuclear Laboratories (CNL) by co-milling, pressing, and sintering at 2023 K, with UO2 mass contents of 0, 1.5, 3, 8, 13, 30, 60 and 100%. At the Joint Research Centre, Karlsruhe (JRC-Karlsruhe), thorium-uranium oxide pellets were prepared using the spark plasma sintering (SPS) technique with 79 and 93 wt. % UO2. The thermal diffusivity of (Th1-xUx)O2 (0 ≤ x ≤ 1) was measured at CNL and at JRC-Karlsruhe using the laser flash technique. ThO2 and (Th,U)O2 with 1.5, 3, 8 and 13 wt. % UO2 were found to be semi-transparent to the infrared wavelength of the laser and were coated with graphite for the thermal diffusivity measurements. This semi-transparency decreased with the addition of UO2 and was lost at about 30 wt. % of UO2 in ThO2. The thermal conductivity was deduced using the measured density and literature data for the specific heat capacity. The thermal conductivity for ThO2 is significantly higher than for UO2. The thermal conductivity of (Th,U)O2 decreases rapidly with increasing UO2 content, and for UO2 contents of 60% and higher, the conductivity of the thorium-uranium oxide fuel is close to UO2. As the mass difference between the Th and U atoms is small, the thermal conductivity decrease is attributed to the phonon scattering enhanced by lattice strain due to the introduction of uranium in ThO2 lattice. The new results were compared to the data available in the literature and were evaluated using the classical phonon transport model for oxide systems.
Uranium-mediated electrocatalytic dihydrogen production from water.
Halter, Dominik P; Heinemann, Frank W; Bachmann, Julien; Meyer, Karsten
2016-02-18
Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1 - 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [(((Ad,Me)ArO)3mes)U] (refs 18 and 19)--the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium--an abundant waste product of the nuclear power industry--could be a valuable resource.
Saint-Pierre, Sylvain; Kidd, Steve
2011-01-01
This paper presents the WNA's worldwide nuclear industry overview on the anticipated growth of the front-end nuclear fuel cycle from uranium mining to conversion and enrichment, and on the related key health, safety, and environmental (HSE) issues and challenges. It also puts an emphasis on uranium mining in new producing countries with insufficiently developed regulatory regimes that pose greater HSE concerns. It introduces the new WNA policy on uranium mining: Sustaining Global Best Practices in Uranium Mining and Processing-Principles for Managing Radiation, Health and Safety and the Environment, which is an outgrowth of an International Atomic Energy Agency (IAEA) cooperation project that closely involved industry and governmental experts in uranium mining from around the world. Copyright © 2010 Health Physics Society
Plasma core reactor simulations using RF uranium seeded argon discharges
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
Experimental results are described in which pure uranium hexafluoride was injected into an argon-confined, steady-state, RF-heated plasma to investigate characteristics of plasma core nuclear reactors. The 80 kW (13.56 MHz) and 1.2 MW (5.51 MHz) rf induction heater facilities were used to determine a test chamber flow scheme which offered best uranium confinement with minimum wall coating. The cylindrical fused-silica test chamber walls were 5.7-cm-ID by 10-cm-long. Test conditions included RF powers of 2-85 kW, chamber pressures of 1-12 atm, and uranium hexafluoride mass-flow rates of 0.005-0.13 g/s. Successful techniques were developed for fluid-mechanical confinement of RF-heated plasmas with pure uranium hexafluoride injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, S.S. Jr.
1980-05-01
Uranium and other elemental data resulting from the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the Durango National Topographic Map Series (NTMS) quadrangle, Colorado, by the Los Alamos Scientific Laboratory (LASL) are reported herein. The LASL is responsible for conducting the HSSR primarily in the states of New Mexico, Colorado, Wyoming, Montana, and Alaska. This study was conducted as part of the United States Department of Energy's National Uranium Resource Evaluation (NURE), which is designed to provide improved estimates of the availability and economics of nuclear fuel resources and to make available to industry information for use in exploration andmore » development of uranium resources. The HSSR data will ultimately be integrated with other NURE data (e.g., airborne radiometric surveys and geological investigations) to complete the entire NURE program. This report is a supplement to the HSSR uranium evaluation report for the Durango quadrangle which presented the field and uranium data for the 1518 water and 1604 sediment samples collected from 1804 locations in the quadrangle. The earlier report contains an evaluation of the uranium concentrations of the samples as well as descriptions of the geology, hydrology, climate, and uranium occurrences of the quadrangle. This supplement presents the sediment field and uranium data again and the analyses of 42 other elements in the sediments.« less
Finch, Warren Irvin
1997-01-01
The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.
Ramie (Boehmeria nivea)'s uranium bioconcentration and tolerance attributes.
Wang, Wei-Hong; Luo, Xue-Gang; Liu, Lai; Zhang, Yan; Zhao, Hao-Zhou
2018-04-01
The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 μg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 μg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 μg/g while Xiangzhu No. 7's shoots could reach 20 μg/g only when the uranium treatment concentrations were 275 μg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were <1. Probably wild ramie was a uranium hyperaccumulator. Xiangzhu No. 7 satisfied the needs of uranium hyperaccumulator on accumulation capability, tolerance capability, bioconcentration factor, but not transfer capability, so Xiangzhu No. 7 was not a uranium hyperaccumulator. We analyzed the possible reasons why there were differences in the uranium bioconcentration and transfer attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's whole bioconcentration factors and the roots' bioconcentration factors, which were 1.200-1.834 and 1.460-2.341, respectively, increased with the increases of uranium contents of pot soil when the soil's uranium contents are 25-175 μg/g, so it can act as a potential phytoextractor when Huanan uranium tailings pond is phytoremediated. Copyright © 2018. Published by Elsevier Ltd.
75 FR 71668 - Cibota National Forest, Mount Taylor Ranger District, NM, Roca Honda Mine
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... develop and conduct underground uranium mining operations on their mining claims on and near Jesus Mesa in... open to mineral entry under the General Mining Law of 1872. Section 16 is State of New Mexico land... statement (EIS) to assess the development of a uranium mining operation on the Mount Taylor Ranger District...
Visible spectral power emitted from a laser produced uranium plasma
NASA Technical Reports Server (NTRS)
Williams, M. D.; Jalufka, N. W.
1975-01-01
The development of plasma-core nuclear reactors for advanced terrestrial and space-power sources is researched. Experimental measurements of the intensity and the spectral distribution of radiation from a nonfissioning uranium plasma are reported.
Integrated Risk Information System (IRIS)
Uranium , natural ; CASRN 7440 - 61 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni
Preliminary Numerical Simulation of IR Structure Development in a Hypothetical Uranium Release.
1981-11-16
art Identify by block nAsb.’) IR Structure Power spectrum Uranium release Parallax effects Numerical simulation PHARO code Isophots LWIR 20. _PSTRACT...release at 200 km altitude. Of interest is the LWIR emission from uranium oxide ions, induced by sunlight and earthshine. Assuming a one-level fluid...defense systems of long wave infrared ( LWIR ) emissions from metallic oxides in the debris from a high altitude nuclear explosion (HANE) is an
Steindler, M.J.
1962-07-24
A process was developed for separating uranium hexafluoride from plutonium hexafluoride by the selective reduction of the plutonium hexafluoride to the tetrafluoride with sulfur tetrafluoride at 50 to 120 deg C, cooling the mixture to --60 to -100 deg C, and volatilizing nonreacted sulfur tetrafluoride and sulfur hexafluoride formed at that temperature. The uranium hexafluoride is volatilized at room temperature away from the solid plutonium tetrafluoride. (AEC)
Discussions about safety criteria and guidelines for radioactive waste management.
Yamamoto, Masafumi
2011-07-01
In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.
NASA Astrophysics Data System (ADS)
Hy, B.; Barré-Boscher, N.; Özgümüs, A.; Roussière, B.; Tusseau-Nenez, S.; Lau, C.; Cheikh Mhamed, M.; Raynaud, M.; Said, A.; Kolos, K.; Cottereau, E.; Essabaa, S.; Tougait, O.; Pasturel, M.
2012-10-01
In the context of radioactive ion beams, fission targets, often based on uranium compounds, have been used for more than 50 years at isotope separator on line facilities. The development of several projects of second generation facilities aiming at intensities two or three orders of magnitude higher than today puts an emphasis on the properties of the uranium fission targets. A study, driven by Institut de Physique Nucléaire d'Orsay (IPNO), has been started within the SPIRAL2 project to try and fully understand the behavior of these targets. In this paper, we have focused on five uranium carbide based targets. We present an off-line method to characterize their fission product release and the results are examined in conjunction with physical characteristics of each material such as the microstructure, the porosity and the chemical composition.
Spectroscopic studies of uranium species for environmental decontamination applications
NASA Astrophysics Data System (ADS)
Eng, Charlotte
After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by the steel corrosion products or (b) in areas where the dissolved uranium/iron species, the products generated by the dissolution power of citric acid, was not properly rinsed away.
Protein Hydrogel Microbeads for Selective Uranium Mining from Seawater.
Kou, Songzi; Yang, Zhongguang; Sun, Fei
2017-01-25
Practical methods for oceanic uranium extraction have yet to be developed in order to tap into the vast uranium reserve in the ocean as an alternative energy. Here we present a protein hydrogel system containing a network of recently engineered super uranyl binding proteins (SUPs) that is assembled through thiol-maleimide click chemistry under mild conditions. Monodisperse SUP hydrogel microbeads fabricated by a microfluidic device further enable uranyl (UO 2 2+ ) enrichment from natural seawater with great efficiency (enrichment index, K = 2.5 × 10 3 ) and selectivity. Our results demonstrate the feasibility of using protein hydrogels to extract uranium from the ocean.
Properties of radio-frequency heated argon confined uranium plasmas
NASA Technical Reports Server (NTRS)
1976-01-01
Pure uranium hexafluoride (UF6) was injected into an argon confined, steady state, rf-heated plasma within a fused silica peripheral wall test chamber. Exploratory tests conducted using an 80 kW rf facility and different test chamber flow configurations permitted selection of the configuration demonstrating the best confinement characteristics and minimum uranium compound wall coating. The overall test results demonstrated applicable flow schemes and associated diagnostic techniques were developed for the fluid mechanical confinement and characterization of uranium within an rf plasma discharge when pure UF6 is injected for long test times into an argon-confined, high-temperature, high-pressure, rf-heated plasma.
The History of Uranium Mining and the Navajo People
Brugge, Doug; Goble, Rob
2002-01-01
From World War II until 1971, the government was the sole purchaser of uranium ore in the United States. Uranium mining occurred mostly in the southwestern United States and drew many Native Americans and others into work in the mines and mills. Despite a long and well-developed understanding, based on the European experience earlier in the century, that uranium mining led to high rates of lung cancer, few protections were provided for US miners before 1962 and their adoption after that time was slow and incomplete. The resulting high rates of illness among miners led in 1990 to passage of the Radiation Exposure Compensation Act. PMID:12197966
The uranium deposit at the Yellow Canary claims, Daggett County, Utah
Wilmarth, V.R.; Vickers, R.C.; McKeown, F.A.; Beroni, E.P.
1952-01-01
The Yellow Canary claims uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. The claims have been developed by two adits, three open cuts, and several hundred deep of bulldozer trenches. No uranium ore has been produced from this deposit. The uranium deposit at the Yellow Canary claims is in the Red Creek quartzite of pre-Cambrian age. The formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by diorite dikes. A thick unit of highly fractured white quatrzite at the top of the formation contains tyutamunite as coatings on fracture surfaces. The tyutamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The secondary uranium and vanadium minerals are believed to be alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.
Rainey, R.H.; Moore, J.G.
1962-08-14
A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)
Analysis of radon reduction and ventilation systems in uranium mines in China.
Hu, Peng-hua; Li, Xian-jie
2012-09-01
Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wai, Chien M.
Amidoxime-based polymer fibers are considered one of the most promising materials for sequestering uranium from seawater. The high-surface-area polymer fibers containing amidoxime and carboxylate groups synthesized by Oak Ridge National Lab (ORNL-AF1) show very high uranium adsorption capacities known in the literature. Effective elution of uranium and repeated use of the adsorbent are important factors affecting the cost of producing uranium from seawater using this material. Traditional acid leaching of uranium followed by KOH conditioning of the fiber causes chemical changes and physical damage to the ORNL-AF1 adsorbent. Two alkaline solution leaching methods were developed by this project, one usesmore » a highly concentrated (3 M) potassium bicarbonate solution at pH 8.3 and 40 °C; the other uses a mixture of sodium carbonate and hydrogen peroxide at pH 10.4. Both elution methods do not require KOH conditioning prior to reusing the fiber adsorbent. The conditions of eluting uranium from the amidoxime-based adsorbent using these alkaline solutions are confirmed by thermodynamic calculations. The bicarbonate elution method is selective for uranium recovery compared to other elution methods and causes no chemical change to the fiber material based on FTIR spectroscopy« less
Integrated Risk Information System (IRIS)
Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinelli, R; Hamilton, T; Brown, T
2006-05-30
This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less
NASA Astrophysics Data System (ADS)
Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.
2010-05-01
Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.
Enhancement of Extraction of Uranium from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Sheikhly, Mohamad; Dietz, Travis; Tsinas, Zois
2016-04-01
Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand, which was originally discovered and promoted by Japanese studies in the late 1980s.more » Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.« less
Enhancement of Extraction of Uranium from Seawater – Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietz, Travis Cameron; Tsinas, Zois; Tomaszewski, Claire
2016-05-16
Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand, which was originally discovered and promoted by Japanese studies in the late 1980s.more » Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence, and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater, which could expand the known stockpiles of other highly desirable materials.« less
Strategic Aspects of Pacific Cooperation Proposals,
1983-08-01
partner, as a consequence of rapid economic growth that began after a postwar recovery . Roughly 13% of the USA’s imports come from Japan, and approximately...38- uranium , minerals, and agriculture products. Production interdependencies between the two countries are small, as the 80... Recovery ", Pacific Affairs, 53, 2, Summer, 1980, 245-268. 26. See Lowell Dittmer, "China in 1980: Modernization and its .- Discontents" Asian Survey
The behaviour of tributyl phosphate in an organic diluent
NASA Astrophysics Data System (ADS)
Leay, Laura; Tucker, Kate; Del Regno, Annalaura; Schroeder, Sven L. M.; Sharrad, Clint A.; Masters, Andrew J.
2014-09-01
Tributyl phosphate (TBP) is used as a complexing agent in the Plutonium Uranium Extraction (PUREX) liquid-liquid phase extraction process for recovering uranium and plutonium from spent nuclear reactor fuel. Here, we address the molecular and microstructure of the organic phases involved in the extraction process, using molecular dynamics to show that when TBP is mixed with a paraffinic diluent, the TBP self-assembles into a bi-continuous phase. The underlying self-association of TBP is driven by intermolecular interaction between its polar groups, resulting in butyl moieties radiating out into the organic solvent. Simulation predicts a TBP diffusion constant that is anomalously low compared to what might normally be expected for its size; experimental nuclear magnetic resonance (NMR) studies also indicate an extremely low diffusion constant, consistent with a molecular aggregation model. Simulation of TBP at an oil/water interface shows the formation of a bilayer system at low TBP concentrations. At higher concentrations, a bulk bi-continuous structure is observed linking to this surface bilayer. We suggest that this structure may be intimately connected with the surprisingly rapid kinetics of the interfacial mass transport of uranium and plutonium from the aqueous to the organic phase in the PUREX process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.
2010-08-11
The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast,more » and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.« less
Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions
Li, Zhengyang; Wu, Yanping; Meng, Xiandong; Zhang, Dongxu
2018-01-01
A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2), and O2) and vacuum conditions (1.05 and 1 × 10−4 Pa). Evolution of friction was assessed by coefficient of friction (COF) and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles. PMID:29659484
Pressure-driven insulator-metal transition in cubic phase UO 2
Huang, Li; Wang, Yilin; Werner, Philipp
2017-09-21
Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ~45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure.more » Simultaneously, the so-called "Zhang-Rice state", which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.« less
Pressure-driven insulator-metal transition in cubic phase UO2
NASA Astrophysics Data System (ADS)
Huang, Li; Wang, Yilin; Werner, Philipp
2017-09-01
Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.
Preliminary developments of MTR plates with uranium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durand, J.P.; Laudamy, P.; Richter, K.
1997-08-01
In the opinion of CERCA, the total weight of Uranium per MTR plate (without changing the external dimensions) cannot be further increased using U{sub 3}Si{sub 2}. Limits have been reached on plates with a thicker meat or loaded to 6g Ut/cm{sup 3}. The use of a denser fuel like Uranium mononitride could permit an increase in these limits. A collaboration between the Institute for Transuranium Elements (ITU), Joint Research Centre of the European Commission, and CERCA has been set ut. The preliminary studies at the ITU to check compatibility between aluminium and UN proved that there are no metallurgical interactionsmore » below 500{degrees}C. Feasibility of the manufacturing, on a laboratory scale at CERCA, of depleted Uranium mononitride plates loaded to 7 g Ut/cm{sup 3} has been demonstrated. The manufacturing process, however, is only one aspect of the development of a new fuel. The experience gained in the case of U{sub 3}Si{sub 2} has shown that the development of a new fuel requires considerable time and financial investment. Such a development certainly represents an effort of about 10 years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samet, J.; Gilliland, F.D.
This project incorporates two related research projects directed toward understanding respiratory carcinogenesis in radon-exposed former uranium miners. The first project involved a continuation of the tissue resource of lung cancer cases from former underground uranium miners and comparison cases from non-miners. The second project was a pilot study for a proposed longitudinal study of respiratory carcinogenesis in former uranium miners. The objectives including facilitating the investigation of molecular changes in radon exposed lung cancer cases, developing methods for prospectively studying clinical, cytologic, cytogenetic, and molecular changes in the multi-event process of respiratory carcinogenesis, and assessing the feasibility of recruiting formermore » uranium miners into a longitudinal study that collected multiple biological specimens. A pilot study was conducted to determine whether blood collection, induced sputum, bronchial brushing, washings, and mucosal biopsies from participants at two of the hospitals could be included efficiently. A questionnaire was developed for the extended study and all protocols for specimen collection and tissue handling were completed. Resource utilization is in progress at ITRI and the methods have been developed to study molecular and cellular changes in exfoliated cells contained in sputum as well as susceptibility factors.« less
Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...
2015-11-30
High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3 H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposuremore » in real seawater. The Na 2CO 3 H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less
Hypertension and hematologic parameters in a community near a uranium processing facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Sara E., E-mail: swagner@uga.edu; Burch, James B.; South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC
Background: Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods: Data from 8216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolicmore » blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results: Of 8216 adult FMMP participants 4187 (51%) had low cumulative uranium exposure, 1273 (15%) had moderate exposure, and 2756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions: Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited decreases in white blood cell counts, and small, though statistically significant, gender-specific alterations in systolic blood pressure at entry into the FMMP.« less
Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.
2015-10-01
The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.
2007-04-01
Separation The first method used to enrich uranium on a significant scale was developed by the United States as part of the Manhattan Project during...there does not seem to be a easy way to enrich uranium. It has been over 60 years since the 33 Manhattan Project successfully enriched U-235 to...Proliferation, 91-3. 14 The cost of $5B dollars is adjusted to FY96 dollars. Brookings Institution, “The Costs of the Manhattan Project ,” Global Politics
76 FR 23600 - Availability of Draft Toxicological Profile
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry [CDC-2011... Registry (ATSDR), Department of Health and Human Services (DHHS). ACTION: Notice of availability. SUMMARY... of uranium. Although ATSDR considered key studies for uranium during the profile development process...
