Sample records for developing rat brain

  1. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats

    PubMed Central

    Pong, Alice C.; Jugé, Lauriane; Bilston, Lynne E.; Cheng, Shaokoon

    2017-01-01

    Introduction Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Methods Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Results Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. Conclusions This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our previous findings in juvenile hydrocephalic rats which had significantly less brain compression (as the brain circumference was able to stretch with the cranium due to the open skull sutures) and had a significant increase in caudate putamen stiffness. These results suggest that change in brain mechanical properties in hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus. PMID:28837671

  2. Development of acute hydrocephalus does not change brain tissue mechanical properties in adult rats, but in juvenile rats.

    PubMed

    Pong, Alice C; Jugé, Lauriane; Bilston, Lynne E; Cheng, Shaokoon

    2017-01-01

    Regional changes in brain stiffness were previously demonstrated in an experimental obstructive hydrocephalus juvenile rat model. The open cranial sutures in the juvenile rats have influenced brain compression and mechanical properties during hydrocephalus development and the extent by which closed cranial sutures in adult hydrocephalic rat models affect brain stiffness in-vivo remains unclear. The aims of this study were to determine changes in brain tissue mechanical properties and brain structure size during hydrocephalus development in adult rat with fixed cranial volume and how these changes were related to brain tissue deformation. Hydrocephalus was induced in 9 female ten weeks old Sprague-Dawley rats by injecting 60 μL of a kaolin suspension (25%) into the cisterna magna under anaesthesia. 6 sham-injected age-matched female SD rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before and then at 3 days post injection. T2-weighted anatomical MR images were collected to quantify ventricle and brain tissue cross-sectional areas. MR elastography (800 Hz) was used to measure the brain stiffness (G*, shear modulus). Brain tissue in the adult hydrocephalic rats was more compressed than the juvenile hydrocephalic rats because the skulls of the adult hydrocephalic rats were unable to expand like the juvenile rats. In the adult hydrocephalic rats, the cortical gray matter thickness and the caudate-putamen cross-sectional area decreased (Spearman, P < 0.001 for both) but there were no significant changes in cranial cross-sectional area (Spearman, P = 0.35), cortical gray matter stiffness (Spearman, P = 0.24) and caudate-putamen (Spearman, P = 0.11) stiffness. No significant changes in the size of brain structures were observed in the controls. This study showed that although brain tissue in the adult hydrocephalic rats was severely compressed, their brain tissue stiffness did not change significantly. These results are in contrast with our previous findings in juvenile hydrocephalic rats which had significantly less brain compression (as the brain circumference was able to stretch with the cranium due to the open skull sutures) and had a significant increase in caudate putamen stiffness. These results suggest that change in brain mechanical properties in hydrocephalus is complex and is not solely dependent on brain tissue deformation. Further studies on the interactions between brain tissue stiffness, deformation, tissue oedema and neural damage are necessary before MRE can be used as a tool to track changes in brain biomechanics in hydrocephalus.

  3. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    PubMed

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  4. Increased brain lactate is central to the development of brain edema in rats with chronic liver disease.

    PubMed

    Bosoi, Cristina R; Zwingmann, Claudia; Marin, Helen; Parent-Robitaille, Christian; Huynh, Jimmy; Tremblay, Mélanie; Rose, Christopher F

    2014-03-01

    The pathogenesis of brain edema in patients with chronic liver disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol and taurine, in the development of brain edema in a rat model of cirrhosis. Six-week bile-duct ligated (BDL) rats were injected with (13)C-glucose and de novo synthesis of lactate, and glutamine in the brain was quantified using (13)C nuclear magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were measured using (1)H NMR or high performance liquid chromatography. To further define the interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 (engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis inhibitor). Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two treatments did not lead to similar reductions in brain glutamine. Increased brain lactate, and not glutamine, is a primary player in the pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new potential target for the treatment of HE. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  5. Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain.

    PubMed

    Manthey, Daniela; Asimiadou, Stella; Stefovska, Vanya; Kaindl, Angela M; Fassbender, Jessica; Ikonomidou, Chrysanthy; Bittigau, Petra

    2005-06-01

    Antiepileptic drugs (AEDs) used to treat seizures in pregnant women, infants, and young children can cause cognitive impairment. One mechanism implicated in the development of neurocognitive deficits is a pathologic enhancement of physiologically occurring apoptotic neuronal death in the developing brain. We investigated whether the newer antiepileptic drug levetiracetam (LEV) and the older antiepileptic drug sulthiame (SUL) have neurotoxic properties in the developing rat brain. SUL significantly enhanced neuronal death in the brains of rat pups ages 0 to 7 days at doses of 100 mg/kg and above, whereas LEV did not show this neurotoxic effect. Dosages of both drugs used in the context of this study comply with an effective anticonvulsant dose range applied in rodent seizure models. Thus, LEV is an AED which lacks neurotoxicity in the developing rat brain and should be considered in the treatment of epilepsy in pregnant women, infants, and toddlers once general safety issues have been properly addressed.

  6. Oxidative stress of brain and liver is increased by Wi-Fi (2.45GHz) exposure of rats during pregnancy and the development of newborns.

    PubMed

    Çelik, Ömer; Kahya, Mehmet Cemal; Nazıroğlu, Mustafa

    2016-09-01

    An excessive production of reactive oxygen substances (ROS) and reduced antioxidant defence systems resulting from electromagnetic radiation (EMR) exposure may lead to oxidative brain and liver damage and degradation of membranes during pregnancy and development of rat pups. We aimed to investigate the effects of Wi-Fi-induced EMR on the brain and liver antioxidant redox systems in the rat during pregnancy and development. Sixteen pregnant rats and their 48 newborns were equally divided into control and EMR groups. The EMR groups were exposed to 2.45GHz EMR (1h/day for 5 days/week) from pregnancy to 3 weeks of age. Brain cortex and liver samples were taken from the newborns between the first and third weeks. In the EMR groups, lipid peroxidation levels in the brain and liver were increased following EMR exposure; however, the glutathione peroxidase (GSH-Px) activity, and vitamin A, vitamin E and β-carotene concentrations were decreased in the brain and liver. Glutathione (GSH) and vitamin C concentrations in the brain were also lower in the EMR groups than in the controls; however, their concentrations did not change in the liver. In conclusion, Wi-Fi-induced oxidative stress in the brain and liver of developing rats was the result of reduced GSH-Px, GSH and antioxidant vitamin concentrations. Moreover, the brain seemed to be more sensitive to oxidative injury compared to the liver in the development of newborns. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals.

    PubMed

    Doi, Kunio

    2011-01-01

    It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.

  8. Hyperpolarized xenon magnetic resonance of the lung and the brain

    NASA Astrophysics Data System (ADS)

    Venkatesh, Arvind Krishnamachari

    2001-04-01

    Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI can be used to develop unique approaches to studying white matter and gray matter in the brain. Some of the possible applications of hyperpolarized xenon MRI in the brain are clinical diagnosis of white matter diseases, functional MRI (fMRI) and measurement of cerebral blood perfusion.

  9. Oxcarbazepine causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

    PubMed

    Song, Y; Zhong, M; Cai, F-C

    2018-01-01

    Anti-epileptic drugs (AEDs) are the main methods for treatment of neonatal seizures; however, a few AEDs may cause developing brain damage of neonate. This study aims to investigate effects of oxcarbazepine (OXC) on developing brain damage of neonatal rats. Both of neonatal and adult rats were divided into 6 groups, including Control, OXC 187.5 mg/kg, OXC 281.25 mg/kg, OXC 375 mg/kg group, LEV and PHT group. Body weight and brain weight were evaluated. Hematoxylin and eosin (HE) and Nissl staining were used to observe neurocyte morphology and Nissl bodies, respectively. Apoptosis was examined using TUNEL assay, and caspase 8 activity was evaluated using spectrophotometer method. Cytochrome C-release was evaluated using flow cytometry. Western blot was used to examine Bax and Bcl-2 expression. OXC 375 mg/kg treatment significantly decreased brain weight compared to Control group in neonatal rats (P5 rats) (p<0.05). OXC administration causes histological changes of neurocytes. OXC 281.25 mg/kg or more concentration significantly decreased neurocytes counts and increased TUNEL-staining positive neurocytes compared to Control group (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased caspase 3 activity compared to Control group in P5 rats (p<0.05). OXC 281.25 mg/kg and OXC 375 mg/kg significantly increased Bax, Bax/Bcl-2 ratio and cytochrome C release in frontal lobes compared to Control group in P5 rats (p<0.05). Oxcarbazepine at a concentration of 281.25 mg/kg or more causes neurocyte apoptosis and developing brain damage by triggering Bax/Bcl-2 signaling pathway mediated caspase 3 activation in neonatal rats.

  10. Environmental enrichment protects spatial learning and hippocampal neurons from the long-lasting effects of protein malnutrition early in life.

    PubMed

    Soares, Roberto O; Horiquini-Barbosa, Everton; Almeida, Sebastião S; Lachat, João-José

    2017-09-29

    As early protein malnutrition has a critically long-lasting impact on the hippocampal formation and its role in learning and memory, and environmental enrichment has demonstrated great success in ameliorating functional deficits, here we ask whether exposure to an enriched environment could be employed to prevent spatial memory impairment and neuroanatomical changes in the hippocampus of adult rats maintained on a protein deficient diet during brain development (P0-P35). To elucidate the protective effects of environmental enrichment, we used the Morris water task and neuroanatomical analysis to determine whether changes in spatial memory and number and size of CA1 neurons differed significantly among groups. Protein malnutrition and environmental enrichment during brain development had significant effects on the spatial memory and hippocampal anatomy of adult rats. Malnourished but non-enriched rats (MN) required more time to find the hidden platform than well-nourished but non-enriched rats (WN). Malnourished but enriched rats (ME) performed better than the MN and similarly to the WN rats. There was no difference between well-nourished but non-enriched and enriched rats (WE). Anatomically, fewer CA1 neurons were found in the hippocampus of MN rats than in those of WN rats. However, it was also observed that ME and WN rats retained a similar number of neurons. These results suggest that environmental enrichment during brain development alters cognitive task performance and hippocampal neuroanatomy in a manner that is neuroprotective against malnutrition-induced brain injury. These results could have significant implications for malnourished infants expected to be at risk of disturbed brain development. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of a brain monitoring system for multimodality investigation in awake rats.

    PubMed

    Limnuson, Kanokwan; Narayan, Raj K; Chiluwal, Amrit; Bouton, Chad; Ping Wang; Chunyan Li

    2016-08-01

    Multimodal brain monitoring is an important approach to gain insight into brain function, modulation, and pathology. We have developed a unique micromachined neural probe capable of real-time continuous monitoring of multiple physiological, biochemical and electrophysiological variables. However, to date, it has only been used in anesthetized animals due to a lack of an appropriate interface for awake animals. We have developed a versatile headstage for recording the small neural signal and bridging the sensors to the remote sensing units for multimodal brain monitoring in awake rats. The developed system has been successfully validated in awake rats by simultaneously measuring four cerebral variables: electrocorticography, oxygen tension, temperature and cerebral blood flow. Reliable signal recordings were obtained with minimal artifacts from movement and environmental noise. For the first time, multiple variables of cerebral function and metabolism were simultaneously recorded from awake rats using a single neural probe. The system is envisioned for studying the effects of pharmacologic treatments, mapping the development of central nervous system diseases, and better understanding normal cerebral physiology.

  12. Development of antibodies against the rat brain somatostatin receptor.

    PubMed

    Theveniau, M; Rens-Domiano, S; Law, S F; Rougon, G; Reisine, T

    1992-05-15

    Somatostatin (SRIF) is a neurotransmitter in the brain involved in the regulation of motor activity and cognition. It induces its physiological actions by interacting with receptors. We have developed antibodies against the receptor to investigate its structural properties. Rabbit polyclonal antibodies were generated against the rat brain SRIF receptor. These antibodies (F4) were able to immunoprecipitate solubilized SRIF receptors from rat brain and the cell line AtT-20. The specificity of the interaction of these antibodies with SRIF receptors was further demonstrated by immunoblotting. F4 detected SRIF receptors of 60 kDa from rat brain and adrenal cortex and the cell lines AtT-20, GH3, and NG-108, which express high densities of SRIF receptors. They did not detect immunoreactive material from rat liver or COS-1, HEPG, or CRL cells, which do not express functional SRIF receptors. In rat brain, 60-kDa immunoreactivity was detected by F4 in the hippocampus, cerebral cortex, and striatum, which have high densities of SRIF receptors. However, F4 did not interact with proteins from cerebellum and brain stem, which express few SRIF receptors. Immunoreactive material cannot be detected in rat pancreas or pituitary, which have been reported to express a 90-kDa SRIF receptor subtype. The selective detection of 60-kDa SRIF receptors by F4 indicates that the 60- and 90-kDa SRIF receptor subtypes are immunologically distinct. The availability of antibodies that selectively detect native and denatured brain SRIF receptors provides us with a feasible approach to clone the brain SRIF receptor gene(s).

  13. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain.

    PubMed

    Shah, Shahid Ali; Amin, Faiz Ul; Khan, Mehtab; Abid, Muhammad Noman; Rehman, Shafiq Ur; Kim, Tae Hyun; Kim, Min Woo; Kim, Myeong Ok

    2016-11-08

    Glutamate-induced excitotoxicity, oxidative damage, and neuroinflammation are believed to play an important role in the development of a number of CNS disorders. We recently reported that a high dose of glutamate could induce AMPK-mediated neurodegeneration in the postnatal day 7 (PND7) rat brain. Yet, the mechanism of glutamate-induced oxidative stress and neuroinflammation in the postnatal brain is not well understood. Here, we report for the first time the mechanism of glutamate-induced oxidative damage, neuroinflammation, and neuroprotection by polyphenolic anthocyanins in PND7. PND7 rat brains, SH-SY5Y, and BV2 cells treated either alone with glutamate or in combination with anthocyanins and compound C were examined with Western blot and immunofluorescence techniques. Additionally, reactive oxygen species (ROS) assay and other ELISA kit assays were employed to know the therapeutic efficacy of anthocyanins against glutamate. A single injection of glutamate to developing rats significantly increased brain glutamate levels, activated and phosphorylated AMPK induction, and inhibited nuclear factor-E2-related factor 2 (Nrf2) after 2, 3, and 4 h in a time-dependent manner. In contrast, anthocyanin co-treatment significantly reduced glutamate-induced AMPK induction, ROS production, neuroinflammation, and neurodegeneration in the developing rat brain. Most importantly, anthocyanins increased glutathione (GSH and GSSG) levels and stimulated the endogenous antioxidant system, including Nrf2 and heme oxygenase-1 (HO-1), against glutamate-induced oxidative stress. Interestingly, blocking AMPK with compound C in young rats abolished glutamate-induced neurotoxicity. Similarly, all these experiments were replicated in SH-SY5Y cells by silencing AMPK with siRNA, which suggests that AMPK is the key mediator in glutamate-induced neurotoxicity. Here, we report for the first time that anthocyanins can potentially decrease glutamate-induced neurotoxicity in young rats. Our work demonstrates that glutamate is toxic to the developing rat brain and that anthocyanins can minimize the severity of glutamate-induced neurotoxicity in an AMPK-dependent manner.

  14. Brain heparan sulphate proteoglycans are altered in developing foetus when exposed to in-utero hyperglycaemia.

    PubMed

    Sandeep, M S; Nandini, C D

    2017-08-01

    In-utero exposure of foetus to hyperglycaemic condition affects the growth and development of the organism. The brain is one of the first organs that start to develop during embryonic period and glycosaminoglycans (GAGs) and proteoglycans (PGs) are one of the key molecules involved in its development. But studies on the effect of hyperglycaemic conditions on brain GAGs/PGs are few and far between. We, therefore, looked into the changes in brain GAGs and PGs at various developmental stages of pre- and post-natal rats from non-diabetic and diabetic mothers as well as in adult rats induced with diabetes using a diabetogenic agent, Streptozotocin. Increased expression of GAGs especially that of heparan sulphate class in various developmental stages were observed in the brain as a result of in-utero hyperglycaemic condition but not in that of adult rats. Changes in disaccharides of heparan sulphate (HS) were observed in various developmental stages. Furthermore, various HSPGs namely, syndecans-1 and -3 and glypican-1 were overexpressed in offspring from diabetic mother. However, in adult diabetic rats, only glypican-1 was overexpressed. The offsprings from diabetic mothers became hyperphagic at the end of 8 weeks after birth which can have implications in the long run. Our results highlight the likely impact of the in-utero exposure of foetus to hyperglycaemic condition on brain GAGs/PGs compared to diabetic adult rats.

  15. Thyroid insufficiency in developing rat brain: A genomic analysis.

    EPA Science Inventory

    Thyroid Insufficiency in the Developing Rat Brain: A Genomic Analysis. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption (ED) is an area of major concern in environmental neurotoxicity. Severe deficits in thyroid hormone (TH) levels have bee...

  16. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress.

    PubMed

    Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian

    2018-02-01

    Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  17. Development of brain-wide connectivity architecture in awake rats.

    PubMed

    Ma, Zilu; Ma, Yuncong; Zhang, Nanyin

    2018-08-01

    Childhood and adolescence are both critical developmental periods, evidenced by complex neurophysiological changes the brain undergoes and high occurrence rates of neuropsychiatric disorders during these periods. Despite substantial progress in elucidating the developmental trajectories of individual neural circuits, our knowledge of developmental changes of whole-brain connectivity architecture in animals is sparse. To fill this gap, here we longitudinally acquired rsfMRI data in awake rats during five developmental stages from juvenile to adulthood. We found that the maturation timelines of brain circuits were heterogeneous and system specific. Functional connectivity (FC) tended to decrease in subcortical circuits, but increase in cortical circuits during development. In addition, the developing brain exhibited hemispheric functional specialization, evidenced by reduced inter-hemispheric FC between homotopic regions, and lower similarity of region-to-region FC patterns between the two hemispheres. Finally, we showed that whole-brain network development was characterized by reduced clustering (i.e. local communication) but increased integration (distant communication). Taken together, the present study has systematically characterized the development of brain-wide connectivity architecture from juvenile to adulthood in awake rats. It also serves as a critical reference point for understanding circuit- and network-level changes in animal models of brain development-related disorders. Furthermore, FC data during brain development in awake rodents contain high translational value and can shed light onto comparative neuroanatomy. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. THYROID INSUFFICIENCY AND GENE EXPRESSION IN DEVELOPING RAT BRAIN: A DOSE RESPONSE STUDY.

    EPA Science Inventory

    Thyroid Insufficiency and Gene Expression in Developing Rat Brain: A Dose Response Study. JE Royland and ME Gilbert, Neurotox. Div., U.S. EPA, RTP, NC, USA. Endocrine disruption is an area of major concern in environmental neurotoxicity. Deficits in thyroid hormone (TH) levels h...

  19. DEVELOPMENTAL HYPOTHYROIDISM INDUCES A NEURONAL HETEROTOPIA IN THE CORPUS CALLOSUM OF THE RAT.

    EPA Science Inventory

    It is well established that severe hypothyroidism leads to profound alterations in brain development and mental retardation. In this study we examined the effect of subtle decreases in maternal thyroid hormones (TH) on brain development in the rat. To induce TH insufficiency pr...

  20. Effect of maternal excessive sodium intake on postnatal brain development in rat offspring.

    PubMed

    Shin, Jung-a; Ahn, Young-mo; Lee, Hye-ah; Park, Hyesook; Kim, Young-ju; Lee, Hwa-young

    2015-04-01

    Postnatal brain development is affected by the in utero environment. Modern people usually have a high sodium intake. The aim of this study was to investigate the effect of sodium hyperingestion during pregnancy on the postnatal brain development of rat offspring. The sodium-overloaded rats received 1.8% NaCl in their drinking water for 7 days during the last week of gestation. Their body weight, urine, and blood levels of sodium and other parameters were measured. Some rats were sacrificed at pregnancy day 22 and the weight and length of the placenta and foetus were measured. The cerebral cortex and hippocampus were obtained from their offspring at postnatal day 1 and at postnatal weeks 1, 2, 4, and 8. Western blot analyses were conducted with brain tissue lysates. The sodium-overloaded animals had decreased weight gain in the last week of gestation as well as decreased food intake, increased water intake, urine volume, urine sodium, and serum sodium. There were no differences in placental weight and length. The foetuses of sodium-overloaded rats showed decreased body weight and size, and this difference was maintained postnatally for 2 weeks. In the cerebral cortex and hippocampus of the offspring, the protein levels of myelin basic protein, calmodulin/calcium-dependent protein kinase II, and brain-derived neurotrophic factor were decreased or aberrantly expressed. The present data suggest that increased sodium intake during pregnancy affects the brain development of the offspring.

  1. 26Al incorporation into the tissues of suckling rats through maternal milk

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Nagai, H.; Kobayashi, K.; Tada, W.; Horikawa, T.; Matsuzaki, H.

    2004-08-01

    Aluminium (Al) is highly neurotoxic and inhibits prenatal and postnatal development of the brain in humans and experimental animals. However, Al incorporation into the brain of sucklings through maternal milk has not yet been well clarified because Al lacks a suitable isotope for radioactive tracer experiments. Using 26Al as a tracer, we measured 26Al incorporation into the brain of suckling rats by accelerator mass spectrometry. Lactating rats were subcutaneously injected with 26AlCl3 from day 1 to day 20 postpartum. Suckling rats were weaned from day 21 postpartum. From day 5 to day 20 postpartum, the 26Al levels measured in the brain, liver, kidneys and bone of suckling rats increased significantly. After weaning, the amounts of 26Al in the liver and kidneys decreased remarkably. However, the 26Al amount in the brain had diminished only slightly up to 140 days after weaning.

  2. Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800 MHz)-induced oxidative stress in rats during pregnancy and the development of offspring.

    PubMed

    Çetin, Hasan; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Pastacı, Nural; Özkaya, Mehmet Okan

    2014-12-01

    The present study determined the effects of mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) exposure on oxidative stress in the brain and liver as well as the element levels in growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their offspring were equally divided into three different groups: the control, 900 MHz, and 1800 MHz groups. The 900 MHz and 1800 MHz groups were exposed to EMR for 60 min/d during pregnancy and neonatal development. At the 4th, 5th, and 6th weeks of the experiment, brain samples were obtained. Brain and liver glutathione peroxidase activities, as well as liver vitamin A and β-carotene concentrations decreased in the EMR groups, although brain iron, vitamin A, and β-carotene concentrations increased in the EMR groups. In the 6th week, selenium concentrations in the brain decreased in the EMR groups. There were no statistically significant differences in glutathione, vitamin E, chromium, copper, magnesium, manganese, and zinc concentrations between the three groups. EMR-induced oxidative stress in the brain and liver was reduced during the development of offspring. Mobile phone-induced EMR could be considered as a cause of oxidative brain and liver injury in growing rats.

  3. Altered metabolic activity in the developing brain of rats predisposed to high versus low depression-like behavior

    PubMed Central

    Melendez-Ferro, Miguel; Perez-Costas, Emma; Glover, Matthew E.; Jackson, Nateka L.; Stringfellow, Sara A.; Pugh, Phyllis C.; Fant, Andrew D.; Clinton, Sarah M.

    2016-01-01

    Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051

  4. Evaluation of passive avoidance learning and spatial memory in rats exposed to low levels of lead during specific periods of early brain development.

    PubMed

    Rao Barkur, Rajashekar; Bairy, Laxminarayana K

    2015-01-01

    Widespread use of heavy metal lead (Pb) for various commercial purposes has resulted in the environmental contamination caused by this metal. The studies have shown a definite relationship between low level lead exposure during early brain development and deficit in children's cognitive functions. This study investigated the passive avoidance learning and spatial learning in male rat pups exposed to lead through their mothers during specific periods of early brain development. Experimental male rats were divided into 5 groups: i) the normal control group (NC) (N = 12) consisted of rat offspring born to mothers who were given normal drinking water throughout gestation and lactation, ii) the pre-gestation lead exposed group (PG) (N = 12) consisted of rat offspring, mothers of these rats had been exposed to 0.2% lead acetate in the drinking water for 1 month before conception, iii) the gestation lead exposed group (G) (N = 12) contained rat offspring born to mothers who had been exposed to 0.2% lead acetate in the drinking water throughout gestation, iv) the lactation lead exposed group (L) (N = 12) had rat offspring, mothers of these rats exposed to 0.2% lead acetate in the drinking water throughout lactation and v) the gestation and lactation lead exposed group (GL) (N = 12) contained rat offspring, mothers of these rats were exposed to 0.2% lead acetate throughout gestation and lactation. The study found deficit in passive avoidance learning in the G, L and GL groups of rats. Impairment in spatial learning was found in the PG, G, L and GL groups of rats. Interestingly, the study found that gestation period only and lactation period only lead exposure was sufficient to cause deficit in learning and memory in rats. The extent of memory impairment in the L group of rats was comparable with the GL group of rats. So it can be said that postnatal period of brain development is more sensitive to neurotoxicity compared to prenatal exposure. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  5. Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid.

    PubMed

    Martin, C; Alonso, M I; Santiago, C; Moro, J A; De la Mano, A; Carretero, R; Gato, A

    2009-11-01

    Cerebrospinal fluid has shown itself to be an essential brain component during development. This is particularly evident at the earliest stages of development where a lot of research, performed mainly in chick embryos, supports the evidence that cerebrospinal fluid is involved in different mechanisms controlling brain growth and morphogenesis, by exerting a trophic effect on neuroepithelial precursor cells (NPC) involved in controlling the behaviour of these cells. Despite it being known that cerebrospinal fluid in mammals is directly involved in corticogenesis at fetal stages, the influence of cerebrospinal fluid on the activity of NPC at the earliest stages of brain development has not been demonstrated. Here, using "in vitro" organotypic cultures of rat embryo brain neuroepithelium in order to expose NPC to or deprive them of cerebrospinal fluid, we show that the neuroepithelium needs the trophic influence of cerebrospinal fluid to undergo normal rates of cell survival, replication and neurogenesis, suggesting that NPC are not self-sufficient to induce their normal activity. This data shows that cerebrospinal fluid is an essential component in chick and rat early brain development, suggesting that its influence could be constant in higher vertebrates.

  6. Blockade of AT1 Receptors Protects the Blood–Brain Barrier and Improves Cognition in Dahl Salt-Sensitive Hypertensive Rats

    PubMed Central

    Pelisch, Nicolas; Hosomi, Naohisa; Ueno, Masaki; Nakano, Daisuke; Hitomi, Hirofumi; Mogi, Masaki; Shimada, Kenji; Kobori, Hiroyuki; Horiuchi, Masatsugu; Sakamoto, Haruhiko; Matsumoto, Masayasu; Kohno, Masakazu; Nishiyama, Akira

    2011-01-01

    BACKGROUND The present study tested the hypothesis that inappropriate activation of the brain renin–angiotensin system (RAS) contributes to the pathogenesis of blood–brain barrier (BBB) disruption and cognitive impairment during development of salt-dependent hypertension. Effects of an angiotensin II (AngII) type-1 receptor blocker (ARB), at a dose that did not reduce blood pressure, were also examined. METHODS Dahl salt-sensitive (DSS) rats at 6 weeks of age were assigned to three groups: low-salt diet (DSS/L; 0.3% NaCl), high-salt diet (DSS/H; 8% NaCl), and high-salt diet treated with ARB, olmesartan at 1 mg/kg. RESULTS DSS/H rats exhibited hypertension, leakage from brain microvessels in the hippocampus, and impaired cognitive functions, which were associated with increased brain AngII levels, as well as decreased mRNA levels of tight junctions (TJs) and collagen-IV in the hippocampus. In DSS/H rats, olmesartan treatment, at a dose that did not alter blood pressure, restored the cognitive decline, and ameliorated leakage from brain microvessels. Olmesartan also decreased brain AngII levels and restored mRNA expression of TJs and collagen-IV in DSS/H rats. CONCLUSIONS These results suggest that during development of salt-dependent hypertension, activation of the brain RAS contributes to BBB disruption and cognitive impairment. Treatment with an ARB could elicit neuroprotective effects in cognitive disorders by preventing BBB permeability, which is independent of blood pressure changes. PMID:21164491

  7. Influence of omega-3 fatty acids from the flaxseed (Linum usitatissimum) on the brain development of newborn rats.

    PubMed

    Lenzi Almeida, K C; Teles Boaventura, G; Guzmán Silva, M A

    2011-01-01

    The importance of essential fatty acids, in particular the omega-3 family, in the central nervous system development of newborns is well documented. The flaxseed (Linum usitatissimum) is considered one of the best vegetable sources of omega-3 fatty acids. The influence of omega-3 fatty acids from flaxseed on the brain development of newborn rats was evaluated. Pups of the F1 generation were obtained from 18 female Wistar rats divided in 3 groups (n=6), FG: fed with diet based on Flaxseed added with casein, CG: Casein, and MCG: Modified Casein supplemented with fibers and soybean oil. Newborn pups were weighted and submitted to euthanasia; brains were collected for evaluation of weight and lipid profile through gaseous chromatography. Significant increase in brain weight (39%) and relative brain weight (37%) was verified in pups from mothers fed with flaxseed diet. The omega-3 (n-3) fatty acids from the flaxseed were found in abundance in the diet made with this oleaginous and also significant increase in docosahexaenoic acid (DHA) (38%), as well as in total of omega-3 (n-3) fatty acids (62%). Maternal diet of flaxseed during pregnancy influences the incorporation of omega-3 fatty acid in the composition of brain tissue, assuring a good development of this organ in newborn rats.

  8. In Utero Administration of Drugs Targeting Microglia Improves the Neurodevelopmental Outcome Following Cytomegalovirus Infection of the Rat Fetal Brain

    PubMed Central

    Cloarec, Robin; Bauer, Sylvian; Teissier, Natacha; Schaller, Fabienne; Luche, Hervé; Courtens, Sandra; Salmi, Manal; Pauly, Vanessa; Bois, Emilie; Pallesi-Pocachard, Emilie; Buhler, Emmanuelle; Michel, François J.; Gressens, Pierre; Malissen, Marie; Stamminger, Thomas; Streblow, Daniel N.; Bruneau, Nadine; Szepetowski, Pierre

    2018-01-01

    Congenital cytomegalovirus (CMV) infections represent one leading cause of neurodevelopmental disorders. Recently, we reported on a rat model of CMV infection of the developing brain in utero, characterized by early and prominent infection and alteration of microglia—the brain-resident mononuclear phagocytes. Besides their canonical function against pathogens, microglia are also pivotal to brain development. Here we show that CMV infection of the rat fetal brain recapitulated key postnatal phenotypes of human congenital CMV including increased mortality, sensorimotor impairment reminiscent of cerebral palsy, hearing defects, and epileptic seizures. The possible influence of early microglia alteration on those phenotypes was then questioned by pharmacological targeting of microglia during pregnancy. One single administration of clodronate liposomes in the embryonic brains at the time of CMV injection to deplete microglia, and maternal feeding with doxycyxline throughout pregnancy to modify microglia in the litters' brains, were both associated with dramatic improvements of survival, body weight gain, sensorimotor development and with decreased risk of epileptic seizures. Improvement of microglia activation status did not persist postnatally after doxycycline discontinuation; also, active brain infection remained unchanged by doxycycline. Altogether our data indicate that early microglia alteration, rather than brain CMV load per se, is instrumental in influencing survival and the neurological outcomes of CMV-infected rats, and suggest that microglia might participate in the neurological outcome of congenital CMV in humans. Furthermore this study represents a first proof-of-principle for the design of microglia-targeted preventive strategies in the context of congenital CMV infection of the brain. PMID:29559892

  9. Alterations of Hippocampal Myelin Sheath and Axon Sprouting by Status Convulsion and Regulating Lingo-1 Expression with RNA Interference in Immature and Adult Rats.

    PubMed

    Song, Xiao-Jie; Han, Wei; He, Rong; Li, Tian-Yi; Xie, Ling-Ling; Cheng, Li; Chen, Heng-Sheng; Jiang, Li

    2018-03-01

    Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.

  10. Selenomethionine protects against neuronal degeneration by methylmercury in the developing rat cerebrum.

    PubMed

    Sakamoto, Mineshi; Yasutake, Akira; Kakita, Akiyoshi; Ryufuku, Masae; Chan, Hing Man; Yamamoto, Megumi; Oumi, Sanae; Kobayashi, Sayaka; Watanabe, Chiho

    2013-03-19

    Although many experimental studies have shown that selenium protects against methylmercury (MeHg) toxicity at different end points, the direct interactive effects of selenium and MeHg on neurons in the brain remain unknown. Our goal is to confirm the protective effects of selenium against neuronal degeneration induced by MeHg in the developing postnatal rat brain using a postnatal rat model that is suitable for extrapolating the effects of MeHg to the fetal brain of humans. As an exposure source of selenium, we used selenomethionine (SeMet), a food-originated selenium. Wistar rats of postnatal days 14 were orally administered with vehicle (control), MeHg (8 mg Hg/kg/day), SeMet (2 mg Se/kg/day), or MeHg plus SeMet coexposure for 10 consecutive days. Neuronal degeneration and reactive astrocytosis were observed in the cerebral cortex of the MeHg-group but the symptoms were prevented by coexposure to SeMet. These findings serve as a proof that dietary selenium can directly protect neurons against MeHg toxicity in the mammalian brain, especially in the developing cerebrum.

  11. Enhancement of Sexual Behavior in Female Rats by Neonatal Transplantation of Brain Tissue from Males

    NASA Astrophysics Data System (ADS)

    Arendash, Gary W.; Gorski, Roger A.

    1982-09-01

    Transplantation of preoptic tissue from male rat neonates into the preoptic area of female littermates increased masculine and feminine sexual behavior in the recipients during adulthood. This suggests that functional connections develop between the transplanted neural tissue and the host brain. A new intraparenchymal brain transplantation technique was used to achieve these results.

  12. Neurodegeneration in newborn rats following propofol and sevoflurane anesthesia.

    PubMed

    Bercker, Sven; Bert, Bettina; Bittigau, Petra; Felderhoff-Müser, Ursula; Bührer, Christoph; Ikonomidou, Chrysanthy; Weise, Mirjam; Kaisers, Udo X; Kerner, Thoralf

    2009-08-01

    Propofol and sevoflurane are commonly used drugs in pediatric anesthesia. Exposure of newborn rats to a variety of anesthetics has been shown to induce apoptotic neurodegeneration in the developing brain. Newborn Wistar rats were treated with repeated intraperitoneal injections of propofol or sevoflurane inhalation and compared to controls. Brains were examined histopathologically using the De Olmos cupric silver staining. Additionally, a summation score of the density of apoptotic cells was calculated for every brain. Spatial memory learning was assessed by the Morris Water Maze (MWM) test and the hole board test, performed in 7 weeks old animals who underwent the same anesthetic procedure. Brains of propofol-treated animals showed a significant higher neurodegenerative summation score (24,345) when compared to controls (15,872) and to sevoflurane-treated animals (18,870). Treated animals also demonstrated persistent learning deficits in the hole board test, whereas the MWM test revealed no differences between both groups. Among other substances acting via GABAA agonism and/or NMDA antagonism propofol induced neurodegeneration in newborn rat brains whereas a sevoflurane based anesthesia did not. The significance of these results for clinical anesthesia has not been completely elucidated. Future studies have to focus on the detection of safe anesthetic strategies for the developing brain.

  13. Probing Intrinsic Resting-State Networks in the Infant Rat Brain

    PubMed Central

    Bajic, Dusica; Craig, Michael M.; Borsook, David; Becerra, Lino

    2016-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) measures spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the absence of external stimuli. It has become a powerful tool for mapping large-scale brain networks in humans and animal models. Several rs-fMRI studies have been conducted in anesthetized and awake adult rats, reporting consistent patterns of brain activity at the systems level. However, the evolution to adult patterns of resting-state activity has not yet been evaluated and quantified in the developing rat brain. In this study, we hypothesized that large-scale intrinsic networks would be easily detectable but not fully established as specific patterns of activity in lightly anesthetized 2-week-old rats (N = 11). Independent component analysis (ICA) identified 8 networks in 2-week-old-rats. These included Default mode, Sensory (Exteroceptive), Salience (Interoceptive), Basal Ganglia-Thalamic-Hippocampal, Basal Ganglia, Autonomic, Cerebellar, as well as Thalamic-Brainstem networks. Many of these networks consisted of more than one component, possibly indicative of immature, underdeveloped networks at this early time point. Except for the Autonomic network, infant rat networks showed reduced connectivity with subcortical structures in comparison to previously published adult networks. Reported slow fluctuations in the BOLD signal that correspond to functionally relevant resting-state networks in 2-week-old rats can serve as an important tool for future studies of brain development in the settings of different pharmacological applications or disease. PMID:27803653

  14. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    PubMed Central

    Badhan, Raj K. Singh; Chenel, Marylore; Penny, Jeffrey I.

    2014-01-01

    Central nervous system (CNS) drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB), blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF), choroidal epithelial and total cerebrospinal fluid (CSF) compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain) and CSF:plasma ratio (CSF:Plasmau) using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways. PMID:24647103

  15. Brain maps 4.0—Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps

    PubMed Central

    2018-01-01

    Abstract The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to “Google Maps” for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3‐D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. PMID:29277900

  16. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  17. Hypoxia-ischemia brain damage disrupts brain cholesterol homeostasis in neonatal rats.

    PubMed

    Yu, Z; Li, S; Lv, S H; Piao, H; Zhang, Y H; Zhang, Y M; Ma, H; Zhang, J; Sun, C K; Li, A P

    2009-08-01

    The first 3 weeks of life is the peak time of oligodendrocytes development and also the critical period of cholesterol increasing dramatically in central nervous system in rats. Neonatal hypoxia-ischemia (HI) brain damage happening in this period may disturb the brain cholesterol balance as well as white matter development. To test this hypothesis, postnatal day 7 (P7) Sprague-Dawley rats were subjected to HI insult. Cholesterol concentrations from brain and plasma were measured. White matter integrity was evaluated by densitometric analysis of myelin basic protein (MBP) immunostaining and electron microscopy. Brain TNF-alpha and IL-6 levels were also measured. HI-induced brain cholesterol, but not the plasma cholesterol, levels decreased significantly during the first three days after HI compared with naïve and sham operated rats (p<0.05). Obvious hypomyelination was indicated by marked reductions in MBP immunostaining on both P10 and P14 (p<0.01) and less and thinner myelinated axons were detected on P21 by electron microscopy observation. High expressions of brain TNF-alpha and IL-6 12 h after HI (p<0.05) were also observed. The present work provides evidence that HI insult destroyed brain cholesterol homeostasis, which might be important in the molecular pathology of hypoxic-ischemic white matter injury. Proinflammatory cytokines insulting oligodendrocytes, may cause cholesterol unbalance. Furthermore, specific therapeutic interventions to maintain brain cholesterol balance may be effective for the recovery of white matter function. Georg Thieme Verlag KG Stuttgart New York.

  18. Bile duct ligation in developing rats: temporal progression of liver, kidney, and brain damage.

    PubMed

    Sheen, Jiunn-Ming; Huang, Li-Tung; Hsieh, Chih-Sung; Chen, Chih-Cheng; Wang, Jia-Yi; Tain, You-Lin

    2010-08-01

    Cholestatic liver disease may result in progressive end-stage liver disease and other extrahepatic complications. We explored the temporal progression of bile duct ligation (BDL)-induced cholestasis in developing rats, focusing on brain cognition and liver and kidney pathology, to elucidate whether these findings were associated with asymmetric dimethylarginine and oxidative stress alterations. Three groups of young male Sprague-Dawley rats were studied: one group underwent laparotomy (sham), another group underwent laparotomy and BDL for 2 weeks (BDL2), and a third group underwent laparotomy and BDL for 4 weeks (BDL4). The effect of BDL on liver was represented by transforming growth factor beta1 levels and histology activity index scores, which were worse in the BDL4 rats than in the BDL2 rats. BDL4 rats also exhibited more severe spatial memory deficits than BDL2 rats. In addition, renal injury was more progressive in BDL4 rats than in BDL2 rats because BDL4 rats displayed higher Cr levels, elevated tubulointerstitial injury scores, neutrophil gelatinase-associated lipocalin, and symmetric dimethylarginine levels. Our findings highlight the fact that young BDL rats exhibit similar trends of progression of liver, kidney, and brain damage. Further studies are needed to better delineate the nature of progression of organ damage in young cholestatic rats. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Reduced tumorigenicity of rat glioma cells in the brain when mediated by hygromycin phosphotransferase.

    PubMed

    Hormigo, A; Friedlander, D R; Brittis, P A; Zagzag, D; Grumet, M

    2001-04-01

    A variant of C6 glioma cells, C6R-G/H cells express hygromycin phosphotransferase (HPT) and appear to have reduced tumorigenicity in the embryonic brain. The goal of this study was to investigate their reduced capacity to generate tumors in the adult rat brain. Cell lines were implanted into rat brains and tumorigenesis was evaluated. After 3 weeks, all rats with C6 cells showed signs of neurological disease, whereas rats with C6R-G/H cells did not and were either killed then or allowed to survive until later. Histological studies were performed to analyze tumor size, malignancy, angiogenesis, and cell proliferation. Cells isolated from rat brain tumors were analyzed for mutation to HPT by testing their sensitivity to hygromycin. The results indicate that HPT suppresses tumor formation. Three weeks after implantation, only 44% of animals implanted with C6R-G/H cells developed tumors, whereas all animals that received C6 glioma cells developed high-grade gliomas. The C6R-G/H cells filled a 20-fold smaller maximal cross-sectional area than the C6 cells, and exhibited less malignant characteristics, including reduced angiogenesis, mitosis, and cell proliferation. Similar results were obtained in the brain of nude rats, indicating that the immune system did not play a significant role in suppressing tumor growth. The combination of green fluorescent protein (GFP) and HPT was more effective in suppressing tumorigenesis than either plasmid by itself, indicating that the GFP may protect against inactivation of the HPT. Interestingly. hygromycin resistance was lost in tumor cells that were recovered from a group of animals in which C6R-G/H cells formed tumors, confirming the correlation of HPT with reduced tumorigenicity.

  20. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    PubMed

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible.

  1. Dynamic Multi-Coil Technique (DYNAMITE) Shimming of the Rat Brain at 11.7 Tesla

    PubMed Central

    Juchem, Christoph; Herman, Peter; Sanganahalli, Basavaraju G.; Brown, Peter B.; McIntyre, Scott; Nixon, Terence W.; Green, Dan; Hyder, Fahmeed; de Graaf, Robin A.

    2014-01-01

    The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation, however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task due to a multitude of complex, susceptibility-induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult-to-shim subcortical structures or for the entire brain. Based on the recently introduced multi-coil approach for magnetic field modeling, the DYNAmic Multi-coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient-echo echo-planar imaging (EPI) are demonstrated. An integrated multi-coil/radio-frequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF setup is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first through third order SH shapes. The EPI signal over the rat brain increased by 31% and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, along with the achievable large brain coverage of this method will be crucial when signal pathways, cortical circuitry or the brain’s default network are studied. Along with the efficiency gains of MC-based shimming compared to SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small bore animal scanners. PMID:24839167

  2. Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana K

    2016-06-01

    Neuropsychological studies in children who are exposed to lead during their early brain development have shown to develop behavioural and cognitive deficit. The aim of the present study was to assess the cellular damage in hippocampus, amygdala and cerebellum of rat pups exposed to lead during different periods of early brain development. Five groups of rat pups were investigated. (a) Control group (n = 8) (mothers of these rats were given normal drinking water throughout gestation and lactation), (b) pregestation lead-exposed group (n = 8) (mothers of these rats were exposed to 0.2% lead acetate in the drinking water for one month before conception), (c) gestation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout gestation [gestation day 01 to day 21]), (d) lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout lactation [postnatal day 01 to day 21]) and (e) gestation and lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate throughout gestation and lactation). On postnatal day 30, rat pups of all the groups were killed. Numbers of surviving neurons in the hippocampus, amygdala and cerebellum regions were counted using cresyl violet staining technique. Histological data indicate that lead exposure caused significant damage to neurons of hippocampus, amygdala and cerebellum regions in all lead-exposed groups except lactation lead-exposed group. The extent of damage to neurons of hippocampus, amygdala and cerebellum regions in lactation lead-exposed group was comparable to gestation and lactation groups even though the duration of lead exposure was much less in lactation lead-exposed group. To conclude, the postnatal period of brain development seems to be more vulnerable to lead neurotoxicity compared to prenatal period of brain development. © The Author(s) 2014.

  3. Diet-Induced Obesity and Diet-Resistant rats: differences in the rewarding and anorectic effects of D-amphetamine

    PubMed Central

    Valenza, Marta; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Rationale Obesity is a leading public health problem worldwide. Multiple lines of evidence associate deficits in the brain reward circuit with obesity. Objective Whether alterations in brain reward sensitivity precede or are a consequence of obesity is unknown. This study aimed to investigate both innate and obesity-induced differences in the sensitivity to the effects of an indirect dopaminergic agonist. Methods Rats genetically prone to diet-induced obesity (DIO) and their counterpart diet-resistant (DR) were fed a chow diet and their response to D-amphetamine on intracranial self-stimulation and food intake were assessed. The same variables were then evaluated after exposing the rats to a high-fat diet, after DIO rats selectively developed obesity. Finally, gene expression levels of dopamine receptor 1 and 2 as well as tyrosine hydroxylase were measured in reward-related brain regions. Results In a pre-obesity state, DIO rats showed innate decreased sensitivity to the reward-enhancing and anorectic effects of D-amphetamine, as compared to DR rats. In a diet-induced obese state, the insensitivity to the potentiating effects of D-amphetamine on ICSS threshold persisted and became more marked in DIO rats, while the anorectic effects were comparable between genotypes. Finally, innate and obesity-induced differences in the gene expression of dopamine receptors were observed. Conclusions Our results demonstrate that brain reward deficits antedate the development of obesity and worsen after obesity is fully developed, suggesting that these alterations represent vulnerability factors for its development. Moreover, our data suggests that the reward-enhancing and anorectic effects of D-amphetamine are dissociable in the context of obesity. PMID:26047964

  4. Fluoxetine elevates allopregnanolone in female rat brain but inhibits a steroid microsomal dehydrogenase rather than activating an aldo-keto reductase

    PubMed Central

    Fry, J P; Li, K Y; Devall, A J; Cockcroft, S; Honour, J W; Lovick, T A

    2014-01-01

    Background and Purpose Fluoxetine, a selective serotonin reuptake inhibitor, elevates brain concentrations of the neuroactive progesterone metabolite allopregnanolone, an effect suggested to underlie its use in the treatment of premenstrual dysphoria. One report showed fluoxetine to activate the aldo-keto reductase (AKR) component of 3α-hydroxysteroid dehydrogenase (3α-HSD), which catalyses production of allopregnanolone from 5α-dihydroprogesterone. However, this action was not observed by others. The present study sought to clarify the site of action for fluoxetine in elevating brain allopregnanolone. Experimental Approach Adult male rats and female rats in dioestrus were treated with fluoxetine and their brains assayed for allopregnanolone and its precursors, progesterone and 5α-dihydroprogesterone. Subcellular fractions of rat brain were also used to investigate the actions of fluoxetine on 3α-HSD activity in both the reductive direction, producing allopregnanolone from 5α-dihydroprogesterone, and the reverse oxidative direction. Fluoxetine was also tested on these recombinant enzyme activities expressed in HEK cells. Key Results Short-term treatment with fluoxetine increased brain allopregnanolone concentrations in female, but not male, rats. Enzyme assays on native rat brain fractions and on activities expressed in HEK cells showed fluoxetine did not affect the AKR producing allopregnanolone from 5α-dihydroprogesterone but did inhibit the microsomal dehydrogenase oxidizing allopregnanolone to 5α-dihydroprogesterone. Conclusions and Implications Fluoxetine elevated allopregnanolone in female rat brain by inhibiting its oxidation to 5α-dihydroprogesterone by a microsomal dehydrogenase. This is a novel site of action for fluoxetine, with implications for the development of new agents and/or dosing regimens to raise brain allopregnanolone. PMID:25161074

  5. Brain maps 4.0-Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps.

    PubMed

    Swanson, Larry W

    2018-04-15

    The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to "Google Maps" for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3-D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. © 2018 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  6. Developmental changes in metabolism and transport properties of capillaries isolated from rat brain.

    PubMed

    Betz, A L; Goldstein, G W

    1981-03-01

    1. Capillaries were isolated from the brains of 1- to 45-day-old rats in order to study the development of metabolic and transport aspects of the blood-brain barrier. 2. The hydroxyproline content of capillary hydrolysates increased nearly threefold between 5 and 45 days of age. This finding is consistent with histological studies showing thickening of capillary basement membrane during development. 3. The activities of L-DOPA decarboxylase and monoamine oxidase were greatest in capillaries from 10-day-old rat brain. Thus, the metabolic blood-brain barrier for amine precursors is present during early development. 4. Capillaries from all ages were able to metabolize glucose, beta-hydroxybutyrate and palmitate. The rate of glucose oxidation more than doubled between 21 and 30 days of age but subsequently decreased. In contrast, beta-hydroxybutyrate and palmitate oxidation increased throughout development. These data suggest a sparing effect by alternate fuels on glucose metabolism. 5. Capillary glucose uptake was similar at 10 and 30 days of age and activity of the ouabain-sensitive K+ pump (measured using 86Rb+) was relatively constant at all ages. In contrast, Na+-dependent neutral amino acid transport was not present until after 21 days of age. Since this transport system may be responsible for the active efflux of neutral amino acids from brain to blood, it is likely that this process does not occur at the immature blood-brain barrier. 6. We conclude that various aspects of brain capillary functions show distinct developmental patterns which may be related to changes in blood-brain barrier permeability during development.

  7. Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood

    PubMed Central

    Clinton, Sarah M.; Glover, Matthew E.; Maltare, Astha; Laszczyk, Ann M.; Mehi, Stephen J.; Simmons, Rebecca K.; King, Gwendalyn D.

    2013-01-01

    Without the age-regulating protein klotho, mouse lifespan is shortened and the rapid onset of age-related disorders occurs. Conversely, overexpression of klotho extends mouse lifespan. Klotho is most abundant in kidney and expressed in a limited number of other organs, including the brain, where klotho levels are highest in choroid plexus. Reports vary on where klotho is expressed within the brain parenchyma, and no data is available as to whether klotho levels change across postnatal development. We used in situ hybridization to map klotho mRNA expression in the developing and adult rat brain and report moderate, widespread expression across grey matter regions. mRNA expression levels in cortex, hippocampus, caudate putamen, and amygdala decreased during the second week of life and then gradually rose to adult levels by postnatal day 21. Immunohistochemistry revealed a protein expression pattern similar to the mRNA results, with klotho protein expressed widely throughout the brain. Klotho protein co-localized with both the neuronal marker NeuN, as well as, oligodendrocyte marker olig2. These results provide the first anatomical localization of klotho mRNA and protein in rat brain parenchyma and demonstrate that klotho levels vary during early postnatal development. PMID:23838326

  8. Rapid Morphological Brain Abnormalities during Acute Methamphetamine Intoxication in the Rat. An Experimental study using Light and Electron Microscopy

    PubMed Central

    Sharma, Hari S.; Kiyatkin, Eugene A.

    2009-01-01

    This study describes morphological abnormalities of brain cells during acute methamphetamine (METH) intoxication in the rat and demonstrates the role of hyperthermia, disruption of the blood-brain barrier (BBB) and edema in their development. Rats with chronically implanted brain, muscle and skin temperature probes and an intravenous (iv) catheter were exposed to METH (9 mg/kg) at standard (23°C) and warm (29°C) ambient temperatures, allowing for the observation of hyperthermia ranging from mild to pathological levels (38–42°C). When brain temperature peaked or reached a level suggestive of possible lethality (>41.5°C), rats were injected with Evans blue (EB), rapidly anesthetized, perfused, and their brains were taken for further analyses. Four brain areas (cortex, hippocampus, thalamus and hypothalamus) were analyzed for EB extravasation, water and electrolyte (Na+, K+, Cl−) contents, immunostained for albumin and glial fibrillary acidic protein, and examined for neuronal, glial and axonal alterations using standard light and electron microscopy. These examinations revealed profound abnormalities in neuronal, glial, and endothelial cells, which were stronger with METH administered at 29°C than 23°C and tightly correlated with brain and body hyperthermia. These changes had some structural specificity, but in each structure they tightly correlated with increases in EB levels, the numbers of albumin-positive cells, and water and ion contents, suggesting leakage of the BBB, acutely developing brain edema, and serious shifts in brain ion homeostasis as leading factors underlying brain abnormalities. While most of these acute structural and functional abnormalities appear to be reversible, they could trigger subsequent cellular alterations in the brain and accelerate neurodegeneration—the most dangerous complication of chronic amphetamine-like drug abuse. PMID:18773954

  9. A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics.

    PubMed

    Marmarou, A; Foda, M A; van den Brink, W; Campbell, J; Kita, H; Demetriadou, K

    1994-02-01

    This report describes the development of an experimental head injury model capable of producing diffuse brain injury in the rodent. A total of 161 anesthetized adult rats were injured utilizing a simple weight-drop device consisting of a segmented brass weight free-falling through a Plexiglas guide tube. Skull fracture was prevented by cementing a small stainless-steel disc on the calvaria. Two groups of rats were tested: Group 1, consisting of 54 rats, to establish fracture threshold; and Group 2, consisting of 107 animals, to determine the primary cause of death at severe injury levels. Data from Group 1 animals showed that a 450-gm weight falling from a 2-m height (0.9 kg-m) resulted in a mortality rate of 44% with a low incidence (12.5%) of skull fracture. Impact was followed by apnea, convulsions, and moderate hypertension. The surviving rats developed decortication flexion deformity of the forelimbs, with behavioral depression and loss of muscle tone. Data from Group 2 animals suggested that the cause of death was due to central respiratory depression; the mortality rate decreased markedly in animals mechanically ventilated during the impact. Analysis of mathematical models showed that this mass-height combination resulted in a brain acceleration of 900 G and a brain compression gradient of 0.28 mm. It is concluded that this simple model is capable of producing a graded brain injury in the rodent without a massive hypertensive surge or excessive brain-stem damage.

  10. Brain Aging and AD-Like Pathology in Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Wang, Jian-Qin; Yin, Jie; Song, Yan-Feng; Zhang, Lang; Ren, Ying-Xiang; Wang, De-Gui; Gao, Li-Ping; Jing, Yu-Hong

    2014-01-01

    Objective. Numerous epidemiological studies have linked diabetes mellitus (DM) with an increased risk of developing Alzheimer's disease (AD). However, whether or not diabetic encephalopathy shows AD-like pathology remains unclear. Research Design and Methods. Forebrain and hippocampal volumes were measured using stereology in serial coronal sections of the brain in streptozotocin- (STZ-) induced rats. Neurodegeneration in the frontal cortex, hypothalamus, and hippocampus was evaluated using Fluoro-Jade C (FJC). Aβ aggregation in the frontal cortex and hippocampus was tested using immunohistochemistry and ELISA. Dendritic spine density in the frontal cortex and hippocampus was measured using Golgi staining, and western blot was conducted to detect the levels of synaptophysin. Cognitive ability was evaluated through the Morris water maze and inhibitory avoidant box. Results. Rats are characterized by insulin deficiency accompanied with polydipsia, polyphagia, polyuria, and weight loss after STZ injection. The number of FJC-positive cells significantly increased in discrete brain regions of the diabetic rats compared with the age-matched control rats. Hippocampal atrophy, Aβ aggregation, and synapse loss were observed in the diabetic rats compared with the control rats. The learning and memory of the diabetic rats decreased compared with those of the age-matched control rats. Conclusions. Our results suggested that aberrant metabolism induced brain aging as characterized by AD-like pathologies. PMID:25197672

  11. Venous or arterial blood components trigger more brain swelling, tissue death after acute subdural hematoma compared to elderly atrophic brain with subdural effusion (SDE) model rats.

    PubMed

    Wajima, Daisuke; Sato, Fumiya; Kawamura, Kenya; Sugiura, Keisuke; Nakagawa, Ichiro; Motoyama, Yasushi; Park, Young-Soo; Nakase, Hiroyuki

    2017-09-01

    Acute subdural hematoma (ASDH) is a frequent complication of severe head injury, whose secondary ischemic lesions are often responsible for the severity of the disease. We focused on the differences of secondary ischemic lesions caused by the components, 0.4ml venous- or arterial-blood, or saline, infused in the subdural space, evaluating the differences in vivo model, using rats. The saline infused rats are made for elderly atrophic brain with subdural effusion (SDE) model. Our data showed that subdural blood, both venous- and arterial-blood, aggravate brain edema and lesion development more than SDE. This study is the first study, in which different fluids in rats' subdural space, ASDH or SDE are compared with the extension of early and delayed brain damage by measuring brain edema and histological lesion volume. Blood constituents started to affect the degree of ischemia underneath the subdural hemorrhage, leading to more pronounced breakdown of the blood-brain barrier and brain damage. This indicates that further strategies to treat blood-dependent effects more efficiently are in view for patients with ASDH. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Estimation of Locomotion States of a Rat by Neural Signals from the Motor Cortices Based on a Linear Correlation Model

    NASA Astrophysics Data System (ADS)

    Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    We are developing a brain-machine interface (BMI) called “RatCar," a small vehicle controlled by the neural signals of a rat's brain. An unconfined adult rat with a set of bundled neural electrodes in the brain rides on the vehicle. Each bundle consists of four tungsten wires isolated with parylene polymer. These bundles were implanted in the primary motor and premotor cortices in both hemispheres of the brain. In this paper, methods and results for estimating locomotion speed and directional changes are described. Neural signals were recorded as the rat moved in a straight line and as it changed direction in a curve. Spike-like waveforms were then detected and classified into several clusters to calculate a firing rate for each neuron. The actual locomotion velocity and directional changes of the rat were recorded concurrently. Finally, the locomotion states were correlated with the neural firing rates using a simple linear model. As a result, the abstract estimation of the locomotion velocity and directional changes were achieved.

  13. Development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of tigecycline in rat brain tissues.

    PubMed

    Munyeza, Chiedza F; Shobo, Adeola; Baijnath, Sooraj; Bratkowska, Dominika; Naiker, Suhashni; Bester, Linda A; Singh, Sanil D; Maguire, Glenn E M; Kruger, Hendrik G; Naicker, Tricia; Govender, Thavendran

    2016-06-01

    Tigecycline (TIG), a derivative of minocycline, is the first in the novel class of glycylcyclines and is currently indicated for the treatment of complicated skin structure and intra-abdominal infections. A selective, accurate and reversed-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of TIG in rat brain tissues. Sample preparation was based on protein precipitation and solid phase extraction using Supel-Select HLB (30 mg/1 mL) cartridges. The samples were separated on a YMC Triart C18 column (150 mm x 3.0 mm. 3.0 µm) using gradient elution. Positive electrospray ionization (ESI+) was used for the detection mechanism with the multiple reaction monitoring (MRM) mode. The method was validated over the concentration range of 150-1200 ng/mL for rat brain tissue. The precision and accuracy for all brain analyses were within the acceptable limit. The mean extraction recovery in rat brain was 83.6%. This validated method was successfully applied to a pharmacokinetic study in female Sprague Dawley rats, which were given a dose of 25 mg/kg TIG intraperitoneally at various time-points. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury.

    PubMed

    Schilte, Clotilde; Bouzat, Pierre; Millet, Anne; Boucheix, Perrine; Pernet-Gallay, Karin; Lemasson, Benjamin; Barbier, Emmanuel L; Payen, Jean-François

    2015-10-01

    Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. Experimental study. Neurosciences and physiology laboratories. Adult male Wistar rats. Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.

  15. Methyllycaconitine: a non-radiolabeled ligand for mapping α7 neuronal nicotinic acetylcholine receptors - in vivo target localization and biodistribution in rat brain.

    PubMed

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Bhyrapuneni, Gopinadh; Saralaya, Ramanatha; Muddana, Nageswararao; Komarneni, Prashanth

    2012-07-01

    Reduction of cerebral cortical and hippocampal α7 neuronal nicotinic acetylcholine receptor (nAChR) density was observed in the Alzheimer's disease (AD) and other neurodegenerative diseases. Mapping the subtypes of nAChRs with selective ligand by viable, quick and consistent method in preclinical drug discovery may lead to rapid development of more effective therapeutic agents. The objective of this study was to evaluate the use of methyllycaconitine (MLA) in non-radiolabeled form for mapping α7 nAChRs in rat brain. MLA pharmacokinetic and brain penetration properties were assessed in male Wistar rats. The tracer properties of MLA were evaluated in rat brain by dose and time dependent differential regional distribution studies. Target specificity was validated after blocking with potent α7 nAChR agonists ABBF, PNU282987 and nicotine. High performance liquid chromatography combined with triple quad mass spectral detector (LC-MS/MS) was used to measure the plasma and brain tissue concentrations of MLA. MLA has shown rapid brain uptake followed by a 3-5 fold higher specific binding in regions containing the α7 nAChRs (hypothalamus - 1.60 ng/g), when compared to non-specific regions (striatum - 0.53 ng/g, hippocampus - 0.46 ng/g, midbrain - 0.37 ng/g, frontal cortex - 0.35 ng/g and cerebellum - 0.30 ng/g). Pretreatment with potent α7 nAChR agonists significantly blocked the MLA uptake in hypothalamus. The non-radiolabeled MLA binding to brain region was comparable with the α7 mRNA localization and receptor distribution reported for [(3)H] MLA in rat brain. The rat pharmacokinetic, brain penetration and differential brain regional distribution features favor that MLA is suitable to use in preclinical stage for mapping α7 nAChRs. Hence, this approach can be employed as an essential tool for quicker development of novel selective ligand to map variation in the α7 receptor densities, as well as to evaluate potential new chemical entities targeting neurodegenerative diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Default mode network, motor network, dorsal and ventral basal ganglia networks in the rat brain: comparison to human networks using resting state-fMRI.

    PubMed

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.

  17. Default Mode Network, Motor Network, Dorsal and Ventral Basal Ganglia Networks in the Rat Brain: Comparison to Human Networks Using Resting State-fMRI

    PubMed Central

    Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan

    2015-01-01

    Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862

  18. Immunoreactive somatostatin and. beta. -endorphin content in the brain of mature rats after neonatal exposure to propylthiouracil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, N.; Sundmark, V.C.; Van Middlesworth, L.

    1982-06-01

    The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in the study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels weremore » not significantly different (significant increase only in the thalamus) in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.« less

  19. Immunoreactive somatostatin and. beta. -endorphin content in the brain of mature rats after neonatal exposure to propylthiouacil. [Propylthiouracil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, N.; Sundmark, V.C.; Van Middlesworth, L.

    1982-01-01

    The contents of immunoreactive somatostatin (IR-SRIF) and ..beta..-endorphin (IR-..beta..-EP) in 12 brain regions were examined in rats exposed neonatally to propylthiouracil (PTU) through the mother's milk. Since the dose of PTU used in this study is lower than the usual dose employed to induce hypothyroidism, a milder form of neonatal hypothyroidism resulted. This conclusion is supported by the only mild subnormal growth of rats to adulthood and serum T/sub 4/ and T/sub 3/ concentrations in the normal range. Adult rats treated with PTU neonatally had significantly higher IR-SRIF contents in several brain regions compared to controls, whereas IR-..beta..-EP levels weremore » not significantly different in most regions. The results indicate that even mild hypothyroidism during early postnatal development causes permanent impairment of brain function, which manifests itself in part by an altered brain content of IR-SRIF.« less

  20. Translational Modeling in Schizophrenia: Predicting Human Dopamine D2 Receptor Occupancy.

    PubMed

    Johnson, Martin; Kozielska, Magdalena; Pilla Reddy, Venkatesh; Vermeulen, An; Barton, Hugh A; Grimwood, Sarah; de Greef, Rik; Groothuis, Geny M M; Danhof, Meindert; Proost, Johannes H

    2016-04-01

    To assess the ability of a previously developed hybrid physiology-based pharmacokinetic-pharmacodynamic (PBPKPD) model in rats to predict the dopamine D2 receptor occupancy (D2RO) in human striatum following administration of antipsychotic drugs. A hybrid PBPKPD model, previously developed using information on plasma concentrations, brain exposure and D2RO in rats, was used as the basis for the prediction of D2RO in human. The rat pharmacokinetic and brain physiology parameters were substituted with human population pharmacokinetic parameters and human physiological information. To predict the passive transport across the human blood-brain barrier, apparent permeability values were scaled based on rat and human brain endothelial surface area. Active efflux clearance in brain was scaled from rat to human using both human brain endothelial surface area and MDR1 expression. Binding constants at the D2 receptor were scaled based on the differences between in vitro and in vivo systems of the same species. The predictive power of this physiology-based approach was determined by comparing the D2RO predictions with the observed human D2RO of six antipsychotics at clinically relevant doses. Predicted human D2RO was in good agreement with clinically observed D2RO for five antipsychotics. Models using in vitro information predicted human D2RO well for most of the compounds evaluated in this analysis. However, human D2RO was under-predicted for haloperidol. The rat hybrid PBPKPD model structure, integrated with in vitro information and human pharmacokinetic and physiological information, constitutes a scientific basis to predict the time course of D2RO in man.

  1. Further refinement of the Escherichia coli brain abscess model in rat.

    PubMed

    Nazzaro, J M; Pagel, M A; Neuwelt, E A

    1992-09-01

    The rat brain abscess model provides a substrate for the modeling of delivery of therapeutic agents to intracerebral mass lesions. We now report refinement of the Escherichia coli brain abscess model in rat. A K1 surface antigen-negative E. coli isolated from human blood culture was stereotaxically inoculated into deep brain sites. Histopathologic analyses and quantitative cultures demonstrated the consistent production of lesions. No animal in this consecutive series developed meningitis, ventriculitis or sepsis. By contrast, prior experience with E. coli abscess production resulted in 25% failure rate of abscess production or death from sepsis. This improvement in the model may be attributable to specific characteristics of the bacteria used, modification of the inoculation method or the intracerebral placement technique. The present work suggests a reliable and consistent brain abscess model, which may be further used to study brain suppuration.

  2. Differential numbers of foci of lymphocytes within the brains of Lewis rats exposed to weak complex nocturnal magnetic fields during development of experimental allergic encephalomyelitis.

    PubMed

    Persinger, Michael A

    2009-01-01

    To discern if specific structures of the rat brain contained more foci of lymphocytes following induction of experimental allergic encephalomyelitis and exposures to weak, amplitude-modulated magnetic fields for 6 min once per hour during the scotophase, the residuals between the observed and predicted values for the numbers of foci for 320 structures were obtained. Compared to the brains of sham-field exposed rats, the brains of rats exposed to 7-Hz 50 nT (0.5 mG) amplitude-modulated fields showed more foci within hippocampal structures and the dorsal central grey of the midbrain while those exposed to 7-Hz 500 nT (5 mG) fields showed greater densities within the hypothalamus and optic chiasm. The brains of rats exposed to either the 50 nT or 500 nT amplitude-modulated 40-Hz fields displayed greater densities of foci within the midbrain structures related to rapid eye movement. Most of the enhancements of infiltrations within the magnetic field-exposed rats occurred in structures within periventricular or periaqueductal regions and were both frequency- and intensity-dependent. The specificity and complexity of the configurations of the residuals of the numbers of infiltrated foci following exposures to the different fields suggest that the brain itself may be a "sensory organ" for the detection of these stimuli.

  3. Neuroanatomy-based matrix-guided trimming protocol for the rat brain.

    PubMed

    Defazio, Rossella; Criado, Ana; Zantedeschi, Valentina; Scanziani, Eugenio

    2015-02-01

    Brain trimming through defined neuroanatomical landmarks is recommended to obtain consistent sections in rat toxicity studies. In this article, we describe a matrix-guided trimming protocol that uses channels to reproduce coronal levels of anatomical landmarks. Both setup phase and validation study were performed on Han Wistar male rats (Crl:WI(Han)), 10-week-old, with bodyweight of 298 ± 29 (SD) g, using a matrix (ASI-Instruments(®), Houston, TX) fitted for brains of rats with 200 to 400 g bodyweight. In the setup phase, we identified eight channels, that is, 6, 8, 10, 12, 14, 16, 19, and 21, matching the recommended landmarks midway to the optic chiasm, frontal pole, optic chiasm, infundibulum, mamillary bodies, midbrain, middle cerebellum, and posterior cerebellum, respectively. In the validation study, we trimmed the immersion-fixed brains of 60 rats using the selected channels to determine how consistently the channels reproduced anatomical landmarks. Percentage of success (i.e., presence of expected targets for each level) ranged from 89 to 100%. Where 100% success was not achieved, it was noted that the shift in brain trimming was toward the caudal pole. In conclusion, we developed and validated a trimming protocol for the rat brain that allow comparable extensiveness, homology, and relevance of coronal sections as the landmark-guided trimming with the advantage of being quickly learned by technicians. © 2014 by The Author(s).

  4. Effect of hyperbaric oxygen on lipid peroxidation and visual development in neonatal rats with hypoxia-ischemia brain damage.

    PubMed

    Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting

    2016-07-01

    The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P<0.01) and the SOD activities were lower while the MDA levels were higher (P<0.01) in the HIBD group. No significant differences in ultrastructure, the latency of F-VEPs or SOD/MDA levels were identified between the HBO-treated HIBD group and the normal control group (P>0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.

  5. Neural Development Under Conditions of Spaceflight

    NASA Technical Reports Server (NTRS)

    Kosik, Kenneth S.; Steward, Oswald; Temple, Meredith D.; Denslow, Maria J.

    2003-01-01

    One of the key tasks the developing brain must learn is how to navigate within the environment. This skill depends on the brain's ability to establish memories of places and things in the environment so that it can form cognitive maps. Earth's gravity defines the plane of orientation of the spatial environment in which animals navigate, and cognitive maps are based on this plane of orientation. Given that experience during early development plays a key role in the development of other aspects of brain function, experience in a gravitational environment is likely to be essential for the proper organization of brain regions mediating learning and memory of spatial information. Since the hippocampus is the brain region responsible for cognitive mapping abilities, this study evaluated the development of hippocampal structure and function in rats that spent part of their early development in microgravity. Litters of male and female Sprague-Dawley rats were launched into space aboard the Space Shuttle Columbia on either postnatal day eight (P8) or 14 (P14) and remained in space for 16 days. Upon return to Earth, the rats were tested for their ability to remember spatial information and navigate using a variety of tests (the Morris water maze, a modified radial arm maze, and an open field apparatus). These rats were then tested physiologically to determine whether they exhibited normal synaptic plasticity in the hippocampus. In a separate group of rats (flight and controls), the hippocampus was analyzed using anatomical, molecular biological, and biochemical techniques immediately postlanding. There were remarkably few differences between the flight groups and their Earth-bound controls in either the navigation and spatial memory tasks or activity-induced synaptic plasticity. Microscopic and immunocytochemical analyses of the brain also did not reveal differences between flight animals and ground-based controls. These data suggest that, within the developmental window studied, microgravity has minimal long-term impact on cognitive mapping function and cellular substrates important for this function. Any differences due to development in microgravity were transient and returned to normal soon after return to Earth.

  6. Novel brain-penetrating oximes for reactivation of cholinesterase inhibited by sarin and VX surrogates.

    PubMed

    Chambers, Janice E; Meek, Edward C; Chambers, Howard W

    2016-06-01

    Current oxime reactivators for organophosphate-inhibited cholinesterase (ChE) do not effectively cross the blood-brain barrier and therefore cannot restore brain ChE activity in vivo. Our laboratories have studied highly relevant sarin and VX surrogates, which differ from their respective nerve agents only in the leaving group and thereby leave ChE phosphylated with the same chemical moiety as sarin and VX. Our laboratories have developed novel substituted phenoxyalkyl pyridinium oximes that lead to reduced ChE inhibition in the brains of rats challenged with a high sublethal dosage of the sarin surrogate, whereas 2-PAM did not, using a paradigm designed to demonstrate brain penetration. In addition, treatment of rats with these novel oximes is associated with attenuation of seizure-like behavior compared to rats treated with 2-PAM, providing additional evidence that the oximes penetrate the blood-brain barrier. Further, some of the oximes provided 24-h survival superior to 2-PAM, and shortened the duration of seizure-like behavior when rats were challenged with lethal dosages of the sarin and VX surrogates, providing additional support for the conclusion that these oximes penetrate the brain. © 2016 New York Academy of Sciences.

  7. Evaluation of drug effects on cerebral blood flow and glucose uptake in un-anesthetized and un-stimulated rats: application of free-moving apparatus enabling to keep rats free during PET/SPECT tracer injection and uptake.

    PubMed

    Sugita, Taku; Kondo, Yusuke; Ishino, Seigo; Mori, Ikuo; Horiguchi, Takashi; Ogawa, Mikako; Magata, Yasuhiro

    2018-05-15

    The purpose of this study is the development of novel fluorine-18-fluorodeoxyglucose (F-FDG)-PET and Tc-hexamethylpropylene amine oxime (HMPAO) SPECT methods with free-moving apparatus on conscious rats to investigate brain activity without the effects of anesthesia and tactual stimulation. We also assessed the sensitivity of the experimental system by an intervention study using fluoxetine as a reference drug. A catheter was inserted into the femoral vein and connected to a free-moving cannula system. After fluoxetine administration, the rats were given an injection of F-FDG or Tc-HMPAO via the intravenous cannula and released into a free-moving cage. After the tracer was trapped in the brain, the rats were anesthetized and scanned with PET or SPECT scanners. Then a volume of interest analysis and statistical parametric mapping were performed. We could inject the tracer without touching the rats, while keeping them conscious until the tracers were distributed and trapped in the brain using the developed system. The effects of fluoxetine on glucose uptake and cerebral blood flow were perceptively detected by volume of interest and statistical parametric mapping analysis. We successfully developed free-moving F-FDG-PET and Tc-HMPAO-SPECT imaging systems and detected detailed glucose uptake and cerebral blood flow changes in the conscious rat brain with fluoxetine administration. This system is expected to be useful to assess brain activity without the effects of anesthesia and tactual stimulation to evaluate drug effect or animal brain function.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  8. Development of a rat model for studying blast-induced traumatic brain injury.

    PubMed

    Cheng, Jingmin; Gu, Jianwen; Ma, Yuan; Yang, Tao; Kuang, Yongqin; Li, Bingcang; Kang, Jianyi

    2010-07-15

    Blast-induced traumatic brain injury (TBI) has been the predominant cause of neurotrauma in current military conflicts, and it is also emerging as a potential threat in civilian terrorism. The etiology of TBI, however, is poorly understood. Further study on the mechanisms and treatment of blast injury is urgently needed. We developed a unique rat model to simulate blast effects that commonly occur on the battlefield. An electric detonator with the equivalent of 400 mg TNT was developed as the explosive source. The detonator's peak overpressure and impulse of explosion shock determined the explosion intensity in a distance-dependent manner. Ninety-six male adult Sprague-Dawley rats were randomly divided into four groups: 5-cm, 7.5-cm, 10-cm, and control groups. The rat was fixed in a specially designed cabin with an adjustable aperture showing the frontal, parietal, and occipital parts of the head exposed to explosion; the eyes, ears, mouth, and nose were protected by the cabin. After each explosion, we assessed the physiologic, neuropathologic, and neurobehavioral consequences of blast injury. Changes of brain tissue water content and neuron-specific enolase (NSE) expression were detected. The results in the 7.5-cm group show that 87% rats developed apnea, limb seizure, poor appetite, and limpness. Diffuse subarachnoid hemorrhage and edema could be seen within the brain parenchyma, which showed a loss of integrity. Capillary damage and enlarged intercellular and vascular space in the cortex, along with a tattered nerve fiber were observed. These findings demonstrate that we have provided a reliable and reproducible blast-induced TBI model in rats. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging.

    PubMed

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B; Eagle, Cheyenne Sun; Williams, Todd D; Siahaan, Teruna J

    2016-02-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new noninvasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (iv) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain.

  10. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging

    PubMed Central

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B.; Eagle, Cheyenne Sun; Williams, Todd D.; Siahaan, Teruna J.

    2015-01-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new non-invasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (i.v.) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain. PMID:26705088

  11. Liquid chromatographic determination of minocycline in brain-to-plasma distribution studies in the rat.

    PubMed

    Colovic, Milena; Caccia, Silvio

    2003-07-05

    An isocratic reversed-phase high-performance liquid chromatographic procedure was developed for the determination of minocycline in rat plasma and brain and applied to brain-to-blood (plasma) distribution studies. The procedure is based on isolation of the compound and the internal standard (either demeclocycline or tetracycline may be used) from plasma and brain constituents using the Oasis HLB cartridge, with satisfactory recovery and specificity, and separation on a Symmetry Shield RP8 (15 cm x 4.6 mm, 3.5 microm) column coupled with a UV detector set at 350 nm. The assay was linear over a wide range, with a lower limit of quantification of 50 ng ml(-1) or g(-1), using 0.2 ml of plasma and about 200 mg of brain tissue. Precision and accuracy were acceptable. In the rat minocycline crossed the blood-brain barrier slowly, achieving mean brain concentrations between 30 and 40% of the equivalent systemic exposure, regardless of the dose and route of administration.

  12. Perinatal treatment of rats with opiates affects the development of the blood-brain barrier transport system PTS-1.

    PubMed

    Banks, W A; Kastin, A J; Harrison, L M; Zadina, J E

    1996-01-01

    Previous results have shown that treatment of rats with morphine during the neonatal period can influence development of peptide transport system-1 (PTS-1), the blood-brain barrier transport system for Tyr-MIF-1 and methionine enkephalin. Previous work has suggested that the activity level of PTS-1 correlates with the concentration of methionine enkephalin in the brain. We show here that rats treated peripherally with morphine sulfate (MS) in both the prenatal and neonatal periods have enhanced activity of PTS-1. The degree of enhancement increases with age to reach a 66% increase in comparison with controls at age 9 weeks. The mu agonist MS was more powerful than the kappa agonist ethylketocyclazocine (EKC) or the delta agonist [D-Pen2.5,pCl-Phe4]enkephalin (pCl-DPDPE) in producing this effect. Opiate antagonists had complex effects with methylnaltrexone blocking the action of MS on PTS-1. These results show that the level of PTS-1 activity in adult rats can be modified by perinatal events that affect opiate tone during development.

  13. A comparison of neurodegeneration linked with neuroinflammation in different brain areas of rats after intracerebroventricular colchicine injection.

    PubMed

    Sil, Susmita; Ghosh, Rupsa; Sanyal, Moumita; Guha, Debjani; Ghosh, Tusharkanti

    2016-01-01

    Colchicine induces neurodegeneration, but the extent of neurodegeneration in different areas of the brain in relation to neuroinflammation remains unclear. Such information may be useful to allow for the development of a model to compare colchicine-induced neurodegeneration with other neurodegenerative diseases such as Alzheimer's Disease (AD). The present study was designed to investigate the extent of neurodegeneration along with neuroinflammation in different areas of the brain, e.g. frontal cortex, parietal cortex, occipital cortex, corpus striatum, amygdala and hippocampus, in rats along with memory impairment 21 days after a single intracerebroventricular (icv) injection of colchicine. Memory parameters were measured before and after icv colchicine injection in all test groups of rats (control, sham-operated, colchicine-injected [ICIR] rats). On Day 21 post-injection, rats from all groups were anesthesized and tissues from the various brain areas were collected for assessment of biomarkers of neuroinflammation (i.e. levels of ROS, nitrite and proinflammatory cytokines TNFα and IL-1β) and neurodegeneration (assessed histologically). The single injection of colchicine resulted in impaired memory and neurodegeneration (significant presence of plaques, Nissl granule chromatolysis) in various brain areas (frontal cortex, amygdala, parietal cortex, corpus striatum), with maximum severity in the hippocampus. While IL-1β, TNFα, ROS and nitrite levels were altered in different brain areas in the ICIR rats, these parameters had their greatest change in the hippocampus. This study showed that icv injection of colchicine caused strong neurodegeneration and neuroinflammation in the hippocampus of rats and the increases in neurodegeneration were corroborated with those of neuroinflammation at the site. The present study also showed that the extent of neurodegeneration and neuroinflammation in different brain areas of the colchicine-injected rats were AD-like and supported the fact that such rats might have the ability to serve as a sporadic model of AD.

  14. Development of obesity can be prevented in rats by chronic icv infusions of AngII but less by Ang(1-7).

    PubMed

    Winkler, Martina; Bader, Michael; Schuster, Franziska; Stölting, Ines; Binder, Sonja; Raasch, Walter

    2018-06-01

    Considering that obesity is one of the leading risks for death worldwide, it should be noted that a brain-related mechanism is involved in AngII-induced and AT 1 -receptor-dependent weight loss. It is moreover established that activation of the Ang(1-7)/ACE2/Mas axis reduces weight, but it remains unclear whether this Ang(1-7) effect is also mediated via a brain-related mechanism. Additionally to Sprague Dawley (SD) rats, we used TGR(ASrAOGEN) selectively lacking brain angiotensinogen, the precursor to AngII, as we speculated that effects are more pronounced in a model with low brain RAS activity. Rats were fed with high-calorie cafeteria diet. We investigated weight regulation, food behavior, and energy balance in response to chronic icv.-infusions of AngII (200 ng•h -1 ), or Ang(1-7) (200/600 ng•h -1 ) or artificial cerebrospinal fluid. High- but not low-dose Ang(1-7) slightly decreased weight gain and energy intake in SD rats. AngII showed an anti-obese efficacy in SD rats by decreasing energy intake and increasing energy expenditure and also improved glucose control. TGR(ASrAOGEN) were protected from developing obesity. However, Ang(1-7) did not reveal any effects in TGR(ASrAOGEN) and those of AngII were minor compared to SD rats. Our results emphasize that brain AngII is a key contributor for regulating energy homeostasis and weight in obesity by serving as a negative brain-related feedback signal to alleviate weight gain. Brain-related anti-obese potency of Ang(1-7) is lower than AngII but must be further investigated by using other transgenic models as TGR(ASrAOGEN) proved to be less valuable for answering this question.

  15. THE THYROID HORMONE TRANSPORTER, MCT8, SELECTIVELY RESPONDS TO THYROID HORMONE INSUFFICIENCY IN THE DEVELOPMENT RAT BRAIN.

    EPA Science Inventory

    Thyroid hormone (TH) is essential for normal brain development. Therefore, it is not surprising that a variety of adaptive mechanisms are activated in response to TH insufficiency. However, not all brain regions respond in the same fashion to TH insufficiency. This observation...

  16. Developing Gene Silencing for the Study and Treatment of Dystonia

    DTIC Science & Technology

    2016-10-01

    eliminate the symptoms? Are the motor deficits in DYT1 dystonia reversible? We propose to use a novel rat model of DYT1 dystonia and infuse antisense...suppressing expression of mutant torsinA in striatum or cerebellum using AAV1 reverses the motor phenotype in aged DYT1 rats . 4. IMPACT What was...different areas of the brain, and w e w ill measure if they are able to reverse known abnormalities that occur in the brain of DYT1 rats , including abnormal

  17. Effect of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate in the rat brain.

    PubMed

    Ryzhavsky, B Ya; Lebedko, O A; Belolubskaya, D S

    2008-08-01

    The effects of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate were studied in the rat brain. Exposure of pregnant rats to lead nitrate during activation of free radical oxidation reduced activity of NADH- and NADPH-dehydrogenases in cortical neurons of their 40-day-old progeny, reduced the number of neurons in a visual field, increased the number of pathologically modified neurons, and stimulated rat motor activity in an elevated plus-maze. Two intraperitoneal injections of histochrome in a dose of 0.1 mg/kg before and after lead citrate challenge attenuated the manifestations of oxidative stress and prevented the changes in some morphological and histochemical parameters of the brain, developing under the effect of lead exposure.

  18. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain.

    PubMed

    Wakabayashi, Ken T; Spekterman, Laurence; Kiyatkin, Eugene A

    2016-06-01

    Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  19. Rat brain sagittal organotypic slice cultures as an ex vivo dopamine cell loss system.