Plasma core reactor simulations using RF uranium seeded argon discharges
NASA Technical Reports Server (NTRS)
Roman, W. C.
1975-01-01
An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.
Investigations for the Recycle of Pyroprocessed Uranium
NASA Astrophysics Data System (ADS)
Westphal, B. R.; Price, J. C.; Chambers, E. E.; Patterson, M. N.
Given the renewed interest in uranium from the pyroprocessing of used nuclear fuel in a molten salt system, the two biggest hurdles for marketing the uranium are radiation levels and transuranic content. A radiation level as low as possible is desired so that handling operations can be performed directly with the uranium. The transuranic content of the uranium will affect the subsequent waste streams generated and, thus also should be minimized. Although the pyroprocessing technology was originally developed without regard to radiation and transuranic levels, adaptations to the process have been considered. Process conditions have been varied during the distillation and casting cycles of the process with increasing temperature showing the largest effect on the reduction of radiation levels. Transuranic levels can be reduced significantly by incorporating a pre-step in the salt distillation operation to remove a majority of the salt prior to distillation.
Yellow Canary uranium deposits, Daggett County, Utah
Wilmarth, Verl Richard
1953-01-01
The Yellow Canary uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. Two claims have been developed by means of an adit, three opencuts, and several hundred feet of bulldozer trenches. No uranium ore has been produced from this deposit. The deposit is in the pre-Cambrian Red Creek quartzite. This formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by dioritic dikes. A thick unit of highly fractured white quartzite near the top of the formation contains tyuyamunite as coatings on fracture surfaces. The tyuyamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The uranium and vanadium minerals are probably alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin; Kuo, Li-Jung; Strivens, Jonathan
2017-02-08
Passive adsorption using amidoxime-based polymeric adsorbents is being developed for uranium recovery from seawater. The local oceanic current velocity where the adsorbent is deployed is a key variable in determining locations that will maximize uranium adsorption rates. Two independent experimental approaches using flow-through columns and recirculating flumes were used to assess the influence of linear velocity on uranium uptake kinetics by the adsorbent. Little to no difference was observed in the uranium adsorption rate vs. linear velocity for seawater exposure in flow-through columns. In contrast, adsorption results from seawater exposure in a recirculating flume showed a nearly linear trend withmore » current velocity. The difference in adsorbent performance between columns and flume can be attributed to (i) flow resistance provided by the adsorbent braid in the flume and (ii) enhancement in braid movement (fluttering) with increasing linear velocity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin; Kuo, Li-Jung; Strivens, Jonathan
2017-02-17
Passive adsorption using amidoxime-based polymeric adsorbents is being developed for uranium recovery from seawater. The local oceanic current velocity where the adsorbent is deployed is a key variable in determining locations that will maximize uranium adsorption rates. Two independent experimental approaches using flow-through columns and recirculating flumes were used to assess the influence of linear velocity on uranium uptake kinetics by the adsorbent. Little to no difference was observed in the uranium adsorption rate vs. linear velocity for seawater exposure in flow-through columns. In contrast, adsorption results from seawater exposure in a recirculating flume showed a nearly linear trend withmore » current velocity. The difference in adsorbent performance between columns and flume can be attributed to (i) flow resistance provided by the adsorbent braid in the flume and (ii) enhancement in braid movement (fluttering) with increasing linear velocity.« less
Uranium carbide fission target R&D for RIA - an update
NASA Astrophysics Data System (ADS)
Greene, J. P.; Levand, A.; Nolen, J.; Burtseva, T.
2004-12-01
For the Rare Isotope Accelerator (RIA) facility, ISOL targets employing refractory compounds of uranium are being developed to produce radioactive ions for post-acceleration. The availability of refractory uranium compounds in forms that have good thermal conductivity, relatively high density, and adequate release properties for short-lived isotopes remains an important issue. Investigations using commercially obtained uranium carbide material and prepared into targets involving various binder materials have been carried out at ANL. Thin sample pellets have been produced for measurements of thermal conductivity using a new method based on electron bombardment with the thermal radiation observed using a two-color optical pyrometer and performed on samples as a function of grain size, pressing pressure and sintering temperature. Manufacture of uranium carbide powder has now been achieved at ANL. Simulations have been carried out on the thermal behavior of the secondary target assembly incorporating various heat shield configurations.
NASA Astrophysics Data System (ADS)
Hunt, R. D.; Silva, G. W. C. M.; Lindemer, T. B.; Anderson, K. K.; Collins, J. L.
2012-08-01
The US Department of Energy continues to use the internal gelation process in its preparation of tristructural isotropic coated fuel particles. The focus of this work is to develop uranium fuel kernels with adequately dispersed silicon carbide (SiC) nanoparticles, high crush strengths, uniform particle diameter, and good sphericity. During irradiation to high burnup, the SiC in the uranium kernels will serve as getters for excess oxygen and help control the oxygen potential in order to minimize the potential for kernel migration. The hardness of SiC required modifications to the gelation system that was used to make uranium kernels. Suitable processing conditions and potential equipment changes were identified so that the SiC could be homogeneously dispersed in gel spheres. Finally, dilute hydrogen rather than argon should be used to sinter the uranium kernels with SiC.
Neutron-rich isotope production using a uranium carbide - carbon nanotubes SPES target prototype
NASA Astrophysics Data System (ADS)
Corradetti, S.; Biasetto, L.; Manzolaro, M.; Scarpa, D.; Carturan, S.; Andrighetto, A.; Prete, G.; Vasquez, J.; Zanonato, P.; Colombo, P.; Jost, C. U.; Stracener, D. W.
2013-05-01
The SPES (Selective Production of Exotic Species) project, under development at the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro (INFN-LNL), is a new-generation Isotope Separation On-Line (ISOL) facility for the production of radioactive ion beams by means of the proton-induced fission of uranium. In the framework of the research on the SPES target, seven uranium carbide discs, obtained by reacting uranium oxide with graphite and carbon nanotubes, were irradiated with protons at the Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory (ORNL). In the following, the yields of several fission products obtained during the experiment are presented and discussed. The experimental results are then compared to those obtained using a standard uranium carbide target. The reported data highlights the capability of the new type of SPES target to produce and release isotopes of interest for the nuclear physics community.
Extracting uranium from seawater: Promising AI series adsorbents
Das, Sadananda; Oyola, Y.; Mayes, Richard T.; ...
2015-11-10
A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less
Extracting uranium from seawater: Promising AI series adsorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sadananda; Oyola, Y.; Mayes, Richard T.
A series of adsorbent (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole/mole ratios) onto high surface area polyethylene fiber, with higher degree of grafting which ranges from 110 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 10 wt% hydroxylamine at 80 C for 72 hours. The amidoximated adsorbents were then conditioned with 0.44M KOH at 80 C followed by screening at ORNL with simulated seawater spiked with 8 ppm uranium. Uranium adsorption capacity in simulated seawater screening ranged frommore » 171-187 g-U/kg-ads irrespective of %DOG. The performance of the adsorbents for uranium adsorption in natural seawater was also carried out using flow-through-column at Pacific Northwest National Laboratory (PNNL). The three hours KOH conditioning was better for higher uranium uptake than one hour. The adsorbent AI11 containing AN and VPA at the mole ration of 3.52, emerged as the potential candidate for higher uranium adsorption (3.35 g-U/Kg-ads.) after 56 days of exposure in the seawater in the flow-through-column. The rate vanadium adsorption over uranium was linearly increased throughout the 56 days exposure. The total vanadium uptake was ~5 times over uranium after 56 days.« less
Extracting Uranium from Seawater: Promising AI Series Adsorbents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.; Oyola, Y.; Mayes, R. T.
A new series of adsorbents (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole to mole ratios) onto high surface area polyethylene fiber, with high degrees of grafting (DOG) varying from 110 to 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 5 wt % hydroxylamine at 80 °C for 72 h. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with prescreening brine spiked with 8 ppm uranium. Uranium adsorption capacitiesmore » in prescreening ranged from 171 to 187 g-U/kg-ads irrespective of percent DOG. The performance of the adsorbents with respect to uranium adsorption in natural seawater was also investigated using flow-throughcolumn testing at the Pacific Northwest National Laboratory (PNNL). Three hours of KOH conditioning led to higher uranium uptake than 1 h of conditioning. The adsorbent AI11, containing AN and VPA at the mole ratio of 3.52, emerged as the potential candidate for the highest uranium adsorption (3.35 g-U/kg-ads.) after 56 days of exposure in seawater flow-through-columns. The rate of vanadium adsorption over uranium linearly increased throughout the 56 days of exposure. The total mass of vanadium uptake was ~5 times greater than uranium after 56 days.« less
On the Nature of the Cherdyntsev-Chalov Effect
NASA Astrophysics Data System (ADS)
Timashev, S. F.
2018-06-01
It is shown that the Cherdyntsev-Chalov effect, usually presented as the separation of even isotopes of uranium upon their transition from the solid to the liquid phase, can include initiated acceleration of the radioactive decay of uranium-238 nuclei during the formation of cracks in geologically (seismic and volcanically) active zones of the Earth's crust. The fissuring of the solid-phase medium leads to an increase in mechanical tensile stress and the emergence of strong local electric fields, resulting in the injection of chemical-scale high-energy electrons into the aqueous phase of the cracks. Under these conditions, the e - catalytic decay of uranium-238 nucleus studied earlier can occur during the formation of metastable protactinium-238 nuclei with locally distorted nucleon structure, which subequently undergo β-decay with the formation of thorium-234 and helium-4 nuclei as products of the fission of the initial uranium-238 nucleus with a characteristic period of several years. The observed increased activity of uranium-234 nuclei that form during the subsequent β-decay of thorium and then protactinium is associated with the initiated fission of uranium-238. The possibility is discussed of developing thermal power by using existing wastes from uranium production that contain uranium-238 to activate this isotope through the mechanochemical processing of these wastes in aqueous media with the formation of 91 238 Pa isu , the half-life of which is several years.
Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing
Collette, R.; King, J.; Buesch, C.; ...
2016-04-01
The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less
Analysis of irradiated U-7wt%Mo dispersion fuel microstructures using automated image processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.; King, J.; Buesch, C.
The High Performance Research Reactor Fuel Development (HPPRFD) program is responsible for developing low enriched uranium (LEU) fuel substitutes for high performance reactors fueled with highly enriched uranium (HEU) that have not yet been converted to LEU. The uranium-molybdenum (U-Mo) fuel system was selected for this effort. In this study, fission gas pore segmentation was performed on U-7wt%Mo dispersion fuel samples at three separate fission densities using an automated image processing interface developed in MATLAB. Pore size distributions were attained that showed both expected and unexpected fission gas behavior. In general, it proved challenging to identify any dominant trends whenmore » comparing fission bubble data across samples from different fuel plates due to varying compositions and fabrication techniques. Here, the results exhibited fair agreement with the fission density vs. porosity correlation developed by the Russian reactor conversion program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Szecsody, James E.; Zhong, Lirong
Uranium is present in the vadose zone at the Hanford Central Plateau and is of concern for protection of groundwater. The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau identified gas-phase treatment and geochemical manipulation as potentially effective treatment approaches for uranium and technetium in the Hanford Central Plateau vadose zone. Based on laboratory evaluation, use of ammonia vapor was selected as the most promising uranium treatment candidate for further development and field testing. While laboratory tests have shown that ammonia treatment effectively reduces the mobility of uranium, additional information is needed to enable deployment of thismore » technology for remediation. Of importance for field applications are aspects of the technology associated with effective distribution of ammonia to a targeted treatment zone, understanding the fate of injected ammonia and its impact on subsurface conditions, and identifying effective monitoring approaches. In addition, information is needed to select equipment and operational parameters for a field design. As part of development efforts for the ammonia technology for remediation of vadose zone uranium contamination, field scale-up issues were identified and have been addressed through a series of laboratory and modeling efforts. This report presents a conceptual description for field application of the ammonia treatment process, engineering calculations to support treatment design, ammonia transport information, field application monitoring approaches, and a discussion of processes affecting the fate of ammonia in the subsurface. The report compiles this information from previous publications and from recent research and development activities. The intent of this report is to provide technical information about these scale-up elements to support the design and operation of a field test for the ammonia treatment technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Australia. Atomic Energy Commission
1963-01-01
A report is presented on the uranium mining and treatment industry established at Rum Jungle and its contribution to the development of the Northern Territory. The Combined Development Agency contract for uranium procurement (terminated in 1963) and some of its results are described. A description of Rum Jungle and its geology and mineralization is given. Mining and treatment of ore are discussed, and some production statistics are given. (D.L.C.)
Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda; ...
2018-03-27
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less
Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira
2018-04-18
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.
Technical Basis for Assessing Uranium Bioremediation Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
PE Long; SB Yabusaki; PD Meyer
2008-04-01
In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documentedmore » case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.« less
Review of the NURE assessment of the U.S. Gulf Coast Uranium Province
Hall, Susan M.
2013-01-01
Historic exploration and development were used to evaluate the reliability of domestic uranium reserves and potential resources estimated by the U.S. Department of Energy national uranium resource evaluation (NURE) program in the U.S. Gulf Coast Uranium Province. NURE estimated 87 million pounds of reserves in the $30/lb U3O8 cost category in the Coast Plain uranium resource region, most in the Gulf Coast Uranium Province. Since NURE, 40 million pounds of reserves have been mined, and 38 million pounds are estimated to remain in place as of 2012, accounting for all but 9 million pounds of U3O8 in the reserve or production categories in the NURE estimate. Considering the complexities and uncertainties of the analysis, this study indicates that the NURE reserve estimates for the province were accurate. An unconditional potential resource of 1.4 billion pounds of U3O8, 600 million pounds of U3O8 in the forward cost category of $30/lb U3O8 (1980 prices), was estimated in 106 favorable areas by the NURE program in the province. Removing potential resources from the non-productive Houston embayment, and those reserves estimated below historic and current mining depths reduces the unconditional potential resource 33% to about 930 million pounds of U3O8, and that in the $30/lb cost category 34% to 399 million pounds of U3O8. Based on production records and reserve estimates tabulated for the region, most of the production since 1980 is likely from the reserves identified by NURE. The potential resource predicted by NURE has not been developed, likely due to a variety of factors related to the low uranium prices that have prevailed since 1980.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced itmore » has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.« less
NASA Astrophysics Data System (ADS)
Lindemer, T. B.; Voit, S. L.; Silva, C. M.; Besmann, T. M.; Hunt, R. D.
2014-05-01
The US Department of Energy is developing a new nuclear fuel that would be less susceptible to ruptures during a loss-of-coolant accident. The fuel would consist of tristructural isotropic coated particles with uranium nitride (UN) kernels with diameters near 825 μm. This effort explores factors involved in the conversion of uranium oxide-carbon microspheres into UN kernels. An analysis of previous studies with sufficient experimental details is provided. Thermodynamic calculations were made to predict pressures of carbon monoxide and other relevant gases for several reactions that can be involved in the conversion of uranium oxides and carbides into UN. Uranium oxide-carbon microspheres were heated in a microbalance with an attached mass spectrometer to determine details of calcining and carbothermic conversion in argon, nitrogen, and vacuum. A model was derived from experiments on the vacuum conversion to uranium oxide-carbide kernels. UN-containing kernels were fabricated using this vacuum conversion as part of the overall process. Carbonitride kernels of ∼89% of theoretical density were produced along with several observations concerning the different stages of the process.
Lattice constant in nonstoichiometric uranium dioxide from first principles
NASA Astrophysics Data System (ADS)
Bruneval, Fabien; Freyss, Michel; Crocombette, Jean-Paul
2018-02-01
Nonstoichiometric uranium dioxide experiences a shrinkage of its lattice constant with increasing oxygen content, in both the hypostoichiometric and the hyperstoichiometric regimes. Based on first-principles calculations within the density functional theory (DFT)+U approximation, we have developed a point defect model that accounts for the volume of relaxation of the most significant intrinsic defects of UO2. Our point defect model takes special care of the treatment of the charged defects in the equilibration of the model and in the determination of reliable defect volumes of formation. In the hypostoichiometric regime, the oxygen vacancies are dominant and explain the lattice constant variation with their surprisingly positive volume of relaxation. In the hyperstoichiometric regime, the uranium vacancies are predicted to be the dominating defect,in contradiction with experimental observations. However, disregarding uranium vacancies allows us to recover a good match for the lattice-constant variation as a function of stoichiometry. This can be considered a clue that the uranium vacancies are indeed absent in UO2 +x, possibly due to the very slow diffusion of uranium.
Thermophysical properties of gas phase uranium tetrafluoride
NASA Technical Reports Server (NTRS)
Watanabe, Yoichi; Anghaie, Samim
1993-01-01
Thermophysical data of gaseous uranium tetrafluoride (UF4) are theoretically obtained by taking into account dissociation of molecules at high temperatures (2000-6000 K). Determined quantities include specific heat, optical opacity, diffusion coefficient, viscosity, and thermal conductivity. A computer program is developed for the calculation.
NASA Astrophysics Data System (ADS)
Lambert, I. B.
2012-04-01
This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and strong opposition to growth of nuclear power in a number of quarters - it is vital that the market provides incentives for exploration and development of environmentally sustainable mining operations. Thorium: World Reasonably Assured plus Inferred Resources of thorium are estimated at over 2.2 million tonnes, in hard rock and heavy mineral sand deposits. At least double this amount is considered to occur in as yet undiscovered thorium deposits. Currently, demand for thorium is insignificant, but even a major shift to thorium-fueled reactors would not make significant inroads into the huge resource base over the next half century.
Knight, Andrew W; Eitrheim, Eric S; Nelson, Andrew W; Nelson, Steven; Schultz, Michael K
2014-08-01
Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with (14)C-derived age of the material. Copyright © 2014 Elsevier Ltd. All rights reserved.
High frequency EMI sensing for estimating depleted uranium radiation levels in soil
NASA Astrophysics Data System (ADS)
Shubitidze, Fridon; Barrowes, Benjamin E.; Ballard, John; Unz, Ron; Randle, Adam; Larson, Steve L.; O'Neill, Kevin A.
2018-04-01
This paper studies high (100 kHz up to 15 MHz) frequency electromagnetic responses (HFEMI) for DU metallic pieces and DU contaminated soils and derives a simple empirical expression from the measured HFEMI data for estimating DU contamination levels in soil. Depleted uranium (DU) is the byproduct of uranium enrichment and contains 33% less radioactive isotopes than natural uranium. There are at least thirty facilities at fourteen separate locations in the US, where munitions containing DU have been evaluated or used for training. At these sites, which vary in size, evaluation studies have been conducted with and without catch boxes. In addition, the DoD used DU at open firing ranges as large as thousands of acres (hundreds of hectares), for both artillery and aircraft training. These activities have left a legacy of DU contamination. Currently at military sites where DU munitions have been or are being used, cleanup activities mainly are done by excavating and shipping large volumes of site soil and berm materials to a hazardous material radiation disposal site. This approach is very time consuming, costly, and associated with the potential for exposure of personnel performing excavation and transportation. It also limits range use during the operation. So, there is an urgent need for technologies for rapid surveying of large areas to detect, locate, and removal of DU contaminants at test sites. Additionally, the technologies are needed to detect material at a depth of at least 30 cm as well as discriminate between DU metals and oxides from natural uranium and from other conductive metals such as natural and man-made range clutter. One of the potential technologies for estimating DU radiation levels in soils is HFEMI sensing. In this paper, HFEMI signals are collected for DU metal pieces, sodium diunarate (Na2U2 O3) and tri-uranium octoxide (U3O8). The EMI signal's sensitivity with respect to DU material composition and conditions are illustrated and analyzed. A new scheme for extracting near-surface soil's EM parameters is formulated.