    PubMed

    McCaughey-Chapman, Amy; Connor, Bronwen

    2017-02-01

    Organotypic brain slice cultures are a useful tool to study neurological function as they provide a more complex, 3-dimensional system than standard 2-dimensional in vitro cell cultures. Building on a previously developed mouse brain slice culture protocol, we have developed a rat sagittal brain slice culture system as an ex vivo model of dopamine cell loss. We show that rat brain organotypic slice cultures remain viable for up to 6 weeks in culture. Using Fluoro-Gold axonal tracing, we demonstrate that the slice 3-dimensional cytoarchitecture is maintained over a 4 week culturing period, with particular focus on the nigrostriatal pathway. Treatment of the cultures with 6-hydroxydopamine and desipramine induces a progressive loss of Fluoro-Gold-positive nigral cells with a sustained loss of tyrosine hydroxylase-positive nigral cells. This recapitulates the pattern of dopaminergic degeneration observed in the rat partial 6-hydroxydopamine lesion model and, most importantly, the progressive pathology of Parkinson's disease. Our slice culture platform provides an advance over other systems, as we demonstrate for the first time 3-dimensional cytoarchitecture maintenance of rat nigrostriatal sagittal slices for up to 6 weeks. Our ex vivo organotypic slice culture system provides a long term cellular platform to model Parkinson's disease, allowing for the elucidation of mechanisms involved in dopaminergic neuron degeneration and the capability to study cellular integration and plasticity ex vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Periconceptional Folic Acid Supplementation Benefit to Development of Early Sensory-Motor Function through Increase DNA Methylation in Rat Offspring

    PubMed Central

    Li, Wen; Li, Zhenshu; Li, Shou; Wang, Xinyan; Wilson, John X.; Huang, Guowei

    2018-01-01

    Periconceptional maternal folate levels may alter DNA methylation patterns and health outcomes in offspring. We hypothesized that maternal folic acid supplementation alters fetal neural development through DNA methylation in the fetal brain. Twenty-eight rats were randomly assigned to four groups: three groups of the female rats were fed folate-normal, folate-deficient or folate-supplemented diets from seven days before mating to delivery. In another group, folic acid supplementation diet short-period group was fed a folate-normal diet, except for 10 days (begin mating) when this group was fed a folate-supplemented diet. After delivery, the diets were changed to folate-normal diet for all four groups. The cliff avoidance and forelimb grip tests were used to assess sensory motor function of rat offspring. The results indicate that maternal folic acid supplementation improved the early development of sensory-motor function in offspring. Maternal folic acid supplementation increased the methylation potential, global DNA methylation (5-mC) and DNA methyltransferase expression and activity in the brains of the offspring. In conclusion, maternal folic acid supplementation increases DNA methylation pattern in offspring brain and improves the early development of sensory-motor function. PMID:29494536

  1. Changes in Rat Brain Tissue Microstructure and Stiffness during the Development of Experimental Obstructive Hydrocephalus

    PubMed Central

    Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon

    2016-01-01

    Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both), an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM) and rearrangement of the cortical gray matter microstructure (P < 0.001, for both), while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both). During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001), while a decrease in space was observed for the ventral internal capsule (P < 0.001). For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001). To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions studied, the changes in mechanical properties were modest. Moreover, the effect of ventricular enlargement is not limited to the CC+PVWM and ventral internal capsule, the extent of microstructural changes vary between brain regions, and there is regional and temporal variation in brain tissue stiffness during hydrocephalus development. PMID:26848844

  2. An automatic rat brain extraction method based on a deformable surface model.

    PubMed

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Neurogenic function in rats with unilateral hippocampal sclerosis that experienced early-life status epilepticus

    PubMed Central

    Dunleavy, Mark; Schindler, Clara K; Shinoda, Sachiko; Crilly, Shane; Henshall, David C

    2014-01-01

    Status epilepticus in the adult brain invariably causes an increase in hippocampal neurogenesis and the appearance of ectopic cells and this has been implicated as a causal factor in epileptogenesis. The effect of status epilepticus on neurogenesis in the developing brain is less well characterized and models of early-life seizures typically do not reproduce the hippocampal damage common to human mesial temporal sclerosis. We recently reported that evoking status epilepticus by intra-amygdala microinjection of kainic acid in post-natal (P) day 10 rats caused substantial acute neuronal death within the ipsilateral hippocampus and rats later developed unilateral hippocampal sclerosis and spontaneous recurrent seizures. Here, we examined the expression of a selection of genes associated with neurogenesis and assessed neurogenic function in this model. Protein levels of several markers of neurogenesis including polysialic acid neural cell adhesion molecule, neuroD and doublecortin were reduced in the hippocampus three days after status epilepticus in P10 rats. In contrast, protein levels of neurogenesis markers were similar to control in rats at P55. Pulse-chase experiments using thymidine analogues suggested there was a reduction in new neurons at 72 h after status epilepticus in P10 rats, whereas numbers of new neurons labelled in epileptic rats at P55 with hippocampal sclerosis were similar to controls. The present study suggests that status epilepticus in the immature brain suppresses neurogenesis but the neurogenic potential is retained in animals that later develop hippocampal sclerosis. PMID:25755841

  4. Study of blood and brain lithium pharmacokinetics in the rat according to three different modalities of poisoning.

    PubMed

    Hanak, Anne-Sophie; Chevillard, Lucie; El Balkhi, Souleiman; Risède, Patricia; Peoc'h, Katell; Mégarbane, Bruno

    2015-01-01

    Lithium-induced neurotoxicity may be life threatening. Three patterns have been described, including acute, acute-on-chronic, and chronic poisoning, with unexplained discrepancies in the relationship between clinical features and plasma lithium concentrations. Our objective was to investigate differences in plasma, erythrocyte, cerebrospinal fluid, and brain lithium pharmacokinetics using a multicompartmental approach in rat models mimicking the three human intoxication patterns. We developed acute (intraperitoneal administration of 185 mg/kg Li₂CO₃ in naive rats), acute-on-chronic (intraperitoneal administration of 185 mg/kg Li₂CO₃ in rats receiving 800 mg/l Li₂CO₃ in water during 28 days), and chronic poisoning models (intraperitoneal administration of 74 mg/kg Li₂CO₃ during 5 days in rats with 15 mg/kg K₂Cr₂O₇-induced renal failure). Delayed absorption (4.03 vs 0.31 h), increased plasma elimination (0.65 vs 0.37 l/kg/h) and shorter half-life (1.75 vs 2.68 h) were observed in acute-on-chronically compared with acutely poisoned rats. Erythrocyte and cerebrospinal fluid kinetics paralleled plasma kinetics in both models. Brain lithium distribution was rapid (as early as 15 min), inhomogeneous and with delayed elimination (over 78 h). However, brain lithium accumulation was more marked in acute-on-chronically than acutely poisoned rats [area-under-the-curve of brain concentrations (379 ± 41 vs 295 ± 26, P < .05) and brain-to-plasma ratio (45 ± 10 vs 8 ± 2, P < .0001) at 54 h]. Moreover, brain lithium distribution was increased in chronically compared with acute-on-chronically poisoned rats (brain-to-plasma ratio: 9 ± 1 vs 3 ± 0, P < .01). In conclusion, prolonged rat exposure results in brain lithium accumulation, which is more marked in the presence of renal failure. Our data suggest that differences in plasma and brain kinetics may at least partially explain the observed variability between human intoxication patterns. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Non-invasive detection and quantification of brain microvascular deficits by near-infrared spectroscopy in a rat model of Vascular Cognitive Impairment

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio

    2011-02-01

    Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.

  6. Prediction of specific damage or infarction from the measurement of tissue impedance following repetitive brain ischaemia in the rat.

    PubMed

    Klein, H C; Krop-Van Gastel, W; Go, K G; Korf, J

    1993-02-01

    The development of irreversible brain damage during repetitive periods of hypoxia and normoxia was studied in anaesthetized rats with unilateral occlusion of the carotid artery (modified Levine model). Rats were exposed to 10 min hypoxia and normoxia until severe damage developed. As indices of damage, whole striatal tissue impedance (reflecting cellular water uptake), sodium/potassium contents (due to exchange with blood). Evans Blue staining (blood-brain barrier [BBB] integrity) and silver staining (increased in irreversibly damaged neurons) were used. A substantial decrease in blood pressure was observed during the hypoxic periods possibly producing severe ischaemia. Irreversibly increased impedance, massive changes in silver staining, accumulation of whole tissue Na and loss of K occurred only after a minimum of two periods of hypoxia, but there was no disruption of the BBB. Microscopic examination of tissue sections revealed that cell death was selective with reversible impedance changes, but became massive and non-specific after irreversible increase of the impedance. The development of brain infarcts could, however, not be predicted from measurements of physiological parameters in the blood. We suggest that the development of cerebral infarction during repetitive periods of hypoxia may serve as a model for the development of brain damage in a variety of clinical conditions. Furthermore, the present model allows the screening of potential therapeutic measuring of the prevention and treatment of both infarction and selective cell death.

  7. Hypobaric Hypoxia Regulates Brain Iron Homeostasis in Rats.

    PubMed

    Li, Yaru; Yu, Peng; Chang, Shi-Yang; Wu, Qiong; Yu, Panpan; Xie, Congcong; Wu, Wenyue; Zhao, Baolu; Gao, Guofen; Chang, Yan-Zhong

    2017-06-01

    Disruption of iron homeostasis in brain has been found to be closely involved in several neurodegenerative diseases. Recent studies have reported that appropriate intermittent hypobaric hypoxia played a protective role in brain injury caused by acute hypoxia. However, the mechanisms of this protective effect have not been fully understood. In this study, Sprague-Dawley (SD) rat models were developed by hypobaric hypoxia treatment in an altitude chamber, and the iron level and iron related protein levels were determined in rat brain after 4 weeks of treatment. We found that the iron levels significantly decreased in the cortex and hippocampus of rat brain as compared to that of the control rats without hypobaric hypoxia treatment. The expression levels of iron storage protein L-ferritin and iron transport proteins, including transferrin receptor-1 (TfR1), divalent metal transporter 1 (DMT1), and ferroportin1 (FPN1), were also altered. Further studies found that the iron regulatory protein 2 (IRP2) played a dominant regulatory role in the changes of iron hemostasis, whereas iron regulatory protein 1 (IRP1) mainly acted as cis-aconitase. These results, for the first time, showed the alteration of iron metabolism during hypobaric hypoxia in rat models, which link the potential neuroprotective role of hypobaric hypoxia treatment to the decreased iron level in brain. This may provide insight into the treatment of iron-overloaded neurodegenerative diseases. J. Cell. Biochem. 118: 1596-1605, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. 1H magnetic resonance spectroscopy metabolite profiles of neonatal rat hippocampus and brainstem regions following early postnatal exposure to intermittent hypoxia

    NASA Astrophysics Data System (ADS)

    Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor

    2017-03-01

    Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.

  9. The effect of electromagnetic radiation on the rat brain: an experimental study.

    PubMed

    Eser, Olcay; Songur, Ahmet; Aktas, Cevat; Karavelioglu, Ergun; Caglar, Veli; Aylak, Firdevs; Ozguner, Fehmi; Kanter, Mehmet

    2013-01-01

    The aim of this study is to determine the structural changes of electromagnetic waves in the frontal cortex, brain stem and cerebellum. 24 Wistar Albino adult male rats were randomly divided into four groups: group I consisted of control rats, and groups II-IV comprised electromagnetically irradiated (EMR) with 900, 1800 and 2450 MHz. The heads of the rats were exposed to 900, 1800 and 2450 MHz microwaves irradiation for 1h per day for 2 months. While the histopathological changes in the frontal cortex and brain stem were normal in the control group, there were severe degenerative changes, shrunken cytoplasm and extensively dark pyknotic nuclei in the EMR groups. Biochemical analysis demonstrated that the Total Antioxidative Capacity level was significantly decreased in the EMR groups and also Total Oxidative Capacity and Oxidative Stress Index levels were significantly increased in the frontal cortex, brain stem and cerebellum. IL-1β level was significantly increased in the EMR groups in the brain stem. EMR causes to structural changes in the frontal cortex, brain stem and cerebellum and impair the oxidative stress and inflammatory cytokine system. This deterioration can cause to disease including loss of these areas function and cancer development.

  10. Determination of the neuropharmacological drug nodakenin in rat plasma and brain tissues by liquid chromatography tandem mass spectrometry: Application to pharmacokinetic studies.

    PubMed

    Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi

    2017-09-01

    A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Animal Models of Human Disease: Severe and Mild Lead Encephalopathy in the Neonatal Rat*

    PubMed Central

    Michaelson, I. Arthur; Sauerhoff, Mitchell W.

    1974-01-01

    Inorganic lead produces cerebral dysfunction and clinically definable encephalopathies in man. To date there have been few studies on the biochemical changes in brain following exposure to inorganic lead. Studies correlating toxicity with behavioral and brain neurochemical changes following lead exposure have been hindered because adult laboratory animals are resistant to the central nervous system effects of lead poisoning. Such studies have been impeded by lack of suitable experimental models until Pentschew and Garro showed that brain lesions develop in neonatal rats when a pregnant rat newly delivered of her litter is placed on a 4% lead carbonate containing diet. Lead passes into the developing sucklings via maternal milk. Lead-poisoned new-borns have pronounced retardation of growth and during the fourth week of ilfe develop the severe signs of lead encephalopathy, namely, extensive histological lesions of the cerebellum, brain edema, and paraplegia. There is an approximate 85-fold increase in the lead concentration of both the cerebellum and cerebral cortex relative to controls, but edema and gross vascular changes are confined to the cerebellum. Ingested lead had little effect on RNA, DNA, and protein concentrations of developing rat cerebellum and cerebral cortex. However, there was a reduction of between 10 and 20% in the DNA content of the cerebellum around 3 weeks of age in the lead-exposed sucklings. This suggests a failure of cell multiplication in this part of the brain. A critical evaluation of this experimental approach indicated that under similar dietary conditions experimental lactating rats eat 30% less food than controls resulting in: (a) sustained loss in body weight of nursing mothers and that (b) offsprings who develop paraplegia and cerebellar damage do so after gaining access to lead containing diet. We have studied mothers' food consumption and body weight changes and blood, milk, and brain lead content; and newborns' body and brain weight changes, blood and brain lead content, and brain serotonin (5HT), norepinephrine (NE), dopamine (DA), and γ-aminobutyric acid (GABA). We have found that a lactating mother rat eating 5% lead acetate (2.73% Pb) produced milk containing 25 ppm lead. When the mothers' diet is changed at day 16 from 5% PbAc to one containing 25 ppm Pb, and neonates allowed free access to the solid diet, the sucklings still have retarded body growth but do not develop paraplegia or grossly apparent vascular damage of the cerebellum. However, during the fourth week these animals exhibit a less severe form of “encephalopathy” consisting of hyperactivity, tremors, and stereotype behavior. Pair-fed controls coetaneous to experimental groups do not display such activities. There was no change in brain 5HT, GABA, or NE, but a 15–20% decrease in brain DA. Change in DA relative to other monoamines suggests a relationship between CNS dysfunction due to lead and DA metabolism in the brain. The experimental design as discribed provides a model of CNS dysfunction due to lead exposure without debilitating histopathologies. It is possible that our findings on increased motor activity and changes in brain dopamine may correspond to early responses to lead exposure before recognized overt signs of toxicity. ImagesFIGURE 1.FIGURE 2. PMID:4831141

  12. Functional atlas of the awake rat brain: A neuroimaging study of rat brain specialization and integration.

    PubMed

    Ma, Zhiwei; Perez, Pablo; Ma, Zilu; Liu, Yikang; Hamilton, Christina; Liang, Zhifeng; Zhang, Nanyin

    2018-04-15

    Connectivity-based parcellation approaches present an innovative method to segregate the brain into functionally specialized regions. These approaches have significantly advanced our understanding of the human brain organization. However, parallel progress in animal research is sparse. Using resting-state fMRI data and a novel, data-driven parcellation method, we have obtained robust functional parcellations of the rat brain. These functional parcellations reveal the regional specialization of the rat brain, which exhibited high within-parcel homogeneity and high reproducibility across animals. Graph analysis of the whole-brain network constructed based on these functional parcels indicates that the rat brain has a topological organization similar to humans, characterized by both segregation and integration. Our study also provides compelling evidence that the cingulate cortex is a functional hub region conserved from rodents to humans. Together, this study has characterized the rat brain specialization and integration, and has significantly advanced our understanding of the rat brain organization. In addition, it is valuable for studies of comparative functional neuroanatomy in mammalian brains. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Sex differences and the roles of sex steroids in apoptosis of sexually dimorphic nuclei of the preoptic area in postnatal rats.

    PubMed

    Tsukahara, S

    2009-03-01

    The brain contains several sexually dimorphic nuclei that exhibit sex differences with respect to cell number. It is likely that the control of cell number by apoptotic cell death in the developing brain contributes to creating sex differences in cell number in sexually dimorphic nuclei, although the mechanisms responsible for this have not been determined completely. The milieu of sex steroids in the developing brain affects sexual differentiation in the brain. The preoptic region of rats has two sexually dimorphic nuclei. The sexually dimorphic nucleus of the preoptic area (SDN-POA) has more neurones in males, whereas the anteroventral periventricular nucleus (AVPV) has a higher cell density in females. Sex differences in apoptotic cell number arise in the SDN-POA and AVPV of rats in the early postnatal period, and an inverse correlation exists between sex differences in apoptotic cell number and the number of living cells in the mature period. The SDN-POA of postnatal male rats exhibits a higher expression of anti-apoptotic Bcl-2 and lower expression of pro-apoptotic Bax compared to that in females and, as a potential result, apoptotic cell death via caspase-3 activation more frequently occurs in the SDN-POA of females. The patterns of expression of Bcl-2 and Bax in the SDN-POA of postnatal female rats are changed to male-typical ones by treatment with oestrogen, which is normally synthesised from testicular androgen and affects the developing brain in males. In the AVPV of postnatal rats, apoptotic regulation also differs between the sexes, although Bcl-2 expression is increased and Bax expression and caspase-3 activity are decreased in females. The mechanisms of apoptosis possibly contributing to the creation of sex differences in cell number and the roles of sex steroids in apoptosis are discussed.

  14. Inhibition of transforming growth factor-β attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage.

    PubMed

    Manaenko, Anatol; Lekic, Tim; Barnhart, Margaret; Hartman, Richard; Zhang, John H

    2014-03-01

    Transforming growth factor-β (TGF-β) overproduction and activation of the TGF-β pathway are associated with the development of brain injury following germinal matrix hemorrhage (GMH) in premature infants. We examined the effects of GMH on the level of TGF-β1 in a novel rat collagenase-induced GMH model and determined the effect of inhibition of the TGF receptor I. In total, 92 seven-day old (P7) rats were used. Time-dependent effects of GMH on the level of TGF-β1 and TGF receptor I were evaluated by Western blot. A TGF receptor I inhibitor (SD208) was administered daily for 3 days, starting either 1 hour or 3 days after GMH induction. The effects of GMH and SD208 on the TGF-β pathway were evaluated by Western blot at day 3. The effects of GMH and SD208 on cognitive and motor function were also assessed. The effects of TGF receptor I inhibition by SD208 on GMH-induced brain injury and underlying molecular pathways were investigated by Western blot, immunofluorescence, and morphology studies 24 days after GMH. GMH induced significant delay in development, caused impairment in both cognitive and motor functions, and resulted in brain atrophy in rat subjects. GMH also caused deposition of both vitronectin (an extracellular matrix protein) and glial fibrillary acidic protein in perilesion areas, associated with development of hydrocephalus. SD208 ameliorated GMH-induced developmental delay, improved cognitive and motor functions, and attenuated body weight loss. SD208 also decreased vitronectin and glial fibrillary acidic protein deposition and decreased GMH-induced brain injury. Increased level of TGF-β1 and activation of the TGF-β pathway associate with the development of brain injury after GMH. SD208 inhibits GMH-induced activation of the TGF-β pathway and leads to an improved developmental profile, partial recovery of cognitive and motor functions, and attenuation of GMH-induced brain atrophy and hydrocephalus.

  15. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury

    PubMed Central

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-01

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term “oxygen radical disease of prematurity”. Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28–32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties. PMID:28106777

  16. Neuroprotection by Caffeine in Hyperoxia-Induced Neonatal Brain Injury.

    PubMed

    Endesfelder, Stefanie; Weichelt, Ulrike; Strauß, Evelyn; Schlör, Anja; Sifringer, Marco; Scheuer, Till; Bührer, Christoph; Schmitz, Thomas

    2017-01-18

    Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.

  17. Nuclear-cytoplasmic localization of acetyl coenzyme A synthetase-1 in the rat brain

    PubMed Central

    Ariyannur, Prasanth S.; Moffett, John R.; Madhavarao, Chikkathur N; Arun, Peethambaran; Vishnu, Nisha; Jacobowitz, David M.; Hallows, William C.; Denu, John M.; Namboodiri, Aryan M.A.

    2011-01-01

    Acetyl coenzyme A synthetase 1 (AceCS1) catalyzes the synthesis of acetyl coenzyme A from acetate and coenzyme A, and is thought to play diverse roles ranging from fatty acid synthesis to gene regulation. Using an affinity purified antibody generated against an 18-mer peptide sequence of AceCS1, and a polyclonal antibody directed against recombinant AceCS1 protein, we examined the expression of AceCS1 in the rat brain. AceCS1 immunoreactivity in the adult rat brain was present predominantly in cell nuclei, with only light to moderate cytoplasmic staining in some neurons, axons and oligodendrocytes. Some non-neuronal cell nuclei were very strongly immunoreactive, including those of some oligodendrocytes, whereas neuronal nuclei ranged from unstained to moderately stained. Both antibodies stained some neuronal cell bodies and axons, especially in the hindbrain. AceCS1 immunoreactivity was stronger and more widespread in the brains of 18 day old rats than in adults, with increased expression in oligodendrocytes and neurons, including cortical pyramidal cells. Expression of AceCS1 was substantially upregulated in neurons throughout the brain after controlled cortical impact injury. The strong AceCS1 expression observed in the nuclei of CNS cells during brain development and after injury is consistent with a role in nuclear histone acetylation and therefore the regulation of chromatin structure and gene expression. The cytoplasmic staining observed in some oligodendrocytes, especially during postnatal brain development, suggests an additional role in CNS lipid synthesis and myelination. Neuronal and axonal localization implicates AceCS1 in cytoplasmic acetylation reactions in some neurons. PMID:20533355

  18. Sexual differentiation of the adolescent rat brain: A longitudinal voxel-based morphometry study.

    PubMed

    Sumiyoshi, Akira; Nonaka, Hiroi; Kawashima, Ryuta

    2017-03-06

    The sexual differentiation of the rat brain during the adolescent period has been well documented in post-mortem histological studies. However, to further understand the morphological changes occurring in the entire brain, a noninvasive neuroimaging method allowing an unbiased, comprehensive, and longitudinal investigation of brain morphology should be used. In this study, we investigated the sexual differentiation of the rat brain during the adolescent period using longitudinal voxel-based morphometry (VBM) analysis. Male and female Wistar rats (n=12 of each) were scanned in a 7.0-T MRI scanner at five time points from 6 to 10 weeks of age. The T2-weighted MRI images were segmented using the rat brain tissue priors that have been published by our laboratory. At the global level, the results of the VBM analysis showed greater increases in total gray matter volume in the males during the adolescent period, although we did not find significant differences in total white matter volume. At the voxel level, we found significant increases in the regional gray matter volume of the occipital cortex, amygdala, hippocampal formation, and cerebellum. At the regional level, only the occipital cortex in the females exhibited decreases during the adolescent period. These results were, at least in part, consistent with those of previous longitudinal VBM studies in humans, thus providing translational evidence of the sexual differentiation of the developing brain between rodents and humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Disruption of behavior and brain metabolism in artificially reared rats.

    PubMed

    Aguirre-Benítez, Elsa L; Porras, Mercedes G; Parra, Leticia; González-Ríos, Jacquelina; Garduño-Torres, Dafne F; Albores-García, Damaris; Avendaño, Arturo; Ávila-Rodríguez, Miguel A; Melo, Angel I; Jiménez-Estrada, Ismael; Mendoza-Garrido, Ma Eugenia; Toriz, César; Diaz, Daniel; Ibarra-Coronado, Elizabeth; Mendoza-Ángeles, Karina; Hernández-Falcón, Jesús

    2017-12-01

    Early adverse life stress has been associated to behavioral disorders that can manifest as inappropriate or aggressive responses to social challenges. In this study, we analyzed the effects of artificial rearing on the open field and burial behavioral tests and on GFAP, c-Fos immunoreactivity, and glucose metabolism measured in anxiety-related brain areas. Artificial rearing of male rats was performed by supplying artificial milk through a cheek cannula and tactile stimulation, mimicking the mother's licking to rat pups from the fourth postnatal day until weaning. Tactile stimulation was applied twice a day, at morning and at night, by means of a camel brush on the rat anogenital area. As compared to mother reared rats, greater aggressiveness, and boldness, stereotyped behavior (burial conduct) was observed in artificially reared rats which occurred in parallel to a reduction of GFAP immunoreactivity in somatosensory cortex, c-Fos immunoreactivity at the amygdala and primary somatosensory cortex, and lower metabolism in amygdala (as measured by 2-deoxi-2-[ 18 fluoro]-d-glucose uptake, assessed by microPET imaging). These results could suggest that tactile and/or chemical stimuli from the mother and littermates carry relevant information for the proper development of the central nervous system, particularly in brain areas involved with emotions and social relationships of the rat. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1413-1429, 2017. © 2017 Wiley Periodicals, Inc.

  20. NEUROBEHAVIORAL EFFECTS OF GESTATIONAL AND PERINATAL EXPOSURE TO HEPTACHLOR IN RATS.

    EPA Science Inventory

    In nervous system development, GABA serves as a trophic signal which influences the development of almost all neurotransmitter systems, and is the earliest neurotransmitter detected in fetal rat brain. Since cyclodiene pesticides block GABAergic neurotransmission they may have pr...

  1. Expression profile and distribution of Efhc1 gene transcript during rodent brain development.

    PubMed

    Conte, Fábio F; Ribeiro, Patrícia A O; Marchesini, Rafael B; Pascoal, Vinícius D B; Silva, Joelcimar M; Oliveira, Amanda R; Gilioli, Rovílson; Sbragia, Lourenço; Bittencourt, Jackson C; Lopes-Cendes, Iscia

    2009-09-01

    One of the putative causative genes for juvenile myoclonic epilepsy (JME) is EFHC1. We report here the expression profile and distribution of Efhc1 messenger RNA (mRNA) during mouse and rat brain development. Real-time polymerase chain reaction revealed that there is no difference in the expression of Efhc1 mRNA between right and left hemispheres in both species. In addition, the highest levels of Efhc1 mRNA were found at intra-uterine stages in mouse and in adulthood in rat. In common, there was a progressive decrease in Efhc1 expression from 1-day-old neonates to 14-day-old animals in both species. In situ hybridization studies showed that rat and mouse Efhc1 mRNAs are expressed in ependymal cells of ventricle walls. Our findings suggest that Efhc1 expression is more important during initial phases of brain development and that at this stage it could be involved in key developmental mechanisms underlying JME.

  2. In situ rat brain and liver spontaneous chemiluminescence after acute ethanol intake.

    PubMed

    Boveris, A; Llesuy, S; Azzalis, L A; Giavarotti, L; Simon, K A; Junqueira, V B; Porta, E A; Videla, L A; Lissi, E A

    1997-09-19

    The influence of acute ethanol administration on the oxidative stress status of rat brain and liver was assessed by in situ spontaneous organ chemiluminescence (CL). Brain and liver CL was significantly increased after acute ethanol administration to fed rats, a response that is time-dependent and evidenced at doses higher than 1 g/kg. Ethanol-induced CL development is faster in liver compared with brain probably due to the greater ethanol metabolic capacity of the liver, whereas the net enhancement in brain light emission at 3 h after ethanol treatment is higher than that of the liver, which could reflect the greater susceptibility of brain to oxidative stress. The effect of ethanol on brain and liver CL seems to be mediated by acetaldehyde, due to its abolishment by the alcohol dehydrogenase inhibitor 4-methylpyrazole and exacerbation by the aldehyde dehydrogenase inhibitor disulfiram. In brain, these findings were observed in the absence of changes in the activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase. However, the content of brain glutathione was significantly decreased by 31%, by ethanol, thus establishing an enhanced oxidative stress in this tissue.

  3. Traumatic Brain Injury Causes a Tacrolimus-Sensitive Increase in Non-Convulsive Seizures in a Rat Model of Post-Traumatic Epilepsy.

    PubMed

    Campbell, John N; Gandhi, Anandh; Singh, Baljinderjit; Churn, Severn B

    2014-01-01

    Epilepsy is a significant but potentially preventable complication of traumatic brain injury (TBI). Previous research in animal models of acquired epilepsy has implicated the calcium-sensitive phosphatase, calcineurin. In addition, our lab recently found that calcineurin activity in the rat hippocampus increases acutely after lateral TBI. Here we use a calcineurin inhibitor test whether an acute increase in calcineurin activity is necessary for the development of late post-traumatic seizures. Adult rats were administered the calcineurin inhibitor Tacrolimus (5mg/kg; i.p.) 1 hour after lateral fluid percussion TBI and then monitored by video-electrocorticography (video-ECoG) for spontaneous seizure activity 5 weeks or 33 weeks later. At 5 weeks post-TBI, we observed epileptiform activity on the video-ECoG of brain injured rats but no seizures. By 33 weeks post-TBI though, nearly all injured rats exhibited spontaneous seizures, including convulsive seizures which were infrequent but lasted minutes (18% of injured rats), and non-convulsive seizures which were frequent but lasted tens of seconds (94% of injured rats). We also identified non-convulsive seizures in a smaller subset of control and sham TBI rats (56%), reminiscent of idiopathic seizures described in other rats strains. Non-convulsive seizures in the brain injured rats, however, were four-times more frequent and two-times longer lasting than in their uninjured littermates. Interestingly, rats administered Tacrolimus acutely after TBI showed significantly fewer non-convulsive seizures than untreated rats, but a similar degree of cortical atrophy. The data thus indicate that administration of Tacrolimus acutely after TBI suppressed non-convulsive seizures months later.

  4. Traumatic Brain Injury Causes a Tacrolimus-Sensitive Increase in Non-Convulsive Seizures in a Rat Model of Post-Traumatic Epilepsy

    PubMed Central

    Campbell, John N.; Gandhi, Anandh; Singh, Baljinderjit; Churn, Severn B.

    2014-01-01

    Epilepsy is a significant but potentially preventable complication of traumatic brain injury (TBI). Previous research in animal models of acquired epilepsy has implicated the calcium-sensitive phosphatase, calcineurin. In addition, our lab recently found that calcineurin activity in the rat hippocampus increases acutely after lateral TBI. Here we use a calcineurin inhibitor test whether an acute increase in calcineurin activity is necessary for the development of late post-traumatic seizures. Adult rats were administered the calcineurin inhibitor Tacrolimus (5mg/kg; i.p.) 1 hour after lateral fluid percussion TBI and then monitored by video-electrocorticography (video-ECoG) for spontaneous seizure activity 5 weeks or 33 weeks later. At 5 weeks post-TBI, we observed epileptiform activity on the video-ECoG of brain injured rats but no seizures. By 33 weeks post-TBI though, nearly all injured rats exhibited spontaneous seizures, including convulsive seizures which were infrequent but lasted minutes (18% of injured rats), and non-convulsive seizures which were frequent but lasted tens of seconds (94% of injured rats). We also identified non-convulsive seizures in a smaller subset of control and sham TBI rats (56%), reminiscent of idiopathic seizures described in other rats strains. Non-convulsive seizures in the brain injured rats, however, were four-times more frequent and two-times longer lasting than in their uninjured littermates. Interestingly, rats administered Tacrolimus acutely after TBI showed significantly fewer non-convulsive seizures than untreated rats, but a similar degree of cortical atrophy. The data thus indicate that administration of Tacrolimus acutely after TBI suppressed non-convulsive seizures months later. PMID:25580467

  5. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, R.A.

    1986-12-01

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatizationmore » of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period.« less

  6. Neonatal treatment with monosodium glutamate lastingly facilitates spreading depression in the rat cortex.

    PubMed

    Lima, Cássia Borges; Soares, Geórgia de Sousa Ferreira; Vitor, Suênia Marcele; Castellano, Bernardo; Andrade da Costa, Belmira Lara da Silveira; Guedes, Rubem Carlos Araújo

    2013-09-17

    Monosodium glutamate (MSG) is a neuroexcitatory amino acid used in human food to enhance flavor. MSG can affect the morphological and electrophysiological organization of the brain. This effect is more severe during brain development. Here, we investigated the electrophysiological and morphological effects of MSG in the developing rat brain by characterizing changes in the excitability-related phenomenon of cortical spreading depression (CSD) and microglial reaction. From postnatal days 1-14, Wistar rat pups received 2 or 4 g/kg MSG (groups MSG-2 and MSG-4, respectively; n=9 in each group), saline (n=10) or no treatment (naïve group; n=5) every other day. At 45-60 days, CSD was recorded on two cortical points for 4h. The CSD parameters velocity, and amplitude and duration of the negative potential change were calculated. Fixative-perfused brain sections were immunolabeled with anti-IBA-1 antibodies to identify and quantify cortical microglia. MSG-4 rats presented significantly higher velocities (4.59 ± 0.34 mm/min) than the controls (saline, 3.84 ± 0.20mm/min; naïve, 3.71 ± 0.8mm/min) and MSG-2 group (3.75 ± 0.10mm/min). The amplitude (8.8 ± 2.2 to 11.2 ± 1.9 mV) and duration (58.2 ± 7.1 to 73.6 ± 6.0s) of the negative slow potential shift was similar in all groups. MSG-treatment dose-dependently increased the microglial immunolabeling. The results demonstrate a novel, dose-dependent action of MSG in the developing brain, characterized by acceleration of CSD and significant microglial reaction in the cerebral cortex. The CSD effect indicates that MSG can influence cortical excitability, during brain development, as evaluated by CSD acceleration. Data suggest caution when consuming MSG, especially in developing organisms. © 2013.

  7. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.

    PubMed

    Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J

    2012-04-01

    Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.

  8. Characterization of murine hepatitis virus (JHM) RNA from rats with experimental encephalomyelitis.

    PubMed

    Jackson, D P; Percy, D H; Morris, V L

    1984-09-01

    When Wistar Furth rats are inoculated intracerebrally with the murine hepatitis virus JHM they often develop a demyelinating disease with resulting hind leg paralysis. Using an RNA transfer procedure and hybridization kinetic analysis, the virus-specific RNA in these rats was characterized. The pattern of JHM-specific RNA varied with individual infections of Wistar Furth rats. However, two species of JHM-specific RNA, the nucleocapsid and a 2.1-2.4 X 10(6)-Da RNA species were generally present. A general decrease in JHM-specific RNA in brains and spinal cord samples taken later than 20 days postinoculation was observed; however, JHM-specific RNA persisted in the spinal cord longer than in the brain of these rats.

  9. Electroencephalographic patterns of lithium poisoning: a study of the effect/concentration relationships in the rat.

    PubMed

    Hanak, Anne-Sophie; Malissin, Isabelle; Poupon, Joël; Risède, Patricia; Chevillard, Lucie; Mégarbane, Bruno

    2017-03-01

    Lithium overdose may result in encephalopathy and electroencephalographic abnormalities. Three poisoning patterns have been identified based on the ingested dose, previous treatment duration and renal function. Whether the severity of lithium-induced encephalopathy depends on the poisoning pattern has not been established. We designed a rat study to investigate lithium-induced encephalopathy and correlate its severity to plasma, erythrocyte, cerebrospinal fluid and brain lithium concentrations previously determined in rat models mimicking human poisoning patterns. Lithium-induced encephalopathy was assessed and scored using continuous electroencephalography. We demonstrated that lithium overdose was consistently responsible for encephalopathy, the severity of which depended on the poisoning pattern. Acutely poisoned rats developed rapid-onset encephalopathy which reached a maximal grade of 2/5 at 6 h and disappeared at 24 h post-injection. Acute-on-chronically poisoned rats developed persistent and slightly fluctuating encephalopathy which reached a maximal grade of 3/5. Chronically poisoned rats developed rapid-onset but gradually increasing life-threatening encephalopathy which reached a maximal grade of 4/5. None of the acutely, 20% of the acute-on-chronically and 57% of the chronically lithium-poisoned rats developed seizures. The relationships between encephalopathy severity and lithium concentrations fitted a sigmoidal E max model based on cerebrospinal fluid concentrations in acute poisoning and brain concentrations in acute-on-chronic poisoning. In chronic poisoning, worsening of encephalopathy paralleled the increase in plasma lithium concentrations. The severity of lithium-induced encephalopathy is dependent on the poisoning pattern, which was previously shown to determine lithium accumulation in the brain. Our data support the proposition that electroencephalography is a sensitive tool for scoring lithium-related neurotoxicity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Intrauterine proximity to male fetuses affects the morphology of the sexually dimorphic nucleus of the preoptic area in the adult rat brain.

    PubMed

    Pei, Minjuan; Matsuda, Ken-Ichi; Sakamoto, Hirotaka; Kawata, Mitsuhiro

    2006-03-01

    Previous studies on polytocous rodents have revealed that the fetal intrauterine position influences its later anatomy, physiology, reproductive performance and behavior. To investigate whether the position of a fetus in the uterus modifies the development of the brain, we examined whether the structure of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of rat brains accorded to their intrauterine positions. Brain sections of adult rats gestated between two male fetuses (2M) and between two female fetuses (2F) in the uterus were analysed for their immunoreactivity to calbindin-D28k, which is a marker of the SDN-POA. The SDN-POA volume of the 2M adult males was greater than that of the 2F adult males, whereas the SDN-POA volume of the 2M and 2F adult females showed no significant difference. This result indicated that contiguous male fetuses have a masculinizing effect on the SDN-POA volume of the male. To further examine whether the increment of SDN-POA volume in adulthood was due to exposure to elevated steroid hormones during fetal life, concentrations of testosterone and 17beta-estradiol in the brain were measured with 2M and 2F fetuses during gestation, respectively. On gestation day 21, the concentrations of testosterone and 17beta-estradiol in the brain were significantly higher in the 2M male rats as compared with the 2F male rats. The results suggested that there was a relationship between the fetal intrauterine position, hormone transfer from adjacent fetuses and the SDN-POA volume in adult rat brains.

  11. Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.

    PubMed

    Makarewicz, Dorota; Sulejczak, Dorota; Duszczyk, Małgorzata; Małek, Michał; Słomka, Marta; Lazarewicz, Jerzy W

    2014-01-01

    In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive apoptosis in the developing brain. Memantine in pharmacologically relevant doses of 5 mg/kg or (+)MK-801 (3 mg/kg) was administered i.p. 24, 48, 72 and 96 h before 3-min global forebrain ischemia in adult Mongolian gerbils or prior to hypoxia/ischemia in 7-day-old rats. Neuronal loss in the hippocampal CA1 in gerbils or weight deficit of the ischemic hemispheres in the rat pups was evaluated after 14 days. Also, the number of apoptotic neurons in the immature rat brain was evaluated. In gerbils only the application of (+)MK-801 24 h before ischemia resulted in significant prevention of the loss of pyramidal neurons. In rat pups administration of (+)MK-801 at all studied times before hypoxia-ischemia, or pretreatment with memantine or with hypoxia taken as a positive control 48 to 92 h before the insult, significantly reduced brain damage. Both NMDA receptor antagonists equally reduced the number of apoptotic neurons after hypoxia-ischemia, while (+)MK-801-evoked potentiation of constitutive apoptosis greatly exceeded the effect of memantine. We ascribe neuroprotection induced in the immature rats by the pretreatment with both NMDA receptor antagonists 48 to 92 h before hypoxia-ischemia to tolerance evoked by preconditioning, while the neuroprotective effect of (+)MK-801 applied 24 h before the insults may be attributed to direct consequences of the inhibition of NMDA receptors. This is the first report demonstrating the phenomenon of inducing tolerance against hypoxia-ischemia in vivo in developing rat brain by preconditioning with NMDA receptor antagonists.

  12. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development.

    PubMed

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1alpha, NRF-1alpha and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for themore » first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.« less

  14. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Changlian; Department of Pediatrics, The Third Affiliated Hospital, Zhengzhou University; Gao, Jianfeng

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI),more » could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.« less

  15. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furin‐like protease(s) in a subpopulation of microglia in neonatal rat brain

    PubMed Central

    Hirata, Hiroshi; Ohbuchi, Kengo; Nishi, Kentaro; Maeda, Akira; Kuniyasu, Akihiko; Yamada, Daisuke; Maeda, Takehiko; Tsuji, Akihiko; Sawada, Makoto

    2016-01-01

    To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross‐reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50‐ to 70‐kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys170. In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin‐like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full‐length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin‐like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double‐immunοstaining with 9F5 antibody and anti‐Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938–1961 PMID:27464357

  16. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography

    NASA Astrophysics Data System (ADS)

    Lin, Xiaojie; Miao, Peng; Mu, Zhihao; Jiang, Zhen; Lu, Yifan; Guan, Yongjing; Chen, Xiaoyan; Xiao, Tiqiao; Wang, Yongting; Yang, Guo-Yuan

    2015-02-01

    The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.

  17. Development of an imaging system for in vivo real-time monitoring of neuronal activity in deep brain of free-moving rats.

    PubMed

    Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi

    2017-09-01

    We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.

  18. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats.

    PubMed

    Kolosova, Nataliya G; Vitovtov, Anton O; Muraleva, Natalia A; Akulov, Andrey E; Stefanova, Natalia A; Blagosklonny, Mikhail V

    2013-06-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.

  19. Rapamycin suppresses brain aging in senescence-accelerated OXYS rats

    PubMed Central

    Kolosova, Nataliya G.; Vitovtov, Anton O.; Muraleva, Natalia A; Akulov, Andrey E.; Stefanova, Natalia A.; Blagosklonny, Mikhail V.

    2013-01-01

    Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span in C elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wistar rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging. PMID:23817674

  20. A combined solenoid-surface RF coil for high-resolution whole-brain rat imaging on a 3.0 Tesla clinical MR scanner.

    PubMed

    Underhill, Hunter R; Yuan, Chun; Hayes, Cecil E

    2010-09-01

    Rat brain models effectively simulate a multitude of human neurological disorders. Improvements in coil design have facilitated the wider utilization of rat brain models by enabling the utilization of clinical MR scanners for image acquisition. In this study, a novel coil design, subsequently referred to as the rat brain coil, is described that exploits and combines the strengths of both solenoids and surface coils into a simple, multichannel, receive-only coil dedicated to whole-brain rat imaging on a 3.0 T clinical MR scanner. Compared with a multiturn solenoid mouse body coil, a 3-cm surface coil, a modified Helmholtz coil, and a phased-array surface coil, the rat brain coil improved signal-to-noise ratio by approximately 72, 61, 78, and 242%, respectively. Effects of the rat brain coil on amplitudes of static field and radiofrequency field uniformity were similar to each of the other coils. In vivo, whole-brain images of an adult male rat were acquired with a T(2)-weighted spin-echo sequence using an isotropic acquisition resolution of 0.25 x 0.25 x 0.25 mm(3) in 60.6 min. Multiplanar images of the in vivo rat brain with identification of anatomic structures are presented. Improvement in signal-to-noise ratio afforded by the rat brain coil may broaden experiments that utilize clinical MR scanners for in vivo image acquisition. 2010 Wiley-Liss, Inc.

  1. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: Magnetic resonance imaging.

    PubMed

    van Vliet, Erwin A; Otte, Willem M; Wadman, Wytse J; Aronica, Eleonora; Kooij, Gijs; de Vries, Helga E; Dijkhuizen, Rick M; Gorter, Jan A

    2016-01-01

    The mammalian target of rapamycin (mTOR) pathway has received increasing attention as a potential antiepileptogenic target. Treatment with the mTOR inhibitor rapamycin after status epilepticus reduces the development of epilepsy in a rat model. To study whether rapamycin mediates this effect via restoration of blood-brain barrier (BBB) dysfunction, contrast-enhanced magnetic resonance imaging (CE-MRI) was used to determine BBB permeability throughout epileptogenesis. Imaging was repeatedly performed until 6 weeks after kainic acid-induced status epilepticus in rapamycin (6 mg/kg for 6 weeks starting 4 h after SE) and vehicle-treated rats, using gadobutrol as contrast agent. Seizures were detected using video monitoring in the week following the last imaging session. Gadobutrol leakage was widespread and extensive in both rapamycin and vehicle-treated epileptic rats during the acute phase, with the piriform cortex and amygdala as the most affected regions. Gadobutrol leakage was higher in rapamycin-treated rats 4 and 8 days after status epilepticus compared to vehicle-treated rats. However, during the chronic epileptic phase, gadobutrol leakage was lower in rapamycin-treated epileptic rats along with a decreased seizure frequency. This was confirmed by local fluorescein staining in the brains of the same rats. Total brain volume was reduced by this rapamycin treatment regimen. The initial slow recovery of BBB function in rapamycin-treated epileptic rats indicates that rapamycin does not reduce seizure activity by a gradual recovery of BBB integrity. The reduced BBB leakage during the chronic phase, however, could contribute to the decreased seizure frequency in post-status epilepticus rats treated with rapamycin. Furthermore, the data show that CE-MRI (using step-down infusion with gadobutrol) can be used as biomarker for monitoring the effect of drug therapy in rats. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  2. The brain renin‐angiotensin system plays a crucial role in regulating body weight in diet‐induced obesity in rats

    PubMed Central

    Winkler, Martina; Schuchard, Johanna; Stölting, Ines; Vogt, Florian M; Barkhausen, Jörg; Thorns, Christoph; Bader, Michael

    2016-01-01

    Background and Purpose Reduced weight gain after treatment with AT1 receptor antagonists may involve a brain‐related mechanism. Here, we investigated the role of the brain renin‐angiotensin system on weight regulation and food behaviour, with or without additional treatment with telmisartan. Methods Transgenic rats with a brain‐specific deficiency in angiotensinogen (TGR(ASrAOGEN)) and the corresponding wild‐type, Sprague Dawley (SD) rats were fed (3 months) with a high‐calorie cafeteria diet (CD) or standard chow. SD and TGR(ASrAOGEN) rats on the CD diet were also treated with telmisartan (8 mg·kg−1·d−1, 3 months). Results Compared with SD rats, TGR(ASrAOGEN) rats (i) had lower weights during chow feeding, (ii) did not become obese during CD feeding, (iii) had normal baseline leptin plasma concentrations independent of the feeding regimen, whereas plasma leptin of SD rats was increased due to CD, (iv) showed a reduced energy intake, (v) had a higher, strain‐dependent energy expenditure, which is additionally enhanced during CD feeding, (vi) had enhanced mRNA levels of pro‐opiomelanocortin and (vii) showed improved glucose control. Weight gain and energy intake in rats fed the CD diet were markedly reduced by telmisartan in SD rats but only to a minor extent in TGR(ASrAOGEN) rats. Conclusions The brain renin‐angiotensin system affects body weight regulation, feeding behaviour and metabolic disorders. When angiotensin II levels are low in brain, rats are protected from developing diet‐induced obesity and obesity‐related metabolic impairments. We further suggest that telmisartan at least partly lowers body weight via a CNS‐driven mechanism. PMID:26892671

  3. Shock wave-induced brain injury in rat: novel traumatic brain injury animal model.

    PubMed

    Nakagawa, Atsuhiro; Fujimura, Miki; Kato, Kaoruko; Okuyama, Hironobu; Hashimoto, Tokitada; Takayama, Kazuyoshi; Tominaga, Teiji

    2008-01-01

    In blast wave injury and high-energy traumatic brain injury, shock waves (SW) play an important role along with cavitation phenomena. However, due to lack of reliable and reproducible technical approaches, extensive study of this type of injury has not yet been reported. The present study aims to develop reliable SW-induced brain injury model by focusing micro-explosion generated SW in the rat brain. Adult male rats were exposed to single SW focusing created by detonation of microgram order of silver azide crystals with laser irradiation at a focal point of a truncated ellipsoidal cavity of20 mm minor diameter and the major to minor diameter ratio of 1.41 after craniotomy. The pressure profile was recorded using polyvinylidene fluoride needle hydrophone. Animals were divided into three groups according to the given overpressure: Group I: Control, Group II: 12.5 +/- 2.5 MPa (high pressure), and Group III: 1.0 +/- 0.2 MPa (low pressure). Histological changes were evaluated over time by hematoxylin-eosin staining. Group II SW injuries resulted in contusional hemorrhage in reproducible manner. Group III exposure resulted in spindle-shaped changes of neurons and elongation of nucleus without marked neuronal injury. The use of SW loading by micro-explosion is useful to provide a reliable and reproducible SW-induced brain injury model in rats.

  4. [Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain].

    PubMed

    Feng, Er-Cui; Jiang, Li

    2017-12-01

    To investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain. A total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory. There was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P<0.05); more than 10 days after birth, the leptin intervention group had rapid growth with higher body weight than the model and sham-operation groups (P>0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (P<0.05); from the fourth day of experiment, the leptin intervention group had a similar latency period as the sham-operation and a significantly shorter latency period than the model group (P<0.05). The results of space search experiment showed that compared with the sham-operation group, the model group had a significant reduction in the number of platform crossings and a significantly longer latency period (P<0.05); compared with the model group, the leptin intervention group had a significantly increased number of platform crossings and a significantly shortened latency period (P<0.05), while there was no significant difference between the leptin intervention and sham-operation groups. Leptin can alleviate spatial memory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.

  5. Inherited tertiary hypothyroidism in Sprague-Dawley rats.

    PubMed

    Stoica, George; Lungu, Gina; Xie, Xueyi; Abbott, Louise C; Stoica, Heidi M; Jaques, John T

    2007-05-07

    Thyroid hormones (THs) are important in the development and maturation of the central nervous system (CNS). The significant actions of THs during CNS development occur at the time when TH levels are lower than those in the mother and the hypothalamic-thyroid (HPT) axis is not fully functional. In the developing rat nervous system, primarily the cerebellum, the first three postnatal weeks represent a period of significant sensitivity to thyroid hormones. This study presents a spontaneous, inherited recessive hypothyroidism in Sprague-Dawley rats with devastating functional consequences to the development of the CNS. The clinical signs develop around 14 day's postnatal (dpn) and are characterized by ataxia, spasticity, weight loss and hypercholesterolemia. The afflicted rats died at 30 days due to severe neurological deficits. The deterioration affects the entire CNS and is characterized by progressive neuronal morphological and biochemical changes, demyelination and astrogliosis. The cerebellum, brain stem, neocortex, hippocampus and adrenal gland medulla appear to be most affected. Thyroid Stimulating Hormone (TSH), T3 and T4 levels were significantly lower in hypothyroid rats than control. Immunohistochemistry and RT-PCR demonstrated a reduction of Thyrotropin Releasing Hormone (TRH) in the hypothalamus of hypothyroid rats. The weight of both thyroid and pituitary glands were significantly less in hypothyroid rats than the corresponding normal littermate controls. Transmission electron microscopy demonstrates consistent postsynaptic dendritic, synaptic and spine alterative changes in the brain of hypothyroid rats. These data suggest that we discovered a tertiary form of inherited hypothyroidism involving the hypothalamus.

  6. Mean girls: sex differences in the effects of mild traumatic brain injury on the social dynamics of juvenile rat play behaviour.

    PubMed

    Mychasiuk, R; Hehar, H; Farran, A; Esser, M J

    2014-02-01

    Clinical studies indicate that children who experience a traumatic brain injury (TBI) are often the victim of peer rejection, have very few mutual friends, and are at risk for long-term behavioural and social impairments. Owing to the fact that peer play is critical for healthy development, it is possible that the long-term impairments are associated not only with the TBI, but also altered play during this critical period of brain development. This study was designed to determine if social dynamics and juvenile play are altered in rats that experience a mild TBI (mTBI) early in life. Play-fighting behaviours were recorded and analyzed for young male and female Sprague Dawley rats that were given either an mTBI or a sham injury. The study found that the presence of an mTBI altered the play fighting relationship, and the nature of the alterations were dependent upon the sex of the pairing and the injury status of their peers. Sham rats were significantly less likely to initiate play with an mTBI rat, and were more likely to respond to a play initiation from an mTBI rat with an avoidant strategy. This effect was significantly more pronounced in female rats, whereby it appeared that female rats with an mTBI were particularly rejected and most often excluded from play experiences. Male rats with an mTBI learned normal play strategies from their sham peers (when housed in mixed cages), whereas female rats with an mTBI show heightened impairment in these conditions. Play therapy may need to be incorporated into treatment strategies for children with TBI. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A cross-circulated bicephalic model of head transplantation.

    PubMed

    Li, Peng-Wei; Zhao, Xin; Zhao, Yun-Long; Wang, Bing-Jian; Song, Yang; Shen, Zi-Long; Jiang, Hong-Jun; Jin, Hai; Canavero, Sergio; Ren, Xiao-Ping

    2017-06-01

    A successful cephalosomatic anastomosis ("head transplant") requires, among others, the ability to control long-term immune rejection and avoidance of ischemic events during the head transference phase. We developed a bicephalic model of head transplantation to study these aspects. The thoracic aorta and superior vena cava of a donor rat were anastomosed with the carotid artery and extracorporeal veins of a recipient rat by vascular grafts. Before thoracotomy in the donor rat, the axillary artery and vein of the donor were connected to the carotid and the extracranial vein of the third rat through a silicone tube. The silicone tube was passed through a peristaltic pump to ensure donor brain tissue blood supply. There is no ischemia reperfusion injury in donor brain tissue analyzed by electroencephalogram. Postoperative donor has pain reflex and corneal reflex. Peristaltic pump application can guarantee the blood supply of donor brain tissue per unit time, while the application of temperature change device to the silicone tube can protect the brain tissue hypothermia, postoperative experimental data show that there is no brain tissue ischemia during the whole operation. The application of vascular grafting can also provide the possibility of long-term survival of the model. © 2017 John Wiley & Sons Ltd.

  8. Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain.

    PubMed

    Rastogi, R B; Singhal, R L

    1976-09-01

    In neonatal rats, administration of l-triiodothyronine (10 mug/100 g/day) for 30 days presented signs of hyperthyroidism which included accelerated development of a variety of physical and behavioral characteristics accompanying maturation. The spontaneous motor activity was increased by 69%. Exposure of developing rats to thyroid hormone significantly increased the endogenous concentration of striatal tyrosine and the activity of tyrosine hydroxylase as well as the levels of dopamine in several brain regions. The concentration of striatal homovanillic acid and 3,4-dihydroxyphenylacetic acid, the chief metabolites of dopamine, was also increased and the magnitude of change was greater than the rise in dopamine. Despite increases in the activity of tyrosine hydroxylase and the availability of the substrate tyrosine, the steady-state levels of norepinephrine remained unaltered in various regions of brain except in cerebellum. Futhermore, neonatal hyperthyroidism significantly increased the levels of midbrain tryptophan and tryptophan hydroxylase activity but produced no change in 5-hydroxytryptamine levels of several discrete brain regions, except hypothalamus and cerebellum where its concentration was slightly decreased. However, the 5-hydroxyindoleacetic acid levels were enhanced in hypothalamus, ponsmedulla, midbrain, striatum and hippocampus. The elevated levels of 5-hydroxyindoleacetic acid did not seem to be due to increased intraneuronal deamination of 5-hydroxytryptamine since monoamine oxidase activity was not affected in cerebral cortex and midbrain of hyperthyroid rats. The data demonstrate that hyperthyroidism significantly increased the synthesis as well as the utilization of catecholamines and 5-hydroxytryptamine in maturing brain. Since the mature brain is known to respond differently to thyroid hormone action than does the developing brain, the effect of L-triiodothyronine treatment on various putative neurohumors also was examined in adult rats. Whereas administration of l-triiodothyronine (10 mug/100 g/day) for 30 days to 120-day-old rats increased the levels of tyrosine by 23% and of tryptophan by 43%, no appreciable change was noted in tryptophan hydroxylase activity. In contrast to neonatal hyperthyroidism, excess of thyroid hormone in adult rats failed to produce any change in motor activity and tended to decrease striatal tyrosine hydroxylase activity only slightly. The concentration of dopamine remained unchanged in all regions of the brain except in midbrain where it rose by 19%. Whereas norepinephrine concentration was altered in hypothalamus, pons-medulla and midbrain, the levels of 5-hydroxytryptamine and its metabolite, 5-hydroxyindoleacetic acid, were significantly decreased in striatum and cerebellum. Since dopaminergic and noradrenergic neurons are the critical components of the motor system, the possibility exists that elevated behavioral activity in young L-triiodothyronine-treated animals might be associated with increased turnover of catecholamines in neuronal tissue.

  9. Sevoflurane postconditioning against cerebral ischemic neuronal injury is abolished in diet-induced obesity: role of brain mitochondrial KATP channels.

    PubMed

    Yang, Zecheng; Chen, Yunbo; Zhang, Yan; Jiang, Yi; Fang, Xuedong; Xu, Jingwei

    2014-03-01

    Obesity is associated with increased infarct volumes and adverse outcomes following ischemic stroke. However, its effect on anesthetic postconditioning‑induced neuroprotection has not been investigated. The present study examined the effect of sevoflurane postconditioning on focal ischemic brain injury in diet‑induced obesity. Sprague‑Dawley rats were fed a high‑fat diet (HF; 45% kcal as fat) for 12 weeks to develop obesity syndrome. Rats fed a low‑fat diet (LF; 10% kcal as fat) served as controls. The HF or LF‑fed rats were subjected to focal cerebral ischemia for 60 min, followed by 24 h of reperfusion. Postconditioning was performed by exposure to sevoflurane for 15 min immediately at the onset of reperfusion. The involvement of the mitochondrial KATP (mitoKATP) channel was analyzed by the administration of a selective inhibitor of 5‑hydroxydecanoate (5‑HD) prior to sevoflurane postconditioning or by administration of diazoxide (DZX), a mitoKATP channel opener, instead of sevoflurane. The cerebral infarct volume, neurological score and motor coordination were evaluated 24 h after reperfusion. The HF‑fed rats had larger infarct volumes, and lower neurological scores than the LF‑fed rats and also failed to respond to neuroprotection by sevoflurane or DZX. By contrast, sevoflurane and DZX reduced the infarct volumes and improved the neurological scores and motor coordination in the LF‑fed rats. Pretreatment with 5‑HD inhibited sevoflurane‑induced neuroprotection in the LF‑fed rats, whereas it had no effect in the HF‑fed rats. Molecular studies demonstrated that the expression of Kir6.2, a significant mitoKATP channel component, was reduced in the brains of the HF‑fed rats compared with the LF‑fed rats. The results of this study indicate that diet‑induced obesity eliminates the ability of anesthetic sevoflurane postconditioning to protect the brain against cerebral ischemic neuronal injury, most likely due to an impaired brain mitoKATP channel.

  10. The role of limited proteolysis of thyrotropin-releasing hormone in thermoregulation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, C.

    1982-01-01

    Cyclo (His-Pro) is a biologiclly active cyclic dipeptide derived from thyrotropin-releasing hormone by its limited proteolysis. We have developed a specific radioimmunoassay for this cyclic peptide and shown its presence throughout rat and monkey brains. The normal rat brain concentration of cyclo (His-Pro) ranged from 35-61 pmols/brain. The elution profiles of rat brain cyclo (His-Pro)-like immunoreactivity and synthetic radioactive cyclo (His-Pro) following gel filtration, ion-exchange chromatography and high pressure liquid chromatography were similar. An analysis of the regional distribution of cyclo (His-Pro) and TRH in rat and monkey brains exhibited no apparent precursor-product relationship. Studies on the neuroanatomic sites formore » the thermoregulatory effects of cyclo (His-Pro) suggested that the neural loci responsible for cyclo (His-Pro)-induced hypothermia resides within POA/AHA. The endogenous levels of brain cyclo (His-Pro) were elevated when rats were made either hypothyroid by surgical thyroidectomy or forced to drink alcohol for six weeks. These studies demonstrate that cyclo (His-Pro) is present throughout the central nervous system in physiologically relevant concentrations which can be modified by appropriate physiological and pharamacological manipulations. These data in conjunction with earlier reports of multiple biological activities of exogenous cyclo (His-Pro), suggest that endogenous cyclo (His-Pro) is a biological active peptide and it may play a neurotransmitter or neuromodulator role in the central nervous system.« less

  11. Simultaneous Determination of Seven Neuroactive Steroids Associated with Depression in Rat Plasma and Brain by High Performance Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Wang, Youqiong; Tang, Lipeng; Yin, Wei; Chen, Jiesi; Leng, Tiandong; Zheng, Xiaoke; Zhu, Wenbo; Zhang, Haipeng; Qiu, Pengxin; Yang, Xiaoxiao; Yan, Guangmei; Hu, Haiyan

    2016-01-01

    Sensitive and specific biomarkers are required for the diagnosis and treatment of depression because the existing diagnostic criteria are subjective and could produce false positives or negatives. Some endogenous neuroactive steroids that have shown either antidepressant effects or concentration changes in individuals with depression could provide potential biomarkers. In this study, a simple and specific method was developed to simultaneously determine seven endogenous neuroactive steroids in biological samples: cortisone, cortisol, dehydroepiandrosterone, estradiol, progesterone, pregnenolone, and testosterone. After liquid-liquid extraction, chromatographic separation was achieved on a C18 column with gradient elution using water-methanol at a flow rate of 300 μL min(-1). Detection and quantitation were performed by tandem mass spectrometry with atmospheric pressure chemical ionization and selected reaction monitoring. Plasma and brain neuroactive steroid levels were then determined in control rats and rats exposed to forced swimming, a classical rodent model of depression. The results showed that the plasma concentrations of testosterone, pregnenolone, and progesterone significantly increased in rats exposed to the forced swimming test. In contrast, brain homogenate levels of cortisol, estradiol, and progesterone decreased, while pregnenolone levels were elevated in this model of depression. In conclusion, a new method to quantify neuroactive steroids was successfully developed and applied to their investigation in rat plasma and brain. The findings of this study indicated that plasma testosterone, pregnenolone, and progesterone levels could provide potential biomarkers for the diagnosis and treatment of depression.

  12. Effects of environmental enrichment on blood vessels in the optic tract of malnourished rats: A morphological and morphometric analysis.

    PubMed

    Barbosa, Everton Horiquini; Soares, Roberto Oliveira; Braga, Natália Nassif; Almeida, Sebastião de Sousa; Lachat, João-José

    2016-06-01

    This study aimed to compare the effects of environmental enrichment in nourished (on a diet containing 16% protein) and malnourished (on a diet containing 6% protein) rats during the critical period of brain development, specifically focusing on the optic nerve. By means of morphologic and morphometric assessment of the optic nerve, we analyzed the changes caused by diet and stimulation (environmental enrichment) on postnatal day 35, a time point ideal for such morphological analysis since developmental processes are considered complete at this age. Malnourished animals presented low body and brain weights and high body-to-brain weight ratio compared to well-nourished rats. Furthermore, malnourished animals showed morphological changes in the optic nerve such as edema and vacuolization characterized by increased interstitial space. The malnourished-stimulated group presented lesions characteristic of early protein malnutrition but were milder than lesions exhibited by malnourished-non-stimulated group. The morphometric analysis revealed no difference in glial cell density between groups, but there was significantly higher blood vessel density in the stimulated rats, independent of their nutritional condition. Our data indicate that protein malnutrition imposed during the critical period of brain development alters the cytoarchitecture of the optic nerve. In addition, we affirm that a 1-hour exposure to an enriched environment everyday was sufficient for tissue preservation in rats maintained on a low-protein diet. This protective effect might be related to angiogenesis, as confirmed by the increased vascular density observed in morphometric analyses.

  13. Correlation between light scattering signal and tissue reversibility in rat brain exposed to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Uozumi, Yoichi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2010-02-01

    Light scattering signal is a potential indicator of tissue viability in brain because cellular and subcellular structural integrity should be associated with cell viability in brain tissue. We previously performed multiwavelength diffuse reflectance measurement for a rat global ischemic brain model and observed a unique triphasic change in light scattering at a certain time after oxygen and glucose deprivation. This triphasic scattering change (TSC) was shown to precede cerebral ATP exhaustion, suggesting that loss of brain tissue viability can be predicted by detecting scattering signal. In the present study, we examined correlation between light scattering signal and tissue reversibility in rat brain in vivo. We performed transcranial diffuse reflectance measurement for rat brain; under spontaneous respiration, hypoxia was induced for the rat by nitrogen gas inhalation and reoxygenation was started at various time points. We observed a TSC, which started at 140 +/- 15 s after starting nitrogen gas inhalation (mean +/- SD, n=8). When reoxygenation was started before the TSC, all rats survived (n=7), while no rats survived when reoxygenation was started after the TSC (n=8). When reoxygenation was started during the TSC, rats survived probabilistically (n=31). Disability of motor function was not observed for the survived rats. These results indicate that TSC can be used as an indicator of loss of tissue reversibility in brains, providing useful information on the critical time zone for treatment to rescue the brain.

  14. Antisense imaging of gene expression in the brain in vivo

    NASA Astrophysics Data System (ADS)

    Shi, Ningya; Boado, Ruben J.; Pardridge, William M.

    2000-12-01

    Antisense radiopharmaceuticals could be used to image gene expression in the brain in vivo, should these polar molecules be made transportable through the blood-brain barrier. The present studies describe an antisense imaging agent comprised of an iodinated peptide nucleic acid (PNA) conjugated to a monoclonal antibody to the rat transferrin receptor by using avidin-biotin technology. The PNA was a 16-mer antisense to the sequence around the methionine initiation codon of the luciferase mRNA. C6 rat glioma cells were permanently transfected with a luciferase expression plasmid, and C6 experimental brain tumors were developed in adult rats. The expression of the luciferase transgene in the tumors in vivo was confirmed by measurement of luciferase enzyme activity in the tumor extract. The [125I]PNA conjugate was injected intravenously in anesthetized animals with brain tumors and killed 2 h later for frozen sectioning of brain and film autoradiography. No image of the luciferase gene expression was obtained after the administration of either the unconjugated antiluciferase PNA or a PNA conjugate that was antisense to the mRNA of a viral transcript. In contrast, tumors were imaged in all rats administered the [125I]PNA that was antisense to the luciferase sequence and was conjugated to the targeting antibody. In conclusion, these studies demonstrate gene expression in the brain in vivo can be imaged with antisense radiopharmaceuticals that are conjugated to a brain drug-targeting system.

  15. Effects of acute exposure of permethrin in adult and developing Sprague-Dawley rats on acoustic startle response and brain and plasma concentrations.

    PubMed

    Williams, Michael T; Gutierrez, Arnold; Vorhees, Charles V

    2018-06-08

    Permethrin is a Type I (non-cyano) pyrethroid that induces tremors at high concentrations and increases acoustic startle responses (ASR) in adult rodents, however its effects in young rats have been investigated to a limited extent. ASR and tremor were assessed in adult and postnatal day (P)15 Sprague-Dawley rats at oral doses of 60, 90, or 120 mg/kg over an 8 h period. Permethrin increased ASR in adults, regardless of dose, and 20% of the high-dose rats showed tremor at later time points. For the P15 rats all doses induced tremor at all time points, and ASR was increased at 2 h in the 90 and 120 mg/kg groups with a trend in the 60 mg/kg group compared with controls. The 60 mg/kg group showed increased ASR at 4 and 6 h, whereas the 90 mg/kg group showed no differences from the controls at these times. The 120 mg/kg group showed decreased ASR from 4-8 h post-treatment. P15 and adult rats both showed plasma and brain cis- and trans-permethrin increases after dosing. After the same dose of permethrin, P15 rats had greater cis- and trans-permethrin in brain and plasma compared with adults. P15 rats had an increased tremor response compared with adults even at comparable brain permethrin concentrations. For ASR, P15 rats responded sooner and showed a biphasic pattern ranging from increased to decreased response as a function of dose and time, unlike adults that only showed increases. Overall, young rats showed greater effects from permethrin compared with adults.

  16. Diabetic Goto-Kakizaki rats display pronounced hyperglycemia and longer-lasting cognitive impairments following ischemia induced by cortical compression.

    PubMed

    Moreira, T; Cebers, G; Pickering, C; Ostenson, C-G; Efendic, S; Liljequist, S

    2007-02-23

    Hyperglycemia has been shown to worsen the outcome of brain ischemia in several animal models but few experimental studies have investigated impairments in cognition induced by ischemic brain lesions in hyperglycemic animals. The Goto-Kakizaki (GK) rat naturally develops type 2 diabetes characterized by mild hyperglycemia and insulin resistance. We hypothesized that GK rats would display more severe cerebral damage due to hyperglycemia-aggravated brain injury and, accordingly, more severe cognitive impairments. In this study, recovery of motor and cognitive functions of GK and healthy Wistar rats was examined following extradural compression (EC) of the sensorimotor cortex. For this purpose, tests of vestibulomotor function (beam-walking) and combined tests of motor function and learning (locomotor activity from day (D) 1 to D5, operant lever-pressing from D14 to D25) were used. EC consistently reduced cerebral blood flow in both strains. Anesthesia-challenge and EC resulted in pronounced hyperglycemia in GK but not in Wistar rats. Lower beam-walking scores, increased locomotor activity, impairments in long-term habituation and learning of operant lever-pressing were more pronounced and observed at later time-points in GK rats. Fluoro-Jade, a marker of irreversible neuronal degeneration, revealed consistent degeneration in the ipsilateral cortex, hippocampus and thalamus at 2, 7 and 14 days post-compression. The amount of degeneration in these structures was considerably higher in GK rats. Thus, GK rats exhibited marked hyperglycemia during EC, as well as longer-lasting behavioral deficits and increased neurodegeneration during recovery. The GK rat is thus an attractive model for neuropathologic and cognitive studies after ischemic brain injury in hyperglycemic rats.

  17. Preparation and biocompatibility study of in situ forming polymer implants in rat brains.

    PubMed

    Nasongkla, Norased; Boongird, Atthaporn; Hongeng, Suradej; Manaspon, Chawan; Larbcharoensub, Noppadol

    2012-02-01

    We describe the development of polymer implants that were designed to solidify once injected into rat brains. These implants comprised of glycofurol and copolymers of D: ,L: -lactide (LA), ε-caprolactone and poly(ethylene glycol) (PLECs). Scanning electron microscopy (SEM) and gel permeation chromatography (GPC) showed that the extent of implant degradation was increased with LA: content in copolymers. SEM analysis revealed the formation of porosity on implant surface as the degradation proceeds. PLEC with 19.3% mole of LA: was chosen to inject in rat brains at the volume of 10, 25 and 40 μl. Body weights, hematological and histopathological data of rats treated with implants were evaluated on day 3, 6, 14, 30 and 45 after the injection. Polymer solution at the injection volume of 10 μl were tolerated relatively well compared to those of 25 and 40 μl as confirmed by higher body weight and healing action (fibrosis tissue) 30 days after treatment. The results from this study suggest a possible application as drug delivery systems that can bypass the blood brain barrier.

  18. Developmental Thyroid Hormone Insufficiency Induces Cortical Brain Malformation and Learning Impairments: A Cross-Fostering Study

    EPA Science Inventory

    Thyroid hormones (TH) are essential for brain development, but animal models of well-defined and sensitive downstream apical neurotoxic outcomes associated with developmental TH disruption are lacking. A structural anomaly, a cortical heterotopia, in the brains of hypothyroid rat...

  19. Growth Associated Protein 43 (GAP-43) as a Novel Target for the Diagnosis, Treatment and Prevention of Epileptogenesis.

    PubMed

    Nemes, Ashley D; Ayasoufi, Katayoun; Ying, Zhong; Zhou, Qi-Gang; Suh, Hoonkyo; Najm, Imad M

    2017-12-18

    We previously showed increased growth associated protein 43 (GAP-43) expression in brain samples resected from patients with cortical dysplasia (CD), which was correlated with duration of epilepsy. Here, we used a rat model of CD to examine the regulation of GAP-43 in the brain and serum over the course of epileptogenesis. Baseline GAP-43 expression was higher in CD animals compared to control non-CD rats. An acute seizure increased GAP-43 expression in both CD and control rats. However, GAP-43 expression decreased by day 15 post-seizure in control rats, which did not develop spontaneous seizures. In contrast, GAP-43 remained up-regulated in CD rats, and over 50% developed chronic epilepsy with increased GAP-43 levels in their serum. GAP-43 protein was primarily located in excitatory neurons, suggesting its functional significance in epileptogenesis. Inhibition of GAP-43 expression by shRNA significantly reduced seizure duration and severity in CD rats after acute seizures with subsequent reduction in interictal spiking. Serum GAP-43 levels were significantly higher in CD rats that developed spontaneous seizures. Together, these results suggest GAP-43 as a key factor promoting epileptogenesis, a possible therapeutic target for treatment of progressive epilepsy and a potential biomarker for epilepsy progression in CD.

  20. Differential DNA damage in response to the neonatal and adult excitotoxic hippocampal lesion in rats.

    PubMed

    Khaing, Z Z; Weickert, C S; Weinberger, D R; Lipska, B K

    2000-12-01

    We examined the developmental profile of excitotoxin-induced nuclear DNA fragmentation using the transferase dUTP nick-end labelling (TUNEL) technique, as a marker of DNA damage and cell death in rats with neonatal and adult excitotoxic lesions of the ventral hippocampus. We hypothesized that infusion of neurotoxin may result in a differential pattern of cell death in neonatally and adult lesioned rats, both in the infusion site and in remote brain regions presumably involved in mediating behavioural changes observed in these animals. Brains of rats lesioned at 7 days of age and in adulthood were collected at several survival times 1-21 days after the lesion. In the lesioned neonates 1-3 days postlesion, marked increases in TUNEL-positive cells occurred in the ventral hippocampus, the site of neurotoxin infusion, and in a wide surrounding area. Adult lesioned brains showed more positive cells than controls only at the infusion site. In the lesioned neonates, TUNEL-labelled cells were also present in the striatum and nucleus accumbens 1 day postlesion but not at later survival times. Our findings indicate that cell death in remote regions is more prominent in immature than adult brains, that it may lead to distinct alterations in development of these brain regions, and thus may be responsible for functional differences between neonatally and adult lesioned rats.

  1. Expression of small cytoplasmic transcripts of the rat identifier element in vivo and in cultured cells.

    PubMed Central

    McKinnon, R D; Danielson, P; Brow, M A; Bloom, F E; Sutcliffe, J G

    1987-01-01

    We examined the level of expression of small RNA transcripts hybridizing to a rodent repetitive DNA element, the identifier (ID) sequence, in a variety of cell types in vivo and in cultured mammalian cells. A 160-nucleotide (160n) cytoplasmic poly(A)+ RNA (BC1) appeared in late embryonic and early postnatal rat brain development, was enriched in the cerebral cortex, and appeared to be restricted to neural tissue and the anterior pituitary gland. A 110n RNA (BC2) was specifically enriched in brain, especially the postnatal cortex, but was detectable at low levels in peripheral tissues. A third, related 75n poly(A)- RNA (T3) was found in rat brain and at lower levels in peripheral tissues but was very abundant in the testes. The BC RNAs were found in a variety of rat cell lines, and their level of expression was dependent upon cell culture conditions. A rat ID probe detected BC-like RNAs in mouse brain but not liver and detected a 200n RNA in monkey brain but not liver at lower hybridization stringencies. These RNAs were expressed by mouse and primate cell lines. Thus, tissue-specific expression of small ID-sequence-related transcripts is conserved among mammals, but the tight regulation found in vivo is lost by cells in culture. Images PMID:2439903

  2. Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology.

    PubMed

    Xia, Chun-Fang; Zhang, Yufeng; Zhang, Yun; Boado, Ruben J; Pardridge, William M

    2007-12-01

    The effective delivery of short interfering RNA (siRNA) to brain following intravenous administration requires the development of a delivery system for transport of the siRNA across the brain capillary endothelial wall, which forms the blood-brain barrier in vivo. siRNA was delivered to brain in vivo with the combined use of a receptor-specific monoclonal antibody delivery system, and avidin-biotin technology. The siRNA was mono-biotinylated on either terminus of the sense strand, in parallel with the production of a conjugate of the targeting MAb and streptavidin. Rat glial cells (C6 or RG-2) were permanently transfected with the luciferase gene, and implanted in the brain of adult rats. Following the formation of intra-cranial tumors, the rats were treated with a single intravenous injection of 270 microg/kg of biotinylated siRNA attached to a transferrin receptor antibody via a biotin-streptavidin linker. The intravenous administration of the siRNA caused a 69-81% decrease in luciferase gene expression in the intracranial brain cancer in vivo. Brain delivery of siRNA following intravenous administration is possible with siRNAs that are targeted to brain with the combined use of receptor specific antibody delivery systems and avidin-biotin technology.

  3. Regulation of the neurotensin NT1 receptor in the developing rat brain following chronic treatment with the antagonist SR 48692

    PubMed Central

    Lépée-Lorgeoux, Isabelle; Betancur, Catalina; Souazé, Frédérique; Rostène, William; Bérod, Anne; Pélaprat, Didier

    2000-01-01

    The aim of the present study was to investigate the role of neurotensin in the regulation of NT1 receptors during postnatal development in the rat brain. Characterization of the ontogeny of neurotensin concentration and [125I]neurotensin binding to NT1 receptors in the brain at different embryonic and postnatal stages showed that neurotensin was highly expressed at birth, reaching peak levels at postnatal day 5 (P5), and decreasing thereafter. The transient rise in neurotensin levels preceded the maximal expression of NT1 receptors, observed at P10, suggesting that neurotensin may influence the developmental profile of NT1 receptors. Using primary cultures of cerebral cortex neurons from fetal rats, we showed that exposure to the neurotensin agonist JMV 449 (1 nM) decreased (−43%) the amount of NT1 receptor mRNA measured by reverse transcription-PCR, an effect that was abolished by the non-peptide NT1 receptor antagonist SR 48692 (1 μM). However, daily injection of SR 48692 to rat pups from birth for 5, 9 or 15 days, did not modify [125I]neurotensin binding in brain membrane homogenates. Moreover, postnatal blockade of neurotensin transmission did not alter the density and distribution of NT1 receptors assessed by quantitative autoradiography nor NT1 receptor mRNA expression measured by in situ hybridization in the cerebral cortex, caudate-putamen and midbrain. These results suggest that although NT1 receptor expression can be regulated in vitro by the agonist at an early developmental stage, neurotensin is not a major factor in the establishment of the ontogenetic pattern of these receptors in the rat brain. PMID:10797539

  4. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave.

    PubMed

    Bolander, Richard; Mathie, Blake; Bir, Cynthia; Ritzel, David; VandeVord, Pamela

    2011-10-01

    The manner in which energy from an explosion is transmitted into the brain is currently a highly debated topic within the blast injury community. This study was conducted to investigate the injury biomechanics causing blast-related neurotrauma in the rat. Biomechanical responses of the rat head under shock wave loading were measured using strain gauges on the skull surface and a fiber optic pressure sensor placed within the cortex. MicroCT imaging techniques were applied to quantify skull bone thickness. The strain gauge results indicated that the response of the rat skull is dependent on the intensity of the incident shock wave; greater intensity shock waves cause greater deflections of the skull. The intracranial pressure (ICP) sensors indicated that the peak pressure developed within the brain was greater than the peak side-on external pressure and correlated with surface strain. The bone plates between the lambda, bregma, and midline sutures are probable regions for the greatest flexure to occur. The data provides evidence that skull flexure is a likely candidate for the development of ICP gradients within the rat brain. This dependency of transmitted stress on particular skull dynamics for a given species should be considered by those investigating blast-related neurotrauma using animal models.

  5. Neonatal RU-486 (mifepristone) exposure increases androgen receptor immunoreactivity and sexual behavior in male rats.

    PubMed

    Forbes-Lorman, Robin; Auger, Anthony P; Auger, Catherine J

    2014-01-16

    Progesterone and progestin receptors (PRs) are known to play a role in the development of brain physiology and behavior in many different species. The distribution and regulation of PRs within the developing brain suggest that they likely contribute to the organization of the brain and behavior in a sex-specific manner. We examined the role of PR signaling during development on the organization of adult sexual behavior and androgen receptor (AR) expression in the brain. We administered the PR antagonist, RU-486, subcutaneously to male and female rats on postnatal days 1-7 (0=day of birth) and examined adult sexual behavior and AR-immunoreactivity (AR-ir) in the adult brain. A typical sex difference in lordosis quotient (LQ) was observed and neonatal RU-486 treatment did not alter this behavior. In contrast, neonatal RU-486 treatment increased adult male sexual behavior and AR-ir in several brain areas in males. These data indicate that a transient disruption in PR signaling during development can have lasting consequences on the male brain and may increase male sexual behavior in part by increasing AR expression, and therefore androgen sensitivity, in adulthood. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible.

    PubMed

    Booij, Jan; de Bruin, Kora; de Win, Maartje M L; Lavini, Cristina; den Heeten, Gerard J; Habraken, Jan B A

    2003-08-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand (123)I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [(123)I]FP-CIT binding ratios of the test/retest studies were 1.7 +/- 0.2 and 1.6 +/- 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [(123)I]FP-CIT binding ratios in rats is highly reproducible.

  7. Disordered redox metabolism of brain cells in rats exposed to low doses of ionizing radiation or UHF electromagnetic radiation.

    PubMed

    Burlaka, A P; Druzhyna, M O; Vovk, A V; Lukin, S М

    2016-12-01

    To investigate the changes of redox-state of mammalian brain cells as the critical factor of initiation and formation of radiation damage of biological structures in setting of continuous exposure to low doses of ionizing radiation or fractionated ultra high frequency electromagnetic radiation (UHF EMR) at non-thermal levels. The influence of low-intensity ionizing radiation was studied on outbred female rats kept for 1.5 years in the Chernobyl accident zone. The effects of total EMR in the UHF band of non-thermal spectrum were investigated on Wistar rats. The rate of formation of superoxide radicals and the rate of NO synthesis in mitochondria were determined by the EPR. After exposure to ionizing or UHF radiation, the levels of ubisemiquinone in brain tissue of rats decreased by 3 and 1.8 times, respectively. The content of NO-FeS-protein complexes in both groups increased significantly (р < 0.05). In the conditions of ionizing or EMR the rates of superoxide radical generation in electron-transport chain of brain cell mitochondria increased by 1.5- and 2-fold, respectively (р < 0.05). In brain tissue of rats kept in the Chernobyl zone, significant increase of NO content was registered; similar effect was observed in rats treated with UHFR (р < 0.05). The detected changes in the electron transport chain of mitochondria of brain cells upon low-intensity irradiation or UHF EMR cause the metabolic reprogramming of cell mitochondria that increases the rate of superoxide radical generation and nitric oxide, which may initiate the development of neurodegenerative diseases and cancer. This article is part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  8. The anti-oxidant and anti-apoptotic effects of nebivolol and zofenopril in a model of cerebral ischemia/reperfusion in rats.

    PubMed

    Uzar, Ertuğrul; Acar, Abdullah; Evliyaoğlu, Osman; Fırat, Uğur; Kamasak, Kağan; Göçmez, Cüneyt; Alp, Harun; Tüfek, Adnan; Taşdemir, Nebahat; Ilhan, Atilla

    2012-01-10

    The aim of this experiment was to investigate whether nebivolol and zofenopril have protective effects against oxidative damage and apoptosis induced by cerebral ischemia/reperfusion (I/R). There were seven groups of rats, with each containing eight rats. The groups were: the control group, I/R group, I/R plus zofenopril, I/R plus nebivolol, I/R plus nebivolol and zofenopril, zofenopril only and nebivolol only. Cerebral I/R was induced by clamping the bilateral common carotid artery and through hypotension. The rats were sacrificed 1h after ischemia, and histopathological and biochemical analyses were carried out on their brains. The total antioxidant capacity was evaluated by using an automated and colorimetric measurement method developed by Erel. I/R produced a significant increase in the levels of total oxidant status and malondialdehyde levels, the number of caspase-3 immunopositive cells and activities of prolidase and paraoxonase in brain when compared with the control group (p<0.05). A significant decrease in brain total antioxidant capacity and nitric oxide levels were found in I/R group when compared with the control group (p<0.05). Both nebivolol and zofenopril treatment prevented decreasing of the total antioxidant capacity and nitric oxide levels, produced by I/R in the brain (p<0.05). Both nebivolol and zofenopril treatment prevented the total oxidant status, malondialdehyde levels, activities of paraoxonase and prolidase from increasing in brains of rats exposed to I/R (p<0.05). In conclusion, both nebivolol and zofenopril protected rats from ischemia-induced brain injury. The protection may be due to the indirect prevention of oxidative stress and apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Neonatal handling alters brain organization but does not influence recovery from perinatal cortical injury.

    PubMed

    Gibb, Robbin; Kolb, Bryan

    2005-10-01

    Handling rat pups by removing them from the nest during the preweaning period has been shown to influence brain and behavioral development. The authors hypothesized that handling rats with perinatal (Day 4) medial frontal cortex removals might attenuate behavioral deficits and reverse dendritic atrophy associated with such an injury. On the day after surgery, pups were removed from the nest for 15 min, 3 times per day until weaning. Animals were tested as adults in the Morris water task and on skilled reaching. Handled animals showed no improvement in behavioral performance. The handling procedure led to a decrease in dendritic length in parietal cortex, but spine density was unchanged. No therapeutic advantage was observed following the preweaning handling of brain-injured rats.

  10. A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists

    PubMed Central

    Miller, Steven L.; Aroniadou-Anderjaska, Vassiliki; Figueiredo, Taiza H.; Prager, Eric M.; Almeida-Suhett, Camila P.; Apland, James P.; Braga, Maria F.M.