Uranium-mediated electrocatalytic dihydrogen production from water
NASA Astrophysics Data System (ADS)
Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten
2016-02-01
Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.
Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.
2012-01-01
With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].
Cooley, Maurice E.
1979-01-01
A reconnaissance was made of some of the effects of uranium development on erosion and associated sedimentation in the southern San Juan Basin, where uranium development is concentrated. In general, the effects of exploration on erosion are minor, although erosion may be accelerated by the building of access roads, by activities at the drilling sites, and by close concentration of drilling sites. Areas where the greatest effects on erosion and sedimentation from mining and milling operations have occurred are: (1) in the immediate vicinity of mines and mills, (2) near waste piles, and (3) in stream channels where modifications, such as changes in depth have been caused by discharge of excess mine and mill water. Collapse of tailings piles could result in localized but excessive erosion and sedimentation.
NASA Astrophysics Data System (ADS)
Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.
2015-12-01
The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.
Long-term ecological effects of exposure to uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, W.C.; Miera, F.R. Jr.
1976-03-01
The consequences of releasing natural and depleted uranium to terrestrial ecosystems during development and testing of depleted uranium munitions were investigated. At Eglin Air Force Base, Florida, soil at various distances from armor plate target butts struck by depleted uranium penetrators was sampled. The upper 5 cm of soil at the target bases contained an average of 800 ppM of depleted uranium, about 30 times as much as soil at 5- to 10-cm depth, indicating some vertical movement of depleted uranium. Samples collected beyond about 20 m from the targets showed near-background natural uranium levels, about 1.3 +- 0.3 ..mu..g/gmore » or ppM. Two explosives-testing areas at the Los Alamos Scientific Laboratory (LASL) were selected because of their use history. E-F Site soil averaged 2400 ppM of uranium in the upper 5 cm and 1600 ppM at 5-10 cm. Lower Slobovia Site soil from two subplots averaged about 2.5 and 0.6 percent of the E-F Site concentrations. Important uranium concentration differences with depth and distance from detonation points were ascribed to the different explosive tests conducted in each area. E-F Site vegetation samples contained about 320 ppM of uranium in November 1974 and about 125 ppM in June 1975. Small mammals trapped in the study areas in November contained a maximum of 210 ppM of uranium in the gastrointestinal tract contents, 24 ppM in the pelt, and 4 ppM in the remaining carcass. In June, maximum concentrations were 110, 50, and 2 ppM in similar samples and 6 ppM in lungs. These data emphasized the importance of resuspension of respirable particles in the upper few millimeters of soil as a contamination mechanism for several components of the LASL ecosystem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.
2015-09-01
During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO 4 2- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resourcemore » Conservation and Recovery Act (RCRA).« less
The determination of uranium (IV) in apatite
Clarke, Roy S.; Altschuler, Zalman S.
1956-01-01
Geologic and mineralogic evidence indicate that the uranium present in apatite may proxy for calcium in the mineral structure as U(IV). An experimental investigation was conducted and chemical evidence was obtained that establishes the presence of U(IV) in apatite. The following analytical procedure was developed for the determination of U(IV). Carbonate-fluorapatite is dissolved in cold 1.5M orthophosphoric acid and fluorapatite is dissolved in cold 1.2M hydrochloric acid containing 1.5 g of hydroxylamine hydrochloride per 100 ml. Uranium (IV) is precipitated by cupferron using titanium as a carrier. The uranium in the precipitate is separated by use of the ethyl acetate extraction procedure and determined fluorimetrically. The validity and the limitations of the method have been established by spike experiments.
Ludwig, K. R.; Grauch, R.I.; Nutt, C.J.; Nash, J.T.; Frishman, D.; Simmons, K.R.
1987-01-01
The Ranger and Jabiluka uranium deposits are the largest in the Alligator Rivers uranium field, which contains at least 20% of the world's low-cost uranium reserves. Ore occurs in early Proterozoic metasediments, below an unconformity with sandstones of the 1.65 b.y.-old Kombolgie Formation. This study has used U-Pb isotope data from a large number of whole-rock drill core samples with a variety of mineral assemblages and textures. Both Ranger and Jabiluka reflect a common, profound isotopic disturbance at about 400 to 600 m.y. This disturbance, which was especially pronounced at Jabiluka, may correspond to the development of basins and associated basalt flows to the W and SW.-from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilton, L.K.
1981-06-01
An aerial radiological survey of Durango, Colorado, including the inactive uranium mill tailings piles located southwest of the town, was conducted during August 25--29, 1980, for the Department of Energy's Environmental and Safety Engineering Division. Areas of radiation exposure rates higher than the local background, which was about 15 microrentgens per hour ({mu}R/h), were observed directly over and to the south of the mill tailings piles, over a cemetery, and at two spots near the fairgrounds. The rapidly changing radiation exposure rates at the boundaries of the piles preclude accurate extrapolation of aerial radiological data to ground level exposure ratesmore » in their immediate vicinity. Estimated radiation exposure rates close to the piles, however, approached 30 times background, or about 450 {mu}R/h. Radiation exposure rates in a long area extending south from the tailings piles were about 25 {mu}R/h.« less
The Proliferation Security Initiative: A Means to an End for the Operational Commander
2009-05-04
The Reduced Enrichment for Research and Test Reactors ( RERTR ) Program develops technology necessary to enable the conversion of civilian...facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets. The RERTR Program was initiated by the U.S. Department of...processes have been developed for producing radioisotopes with LEU targets. The RERTR Program is managed by the Office of Nuclear Material Threat
RAPID SEPARATION METHOD FOR EMERGENCY WATER AND URINE SAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, S.; Culligan, B.
2008-08-27
The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and {sup 90}Sr the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of {sup 90}Sr and 3-4 hours for actinides. This represents a 25%-33% improvement in analysis times from NRIP 2007 and a {approx}100% improvement compared tomore » NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and {sup 90}Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of {sup 210}Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced {sup 210}Po removal step, which will be described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, G.S. Jr.; Howarth, R.J.; Schuenemeyer, J.H.
1981-02-01
We have developed a procedure that can help quadrangle evaluators to systematically summarize and use hydrogeochemical and stream sediment reconnaissance (HSSR) and occurrence data. Although we have not provided an independent estimate of uranium endowment, we have devised a methodology that will provide this independent estimate when additional calibration is done by enlarging the study area. Our statistical model for evaluation (system EVAL) ranks uranium endowment for each quadrangle. Because using this model requires experience in geology, statistics, and data analysis, we have also devised a simplified model, presented in the package SURE, a System for Uranium Resource Evaluation. Wemore » have developed and tested these models for the four quadrangles in southern Colorado that comprise the study area; to investigate their generality, the models should be applied to other quandrangles. Once they are calibrated with accepted uranium endowments for several well-known quadrangles, the models can be used to give independent estimates for less-known quadrangles. The point-oriented models structure the objective comparison of the quandrangles on the bases of: (1) Anomalies (a) derived from stream sediments, (b) derived from waters (stream, well, pond, etc.), (2) Geology (a) source rocks, as defined by the evaluator, (b) host rocks, as defined by the evaluator, and (3) Aerial radiometric anomalies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isselhardt, Brett H.
2011-09-01
Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of 235U/ 238U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser inmore » a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.« less
Edmands, J D; Brabander, D J; Coleman, D S
2001-08-01
In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination.
Abandoned Uranium Mine (AUM) Points, Navajo Nation, 2016, US EPA Region 9
This GIS dataset contains point features of all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Points are centroids developed from the Navajo Nation production mines polygon dataset that comprise of productive or unproductive Abandoned Uranium Mines. Attributes include mine names, aliases, links to AUM reports, indicators whether an AUM was mined above or below ground, indicators whether an AUM was mined above or below the local water table, and the region in which an AUM is located. This dataset contains 608 features.
NASA Astrophysics Data System (ADS)
Yang, G.; Maher, K.; Caers, J.
2015-12-01
Groundwater contamination associated with remediated uranium mill tailings is a challenging environmental problem, particularly within the Colorado River Basin. To examine the effectiveness of in-situ bioremediation of U(VI), acetate injection has been proposed and tested at the Rifle pilot site. There have been several geologic modeling and simulated contaminant transport investigations, to evaluate the potential outcomes of the process and identify crucial factors for successful uranium reduction. Ultimately, findings from these studies would contribute to accurate predictions of the efficacy of uranium reduction. However, all these previous studies have considered limited model complexities, either because of the concern that data is too sparse to resolve such complex systems or because some parameters are assumed to be less important. Such simplified initial modeling, however, limits the predictive power of the model. Moreover, previous studies have not yet focused on spatial heterogeneity of various modeling components and its impact on the spatial distribution of the immobilized uranium (U(IV)). In this study, we study the impact of uncertainty on 21 parameters on model responses by means of recently developed distance-based global sensitivity analysis (DGSA), to study the main effects and interactions of parameters of various types. The 21 parameters include, for example, spatial variability of initial uranium concentration, mean hydraulic conductivity, and variogram structures of hydraulic conductivity. DGSA allows for studying multi-variate model responses based on spatial and non-spatial model parameters. When calculating the distances between model responses, in addition to the overall uranium reduction efficacy, we also considered the spatial profiles of the immobilized uranium concentration as target response. Results show that the mean hydraulic conductivity and the mineral reaction rate are the two most sensitive parameters with regard to the overall uranium reduction. But in terms of spatial distribution of immobilized uranium, initial conditions of uranium concentration and spatial uncertainty in hydraulic conductivity also become important. These analyses serve as the first step of further prediction practices of the complex uranium transport and reaction systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnell, Thomas B.; Chavez, Joseph R.; Rowland, Mark S.
2014-02-26
RadID is a new gamma-ray spectrum analysis program for rapid screening of HPGe gamma-ray data to reveal the presence of radionuclide signatures. It is an autonomous, rule-based heuristic system that can identify well over 200 radioactive sources with particular interest in uranium and plutonium characteristics. It executes in about one second. RadID does not require knowledge of the detector efficiency, the source-to-detector distance, or the geometry of the inspected radiation source—including any shielding. In this first of a three-document series we sketch the RadID program’s origin, its minimal requirements, the user experience, and the program operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Michael M.
As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a numbermore » of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.« less
Sert, Şenol
2013-07-01
A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis.
In situ remediation of uranium contaminated groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.; Marozas, D.C.
1997-02-01
In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptablemore » regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.« less
In situ remediation of uranium contaminated groundwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwyer, B.P.; Marozas, D.C.
1997-12-31
In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ tomore » acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.« less
Determination of uranium in tap water by ICP-MS.
El Himri, M; Pastor, A; de la Guardia, M
2000-05-01
A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Linfeng
A literature survey has been conducted to collect information on the International R&D activities in the extraction of uranium from seawater for the period from the 1960s till the year of 2010. The reported activities, on both the laboratory scale bench experiments and the large scale marine experiments, were summarized by country/region in this report. Among all countries where such activities have been reported, Japan has carried out the most advanced large scale marine experiments with the amidoxime-based system, and achieved the collection efficiency (1.5 g-U/kg-adsorbent for 30 days soaking in the ocean) that could justify the development of industrialmore » scale marine systems to produce uranium from seawater at the price competitive with those from conventional uranium resources. R&D opportunities are discussed for improving the system performance (selectivity for uranium, loading capacity, chemical stability and mechanical durability in the sorption-elution cycle, and sorption kinetics) and making the collection of uranium from seawater more economically competitive.« less
AMMONIUM DIURANATE PRECIPITATION WITH ANHYDROUS AMMONIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, L.C.; Grill, L.F.
1959-03-01
Ammonium diuranate has been precipitated from nitric acid solutions by the addition of anhydrpus ammonia on both laboratory and production scales. This process produced more dense and morc rapidly filtered precipitates than those formed by the addition of aqueous amonia or slurried calcium hydroxide. Thc filtrates from the anhydrous ammonia process were lower in uranium content than those obtained by the addition of the other reagents. Processing equipment and precipitate characteristics are discussed. (auth)
High pressure elasticity and thermal properties of depleted uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, M. K., E-mail: mjacobsen@lanl.gov; Velisavljevic, N., E-mail: nenad@lanl.gov
2016-04-28
Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties ofmore » depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less
HEU Holdup Measurements in 321-M B and Spare U-Al Casting Furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salaymeh, S.R.
The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decontamination Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. This report covers holdup measurements in two uranium aluminum alloy (U-Al) casting furnaces. Our results indicate an upper limit of 235U content for the B and Spare furnaces of 51 and 67 g respectively. This report discusses themore » methodology, non-destructive assay (NDA) measurements, and results of the uranium holdup on the two furnaces.« less
High pressure elasticity and thermal properties of depleted uranium
Jacobsen, M. K.; Velisavljevic, N.
2016-04-28
Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. Lastly, this work presents the first high pressure studies of the elasticity and thermalmore » properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.« less
Statistical sampling of the distribution of uranium deposits using geologic/geographic clusters
Finch, W.I.; Grundy, W.D.; Pierson, C.T.
1992-01-01
The concept of geologic/geographic clusters was developed particularly to study grade and tonnage models for sandstone-type uranium deposits. A cluster is a grouping of mined as well as unmined uranium occurrences within an arbitrary area about 8 km across. A cluster is a statistical sample that will reflect accurately the distribution of uranium in large regions relative to various geologic and geographic features. The example of the Colorado Plateau Uranium Province reveals that only 3 percent of the total number of clusters is in the largest tonnage-size category, greater than 10,000 short tons U3O8, and that 80 percent of the clusters are hosted by Triassic and Jurassic rocks. The distributions of grade and tonnage for clusters in the Powder River Basin show a wide variation; the grade distribution is highly variable, reflecting a difference between roll-front deposits and concretionary deposits, and the Basin contains about half the number in the greater-than-10,000 tonnage-size class as does the Colorado Plateau, even though it is much smaller. The grade and tonnage models should prove useful in finding the richest and largest uranium deposits. ?? 1992 Oxford University Press.
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; ...
2016-03-11
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung
The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-bindingmore » ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less
Kato, Masashi; Azimi, Mohammad Daud; Fayaz, Said Hafizullah; Shah, Muhammad Dawood; Hoque, Md Zahirul; Hamajima, Nobuyuki; Ohnuma, Shoko; Ohtsuka, Tomomi; Maeda, Masao; Yoshinaga, Masafumi
2016-12-01
Toxic elements in drinking water have great effects on human health. However, there is very limited information about toxic elements in drinking water in Afghanistan. In this study, levels of 10 elements (chromium, nickel, copper, arsenic, cadmium, antimony, barium, mercury, lead and uranium) in 227 well drinking water samples in Kabul, Afghanistan were examined for the first time. Chromium (in 0.9% of the 227 samples), arsenic (7.0%) and uranium (19.4%) exceeded the values in WHO health-based guidelines for drinking-water quality. Maximum chromium, arsenic and uranium levels in the water samples were 1.3-, 10.4- and 17.2-fold higher than the values in the guidelines, respectively. We next focused on uranium, which is the most seriously polluted element among the 10 elements. Mean ± SD (138.0 ± 1.4) of the 238 U/ 235 U isotopic ratio in the water samples was in the range of previously reported ratios for natural source uranium. We then examined the effect of our originally developed magnesium (Mg)-iron (Fe)-based hydrotalcite-like compounds (MF-HT) on adsorption for uranium. All of the uranium-polluted well water samples from Kabul (mean ± SD = 190.4 ± 113.9 μg/L; n = 11) could be remediated up to 1.2 ± 1.7 μg/L by 1% weight of our MF-HT within 60 s at very low cost (<0.001 cents/day/family) in theory. Thus, we demonstrated not only elevated levels of some toxic elements including natural source uranium but also an effective depurative for uranium in well drinking water from Kabul. Since our depurative is effective for remediation of arsenic as shown in our previous studies, its practical use in Kabul may be encouraged. Copyright © 2016 Elsevier Ltd. All rights reserved.
Felmlee, J. Karen; Cadigan, Robert Allen
1979-01-01
Radium and uranium concentrations in water from 37 wells tapping the aquifer system of the Dakota Sandstone and Purgatoire Formation in southwestern Pueblo County, Colorado, have a wide range of values and define several areas of high radioactivity in the ground water. Radium ranges from 0.3 to 420 picocuries per liter and has a median value of 8.8, and uranium ranges from 0.02 to 180 micrograms per liter and has a median value of 2.4. Radon concentrations, measured in 32 of the 37 wells, range from less than 100 picocuries per liter to as much as 27,000 and have a median value of 580. Relationships among the radioactive elements and 28 other geochemical parameters were studied by using correlation coefficients and R-mode factor analysis. Five factor groups were determined to represent major influences on water chemistry: (1) short-term solution reactions, (2) oxidation reactions, (3) hydrolysis reactions, (4) uranium distribution, and (5) long-term solution reactions. Uranium concentrations are most strongly influenced by oxidation reactions but also are affected by solution reactions and distribution of uranium in the rocks of the aquifer system. Radon and radium concentrations are mostly controlled by uranium distribution; radium also shows a moderate negative relationship with oxidation. To explain the statistical and spatial relationships among the parameters, a model was developed involving the selective leaching of uranium-bearing phases and metal sulfides which occur in discontinuous zones in sandstone and shale. When reducing conditions prevail, uranium is immobile, but radium can be taken into solution. When faults and associated fractured rocks allow oxidizing conditions to dominate, uranium can be taken into solution; radium can also be taken into solution, or it may become immobilized by coprecipitation with iron and manganese oxides or with barite. Several areas within the study area are discussed in terms of the model.
Lin, Jinru; Sun, Wei; Desmarais, Jacques; Chen, Ning; Feng, Renfei; Zhang, Patrick; Li, Dien; Lieu, Arthur; Tse, John S; Pan, Yuanming
2018-01-01
Phosphogypsum formed from the production of phosphoric acid represents by far the biggest accumulation of gypsum-rich wastes in the world and commonly contains elevated radionuclides, including uranium, as well as other heavy metals and metalloids. Therefore, billions-of-tons of phosphogypsum stockpiled worldwide not only possess serious environmental problems but also represent a potential uranium resource. Gypsum is also a major solid constituent in many other types of radioactive mine tailings, which stems from the common usage of sulfuric acid in extraction processes. Therefore, management and remediation of radioactive mine tailings as well as future beneficiation of uranium from phosphogysum all require detailed knowledge about the nature and behavior of uranium in gypsum. However, little is known about the uptake mechanism or speciation of uranium in gypsum. In this study, synthesis experiments suggest an apparent pH control on the uptake of uranium in gypsum at ambient conditions: increase in U from 16 μg/g at pH = 6.5 to 339 μg/g at pH = 9.5. Uranium L 3 -edge synchrotron X-ray absorption spectroscopic analyses of synthetic gypsum show that uranyl (UO 2 ) 2+ at the Ca site is the dominant species. The EXAFS fitting results also indicate that uranyl in synthetic gypsum occurs most likely as carbonate complexes and yields an average U-O distance ∼0.25 Å shorter than the average Ca-O distance, signifying a marked local structural distortion. Applications to phosphogypsum from the New Wales phosphoric acid plant (Florida, USA) and uranium mine tailings from the Key Lake mill (Saskatchewan, Canada) show that gypsum is an important carrier of uranium over a wide range of pH and controls the fate of this radionuclide in mine tailings. Also, development of new technologies for recovering U from phosphogypsum in the future must consider lattice-bound uranyl in gypsum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry
2012-01-01
During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.
Radioactive source materials in Los Estados Unidos de Venezuela
Wyant, Donald G.; Sharp, William N.; Rodriguez, Carlos Ponte
1953-01-01
This report summarizes the data available on radioactive source materials in Los Estados Unidos de Venezuela accumulated by geologists of the Direccions Tecnica de Geolgia and antecedent agencies prior to June 1951, and the writers from June to November 1951. The investigation comprised preliminary study, field examination, office studies, and the preparation of this report, in which the areas and localities examined are described in detail, the uranium potentialities of Venezuela are summarized, and recommendations are made. Preliminary study was made to select areas and rock types that were known or reported to be radioactive or that geologic experience suggests would be favorable host for uranium deposits, In the office, a study of gamma-ray well logs was started as one means of amassing general radiometric data and of rapidly scanning many of ye rocks in northern Venezuela; gamma-ray logs from about 140 representative wells were examined and their peaks of gamma intensity evaluated; in addition samples were analyzed radiometrically, and petrographically. Radiometic reconnaissance was made in the field during about 3 months of 1951, or about 12 areas, including over 100 localities in the State of Miranda, Carabobo, Yaracuy, Falcon, Lara, Trujillo, Zulia, Merida, Tachira, Bolivar, and Territory Delta Amacuro. During the course of the investigation, both in the filed and office, information was given about geology of uranium deposits, and in techniques used in prospecting and analysis. All studies and this report are designed to supplement and to strengthen the Direccion Tecnica de Geologias's program of investigation of radioactive source in Venezuela now in progress. The uranium potentialities of Los Estados de Venezuela are excellent for large, low-grade deposits of uraniferous phospahtic shales containing from 0.002 to 0.027 percent uranium; fair, for small or moderate-sized, low-grade placer deposits of thorium, rare-earth, and uranium minerals; poor, for high-grade hydrothermal pitchblende deposits; and highly possible for small, medium- to high-grade despots of carnotite-or copper-uranium bearing sandstone. Recommendations for the Venezuelan uranium program include 1) the systematic collection of a mass general radiometric data by examining sample collections, expanding the gamma-ray program, encouraging the use of Geiger counter by field geologists, and by enlisting the aid of the general public; 2) , the examination of specific areas or localities, chosen on the basis of geologic favorability from the results of the amassing of data, or obtained by hints and rumors; 3), the organization of a unit within the Direccion Tecnica de Geologica to direct, collection, and collate metric data. It is emphasized that to be most fruitful the program requires the application of sounds and imaginative geologic theory.
Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark
2017-01-01
The coincidence of a number of geologic and climatic factors combined to create conditions favorable for the development of mineable concentrations of uranium hosted by Eocene through Pliocene sandstones in the Texas Coastal Plain. Here 254 uranium occurrences, including 169 deposits, 73 prospects, 6 showings and 4 anomalies, have been identified. About 80 million pounds of U3O8 have been produced and about 60 million pounds of identified producible U3O8 remain in place. The development of economic roll-type uranium deposits requires a source, large-scale transport of uranium in groundwater, and deposition in reducing zones within a sedimentary sequence. The weight of the evidence supports a source from thick sequences of volcanic ash and volcaniclastic sediment derived mostly from the Trans-Pecos volcanic field and Sierra Madre Occidental that lie west of the region. The thickest accumulations of source material were deposited and preserved south and west of the San Marcos arch in the Catahoula Formation. By the early Oligocene, a formerly uniformly subtropical climate along the Gulf Coast transitioned to a zoned climate in which the southwestern portion of Texas Coastal Plain was dry, and the eastern portion humid. The more arid climate in the southwestern area supported weathering of volcanic ash source rocks during pedogenesis and early diagenesis, concentration of uranium in groundwater and movement through host sediments. During the middle Tertiary Era, abundant clastic sediments were deposited in thick sequences by bed-load dominated fluvial systems in long-lived channel complexes that provided transmissive conduits favoring transport of uranium-rich groundwater. Groundwater transported uranium through permeable sandstones that were hydrologically connected with source rocks, commonly across formation boundaries driven by isostatic loading and eustatic sea level changes. Uranium roll fronts formed as a result of the interaction of uranium-rich groundwater with either (1) organic-rich debris adjacent to large long-lived fluvial channels and barrier–bar sequences or (2) extrinsic reductants entrained in formation water or discrete gas that migrated into host units via faults and along the flanks of salt domes and shale diapirs. The southwestern portion of the region, the Rio Grande embayment, contains all the necessary factors required for roll-type uranium deposits. However, the eastern portion of the region, the Houston embayment, is challenged by a humid environment and a lack of source rock and transmissive units, which may combine to preclude the deposition of economic deposits. A grade and tonnage model for the Texas Coastal Plain shows that the Texas deposits represent a lower tonnage subset of roll-type deposits that occur around the world, and required aggregation of production centers into deposits based on geologic interpretation for the purpose of conducting a quantitative mineral resource assessment.
Uranium Fate and Transport Modeling, Guterl Specialty Steel Site, New York - 13545
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Bill; Tandon, Vikas
2013-07-01
The Former Guterl Specialty Steel Corporation Site (Guterl Site) is located 32 kilometers (20 miles) northeast of Buffalo, New York, in Lockport, Niagara County, New York. Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Uranium transport from the site involves legacy on-site pickling fluid handling, themore » leaching of uranium from soil to groundwater, and the groundwater transport of dissolved uranium to the Erie Canal. Groundwater fate and transport modeling was performed to assess the transfer of dissolved uranium from the contaminated soils and buildings to groundwater and subsequently to the nearby Erie Canal. The modeling provides a tool to determine if the uranium contamination could potentially affect human receptors in the vicinity of the site. Groundwater underlying the site and in the surrounding area generally flows southeasterly towards the Erie Canal; locally, groundwater is not used as a drinking water resource. The risk to human health was evaluated outside the Guterl Site boundary from the possibility of impacted groundwater discharging to and mixing with the Erie Canal waters. This condition was evaluated because canal water is infrequently used as an emergency water supply for the City of Lockport via an intake located approximately 122 meters (m) (400 feet [ft]) southeast of the Guterl Site. Modeling was performed to assess whether mixing of groundwater with surface water in the Erie Canal could result in levels of uranium exceeding the U.S. Environmental Protection Agency (USEPA) established drinking water standard for total uranium; the Maximum Concentration Limit (MCL). Geotechnical test data indicate that the major portion of uranium in the soil will adsorb or remain bound to soil, yet leaching to groundwater appears as an on-site source. Soil leaching was modeled using low adsorption factors to replicate worst-case conditions where the uranium leaches to the groundwater. Results indicate that even after several decades, which is the period of time since uranium was processed at the Guterl Site, leaching from soil does not fully account for the currently observed levels of groundwater contamination. Modeling results suggest that there were historic releases of uranium from processing operations directly to the shallow fractured rock and possibly other geochemical conditions that have produced the current groundwater contamination. Groundwater data collected at the site between 1997 and 2011 do not indicate an increasing level of uranium in the main plume, thus the uranium adsorbed to the soil is in equilibrium with the groundwater geochemistry and transport conditions. Consequently, increases in the overall plume concentration or size are not expected. Groundwater flowing through fractures under the Guterl Site transports dissolved uranium from the site to the Erie Canal, where the groundwater has been observed to seep from the northern canal wall at some locations. The seeps discharge uranium at concentrations near or below the MCL to the Erie Canal. Conservative mixing calculations were performed using two worst-case assumptions: 1) the seeps were calculated as contiguous discharges from the Erie Canal wall and 2) the uranium concentration of the seepage is 274 micrograms per liter (μg/L) of uranium, which is the highest on-site uranium concentration in groundwater and nearly ten-fold the actual seep concentrations. The results indicate that uranium concentrations in the seep water would have to be more than 200 times greater than the highest observed on-site groundwater concentrations (or nearly 55,000 μg/L) to potentially exceed the drinking water standard (the MCL) for total uranium in the Erie Canal. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, George; Valentine, John D.; Russo, Richard E.
The primary objective of the present study is to identity the most promising, viable technologies that are likely to culminate in an expedited development of the next-generation, field-deployable instrument for providing rapid, accurate, and precise enrichment assay of uranium hexafluoride (UF6). UF6 is typically involved, and is arguably the most important uranium compound, in uranium enrichment processes. As the first line of defense against proliferation, accurate analytical techniques to determine the uranium isotopic distribution in UF6 are critical for materials verification, accounting, and safeguards at enrichment plants. As nuclear fuel cycle technology becomes more prevalent around the world, international nuclearmore » safeguards and interest in UF6 enrichment assay has been growing. At present, laboratory-based mass spectrometry (MS), which offers the highest attainable analytical accuracy and precision, is the technique of choice for the analysis of stable and long-lived isotopes. Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched UF6 at declared facilities by collecting a small amount (between 1 to 10 g) of gaseous UF6 into a sample bottle, which is then shipped under chain of custody to a central laboratory (IAEA’s Nuclear Materials Analysis Laboratory) for high-precision isotopic assay by MS. The logistics are cumbersome and new shipping regulations are making it more difficult to transport UF6. Furthermore, the analysis is costly, and results are not available for some time after sample collection. Hence, the IAEA is challenged to develop effective safeguards approaches at enrichment plants. In-field isotopic analysis of UF6 has the potential to substantially reduce the time, logistics and expense of sample handling. However, current laboratory-based MS techniques require too much infrastructure and operator expertise for field deployment and operation. As outlined in the IAEA Department of Safeguards Long-Term R&D Plan, 2012–2023, one of the IAEA long-term R&D needs is to “develop tools and techniques to enable timely, potentially real-time, detection of HEU (Highly Enriched Uranium) production in LEU (Lowly Enriched Uranium) enrichment facilities” (Milestone 5.2). Because it is common that the next generation of analytical instruments is driven by technologies that are either currently available or just now emerging, one reasonable and practical approach to project the next generation of chemical instrumentation is to track the recent trends and to extrapolate them. This study adopted a similar approach, and an extensive literature review on existing and emerging technologies for UF6 enrichment assay was performed. The competitive advantages and current limitations of different analytical techniques for in-field UF6 enrichment assay were then compared, and the main gaps between needs and capabilities for their field use were examined. Subsequently, based on these results, technologies for the next-generation field-deployable instrument for UF6 enrichment assay were recommended. The study was organized in a way that a suite of assessment metric was first identified. Criteria used in this evaluation are presented in Section 1 of this report, and the most important ones are described briefly in the next few paragraphs. Because one driving force for in-field UF6 enrichment assay is related to the demanding transportation regulation for gaseous UF6, Section 2 contains a review of solid sorbents that convert and immobilized gaseous UF6 to a solid state, which is regarded as more transportation friendly and is less regulated. Furthermore, candidate solid sorbents, which show promise in mating with existing and emerging assay technologies, also factor into technology recommendations. Extensive literature reviews on existing and emerging technologies for UF6 enrichment assay, covering their scientific principles, instrument options, and current limitations are detailed in Sections 3 and 4, respectively. In Section 5, the technological gaps as well as start-of-the-art and commercial off-the-shelf components that can be adopted to expedite the development of a fieldable or portable UF6 enrichment-assay instrument are identified and discussed. Finally, based on the results of the review, requirements and recommendations for developing the next-generation field-deployable instrument for UF6 enrichment assay are presented in Section 6.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houston, R.S.; Karlstrom, K.E.
1979-11-01
Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrianmore » age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Yuan, B.; Jin, M.
2012-07-01
Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate themore » demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)« less
Grivès, Sophie; Phan, Guillaume; Bouvier-Capely, Céline; Suhard, David; Rebière, François; Agarande, Michelle; Fattal, Elias
2017-04-01
No emergency decontamination treatment is currently available in the case of radiological skin contamination by uranium compounds. First responders in the workplace or during an industrial nuclear accident must be able to treat internal contamination through skin. For this purpose, a calixarene nanoemulsion was developed for the treatment of intact skin or superficial wounds contaminated by uranium, and the decontamination efficiency of this nanoemulsion was investigated in vitro and ex vivo. The present work addresses the in vivo decontamination efficiency of this nanoemulsion, using a rat model. This efficiency is compared to the radio-decontaminant soapy water currently used in France (Trait rouge ® ) in the workplace. The results showed that both calixarene-loaded nanoemulsion and non-loaded nanoemulsion allowed a significant decontamination efficiency compared to the treatment with soapy water. Early application of the nanoemulsions on contaminated excoriated rat skin allowed decreasing the uranium content by around 85% in femurs, 95% in kidneys and 93% in urines. For skin wounded by microneedles, mimicking wounds by microstings, nanoemulsions allowed approximately a 94% decrease in the uranium retention in kidneys. However, specific chelation of uranium by calixarene molecules within the nanoemulsion was not statistically significant, probably because of the limited calixarene-to-uranium molar ratio in these experiment conditions. Moreover, these studies showed that the soapy water treatment potentiates the transcutaneous passage of uranium, thus making it bioavailable, in particular when the skin is superficially wounded. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Uranium- and thorium-bearing pegmatites of the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.W.; Arengi, J.T.; Parrish, I.S.
1980-04-01
This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on themore » geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.« less
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marmer, G.J.; Dunn, C.P.; Moeller, K.L.
Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first partmore » consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.« less
Review of the NURE Assessment of the U.S. Gulf Coast Uranium Province
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Susan M., E-mail: SusanHall@usgs.gov
2013-09-15
Historic exploration and development were used to evaluate the reliability of domestic uranium reserves and potential resources estimated by the U.S. Department of Energy national uranium resource evaluation (NURE) program in the U.S. Gulf Coast Uranium Province. NURE estimated 87 million pounds of reserves in themore » $$30/lb U{sub 3}O{sub 8} cost category in the Coast Plain uranium resource region, most in the Gulf Coast Uranium Province. Since NURE, 40 million pounds of reserves have been mined, and 38 million pounds are estimated to remain in place as of 2012, accounting for all but 9 million pounds of U{sub 3}O{sub 8} in the reserve or production categories in the NURE estimate. Considering the complexities and uncertainties of the analysis, this study indicates that the NURE reserve estimates for the province were accurate. An unconditional potential resource of 1.4 billion pounds of U{sub 3}O{sub 8}, 600 million pounds of U{sub 3}O{sub 8} in the forward cost category of $$30/lb U{sub 3}O{sub 8} (1980 prices), was estimated in 106 favorable areas by the NURE program in the province. Removing potential resources from the non-productive Houston embayment, and those reserves estimated below historic and current mining depths reduces the unconditional potential resource 33% to about 930 million pounds of U{sub 3}O{sub 8}, and that in the $30/lb cost category 34% to 399 million pounds of U{sub 3}O{sub 8}. Based on production records and reserve estimates tabulated for the region, most of the production since 1980 is likely from the reserves identified by NURE. The potential resource predicted by NURE has not been developed, likely due to a variety of factors related to the low uranium prices that have prevailed since 1980.« less
Development of Novel Porous Sorbents for Extraction of Uranium from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wenbin
Climate disruption is one of the greatest crises the global community faces in the 21st century. Alarming increases in CO 2, NO, SO 2 and particulate matter levels will have catastrophic consequences on the environment, food supplies, and human health if no action is taken to lessen their worldwide prevalence. Nuclear energy remains the only mature technology capable of continuous base-load power generation with ultralow carbon dioxide, nitric oxide, and sulfur dioxide emissions. Over the lifetime of the technology, nuclear energy outputs less than 1.5% the carbon dioxide emissions per gigawatt hour relative to coal—about as much as onshore windmore » power.1 However, in order for nuclear energy to be considered a viable option in the future, a stable supply of uranium must be secured. Current estimates suggest there is less than 100 years’ worth of uranium left in terrestrial ores (6.3 million tons) if current consumption levels remain unchanged.2 It is likely, however, that demand for nuclear fuel will rise as a direct consequence of the ratification of global climate accords. The oceans, containing approximately 4.5 billion tons of uranium (U) at a uniform concentration of ~3 ppb, represent a virtually limitless supply of this resource.3 Development of technologies to recover uranium from seawater would greatly improve the U resource availability, providing a U price ceiling for the current generation and sustaining the nuclear fuel supply for future generations. Several methods have been previously evaluated for uranium sequestration including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons including cost effectiveness, long term stability, and selectivity.4,5 While polymer beads and fibers have been functionalized with amidoxime functional groups to afford U adsorption capacities as high as 1.5 g U/kg,6 further discoveries are needed to make uranium extraction from seawater economically feasible.« less
Argon/UF6 plasma experiments: UF6 regeneration and product analysis
NASA Technical Reports Server (NTRS)
Roman, W. C.
1980-01-01
An experimental and analytical investigation was conducted to aid in developing some of the technology necessary for designing a self-critical fissioning uranium plasma core reactors (PCR). This technology is applicable to gaseous uranium hexafluoride nuclear-pumped laser systems. The principal equipment used included 1.2 MW RF induction heater, a d.c. plasma torch, a uranium tetrafluoride feeder system, and batch-type fluorine/UF6 regeneration systems. Overall objectives were to continue to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure, gaseous UF6; and to continue development of complementary diagnostic instrumentation and measurement techniques to characterize the effluent exhaust gases and residue deposited on the test chamber and exhaust system components. Specific objectives include: a development of a batch-type UF6 regeneration system employing pure high-temperature fluorine; development of a ruggedized time-of-flight mass spectrometer and associated data acquisition system capable of making on-line concentration measurements of the volatile effluent exhaust gas species in a high RF environment and corrosive environment of UF6 and related halide compounds.
Thermal properties of nonstoichiometry uranium dioxide
NASA Astrophysics Data System (ADS)
Kavazauri, R.; Pokrovskiy, S. A.; Baranov, V. G.; Tenishev, A. V.
2016-04-01
In this paper, was developed a method of oxidation pure uranium dioxide to a predetermined deviation from the stoichiometry. Oxidation was carried out using the thermogravimetric method on NETZSCH STA 409 CD with a solid electrolyte galvanic cell for controlling the oxygen potential of the environment. 4 samples uranium oxide were obtained with a different ratio of oxygen-to-metal: O / U = 2.002, O / U = 2.005, O / U = 2.015, O / U = 2.033. For the obtained samples were determined basic thermal characteristics of the heat capacity, thermal diffusivity, thermal conductivity. The error of heat capacity determination is equal to 5%. Thermal diffusivity and thermal conductivity of the samples decreased with increasing deviation from stoichiometry. For the sample with O / M = 2.033, difference of both values with those of stoichiometric uranium dioxide is close to 50%.
Determination of the oxidation state of uranium in apatite and phosphorite deposits
Clarke, R.S.; Altschuler, Z.S.
1958-01-01
Geological and mineralogical evidence indicate that the uranium present in apatite may proxy for calcium in the mineral structure as U(IV). An experimental investigation was conducted and chemical evidence was obtained that establishes the presence of U(IV) in apatite. The following analytical procedure was developed for the determination of U(IV). Carbonatefluorapatite is dissolved in 1.5 M orthophosphoric acid at a temperature of 5??C or slightly below and fluorapatite is dissolved in cold 1.2 M hydrochloric acid (approximately 5??C) containing 1.5 g of hydroxylamine hydrochloride per 100 ml. Uranium(IV) is precipitated by cupferron using titanium as a carrier. The uranium in the precipitate is separated by use of the ethyl acetate extraction procedure and determined fluorimetrically. The validity and the limitations of the method have been established by spike experiments. ?? 1958.
Wilmarth, V.R.; Vickers, R.C.