    2015-01-01

    Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD50 of 62 μg/kg. The onset of behaviorally-observed SE was accompanied by a dramatic decrease in brain AChE activity; rats who did not develop SE had significantly less reduction of AChE activity in the basolateral amygdala than rats who developed SE. Atropine sulfate (ATS) at 2 mg/kg, administered 20 min after soman exposure (1.2XLD50), terminated seizures. ATS at 0.5 mg/kg, given along with an oxime within 1 min after exposure, allowed testing of anticonvulsants at delayed time-points. The AMPA/GluK1 receptor antagonist LY293558, or the specific GluK1 antagonist UBP302, administered 1 h post-exposure, terminated SE. There were no degenerating neurons in soman-exposed P21 rats, but both the amygdala and the hippocampus were smaller than in control rats at 30 and 90 days post-exposure; this pathology was not present in rats treated with LY293558. Behavioral deficits present at 30 days post-exposure, were also prevented by LY293558 treatment. Thus, in immature animals, a single injection of atropine is sufficient to halt nerve agent-induced seizures, if administered timely. Testing anticonvulsants at delayed time-points requires early administration of ATS at a low dose, sufficient to counteract only peripheral toxicity. LY293558 administered 1 h post-exposure, prevents brain pathology and behavioral deficits. PMID:25689173

  11. Effects of experimental suppression of active (REM) sleep during early development upon adult brain and behavior in the rat.

    PubMed

    Mirmiran, M; Scholtens, J; van de Poll, N E; Uylings, H B; van der Gugten, J; Boer, G J

    1983-04-01

    In order to test the hypothesis that active sleep (AS) is important for the normal development of the central nervous system, 3 different deprivation methods were applied to male Wistar rat pups during the first month of life. Daily injection of clomipramine from 8 to 21 days of age reduced the high level of AS to less than the adult value throughout most of the experimental period. Administration of clonidine from 8 to 21 days of life induced an almost total suppression of AS. Instrumental deprivation, using the 'pendulum' method, led to a significant (but less severe) AS reduction during 2-4 weeks of postnatal age. Open-field behavior testing in adulthood revealed a higher than normal level of ambulation in all 3 experimental groups. Masculine sexual responses were deficient, due to a low level of both mounts and ejaculations, in both clomipramine- and clonidine-treated animals. Neither passive avoidance learning nor dark preference tests revealed any differences between the experimental and control rats. Sleep observations showed that there was an abnormally high incidence of large myoclonic jerks during AS in both clomipramine- and clonidine-treated rats. Subsequent measurement of regional brain weights showed a significant reduction in the cerebral cortex and medulla oblongata, as compared with the respective control groups, in both the clomipramine- and the clonidine-treated rats. In addition, DNA and protein determination in the affected brain areas showed a proportional reduction in the cortex and in the medulla. These results demonstrate that interference with normal functioning either of AS per se or of specific monoaminergic transmitter systems during early development can produce long-lasting behavioral as well as brain morphological and biochemical abnormalities in later life.

  12. An iron-deficient diet during development induces oxidative stress in relation to age and gender in Wistar rats.

    PubMed

    Vieyra-Reyes, Patricia; Millán-Aldaco, Diana; Palomero-Rivero, Marcela; Jiménez-Garcés, Clementina; Hernández-González, Margarita; Caballero-Villarraso, Javier

    2017-02-01

    Iron is a trace element and a structural part of antioxidant enzymes, and its requirements vary according to age and gender. We hypothesized that iron deficiency (ID) leads to an increase in free radicals which mainly affect the brain, and the severity of damage would therefore be dependent on age and gender. Two groups of Wistar rats were evaluated evolutionarily: 100 rats (50 males; 50 females) with ID diet and 100 rats (50 males; 50 females) with standard diet. Both groups were offspring from mothers who were previously under the same dietary intervention. The ages studied roughly correspond to stages of human development: birth (0 postnatal day "PND" in rats), childhood (21 PND), early adolescence (42 PND), late adolescence (56 PND), and adulthood (70 PND). The following biomarkers in the brain, blood, and liver were analyzed: lipid peroxidation products (LPO), protein carbonyl content and activity of the antioxidant enzymes, superoxide dismutase, catalase, and glutathione peroxidase. It was demonstrated that ID subjects are born with high levels of LPO in the brain and low antioxidant activity, the damage being more severe in males. After birth, antioxidant defense focuses on the central level (brain) in ID females and on the peripheral level (blood and liver) in ID males. In two critical stages of development, birth and late adolescence, antioxidant protection is insufficient to counteract oxidative damage in ID subjects. Moreover, we observed that the variability of results in the literature on oxidative stress and ID comes from gender and age of the subjects under study. With this, we can establish patterns and exact moments to carry out studies or treatments.

  13. Pregnancy swimming causes short- and long-term neuroprotection against hypoxia-ischemia in very immature rats.

    PubMed

    Sanches, Eduardo Farias; Durán-Carabali, Luz Elena; Tosta, Andrea; Nicola, Fabrício; Schmitz, Felipe; Rodrigues, André; Siebert, Cassiana; Wyse, Angela; Netto, Carlos

    2017-09-01

    BackgroundHypoxia-ischemia (HI) is a major cause of neurological damage in preterm newborn. Swimming during pregnancy alters the offspring's brain development. We tested the effects of swimming during pregnancy in the very immature rat brain.MethodsFemale Wistar rats (n=12) were assigned to the sedentary (SE, n=6) or the swimming (SW, n=6) group. From gestational day 0 (GD0) to GD21 the rats in the SW group were made to swim for 20 min/day. HI on postnatal day (PND) 3 rats caused sensorimotor and cognitive impairments. Animals were distributed into SE sham (SESH), sedentary HIP3 (SEHI), swimming sham (SWSH), and swimming HIP3 (SWHI) groups. At PND4 and PND5, Na + /K + -ATPase activity and brain-derived neurotrophic factor (BDNF) levels were assessed. During lactation and adulthood, neurological reflexes, sensorimotor, anxiety-related, and cognitive evaluations were made, followed by histological assessment at PND60.ResultsAt early stages, swimming caused an increase in hippocampal BDNF levels and in the maintenance of Na + /K + -ATPase function in the SWHI group. The SWHI group showed smaller lesions and the preservation of white matter tracts. SEHI animals showed a delay in reflex maturation, which was reverted in the SWHI group. HIP3 induced spatial memory deficits and hypomyelination in SEHI rats, which was reverted in the SWHI group.ConclusionSwimming during pregnancy neuroprotected the brains against HI in very immature neonatal rats.

  14. Automatic Training of Rat Cyborgs for Navigation.

    PubMed

    Yu, Yipeng; Wu, Zhaohui; Xu, Kedi; Gong, Yongyue; Zheng, Nenggan; Zheng, Xiaoxiang; Pan, Gang

    2016-01-01

    A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual training procedure. A hierarchical framework is proposed to facilitate the colearning between rats and machines. In the framework, the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the training action transitions triggered by rat's behavioral states, and an adaptive adjustment policy is developed to adaptively adjust the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our knowledge, this study is the first to tackle automatic training of animal cyborgs.

  15. Automatic Training of Rat Cyborgs for Navigation

    PubMed Central

    Yu, Yipeng; Wu, Zhaohui; Xu, Kedi; Gong, Yongyue; Zheng, Nenggan; Zheng, Xiaoxiang; Pan, Gang

    2016-01-01

    A rat cyborg system refers to a biological rat implanted with microelectrodes in its brain, via which the outer electrical stimuli can be delivered into the brain in vivo to control its behaviors. Rat cyborgs have various applications in emergency, such as search and rescue in disasters. Prior to a rat cyborg becoming controllable, a lot of effort is required to train it to adapt to the electrical stimuli. In this paper, we build a vision-based automatic training system for rat cyborgs to replace the time-consuming manual training procedure. A hierarchical framework is proposed to facilitate the colearning between rats and machines. In the framework, the behavioral states of a rat cyborg are visually sensed by a camera, a parameterized state machine is employed to model the training action transitions triggered by rat's behavioral states, and an adaptive adjustment policy is developed to adaptively adjust the stimulation intensity. The experimental results of three rat cyborgs prove the effectiveness of our system. To the best of our knowledge, this study is the first to tackle automatic training of animal cyborgs. PMID:27436999

  16. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Neurotoxicity with Blood-Brain Barrier Monoamine Oxidase Activity

    NASA Astrophysics Data System (ADS)

    Kalaria, Rajesh N.; Mitchell, Mary Jo; Harik, Sami I.

    1987-05-01

    Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans and subhuman primates, but not in rats and many other laboratory animals; mice are intermediate in their susceptibility. Since MPTP causes selective dopaminergic neurotoxicity when infused directly into rat substantia nigra, we hypothesized that systemic MPTP may be metabolized by monoamine oxidase and/or other enzymes in rat brain capillaries and possibly other peripheral organs and thus prevented from reaching its neuronal sites of toxicity. We tested this hypothesis by assessing monoamine oxidase in isolated cerebral microvessels of humans, rats, and mice by measuring the specific binding of [3H]pargyline, an irreversible monoamine oxidase inhibitor, and by estimating the rates of MPTP and benzylamine oxidation. [3H]Pargyline binding to rat cerebral microvessels was about 10-fold higher than to human or mouse microvessels. Also, MPTP oxidation by rat brain microvessels was about 30-fold greater than by human microvessels; mouse microvessels yielded intermediate values. These results may explain, at least in part, the marked species differences in susceptibility to systemic MPTP. They also suggest the potential importance of ``enzyme barriers'' at the blood-brain interface that can metabolize toxins not excluded by structural barriers, and may provide biological bases for developing therapeutic strategies for the prevention of MPTP-induced neurotoxicity and other neurotoxic conditions including, possibly, Parkinson disease.

  17. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  18. The perinatal effects of maternal caffeine intake on fetal and neonatal brain levels of testosterone, estradiol, and dihydrotestosterone in rats.

    PubMed

    Karaismailoglu, S; Tuncer, M; Bayrak, S; Erdogan, G; Ergun, E L; Erdem, A

    2017-08-01

    Testosterone, estradiol, and dihydrotestosterone are the main sex steroid hormones responsible for the organization and sexual differentiation of brain structures during early development. The hypothalamo-pituitary-adrenocortical axis, adrenal cells, and gonads play a key role in the production of sex steroids and express adenosine receptors. Caffeine is a non-selective adenosine antagonist; therefore, it can modulate metabolic pathways in these tissues. Besides, the proportion of pregnant women that consume caffeine is ∼60%. That is why the relationship between maternal caffeine consumption and fetal development is important. Therefore, we aimed to investigate this modulatory effect of maternal caffeine consumption on sex steroids in the fetal and neonatal brain tissues. Pregnant rats were treated with a low (0.3 g/L) or high (0.8 g/L) dose of caffeine in their drinking water during pregnancy and lactation. The testosterone, estradiol, and dihydrotestosterone levels in the frontal cortex and hypothalamus were measured using radioimmunoassay at embryonic day 19 (E19), birth (PN0), and postnatal day 4 (PN4). The administration of low-dose caffeine increased the body weight in PN4 male and female rats and anogenital index in PN4 males. The administration of high-dose caffeine decreased the adrenal weight in E19 male rats and increased testosterone levels in the frontal cortex of E19 female rats and the hypothalamus of PN0 male rats. Maternal caffeine intake during pregnancy affects sex steroid levels in the frontal cortex and hypothalamus of the offspring. This concentration changes of the sex steroids in the brain may influence behavioral and neuroendocrine functions at some point in adult life.

  19. Protective effects of ascorbic acid and garlic extract against lead-induced apoptosis in developing rat hippocampus.

    PubMed

    Ebrahimzadeh-Bideskan, Ali-Reza; Hami, Javad; Alipour, Fatemeh; Haghir, Hossein; Fazel, Ali-Reza; Sadeghi, Akram

    2016-10-01

    Lead exposure has negative effects on developing nervous system and induces apoptosis in newly generated neurons. Natural antioxidants (i.e. Ascorbic acid and Garlic) might protect against lead-induced neuronal cell damage. The aim of the present study was to investigate the protective effects of Ascorbic acid and Garlic administration during pregnancy and lactation on lead-induced apoptosis in rat developing hippocampus. Timed pregnant Wistar rats were administrated with Lead (1500 ppm) via drinking water (Pb group) or lead plus Ascorbic acid (Pb + AA Group, 500 mg/kg, IP), or lead plus Garlic Extract (Pb + G Group, 1 ml garlic juice/100 g BW, via Gavage) from early gestation (GD 0) until postnatal day 50 (PN 50). At the end of experiments, the pups' brains were carefully dissected. To identify neuronal death, the brain sections were stained with TUNEL assay. Mean of blood and brain lead levels increased significantly in Pb group comparing to other studied groups (P < 0.01). There was significant reduction in blood and brain lead level in Pb + AA and Pb + G groups when compared to those of Pb group (P < 0.01). The mean number of TUNEL positive cells in the CA1, CA3, and DG was significantly lower in the groups treated by either Ascorbic acid or Garlic (P < 0.05). Administration of Ascorbic acid and Garlic during pregnancy and lactation protect against lead-induced neuronal cell apoptosis in the hippocampus of rat pups partially via the reduction of Pb concentration in the blood and in the brain.

  20. Rat brain digital stereotaxic white matter atlas with fine tract delineation in Paxinos space and its automated applications in DTI data analysis.

    PubMed

    Liang, Shengxiang; Wu, Shang; Huang, Qi; Duan, Shaofeng; Liu, Hua; Li, Yuxiao; Zhao, Shujun; Nie, Binbin; Shan, Baoci

    2017-11-01

    To automatically analyze diffusion tensor images of the rat brain via both voxel-based and ROI-based approaches, we constructed a new white matter atlas of the rat brain with fine tracts delineation in the Paxinos and Watson space. Unlike in previous studies, we constructed a digital atlas image from the latest edition of the Paxinos and Watson. This atlas contains 111 carefully delineated white matter fibers. A white matter network of rat brain based on anatomy was constructed by locating the intersection of all these tracts and recording the nuclei on the pathway of each white matter tract. Moreover, a compatible rat brain template from DTI images was created and standardized into the atlas space. To evaluate the automated application of the atlas in DTI data analysis, a group of rats with right-side middle cerebral artery occlusion (MCAO) and those without were enrolled in this study. The voxel-based analysis result shows that the brain region showing significant declines in signal in the MCAO rats was consistent with the occlusion position. We constructed a stereotaxic white matter atlas of the rat brain with fine tract delineation and a compatible template for the data analysis of DTI images of the rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function.

    PubMed

    Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan

    2018-05-01

    Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Effect of pomegranate extracts on brain antioxidant markers and cholinesterase activity in high fat-high fructose diet induced obesity in rat model.

    PubMed

    Amri, Zahra; Ghorbel, Asma; Turki, Mouna; Akrout, Férièle Messadi; Ayadi, Fatma; Elfeki, Abdelfateh; Hammami, Mohamed

    2017-06-27

    To investigate beneficial effects of Pomegranate seeds oil (PSO), leaves (PL), juice (PJ) and (PP) on brain cholinesterase activity, brain oxidative stress and lipid profile in high-fat-high fructose diet (HFD) induced-obese rat. In vitro and in vivo cholinesterase activity, brain oxidative status, body and brain weight and plasma lipid profile were measured in control rats, HFD-fed rats and HFD-fed rats treated by PSO, PL, PJ and PP. In vitro study showed that PSO, PL, PP, PJ inhibited cholinesterase activity in dose dependant manner. PL extract displayed the highest inhibitory activity by IC50 of 151.85 mg/ml. For in vivo study, HFD regime induced a significant increase of cholinesterase activity in brain by 17.4% as compared to normal rats. However, the administration of PSO, PL, PJ and PP to HDF-rats decreased cholinesterase activity in brain respectively by 15.48%, 6.4%, 20% and 18.7% as compared to untreated HFD-rats. Moreover, HFD regime caused significant increase in brain stress, brain and body weight, and lipid profile disorders in blood. Furthermore, PSO, PL, PJ and PP modulated lipid profile in blood and prevented accumulation of lipid in brain and body evidenced by the decrease of their weights as compared to untreated HFD-rats. In addition administration of these extract protected brain from stress oxidant, evidenced by the decrease of malondialdehyde (MDA) and Protein carbonylation (PC) levels and the increase in superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. These findings highlight the neuroprotective effects of pomegranate extracts and one of mechanisms is the inhibition of cholinesterase and the stimulation of antioxidant capacity.

  3. Rat strain differences in brain structure and neurochemistry in response to binge alcohol.

    PubMed

    Zahr, Natalie M; Mayer, Dirk; Rohlfing, Torsten; Hsu, Oliver; Vinco, Shara; Orduna, Juan; Luong, Richard; Bell, Richard L; Sullivan, Edith V; Pfefferbaum, Adolf

    2014-01-01

    Ventricular enlargement is a robust phenotype of the chronically dependent alcoholic human brain, yet the mechanism of ventriculomegaly is unestablished. Heterogeneous stock Wistar rats administered binge EtOH (3 g/kg intragastrically every 8 h for 4 days to average blood alcohol levels (BALs) of 250 mg/dL) demonstrate profound but reversible ventricular enlargement and changes in brain metabolites (e.g., N-acetylaspartate (NAA) and choline-containing compounds (Cho)). Here, alcohol-preferring (P) and alcohol-nonpreferring (NP) rats systematically bred from heterogeneous stock Wistar rats for differential alcohol drinking behavior were compared with Wistar rats to determine whether genetic divergence and consequent morphological and neurochemical variation affect the brain's response to binge EtOH treatment. The three rat lines were dosed equivalently and approached similar BALs. Magnetic resonance imaging and spectroscopy evaluated the effects of binge EtOH on brain. As observed in Wistar rats, P and NP rats showed decreases in NAA. Neither P nor NP rats, however, responded to EtOH intoxication with ventricular expansion or increases in Cho levels as previously noted in Wistar rats. Increases in ventricular volume correlated with increases in Cho in Wistar rats. The latter finding suggests that ventricular volume expansion is related to adaptive changes in brain cell membranes in response to binge EtOH. That P and NP rats responded differently to EtOH argues for intrinsic differences in their brain cell membrane composition. Further, differential metabolite responses to EtOH administration by rat strain implicate selective genetic variation as underlying heterogeneous effects of chronic alcoholism in the human condition.

  4. Remote Associates Test and Alpha Brain Waves

    ERIC Educational Resources Information Center

    Haarmann, Henk J.; George, Timothy; Smaliy, Alexei; Dien, Joseph

    2012-01-01

    Previous studies found that performance on the remote associates test (RAT) improves after a period of incubation and that increased alpha brain waves over the right posterior brain predict the emergence of RAT insight solutions. We report an experiment that tested whether increased alpha brain waves during incubation improve RAT performance.…

  5. Genetically defined fear-induced aggression: Focus on BDNF and its receptors.

    PubMed

    Ilchibaeva, Tatiana V; Tsybko, Anton S; Kozhemyakina, Rimma V; Kondaurova, Elena M; Popova, Nina K; Naumenko, Vladimir S

    2018-05-02

    Brain-derived neurotrophic factor (BDNF), its precursor proBDNF, BDNF pro-peptide, BDNF mRNA levels, as well as TrkB and p75 NTR receptors mRNA and protein levels, were studied in the brain of rats, selectively bred for more than 85 generations for either the high level or the lack of fear-induced aggressive behavior. Furthermore, we have found that rats of aggressive strain demonstrated both high level of aggression toward humans and increased amplitude of acoustic startle response compared to rats selectively bred for the lack of fear-induced aggression. Significant increase in the BDNF mRNA, mature BDNF and proBDNF protein levels in the raphe nuclei (RN), hippocampus (Hc), nucleus accumbens (NAcc), amygdala, striatum and hypothalamus (Ht) of aggressive rats was revealed. The BDNF/proBDNF ratio was significantly reduced in the Hc and NAcc of highly aggressive rats suggesting prevalence of the proBDNF in these structures. In the Hc and frontal cortex (FC) of aggressive rats, the level of the full-length TrkB (TrkB-FL) receptor form was decreased, whereas the truncated TrkB (TrkB-T) protein level was increased in the RN, FC, substantia nigra and Ht. The TrkB-FL/TrkB-T ratio was significantly decreased in highly aggressive rats suggesting TrkB-T is predominant in highly aggressive rats. The p75 NTR expression was slightly changed in majority of studied brain structures of aggressive rats. The data indicate the BDNF system in the brain of aggressive and nonaggressive animals is extremely different at all levels, from transcription to reception, suggesting significant role of BDNF system in the development of highly aggressive phenotype. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Developmental and hormonal regulation of thermosensitive neuron potential activity in rat brain.

    PubMed

    Belugin, S; Akino, K; Takamura, N; Mine, M; Romanovsky, D; Fedoseev, V; Kubarko, A; Kosaka, M; Yamashita, S

    1999-08-01

    To understand the involvement of thyroid hormone on the postnatal development of hypothalamic thermosensitive neurons, we focused on the analysis of thermosensitive neuronal activity in the preoptic and anterior hypothalamic (PO/AH) regions of developing rats with and without hypothyroidism. In euthyroid rats, the distribution of thermosensitive neurons in PO/AH showed that in 3-week-old rats (46 neurons tested), 19.5% were warm-sensitive and 80.5% were nonsensitive. In 5- to 12-week-old euthyroid rats (122 neurons), 33.6% were warm-sensitive and 66.4% were nonsensitive. In 5- to 12-week-old hypothyroid rats (108 neurons), however, 18.5% were warm-sensitive and 81.5% were nonsensitive. Temperature thresholds of warm-sensitive neurons were lower in 12-week-old euthyroid rats (36.4+/-0.2 degrees C, n = 15, p<0.01,) than in 3-week-old and in 5-week-old euthyroid rats (38.5+/-0.5 degrees C, n = 9 and 38.0+/-0.3 degrees C, n = 15, respectively). The temperature thresholds of warm-sensitive neurons in 12-week-old hypothyroid rats (39.5+/-0.3 degrees C, n = 8) were similar to that of warm-sensitive neurons of 3-week-old raats (euthyroid and hypothyroid). In contrast, there was no difference in the thresholds of warm-sensitive neurons between hypothyroid and euthyroid rats at the age of 3-5 weeks. In conclusion, monitoring the thermosensitive neuronal tissue activity demonstrated the evidence that thyroid hormone regulates the maturation of warm-sensitive hypothalamic neurons in developing rat brain by electrophysiological analysis.

  7. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    PubMed

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat brain. Copyright © 2017 ISDN. All rights reserved.

  8. Magnetic resonance spectroscopic analysis of neurometabolite changes in the developing rat brain at 7T.

    PubMed

    Ramu, Jaivijay; Konak, Tetyana; Liachenko, Serguei

    2016-11-15

    We utilized proton magnetic resonance spectroscopy to evaluate the metabolic profile of the hippocampus and anterior cingulate cortex of the developing rat brain from postnatal days 14-70. Measured metabolite concentrations were modeled using linear, exponential, or logarithmic functions and the time point at which the data reached plateau (i.e. when the portion of the data could be fit to horizontal line) was estimated and was interpreted as the time when the brain has reached maturity with respect to that metabolite. N-acetyl-aspartate and myo-inositol increased within the observed period. Gluthathione did not vary significantly, while taurine decreased initially and then stabilized. Phosphocreatine and total creatine had a tendency to increase towards the end of the experiment. Some differences between our data and the published literature were observed in the concentrations and dynamics of phosphocreatine, myo-inositol, and GABA in the hippocampus and creatine, GABA, glutamine, choline and N-acetyl-aspartate in the cortex. Such differences may be attributed to experimental conditions, analysis approaches and animal species. The latter is supported by differences between in-house rat colony and rats from Charles River Labs. Spectroscopy provides a valuable tool for non-invasive brain neurochemical profiling for use in developmental neurobiology research. Special attention needs to be paid to important sources of variation like animal strain and commercial source. Published by Elsevier B.V.

  9. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.

  10. [GLUTATHIONE SYSTEM ACTIVITY IN RAT TISSUES UNDER PHENYLETHYL BIGUANIDE ACTION ON THE BACKGROUND OF EXPERIMENTAL BRAIN ISCHEMIA/REPERFUSION DEVELOPMENT].

    PubMed

    Safonova, O A; Popova, T N; Kryl'skii, D V

    2016-01-01

    It was studied the total antioxidant activity, content of primary lipid peroxidation (LPO) products and reduced glutathione, and the activity of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, and NADP-isocitrate dehydrogenase in rat tissues under phenylethyl biguanide (phenfor- min) action on the background of experimental brain ischemia/reperfusion development. It is stablished the analyzed parameters, increasing under ischemia/reperfusion conditions in the brain and blood serum of animals, exhibit a decrease upon the introduction of this biguanide derivative. The obtained data can be explained by a decrease in degree of mobilization of the antioxidant system--in particular, of its glutathione chain--in the pathologic state. Hence, there is a need in NADPH supply for the system functioning compared with the pathology. Thus, phenylethyl biguanide demonstrates its antioxidant and protective properties under oxidative stress development that is accompanied by accumulation of the products of free radical oxidation of biomolecules during the ischemic brain injury.

  11. A study on the antioxidant effect of Coriolus versicolor polysaccharide in rat brain tissues.

    PubMed

    Chen, Jiayu; Jin, Xiaoyan; Zhang, Liting; Yang, Linjun

    2013-01-01

    The objective of the study was to investigate the antioxidant effect of Chinese medicine Coriolus versicolor polysaccharide on brain tissue and its mechanism in rats. SOD, MDA and GSH-Px levels in rat brain tissues were determined with SD rats as the animal model. The results showed that Coriolus versicolor polysaccharide can reduce the lipid peroxidation level in brain tissues during exhaustive exercise in rats, and can accelerate the removal of free radicals. The study concluded that its antioxidant effect is relatively apparent.

  12. Ensemble Recordings in Awake Rats: Achieving Behavioral Regularity during Multimodal Stimulus Processing and Discriminative Learning

    ERIC Educational Resources Information Center

    Lee, Eunjeong; Oliveira-Ferreira, Ana I.; de Water, Ed; Gerritsen, Hans; Bakker, Mattijs C.; Kalwij, Jan A. W.; van Goudoever, Tjerk; Buster, Wietze H.; Pennartz, Cyriel M. A.

    2009-01-01

    To meet an increasing need to examine the neurophysiological underpinnings of behavior in rats, we developed a behavioral system for studying sensory processing, attention and discrimination learning in rats while recording firing patterns of neurons in one or more brain areas of interest. Because neuronal activity is sensitive to variations in…

  13. A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Steven L., E-mail: stevenmiller17@gmail.com; Program in Neuroscience, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814; Aroniadou-Anderjaska, Vassiliki, E-mail: vanderjaska@usuhs.edu

    Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD{sub 50} of 62 μg/kg. The onset of behaviorally-observed SE was accompanied by a dramatic decrease in brain AChE activity; rats who did not develop SE had significantly less reduction of AChE activity in the basolateral amygdala than rats who developed SE. Atropine sulfate (ATS)more » at 2 mg/kg, administered 20 min after soman exposure (1.2 × LD{sub 50}), terminated seizures. ATS at 0.5 mg/kg, given along with an oxime within 1 min after exposure, allowed testing of anticonvulsants at delayed time-points. The AMPA/GluK1 receptor antagonist LY293558, or the specific GluK1 antagonist UBP302, administered 1 h post-exposure, terminated SE. There were no degenerating neurons in soman-exposed P21 rats, but both the amygdala and the hippocampus were smaller than in control rats at 30 and 90 days post-exposure; this pathology was not present in rats treated with LY293558. Behavioral deficits present at 30 days post-exposure, were also prevented by LY293558 treatment. Thus, in immature animals, a single injection of atropine is sufficient to halt nerve agent-induced seizures, if administered timely. Testing anticonvulsants at delayed time-points requires early administration of ATS at a low dose, sufficient to counteract only peripheral toxicity. LY293558 administered 1 h post-exposure, prevents brain pathology and behavioral deficits. - Highlights: • The LD{sub 50} of soman was determined in postnatal-day-21 rats. • Rats with no seizures after 1.2XLD{sub 50} soman had less reduction of AChE in the amygdala. • Atropine sulfate (ATS) at 2 mg/kg, given at 20 min after soman, blocked seizures. • With ATS at 0.5 mg/kg, LY293558 or UBP302 at 1 h after exposure terminated seizures. • LY293558 prevented brain pathology and behavioral deficits.« less

  14. Lifelong consumption of sodium selenite: gender differences on blood-brain barrier permeability in convulsive, hypoglycemic rats.

    PubMed

    Seker, F Burcu; Akgul, Sibel; Oztas, Baria

    2008-07-01

    The aim of this study was to compare the effects of hypoglycemia and induced convulsions on the blood-brain barrier permeability in rats with or without lifelong administration of sodium selenite. There is a significant decrease of the blood-brain barrier permeability in three brain regions of convulsive, hypoglycemic male rats treated with sodium selenite when compared to sex-matched untreated rats (p<0.05), but the decrease was not significant in female rats (p>0.05). The blood-brain barrier permeability of the left and right hemispheres of untreated, moderately hypoglycemic convulsive rats of both genders was better than their untreated counterparts (p<0.05). Our results suggest that moderate hypoglycemia and lifelong treatment with sodium selenite have a protective effect against blood-brain barrier permeability during convulsions and that the effects of sodium selenite are gender-dependent.

  15. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas

    PubMed Central

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time. PMID:27199682

  16. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas.

    PubMed

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.

  17. Minocycline Effects on Intracerebral Hemorrhage-Induced Iron Overload in Aged Rats: Brain Iron Quantification With Magnetic Resonance Imaging.

    PubMed

    Cao, Shenglong; Hua, Ya; Keep, Richard F; Chaudhary, Neeraj; Xi, Guohua

    2018-04-01

    Brain iron overload is a key factor causing brain injury after intracerebral hemorrhage (ICH). This study quantified brain iron levels after ICH with magnetic resonance imaging R2* mapping. The effect of minocycline on iron overload and ICH-induced brain injury in aged rats was also determined. Aged (18 months old) male Fischer 344 rats had an intracerebral injection of autologous blood or saline, and brain iron levels were measured by magnetic resonance imaging R2* mapping. Some ICH rats were treated with minocycline or vehicle. The rats were euthanized at days 7 and 28 after ICH, and brains were used for immunohistochemistry and Western blot analyses. Magnetic resonance imaging (T2-weighted, T2* gradient-echo, and R2* mapping) sequences were performed at different time points. ICH-induced brain iron overload in the perihematomal area could be quantified by R2* mapping. Minocycline treatment reduced brain iron accumulation, T2* lesion volume, iron-handling protein upregulation, neuronal cell death, and neurological deficits ( P <0.05). Magnetic resonance imaging R2* mapping is a reliable and noninvasive method, which can quantitatively measure brain iron levels after ICH. Minocycline reduced ICH-related perihematomal iron accumulation and brain injury in aged rats. © 2018 American Heart Association, Inc.

  18. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats.

    PubMed

    Domenichiello, Anthony F; Chen, Chuck T; Trepanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain.

  19. Whole body synthesis rates of DHA from α-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats[S

    PubMed Central

    Domenichiello, Anthony F.; Chen, Chuck T.; Trepanier, Marc-Olivier; Stavro, P. Mark; Bazinet, Richard P.

    2014-01-01

    Docosahexaenoic acid (DHA) is important for brain function, however, the exact amount required for the brain is not agreed upon. While it is believed that the synthesis rate of DHA from α-linolenic acid (ALA) is low, how this synthesis rate compares with the amount of DHA required to maintain brain DHA levels is unknown. The objective of this work was to assess whether DHA synthesis from ALA is sufficient for the brain. To test this, rats consumed a diet low in n-3 PUFAs, or a diet containing ALA or DHA for 15 weeks. Over the 15 weeks, whole body and brain DHA accretion was measured, while at the end of the study, whole body DHA synthesis rates, brain gene expression, and DHA uptake rates were measured. Despite large differences in body DHA accretion, there was no difference in brain DHA accretion between rats fed ALA and DHA. In rats fed ALA, DHA synthesis and accretion was 100-fold higher than brain DHA accretion of rats fed DHA. Also, ALA-fed rats synthesized approximately 3-fold more DHA than the DHA uptake rate into the brain. This work indicates that DHA synthesis from ALA may be sufficient to supply the brain. PMID:24212299

  20. [Expression of aquaporin-4 during brain edema in rats with thioacetamide-induced acute encephalopathy].

    PubMed

    Wang, Li-Qing; Zhu, Sheng-Mei; Zhou, Heng-Jun; Pan, Cai-Fei

    2011-09-27

    To investigate the expression of aquaporin-4 (AQP4) during brain edema in rats with thioacetamide-induced acute liver failure and encephalopathy. The rat model of acute hepatic failure and encephalopathy was induced by intraperitoneal injection of thioacetamide (TAA) at a 24-hour interval for 2 consecutive days. Thirty-two SD rats were randomly divided into the model group (n = 24) and the control group (normal saline, n = 8). And then the model group was further divided into 3 subgroups by the timepoint of decapitation: 24 h (n = 8), 48 h (n = 8) and 60 h (n = 8). Then we observed their clinical symptoms and stages of HE, indices of liver function and ammonia, liver histology and brain water content. The expression of AQP4 protein in brain tissues was measured with Western blot and the expression of AQP4mRNA with RT-PCR (reverse transcription-polymerase chain reaction). Typical clinical manifestations of hepatic encephalopathy occurred in all TAA-administrated rats. The model rats showed the higher indices of ALT (alanine aminotransferase), AST (aspartate aminotransferase), TBIL (total bilirubin) and ammonia than the control rats (P < 0.05). The brain water content was significantly elevated in TAA-administrated rats compared with the control (P < 0.05). The expressions of AQP4 protein and mRNA in brain tissues significantly increased in TAA-administrated rats (P < 0.05). In addition, the expressions of AQP4 protein and mRNA were positively correlated with brain water content (r = 0.536, P < 0.01; r = 0.566, P = 0.01). The high expression of AQP4 in rats with TAA-induced acute liver failure and encephalopathy plays a significant role during brain edema. AQP4 is one of the molecular mechanisms for the occurrence of brain edema in hepatic encephalopathy.

  1. cerebral Markers of the Serotonergic System in Rat Models of Obesity and After Roux-en-Y Gastric Bypass

    PubMed Central

    Ratner, Cecilia; Ettrup, Anders; Bueter, Marco; Haahr, Mette E.; Compan, Valérie; le Roux, Carel W.; Levin, Barry; Hansen, Henrik H.; Knudsen, Gitte M.

    2013-01-01

    Food intake and body weight are regulated by a complex system of neural and hormonal signals, of which the anorexigenic neurotransmitter serotonin (5-hydroxytryptamine or 5-HT) is central. In this study, rat models of obesity and weight loss intervention were compared with regard to several 5-HT markers. Using receptor autoradiography, brain regional-densities of the serotonin transporter (SERT) and the 5-HT2A and 5-HT4 receptors were measured in (i) selectively bred polygenic diet-induced obese (pgDIO) rats, (ii) outbred DIO rats, and (iii) Roux-en-Y gastric bypass (RYGB)-operated rats. pgDIO rats had higher 5-HT4 and 5-HT2A receptor binding and lower SERT binding when compared to polygenic diet-resistant (pgDR) rats. The most pronounced difference between pgDIO and pgDR rats was observed in the nucleus accumbens shell (NAcS), a brain region regulating reward aspects of feeding. No differences were found in the 5-HT markers between DIO rats, chow-fed control rats, and DIO rats experiencing a weight loss. The 5-HT markers were also similar in RYGB and sham-operated rats except for a downregulation of 5-HT2A receptors in the NAcS. The higher receptor and lower SERT binding in pgDIO as compared to pgDR rats corresponds to what is reported in overweight humans and suggests that the dysfunctions of the 5-HT system associated with overeating or propensity to become overweight are polygenically determined. Our results support that the obesity-prone rat model has high translational value and suggests that susceptibility to develop obesity is associated with changed 5-HT tone in the brain that may also regulate hedonic aspects of feeding. PMID:22450706

  2. Intrinsic sensory deprivation induced by neonatal capsaicin treatment induces changes in rat brain and behaviour of possible relevance to schizophrenia

    PubMed Central

    Newson, Penny; Lynch-Frame, Ann; Roach, Rebecca; Bennett, Sarah; Carr, Vaughan; Chahl, Loris A

    2005-01-01

    Schizophrenia is considered to be a neurodevelopmental disorder with origins in the prenatal or neonatal period. Brains from subjects with schizophrenia have enlarged ventricles, reduced cortical thickness (CT) and increased neuronal density in the prefrontal cortex compared with those from normal subjects. Subjects with schizophrenia have reduced pain sensitivity and niacin skin flare responses, suggesting that capsaicin-sensitive primary afferent neurons might be abnormal in schizophrenia. This study tested the hypothesis that intrinsic somatosensory deprivation, induced by neonatal capsaicin treatment, causes changes in the brains of rats similar to those found in schizophrenia. Wistar rats were treated with capsaicin, 50 mg kg−1 subcutaneously, or vehicle (control) at 24–36 h of life. At 5–7 weeks behavioural observations were made, and brains removed, fixed and sectioned. The mean body weight of capsaicin-treated rats was not significantly different from control, but the mean brain weight of male, but not female, rats, was significantly lower than control. Capsaicin-treated rats were hyperactive compared with controls. The hyperactivity was abolished by haloperidol. Coronal brain sections of capsaicin-treated rats had smaller cross-sectional areas, reduced CT, larger ventricles and aqueduct, smaller hippocampal area and reduced corpus callosum thickness, than brain sections from control rats. Neuronal density was increased in several cortical areas and the caudate putamen, but not in the visual cortex. It is concluded that neonatal capsaicin treatment of rats produces brain changes that are similar to those found in brains of subjects with schizophrenia. PMID:16041396

  3. Intracranial pressure increases during exposure to a shock wave.

    PubMed

    Leonardi, Alessandra Dal Cengio; Bir, Cynthia A; Ritzel, Dave V; VandeVord, Pamela J

    2011-01-01

    Traumatic brain injuries (TBI) caused by improvised explosive devices (IEDs) affect a significant percentage of surviving soldiers wounded in Iraq and Afghanistan. The extent of a blast TBI, especially initially, is difficult to diagnose, as internal injuries are frequently unrecognized and therefore underestimated, yet problems develop over time. Therefore it is paramount to resolve the physical mechanisms by which critical stresses are inflicted on brain tissue from blast wave encounters with the head. This study recorded direct pressure within the brains of male Sprague-Dawley rats during exposure to blast. The goal was to understand pressure wave dynamics through the brain. In addition, we optimized in vivo methods to ensure accurate measurement of intracranial pressure (ICP). Our results demonstrate that proper sealing techniques lead to a significant increase in ICP values, compared to the outside overpressure generated by the blast. Further, the values seem to have a direct relation to a rat's size and age: heavier, older rats had the highest ICP readings. These findings suggest that a global flexure of the skull by the transient shockwave is an important mechanism of pressure transmission inside the brain.

  4. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain.

    PubMed

    Kawahara, Kohichi; Hirata, Hiroshi; Ohbuchi, Kengo; Nishi, Kentaro; Maeda, Akira; Kuniyasu, Akihiko; Yamada, Daisuke; Maeda, Takehiko; Tsuji, Akihiko; Sawada, Makoto; Nakayama, Hitoshi

    2016-11-01

    To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross-reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50- to 70-kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys(170) . In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin-like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full-length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin-like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double-immunοstaining with 9F5 antibody and anti-Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938-1961. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  5. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    NASA Astrophysics Data System (ADS)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  6. Evaluating [11C]PBR28 PET for Monitoring Gut and Brain Inflammation in a Rat Model of Chemically Induced Colitis.

    PubMed

    Kurtys, E; Doorduin, J; Eisel, U L M; Dierckx, R A J O; de Vries, E F J

    2017-02-01

    Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that affects an increasing number of patients. High comorbidity is observed between UC and other diseases in which inflammation may be involved, including brain diseases such as cognitive impairment, mental disorders, anxiety, and depression. To investigate the increased occurrence of these brain diseases in patients with UC, non-invasive methods for monitoring peripheral and central inflammation could be applied. Therefore, the goal of this study is to assess the feasibility of monitoring gut and brain inflammation in a rat model of chemically induced colitis by positron emission tomography (PET) with [ 11 C]PBR28, a tracer targeting the translocator protein (TSPO), which is upregulated when microglia and macrophages are activated. Colitis was induced in rats by intra-rectal injection of 2,4,6-trinitrobenzenesulfonic acid (TNBS). Rats with colitis and healthy control animals were subjected to [ 11 C]PBR28 PET of the abdomen followed by ex vivo biodistribution in order to assess whether inflammation in the gut could be detected. Another group of rats with colitis underwent repetitive [ 11 C]PBR28 PET imaging of the brain to investigate the development of neuroinflammation. Eleven days after TNBS injection, ex vivo biodistribution studies demonstrated increased [ 11 C]PBR28 uptake in the inflamed cecum and colon of rats with colitis as compared to healthy controls, whereas PET imaging did not show any difference between groups at any time. Similarly, repetitive PET imaging of the brain did not reveal any neuroinflammation induced by the TNBS administration in the colon. In contrast, significantly increased [ 11 C]PBR28 uptake in cerebellum could be detected in ex vivo biodistribution studies on day 11. Inflammation in both the gut and the brain of rats with chemically induced colitis was observed by ex vivo biodistribution. However, these effects could not be detected by [ 11 C]PBR28 PET imaging in our colitis model, which is likely due to spill-over effects and insufficient resolution of the PET camera.

  7. Non-signalling energy use in the developing rat brain

    PubMed Central

    Engl, Elisabeth; Jolivet, Renaud; Hall, Catherine N

    2016-01-01

    Energy use in the brain constrains its information processing power, but only about half the brain's energy consumption is directly related to information processing. Evidence for which non-signalling processes consume the rest of the brain's energy has been scarce. For the first time, we investigated the energy use of the brain's main non-signalling tasks with a single method. After blocking each non-signalling process, we measured oxygen level changes in juvenile rat brain slices with an oxygen-sensing microelectrode and calculated changes in oxygen consumption throughout the slice using a modified diffusion equation. We found that the turnover of the actin and microtubule cytoskeleton, followed by lipid synthesis, are significant energy drains, contributing 25%, 22% and 18%, respectively, to the rate of oxygen consumption. In contrast, protein synthesis is energetically inexpensive. We assess how these estimates of energy expenditure relate to brain energy use in vivo, and how they might differ in the mature brain. PMID:27170699

  8. Investigation of the effects of acrylamide applied during pregnancy on fetal brain development in rats and protective role of the vitamin E.