1953-01-01
Uranium deposits that contain uraniferous pyrobitumen of possible hydrothermal origin occur at the Weatherly and Robinson properties near Placerville, San Miguel County, Colo. These deposits were mined for copper, silver, and gold more than 50 years ago and were developed for uranium in 1950. The Robinson property, half a mile east of Placerville, consists of the White Spar, New Discovery Lode, and Barbara Jo claims. The rocks in this area are nearly horizontal sandstones, shales, limestones, and conglomerates of the Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. These rocks have been faulted extensively and intruded by a Tertiary (?) andesite porphyry dike. Uranium-bearing pyrobitumen associated with tennantite, tetrahedrite, galena, sphalerite, chalcopyrite, bornite, azurite, malachite, calcite, barite, and quartz occurs in a lenticular body as much as 40 feet long and 6 feet wide along a northwest-trending, steeply dipping normal fault. The uranium content of eleven samples from the uranium deposit ranges from 0.001 to 0.045 percent uranium and averages about 0.02 percent uranium. The Weatherly property, about a mile northwest of Placerville, consists of the Black King claims nos. 1, 4, and 5. The rocks in this area include the complexly faulted Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. Uranium-bearing pyrobitumen arid uranophane occur, along a northwest-trending, steeply dipping normal fault and in the sedimentary rocks on the hanging wall of the fault. Lens-shaped deposits in the fault zone are as much as 6 feet long and 2 feet wide and contain as much as 9 percent uranium; whereas channel samples across the fault zone contain from 0.001 to 0.014 percent uranium. Tetrahedrite, chalcopyrite, galena, sphalerite, fuchsite, malachite, azurite, erythrite, bornite, and molybdite in a gangue of pyrite, calcite, barite, and quartz are associated with the uraniferous material. In the sedimentary rocks on the hanging wall, uranium-bearing pyrobitumen occurs in replacement lenses as much as,8 inches wide and 6 feet long, and in nodules as much as 6 inches in diameter for approximately 100 feet away from the fault. Pyrite and calcite are closely associated with the uraniferous material in the sedimentary rocks. Samples from the replacement bodies contain from 0. 007 to 1.4 percent uranium.
A novel approach for high precision rapid potentiometric titrations: application to hydrazine assay.
Sahoo, P; Malathi, N; Ananthanarayanan, R; Praveen, K; Murali, N
2011-11-01
We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ~2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO(3) in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors. © 2011 American Institute of Physics
A novel approach for high precision rapid potentiometric titrations: Application to hydrazine assay
NASA Astrophysics Data System (ADS)
Sahoo, P.; Malathi, N.; Ananthanarayanan, R.; Praveen, K.; Murali, N.
2011-11-01
We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ˜2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO3 in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors.
Method for converting uranium oxides to uranium metal
Duerksen, Walter K.
1988-01-01
A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains five appendixes: Chattanooga Shale preliminary mining study, soils data, meteorologic data, water resources data, and biological resource data. The area around DeKalb County in Tennessee is the most likely site for commercial development for recovery of uranium. (DLC)
Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A
2013-10-15
Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community.
Chazel, V; Gerasimo, P; Dabouis, V; Laroche, P; Paquet, F
2003-01-01
Aerosols produced during impacts of depleted uranium (DU) penetrators against the glacis (sloping armour) and the turret of a tank were sampled. The concentration and size distribution were determined. Activity median aerodynamic diameters were 1 microm (geometric standard deviation, sigma(g) = 3.7) and 2 microm (sigma(g) = 2.5), respectively, for glacis and turret. The mean air concentration was 120 Bq m(-3), i.e. 8.5 mg m(-3) of DU. Filters analysed by scanning electron microscopy (SEM) and X ray diffraction showed two types of particles (fine particles and large molten particles) composed mainly of a mixture of uranium and aluminium. The uranium oxides were mostly U3O8, UO2.25 and probably UO3.01 and a mixed compound of U and Al. The kinetics of dissolution in three media (HCO3-, HCl and Gamble's solution) were determined using in-vitro tests. The slow dissolution rates were respectively slow, and intermediate between slow and moderate, and the rapid dissolution fractions were mostly intermediate between moderate and fast. According to the in-vitro results for Gamble's solution, and based on a hypothetical single acute inhalation of 90 Bq, effective doses integrated up to 1 y after incorporation were 0.54 and 0.56 mSv, respectively, for aerosols from glacis and turret. In comparison, the ICRP limits are 20 mSv y(-1) for workers and 1 mSv y(-1) for members of the public. A kidney concentration of approximately 0.1 microg U g(-1) was predicted and should not, in this case, lead to kidney damage.
Trimolecular reactions of uranium hexafluoride with water.
Lind, Maria C; Garrison, Stephen L; Becnel, James M
2010-04-08
The hydrolysis reaction of uranium hexafluoride (UF(6)) is a key step in the synthesis of uranium dioxide (UO(2)) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF(6) molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizable barrier of 78.2 kJ x mol(-1), indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO(2) product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF(6) molecules and one water molecule, and (2) the reaction of two water molecules with a single UF(6) molecule. The predicted reaction of two UF(6) molecules with one water molecule displays an interesting "fluorine-shuttle" mechanism, a significant energy barrier of 69.0 kJ x mol(-1) to the formation of UF(5)OH, and an enthalpy of reaction (DeltaH(298)) of +17.9 kJ x mol(-1). The reaction of a single UF(6) molecule with two water molecules displays a "proton-shuttle" mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ x mol(-1) and an exothermic enthalpy of reaction (DeltaH(298)) of -13.9 kJ x mol(-1). The exothermic nature of the overall UF(6) + 2H(2)O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging.
Physical exploration for uranium during 1951 in the Silver Reef district, Washington County, Utah
Stugard, Frederick
1954-01-01
During 1951 a joint exploration program of the most promising uraniferous areas in the Silver Reef district was made by the U.S. Geological Survey and the U.S. atomic Energy Commission. A U.S. Bureau of Mines drill crew, on contract to the Atomic Energy Commission, did 2,450 feet of diamond drilling under the geological supervision of the U.S. Geological Survey. The purpose of the drilling was to delineate broadly the favorable ground for commercial development of the uranium deposits. Ten drill holes were located around Pumpkin Point, which is the northeastern end of Buckeye Reef, to probe for extensions of small ore sheets mined on the Point in fine-grained sandstones of the Chinle formation. Three additional holes were located around Tecumseh Hill to probe for extensions of the small showings of uranium-bearing rocks of Buckeye Reef. Only one trace of uranium mineral was detected in the 13 drill holes by logging of drill cores, gamma-ray logging of the holes, and analysis of many core splits from favorable lithology. Extensive traversing with Geiger counters throughout the district and detailed geologic mapping of areas on Buckeye Reef and on East Reef indicate that the chances of discovering significant uranium deposits in the Silver Reef district are very poor, because of: highly variable lithology, closely faulted structure, and obliteration of the shallow uranium-bearing lenses by silver mining. Most of the available ore in the district was in the Pumpkin Point area and has been mined during 1950 to 1953. No ore reserves can be computed for the district before further development work. The most favorable remaining area in the district is now being explored by the operators with Atomic Energy Commission supervision.
NASA Astrophysics Data System (ADS)
Ault, Timothy M.
The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.
Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Preedy, O; Read, D
2017-07-01
The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH) 2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO 2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 μm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions.
Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias
2010-03-01
Accidental cutaneous contamination by actinides such as uranium occurring to nuclear power plant workers can lead to their dissemination in other tissues and induce severe damages. Until now, no specific emergency treatment for such contamination has been developed. The aim of the present work was to formulate a tricarboxylic calix[6]arene molecule, known to exhibit good affinity and selectivity for complexing uranium, within a topical delivery system for the treatment of skin contamination. Since calixarene was shown to reduce oil/water interfacial tension, we have designed an oil-in-water nanoemulsion, taking advantage of the small droplet size offering a high contact surface with the contaminated aqueous medium. Characterization of the calixarene nanoemulsion was performed by determination of the oily droplet size, zeta potential and pH, measured as a function of the calixarene concentration. The obtained results have confirmed the surface localization of calixarene molecules being potentially available to extract uranyl ions from an aqueous contaminated solution. In a preliminary experiments, the calixarene nanoemulsion was used for the removal of free uranium from an aqueous contaminated solution. Results showed that the calixarene nanoemulsion extracted up to 80 +/- 5% of uranium, which demonstrates the potential interest of this delivery system for uranium skin decontamination. 2009 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Dhara, Sangita; Misra, N. L.; Aggarwal, S. K.; Venugopal, V.
2010-06-01
An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 µg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 µg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1 σ) and the results deviated from the expected values by < 4% on average.
NASA Astrophysics Data System (ADS)
Wu, W.; Watson, D. B.; Mehlhorn, T.; Zhang, G.; Earles, J.; Lowe, K.; Phillips, J.; Boyanov, M.; Kemner, K. M.; Schadt, C. W.; Brooks, S. C.; Criddle, C.; Jardine, P.
2009-12-01
In situ bioremediation of a uranium-contaminated aquifer was conducted at the US DOE Environmental Remediation Sciences Program (ERSP) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. Edible oil was tested as a slow-release electron donor for microbially mediated U (VI) reduction. Uranium contaminated sediments from the site were used in laboratory microcosm tests to study the feasibility of using this electron donor under anaerobic, ambient temperature conditions. Parallel microcosms were established using ethanol as electron donor for comparison. The tests also examined the impact of sulfate concentrations on U (VI) reduction. The oil was degraded by indigenous microorganisms with acetate as a major product but at a much slower rate than ethanol. The rapid removal of U (VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 vs. 5 mM), likely due to U(VI) desorption from the solid phase, but more U(VI) was reduced with higher initial sulfate level. Finally, the bioreaction in microcosms progressed to methanogenesis. Subsequently, a field test with the edible oil was conducted in a highly permeable gravelly layer (hydraulic conductivity 0.076 cm/sec). Groundwater at the site contained 5-6 μM U; 1.0-1.2 mM sulfate; 3-4 mM Ca; pH 6.8. Diluted emulsified oil (20% solution) was injected into three injection wells within 2 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of uranium from groundwater was observed in all wells connected to the injection wells after 2-4 weeks. Uranium concentrations in groundwater were reduced to below 0.126 μM (EPA drinking water standard), at some well locations. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the oil was consumed. Uranium (VI) reduction to U (IV) in the microcosm and in situ field tests was confirmed by X-ray near-edge absorption spectroscopy analysis. Bacterial populations in microcosms and field samples were analyzed using 16S rRNA gene libraries and Geochip analysis.
Varga, Z.; Mayer, K.; Bonamici, C. E.; ...
2015-05-11
The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less
NASA Astrophysics Data System (ADS)
Winde, Frank; Brugge, Doug; Nidecker, Andreas; Ruegg, Urs
2017-05-01
In 2003, nuclear power received renewed interest as a perceived climate-neutral way to meet high energy demands of large industrialized countries, such as China, India, Russia and the USA. It triggered a growing demand for uranium (U) as nuclear fuel. Dubbed the 'nuclear renaissance', the U-price rose over tenfold before the global credit crisis dampend the rush. Many efforts to capitalise on the renewed demand focused on Africa. This paper provides an overview on the type and extent of uranium mining, production and exploration on the African continent and discusses the economic benefits as well as the potential environmental and health risks and the long-term needs for remediation of legacy sites. The actual historical results of uranium mining activities in more than thirty African countries provide data against which to assess the existing risks of uranium development. The already existing uraniferous waste in several African countries threatens scarce water resources and the health of adjacent residents. Responsibility should rest with the governments and the companies to ensure that these threats are not realized.
Removal of uranium from soil sample digests for ICP-OES analysis of trace metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, R.D. Jr.; Bidabad, M.
1996-10-01
An analytical procedure has been developed to quantitatively remove uranium from soil sample digests, permitting ICP-OES analysis of trace metals. The procedure involves digesting a soil sample with standard procedures (EPA SW-846, Method 3050), and passing the sample digestate through commercially available resin (U/TEVA{sm_bullet}Spec, Eichrom Industries, Inc.) containing diarryl amylphosphonate as the stationary phase. Quantitative removal of uranium was achieved with soil samples containing up to 60% uranium, and percent recoveries averaged better than 85% for 9 of the 10 metals evaluated (Ag, As, Cd. Cr, Cu, Ni, Pb, Se and Tl). The U/TEVA{sm_bullet}Spec column was regenerated by washing withmore » 200 mL of a 0.01 M oxalic acid/0.02 M nitric acid solution, permitting re-use of the column. GFAAS analysis of a sample spiked with 56.5% uranium, after treatment of the digestate with a U/TEVA{sm_bullet}Spec resin column, resulted in percent recoveries of 97% or better for all target metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varga, Z.; Mayer, K.; Bonamici, C. E.
The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less
Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus
2014-11-01
A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Zhang, Weihua; Yi, Jing; Mekarski, Pawel; Ungar, Kurt; Hauck, Barry; Kramer, Gary H
2011-06-01
The purpose of this study is to investigate the possibility of verifying depleted uranium (DU), natural uranium (NU), low enriched uranium (LEU) and high enriched uranium (HEU) by a developed digital gamma-gamma coincidence spectroscopy. The spectroscopy consists of two NaI(Tl) scintillators and XIA LLC Digital Gamma Finder (DGF)/Pixie-4 software and card package. The results demonstrate that the spectroscopy provides an effective method of (235)U and (238)U quantification based on the count rate of their gamma-gamma coincidence counting signatures. The main advantages of this approach over the conventional gamma spectrometry include the facts of low background continuum near coincident signatures of (235)U and (238)U, less interference from other radionuclides by the gamma-gamma coincidence counting, and region-of-interest (ROI) imagine analysis for uranium enrichment determination. Compared to conventional gamma spectrometry, the method offers additional advantage of requiring minimal calibrations for (235)U and (238)U quantification at different sample geometries. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Uranium speciation in Fernald soils. Progress report, January 1--May 31, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, D.E.; Conradson, S.D.; Tait, C.D.
1992-05-31
This report details progress made from January 1 to May 31, 1992 in this analytical support task to determine the speciation of uranium in contaminated soil samples from the Fernald Environmental Management Project site under the auspices of the Uranium in Soils Integrated Demonstration funded through the US DOE`s Office of Technology Development. The authors` efforts have focused on characterization of soil samples collected by S.Y. Lee (Oak Ridge National Laboratory) from five locales at the Fernald site. These were chosen to sample a broad range of uranium source terms. On the basis of x-ray absorption spectroscopy data, they havemore » determined that the majority of uranium (> 80--90%) exists in the hexavalent oxidation state for all samples examined. This is a beneficial finding from the perspective of remediation, because U(VI) species are more soluble in general than uranium species in other oxidation states. Optical luminescence data from many of the samples show the characteristic structured yellow-green emission from the uranyl (UO{sub 2}{sup 2+}) moiety. The luminescence data also suggest that much of the uranium in these soils is present as well-crystallized UO{sub 2}{sup 2+} species. Some clear spectroscopic distinctions have been noted for several samples that illustrate significant differences in the speciation (1) from site to site, (2) within different horizons at the same site, and (3) within different size fractions of the soils in the same horizon at the same site. This marked heterogeneity in uranyl speciation suggests that several soil washing strategies may be necessary to reduce the total uranium concentrations within these soils to regulatory limits.« less
Uranium extraction by complexation with siderophores
NASA Astrophysics Data System (ADS)
Bahamonde Castro, Cristina
One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.
2008-05-01
A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.
A two-dimensional, finite-difference model of the oxidation of a uranium carbide fuel pellet
NASA Astrophysics Data System (ADS)
Shepherd, James; Fairweather, Michael; Hanson, Bruce C.; Heggs, Peter J.
2015-12-01
The oxidation of spent uranium carbide fuel, a candidate fuel for Generation IV nuclear reactors, is an important process in its potential reprocessing cycle. However, the oxidation of uranium carbide in air is highly exothermic. A model has therefore been developed to predict the temperature rise, as well as other useful information such as reaction completion times, under different reaction conditions in order to help in deriving safe oxidation conditions. Finite difference-methods are used to model the heat and mass transfer processes occurring during the reaction in two dimensions and are coupled to kinetics found in the literature.
Brown, Steven H; Edge, Russel; Elmer, John; McDonald, Michael
2018-06-01
Thousands of former uranium mining sites in the United States, primarily in the southwestern states of Colorado, Arizona, New Mexico, Arizona, and Utah, are being identified and evaluated to assess their potential for causing public and environmental impacts. The common radiological contaminant of concern that characterizes these sites is naturally occurring uranium ore and associated wastes that may have been left behind postmining. The majority of these sites were abandoned and in general, are referred to as abandoned uranium mines, regardless of the government authority currently managing the land or in some cases, assigned responsibility for the oversight of assessment and remediation. The U.S. Department of Energy has identified over 4,000 defense-related uranium mine sites from which uranium ore was purchased by the U.S. government for nuclear defense programs prior to 1970. U.S. Department of Energy has established a program to inventory and perform environmental screening on defense-related uranium mine sites. The focus of this paper is the approximately 2,400 defense-related uranium mine sites located on federal land managed by the Bureau of Land Management and the U.S. Forest Service. This paper presents the results of an analysis to develop radiological screening criteria for U.S. Department of Energy's defense-related uranium mine sites that can be used as input to the overall ranking of these sites for prioritization of additional assessment, reclamation, or remedial actions. For these sites managed by Bureau of Land Management, public access is typically limited to short-term use, primarily for recreational purposes. This is a broad category that can cover a range of possible activities, including camping, hiking, hunting, biking, all-terrain vehicle use, and horseback riding. The radiological screening levels were developed by calculating the radiological dose to future recreational users of defense-related uranium mine sites assuming a future camper spends two weeks per year at the site engaged in recreational activities. Although a number of possible exposure pathways were included in this analysis (inhalation and ingestion of dust and soil, radon and progeny inhalation, and gamma radiation exposure from the soil), it is desirable as a practical matter to determine what gamma exposure rate would ensure that the annual acceptable exposure as determined by the regulatory authority will not be exceeded in the future. Because these sites are generally remote and located in semiarid environments, traditional exposure scenarios often applied in these types of analyses (e.g., subsistent farmers and ranchers), including exposure pathways for the ingestion of locally grown food products and water, were not considered relevant to short-term recreational use.
Gamma-ray spectroscopy measurements and simulations for uranium mining
NASA Astrophysics Data System (ADS)
Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.
2018-01-01
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.
TRACE ELEMENT ANALYSES OF URANIUM MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beals, D; Charles Shick, C
The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shields, A. E.; Ruiz Hernandez, S. E.; Leeuw, N. H. de, E-mail: DeLeeuwN@Cardiff.ac.uk
2015-08-15
Thorium dioxide is used industrially in high temperature applications, but more insight is needed into the behavior of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model including polarizability via a shell model, and commensurate with a prominent existing UO{sub 2} potential, to conduct configurational analyses and to investigate the thermophysical properties of uranium-doped ThO{sub 2}. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analyzed the distribution of low concentrations of uranium in the bulk material, where we have not observed the formation of uraniummore » clusters or the dominance of a single preferred configuration. We have calculated thermophysical properties of pure thorium dioxide and Th{sub (1−x)}U{sub x}O{sub 2} which generated values in very good agreement with experimental data.« less
Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koester, L.W.
This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will bemore » noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.« less
NASA's Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael; Mitchell, Sonny; Kim, Tony; Borowski, Stanley; Power, Kevin; Scott, John; Belvin, Anthony; Clement, Steven
2015-01-01
Space fission power systems can provide a power rich environment anywhere in the solar system, independent of available sunlight. Space fission propulsion offers the potential for enabling rapid, affordable access to any point in the solar system. One type of space fission propulsion is Nuclear Thermal Propulsion (NTP). NTP systems operate by using a fission reactor to heat hydrogen to very high temperature (>2500 K) and expanding the hot hydrogen through a supersonic nozzle. First generation NTP systems are designed to have an Isp of approximately 900 s. The high Isp of NTP enables rapid crew transfer to destinations such as Mars, and can also help reduce mission cost, improve logistics (fewer launches), and provide other benefits. However, for NTP systems to be utilized they must be affordable and viable to develop. NASA's Advanced Exploration Systems (AES) NTP project is a technology development project that will help assess the affordability and viability of NTP. Early work has included fabrication of representative graphite composite fuel element segments, coating of representative graphite composite fuel element segments, fabrication of representative cermet fuel element segments, and testing of fuel element segments in the Compact Fuel Element Environmental Tester (CFEET). Near-term activities will include testing approximately 16" fuel element segments in the Nuclear Thermal Rocket Element Environmental Simulator (NTREES), and ongoing research into improving fuel microstructure and coatings. In addition to recapturing fuels technology, affordable development, qualification, and utilization strategies must be devised. Options such as using low-enriched uranium (LEU) instead of highly-enriched uranium (HEU) are being assessed, although that option requires development of a key technology before it can be applied to NTP in the thrust range of interest. Ground test facilities will be required, especially if NTP is to be used in conjunction with high value or crewed missions. There are potential options for either modifying existing facilities or constructing new ground test facilities. At least three potential options exist for reducing (or eliminating) the release of radioactivity into the environment during ground testing. These include fully containing the NTP exhaust during the ground test, scrubbing the exhaust, or utilizing an existing borehole at the Nevada National Security Site (NNSS) to filter the exhaust. Finally, the project is considering the potential for an early flight demonstration of an engine very similar to one that could be used to support human Mars or other ambitious missions. The flight demonstration could be an important step towards the eventual utilization of NTP.
Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.
2008-01-01
Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years because of the low nitrate concentrations in recharge beneath the urban area and the increasing proportion of urban-derived ground water reaching the well. The apparent lag time between peak input concentrations and peak concentrations in the well is about 20 to 30 years. Measured uranium concentrations were also highest (45 micrograms per liter) in shallow ground water, and decreased with depth to background concentrations of about 0.5 microgram per liter. Naturally-occurring uranium adsorbed to aquifer sediments is mobilized by oxygen-rich, high-alkalinity water. Alkalinity increased in shallow ground water in response to agricultural development. As ground-water pumping increased in the 1940s and 1950s, this alkaline water moved downward through the ground-water flow system, mobilizing the uranium adsorbed to aquifer sediments. Ground water with high alkalinity and high uranium concentrations is expected to continue to move deeper in the system, resulting in increased uranium concentrations with depth in ground water. Because alkalinity (and correspondingly uranium) concentrations were high in shallow ground water beneath both the urban and the agricultural land, long-term uranium concentrations in the public-supply well are expected to increase as the proportion of uranium-affected water contributed to the well increases. Assuming that the alkalinity near the water table remains the same, the simulation of long-term alkalinity in the public-supply well indicates that uranium concentrations in the public-supply well will likely approach the maximum contaminant level; however, the time to reach this level is more than 100 years because of the significant proportion of old, unaffected water at depth that is contributed to the public-supply well.
China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues
2014-01-03
countries) for secret nuclear weapons facilities, while experts from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium...declaration from North Korea for outside verification. 89 Barbara Opall -Rome and...that the China Guangfa Bank engaged in business with the DPRK’s arms dealer, Global Trading and Technology (a front for Korea Mining Development
Uranium speciation in biofilms studied by laser fluorescence techniques.
Arnold, Thuro; Grossmann, Kay; Baumann, Nils
2010-03-01
Biofilms may immobilize toxic heavy metals in the environment and thereby influence their migration behaviour. The mechanisms of these processes are currently not understood, because the complexity of such biofilms creates many discrete geochemical microenvironments which may differ from the surrounding bulk solution in their bacterial diversity, their prevailing geochemical properties, e.g. pH and dissolved oxygen concentration, the presence of organic molecules, e.g. metabolites, and many more, all of which may affect metal speciation. To obtain such information, which is necessary for performance assessment studies or the development of new cost-effective strategies for cleaning waste waters, it is very important to develop new non-invasive methods applicable to study the interactions of metals within biofilm systems. Laser fluorescence techniques have some superior features, above all very high sensitivity for fluorescent heavy metals. An approach combining confocal laser scanning microscopy and laser-induced fluorescence spectroscopy for study of the interactions of biofilms with uranium is presented. It was found that coupling these techniques furnishes a promising tool for in-situ non-invasive study of fluorescent heavy metals within biofilm systems. Information on uranium speciation and uranium redox states can be obtained.
Kr ion irradiation study of the depleted-uranium alloys
NASA Astrophysics Data System (ADS)
Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M.
2010-12-01
Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si) 3, (U, Mo)(Al, Si) 3, UMo 2Al 20, U 6Mo 4Al 43 and UAl 4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 °C to ion doses up to 2.5 × 10 19 ions/m 2 (˜10 dpa) with an Kr ion flux of 10 16 ions/m 2/s (˜4.0 × 10 -3 dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, L.
Since the onset of the first ''oil shock'' in 1974, France has pursued a policy of steadily increasing energy independence based on nuclear power for generation of electricity. In 1973, nuclear reactors supplied only 8% of France's electrical power. A strong development effort lifted the nuclear share to 23% in 1980, to 66% in 1985, and the plan is to raise the total to 75% by 1990. In 1976, Cogema (Compagnie Generale des Matieres Nucleaires) was organized from the production division of France's Commissariat a l'Energie Atomique (CEA) to handle fuel supply and spent fuel reprocessing for the expanding industrymore » (see subsequent article on Cogema). In parallel with growth of the French nuclear power, Cogema has become a world leader in all aspects of the fuel cycle, providing services not only domestically but internationally as well. As a uranium mining company, Cogema has steadily developed domestic and foreign sources of supply, and over the years it has maintained the world's strongest uranium exploration effort throughout the ups and downs of the market. As a result, the company has become the world's leading uranium supplier, with about 20% of total production contributed either by its domestic mining divisions or overseas subsidiaries.« less
Dickinson, Michelle; Scott, Thomas B
2010-06-15
Zero-valent iron nanoparticles (INP) were investigated as a remediation strategy for a uranium-contaminated waste effluent from AWE, Aldermaston. Nanoparticles were introduced to the effluent, under both oxic and anoxic conditions, and allowed to react for a 28-d period during which the liquid and nanoparticle solids were periodically sampled. Analysis of the solution indicated that under both conditions U was removed to <1.5% of its initial concentration within 1h of introduction and remained at similar concentrations until approximately 48 h. A rapid release of Fe into solution was also recorded during this initial period; attributed to the limited partial dissolution of the INP. XPS analyses of the reacted nanoparticulate solids between 1 and 48 h showed an increased Fe(III):Fe(II) ratio, consistent with the detection of iron oxidation products (akaganeite and magnetite) by XRD and FIB. XPS analysis also recorded uranium on the recovered particulates indicating the chemical reduction of U(VI) to U(IV) within 1h. Following the initial retention period U-dissolution of U was recorded from 48 h, and attributed to reoxidation. The efficient uptake and retention of U on the INP for periods up to 48 h provide proof that INP may be effectively used for the remediation of complex U-contaminated effluents. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
REGUERA, GEMMA
2014-01-16
One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilmsmore » than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilton, L.K.
1981-06-01
An aerial radiological survey of Durango, Colorado, including the inactive uranium mill tailings piles located southwest of the town, was conducted during August 25--29, 1980, for the Department of Energy`s Environmental and Safety Engineering Division. Areas of radiation exposure rates higher than the local background, which was about 15 microrentgens per hour ({mu}R/h), were observed directly over and to the south of the mill tailings piles, over a cemetery, and at two spots near the fairgrounds. The rapidly changing radiation exposure rates at the boundaries of the piles preclude accurate extrapolation of aerial radiological data to ground level exposure ratesmore » in their immediate vicinity. Estimated radiation exposure rates close to the piles, however, approached 30 times background, or about 450 {mu}R/h. Radiation exposure rates in a long area extending south from the tailings piles were about 25 {mu}R/h.« less
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
Bioremediation of uranium contamination with enzymatic uranium reduction
Lovley, D.R.; Phillips, E.J.P.
1992-01-01
Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.
Startup of RAPID-L Lunar Base Reactor by Lithium Release Module
NASA Astrophysics Data System (ADS)
Kambe, Mitsuru
The 200 kWe uranium-nitride fueled lithium cooled fast reactor concept RAPID-L to be combined with thermoelectric power conversion system for lunar base power system is demonstrated. Unique challenges in reactivity control systems design have been attempted in RAPID-L concept. The reactor involves the following innovative reactivity control systems: Lithium Expansion Modules (LEM) for inherent reactivity feedback, Lithium Injection Modules (LIM) for inherent ultimate shutdown, and Lithium Release Modules (LRM) for automated reactor startup. All these systems adopt lithium-6 as a liquid poison instead of conventional B4C rods or Be reflectors. These systems are effective independent of the magnitude and direction of the gravity force. In 2006, however, the following design amendment has been made. 1) B4C poison rods were added to ensure criticality safety in unintended positive reactivity insertion by LRMs due to fire in the launch phase accident; because LRM freeze seal melts at 800°C which result in positive reactivity insertion. 2) Lower hot standby temperature of 200°C was adopted instead of conventional 800°C to reduce the external power at the startup. In this paper, development of the LRM orifice which dominates the startup transient of RAPID-L is discussed. An attention was focused how to achieve sufficiently small flow rate of 6Li in the orifice because it enables moderate positive reactivity insertion rate. The LRM orifice performance has been confirmed using 0.5 mm diameter SUS316 orifice/lithium flow test setup in the glove box.
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, G.; Kips, R.; Lindvall, R.
The CUP-2 uranium ore concentrate (UOC) standard reference material, a powder, was produced at the Blind River uranium refinery of Eldorado Resources Ltd. in Canada in 1986. This material was produced as part of a joint effort by the Canadian Certified Reference Materials Project and the Canadian Uranium Producers Metallurgical Committee to develop a certified reference material for uranium concentration and the concentration of several impurity constituents. This standard was developed to satisfy the requirements of the UOC mining and milling industry, and was characterized with this purpose in mind. To produce CUP-2, approximately 25 kg of UOC derived frommore » the Blind River uranium refinery was blended, homogenized, and assessed for homogeneity by X-ray fluorescence (XRF) analysis. The homogenized material was then packaged into bottles, containing 50 g of material each, and distributed for analysis to laboratories in 1986. The CUP-2 UOC standard was characterized by an interlaboratory analysis program involving eight member laboratories, six commercial laboratories, and three additional volunteer laboratories. Each laboratory provided five replicate results on up to 17 analytes, including total uranium concentration, and moisture content. The selection of analytical technique was left to each participating laboratory. Uranium was reported on an “as-received” basis; all other analytes (besides moisture content) were reported on a “dry-weight” basis. A bottle of 25g of CUP-2 UOC standard as described above was purchased by LLNL and characterized by the LLNL Nuclear Forensics Group. Non-destructive and destructive analytical techniques were applied to the UOC sample. Information obtained from short-term techniques such as photography, gamma spectrometry, and scanning electron microscopy were used to guide the performance of longer-term techniques such as ICP-MS. Some techniques, such as XRF and ICP-MS, provided complementary types of data. The results indicate that the CUP-2 standard has a natural isotopic ratio, and does not appear to have been isotopically enriched or depleted in any way, and was not contaminated by a source of uranium with a non-natural isotopic composition. Furthermore, the lack of 233U and 236U above the instrumental detection limit indicates that this sample was not exposed to a neutron flux, which would have generated one or both of these isotopes in measurable concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weismann, J.; Young, C.; Masciulli, S.
2007-07-01
Lowry Air Force Base (Lowry) was closed in September 1994 as part of the Base Realignment and Closure (BRAC) program and the base was transferred to the Lowry Redevelopment Authority in 1995. As part of the due diligence activities conducted by the Air Force, a series of remedial investigations were conducted across the base. A closed waste landfill, designated Operable Unit 2 (OU 2), was initially assessed in a 1990 Remedial Investigation (RI; [1]). A Supplemental Remedial Investigation was conducted in 1995 [2] and additional studies were conducted in a 1998 Focused Feasibility Study. [3] The three studies indicated thatmore » gross alpha, gross beta, and uranium concentrations were consistently above regulatory standards and that there were detections of low concentrations other radionuclides. Results from previous investigations at OU 2 have shown elevated gross alpha, gross beta, and uranium concentrations in groundwater, surface water, and sediments. The US Air Force has sought to understand the provenance of these radionuclides in order to determine if they could be due to leachates from buried radioactive materials within the landfill or whether they are naturally-occurring. The Air Force and regulators agreed to use a one-year monitoring and sampling program to seek to explain the origins of the radionuclides. Over the course of the one-year program, dissolved uranium levels greater than the 30 {mu}g/L Maximum Contaminant Level (MCL) were consistently found in both up-gradient and down-gradient wells at OU 2. Elevated Gross Alpha and Gross Beta measurements that were observed during prior investigations and confirmed during the LTM were found to correlate with high dissolved uranium content in groundwater. If Gross Alpha values are corrected to exclude uranium and radon contributions in accordance with US EPA guidance, then the 15 pCi/L gross alpha level is not exceeded. The large dataset also allowed development of gross alpha to total uranium correlation factors so that gross alpha action levels can be applied to future long-term landfill monitoring to track radiological conditions at lower cost. Ratios of isotopic uranium results were calculated to test whether the elevated uranium displayed signatures indicative of military use. Results of all ratio testing strongly supports the conclusion that the uranium found in groundwater, surface water, and sediment at OU 2 is naturally-occurring and has not undergone anthropogenic enrichment or processing. U-234:U-238 ratios also show that a disequilibrium state, i.e., ratio greater than 1, exists throughout OU 2 which is indicative of long-term aqueous transport in aged aquifers. These results all support the conclusion that the elevated uranium observed at OU 2 is due to the high concentrations in the regional watershed. Based on the results of this monitoring program, we concluded that the elevated uranium concentrations measured in OU 2 groundwater, surface water, and sediment are due to the naturally-occurring uranium content of the regional watershed and are not the result of waste burials in the former landfill. Several lines of evidence indicate that natural uranium has been naturally concentrated beneath OU 2 in the geologic past and the higher of uranium concentrations in down-gradient wells is the result of geochemical processes and not the result of a uranium ore disposal. These results therefore provide the data necessary to support radiological closure of OU 2. (authors)« less
Groundwater Restoration at Uranium In-Situ Recovery Mines, South Texas Coastal Plain
Hall, Susan
2009-01-01
This talk was presented by U.S. Geological Survey (USGS) geologist Susan Hall on May 11, 2009, at the Uranium 2009 conference in Keystone, Colorado, and on May 12, 2009, as part of an underground injection control track presentation at the Texas Commission on Environmental Quality (TCEQ) Environmental Trade Fair and Conference in Austin, Texas. Texas has been the location of the greatest number of uranium in-situ recovery (ISR) mines in the United States and was the incubator for the development of alkaline leach technology in this country. For that reason, the author chose to focus on the effectiveness of restoration at ISR mines by examining legacy mines developed in Texas. The best source for accurate information about restoration at Texas ISR mines is housed at the TCEQ offices in Austin. The bulk of this research is an analysis of those records.
NASA Astrophysics Data System (ADS)
Ulrich, J. C.; Guilhen, S. N.; Cotrim, M. E. B.; Pires, M. A. F.
2018-03-01
IPEN’s research reactor, IEA-R1, an open pool type research reactor moderated and cooled by light water. High quality water is a key factor in preventing the corrosion of the spent fuel stored in the pool. Leaching of radionuclides from the corroded fuel cladding may be prevented by an efficient water treatment and purification system. However, as a safety management policy, IPEN has adopted a water chemistry control which periodically monitors the levels of uranium (U) and silicon (Si) in the pool’s reactor, since IEA-R1 employs U3Si2-Al dispersion fuel. An analytical method was developed and validated for the determination of uranium and silicon by ICP OES. This work describes the validation process, in a context of quality assurance, including the parameters selectivity, linearity, quantification limit, precision and recovery.
Abu-Qare, A W; Abou-Donia, M B
2001-09-01
A simple and reliable method was developed for the quantification of depleted uranium, the anti nerve agent drug pyridostigmine bromide (PB;3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide) and its metabolite N-methyl-3-hydroxypyridinium bromide in rat plasma and urine. The method involved using solid phase extraction and spectrophotometric determination of uranium, and high performance liquid chromatography (HPLC) with reversed phase C(18) column, and UV detection at 280 nm for PB and its metabolite. Uranium was derivatized using dibenzoylmethane (DBM) then the absorbance was measured at 405 nm. PB and its metabolite were separated using a gradient of 1--40% acetonitrile in 0.1% triflouroacetic acid water solution (pH 3.2) at a flow rate of 0.8 ml/min in a period of 14 min. Limits of detection were 2 ng/ml for uranium and 50 ng/ml for PB and its metabolite. Limits of quantitation were between 10 and 100 ng/ml for uranium and the other two analytes, respectively. Average percentage recovery of five spiked plasma samples were 83.7+/-8.6, 76.8+/-6.7, 79.1+/-7.1, and from urine 82.7+/-8.6, 79.3+/-9.5 and 78.0+/-6.2, for depleted uranium, PB and N-methyl-3-hydroxypyridinium bromide, respectively. The relationship between peak areas and concentration was linear for standards between 100 and 1000 ng/ml for all three analytes. This method was applied to analyze the above chemicals and metabolites following combined administration in rats.
The Nopal 1 Uranium Deposit: an Overview
NASA Astrophysics Data System (ADS)
Calas, G.; Allard, T.; Galoisy, L.
2007-05-01
The Nopal 1 natural analogue is located in the Pena Blanca uranium district, about 50 kms north of Chihuahua City, Mexico. The deposit is hosted in tertiary ignimbritic ash-flow tuffs, dated at 44 Ma (Nopal and Colorados formations), and overlying the Pozos conglomerate formation and a sequence of Cretaceous carbonate rocks. The deposit is exposed at the ground surface and consists of a near vertical zone extending over about 100 m with a diameter of 40 m. An interesting characteristic is that the primary mineralization has been exposed above the water table, as a result of the uplift of the Sierra Pena Blanca, and subsequently oxidized with a remobilization of hexavalent uranium. The primary mineralization has been explained by various genetic models. It is associated to an extensive hydrothermal alteration of the volcanic tuffs, locally associated to pyrite and preserved by an intense silicification. Several kaolinite parageneses occur in fissure fillings and feldspar pseudomorphs, within the mineralized breccia pipe and the barren surrounding rhyolitic tuffs. Smectites are mainly developed in the underlying weakly welded tuffs. Several radiation-induced defect centers have been found in these kaolinites providing a unique picture of the dynamics of uranium mobilization (see Allard et al., this session). Another evidence of this mobilization is given by the spectroscopy of uranium-bearing opals, which show characteristic fluorescence spectra of uranyl groups sorbed at the surface of silica. By comparison with the other uranium deposits of the Sierra Pena Blanca and the nearby Sierra de Gomez, the Nopal 1 deposit is original, as it is one of the few deposits hving retained a reduced uranium mineralization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Li-Jung; Gill, Gary A.; Tsouris, Costas
Recent advances in the development of amidoxime-based adsorbents have made it highly promising for seawater uranium extraction. However, there is a great need to understand the influence of temperature on the uranium sequestration performance of the adsorbents in natural seawater. Here in this work, the apparent enthalpy and entropy of the sorption of uranium (VI) and vanadium (V) with amidoxime-based adsorbents were determined in natural seawater tests at 8, 20, and 31 °C that cover a broad range of ambient seawater temperature. The sorption of U was highly endothermic, producing apparent enthalpies of 57 ± 6.0 and 59 ± 11more » kJ mol -1 and apparent entropies of 314 ± 21 and 320 ± 36 J K-1 mol -1, respectively, for two adsorbent formulations. In contrast, the sorption of V showed a much smaller temperature sensitivity, producing apparent enthalpies of 6.1 ± 5.9 and -11 ± 5.7 kJ mol -1 and apparent entropies of 164 ± 20 and 103 ± 19 J K -1 mol -1, respectively. This new thermodynamic information suggests that amidoxime-based adsorbents will deliver significantly increased U adsorption capacities and improved selectivity in warmer waters. A separate field study of seawater uranium adsorption conducted in a warm seawater site (Miami, FL, USA) confirm the observed strong temperature effect on seawater uranium mining. Lastly, this strong temperature dependence demonstrates that the warmer the seawater where the amidoxime-based adsorbents are deployed the greater the yield for seawater uranium extraction.« less
Kuo, Li-Jung; Gill, Gary A.; Tsouris, Costas; ...