    PubMed

    Erdemli, M E; Turkoz, Y; Altinoz, E; Elibol, E; Dogan, Z

    2016-12-01

    A liberal amount of acrylamide (AA) is produced as a result of frying or baking foods in high temperatures, and individuals take certain amounts of AA everyday by consuming these food items. Pregnant women are also exposed to AA originating from food during pregnancy and their fetus are probably affected. The rats were divided into five different groups: control (C), corn oil (CO), vitamin E (Vit E), AA, and Vit E + AA, with eight pregnant rats in each group. On the 20th day of pregnancy, fetuses were removed and brain tissues of fetuses were examined for biochemical and histological changes. AA caused degeneration in neuron structures in fetal brain tissue and caused hemorrhagic damages; dramatically decreased brain-derived neurotrophic factor levels; increased malondialdehyde, total oxidant capacity levels; and decreased reduced glutathione and total antioxidant capacity levels (p < 0.05). On the other hand, it was determined that the Vit E, a neuroprotectant and a powerful antioxidant, suppressed the effects of AA on fetal development and fetal brain tissue damage for the above-mentioned parameters (p < 0.05). It is recommended to consume food containing Vit E as a protection to minimize the toxic effects of food-oriented AA on fetus development due to the widespread nature of fast-food culture in today's life and the impossibility of protection from AA toxicity. © The Author(s) 2016.

  9. Supplementation with complex milk lipids during brain development promotes neuroplasticity without altering myelination or vascular density

    PubMed Central

    Guillermo, Rosamond B.; Yang, Panzao; Vickers, Mark H.; McJarrow, Paul; Guan, Jian

    2015-01-01

    Background Supplementation with complex milk lipids (CML) during postnatal brain development has been shown to improve spatial reference learning in rats. Objective The current study examined histo-biological changes in the brain following CML supplementation and their relationship to the observed improvements in memory. Design The study used the brain tissues from the rats (male Wistar, 80 days of age) after supplementing with either CML or vehicle during postnatal day 10–80. Immunohistochemical staining of synaptophysin, glutamate receptor-1, myelin basic protein, isolectin B-4, and glial fibrillary acidic protein was performed. The average area and the density of the staining and the numbers of astrocytes and capillaries were assessed and analysed. Results Compared with control rats, CML supplementation increased the average area of synaptophysin staining and the number of GFAP astrocytes in the CA3 sub-region of the hippocampus (p<0.01), but not in the CA4 sub-region. The supplementation also led to an increase in dopamine output in the striatum that was related to nigral dopamine expression (p<0.05), but did not alter glutamate receptors, myelination or vascular density. Conclusion CML supplementation may enhance neuroplasticity in the CA3 sub-regions of the hippocampus. The brain regions-specific increase of astrocyte may indicate a supporting role for GFAP in synaptic plasticity. CML supplementation did not associate with postnatal white matter development or vascular remodelling. PMID:25818888

  10. Mycophenolate mofetil prevents cerebrovascular injury in stroke-prone spontaneously hypertensive rats.

    PubMed

    Dhande, Isha S; Zhu, Yaming; Braun, Michael C; Hicks, M John; Wenderfer, Scott E; Doris, Peter A

    2017-03-01

    Stroke-prone spontaneously hypertensive rats (SHR-A3) develop strokes and progressive kidney disease as a result of naturally occurring genetic variations. We recently identified genetic variants in immune signaling pathways that contribute to end-organ injury. The present study was designed to test the hypothesis that a dysregulated immune response promotes stroke susceptibility. We salt-loaded 20 wk old male SHR-A3 rats and treated them with the immunosuppressant mycophenolate mofetil (MMF, 25 mg/kg/day po) ( n = 8) or vehicle (saline) ( n = 9) for 8 wk. Blood pressure (BP) was measured weekly by telemetry. Compared with vehicle-treated controls, MMF-treated SHR-A3 rats had improved survival and lower neurological deficit scores (1.44 vs. 0.125; P < 0.02). Gross morphology of the brain revealed cerebral edema in 8 of 9, and microbleeds and hemorrhages in 5 of 9 vehicle-treated rats. These lesions were absent in MMF-treated rats. Brain CD68 expression, indicating macrophage/microglial activation, was upregulated in vehicle-treated rats with microbleeds and hemorrhages but was undetectable in the brains of MMF-treated rats. MMF also prevented renal injury in SHR-A3 rats, evidenced by reduced proteinuria (albumin:creatinine) from 7.52 to 1.05 mg/mg ( P < 0.03) and lower tubulointerstitial injury scores (2.46 vs. 1.43; P < 0.01). Salt loading resulted in a progressive increase in BP, which was blunted in rats receiving MMF. Our findings provide evidence that abnormal immune activation predisposes to cerebrovascular and renal injury in stroke-prone SHR-A3 rats. Copyright © 2017 the American Physiological Society.

  11. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    PubMed

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  12. Changes in Imaging and Cognition in Juvenile Rats After Whole-Brain Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Robert J.; Jun, Brandon J.; Advanced Imaging Laboratory, Department of Radiology, Children's Hospital Los Angeles, Los Angeles, California

    Purpose: In pediatric cancer survivors treated with whole-brain irradiation (WBI), long-term cognitive deficits and morbidity develop that are poorly understood and for which there is no treatment. We describe similar cognitive defects in juvenile WBI rats and correlate them with alterations in diffusion tensor imaging and magnetic resonance spectroscopy (MRS) during brain development. Methods and Materials: Juvenile Fischer rats received clinically relevant fractionated doses of WBI or a high-dose exposure. Diffusion tensor imaging and MRS were performed at the time of WBI and during the subacute (3-month) and late (6-month) phases, before behavioral testing. Results: Fractional anisotropy in the spleniummore » of the corpus callosum increased steadily over the study period, reflecting brain development. WBI did not alter the subacute response, but thereafter there was no further increase in fractional anisotropy, especially in the high-dose group. Similarly, the ratios of various MRS metabolites to creatine increased over the study period, and in general, the most significant changes after WBI were during the late phase and with the higher dose. The most dramatic changes observed were in glutamine-creatine ratios that failed to increase normally between 3 and 6 months after either radiation dose. WBI did not affect the ambulatory response to novel open field testing in the subacute phase, but locomotor habituation was impaired and anxiety-like behaviors increased. As for cognitive measures, the most dramatic impairments were in novel object recognition late after either dose of WBI. Conclusions: The developing brains of juvenile rats given clinically relevant fractionated doses of WBI show few abnormalities in the subacute phase but marked late cognitive alterations that may be linked with perturbed MRS signals measured in the corpus callosum. This pathomimetic phenotype of clinically relevant cranial irradiation effects may be useful for modeling, mechanistic evaluations, and testing of mitigation approaches.« less

  13. Dopamine Innervation in the Thalamus: Monkey versus Rat

    PubMed Central

    García-Cabezas, Miguel Ángel; Martínez-Sánchez, Patricia; Sánchez-González, Miguel Ángel; Garzón, Miguel

    2009-01-01

    We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease. PMID:18550594

  14. Occurrence of Pineal Gland Tumors in Combined Chronic Toxicity/Carcinogenicity Studies in Wistar Rats.

    PubMed

    Treumann, Silke; Buesen, Roland; Gröters, Sibylle; Eichler, Jens-Olaf; van Ravenzwaay, Bennard

    2015-08-01

    Pineal gland tumors are very rare brain lesions in rats as well as in other species including humans. A total of 8 (out of 1,360 examined) Wistar rats from 3 different combined chronic toxicity/carcinogenicity or mere carcinogenicity studies revealed pineal gland tumors. The tumors were regarded to be spontaneous and unrelated to treatment. The morphology and immunohistochemical evaluation led to the diagnosis malignant pinealoma. The main characteristics that were variably developed within the tumors were the following: cellular atypia, high mitotic index, giant cells, necrosis, Homer Wright rosettes, Flexner-Wintersteiner rosettes and pseudorosettes, positive immunohistochemical reaction for synaptophysin, and neuron-specific enolase. The pineal gland is not a protocol organ for histopathological examination in carcinogenicity studies. Nevertheless, the pineal gland can occasionally be encountered on the routine brain section or if it is the origin of a tumor protruding into the brain, the finding will be recorded. Therefore, although known to be a rare tumor in rats, pineal neoplasms should be included in the list of possible differential diagnoses for brain tumors, especially when the tumor is located in the region of the pineal body. © 2015 by The Author(s).

  15. Rapamycin down-regulates KCC2 expression and increases seizure susceptibility to convulsants in immature rats

    PubMed Central

    Huang, Xiaoxing; McMahon, John; Yang, Jun; Shin, Damian; Huang, Yunfei

    2012-01-01

    Summary Seizure susceptibility to neurological insults, including chemical convulsants, is age-dependent and most likely reflective of overall differences in brain excitability. The molecular and cellular mechanisms underlying development-dependent seizure susceptibility remain to be fully understood. Because the mTOR pathway regulates neurite outgrowth, synaptic plasticity and cell survival, thereby influencing brain development, we tested if exposure of the immature brain to the mTOR inhibitor rapamycin changes seizure susceptibility to neurological insults. We found that inhibition of mTOR by rapamycin in immature rats (3 to 4 weeks old) increases the severity of seizures induced by pilocarpine, including lengthening the total seizure duration and reducing the latency to the onset of seizures. Rapamycin also reduces the minimal dose of pentylenetetrazol (PTZ) necessary to induce clonic seizures. However, in mature rats, rapamycin does not significantly change the seizure sensitivity to pilocarpine and PTZ. Likewise, kainate sensitivity was not significantly affected by rapamycin treatment in either mature or immature rats. Additionally, rapamycin treatment down-regulates the expression of potassium-chloride cotransporter 2 (KCC2) in the thalamus and to a lesser degree in the hippocampus. Pharmacological inhibition of thalamic mTOR or KCC2 increases susceptibility to pilocarpine-induced seizure in immature rats. Thus, our study suggests a role for the mTOR pathway in age-dependent seizure susceptibility. PMID:22613737

  16. Deficits in Docosahexaenoic Acid Accrual during Adolescence Reduce Rat Forebrain White Matter Microstructural Integrity: An in vivo Diffusion Tensor Imaging Study.

    PubMed

    McNamara, Robert K; Schurdak, Jennifer D; Asch, Ruth H; Peters, Bart D; Lindquist, Diana M

    2018-01-01

    Neuropsychiatric disorders that frequently initially emerge during adolescence are associated with deficits in the omega-3 (n-3) fatty acid docosahexaenoic acid (DHA), elevated proinflammatory signaling, and regional reductions in white matter integrity (WMI). This study determined the effects of altering brain DHA accrual during adolescence on WMI in the rat brain by diffusion tensor imaging (DTI), and investigated the potential mediating role of proinflammatory signaling. During periadolescent development, male rats were fed a diet deficient in n-3 fatty acids (DEF, n = 20), a fish oil-fortified diet containing preformed DHA (FO, n = 20), or a control diet (CON, n = 20). In adulthood, DTI scans were performed and brain WMI was determined using voxelwise tract-based spatial statistics (TBSS). Postmortem fatty acid composition, peripheral (plasma IL-1β, IL-6, and C-reactive protein [CRP]) and central (IL-1β and CD11b mRNA) proinflammatory markers, and myelin basic protein (MBP) mRNA expression were determined. Compared with CON rats, forebrain DHA levels were lower in DEF rats and higher in FO rats. Compared with CON rats, DEF rats exhibited greater radial diffusivity (RD) and mean diffusivity in the right external capsule, and greater axial diffusivity in the corpus callosum genu and left external capsule. DEF rats also exhibited greater RD than FO rats in the right external capsule. Forebrain MBP expression did not differ between groups. Compared with CON rats, central (IL-1β and CD11b) and peripheral (IL-1β and IL-6) proinflammatory markers were not different in DEF rats, and DEF rats exhibited lower CRP levels. These findings demonstrate that deficits in adolescent DHA accrual negatively impact forebrain WMI, independently of elevated proinflammatory signaling. © 2017 S. Karger AG, Basel.

  17. Behavior and Monoamine Deficits in Prenatal and Perinatal Iron Deficiency Are Not Corrected by Early Postnatal Moderate-Iron or High-Iron Diets in Rats12

    PubMed Central

    Unger, Erica L.; Hurst, Amy R.; Georgieff, Michael K.; Schallert, Tim; Rao, Raghavendra; Connor, James R.; Kaciroti, Niko; Lozoff, Betsy; Felt, Barbara

    2012-01-01

    Developmental iron deficiency anemia (IDA) causes brain and behavioral deficits in rodent models, which cannot be reversed when treated at periods equivalent to later infancy in humans. This study sought to determine whether earlier iron treatment can normalize deficits of IDA in rats and what iron dose is optimal. The offspring of dams with IDA during gestation were cross-fostered at postnatal d (P) 8 to dams receiving diets with 1 of 3 iron concentrations until weaning (P21): 0.003–0.01 g/kg [totally iron deficient (TID)]; 0.04 g/kg [formerly iron deficient (FID-40)]; or 0.4 g/kg (FID-400). Always iron-sufficient control dams (CN-40) received a 0.04-g/kg iron diet. At P21, TID pups received a 0.01 g iron/kg diet; all others received a 0.04 g iron/kg diet. Hematocrit and brain iron and monoamine concentrations were assessed at P21 and P100. Pup growth, development, activity, object recognition, hesitancy, and watermaze performance were evaluated. Regional brain iron was restored by iron treatment. Regional monoamine and metabolite concentrations were elevated in FID-40 rats and reduced in FID-400 and TID rats compared with CN-40 rats. FID-40 offspring had motor delays similar to TID during lactation and FID-400 rats had elevated thigmotaxis similar to TID rats at P25 and P100 in the spatial watermaze. In conclusion, iron treatment at P8 in rats did not normalize all monoamine or behavioral measures after early IDA. Moderate iron treatment improved adult behavior, but higher iron treatment caused brain and behavioral patterns similar to TID in the short and long term. PMID:22990465

  18. Markerless rat head motion tracking using structured light for brain PET imaging of unrestrained awake small animals

    NASA Astrophysics Data System (ADS)

    Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen

    2017-03-01

    Preclinical positron emission tomography (PET) imaging in small animals is generally performed under anesthesia to immobilize the animal during scanning. More recently, for rat brain PET studies, methods to perform scans of unrestrained awake rats are being developed in order to avoid the unwanted effects of anesthesia on the brain response. Here, we investigate the use of a projected structure stereo camera to track the motion of the rat head during the PET scan. The motion information is then used to correct the PET data. The stereo camera calculates a 3D point cloud representation of the scene and the tracking is performed by point cloud matching using the iterative closest point algorithm. The main advantage of the proposed motion tracking is that no intervention, e.g. for marker attachment, is needed. A manually moved microDerenzo phantom experiment and 3 awake rat [18F]FDG experiments were performed to evaluate the proposed tracking method. The tracking accuracy was 0.33 mm rms. After motion correction image reconstruction, the microDerenzo phantom was recovered albeit with some loss of resolution. The reconstructed FWHM of the 2.5 and 3 mm rods increased with 0.94 and 0.51 mm respectively in comparison with the motion-free case. In the rat experiments, the average tracking success rate was 64.7%. The correlation of relative brain regional [18F]FDG uptake between the anesthesia and awake scan reconstructions was increased from on average 0.291 (not significant) before correction to 0.909 (p  <  0.0001) after motion correction. Markerless motion tracking using structured light can be successfully used for tracking of the rat head for motion correction in awake rat PET scans.

  19. Hyperexcitability of Rat Thalamocortical Networks after Exposure to General Anesthesia during Brain Development

    PubMed Central

    DiGruccio, Michael R.; Joksimovic, Srdjan; Joksovic, Pavle M.; Lunardi, Nadia; Salajegheh, Reza; Jevtovic-Todorovic, Vesna; Beenhakker, Mark P.; Goodkin, Howard P.

    2015-01-01

    Prevailing literature supports the idea that common general anesthetics (GAs) cause long-term cognitive changes and neurodegeneration in the developing mammalian brain, especially in the thalamus. However, the possible role of GAs in modifying ion channels that control neuronal excitability has not been taken into consideration. Here we show that rats exposed to GAs at postnatal day 7 display a lasting reduction in inhibitory synaptic transmission, an increase in excitatory synaptic transmission, and concomitant increase in the amplitude of T-type calcium currents (T-currents) in neurons of the nucleus reticularis thalami (nRT). Collectively, this plasticity of ionic currents leads to increased action potential firing in vitro and increased strength of pharmacologically induced spike and wave discharges in vivo. Selective blockade of T-currents reversed neuronal hyperexcitability in vitro and in vivo. We conclude that drugs that regulate thalamic excitability may improve the safety of GAs used during early brain development. PMID:25632125

  20. Fetal and neonatal iron deficiency but not copper deficiency increases vascular complexity in the developing rat brain

    PubMed Central

    Bastian, Thomas W.; Santarriaga, Stephanie; Nguyen, Thu An; Prohaska, Joseph R.; Georgieff, Michael K.; Anderson, Grant W.

    2015-01-01

    Objectives Anemia caused by nutritional deficiencies, such as iron and copper deficiencies, is a global health problem. Iron and copper deficiencies have their most profound effect on the developing fetus/infant, leading to brain development deficits and poor cognitive outcomes. Tissue iron depletion or chronic anemia can induce cellular hypoxic signaling. In mice, chronic hypoxia induces a compensatory increase in brain blood vessel outgrowth. We hypothesized that developmental anemia, due to iron or copper deficiencies, induces angiogenesis/vasculogenesis in the neonatal brain. Methods To test our hypothesis, three independent experiments were performed where pregnant rats were fed iron- or copper-deficient diets from gestational day 2 through mid-lactation. Effects on the neonatal brain vasculature were determined using qPCR to assess mRNA levels of angiogenesis/vasculogenesis-associated genes and GLUT1 immunohistochemistry (IHC) to assess brain blood vessel density and complexity. Results Iron deficiency, but not copper deficiency, increased mRNA expression of brain endothelial cell- and angiogenesis/vasculogenesis-associated genes (i.e. Glut1, Vwf, Vegfa, Ang2, Cxcl12, and Flk1) in the neonatal brain, suggesting increased cerebrovascular density. Iron deficiency also increased hippocampal and cerebral cortical blood vessel branching by 62% and 78%, respectively. Discussion This study demonstrates increased blood vessel complexity in the neonatal iron-deficient brain, which is likely due to elevated angiogenic/vasculogenic signaling. At least initially, this is probably an adaptive response to maintain metabolic substrate homeostasis in the developing iron-deficient brain. However, this may also contribute to long-term neurodevelopmental deficits. PMID:26177275

  1. RatCar system for estimating locomotion states using neural signals with parameter monitoring: Vehicle-formed brain-machine interfaces for rat.

    PubMed

    Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    2008-01-01

    An online brain-machine interface (BMI) in the form of a small vehicle, the 'RatCar,' has been developed. A rat had neural electrodes implanted in its primary motor cortex and basal ganglia regions to continuously record neural signals. Then, a linear state space model represents a correlation between the recorded neural signals and locomotion states (i.e., moving velocity and azimuthal variances) of the rat. The model parameters were set so as to minimize estimation errors, and the locomotion states were estimated from neural firing rates using a Kalman filter algorithm. The results showed a small oscillation to achieve smooth control of the vehicle in spite of fluctuating firing rates with noises applied to the model. Major variation of the model variables converged in a first 30 seconds of the experiments and lasted for the entire one hour session.

  2. Estimation of locomotion speed and directions changes to control a vehicle using neural signals from the motor cortex of rat.

    PubMed

    Fukayama, Osamu; Taniguchi, Noriyuki; Suzuki, Takafumi; Mabuchi, Kunihiko

    2006-01-01

    We have developed a brain-machine interface (BMI) in the form of a small vehicle, which we call the RatCar. In this system, we implanted wire electrodes in the motor cortices of rat's brain to continuously record neural signals. We applied a linear model to estimate the locomotion state (e.g., speed and directions) of a rat using a weighted summation model for the neural firing rates. With this information, we then determined the approximate movement of a rat. Although the estimation is still imprecise, results suggest that our model is able to control the system to some degree. In this paper, we give an overview of our system and describe the methods used, which include continuous neural recording, spike detection and a discrimination algorithm, and a locomotion estimation model minimizes the square error of the locomotion speed and changes in direction.

  3. Thyroid Hormone Availability and Action during Brain Development in Rodents.

    PubMed

    Bárez-López, Soledad; Guadaño-Ferraz, Ana

    2017-01-01

    Thyroid hormones (THs) play an essential role in the development of all vertebrates; in particular adequate TH content is crucial for proper neurodevelopment. TH availability and action in the brain are precisely regulated by several mechanisms, including the secretion of THs by the thyroid gland, the transport of THs to the brain and neural cells, THs activation and inactivation by the metabolic enzymes deiodinases and, in the fetus, transplacental passage of maternal THs. Although these mechanisms have been extensively studied in rats, in the last decade, models of genetically modified mice have been more frequently used to understand the role of the main proteins involved in TH signaling in health and disease. Despite this, there is little knowledge about the mechanisms underlying THs availability in the mouse brain. This mini-review article gathers information from findings in rats, and the latest findings in mice regarding the ontogeny of TH action and the sources of THs to the brain, with special focus on neurodevelopmental stages. Unraveling TH economy and action in the mouse brain may help to better understand the physiology and pathophysiology of TH signaling in brain and may contribute to addressing the neurological alterations due to hypo and hyperthyroidism and TH resistance syndromes.

  4. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury.

    PubMed

    Tu, Tsang-Wei; Lescher, Jacob D; Williams, Rashida A; Jikaria, Neekita; Turtzo, L Christine; Frank, Joseph A

    2017-01-01

    Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations.

  5. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury

    PubMed Central

    Lescher, Jacob D.; Williams, Rashida A.; Jikaria, Neekita; Turtzo, L. Christine; Frank, Joseph A.

    2017-01-01

    Abstract Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations. PMID:26905805

  6. Expression and function of dopamine receptors in the developing medial frontal cortex and striatum of the rat

    PubMed Central

    Sillivan, Stephanie E.; Konradi, Christine

    2011-01-01

    The timeline of dopamine (DA) system maturation and the signaling properties of dopamine receptors (DRs) during rat brain development are not fully characterized. We used in situ hybridization and quantitative PCR to map DR mRNA transcripts in the medial frontal cortex (mFC) and striatum (STR) of the rat from embryonic day (E) 15 to E21. The developmental trajectory of DR mRNAs revealed distinct patterns of DA receptors 1 and 2 (DRD1, DRD2) in these brain regions. Whereas the mFC had a steeper increase in DRD1 mRNA, the STR had a steeper increase in DRD2 mRNA. Both DR mRNAs were expressed at a higher level in the STR compared to the mFC. To identify the functional properties of DRs during embryonic development, the phosphorylation states of cyclic AMP response element binding protein (CREB), extracellular signal-regulated kinase 1/2 (ERK1/2), and glycogen synthase kinase 3 beta (GSK3β) were examined after DR stimulation in primary neuronal cultures obtained from E15 and E18 embryos and cultured for 3 days to ensure a stable baseline level. DR-mediated signaling cascades were functional in E15 cultures in both brain regions. Because DA fibers do not reach the mFC by E15, and DA was not present in cultures, these data indicate that DRs can become functional in the absence of DA innervation. Since activation of DR signal transduction pathways can affect network organization of the developing brain, maternal exposure to drugs that affect DR activity may be liable to interfere with fetal brain development. PMID:22015925

  7. Part II: Strain- and sex-specific effects of adolescent exposure to THC on adult brain and behaviour: Variants of learning, anxiety and volumetric estimates.

    PubMed

    Keeley, R J; Trow, J; Bye, C; McDonald, R J

    2015-07-15

    Marijuana is one of the most highly used psychoactive substances in the world, and its use typically begins during adolescence, a period of substantial brain development. Females across species appear to be more susceptible to the long-term consequences of marijuana use. Despite the identification of inherent differences between rat strains including measures of anatomy, genetics and behaviour, no studies to our knowledge have examined the long-term consequences of adolescent exposure to marijuana or its main psychoactive component, Δ(9)-tetrahydrocannabinol (THC), in males and females of two widely used rat strains: Long-Evans hooded (LER) and Wistar (WR) rats. THC was administered for 14 consecutive days following puberty onset, and once they reached adulthood, changes in behaviour and in the volume of associated brain areas were quantified. Rats were assessed in behavioural tests of motor, spatial and contextual learning, and anxiety. Some tasks showed effects of injection, since handled and vehicle groups were included as controls. Performance on all tasks, except motor learning, and the volume of associated brain areas were altered with injection or THC administration, although these effects varied by strain and sex group. Finally, analysis revealed treatment-specific correlations between performance and brain volumes. This study is the first of its kind to directly compare males and females of two rat strains for the long-term consequences of adolescent THC exposure. It highlights the importance of considering strain and identifies certain rat strains as susceptible or resilient to the effects of THC. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation.

    PubMed

    Seryapina, A A; Shevelev, O B; Moshkin, M P; Markel, A L; Akulov, A E

    2017-05-01

    What is the central question of this study? Stress-sensitive arterial hypertension is considered to be controlled by changes in central and peripheral sympathetic regulating mechanisms, which eventually result in haemodynamic alterations and blood pressure elevation. Therefore, study of the early stages of development of hypertension is of particular interest, because it helps in understanding the aetiology of the disease. What is the main finding and its importance? Non-invasive in vivo investigation in ISIAH rats demonstrated that establishment of sustainable stress-sensitive hypertension is accompanied by a decrease in prefrontal cortex activity and mobilization of hypothalamic processes, with considerable correlations between haemodynamic parameters and individual metabolite ratios. The study of early development of arterial hypertension in association with emotional stress is of great importance for better understanding of the aetiology and pathogenesis of the hypertensive disease. Magnetic resonance imaging (MRI) was applied to evaluate the changes in haemodynamics and brain metabolites in 1- and 3-month-old inherited stress-induced arterial hypertension (ISIAH) rats (10 male rats) with stress-sensitive arterial hypertension and in control normotensive Wistar Albino Glaxo (WAG) rats (eight male rats). In the 3-month-old ISIAH rats, the age-dependent increase in blood pressure was associated with increased blood flow through the renal arteries and decreased blood flow in the lower part of the abdominal aorta. The renal vascular resistance in the ISIAH rats decreased during ageing, although at both ages it remained higher than the renal vascular resistance in WAG rats. An integral metabolome portrait demonstrated that development of hypertension in the ISIAH rats was associated with an attenuation of the excitatory and energetic activity in the prefrontal cortex, whereas in the WAG rats the opposite age-dependent changes were observed. In contrast, in the hypothalamus of 3-month-old ISIAH rats, an increase in energetic activity and prevalence of excitatory over inhibitory neurotransmitters was noticed. The blood flow through the main arteries showed a positive correlation with glutamate and glutamine levels in the hypothalamus and a negative correlation with the hypothalamic GABA level. The blood pressure values were positively correlated with hypothalamic choline levels. Thus, the early development of stress-sensitive hypertension in the ISIAH rats is accompanied by considerable changes both in brain metabolite ratios and in the parameters of blood flow through the main arteries. © 2017 Institute of Cytology and Genetics (SB RAS). Experimental Physiology © 2017 The Physiological Society.

  9. Alterations in Sociability and Functional Brain Connectivity Caused by Early-Life Seizures is Reversed by Bumetanide

    PubMed Central

    Holmes, Gregory L.; Tian, Chengju; Hernan, Amanda E.; Flynn, Sean; Camp, Devon; Barry, Jeremy

    2015-01-01

    There is a well-described association between infantile epilepsy and pervasive cognitive and behavioral deficits, including a high incidence of autism spectrum disorders. Despite the robustness of the relationship between early-life seizures and the development of autism, the pathophysiological mechanism by which this occurs has not been explored. As a result of increasing evidence that autism is a disorder of brain connectivity we hypothesized that early-life seizures would interrupt normal brain connectivity during brain maturation and result in an autistic phenotype. Normal rat pups underwent recurrent flurothyl-induced seizures from postnatal (P) day 5-14 and then tested, along with controls, for developmental alterations of development brain oscillatory activity from P18-25. Specifically we wished to understand how normal changes in rhythmicity in and between brain regions change as a function of age and if this rhythmicity is altered or interrupted by early life seizures. In rat pups with early-life seizures, field recordings from dorsal and ventral hippocampus and prefrontal cortex demonstrated marked increase in coherence as well as a decrease in voltage correlation at all bandwidths compared to controls while there were minimal differences in total power and relative power spectral densities. Rats with early-life seizures had resulting impairment in the sociability and social novelty tests but demonstrated no evidence of increased activity or generalized anxiety as measured in the open field. In addition, rats with early-life seizures had lower seizure thresholds than controls, indicating long-standing alterations in the excitatory/inhibition balance. Bumetanide, a pharmacological agent that blocks the activity of NKCC1 and induces a significant shift of ECl toward more hyperpolarized values, administration at the time of the seizures precluded the subsequent abnormalities in coherence and voltage correlation and resulted in normal sociability and seizure threshold. Taken together these findings indicate that early-life seizures alter the development of oscillations and result in autistic-like behaviors. The altered communication between these brain regions could reflect the physiological underpinnings underlying social cognitive deficits seen in autism spectrum disorders. PMID:25766676

  10. Novel Rat Model for Neurocysticercosis Using Taenia solium

    PubMed Central

    Verastegui, Manuela R.; Mejia, Alan; Clark, Taryn; Gavidia, Cesar M.; Mamani, Javier; Ccopa, Fredy; Angulo, Noelia; Chile, Nancy; Carmen, Rogger; Medina, Roxana; García, Hector H.; Rodriguez, Silvia; Ortega, Ynes; Gilman, Robert H.

    2016-01-01

    Neurocysticercosis is caused by Taenia solium infecting the central nervous system and is the leading cause of acquired epilepsy and convulsive conditions worldwide. Research into the pathophysiology of the disease and appropriate treatment is hindered by lack of cost-effective and physiologically similar animal models. We generated a novel rat neurocysticercosis model using intracranial infection with activated T. solium oncospheres. Holtzman rats were infected in two separate groups: the first group was inoculated extraparenchymally and the second intraparenchymally, with different doses of activated oncospheres. The groups were evaluated at three different ages. Histologic examination of the tissue surrounding T. solium cysticerci was performed. Results indicate that generally infected rats developed cysticerci in the brain tissue after 4 months, and the cysticerci were observed in the parenchymal, ventricle, or submeningeal brain tissue. The route of infection did not have a statistically significant effect on the proportion of rats that developed cysticerci, and there was no dependence on infection dose. However, rat age was crucial to the success of the infection. Epilepsy was observed in 9% of rats with neurocysticercosis. In histologic examination, a layer of collagen tissue, inflammatory infiltrate cells, perivascular infiltrate, angiogenesis, spongy change, and mass effect were observed in the tissue surrounding the cysts. This study presents a suitable animal model for the study of human neurocysticercosis. PMID:26216286

  11. Inability to produce a model of dialysis encephalopathy in the rat by aluminum administration.

    PubMed

    Perry, T L; Yong, V W; Godolphin, W J; Sutter, M; Hansen, S; Kish, S J; Foulks, J G; Ito, M

    1987-04-01

    We attempted to produce a rat model of brain aluminum toxicity in order to explore whether or not aluminum accumulation produces the neurochemical changes observed in brains of patients who die with dialysis encephalopathy. Daily subcutaneous injection of Al(OH)3 caused marked elevation of serum aluminum concentrations, but did not increase brain aluminum contents, either in rats with normal renal function, or in rats with unilateral or 5/6 nephrectomies. LiCl pretreatment, which has been reported to cause irreversible renal failure, did not impair renal function nor aid in achieving elevated brain aluminum contents. No reductions in brain contents of gamma-aminobutyric acid (GABA) or in glutamic acid decarboxylase (GAD, E.C.4.1.1.15) and choline acetyltransferase (ChAT, E.C.2.3.1.6) activities were observed in aluminum-treated rats. We conclude that the rat is not a suitable laboratory animal to explore the role of aluminum toxicity in causing the GABA and ChAT deficits present in brains of hemodialyzed human patients.

  12. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron

    EPA Science Inventory

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  13. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Jaiwongkam, Thidarat; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-10-15

    Dipeptidyl peptidase-4 inhibitor (vildagliptin) has been shown to exert beneficial effects on insulin sensitivity and neuroprotection in obese-insulin resistance. Recent studies demonstrated the neuroprotection of the sodium-glucose co-transporter 2 inhibitor (dapagliflozin) in diabetes. However, the comparative effects of both drugs and a combination of two drugs on metabolic dysfunction and brain dysfunction impaired by the obese-insulin resistance have never been investigated. Forty male Wistar rats were divided into two groups, and received either a normal-diet (ND, n=8) or a high-fat diet (HFD, n=32) for 16weeks. At week 13, the HFD-fed rats were divided into four subgroups (n=8/subgroup) to receive either a vehicle, vildagliptin (3mg/kg/day) dapagliflozin (1mg/kg/day) or combined drugs for four weeks. ND rats were given a vehicle for four weeks. Metabolic parameters and brain function were investigated. The results demonstrated that HFD rats developed obese-insulin resistance and cognitive decline. Dapagliflozin had greater efficacy on improved peripheral insulin sensitivity and reduced weight gain than vildagliptin. Single therapy resulted in equally improved brain mitochondrial function, insulin signaling, apoptosis and prevented cognitive decline. However, only dapagliflozin improved hippocampal synaptic plasticity. A combination of the drugs had greater efficacy in improving brain insulin sensitivity and reducing brain oxidative stress than the single drug therapy. These findings suggested that dapagliflozin and vildagliptin equally prevented cognitive decline in the obese-insulin resistance, possibly through some similar mechanisms. Dapagliflozin had greater efficacy than vildagliptin for preserving synaptic plasticity, thus combined drugs could be the best therapeutic approach for neuroprotection in the obese-insulin resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Adult responses to an ischemic stroke in a rat model of neonatal stress and morphine treatment.

    PubMed

    Hays, Sarah L; Valieva, Olga A; McPherson, Ronald J; Juul, Sandra E; Gleason, Christine A

    2013-02-01

    Critically ill newborn infants experience stressors that may alter brain development. Using a rodent model, we previously showed that neonatal stress, morphine, and stress plus morphine treatments each influence early gene expression and may impair neurodevelopment and learning behavior. We hypothesized that the combination of neonatal stress with morphine may alter neonatal angiogenesis and/or adult cerebral blood vessel density and thus increase injury after cerebral ischemia in adulthood. To test this, neonatal Lewis rats underwent 8 h/d maternal separation, plus morning/afternoon hypoxia exposure and either saline or morphine treatment (2 mg/kg s.c.) from postnatal day 3-7. A subset received bromodeoxyuridine to track angiogenesis. Adult brains were stained with collagen IV to quantify cerebral blood vessel density. To examine vulnerability to brain injury, postnatal day 80 adult rats underwent right middle cerebral artery occlusion (MCAO) to produce unilateral ischemic lesions. Brains were removed and processed for histology 48 h after injury. Brain injury was assessed by histological evaluation of hematoxylin and eosin, and silver staining. In contrast to our hypothesis, neither neonatal morphine, stress, nor the combination affected cerebral vessel density or MCAO-induced brain injury. Neonatal angiogenesis was not detected in adult rats possibly due to turnover of endothelial cells. Although unrelated to angiogenesis, hippocampal granule cell neurogenesis was detected and there was a trend (P = 0.073) toward increased bromodeoxyuridine incorporation in rats that underwent neonatal stress. These findings are discussed in contrast to other data concerning the effects of morphine on cerebrovascular function, and acute effects of morphine on hippocampal neurogenesis. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  15. [Behavior and functional state of the dopaminergic brain system in pups of depressive WAG/Rij rats].

    PubMed

    Malyshev, A V; Razumkina, E V; Rogozinskaia, É Ia; Sarkisova, K Iu; Dybynin, V A

    2014-01-01

    In the present work, it has been studied for the first time behavior and functional state of the dopaminergic brain system in pups of "depressive" WAG/Rij rats. Offspring of "depressive" WAG/Rij rats at age of 6-16 days compared with offspring of "normal" (non-depressed) outbred rats of the same age exhibited reduced rate of pshychomotor development, lower body weight, attenuation in integration of coordinated reflexes and vestibular function (greater latency of righting reflex, abnormal negative geotaxis), hyper-reactivity to tactile stimulation, reduced motivation to contact with mother (reduced infant-mother attachment). Differences in a nest seeking response induced by olfactory stimuli (olfactory discrimination test) and in locomotor activity (tests "gait reflex" and "small open field") have not been revealed. Acute injection of the antagonist of D2-like dopamine receptors clebopride 20 min before testing aggravated mother-oriented behavior in 15-days-old pups of both "depressive" and "non-depressive" rats. However this effect was greater in pups of "depressive" WAG/Rij rats compared with pups of "normal" rats that may indicate reduced functional activity of the dopaminergic brain system in offspring of "depressive" rats. It is proposed that reduced attachment behavior in pups of "depressive" WAG/Rij rats might be a consequence of maternal depression and associated with it reduced maternal care. Moreover, reduced attachment behavior in pups of "depressive" rats might be an early precursor (a marker) of depressive-like pathology which become apparent later in life (approximately at age of 3 months).

  16. Intracerebroventricular injection of neuronal and inducible nitric oxide synthase inhibitors does not influence febrile response in rats during turpentine abscess.

    PubMed

    Soszynski, D; Chelminiak, M

    2007-12-01

    The purpose of this study was to investigate the role of neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) in the brain during development of fever in response to localized tissue inflammation caused by injection of turpentine in freely moving biotelemetered rats. To determine the role of both NOSs in turpentineinduced fever, we injected vinyl-L-NIO (N(5) - (1-Imino-3-butenyl) - ornithine (vLNIO), a selective nNOS inhibitor, and aminoguanidine hydrochloride, a selective iNOS inhibitor, intracerebroventricularly (i.c.v.) 5 h after turpentine injection. Rats responded with fever to intramuscular injection of 20 mul of turpentine that commenced about 5 - 6 h after injection and reached peak value between 9 - 11 h post-turpentine. The inhibition of nNOS as well as iNOS in the brain did not affect fever induced by turpentine. Fevers in control rats (treated i.c.v. with pyrogen-free water) and iNOS or nNOS inhibitor-i.c.v. treated rats injected with turpentine were essentially the same. Furthermore, on the basis of these data, we concluded that iNOS and nNOS inside the brain do not participate in generation of fever to turpentine in rats.

  17. Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats.

    PubMed

    Amini, Naser; Vousooghi, Nasim; Hadjighassem, Mahmoudreza; Bakhtiyari, Mehrdad; Mousavi, Neda; Safakheil, Hosein; Jafari, Leila; Sarveazad, Arash; Yari, Abazar; Ramezani, Sara; Faghihi, Faezeh; Joghataei, Mohammad Taghi

    2016-05-01

    Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.

  18. In vivo chlorine and sodium MRI of rat brain at 21.1 T.

    PubMed

    Schepkin, Victor D; Elumalai, Malathy; Kitchen, Jason A; Qian, Chunqi; Gor'kov, Peter L; Brey, William W

    2014-02-01

    MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development. MRI of (35)Cl and (23)Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method. T 1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T 1a = 4.8 ms (0.7) T 1b = 24.4 ± 7 ms (0.3) and compared with sodium (T 1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of [Formula: see text] ms and [Formula: see text] ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain. The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression.

  19. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats.

    PubMed

    Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R

    2016-05-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.

  20. Chronic central serotonin depletion attenuates ventilation and body temperature in young but not adult Tph2 knockout rats

    PubMed Central

    Kaplan, Kara; Echert, Ashley E.; Massat, Ben; Puissant, Madeleine M.; Palygin, Oleg; Geurts, Aron M.

    2016-01-01

    Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DATph2−/−) rats. DATph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DATph2−/− rats. Body temperature was also maintained in adult DATph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DATph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. PMID:26869713

  1. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    PubMed

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  2. Enhancement of in vivo antioxidant ability in the brain of rats fed tannin.

    PubMed

    Nakajima, Akira; Ueda, Yuto; Matsuda, Emiko; Sameshima, Hiroshi; Ikenoue, Tsuyomu

    2013-07-01

    The effect of the oral administration of mimosa tannin (MMT) on the rat intra-hippocampal antioxidant ability was examined. Wistar rats at the age of 6 weeks were reared for 8 weeks with the rodent diet (RD) consisting of 0.1 g/kg of MMT (RD-MMT). The antioxidant ability of rat brain was evaluated from the decay of a brain-blood-barrier permeable stable nitroxide, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM) measured by the microdialysis-electron spin resonance system under a freely moving state. The decay rate of PCAM in the brain of rats fed RD-MMT was significantly larger than that of rats fed control rodent diet, which indicates the increase of the antioxidant ability in the brain of rats fed RD-MMT. In vitro study showed that MMT did not reduce PCAM directly but enhanced the reduction of PCAM by ascorbic acid. These results indicate that MMT is a potent antioxidant in vitro and in vivo.

  3. Rutin protects against cognitive deficits and brain damage in rats with chronic cerebral hypoperfusion.

    PubMed

    Qu, Jie; Zhou, Qiong; Du, Ying; Zhang, Wei; Bai, Miao; Zhang, Zhuo; Xi, Ye; Li, Zhuyi; Miao, Jianting

    2014-08-01

    Chronic cerebral hypoperfusion is a critical causative factor for the development of cognitive decline and dementia in the elderly, which involves many pathophysiological processes. Consequently, inhibition of several pathophysiological pathways is an attractive therapeutic strategy for this disorder. Rutin, a biologically active flavonoid, protects the brain against several insults through its antioxidant and anti-inflammatory properties, but its effect on cognitive deficits and brain damage caused by chronic cerebral hypoperfusion remains unknown. Here, we investigated the neuroprotective effect of rutin on cognitive impairments and the potential mechanisms underlying its action in rats with chronic cerebral hypoperfusion. We used Sprague-Dawley rats with permanent bilateral common carotid artery occlusion (BCCAO), a well-established model of chronic cerebral hypoperfusion. After rutin treatment for 12 weeks, the neuroprotective effect of rutin in rats was evaluated by behavioural tests, biochemical and histopathological analyses. BCCAO rats showed marked cognitive deficits, which were improved by rutin treatment. Moreover, BCCAO rats exhibited central cholinergic dysfunction, oxidative damage, inflammatory responses and neuronal damage in the cerebral cortex and hippocampus, compared with sham-operated rats. All these effects were significantly alleviated by treatment with rutin. Our results provide new insights into the pharmacological actions of rutin and suggest that rutin has multi-targeted therapeutical potential on cognitive deficits associated with conditions with chronic cerebral hypoperfusion such as vascular dementia and Alzheimer's disease. © 2014 The British Pharmacological Society.

  4. Regional differences in the expression of brain-derived neurotrophic factor (BDNF) pro-peptide, proBDNF and preproBDNF in the brain confer stress resilience.

    PubMed

    Yang, Bangkun; Yang, Chun; Ren, Qian; Zhang, Ji-Chun; Chen, Qian-Xue; Shirayama, Yukihiko; Hashimoto, Kenji

    2016-12-01

    Using learned helplessness (LH) model of depression, we measured protein expression of brain-derived neurotrophic factor (BDNF) pro-peptide, BDNF precursors (proBDNF and preproBDNF) in the brain regions of LH (susceptible) and non-LH rats (resilience). Expression of preproBDNF, proBDNF and BDNF pro-peptide in the medial prefrontal cortex of LH rats, but not non-LH rats, was significantly higher than control rats, although expression of these proteins in the nucleus accumbens of LH rats was significantly lower than control rats. This study suggests that regional differences in conversion of BDNF precursors into BDNF and BDNF pro-peptide by proteolytic cleavage may contribute to stress resilience.

  5. Characterisation of Cdkl5 transcript isoforms in rat.

    PubMed

    Hector, Ralph D; Dando, Owen; Ritakari, Tuula E; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2017-03-01

    CDKL5 deficiency is a severe neurological disorder caused by mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5). The predominant human CDKL5 brain isoform is a 9.7kb transcript comprised of 18 exons with a large 6.6kb 3'-untranslated region (UTR). Mammalian models of CDKL5 disorder are currently limited to mouse, and little is known about Cdkl5 in other organisms used to model neurodevelopmental disorders, such as rat. In this study we characterise, both bioinformatically and experimentally, the rat Cdkl5 gene structure and its associated transcript isoforms. New exonic regions, splice sites and UTRs are described, confirming the presence of four distinct transcript isoforms. The predominant isoform in the brain, which we name rCdkl5_1, is orthologous to the human hCDKL5_1 and mouse mCdkl5_1 isoforms and is the most highly expressed isoform across all brain regions tested. This updated gene model of Cdkl5 in rat provides a framework for studies into its protein products and provides a reference for the development of molecular therapies for testing in rat models of CDKL5 disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats

    PubMed Central

    2012-01-01

    Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782

  7. The proteins interacting with C-terminal of μ receptor are identified by bacterial two-hybrid system from brain cDNA library in morphine-dependent rats.

    PubMed

    Zhou, Peilan; Jiang, Jiebing; Dong, Zhaoqi; Yan, Hui; You, Zhendong; Su, Ruibin; Gong, Zehui

    2015-12-15

    Opioid addiction is associated with long-term adaptive changes in the brain that involve protein expression. The carboxyl-terminal of the μ opioid receptor (MOR-C) is important for receptor signal transduction under opioid treatment. However, the proteins that interact with MOR-C after chronic morphine exposure remain unknown. The brain cDNA library of chronic morphine treatment rats was screened using rat MOR-C to investigate the regulator of opioids dependence in the present study. The brain cDNA library from chronic morphine-dependent rats was constructed using the SMART (Switching Mechanism At 5' end of RNA Transcript) technique. Bacterial two-hybrid system was used to screening the rat MOR-C interacting proteins from the cDNA library. RT-qPCR and immunoblotting were used to determine the variation of MOR-C interacting proteins in rat brain after chronic morphine treatment. Column overlay assays, immunocytochemistry and coimmunoprecipitation were used to demonstrate the interaction of MOR-C and p75NTR-associated cell death executor (NADE). 21 positive proteins, including 19 known proteins were screened to interact with rat MOR-C. Expression of several of these proteins was altered in specific rat brain regions after chronic morphine treatment. Among these proteins, NADE was confirmed to interact with rat MOR-C by in vitro protein-protein binding and coimmunoprecipitation in Chinese hamster ovary (CHO) cells and rat brain with or without chronic morphine treatment. Understanding the rat MOR-C interacting proteins and the proteins variation under chronic morphine treatment may be critical for determining the pathophysiological basis of opioid tolerance and addiction. Copyright © 2015. Published by Elsevier Inc.

  8. Working Memory in Bisphenol-A Treated Middle-Aged Ovariectomized Rats

    PubMed Central

    Neese, Steven L.; Bandara, Suren B.; Schantz, Susan L.

    2014-01-01

    Over 90% of the U.S. population has detectable bisphenol-A (BPA) in their urine according to recent biomonitoring data. BPA is best known for its estrogenic properties, and most rodent research on the nervous system effects of BPA has focused on determining if chronic exposures during pre- and perinatal development have organizational effects on brain development and behavior. Estrogens also have important impacts on brain and behavior during adulthood, particularly in females during aging, but the impact of BPA on the adult brain is less studied. We have published a series of studies documenting that chronic exposure to various estrogens including 17β-estradiol, ERβ selective SERMs and soy phytoestrogens impairs performance of middle-aged female rats on an operant working memory task. The purpose of this study was to determine if chronic oral exposure to BPA would alter working memory on this same task. Ovariectomized (OVX) middle-aged Long Evans rats were tested on an operant delayed spatial alternation (DSA) task. Rats were treated for 8–10 weeks with either a 0 (vehicle control), 5 or 50 μg/kg bw/day oral bolus of BPA. A subset of the vehicle control rats were implanted with a Silastic implant containing 17β-estradiol (low physiological range) to serve as a positive control. All rats were tested for 25 sessions on the DSA task. BPA treatment did not influence performance accuracy on the DSA task, whereas 17β-estradiol significantly impaired performance, as previously reported. The results of this study suggest that chronic oral exposure to BPA does not alter working memory processes of middle-aged OVX rats assessed by this operant DSA task. PMID:23339879

  9. Working memory in bisphenol-A treated middle-aged ovariectomized rats.

    PubMed

    Neese, Steven L; Bandara, Suren B; Schantz, Susan L

    2013-01-01

    Over 90% of the U.S. population has detectable bisphenol-A (BPA) in their urine according to recent biomonitoring data. BPA is best known for its estrogenic properties, and most rodent research on the nervous system effects of BPA has focused on determining if chronic exposures during pre- and perinatal development have organizational effects on brain development and behavior. Estrogens also have important impacts on brain and behavior during adulthood, particularly in females during aging, but the impact of BPA on the adult brain is less studied. We have published a series of studies documenting that chronic exposure to various estrogens including 17β-estradiol, ERβ selective SERMs and soy phytoestrogens impairs performance of middle-aged female rats on an operant working memory task. The purpose of this study was to determine if chronic oral exposure to BPA would alter working memory on this same task. Ovariectomized (OVX) middle-aged Long Evans rats were tested on an operant delayed spatial alternation (DSA) task. Rats were treated for 8-10 weeks with either a 0 (vehicle control), 5 or 50 μg/kg bw/day oral bolus of BPA. A subset of the vehicle control rats was implanted with a Silastic implant containing 17β-estradiol (low physiological range) to serve as a positive control. All rats were tested for 25 sessions on the DSA task. BPA treatment did not influence performance accuracy on the DSA task, whereas 17β-estradiol significantly impaired performance, as previously reported. The results of this study suggest that chronic oral exposure to BPA does not alter working memory processes of middle-aged OVX rats assessed by this operant DSA task. Copyright © 2013. Published by Elsevier Inc.

  10. Role of aqueous extract of Cynodon dactylon in prevention of carbofuran- induced oxidative stress and acetylcholinesterase inhibition in rat brain.

    PubMed

    Rai, D K; Sharma, R K; Rai, P K; Watal, G; Sharma, B

    2011-02-12

    The present study was designed to investigate the ameliorating effect of aqueous extract of C. dactylon on carbofuran induced oxidative stress (OS) and alterations in the activity of acetylcholinesterase (AChE) in the brain of rats. Vitamin C was used as a positive control. Wistar rats were administered with single sub-acute oral dose (1.6 mgkg-1 b.wt.) of carbofuran for 24 h. The OS parameters such as lipid peroxidation (LPO) and the activities of antioxidant enzymes including super oxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), and that of AChE were studied in brain. Carbofuran treatment significantly increased the activities of SOD and CAT by 75 and 60%, respectively. It also induced the level of LPO by 113%. In contrast, the activities of GST and AChE were recorded to be diminished by 25 and 33%, respectively. Pretreatment of the rats with aqueous extract of C. dactylon (oral; 500mgkg-1) restored SOD activity completely but CAT activity only partially (7%). Carbofuran induced LPO was moderated by 95% in the brain of C. dactylon treated rats. The observed changes in OS parameters in C. dactylon treated group were comparable to that observed in vitamin C (200 mg-kg-1 b. wt.) treated group. Surprisingly, C. dactylon treatment significantly recovered the activity of AChE to a similar level as observed in the brain of control group. In contrast vitamin C treatment did not cause significant change in the activity of AChE in carbofuran treated group. There were no noticeable changes in the aforementioned study parameters in the brain of rats receiving C. dactylon and vitamin C, only. The results suggest that the study is extremely important in the context of development of new anticholinestesterase and antioxidant antidotes against carbofuran from C. dactylon.

  11. Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.

    PubMed

    Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia

    2018-05-14

    EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.

  12. The effects of Mucuna pruriens extract on histopathological and biochemical features in the rat model of ischemia.

    PubMed

    Nayak, Vanishri S; Kumar, Nitesh; D'Souza, Antony S; Nayak, Sunil S; Cheruku, Sri P; Pai, K Sreedhara Ranganath

    2017-12-13

    Stroke is considered to be one of the most important causes of death worldwide. Global ischemia causes widespread brain injury and infarctions in various regions of the brain. Oxidative stress can be considered an important factor in the development of tissue damage, which is caused because of arterial occlusion with subsequent reperfusion. Kapikacchu or Mucuna pruriens, commonly known as velvet bean, is well known for its aphrodisiac activities. It is also used in the treatment of snakebites, depressive neurosis, and Parkinson's disease. Although this plant has different pharmacological actions, its neuroprotective activity has received minimal attention. Thus, this study was carried out with the aim of evaluating the neuroprotective action of M. pruriens in bilateral carotid artery occlusion-induced global cerebral ischemia in Wistar rats. The carotid arteries of both sides were occluded for 30 min and reperfused to induce global cerebral ischemia. The methanolic plant extract was administered to the study animals for 10 days. The brains of the Wistar rats were isolated by decapitation and observed for histopathological and biochemical changes. Cerebral ischemia resulted in significant neurological damage in the brains of the rats that were not treated by M. pruriens. The group subjected to treatment by the M. pruriens extract showed significant protection against brain damage compared with the negative control group, which indicates the therapeutic potential of this plant in ischemia.

  13. 24h withdrawal following repeated administration of caffeine attenuates brain serotonin but not tryptophan in rat brain: implications for caffeine-induced depression.

    PubMed

    Haleem, D J; Yasmeen, A; Haleem, M A; Zafar, A

    1995-01-01

    Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with saline daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day saline injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with saline on the 6th day. Plasma total and free tryptophan were not altered in these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day saline injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.

  14. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.; Christie, Catherine; Huynh, Khoi; Peng, Qian; Uzal, Francisco A.; Krasieva, Tatiana B.; Hirschberg, Henry

    2018-02-01

    Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.

  15. Gabapentin’s minimal action on markers of rat brain arachidonic acid metabolism agrees with its inefficacy against bipolar disorder

    PubMed Central

    Reese, Edmund A.; Cheon, Yewon; Ramadan, Epolia; Kim, Hyung-Wook; Chang, Lisa; Rao, Jagadeesh S.; Rapoport, Stanley I.; Taha, Ameer Y.

    2012-01-01

    In rats, FDA-approved mood stabilizers used for treating bipolar disorder (BD) selectively downregulate brain markers of the arachidonic acid (AA) cascade, which are upregulated in postmortem BD brain. Phase III clinical trials show that gabapentin (GBP) is ineffective in treating BD. We hypothesized that GBP would not alter the rat brain AA cascade. Chronic GBP (10 mg/kg body weight, injected i.p. for 30 days) compared to saline vehicle did not significantly alter brain expression or activity of AA-selective cytosolic phospholipase A2 (cPLA2) IVA or secretory (s) PLA2 IIA, activity of cyclooxygenase-2, or prostaglandin or thromboxane concentrations. Plasma AA concentration was unaffected. These results, taken with evidence of an upregulated AA cascade in the BD brain and that approved mood stabilizers downregulate rat brain AA cascade, support the hypothesis that effective anti-BD drugs act by targeting the AA cascade, and suggest that the rat model might be used for drug screening PMID:22841517

  16. Behavioral rehabilitation of the eye closure reflex in senescent rats using a real-time biosignal acquisition system.

    PubMed

    Prueckl, R; Taub, A H; Herreros, I; Hogri, R; Magal, A; Bamford, S A; Giovannucci, A; Almog, R Ofek; Shacham-Diamand, Y; Verschure, P F M J; Mintz, M; Scharinger, J; Silmon, A; Guger, C

    2011-01-01

    In this paper the replacement of a lost learning function of rats through a computer-based real-time recording and feedback system is shown. In an experiment two recording electrodes and one stimulation electrode were implanted in an anesthetized rat. During a classical-conditioning paradigm, which includes tone and airpuff stimulation, biosignals were recorded and the stimulation events detected. A computational model of the cerebellum acquired the association between the stimuli and gave feedback to the brain of the rat using deep brain stimulation in order to close the eyelid of the rat. The study shows that replacement of a lost brain function using a direct bidirectional interface to the brain is realizable and can inspire future research for brain rehabilitation.

  17. Amelioration of cerebellar dysfunction in rats following postnatal ethanol exposure using low-intensity pulsed ultrasound.

    PubMed

    Bolbanabad, Hiva Mohammadi; Anvari, Enayat; Rezai, Mohammad Jafar; Moayeri, Ardashir; Kaffashian, Mohammad Reza

    2017-04-01

    The neonatal development stage of the cerebellum in rats is equivalent to a human foetus in the third trimester of pregnancy. In this stage, cell proliferation, migration, differentiation, and synaptogenesis occur. Clinical and experimental findings have shown that ethanol exposure during brain development causes a variety of disruptions to the brain, including neurogenesis depression, delayed neuronal migration, changes in neurotransmitter synthesis, and neuronal depletion.During postnatal cerebellar development, neurons are more vulnerable to the destructive effects of ethanol. The effects of low-intensity pulsed ultrasound (LIPUS) on the number of cells and thickness of the cell layers within the cerebellar cortex were examined during the first two postnatal weeks in rats following postnatal ethanol exposure. Postpartum rats were distributed randomly into six groups. Normal saline was injected intraperitoneally into control animals and ethanol (20%) was injected into the intervention groups for three consecutive days. Intervention groups received LIPUS at different frequencies (3 or 5MHz), after administration of ethanol. After transcardial perfusion, the rat's brain was removed, and a complete series of sagittal cerebellum sections were obtained by systematic random manner. Photomicrographs were made with Motic digital cameras and analysed using Nikon digital software. The numbers of granular cells decreased in ethanol-treated rats compared to the control group. LIPUS, administered at (3 or 5MHz), combined with ethanol administration resulted in a reduction of ethanol's effects. Using 5MHz LIPUS resulted in significantly higher numbers of granular cells in the internal layer compared to the control rats. Using 3 or 5MHz LIPUS alone resulted in a significant enhancement in the granular cells of the molecular layer. A significant reduction was seen in the thickness of the external granular layer in ethanol-treated rats. This study showed that exposure to LIPUS can affect the number of granular cells and thickness of the cell layer within the cerebellar cortex in neonatal rats. LIPUS also could attenuate ethanol toxicity effects on the cerebellum. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats⋆

    PubMed Central

    Felt, Barbara T.; Beard, John L.; Schallert, Timothy; Shao, Jie; Aldridge, J. Wayne; Connor, James R.; Georgieff, Michael K.; Lozoff, Betsy

    2006-01-01

    Background Iron deficiency anemia (IDA) has been associated with altered cognitive, motor, and social-emotional outcomes in human infants. We recently reported that rats with chronic perinatal IDA, had altered regional brain iron, monoamines, and sensorimotor skill emergence during early development. Objective To examine the long-term consequences of chronic perinatal IDA on behavior, brain iron and monoamine systems after dietary iron treatment in rats. Methods Sixty dams were randomly assigned to iron-sufficient (CN) or low-iron (EID) diets during gestation and lactation. Thereafter, all offspring were fed the iron-sufficient diet, assessed for hematology and behavior after weaning and into adulthood and for brain measures as adults (regional brain iron, monoamines, dopamine and serotonin transporters, and dopamine receptor). Behavioral assessments included sensorimotor function, general activity, response to novelty, spatial alternation, and spatial water maze performance. Results Hematology and growth were similar for EID and CN rats by postnatal day 35. In adulthood, EID thalamic iron content was lower. Monoamines, dopamine transporter, and dopamine receptor concentrations did not differ from CN. EID serotonin transporter concentration was reduced in striatum and related regions. EID rats had persisting sensorimotor deficits (delayed vibrissae-evoked forelimb placing, longer sticker removal time, and more imperfect grooming chains), were more hesitant in novel settings, and had poorer spatial water maze performance than CN. General activity and spatial alternation were similar for EID and CN. Conclusion Rats that had chronic perinatal IDA showed behavioral impairments that suggest persistent striatal dopamine and hippocampal dysfunction despite normalization of hematology, growth and most brain measures. PMID:16713640

  19. A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists.

    PubMed

    Miller, Steven L; Aroniadou-Anderjaska, Vassiliki; Figueiredo, Taiza H; Prager, Eric M; Almeida-Suhett, Camila P; Apland, James P; Braga, Maria F M

    2015-04-15

    Inhibition of acetylcholinesterase (AChE) after nerve agent exposure induces status epilepticus (SE), which causes brain damage or death. The development of countermeasures appropriate for the pediatric population requires testing of anticonvulsant treatments in immature animals. In the present study, exposure of 21-day-old (P21) rats to different doses of soman, followed by probit analysis, produced an LD50 of 62μg/kg. The onset of behaviorally-observed SE was accompanied by a dramatic decrease in brain AChE activity; rats who did not develop SE had significantly less reduction of AChE activity in the basolateral amygdala than rats who developed SE. Atropine sulfate (ATS) at 2mg/kg, administered 20 min after soman exposure (1.2×LD50), terminated seizures. ATS at 0.5mg/kg, given along with an oxime within 1 min after exposure, allowed testing of anticonvulsants at delayed time-points. The AMPA/GluK1 receptor antagonist LY293558, or the specific GluK1 antagonist UBP302, administered 1h post-exposure, terminated SE. There were no degenerating neurons in soman-exposed P21 rats, but both the amygdala and the hippocampus were smaller than in control rats at 30 and 90days post-exposure; this pathology was not present in rats treated with LY293558. Behavioral deficits present at 30 days post-exposure, were also prevented by LY293558 treatment. Thus, in immature animals, a single injection of atropine is sufficient to halt nerve agent-induced seizures, if administered timely. Testing anticonvulsants at delayed time-points requires early administration of ATS at a low dose, sufficient to counteract only peripheral toxicity. LY293558 administered 1h post-exposure, prevents brain pathology and behavioral deficits. Published by Elsevier Inc.

  20. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    PubMed

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.

  1. [Expression of c-jun protein after experimental rat brain concussion].

    PubMed

    Wang, Feng; Li, Yong-hong

    2010-02-01

    To observe e-jun protein expression after rat brain concussion and explore the forensic pathologic markers following brain concussion. Fifty-five rats were randomly divided into brain concussion group and control group. The expression of c-jun protein was observed by immunohistochemistry. There were weak positive expression of c-jun protein in control group. In brain concussion group, however, some neutrons showed positive expression of c-jun protein at 15 min after brain concussion, and reach to the peak at 3 h after brain concussion. The research results suggest that detection of c-jun protein could be a marker to determine brain concussion and estimate injury time after brain concussion.

  2. Leukemia inhibitory factor in the neuroimmune communication pathways in allergic asthma.

    PubMed

    Lin, Min-Juan; Lao, Xue-Jun; Liu, Sheng-Ming; Xu, Zhen-Hua; Zou, Wei-Feng

    2014-03-20

    In the pathogenesis of asthma, central sensitization is suggested to be an important neural mechanism, and neurotrophins and cytokines are likely to be the major mediators in the neuroimmune communication pathways of asthma. However, their impact on the central nervous system in allergic asthma remains unclear. We hypothesize that central neurogenic inflammation develops in the pathogenesis of allergic asthma, and nerve growth factor (NGF) and leukemia inhibitory factor (LIF) are important mediators in its development. An asthma model of rats was established by sensitization and challenged with ovalbumin (OVA). For further confirmation of the role of LIF in neurogenic inflammation, a subgroup was pretreated with intraperitoneally (i.p.) LIF antibody before OVA challenge. The levels of LIF and NGF were measured with reverse transcription and polymerase chain reaction (RT-PCR), in situ hybridization (ISH) and immunohistochemistry stain in lung tissue, airway-specific dorsal root ganglia (DRG, C7-T5) and brain stem of asthmatic rats, anti-LIF pretreated rats and controls. A significantly increased number of LIF- and NGF-immunoreactive cells were detected in lung tissue, DRG and the brain stem of asthmatic rats. In the asthma group a significantly increase level of mRNA encoding LIF and NGF in lung tissue was detected, but not in DRG and the brain stem. Pretreatment with LIF antibody decreased the level of LIF and NGF in all tissues. LIF is an important mediator in the crosstalk between nerve and immune systems. Our study demonstrate that the increased level of LIF and NGF in DRG and brain stem may be not based on result from de novo synthesis, but rather on result from retrograde nerve transport or passage across the blood-brain-barrier. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. [Influence of low frequency magnetic field used in magnetotherapy on interleukin 6 (IL-6) contents in rat heart and brain].

    PubMed

    Ciejka, Elżbieta; Skibska, Beata; Gorąca, Anna

    2017-06-27

    The human population is exposed ever more frequently to magnetic fields (MF). This is due to both technological progress and development of the economy as well as to advances made in medical science. That is why the thorough understanding and systematized knowledge about mechanisms by which MF exerts its effects on living organisms play such an important role. In this context the health of MF-exposed people is the subject of particular concern. The aim of the study was to evaluate the effect of extremely low frequency magnetic field (ELFMF) used in magnetotherapy on the concentration of interleukin 6 (IL-6) in rat heart and brain. The male rats were randomly divided into 3 experimental groups: group I - control, without contact with magnetic field; group II - exposed to bipolar, rectangular magnetic field 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks; and group III - exposed to bipolar, rectangular magnetic field 40 Hz, 7 mT 60 min/day for 2 weeks. Concentration of IL-6 in the heart and brain of animals was measured after MF exposure. Exposure to ELFMF: 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks caused a significant IL-6 increase in rat hearts compared to the control group (p < 0.05) and a non-significant IL-6 decrease in rat brain. The magnetic field applied for 60 min resulted in non-significant IL-6 increase in rat hearts compared to the control group and significant IL-6 decrease in rat brain (p < 0.05). The influence of magnetic field on inflammation in the body varies depending on the MF parameters and the affected tissues or cells. Med Pr 2017;68(4):517-523. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  4. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  5. RAPD Profiling, DNA Fragmentation, and Histomorphometric Examination in Brains of Wistar Rats Exposed to Indoor 2.5 Ghz Wi-Fi Devices Radiation.

    PubMed

    Ibitayo, A O; Afolabi, O B; Akinyemi, A J; Ojiezeh, T I; Adekoya, K O; Ojewunmi, O O

    2017-01-01

    The advent of Wi-Fi connected high technology devices in executing day-to-day activities is fast evolving especially in developing countries of the world and hence the need to assess its safety among others. The present study was conducted to investigate the injurious effect of radiofrequency emissions from installed Wi-Fi devices in brains of young male rats. Animals were divided into four equal groups; group 1 served as control while groups 2, 3, and 4 were exposed to 2.5 Ghz at intervals of 30, 45, and 60 consecutive days with free access to food and water ad libitum. Alterations in harvested brain tissues were confirmed by histopathological analyses which showed vascular congestion and DNA damage in the brain was assayed using agarose gel electrophoresis. Histomorphometry analyses of their brain tissues showed perivascular congestion and tissue damage as well.

  6. [1-13C]Glucose entry in neuronal and astrocytic intermediary metabolism of aged rats. A study of the effects of nicergoline treatment by 13C NMR spectroscopy.

    PubMed

    Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo

    2003-03-14

    Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.

  7. Reduced expression of IA channels is associated with post-ischemic seizures.

    PubMed

    Lei, Zhigang; Zhang, Hui; Liang, Yanling; Xu, Zao C

    2016-08-01

    Post-stroke seizures are considered as a major cause of epilepsy in adults. The pathophysiologic mechanisms resulting in post-stroke seizures are not fully understood. The present study attempted to reveal a new mechanism underlying neuronal hyperexcitability responsible to the seizure development after ischemic stroke. Transient global ischemia was produced in adult Wistar rats using the 4-vessel occlusion (4-VO) method. The spontaneous behavioral seizures were defined by the Racine scale III-V. The neuronal death in the brain was determined by hematoxylin-eosin staining. The expression levels of A-type potassium channels were analyzed by immunohistochemical staining and western blotting. We found that the incidence of spontaneous behavioral seizures increased according to the severity of ischemia with 0% after 15-min ischemia and ∼50% after 25-min ischemia. All behavioral seizures occurred with 48h after ischemia. Morphological analysis indicated that brain damage was not correlated with behavioral seizures. Immunohistochemical staining showed that the expression levels of the A-type potassium channel subunit Kv4.2 was significantly reduced in ischemic brains with behavioral seizures, but not in ischemic brains without seizures. In addition, rats failing to develop spontaneous behavioral seizures within 2days after ischemia were more sensitive to bicuculline-induced seizures at 2 months after ischemia than control rats. Meanwhile, Kv4.2 expression was decreased in brain at 2 months after ischemia. Our results demonstrated the reduction of Kv4.2 expression might contribute to the development of post-ischemic seizures and long-term increased seizure susceptibility after ischemia. The mechanisms underlying post-stroke seizures and epilepsy is unknown so far. The down-regulation of IA channels may explained the abnormal neuronal hyperexcitability responsible for the seizure development after ischemic stroke. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10.

    PubMed

    Somayajulu-Niţu, Mallika; Sandhu, Jagdeep K; Cohen, Jerome; Sikorska, Marianna; Sridhar, T S; Matei, Anca; Borowy-Borowski, Henryk; Pandey, Siyaram

    2009-07-27

    Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance. Here we report that prophylactic application of water-soluble formulation of coenzyme Q10 could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the substantia nigra region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod) evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q10 in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats. Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q10 formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses.

  9. Characterization of GPR101 transcript structure and expression patterns

    PubMed Central

    Trivellin, Giampaolo; Bjelobaba, Ivana; Daly, Adrian F.; Larco, Darwin O.; Palmeira, Leonor; Faucz, Fabio R.; Thiry, Albert; Leal, Letícia F.; Rostomyan, Liliya; Quezado, Martha; Schernthaner-Reiter, Marie Helene; Janjic, Marija M.; Villa, Chiara; Wu, T. John; Stojilkovic, Stanko S.; Beckers, Albert; Feldman, Benjamin; Stratakis, Constantine A.

    2016-01-01

    We recently showed that Xq26.3 microduplications cause X-linked acrogigantism (X-LAG). X-LAG patients mainly present with growth hormone and prolactin-secreting adenomas and share a minimal duplicated region containing at least four genes. GPR101 was the only gene highly expressed in their pituitary lesions, but little is known about its expression patterns. GPR101 transcripts were characterized in human tissues by 5’-RACE and RNAseq, while the putative promoter was bioinformatically predicted. We investigated GPR101 mRNA and protein expression by RT-qPCR, whole-mount in situ hybridization, and immunostaining, in human, rhesus monkey, rat, and zebrafish. We identified four GPR101 isoforms characterized by different 5’ untranslated regions (UTRs) and a common 6.1 kb-long 3’UTR. GPR101 expression was very low or absent in almost all adult human tissues examined, except for specific brain regions. Strong GPR101 staining was observed in human fetal pituitary and during adolescence, whereas very weak/absent expression was detected during childhood and adult life. In contrast to humans, adult pituitaries of monkey and rat expressed GPR101, but in different cell types. Gpr101 is expressed in the brain and pituitary during rat and zebrafish development; in rat pituitary Gpr101 is expressed only after birth and showed sexual dimorphism. This study shows that different GPR101 transcripts exist and that the brain is the major site of GPR101 expression across different species, although divergent species- and temporal-specific expression patterns are evident. These findings suggest an important role for GPR101 in brain and pituitary development and likely reflect the very different growth, development and maturation patterns among species. PMID:27282544

  10. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats

    PubMed Central

    Lotan, Dafna; Benhar, Itai; Alvarez, Kathy; Mascaro-Blanco, Adita; Brimberg, Lior; Frenkel, Dan; Cunningham, Madeleine W.; Joel, Daphna

    2014-01-01

    Group A β-hemolytic streptococcal (GAS) infection is associated with a spectrum of neuropsychiatric disorders. The leading hypothesis regarding this association proposes that a GAS infection induces the production of auto-antibodies, which cross-react with neuronal determinants in the brain through the process of molecular mimicry. We have recently shown that exposure of rats to GAS antigen leads to the production of anti-neuronal antibodies concomitant with the development of behavioral alterations. The present study tested the causal role of the antibodies by assessing the behavior of naïve rats following passive transfer of purified antibodies from GAS-exposed rats. Immunoglobulin G (IgG) purified from the sera of GAS-exposed rats was infused directly into the striatum of naïve rats over a 21-day period. Their behavior in the induced-grooming, marble burying, food manipulation and beam walking assays was compared to that of naïve rats infused with IgG purified from adjuvant-exposed rats as well as of naïve rats. The pattern of in vivo antibody deposition in rat brain was evaluated using immunofluorescence and colocalization. Infusion of IgG from GAS-exposed rats to naïve rats led to behavioral and motor alterations partially mimicking those seen in GAS-exposed rats. IgG from GAS-exposed rats reacted with D1 and D2 dopamine receptors and 5HT-2A and 5HT-2C serotonin receptors in vitro. In vivo, IgG deposits in the striatum of infused rats colocalized with specific brain proteins such as dopamine receptors, the serotonin transporter and other neuronal proteins. Our results demonstrate the potential pathogenic role of autoantibodies produced following exposure to GAS in the induction of behavioral and motor alterations, and support a causal role for autoantibodies in GAS-related neuropsychiatric disorders. PMID:24561489

  11. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    PubMed

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Cigarette smoking induces heat shock protein 70 kDa expression and apoptosis in rat brain: Modulation by bacoside A.

    PubMed

    Anbarasi, K; Kathirvel, G; Vani, G; Jayaraman, G; Shyamala Devi, C S

    2006-01-01

    Cigarette smoking is associated with the development of several diseases and antioxidants play a major role in the prevention of smoking-related diseases. Apoptosis is suggested as a possible contributing factor in the pathogenesis of smoking-induced toxicity. Therefore the present study was designed to investigate the influence of chronic cigarette smoke exposure on apoptosis and the modulatory effect of bacoside A (triterpenoid saponin isolated from the plant Bacopa monniera) on smoking-induced apoptosis in rat brain. Adult male albino rats of Wistar strain were exposed to cigarette smoke and simultaneously administered with bacoside A (10 mg/kg b.w./day, orally) for a period of 12 weeks. Expression of brain hsp70 was analyzed by Western blotting. Apoptosis was identified by DNA fragmentation, terminal deoxynucleotidyl transferase-mediated deoxy uridine triphosphate nick end labeling (TUNEL) staining and transmission electron microscopy. The results showed that exposure to cigarette smoke induced hsp70 expression and apoptosis as characterized by DNA laddering, increased TUNEL-positive cells and ultrastructural apoptotic features in the brain. Administration of bacoside A prevented expression of hsp70 and neuronal apoptosis during cigarette smoking. We speculate that apoptosis may be responsible for the smoking-induced brain damage and bacoside A can protect the brain from the toxic effects of cigarette smoking.

  13. Alpha-fetoprotein (AFP) modulates the effect of serum albumin on brain development by restraining the neurotrophic effect of oleic acid.

    PubMed

    García-García, Alejandro G; Polo-Hernández, Erica; Tabernero, Arantxa; Medina, José M

    2015-10-22

    We have previously shown that serum albumin controls perinatal rat brain development through the regulation of oleic acid synthesis by astrocytes. In fact, oleic acid synthesized and released by astrocytes promoted neurite growth, neuron migration and the arrangement of prospective synapses. In this work we show that alpha-fetoprotein (AFP) is also present in the brain during embryonic development, its concentrations peaking at E15.5 and at E19.5. However, after E19.5 AFP concentrations plummeted concurrently with a sharp increase in serum albumin concentrations. At E15.5, AFP is present in caudal regions of the brain, particularly in brain areas undergoing differentiation during this period, such as the thalamic reticular nucleus of the thalamus, the hypothalamus, the amygdala and the hippocampus. Albumin was not detected in the brain at E15.5 but stained brain cells substantially on day E19.5, showing a very similar distribution to that of AFP under the same circumstances. The concentrations of free oleic acid in the brain were inversely correlated with those of AFP, suggesting that the signals elicited by AFP and oleic acid can be inversely associated. GAP-43, a marker of axonal growth that is highly expressed by the presence of oleic acid, was not co-localized with AFP except in the marginal zone and areas delimiting the subplate. AFP prevented the increase in GAP-43 expression caused by the presence of oleic acid in neurons in primary culture in vitro and in organotypic cultures of embryonic rat brain ex vivo, suggesting that AFP may modulate the effect of serum albumin on brain development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Hawthorn extract reduces infarct volume and improves neurological score by reducing oxidative stress in rat brain following middle cerebral artery occlusion.

    PubMed

    Elango, Chinnasamy; Jayachandaran, Kasevan Sawaminathan; Niranjali Devaraj, S

    2009-12-01

    In our present investigation the neuroprotective effect of alcoholic extract of Hawthorn (Crataegus oxycantha) was evaluated against middle cerebral artery occlusion induced ischemia/reperfusion injury in rats. Male Sprague-Dawley rats were pretreated with 100 mg/kg body weight of the extract by oral gavage for 15 days. The middle cerebral artery was then occluded for 75 min followed by 24 h of reperfusion. The pretreated rats showed significantly improved neurological behavior with reduced brain infarct when compared to vehicle control rats. The glutathione level in brain was found to be significantly (p<0.05) low in vehicle control rats after 24 h of reperfusion when compared to sham operated animals. However, in Hawthorn extract pretreated rats the levels were found to be close to that of sham. Malondialdehyde levels in brain of sham and pretreated group were found to be significantly lower than the non-treated vehicle group (p<0.05). The nitric oxide levels in brain were measured and found to be significantly (p<0.05) higher in vehicle than in sham or extract treated rats. Our results suggest that Hawthorn extract which is a well known prophylactic for cardiac conditions may very well protect the brain against ischemia-reperfusion. The reduced brain damage and improved neurological behavior after 24 h of reperfusion in Hawthorn extract pretreated group may be attributed to its antioxidant property which restores glutathione levels, circumvents the increase in lipid peroxidation and nitric oxide levels thereby reducing peroxynitrite formation and free radical induced brain damage.

  15. Improved survival in rats with glioma using MRI-guided focused ultrasound and microbubbles to disrupt the blood-brain barrier and deliver Doxil

    NASA Astrophysics Data System (ADS)

    Aryal, Muna; Zhi Zhang, Yong; Vykhodtseva, Natalia; Park, Juyoung; Power, Chanikarn; McDannold, Nathan

    2012-02-01

    Blood-brain-barrier (BBB) limits the transportation of most neuropeptides, proteins (enzymes, antibodies), chemotherapeutic agents, and genes that have therapeutic potential for the treatment of brain diseases. Different methods have been used to overcome this limitation, but they are invasive, non-targeted, or require the development of new drugs. We have developed a method that uses MRI-guided focused ultrasound (FUS) combined with circulating microbubbles to temporarily open BBB in and around brain tumors to deliver chemotherapy agents. Here, we tested whether this noninvasive technique could enhance the effectiveness of a chemotherapy agent (Doxil). Using 690 kHz FUS transducer and microbubble (Definity), we induced BBB disruption in intracranially-implanted 9L glioma tumors in rat's brain in three weekly sessions. Animals who received BBB disruption and Doxil had a median survival time of 34.5 days, which was significantly longer than that found in control animals which is 16, 18.5, 21 days who received no treatment, BBB disruption only and Doxil only respectively This work demonstrates that FUS technique has promise in overcoming barriers to drug delivery, which are particularly stark in the brain due to the BBB.

  16. 'Unicorn' among rats exposed to mycotoxins from Fusarium.

    PubMed

    Schoental, R

    1983-05-01

    A horn-like nodule developed in the middle of the forehead of a white rat, exposed perinatally to T-2 toxin and to zearalenone, the secondary metabolites of Fusarium. The hard nodule consisted mainly of keratine, derived from a squamous carcinoma spreading through the nasal turbinals and invading the brain.

  17. BRAIN, LIVER AND THYROID BIOMARKERS REFLECT ENHANCED SENSITIVITY OF THE DEVELOPING RAT TO THYROID HORMONE DEPLETION.

    EPA Science Inventory

    Many developmental events are regulated at least in part by thyroid hormones. It was hypothesized that tissue biomarkers of thyroid status would be more accurate predictors of neurotoxicity than serum biomarkers in rats treated with the goitrogen propylthiouracil (PTU). Over seve...

  18. Immunologic differentiation of two high-affinity neurotensin receptor isoforms in the developing rat brain.

    PubMed

    Boudin, H; Lazaroff, B; Bachelet, C M; Pélaprat, D; Rostène, W; Beaudet, A

    2000-09-11

    Earlier studies have demonstrated overexpression of NT1 neurotensin receptors in rat brain during the first 2 weeks of life. To gain insight into this phenomenon, we investigated the identity and distribution of NT1 receptor proteins in the brain of 10-day-old rats by using two different NT1 antibodies: one (Abi3) directed against the third intracellular loop and the other (Abi4) against the C-terminus of the receptor. Immunoblot experiments that used Abi3 revealed the presence of two differentially glycosylated forms of the NT1 receptor in developing rat brain: one migrating at 54 and the other at 52 kDa. Whereas the 54-kDa form was expressed from birth to adulthood, the 52-kDa form was detected only at 10 and 15 days postnatal. Only the 52-kDa isoform was recognized by Abi4. By immunohistochemistry, both forms of the receptor were found to be predominantly expressed in cerebral cortex and dorsal hippocampus, in keeping with earlier radioligand binding and in situ hybridization data. However, whereas Abi4 immunoreactivity was mainly concentrated within nerve cell bodies and extensively colocalized with the Golgi marker alpha-mannosidase II, Abi3 immunoreactivity was predominantly located along neuronal processes. These results suggest that the transitorily expressed 52-kDa protein corresponds to an immature, incompletely glycosylated and largely intracellular form of the NT1 receptor and that the 54-kDa protein corresponds to a mature, fully glycosylated, and largely membrane-associated form. They also indicate that antibodies directed against different sequences of G-protein-coupled receptors may yield isoform-specific immunohistochemical labeling patterns in mammalian brain. Finally, the selective expression of the short form of the NT1 receptor early in development suggests that it may play a specific role in the establishment of neuronal circuitry. Copyright 2000 Wiley-Liss, Inc.

  19. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    PubMed

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  20. Chronic postnatal ornithine administration to rats provokes learning deficit in the open field task.

    PubMed

    Viegas, Carolina Maso; Busanello, Estela Natacha Brandt; Tonin, Anelise Miotti; Grings, Mateus; Moura, Alana Pimentel; Ritter, Luciana; Zanatta, Angela; Knebel, Lisiane Aurélio; Lobato, Vannessa Araujo; Pettenuzzo, Letícia Ferreira; Vargas, Carmen Regla; Leipnitz, Guilhian; Wajner, Moacir

    2012-12-01

    Hyperornithinemia is the biochemical hallmark of hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, an inherited metabolic disease clinically characterized by mental retardation whose pathogenesis is still poorly known. In the present work, we produced a chemical animal model of hyperornithinemia induced by a subcutaneous injection of saline-buffered Orn (2-5 μmol/g body weight) to rats. High brain Orn concentrations were achieved, indicating that Orn is permeable to the blood brain barrier. We then investigated the effect of early chronic postnatal administration of Orn on physical development and on the performance of adult rats in the open field, the Morris water maze and in the step down inhibitory avoidance tasks. Chronic Orn treatment had no effect on the appearance of coat, eye opening or upper incisor eruption, nor on the free-fall righting reflex and on the adult rat performance in the Morris water maze and in the inhibitory avoidance tasks, suggesting that physical development, aversive and spatial localization were not changed by Orn. However, Orn-treated rats did not habituate to the open field apparatus, implying a deficit of learning/memory. Motor activity was the same for Orn- and saline- injected animals. We also verified that Orn subcutaneous injections provoked lipid peroxidation in the brain, as determined by a significant increase of thiobarbituric acid-reactive substances levels. Our results indicate that chronic early postnatal hyperornithinemia may impair the central nervous system, causing minor disabilities which result in specific learning deficiencies.

  1. Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography-tandem mass spectrometry.

    PubMed

    Uutela, Päivi; Reinilä, Ruut; Harju, Kirsi; Piepponen, Petteri; Ketola, Raimo A; Kostiainen, Risto

    2009-10-15

    A method for the analysis of intact glucuronides and sulfates of common neurotransmitters serotonin (5-HT) and dopamine (DA) as well as of 5-hydroxy-3-indoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in rat brain microdialysates by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. Enzyme-assisted synthesis using rat liver microsomes as a biocatalyst was employed for the production of 5-HT-, 5-HIAA-, DOPAC-, and HVA-glucuronides for reference compounds. The sulfate conjugates were synthesized either chemically or enzymatically using a rat liver S9 fraction. The LC-MS/MS method was validated by determining the limits of detection and quantitation, linearity, and repeatability for the quantitative analysis of 5-HT and DA and their glucuronides, as well as of 5-HIAA, DOPAC, and HVA and their sulfate-conjugates. In this study, 5-HT-glucuronide was for the first time detected in rat brain. The concentration of 5-HT-glucuronide (1.0-1.7 nM) was up to 2.5 times higher than that of free 5-HT (0.4-2.1 nM) in rat brain microdialysates, whereas the concentration of DA-glucuronide (1.0-1.4 nM) was at the same level or lower than the free DA (1.2-2.4 nM). The acidic metabolites of neurotransmitters, 5-HIAA, HVA, and DOPAC, were found in free and sulfated form, whereas their glucuronidation was not observed.