2018-01-16
Recent advances in the development of amidoxime-based adsorbents have made it highly promising for seawater uranium extraction. However, there is a great need to understand the influence of temperature on the uranium sequestration performance of the adsorbents in natural seawater. Here in this work, the apparent enthalpy and entropy of the sorption of uranium (VI) and vanadium (V) with amidoxime-based adsorbents were determined in natural seawater tests at 8, 20, and 31 °C that cover a broad range of ambient seawater temperature. The sorption of U was highly endothermic, producing apparent enthalpies of 57 ± 6.0 and 59 ± 11more » kJ mol -1 and apparent entropies of 314 ± 21 and 320 ± 36 J K-1 mol -1, respectively, for two adsorbent formulations. In contrast, the sorption of V showed a much smaller temperature sensitivity, producing apparent enthalpies of 6.1 ± 5.9 and -11 ± 5.7 kJ mol -1 and apparent entropies of 164 ± 20 and 103 ± 19 J K -1 mol -1, respectively. This new thermodynamic information suggests that amidoxime-based adsorbents will deliver significantly increased U adsorption capacities and improved selectivity in warmer waters. A separate field study of seawater uranium adsorption conducted in a warm seawater site (Miami, FL, USA) confirm the observed strong temperature effect on seawater uranium mining. Lastly, this strong temperature dependence demonstrates that the warmer the seawater where the amidoxime-based adsorbents are deployed the greater the yield for seawater uranium extraction.« less
Letter Report: Looking Ahead at Nuclear Fuel Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Stephen Herring
2013-09-01
The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energymore » community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.« less
PRODUCTION OF URANIUM METAL BY CARBON REDUCTION
Holden, R.B.; Powers, R.M.; Blaber, O.J.
1959-09-22
The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.
Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon.
Zhao, Yongsheng; Liu, Chunxia; Feng, Miao; Chen, Zhen; Li, Shuqiong; Tian, Gan; Wang, Li; Huang, Jingbo; Li, Shoujian
2010-04-15
A new solid phase extractant selective for uranium(VI) based on benzoylthiourea anchored to activated carbon was developed via hydroxylation, amidation and reaction with benzoyl isothiocyanate in sequence. Fourier transform infrared spectroscopy and total element analysis proved that benzoylthiourea had been successfully grafted to the surface of the activated carbon, with a loading capacity of 1.2 mmol benzoylthiourea per gram of activated carbon. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature, have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The maximum sorption capacity (82 mg/g) for uranium(VI) was obtained at experimental conditions. The rate constant for the uranium sorption by the as-synthesized extractant was 0.441 min(-1) from the first order rate equation. Thermodynamic parameters (DeltaH(0)=-46.2 kJ/mol; DeltaS(0)=-98.0 J/mol K; DeltaG(0)=-17.5 kJ/mol) showed the adsorption of an exothermic process and spontaneous nature, respectively. Additional studies indicated that the benzoylthiourea-anchored activated carbon (BT-AC) selectively sorbed uranyl ions in the presence of competing ions, Na(+), Co(2+), Sr(2+), Cs(+) and La(3+). 2009 Elsevier B.V. All rights reserved.
Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDeavitt, Sean M
2011-04-29
Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºCmore » to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled “Uranium Metal Powder Production, Particle Distribution Analysis, and Reaction Rate Studies of a Hydride-Dehydride Process"« less
STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS
Crouse, D.J. Jr.
1962-09-01
A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)
Process for electroslag refining of uranium and uranium alloys
Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.
1975-07-22
A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)
Detection of depleted uranium in urine of veterans from the 1991 Gulf War.
Gwiazda, R H; Squibb, K; McDiarmid, M; Smith, D
2004-01-01
American soldiers involved in "friendly fire" accidents during the 1991 Gulf War were injured with depleted-uranium-containing fragments or possibly exposed to depleted uranium via other routes such as inhalation, ingestion, and/or wound contamination. To evaluate the presence of depleted uranium in these soldiers eight years later, the uranium concentration and depleted uranium content of urine samples were determined by inductively coupled plasma mass spectrometry in (a) depleted uranium exposed soldiers with embedded shrapnel, (b) depleted uranium exposed soldiers with no shrapnel, and (c) a reference group of deployed soldiers not involved in the friendly fire incidents. Uranium isotopic ratios measured in many urine samples injected directly into the inductively coupled plasma mass spectrometer and analyzed at a mass resolution m/delta m of 300 appeared enriched in 235U with respect to natural abundance (0.72%) due to the presence of an interference of a polyatomic molecule of mass 234.81 amu that was resolved at a mass resolution m/delta m of 4,000. The 235U abundance measured on uranium separated from these urines by anion exchange chromatography was clearly natural or depleted. Urine uranium concentrations of soldiers with shrapnel were higher than those of the two other groups, and 16 out of 17 soldiers with shrapnel had detectable depleted uranium in their urine. In depleted uranium exposed soldiers with no shrapnel, depleted uranium was detected in urine samples of 10 out of 28 soldiers. The median uranium concentration of urines with depleted uranium from soldiers without shrapnel was significantly higher than in urines with no depleted uranium, though substantial overlap in urine uranium concentrations existed between the two groups. Accordingly, assessment of depleted uranium exposure using urine must rely on uranium isotopic analyses, since urine uranium concentration is not an unequivocal indicator of depleted uranium presence in soldiers with no embedded shrapnel.
None
2018-04-26
The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.
HEU Holdup Measurements in the 321-M Draw Bench, Straightener, and Fluoroscope Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewberry, R.A.
The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. This report covers holdup measurements of uranium residue on the draw bench, straightener, and the fluoroscope components of the 321-M facility.
Absolute intensity of radiation emitted by uranium plasmas
NASA Technical Reports Server (NTRS)
Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.
1975-01-01
The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.
Large-Scale Physical Separation of Depleted Uranium from Soil
2012-09-01
Earth and Environment 285 Davidson Avenue, Suite 100 Somerset, NJ 08873 Catherine Nestler Applied Research Associates, Inc. 119 Monument Place...square meters square miles 2.589998 E+06 square meters square yards 0.8361274 square meters yards 0.9144 meters ERDC/EL TR-12-25 viii...depleted uranium EL Environmental Laboratory ERDC Engineer Research and Development Center ICP-MS Inductively coupled plasma - mass spectroscopy
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
Boulyga, Sergei F; Prohaska, Thomas
2008-01-01
This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten microsamples varied in the range from 0.0073 (corresponding to the natural uranium isotopic composition) to 0.023 (corresponding to initial 235U enrichment in reactor fuel). An inverse correlation was observed between the 236U/238U and 235U/238U isotope ratios, except in the case of one sample with natural uranium. The heterogeneity of the uranium isotope composition is attributed to the different burn-up grades of uranium in the fuel rods from which the microsamples originated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsunoda, Hirokazu; Sato, Osamu; Okajima, Shigeaki
2002-07-01
In order to achieve fully automated reactor operation of RAPID-L reactor, innovative reactivity control systems LEM, LIM, and LRM are equipped with lithium-6 as a liquid poison. Because lithium-6 has not been used as a neutron absorbing material of conventional fast reactors, measurements of the reactivity worth of Lithium-6 were performed at the Fast Critical Assembly (FCA) of Japan Atomic Energy Research Institute (JAERI). The FCA core was composed of highly enriched uranium and stainless steel samples so as to simulate the core spectrum of RAPID-L. The samples of 95% enriched lithium-6 were inserted into the core parallel to themore » core axis for the measurement of the reactivity worth at each position. It was found that the measured reactivity worth in the core region well agreed with calculated value by the method for the core designs of RAPID-L. Bias factors for the core design method were obtained by comparing between experimental and calculated results. The factors were used to determine the number of LEM and LIM equipped in the core to achieve fully automated operation of RAPID-L. (authors)« less
Global Modeling of Uranium Molecular Species Formation Using Laser-Ablated Plasmas
NASA Astrophysics Data System (ADS)
Curreli, Davide; Finko, Mikhail; Azer, Magdi; Armstrong, Mike; Crowhurst, Jonathan; Radousky, Harry; Rose, Timothy; Stavrou, Elissaios; Weisz, David; Zaug, Joseph
2016-10-01
Uranium is chemically fractionated from other refractory elements in post-detonation nuclear debris but the mechanism is poorly understood. Fractionation alters the chemistry of the nuclear debris so that it no longer reflects the chemistry of the source weapon. The conditions of a condensing fireball can be simulated by a low-temperature plasma formed by vaporizing a uranium sample via laser heating. We have developed a global plasma kinetic model in order to model the chemical evolution of U/UOx species within an ablated plasma plume. The model allows to track the time evolution of the density and energy of an uranium plasma plume moving through an oxygen atmosphere of given fugacity, as well as other relevant quantities such as average electron and gas temperature. Comparison of model predictions with absorption spectroscopy of uranium-ablated plasmas provide preliminary insights on the key chemical species and evolution pathways involved during the fractionation process. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16-1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Cost and Systems Analysis of Innovative Fuel Resources Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Erich; Byers, M.
Economically recovered uranium from seawater can have a transformative effect on the way policy makers view the long-term viability of uranium based fuel cycles. Seawater uranium, even when estimated to cost more than terrestrially mined uranium, is integral in establishing an economic backstop, thus reducing uncertainty in future nuclear power costs. While a passive recovery scheme relying on a field of polymer adsorbents prepared via radiation induced grafting has long been considered the leading technology for full scale deployment, non-trivial cost and logistical barriers persist. Consequently, university partners of the nation-wide consortium for seawater uranium recovery have developed variants ofmore » this technology, each aiming to address a substantial weakness. The focus of this NEUP project is the economic impacts of the proposed variant technologies. The team at University of Alabama has pursued an adsorbent synthesis method that replaces the synthetic fiber backbone with a natural waste product. Chitin fibers suitable for ligand grafting have been prepared from shrimp shell waste. These environmental benefits could be realized at a comparable cost to the reference fiber so long as the uptake can be increased or the chemical consumption cost decreased.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.
An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less
Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.
2017-06-13
An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose.more » First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-01
The uranium mill tailings site near Durango, Colorado, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's Remedial Action Plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which has been developed to serve a two-fold purpose.more » First, it describes the activities that have been conducted by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium mill processing site near Durango, Colorado. Secondly, this document and the rest of the RAP, upon concurrence and execution by the DOE, the State of Colorado, and the NRC, become Appendix B of the Cooperative Agreement between the DOE and the State of Colorado.« less
HEU Holdup Measurements on 321-M A-Lathe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewberry, R.A.
The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) of the Savannah River Site to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The results of the holdup assays are essential for determining compliance with the solid waste Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. Three measurement systems were used to determine highly enrichedmore » uranium (HEU) holdup. This report covers holdup measurements on the A-Lathe that was used to machine uranium-aluminum-alloy (U-Al). Our results indicated that the lathe contained more than the limits stated in the Waste Acceptance Criteria (WAC) for the solid waste E-Area Vaults. Thus the lathe was decontaminated three times and assayed four times in order to bring the amounts of uranium to an acceptable content. This report will discuss the methodology, Non-Destructive Assay (NDA) measurements, and results of the U-235 holdup on the lathe.« less
Finch, Warren Irvin; McCammon, Richard B.
1987-01-01
Based on the Memorandum of Understanding {MOU) of September 20, 1984, between the U.S. Geological Survey of the U.S. Department of Interior and the Energy Information Administration {EIA) of the U.S. Department of Energy {DOE), the U.S. Geological Survey began to make estimates of the undiscovered uranium endowment of selected areas of the United States in 1985. A modified NURE {National Uranium Resource Evaluation) method will be used in place of the standard NURE method of the DOE that was used for the national assessment reported in October 1980. The modified method, here named the 'deposit-size-frequency' {DSF) method, is presented for the first time, and calculations by the two methods are compared using an illustrative example based on preliminary estimates for the first area to be evaluated under the MOU. The results demonstrate that the estimate of the endowment using the DSF method is significantly larger and more uncertain than the estimate obtained by the NURE method. We believe that the DSF method produces a more realistic estimate because the principal factor estimated in the endowment equation is disaggregated into more parts and is more closely tied to specific geologic knowledge than by the NURE method. The DSF method consists of modifying the standard NURE estimation equation, U=AxFxTxG, by replacing the factors FxT by a single factor that represents the tonnage for the total number of deposits in all size classes. Use of the DSF method requires that the size frequency of deposits in a known or control area has been established and that the relation of the size-frequency distribution of deposits to probable controlling geologic factors has been determined. Using these relations, the principal scientist {PS) first estimates the number and range of size classes and then, for each size class, estimates the lower limit, most likely value, and upper limit of the numbers of deposits in the favorable area. Once these probable estimates have been refined by elicitation of the PS, they are entered into the DSF equation, and the probability distribution of estimates of undiscovered uranium endowment is calculated using a slight modification of the program by Ford and McLaren (1980). The EIA study of the viability of the domestic uranium industry requires an annual appraisal of the U.S. uranium resource situation. During DOE's NURE Program, which was terminated in 1983, a thorough assessment of the Nation's resources was completed. A comprehensive reevaluation of uranium resource base for the entire United States is not possible for each annual appraisal. A few areas are in need of future study, however, because of new developments in either scientific knowledge, industry exploration, or both. Four geologic environments have been selected for study by the U.S. Geological Survey in the next several years: (1) surficial uranium deposits throughout the conterminous United States, (2) uranium in collapse-breccia pipes in the Grand Canyon region of Arizona, (3) uranium in Tertiary sedimentary rocks of the Northern Great Plains, and (4) uranium in metamorphic rocks of the Piedmont province in the eastern States. In addition to participation in the National uranium resource assessment, the U.S. Geological Survey will take part in activities of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development and those of the International Atomic Energy Agency.
Argonne explains nuclear recycling in 4 minutes
Willit, Jim; Williamson, Mark; Haynes, Amber
2018-05-30
Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.
NASA Astrophysics Data System (ADS)
Kosarev, V. A.; Kuznetsova, E. E.
2014-02-01
The possibility of applying dusty active media in nuclearpumped lasers has been considered. The amplification of 1790-nm radiation in a nuclear-excited dusty He - Ar plasma is studied by mathematical simulation. The influence of nanoclusters on the component composition of the medium and the kinetics of the processes occurring in it is analysed using a specially developed kinetic model, including 72 components and more than 400 reactions. An analysis of the results indicates that amplification can in principle be implemented in an active laser He - Ar medium containing 10-nm nanoclusters of metallic uranium and uranium dioxide.
Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-07-01
The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meetingmore » have been cataloged separately.« less
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-01-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-08-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J
2010-02-01
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Chongzheng
2016-10-17
Many consider further development of nuclear power to be essential for sustained development of society; however, the fuel forms currently used are expensive to recycle. In this project, we sought to create the knowledge and knowhow that are needed to produce nanocomposite materials by directly depositing uranium nanoclusters on networks of carbon- based nanomaterials. The objectives of the proposed work were to (1) determine the control of uranium nanocluster surface chemistry on nanocomposite formation, (2) determine the control of carbon nanomaterial surface chemistry on nanocomposite formation, and (3) develop protocols for synthesizing uranium-carbon nanomaterials. After examining a wide variety ofmore » synthetic methods, we show that synthesizing graphene-supported UO 2 nanocrystals in polar ethylene glycol compounds by polyol reduction under boiling reflux can enable the use of an inexpensive graphene precursor graphene oxide in the production of uranium-carbon nanocomposites in a one-pot process. We further show that triethylene glycol is the most suitable solvent for producing nanometer-sized UO 2 crystals compared to monoethylene glycol, diethylene glycol, and polyethylene glycol. Graphene-supported UO 2 nanocrystals synthesized with triethylene glycol show evidence of heteroepitaxy, which can be beneficial for facilitating heat transfer in nuclear fuel particles. Furthermore, we show that graphene-supported UO 2 nanocrystals synthesized by polyol reduction can be readily stored in alcohols, preventing oxidation from the prevalent oxygen in air. Together, these methods provide a facile approach for preparing and storing graphene-supported UO nanocrystals for further investigation and development under ambient conditions.« less
Development of solid materials for UF 6 sampling: FY16 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Nicholas; Savina, Joseph; Hebden, Andrew
2016-10-31
A handheld implementation of the ABACC-developed Cristallini method, which captures uranium hexafluoride samples as an inert salt, was organized in FY17 and succeeded in demonstrating the handheld sampler concept with reactive hexafluoride gases. The Cristallini method relies on the use of a hydrated substrate to react the incoming hexafluoride resulting in the formation of a stable uranyl fluoride salt. The Cristallini method has been demonstrated as a facility modification installed near the sampling tap of a gas centrifuge enrichment plant. While very successful in reducing the hazards of uranium hexafluoride sample, the method still takes a considerable amount of timemore » and can only be used in facilities where the apparatus has been installed; this arrangement generally prohibits the sampling of filled cylinders that have already exited the facility and have been deposited in the on-site tank storage yard. The handheld unit under development will allow the use of the Cristallini method at facilities that have not been converted as well as tanks in the storage yard. The handheld system utilizes an active vacuum system, rather than a passive vacuum system in the facility setup, to drive the uranium hexafluoride onto the adsorbing media. The handheld unit will be battery operated for fully autonomous operation and will include onboard pressure sensing and flushing capability. To date, the system concept of operations was demonstrated with tungsten hexafluoride that showed the active vacuum pump with multiple cartridges of adsorbing media was viable. Concurrently, the hardened prototype system was developed and tested; removable sample cartridges were developed (the only non-COTS component to date); and preparations were made for uranium tests and a domestic field test.« less
Modeling of the dispersion of depleted uranium aerosol.
Mitsakou, C; Eleftheriadis, K; Housiadas, C; Lazaridis, M
2003-04-01
Depleted uranium is a low-cost radioactive material that, in addition to other applications, is used by the military in kinetic energy weapons against armored vehicles. During the Gulf and Balkan conflicts concern has been raised about the potential health hazards arising from the toxic and radioactive material released. The aerosol produced during impact and combustion of depleted uranium munitions can potentially contaminate wide areas around the impact sites or can be inhaled by civilians and military personnel. Attempts to estimate the extent and magnitude of the dispersion were until now performed by complex modeling tools employing unclear assumptions and input parameters of high uncertainty. An analytical puff model accommodating diffusion with simultaneous deposition is developed, which can provide a reasonable estimation of the dispersion of the released depleted uranium aerosol. Furthermore, the period of the exposure for a given point downwind from the release can be estimated (as opposed to when using a plume model). The main result is that the depleted uranium mass is deposited very close to the release point. The deposition flux at a couple of kilometers from the release point is more than one order of magnitude lower than the one a few meters near the release point. The effects due to uncertainties in the key input variables are addressed. The most influential parameters are found to be atmospheric stability, height of release, and wind speed, whereas aerosol size distribution is less significant. The output from the analytical model developed was tested against the numerical model RPM-AERO. Results display satisfactory agreement between the two models.
URANIUM LEACHING AND RECOVERY PROCESS
McClaine, L.A.
1959-08-18
A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.
Understanding Uranium Behavior in a Reduced Aquifer
NASA Astrophysics Data System (ADS)
Janot, N.; Lezama-Pacheco, J. S.; Williams, K. H.; Bernier-Latmani, R.; Long, P. E.; Davis, J. A.; Fox, P. M.; Yang, L.; Giammar, D.; Cerrato, J. M.; Bargar, J.
2012-12-01
Uranium contamination of groundwater is a concern at several US Department of Energy sites, such Old Rifle, CO. Uranium transport in the environment is mainly controlled by its oxidation state, since oxidized U(VI) is relatively mobile, whereas U(IV) is relatively insoluble. Bio-remediation of contaminated aquifers aims at immobilizing uranium in a reduced form. Previous laboratory and field studies have shown that adding electron donor (lactate, acetate, ethanol) to groundwater stimulates the activity of metal- and sulfate-reducing bacteria, which promotes U(VI) reduction in contaminated aquifers. However, obtaining information on chemical and physical forms of U, Fe and S species for sediments biostimulated in the field, as well as kinetic parameters such as U(VI) reduction rate, is challenging due to the low concentration of uranium in the aquifers (typically < 10 ppm) and the expense of collecting large number of cores. An in-situ technique has been developed for studying uranium, iron and sulfur reduction dynamics during such bioremediation episodes. This technique uses in-well columns to obtain direct access to chemical and physical forms of U(IV) produced in the aquifer, evolving microbial communities, and trace and major ion groundwater constituents. While several studies have explored bioreduction of uranium under sulfate-reducing conditions, less attention has been paid to the initial iron-reducing phase, noted as being of particular importance to uranium removal. The aim of this work was to assess the formation of U(IV) during the early stages of a bio-remediation experiment at the Old Rifle site, CO, from early iron-reducing conditions to the transition to sulfate-reducing conditions. Several in-well chromatographic columns packed with sediment were deployed and were sampled at different days after the start of bio-reduction. X-ray absorption spectroscopy and X-ray microscopy were used to obtain information on Fe, S and U speciation and distribution. Chemical extractions of the reduced sediments have also been performed, to determine the rate of Fe(II) and U(IV) accumulation.
NASA Astrophysics Data System (ADS)
Chaco, E.; Robinson, D. K.; Carlson, M.; Rock, B. N.
2010-12-01
Using ground-based mapping of private drinking water wells contaminated with uranium, we developed Landsat Thematic Mapper (TM) band combinations which indicate possible contamination of extensive areas along the Polacca Wash, the Cottonwood Wash and the Balakai Wash below Black Mesa on the Navajo Nation. The project built on water quality samples taken on unregulated wells by a Field Research Water Quality Team from Dine’ College. The Nevada State Health Laboratory analyzed twenty-six samples, and of those, 12 wells showed uranium in exceedance of 13 μR/hr, the equivalent of 114 mrem per year, greater than the Nuclear Regulatory Commission’s exposure limit of 100 mrem per year. This project hypothesized that point locations of contaminated wells could be compared with US Geologic Survey National Uranium Resource Evaluation (NURE) measures of high uranium levels in soil to identify other possible areas of contamination. We used Cluster Analysis remote sensing methods from MultiSpec© with data acquired by Landsat 5-TM satellite to produce a false color composite band combination, (7 4 2/R G B). Overlaid with a geological map, the Landsat classification correlated sections of sediment with pixilated colored minerals in the NURE data. This map shows possible high levels of uranium in the soil in the watersheds below mine and mill locations. Ground truth studies are needed to confirm the presence of uranium at these suspected sites. The larger goal of this study is to help solve the uranium contamination problem for the Navajo Nation. Chaco was one of 21 TCU (Tribal Colleges and Universities) students who participated in the 2010 NASA/AIHEC (National Aeronautics and Space Administration/American Indian Higher Education Council) Summer Research Experience program. Robinson was his TCU faculty mentor, and Carlson and Rock were Summer Research Experience instructors.
Innovative mathematical modeling in environmental remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Gour T.; National Central Univ.; Univ. of Central Florida
2013-05-01
There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out aremore » used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation.The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium.« less
Parrish, Randall R; Thirlwall, Matthew F; Pickford, Chris; Horstwood, Matthew; Gerdes, Axel; Anderson, James; Coggon, David
2006-02-01
Accidental exposure to depleted or enriched uranium may occur in a variety of circumstances. There is a need to quantify such exposure, with the possibility that the testing may post-date exposure by months or years. Therefore, it is important to develop a very sensitive test to measure precisely the isotopic composition of uranium in urine at low levels of concentration. The results of an interlaboratory comparison using sector field (SF)-inductively coupled plasma-mass spectrometry (ICP-MS) and multiple collector (MC)-ICP-MS for the measurement of uranium concentration and U/U and U/U isotopic ratios of human urine samples are presented. Three urine samples were verified to contain uranium at 1-5 ng L and shown to have natural uranium isotopic composition. Portions of these urine batches were doped with depleted uranium (DU) containing small quantities of U, and the solutions were split into 100 mL and 400 mL aliquots that were subsequently measured blind by three laboratories. All methods investigated were able to measure accurately U/U with precisions of approximately 0.5% to approximately 4%, but only selected MC-ICP-MS methods were capable of consistently analyzing U/U to reasonable precision at the approximately 20 fg L level of U abundance. Isotope dilution using a U tracer demonstrates the ability to measure concentrations to better than +/-4% with the MC-ICP-MS method, though sample heterogeneity in urine samples was shown to be problematic in some cases. MC-ICP-MS outperformed SF-ICP-MS methods, as was expected. The MC-ICP-MS methodology described is capable of measuring to approximately 1% precision the U/U of any sample of human urine over the entire range of uranium abundance down to <1 ng L, and detecting very small amounts of DU contained therein.
Potential impact of seawater uranium extraction on marine life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jiyeon; Jeters, Robert T.; Kuo, Li-Jung
A variety of adsorbent materials have been developed to extract uranium from seawater as an alternative traditional terrestrial mining. A large-scale deployment of these adsorbents would be necessary to recover useful quantities of uranium and this raises a number of concerns regarding potential impacts on the surrounding marine environment. Two concerns are whether or not the adsorbent materials are toxic and any potentially harmful effects that may result from depleting uranium or vanadium (also highly concentrated by the adsorbents) from the local environment. To test the potential toxicity of the adsorbent with or without bound metals, Microtox assays were usedmore » to test both direct contact toxicity and the toxicity of any leachate in the seawater. The Microtox assay was chosen because it the detection of non-specific mechanisms of toxicity. Toxicity was not observed with leachates from any of 68 adsorbent materials that were tested, but direct contact with some adsorbents at very high adsorbent con-centrations exhibited toxicity. These concentrations are, however, very unlikely to be seen in the actual marine deployment. Adsor-bents that accumulated uranium and trace metals were also tested for toxicity, and no toxic effect was observed. Biofouling on the adsorbents and in columns or flumes containing the adsorbents also indicates that the adsorbents are not toxic and that there may not be an obvious deleterious effect resulting from removing uranium and vanadium from seawater. An extensive literature search was also performed to examine the potential impact of uranium and vanadium extraction from seawater on marine life using the Pacific Northwest National Laboratory’s (PNNL’s) document analysis tool, IN-SPIRE™. Although other potential environmental effects must also be considered, results from both the Microtox assay and the literature search provide preliminary evidence that uranium extraction from seawater could be performed with minimal impact on marine fauna.« less
Xing, Shan; Zhang, Weichao; Qiao, Jixin; Hou, Xiaolin
2018-09-01
In order to measure trace plutonium and its isotopes ratio ( 240 Pu/ 239 Pu) in environmental samples with a high uranium, an analytical method was developed using radiochemical separation for separation of plutonium from matrix and interfering elements including most of uranium and ICP-MS for measurement of plutonium isotopes. A novel measurement method was established for extensively removing the isobaric interference from uranium ( 238 U 1 H and 238 UH 2 + ) and tailing of 238 U, but significantly improving the measurement sensitivity of plutonium isotopes by employing NH 3 /He as collision/reaction cell gases and MS/MS system in the triple quadrupole ICP-MS instrument. The results show that removal efficiency of uranium interference was improved by more than 15 times, and the sensitivity of plutonium isotopes was increased by a factor of more than 3 compared to the conventional ICP-MS. The mechanism on the effective suppress of 238 U interference for 239 Pu measurement using NH 3 -He reaction gases was explored to be the formation of UNH + and UNH 2 + in the reactions of UH + and U + with NH 3 , while no reaction between NH 3 and Pu + . The detection limits of this method were estimated to be 0.55 fg mL -1 for 239 Pu, 0.09 fg mL -1 for 240 Pu. The analytical precision and accuracy of the method for Pu isotopes concentration and 240 Pu/ 239 Pu atomic ratio were evaluated by analysis of sediment reference materials (IAEA-385 and IAEA-412) with different levels of plutonium and uranium. The developed method were successfully applied to determine 239 Pu and 240 Pu concentrations and 240 Pu/ 239 Pu atomic ratios in soil samples collected in coastal areas of eastern China. Copyright © 2018 Elsevier B.V. All rights reserved.
The manufacture of LEU fuel elements at Dounreay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, J.
1997-08-01
Two LEU test elements are being manufactured at Dounreay for test irradiation in the HFR at Petten, The Netherlands. This paper describes the installation of equipment and the development of the fabrication and inspection techniques necessary for the manufacture of LEU fuel plates. The author`s experience in overcoming the technical problems of stray fuel particles, dog-boning, uranium homogeneity and the measurement of uranium distribution is also described.
A Delayed Neutron Counting System for the Analysis of Special Nuclear Materials
NASA Astrophysics Data System (ADS)
Sellers, Madison Theresa
Nuclear forensic analysis is a modem science that uses numerous analytical techniques to identify and attribute nuclear materials in the event of a nuclear explosion, radiological terrorist attack or the interception of illicit nuclear material smuggling. The Canadian Department of National Defence has participated in recent international exercises that have highlighted the Nation's requirement to develop nuclear forensics expertise, protocol and capabilities, specifically pertaining to the analysis of special nuclear materials (SNM). A delayed neutron counting (DNC) system has been designed and established at the Royal Military College of Canada (RMC) to enhance the Government's SNM analysis capabilities. This analytical technique complements those already at RMC by providing a rapid and non-destructive method for the analysis of the fissile isotopes of both uranium (U) and plutonium (Pu). The SLOWPOKE-2 reactor at RMC produces a predominately thermal neutron flux. These neutrons induce fission in the SNM isotopes 233U, 235U and 239Pu releasing prompt fast neutrons, energy and radioactive fission fragments. Some of these fission fragments undergo beta - decay and subsequently emit neutrons, which can be recorded by an array of sensitive 3He detectors. The significant time period between the fission process and the release of these neutrons results in their identification as 'delayed neutrons'. The recorded neutron spectrum varies with time and the count rate curve is unique to each fissile isotope. In-house software, developed by this project, can analyze this delayed neutron curve and provides the fissile mass in the sample. Extensive characterization of the DNC system has been performed with natural U samples with 235 U content ranging from 2--7 microg. The system efficiency and dead time behaviour determined by the natural uranium sample analyses were validated by depleted uranium samples with similar quantities of 235 U resulting in a typical relative error of 3.6%. The system has accurately determined 235U content over three orders of magnitude with 235U amounts as low as 10 ng. The results have also been proven to be independent of small variations in total analyte volume and geometry, indicating that it is an ideal technique for the analysis of samples containing SNM in a variety of different matrices. The Analytical Sciences Group at RMC plans to continue DNC system development to include 233U and 239pu analysis and mixtures of SNM isotopes. Keywords: delayed neutron counting, special nuclear materials, nuclear forensics.
Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C
2013-12-15
Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
History of fast reactor fuel development
NASA Astrophysics Data System (ADS)
Kittel, J. H.; Frost, B. R. T.; Mustelier, J. P.; Bagley, K. Q.; Crittenden, G. C.; Van Dievoet, J.
1993-09-01
The first fast breeder reactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, John P.
1992-01-01
A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.
Liang, Xinjin; Csetenyi, Laszlo; Gadd, Geoffrey Michael
2016-06-01
In this research, we have demonstrated the ability of several yeast species to mediate U(VI) biomineralization through uranium phosphate biomineral formation when utilizing an organic source of phosphorus (glycerol 2-phosphate disodium salt hydrate (C3H7Na2O6P·xH2O (G2P)) or phytic acid sodium salt hydrate (C6H18O24P6·xNa(+)·yH2O (PyA))) in the presence of soluble UO2(NO3)2. The formation of meta-ankoleite (K2(UO2)2(PO4)2·6(H2O)), chernikovite ((H3O)2(UO2)2(PO4)2·6(H2O)), bassetite (Fe(++)(UO2)2(PO4)2·8(H2O)), and uramphite ((NH4)(UO2)(PO4)·3(H2O)) on cell surfaces was confirmed by X-ray diffraction in yeasts grown in a defined liquid medium amended with uranium and an organic phosphorus source, as well as in yeasts pre-grown in organic phosphorus-containing media and then subsequently exposed to UO2(NO3)2. The resulting minerals depended on the yeast species as well as physico-chemical conditions. The results obtained in this study demonstrate that phosphatase-mediated uranium biomineralization can occur in yeasts supplied with an organic phosphate substrate as sole source of phosphorus. Further understanding of yeast interactions with uranium may be relevant to development of potential treatment methods for uranium waste and utilization of organic phosphate sources and for prediction of microbial impacts on the fate of uranium in the environment.
Aruscavage, P. J.; Millard, H.T.
1972-01-01
A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.
Formation of unprecedented actinidecarbon triple bonds in uranium methylidyne molecules
Lyon, Jonathan T.; Hu, Han-Shi; Andrews, Lester; Li, Jun
2007-01-01
Chemistry of the actinide elements represents a challenging yet vital scientific frontier. Development of actinide chemistry requires fundamental understanding of the relative roles of actinide valence-region orbitals and the nature of their chemical bonding. We report here an experimental and theoretical investigation of the uranium methylidyne molecules X3UCH (X = F, Cl, Br), F2ClUCH, and F3UCF formed through reactions of laser-ablated uranium atoms and trihalomethanes or carbon tetrafluoride in excess argon. By using matrix infrared spectroscopy and relativistic quantum chemistry calculations, we have shown that these actinide complexes possess relatively strong UC triple bonds between the U 6d-5f hybrid orbitals and carbon 2s-2p orbitals. Electron-withdrawing ligands are critical in stabilizing the U(VI) oxidation state and sustaining the formation of uranium multiple bonds. These unique UC-bearing molecules are examples of the long-sought actinide-alkylidynes. This discovery opens the door to the rational synthesis of triple-bonded actinidecarbon compounds. PMID:18024591
Development of UO2/PuO2 dispersed in uranium matrix CERMET fuel system for fast reactors
NASA Astrophysics Data System (ADS)
Sinha, V. P.; Hegde, P. V.; Prasad, G. J.; Pal, S.; Mishra, G. P.
2012-08-01
CERMET fuel with either PuO2 or enriched UO2 dispersed in uranium metal matrix has a strong potential of becoming a fuel for the liquid metal cooled fast breeder reactors (LMR's). In fact it may act as a bridge between the advantages and disadvantages associated with the two extremes of fuel systems (i.e. ceramic fuel and metallic fuel) for fast reactors. At Bhabha Atomic Research Centre (BARC), R & D efforts are on to develop this CERMET fuel by powder metallurgy route. This paper describes the development of flow sheet for preparation of UO2 dispersed in uranium metal matrix pellets for three different compositions i.e. U-20 wt%UO2, U-25 wt%UO2 and U-30 wt%UO2. It was found that the sintered pellets were having excellent integrity and their linear mass was higher than that of carbide fuel pellets used in Fast Breeder Test Reactor programme (FBTR) in India. The pellets were characterized by X-ray diffraction (XRD) technique for phase analysis and lattice parameter determination. The optical microstructures were developed and reported for all the three different U-UO2 compositions.
Method of preparation of uranium nitride
Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James
2013-07-09
Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES
Hamilton, N.E.
1957-12-01
A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
Duval, Christine E; DeVol, Timothy A; Husson, Scott M
2016-12-01
This contribution describes the synthesis of robust extractive scintillating resin and its use in a flow-cell detector for the direct detection of uranium in environmental waters. The base poly[(4-methyl styrene)-co-(4-vinylbenzyl chloride)-co-(divinylbenzene)-co-(2-(1-napthyl)-4-vinyl-5-phenyloxazole)] resin contains covalently bound fluorophores. Uranium-binding functionality was added to the resin by an Arbuzov reaction followed by hydrolysis via strong acid or trimethylsilyl bromide (TMSBr)-mediated methanolysis. The resin was characterized by Fourier-transform infrared spectroscopy and spectrofluorometry. Fluorophore degradation was observed in the resin hydrolyzed by strong acid, while the resin hydrolyzed by TMSBr-mediated methanolysis maintained luminosity and showed hydrogen bonding-induced Stokes' shift of ∼100 nm. The flow cell detection efficiency for uranium of the TMSBr-mediated methanolysis resin was evaluated at pH 4, 5 and 6 in DI water containing 500 Bq L -1 uranium-233 and demonstrated flow cell detection efficiencies of 23%, 16% and 7%. Experiments with pH 4, synthetic groundwater with 50 Bq L -1 uranium-233 exhibited a flow cell detection efficiency of 17%. The groundwater measurements show that the resins can concentrate the uranyl cation from waters with high concentrations of competitor ions at near-neutral pH. Findings from this research will lay the groundwork for development of materials for real-time environmental sensing of alpha- and beta-emitting radionuclides. Copyright © 2016 Elsevier B.V. All rights reserved.
Nonproliferation Challenges in Space Defense Technology - PANEL
NASA Technical Reports Server (NTRS)
Houts, Michael G.
2016-01-01
The use of highly enriched uranium (HEU) almost always "helps" space fission systems. Nuclear Thermal Propulsion (NTP) and high power fission electric systems appear able to use < 20% enriched uranium with minimal / acceptable performance impacts. However, lower power, "entry level" systems may be needed for space fission technology to be developed and utilized. Low power (i.e. approx.1 kWe) fission systems may have an unacceptable performance penalty if LEU is used instead of HEU. Are there Ways to Support Non-Proliferation Objectives While Simultaneously Helping Enable the Development and Utilization of Modern Space Fission Power and Propulsion Systems?
U-235 Holdup Measurements in the 321-M Lathe HEPA Banks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salaymeh, S.R.
The Analytical Development Section of Savannah River Technology Center (SRTC) was requested by the Facilities Decommissioning Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The results of the holdup assays are essential for determining compliance with the Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report covers holdup measurements of uranium residue in six high efficiency particulate air (HEPA) filter banks of the A-lathe and B-lathe exhaust systems of the 321-M facility. This report discusses the non-destructive assay measurements,more » assumptions, calculations, and results of the uranium holdup in these six items.« less