  2. Experimental gastritis leads to anxiety- and depression-like behaviors in female but not male rats

    PubMed Central

    2013-01-01

    Human and animals studies support the idea that there is a gender-related co-morbidity of pain-related and inflammatory gastrointestinal (GI) diseases with psychological disorders. This co-morbidity is the evidence for the existence of GI-brain axis which consists of immune (cytokines), neural (vagus nerve) and neuroendocrine (HPA axis) pathways. Psychological stress causes disturbances in GI physiology, such as altered GI barrier function, changes in motility and secretion, development of visceral hypersensitivity, and dysfunction of inflammatory responses. Whether GI inflammation would exert impact on psychological behavior is not well established. We examined the effect of experimental gastritis on anxiety- and depression-like behaviors in male and female Sprague–Dawley rats, and evaluated potential mechanisms of action. Gastritis was induced by adding 0.1% (w/v) iodoacetamide (IAA) to the sterile drinking water for 7 days. Sucrose preference test assessed the depression-like behavior, open field test and elevated plus maze evaluated the anxiety-like behavior. IAA treatment induced gastric inflammation in rats of either gender. No behavioral abnormality or dysfunction of GI-brain axis was observed in male rats with IAA-induced gastritis. Anxiety- and depression-like behaviors were apparent and the HPA axis was hyperactive in female rats with IAA-induced gastritis. Our results show that gastric inflammation leads to anxiety- and depression-like behaviors in female but not male rats via the neuroendocrine (HPA axis) pathway, suggesting that the GI inflammation can impair normal brain function and induce changes in psychological behavior in a gender-related manner through the GI-to-brain signaling. PMID:24345032

  3. Biochemical and histological studies on adverse effects of mobile phone radiation on rat's brain.

    PubMed

    Hussein, Shaymaa; El-Saba, Abdel-Aleem; Galal, Mona K

    2016-12-01

    With the rapid development of electronic technologies, the public concern about the potential health hazards induced by radiofrequency (RF) radiation has been grown. To investigate the effect of 1800MHz RF radiation emitted from mobile phone on the rat's brain, the present study was performed. Forty male rats were randomly divided into two equal groups; control and exposed group. The later one exposed to 1800MHz emitted from mobile phone with an SAR value of 0.6W/kg for two hours/day for three months. The brain tissues were collected at the end of the experimental period and separated into hippocampus and cerebellum for subsequent biochemical, histological, immunohistochemical and electron microscopic investigations. The rats that were exposed to RF- radiation had a significant elevation in MDA content and a significant reduction in antioxidant parameters (glutathione, super oxide dismutase and glutathione peroxidase) in both regions. Degenerative changes were observed in the hippocampus pyramidal cells, dark cells and cerebellar Purkinje cells with vascular congestion. In addition a significant DNA fragmentation and over expression of cyclooxygenase-2 apoptotic gene was detected. Those results suggested that, direct chronic exposure to mobile phone caused severe biochemical and histopathological changes in the brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Formononetin protects TBI rats against neurological lesions and the underlying mechanism.

    PubMed

    Li, Zhengzhao; Dong, Xianhong; Zhang, Jianfeng; Zeng, Guang; Zhao, Huimin; Liu, Yun; Qiu, Rubiao; Mo, Linjian; Ye, Yu

    2014-03-15

    Traumatic brain injury (TBI) is a major cause of disability or death worldwide, especially in the young. Thus, effective medication with few side effects needs to be developed. This work aimed to explore the potential benefits of formononetin (FN) on TBI rodent model and to discuss the regarding mechanism. These findings showed that FN effectively increased the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in brain tissue of TBI rats (P<0.01), while it reduced intracephalic malonaldehyde (MDA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations (P<0.01). Meanwhile, the hydrocephalus in the TBI rat was alleviated, and the injured nerve cell of the lesioned brain was reduced as showed in hematoxylin-eosin (HE) staining assay. In addition, the endogenous mRNA level of cyclooxygenase-2 (COX-2) in the brain of the TBI rat was significantly down-regulated (P<0.01). Furthermore, the protein expression of nuclear factor E2-related factor 2 (Nrf2) was effectively up-regulated (P<0.01). Taken together, we conclude that formononetin mediates the promising anti-TBI effects against neurocyte damage, which the underlying mechanisms are associated with inhibiting intracephalic inflammatory response and oxidative stress for neuroprotection. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A Model of Post-Traumatic Epilepsy After Penetrating Brain Injuries: Effect of Lesion Size and Metal Fragments

    PubMed Central

    Kendirli, M. Tansel; Rose, Dominique T.; Bertram, Edward H.

    2014-01-01

    Objective Penetrating brain injury (PBI) has the highest risk for inducing post-traumatic epilepsy and retained foreign materials such as bullet fragments carry the greatest risk. This study examines the potential contribution of copper, a major component of bullets, to the development of epilepsy following PBI. Methods Anesthetized adult male rats received a penetrating injury from the dorsal cortex to the ventral hippocampus from a high speed small bit drill. In one group of animals, copper wire was inserted into the lesion. Control animals had only the lesion or the lesion plus stainless steel wire (biologically inert foreign body). From 6 to up to 11 months following the injury the rats were monitored intermittently for the development of epilepsy with video-EEG. A separate set of animals was examined for possible acute seizures in the week following the injury. Results 22 of the 23 animals with copper wire developed chronic epilepsy compared to 3 of the 20 control rats (lesion and lesion with stainless steel). Copper was associated with more extensive injury. The control rats with epilepsy had larger lesions. In the acute injury group, there was no difference in the incidence of seizures (83% lesion plus stainless steel, 70% lesion plus copper). Conclusions Copper increases the risk for epilepsy and may increase damage over time, but there were no differences between the groups in the incidence of acute post-injury seizures. Lesion size may contribute to epilepsy development in lesion only animals. Copper maybe an independent risk factor for the development of epilepsy and possible secondary injury, but lesion size also contributes to the development of epilepsy. The consequences of prolonged exposure of the brain to copper observed in these animals may have clinical implications that require further evaluation. PMID:25470332

  6. Effect of 900 MHz radio frequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the brain.

    PubMed

    Dasdag, Suleyman; Akdag, Mehmet Zulkuf; Kizil, Goksel; Kizil, Murat; Cakir, Dilek Ulker; Yokus, Beran

    2012-03-01

    Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.

  7. Developmental expression of VGF mRNA in the prenatal and postnatal rat.

    PubMed

    Snyder, S E; Pintar, J E; Salton, S R

    1998-04-27

    VGF is a developmentally regulated, secretory peptide precursor that is expressed by neurons and neuroendocrine cells and that has its transcription and secretion induced rapidly by neurotrophins and by depolarization. To gain insight into the possible functions and regulation of VGF in vivo, we have characterized the distribution of VGF mRNA in the developing rat nervous system. VGF expression was first detectable at embryonic day 11.5 in the primordia of cranial, sympathetic, and dorsal root ganglia, and its distribution expanded throughout development to include significant expression throughout the brain, spinal cord, and retina of the adult rat. The earliest expression of VGF, therefore, appeared in the peripheral nervous system as developing neurons settled in their designated ganglia. In many regions of the brain, VGF mRNA levels were found to be highest during periods when axonal outgrowth and synaptogenesis predominate. Areas of the central nervous system that contain predominantly dividing cells never displayed any VGF mRNA expression, nor did the vast majority of nonneural tissues.

  8. AGN-2979, an inhibitor of tryptophan hydroxylase activation, does not affect serotonin synthesis in Flinders Sensitive Line rats, a rat model of depression, but produces a significant effect in Flinders Resistant Line rats

    PubMed Central

    Kanemaru, Kazuya; Nishi, Kyoko; Diksic, Mirko

    2009-01-01

    The neurotransmitter, serotonin, is involved in several brain functions, including both normal, physiological functions, and pathophysiological functions. Alterations in any of the normal parameters of serotonergic neurotransmission can produce several different psychiatric disorders, including major depression. In many instances, brain neurochemical variables are not able to be studied properly in humans, thus making the use of good animal models extremely valuable. One of these animal models is the Flinders Sensitive Line (FSL) of rats, which has face, predictive and constructive validities in relation to human depression. The objective of this study was to quantify the effect of the tryptophan hydroxylase (TPH) activation inhibitor, AGN-2979, on the FSL rats (rats with depression-like behaviour), and compare it to the effect on the Flinders Resistant Line (FRL) of rats used as the control rats. The effect was evaluated by measuring changes in regional serotonin synthesis in the vehicle treated rats (FSL-VEH and FRL-VEH) relative to those measured in the AGN-2979 treated rats (FSL-AGN and FRL-AGN). Regional serotonin synthesis was measured autoradiographically in more than thirty brain regions. The measurements were performed using α-[14C]methyl-L-tryptophan as the tracer. The results indicate that AGN-2979 did not produce a significant reduction of TPH activity in the AGN-2979 group relative to the vehicle group (a reduction would have been observed if there had been an activation of TPH by the experimental set up) in the FSL rats. On the other hand, there was a highly significant reduction of synthesis in the FRL rats treated by AGN-2979, relative to the vehicle group. Together, the results demonstrate that in the FSL rats, AGN-2979 does not affect serotonin synthesis. This suggests that there was no activation of TPH in the FSL rats during the experimental procedure, but such activation did occur in the FRL rats. Because of this finding, it could be hypothesised that TPH in the FSL rats cannot be easily activated. This may contribute to the development of depressive-like symptoms in the FSL rats (“depressed” rats), as they cannot easily modulate their need for elevated amounts of this neurotransmitter, and possibly other neurotransmitters. Further, because these rats represent a very good model of human depression, one can hypothesize that humans who do not have readily activated TPH may be more prone to develop depression. PMID:19463878

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zukin, R.S.; Eghbali, M.; Olive, D.

    {kappa} opioid receptors ({kappa} receptors) have been characterized in homogenates of guinea pig and rat brain under in vitro binding conditions. {kappa} receptors were labeled by using the tritiated prototypic {kappa} opioid ethylketocyclazocine under conditions in which {mu} and {delta} opioid binding was suppressed. In the case of guinea pig brain membranes, a single population of high-affinity {kappa} opioid receptor sites was observed. In contrast, in the case of rat brain, two populations of {kappa} sites were observed. To test the hypothesis that the high- and low-affinity {kappa} sites represent two distinct {kappa} receptor subtypes, a series of opioids weremore » tested for their abilities to compete for binding to the two sites. U-69,593 and Cambridge 20 selectively displaced the high-affinity {kappa} site in both guinea pig and rat tissue, but were inactive at the rat-brain low-affinity site. Other {kappa} opioid drugs competed for binding to both sites, but with different rank orders of potency. Quantitative light microscopy in vitro autoradiography was used to visualize the neuroanatomical pattern of {kappa} receptors in rat and guinea pig brain. The distribution patterns of the two {kappa} receptor subtypes of rat brain were clearly different. Collectively, these data provide direct evidence for the presence of two {kappa} receptor subtypes; the U-69,593-sensitive, high-affinity {kappa}{sub 1} site predominates in guinea pig brain, and the U-69,593-insensitive, low-affinity {kappa}{sub 2} site predominates in rat brain.« less

  10. Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats.

    PubMed

    Ahmed, Maha A E; El Morsy, Engy M; Ahmed, Amany A E

    2014-08-21

    Interruption to blood flow causes ischemia and infarction of brain tissues with consequent neuronal damage and brain dysfunction. Pomegranate extract is well tolerated, and safely consumed all over the world. Interestingly, pomegranate extract has shown remarkable antioxidant and anti-inflammatory effects in experimental models. Many investigators consider natural extracts as novel therapies for neurodegenerative disorders. Therefore, this study was carried out to investigate the protective effects of standardized pomegranate extract against cerebral ischemia/reperfusion-induced brain injury in rats. Adult male albino rats were randomly divided into sham-operated control group, ischemia/reperfusion (I/R) group, and two other groups that received standardized pomegranate extract at two dose levels (250, 500 mg/kg) for 15 days prior to ischemia/reperfusion (PMG250+I/R, and PMG500+I/R groups). After I/R or sham operation, all rats were sacrificed and brains were harvested for subsequent biochemical analysis. Results showed reduction in brain contents of MDA (malondialdehyde), and NO (nitric oxide), in addition to enhancement of SOD (superoxide dismutase), GPX (glutathione peroxidase), and GRD (glutathione reductase) activities in rats treated with pomegranate extract prior to cerebral I/R. Moreover, pomegranate extract decreased brain levels of NF-κB p65 (nuclear factor kappa B p65), TNF-α (tumor necrosis factor-alpha), caspase-3 and increased brain levels of IL-10 (interleukin-10), and cerebral ATP (adenosine triphosphate) production. Comet assay showed less brain DNA (deoxyribonucleic acid) damage in rats protected with pomegranate extract. The present study showed, for the first time, that pre-administration of pomegranate extract to rats, can offer a significant dose-dependent neuroprotective activity against cerebral I/R brain injury and DNA damage via antioxidant, anti-inflammatory, anti-apoptotic and ATP-replenishing effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    PubMed

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A PET Tracer for Brain α2C Adrenoceptors, (11)C-ORM-13070: Radiosynthesis and Preclinical Evaluation in Rats and Knockout Mice.

    PubMed

    Arponen, Eveliina; Helin, Semi; Marjamäki, Päivi; Grönroos, Tove; Holm, Patrik; Löyttyniemi, Eliisa; Någren, Kjell; Scheinin, Mika; Haaparanta-Solin, Merja; Sallinen, Jukka; Solin, Olof

    2014-07-01

    We report the development of a PET tracer for α2C adrenoceptor imaging and its preliminary preclinical evaluation. α2C adrenoceptors in the human brain may be involved in various neuropsychiatric disorders, such as depression, schizophrenia, and neurodegenerative diseases. PET tracers are needed for imaging of this receptor system in vivo. High-specific-activity (11)C-ORM-13070 (1-[(S)-1-(2,3-dihydrobenzo[1,4]dioxin-2-yl)methyl]-4-(3-(11)C-methoxymethylpyridin-2-yl)-piperazine) was synthesized by (11)C-methylation of O-desmethyl-ORM-13070 with (11)C-methyl triflate, which was prepared from cyclotron-produced (11)C-methane via (11)C-methyl iodide. Rats and mice were investigated in vivo with PET and ex vivo with autoradiography. The specificity of (11)C-ORM-13070 binding to α2 adrenoceptors was demonstrated in rats pretreated with atipamezole, an α2 adrenoceptor antagonist. The α2C adrenoceptor selectivity of the tracer was determined by comparing tracer binding in wild-type and α2A- and α2AC adrenoceptor knockout (KO) mice. (11)C-ORM-13070 and its radioactive metabolites in rat plasma and brain tissue were analyzed with radio-high-performance liquid chromatography and mass spectroscopy. Human radiation dose estimates were extrapolated from rat biodistribution data. The radiochemical yield, calculated from initial cyclotron-produced (11)C-methane, was 9.6% ± 2.7% (decay-corrected to end of bombardment). The specific activity of the product was 640 ± 390 GBq/μmol (decay-corrected to end of synthesis). The radiochemical purity exceeded 99% in all syntheses. The highest levels of tracer binding were observed in the striatum and olfactory tubercle of rats and control and α2A KO mice-that is, in the brain regions known to contain the highest densities of α2C adrenoceptors. In rats pretreated with atipamezole and in α2AC KO mice, (11)C tracer binding in the striatum and olfactory tubercle was low, similar to that of the frontal cortex and thalamus, regions with low densities of α2C adrenoceptors. Two radioactive metabolites were found in rat plasma, but only one of them was found in the brain; their identity was not revealed. The estimated effective radiation dose was comparable with the average exposure level in PET studies with (11)C tracers. An efficient method for the radiosynthesis of (11)C-ORM-13070 was developed. (11)C-ORM-13070 emerged as a potential novel radiotracer for in vivo imaging of brain α2C adrenoceptors. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Computational modeling of temperature elevation and thermoregulatory response in the brains of anesthetized rats locally exposed at 1.5 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Masuda, Hiroshi; Kanai, Yuya; Asai, Ryuichi; Fujiwara, Osamu; Arima, Takuji; Kawai, Hiroki; Watanabe, Soichi; Lagroye, Isabelle; Veyret, Bernard

    2011-12-01

    The dominant effect of human exposures to microwaves is caused by temperature elevation ('thermal effect'). In the safety guidelines/standards, the specific absorption rate averaged over a specific volume is used as a metric for human protection from localized exposure. Further investigation on the use of this metric is required, especially in terms of thermophysiology. The World Health Organization (2006 RF research agenda) has given high priority to research into the extent and consequences of microwave-induced temperature elevation in children. In this study, an electromagnetic-thermal computational code was developed to model electromagnetic power absorption and resulting temperature elevation leading to changes in active blood flow in response to localized 1.457 GHz exposure in rat heads. Both juvenile (4 week old) and young adult (8 week old) rats were considered. The computational code was validated against measurements for 4 and 8 week old rats. Our computational results suggest that the blood flow rate depends on both brain and core temperature elevations. No significant difference was observed between thermophysiological responses in 4 and 8 week old rats under these exposure conditions. The computational model developed herein is thus applicable to set exposure conditions for rats in laboratory investigations, as well as in planning treatment protocols in the thermal therapy.

  14. Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors

    PubMed Central

    Mastorakos, Panagiotis; Zhang, Clark; Song, Eric; Kim, Young Eun; Park, Hee Won; Berry, Sneha; Choi, Won Kyu; Hanes, Justin; Suk, Jung Soo

    2018-01-01

    The discovery of powerful genetic targets has spurred clinical development of gene therapy approaches to treat patients with malignant brain tumors. However, lack of success in the clinic has been attributed to the inability of conventional gene vectors to achieve gene transfer throughout highly disseminated primary brain tumors. Here, we demonstrate ex vivo that small nanocomplexes composed of DNA condensed by a blend of biodegradable polymer, poly(β-amino ester) (PBAE), with PBAE conjugated with 5 kDa polyethylene glycol (PEG) molecules (PBAE-PEG) rapidly penetrate healthy brain parenchyma and orthotopic brain tumor tissues in rats. Rapid diffusion of these DNA-loaded nanocomplexes observed in fresh tissues ex vivo demonstrated that they avoided adhesive trapping in the brain owing to their dense PEG coating, which was critical to achieving widespread transgene expression throughout orthotopic rat brain tumors in vivo following administration by convection enhanced delivery. Transgene expression with the PBAE/PBAE-PEG blended nanocomplexes (DNA-loaded brain-penetrating nanocomplexes, or DNA-BPN) was uniform throughout the tumor core compared to nanocomplexes composed of DNA with PBAE only (DNA-loaded conventional nanocomplexes, or DNA-CN), and transgene expression reached beyond the tumor edge, where infiltrative cancer cells are found, only for the DNA-BPN formulation. Finally, DNA-BPN loaded with anti-cancer plasmid DNA provided significantly enhanced survival compared to the same plasmid DNA loaded in DNA-CN in two aggressive orthotopic brain tumor models in rats. These findings underscore the importance of achieving widespread delivery of therapeutic nucleic acids within brain tumors and provide a promising new delivery platform for localized gene therapy in the brain. PMID:28694032

  15. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain.

    PubMed

    Krishna, Gokul; Muralidhara

    2018-05-25

    Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Proton Resonance Spectroscopy Study of the Effects of L-Ornithine-L-Aspartate on the Development of Encephalopathy, Using Localization Pulses with Reduced Specific Absorption Rate

    NASA Astrophysics Data System (ADS)

    Slotboom, J.; Vogels, B. A. P. M.; Dehaan, J. G.; Creyghton, J. H. N.; Quack, G.; Chamuleau, R. A. F. M.; Bovee, W. M. M. J.

    Using the SADLOVE ( single-shot adiabatic localized volume excitation) localization technique with reduced specific absorption rate phase-compensated 2π pulses for localization, in vivo rat brain spectra were obtained in order to study the possible beneficial effects of L-ornithine-L-aspartate (OA) on the development of encephalopathy induced by hyperammonemia in portacaval shunted rats, an experimental model for subacute hepatic encephalopathy. The in vivo1H spectra were quantified using a conjugate-gradient-based frequency-domain fitting procedure. OA treatment resulted in an about threefold lower increase in train lactate ( P < 0.0001) and a slower increase of brain glutamine ( P = 0.022) concentration. However, these changes in brain metabolism, including a significantly lower ammonia concentration during OA treatment, were not associated with a sig significant improvement in clinical symptoms of encephalopathy, suggesting either insufficient decrease in brain ammonia concentration or another effect of OA treatment counteracting the lowering effect on blood and brain ammonia and on brain glutamine and lactate. It is concluded that localized in vivo1H MRS of the brain in combination with other analytical techniques, such as in vivo microdialysis, is helpful in explaining pathophysiological changes during hyperammonemia-induced encephalopathy.

  17. Thyroid Hormone Availability and Action during Brain Development in Rodents

    PubMed Central

    Bárez-López, Soledad; Guadaño-Ferraz, Ana

    2017-01-01

    Thyroid hormones (THs) play an essential role in the development of all vertebrates; in particular adequate TH content is crucial for proper neurodevelopment. TH availability and action in the brain are precisely regulated by several mechanisms, including the secretion of THs by the thyroid gland, the transport of THs to the brain and neural cells, THs activation and inactivation by the metabolic enzymes deiodinases and, in the fetus, transplacental passage of maternal THs. Although these mechanisms have been extensively studied in rats, in the last decade, models of genetically modified mice have been more frequently used to understand the role of the main proteins involved in TH signaling in health and disease. Despite this, there is little knowledge about the mechanisms underlying THs availability in the mouse brain. This mini-review article gathers information from findings in rats, and the latest findings in mice regarding the ontogeny of TH action and the sources of THs to the brain, with special focus on neurodevelopmental stages. Unraveling TH economy and action in the mouse brain may help to better understand the physiology and pathophysiology of TH signaling in brain and may contribute to addressing the neurological alterations due to hypo and hyperthyroidism and TH resistance syndromes. PMID:28855863

  18. A new minimal-stress freely-moving rat model for preclinical studies on intranasal administration of CNS drugs.

    PubMed

    Stevens, Jasper; Suidgeest, Ernst; van der Graaf, Piet Hein; Danhof, Meindert; de Lange, Elizabeth C M

    2009-08-01

    To develop a new minimal-stress model for intranasal administration in freely moving rats and to evaluate in this model the brain distribution of acetaminophen following intranasal versus intravenous administration. Male Wistar rats received one intranasal cannula, an intra-cerebral microdialysis probe, and two blood cannulas for drug administration and serial blood sampling respectively. To evaluate this novel model, the following experiments were conducted. 1) Evans Blue was administered to verify the selectivity of intranasal exposure. 2) During a 1 min infusion 10, 20, or 40 microl saline was administered intranasally or 250 microl intravenously. Corticosterone plasma concentrations over time were compared as biomarkers for stress. 3) 200 microg of the model drug acetaminophen was given in identical setup and plasma, and brain pharmacokinetics were determined. In 96% of the rats, only the targeted nasal cavity was deeply colored. Corticosterone plasma concentrations were not influenced, neither by route nor volume of administration. Pharmacokinetics of acetaminophen were identical after intravenous and intranasal administration, although the Cmax in microdialysates was reached a little earlier following intravenous administration. A new minimal-stress model for intranasal administration in freely moving rats has been successfully developed and allows direct comparison with intravenous administration.

  19. BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs.

    PubMed

    Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R

    2001-07-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.

  20. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats.

    PubMed

    Chen, Shiou-Lan; Tao, Pao-Luh; Chu, Chun-Hsien; Chen, Shih-Heng; Wu, Hsiang-En; Tseng, Leon F; Hong, Jau-Shyong; Lu, Ru-Band

    2012-06-01

    Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.

  1. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    PubMed

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2017-07-01

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Blood glutamate scavengers prolong the survival of rats and mice with brain-implanted gliomas.

    PubMed

    Ruban, Angela; Berkutzki, Tamara; Cooper, Itzik; Mohar, Boaz; Teichberg, Vivian I

    2012-12-01

    L-Glutamate (Glu) plays a crucial role in the growth of malignant gliomas. We have established the feasibility of accelerating a naturally occurring brain to-blood Glu efflux by decreasing blood Glu levels with intravenous oxaloacetate, the respective Glu co-substrate of the blood resident enzyme humane glutamate–oxaloacetate transaminase(hGOT). We wished to demonstrate that blood Glu scavenging provides neuroprotection in the case of glioma.We now describe the neuroprotective effects of blood Glu scavenging in a fatal condition such as brain-implanted C6 glioma in rats and brain-implanted human U87 MG glioma in nude mice. Rat (C-6) or human (U87) glioma cells were grafted stereotactically in the brain of rats or mice. After development of tumors, the animals were drinking oxaloacetate with or without injections of hGOT. In addition, mice were treated with combination treatment, which included drinking oxaloacetate with intracutaneous injections of hGOT and intraperitoneal injection of Temozolomide. Animals drinking oxaloacetate with or without injections of hGOT displayed a smaller tumor volume, reduced invasiveness and prolonged survival than control animals drinking saline. These effects were significantly enhanced by Temozolomide in mice, which increased survival by 237%. This is the first demonstration of blood Glu scavenging in brain cancer, and because of its safety, is likely to be of clinical significance for the future treatment of human gliomas. As we demonstrated, the blood glutamate scavenging treatment in combination with TMZ could be a good candidate or as an alternative treatment to the patients that do not respond to TMZ.

  3. NELL2 participates in formation of the sexually dimorphic nucleus of the pre-optic area in rats.

    PubMed

    Jeong, Jin Kwon; Ryu, Byung Jun; Choi, Jungil; Kim, Dong Hee; Choi, Eun Jung; Park, Jeong Woo; Park, Joong Jean; Lee, Byung Ju

    2008-08-01

    Formation of the sexually dimorphic nucleus of the pre-optic area (SDN-POA) in the rat hypothalamus shows a sexually differential development of neurons. Volume of the SDN-POA in males is much bigger than that in females which is because of a neuroprotective effect of estradiol converted from circulating testosterone during a critical period of brain development. We found that neural epidermal growth factor-like like-2 (NELL2), a neural tissue-enriched protein, is a potential downstream target of estrogen. In this study, we examined a possible role of NELL2 in the development of the SDN-POA and in the normalcy of sexual behavior in the male rats. NELL2 was expressed and co-localized with estrogen receptor alpha in the SDN-POA. A blockade of NELL2 synthesis in the brain during postnatal day 0 (d0) to d4 by an intracerebroventricular injection of an antisense NELL2 oligodeoxynucleotide, resulted in a decrease in volume of the SDN-POA in males. Interestingly, it reduced some components of the male sexual behavior such as mounting and intromission, but not the sexual partner preference in adulthood. In vitro study using the hippocampal neuroprecursor HiB5 cells showed that NELL2 has a protective effect from a cell death condition. These data suggest that a relevant expression of NELL2 in the neonatal brain is important for the estrogen-induced normal development of the SDN-POA and the normalcy of sexual behavior in male rats.

  4. Regional distribution and subcellular associations of Type II calcium and calmodulin-dependent protein kinase in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erondu, N.E.

    1986-01-01

    Four monoclonal antibodies generated against the Type II CaM kinase have been characterized. Two of these antibodies were used to confirm that both alpha and beta subunits were part of the holoenzyme complex. I also developed liquid phase and solid phase radioimmunoassays for the kinase. With the solid phase radioimmunoassay, the distribution of the kinase in rat brain was examined. This study revealed that the concentration of the kinase varies markedly in different brain regions. It is most highly concentrated in the telencephalon where it comprises approximately 2% of total hippocampal protein, 1.3% of cortical protein and 0.7% of striatalmore » protein. It is less concentrated in lower brain regions ranging from 0.3% of hypothalamic protein to 0.1% of protein in the pons/medulla.« less

  5. Novel rat model for neurocysticercosis using Taenia solium.

    PubMed

    Verastegui, Manuela R; Mejia, Alan; Clark, Taryn; Gavidia, Cesar M; Mamani, Javier; Ccopa, Fredy; Angulo, Noelia; Chile, Nancy; Carmen, Rogger; Medina, Roxana; García, Hector H; Rodriguez, Silvia; Ortega, Ynes; Gilman, Robert H

    2015-08-01

    Neurocysticercosis is caused by Taenia solium infecting the central nervous system and is the leading cause of acquired epilepsy and convulsive conditions worldwide. Research into the pathophysiology of the disease and appropriate treatment is hindered by lack of cost-effective and physiologically similar animal models. We generated a novel rat neurocysticercosis model using intracranial infection with activated T. solium oncospheres. Holtzman rats were infected in two separate groups: the first group was inoculated extraparenchymally and the second intraparenchymally, with different doses of activated oncospheres. The groups were evaluated at three different ages. Histologic examination of the tissue surrounding T. solium cysticerci was performed. Results indicate that generally infected rats developed cysticerci in the brain tissue after 4 months, and the cysticerci were observed in the parenchymal, ventricle, or submeningeal brain tissue. The route of infection did not have a statistically significant effect on the proportion of rats that developed cysticerci, and there was no dependence on infection dose. However, rat age was crucial to the success of the infection. Epilepsy was observed in 9% of rats with neurocysticercosis. In histologic examination, a layer of collagen tissue, inflammatory infiltrate cells, perivascular infiltrate, angiogenesis, spongy change, and mass effect were observed in the tissue surrounding the cysts. This study presents a suitable animal model for the study of human neurocysticercosis. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  6. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, K.L.; Tyce, G.M.

    1983-04-01

    The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. Inmore » the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.« less

  7. Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats.

    PubMed

    Feng, Yangzheng; Fratkins, Jonathan D; LeBlanc, Michael H

    2004-01-19

    Tamoxifen, an estrogen receptor modulator, is neuroprotective in adult rats. Does tamoxifen reduce brain injury in the rat pup? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of hypoxia (8% oxygen). Tamoxifen (10 mg/kg) or vehicle was given i.p. 5 min prior to hypoxia, or 5 min after reoxygenation, with a second dose given 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere 22 days following hypoxia and gross and microscopic morphology. Tamoxifen pre-treatment reduced brain weight loss from 21.5+/-4.0% in vehicle pups (n=27) to 2.6+/-2.5% in the treated pups (n=22, P<0.05). Treatment 5 min after reoxygenation reduced brain weight loss from 27.5+/-4.0% in vehicle pups (n=42) to 12.0+/-3.9% in the treated pups (n=30, P<0.05). Tamoxifen reduces brain injury in the neonatal rat.

  8. Treatment of Parkinson's disease in rats by Nrf2 transfection using MRI-guided focused ultrasound delivery of nanomicrobubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Ling; Cai, Xiaodong; Guo, Ruomi

    Parkinson's disease (PD) is a very common neurological disorder. However, effective therapy is lacking. Although the blood-brain-barrier (BBB) protects the brain, it prevents the delivery of about 90% of drugs and nucleotides into the brain, thereby hindering the development of gene therapy for PD. Magnetic resonance imaging (MRI)-guided focused ultrasound delivery of microbubbles enhances the delivery of gene therapy vectors across the BBB and improves transfection efficiency. In the present study, we delivered nuclear factor E2-related factor 2 (Nrf2, NFE2L2) contained in nanomicrobubbles into the substantia nigra of PD rats by MRI-guided focused ultrasound, and we examined the effect ofmore » Nrf2 over-expression in this animal model of PD. The rat model of PD was established by injecting 6-OHDA in the right substantia nigra stereotactically. Plasmids (pDC315 or pDC315/Nrf2) were loaded onto nanomicrobubbles, and then injected through the tail vein with the assistance of MRI-guided focused ultrasound. MRI-guided focused ultrasound delivery of nanomicrobubbles increased gene transfection efficiency. Furthermore, Nrf2 gene transfection reduced reactive oxygen species levels, thereby protecting neurons in the target region. - Highlights: • MRI-guided focused ultrasound enhances gene transfection into the brain of rats. • Increased Nrf2 expression protects neurons in the rat model of PD. • Nrf2 protects neurons in PD by inhibiting ROS production.« less

  9. In vivo chlorine and sodium MRI of rat brain at 21.1 T

    PubMed Central

    Elumalai, Malathy; Kitchen, Jason A.; Qian, Chunqi; Gor’kov, Peter L.; Brey, William W.

    2017-01-01

    Object MR imaging of low-gamma nuclei at the ultrahigh magnetic field of 21.1 T provides a new opportunity for understanding a variety of biological processes. Among these, chlorine and sodium are attracting attention for their involvement in brain function and cancer development. Materials and methods MRI of 35Cl and 23Na were performed and relaxation times were measured in vivo in normal rat (n = 3) and in rat with glioma (n = 3) at 21.1 T. The concentrations of both nuclei were evaluated using the center-out back-projection method. Results T1 relaxation curve of chlorine in normal rat head was fitted by bi-exponential function (T1a = 4.8 ms (0.7) T1b = 24.4 ± 7 ms (0.3) and compared with sodium (T1 = 41.4 ms). Free induction decays (FID) of chlorine and sodium in vivo were bi-exponential with similar rapidly decaying components of T2a∗=0.4 ms and T2a∗=0.53 ms, respectively. Effects of small acquisition matrix and bi-exponential FIDs were assessed for quantification of chlorine (33.2 mM) and sodium (44.4 mM) in rat brain. Conclusion The study modeled a dramatic effect of the bi-exponential decay on MRI results. The revealed increased chlorine concentration in glioma (~1.5 times) relative to a normal brain correlates with the hypothesis asserting the importance of chlorine for tumor progression. PMID:23748497

  10. Lack of Humoral Immune Response to the Tetracycline (Tet) Activator in Rats Injected Intracranially with Tet-off rAAV Vectors

    PubMed Central

    Han, Ye; Chang, Qin A.; Virag, Tamas; West, Neva C.; George, David; Castro, Maria G.; Bohn, Martha C.

    2010-01-01

    The ability to safely control transgene expression from viral vectors is a long-term goal in the gene therapy field. We have previously reported tight regulation of GFP expression in rat brain using a self-regulating tet-off rAAV vector. The immune responses against tet regulatory elements observed by other groups in nonhuman primates after intramuscular injection of tet-on encoding vectors raise concerns about the clinical value of tet-regulated vectors. However, previous studies have not examined immune responses following injection of AAV vectors into brain. Therefore, rat striatum was injected with tet-off rAAV harboring a therapeutic gene for Parkinson's disease, either hAADC or hGDNF. The expression of each gene was tightly controlled by the tet-off regulatory system. Using an ELISA developed with purified GST-tTA protein, no detectable immunogenicity against tTA was observed in sera of rats that received an intrastriatal injection of either vector. In contrast, sera from rats intradermally injected with an adenovirus containing either tTA or rtTA, as positive controls, had readily detectable antibodies. These observations suggest that tet-off rAAV vectors do not elicit an immune response when injected into rat brain and that these may offer safer vectors for Parkinson's disease than vectors with constitutive expression. PMID:20164859

  11. Effect of 2,450 MHz microwave radiation on the development of the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inouye, M.; Galvin, M.J.; McRee, D.I.

    1983-12-01

    Male Sprague-Dawley rats were exposed to 2,450 MHz microwave radiation at an incident power density of 10 mW/cm2 daily for 3 hours from day 4 of pregnancy (in utero exposure) through day 40 postpartum, except for 2 days at the perinatal period. The animals were killed, and the brains removed, weighed, measured, and histologically examined at 15, 20, 30, and 40 days of age. The histologic parameters examined included the cortical architecture of the cerebral cortex, the decline of the germinal layer along the lateral ventricles, the myelination of the corpus callosum, and the decline of the external germinal layermore » of the cerebellar cortex. In 40-day-old rats, quantitative measurements of neurons were also made. The spine density of the pyramidal cells in layer III of the somatosensory cortex, and the density of basal dendritic trees of the pyramidal cells in layer V were measured in Golgi-Cox impregnated specimens. In addition, the density of Purkinje cells and the extent of the Purkinje cell layer in each lobule were measured in midsagittal sections of the cerebellum stained with thionin. There were no remarkable differences between microwave-exposed and control (sham-irradiated) groups for any of the histologic or quantitative parameters examined; however, the findings provide important information on quantitative measurements of the brain. The data from this study failed to demonstrate that there is a significant effect on rat brain development due to microwave exposure (10 mW/cm2) during the embryonic, fetal, and postnatal periods.« less

  12. EPO improved neurologic outcome in rat pups late after traumatic brain injury.

    PubMed

    Schober, Michelle E; Requena, Daniela F; Rodesch, Christopher K

    2018-05-01

    In adult rats, erythropoietin improved outcomes early and late after traumatic brain injury, associated with increased levels of Brain Derived Neurotrophic Factor. Using our model of pediatric traumatic brain injury, controlled cortical impact in 17-day old rats, we previously showed that erythropoietin increased hippocampal neuronal fraction in the first two days after injury. Erythropoietin also decreased activation of caspase3, an apoptotic enzyme modulated by Brain Derived Neurotrophic Factor, and improved Novel Object Recognition testing 14 days after injury. Data on long-term effects of erythropoietin on Brain Derived Neurotrophic Factor expression, histology and cognitive function after developmental traumatic brain injury are lacking. We hypothesized that erythropoietin would increase Brain Derived Neurotrophic Factor and improve long-term object recognition in rat pups after controlled cortical impact, associated with increased neuronal fraction in the hippocampus. Rats pups received erythropoietin or vehicle at 1, 24, and 48 h and 7 days after injury or sham surgery followed by histology at 35 days, Novel Object Recognition testing at adulthood, and Brain Derived Neurotrophic Factor measurements early and late after injury. Erythropoietin improved Novel Object Recognition performance and preserved hippocampal volume, but not neuronal fraction, late after injury. Improved object recognition in erythropoietin treated rats was associated with preserved hippocampal volume late after traumatic brain injury. Erythropoietin is approved to treat various pediatric conditions. Coupled with exciting experimental and clinical studies suggesting it is beneficial after neonatal hypoxic ischemic brain injury, our preliminary findings support further study of erythropoietin use after developmental traumatic brain injury. Copyright © 2018 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  13. STS-90 Day 04 Highlights

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On this forth day of the STS-90 mission, the flight crew, Cmdr. Richard A. Searfoss, Pilot Scott D. Altman, and Mission Specialists Richard M. Linnehan, Dafydd Rhys Williams and Kathryn P. Hire, and Payload Specialists Jay C. Buckey and James A. Pawelczyk continue work with the Escher Staircase Behavior Testing of Adult Rats experiment. This is the first of two behavior testing sessions with the adult rats being used for this experiment. The rats will have a 'hyper drive' unit placed on their head which has recording electrodes made of microscopic wires that are positioned in the brain to record activity in the hippocampus. The hippocampus is that portion of the brain used to develop spatial maps to help us navigate from one place to the other. With the 'hyper drive' units in place, the rats will then be put through a maze or on a track. While the rat is maneuvering on the maze or track, the cell activity of the hippocampus will be measured and recorded.

  14. Effect of baculovirus P35 protein on apoptosis in brain tissue of rats with acute cerebral infarction.

    PubMed

    Ji, J F; Ma, X H

    2015-08-10

    We explored the effect of baculovirus P35 protein on apoptosis in the brain tissue of rats with acute cerebral infarction (ACI). A rat model of middle cerebral artery infarction was created. The rats were randomly divided into sham, model, and treatment groups. Baculovirus P35 protein was injected into the intracranial arteries of the treatment group rats. The rats in the model group were given an equal volume of phosphate-buffered saline. The rats were sacrificed after 72 h and the brain tissue was separated. The levels of caspase-3, Bcl-2, and Bax mRNA, the brain cell apoptosis index, and the infarct size were determined. After 72 h, the levels of caspase-3 and Bax mRNA in the model and treatment groups were significantly greater than in the sham group, and the levels of Bcl-2 mRNA were significantly smaller (P < 0.05). The levels of caspase-3 and Bax mRNA were significantly lower in the treatment group than in the model group, and the level of Bcl-2 mRNA was significantly greater (P < 0.05). Compared with the sham group, the brain tissue apoptosis index and the cerebral infarction area increased significantly in the model and treatment groups (P < 0.05). The brain tissue apoptosis index and cerebral infarction area in the treatment group were significantly lower than in the model group (P < 0.05). Baculovirus P35 protein can effectively inhibit brain cell apoptosis in rats with ACI. It delayed apoptosis and necrosis in subjects with ACI tissue and had a protective effect on brain tissue.

  15. Effect of thyroid status on the development of the different molecular forms of Na+,K+-ATPase in rat brain.

    PubMed

    Atterwill, C K; Reid, J; Athayde, C M

    1985-05-01

    The effect of thyroid status on the postnatal development of the two molecular forms of Na+,K+-ATPase, distinguished kinetically on the basis of their ouabain sensitivity, was examined in rat brain. Hypothyroidism induced by PTU from day 1 postnatally significantly reduced the Na+,K+-ATPase activity in cerebellum (22-30 days) but not forebrain, whereas hyperthyroidism (T4 treatment from day 1) had no effect. The hypothyroidism-induced reduction in cerebellum was reflected by a 20-45% reduction in the activity of the alpha(+) form of Na+,K+-ATPase (high ouabain affinity) against control brains compared to a 60-70% reduction in the activity of the alpha form (low ouabain affinity). These results show that neonatally induced hypothyroidism leads to a selectively greater impairment of the ontogenesis of the activity of cerebellar alpha form of Na+,K+-ATPase. This may possibly reflect a retarded development of a selective cerebellar cell population containing predominantly the alpha form of the enzyme.

  16. MRI Reveals Edema in Larynx (But Not in Brain) During Anaphylactic Hypotension in Anesthetized Rats

    PubMed Central

    Toyota, Ichiro; Tanida, Mamoru; Wang, Mofei; Kurata, Yasutaka; Tonami, Hisao

    2013-01-01

    Purpose Anaphylactic shock is sometimes accompanied by local interstitial edema due to increased vascular permeability. We performed magnetic resonance imaging (MRI) to compare edema in the larynx and brain of anesthetized rats during anaphylactic hypotension versus vasodilator-induced hypotension. Methods Male Sprague Dawley rats were subjected to hypotension induced by the ovalbumin antigen (n=7) or a vasodilator sodium nitroprusside (SNP; n=7). Apparent diffusion coefficient (ADC) and T2-relaxation time (T2RT) were quantified on MRI performed repeatedly for up to 68 min after the injection of either agent. The presence of laryngeal edema was also examined by histological examination. Separately, the occurrence of brain edema was assessed by measuring brain water content using the wet/dry method in rats with anaphylaxis (n=5) or SNP (n=5) and the non-hypotensive control rats (n=5). Mast cells in hypothalamus were morphologically examined. Results Mean arterial blood pressure similarly decreased to 35 mmHg after an injection of the antigen or SNP. Hyperintensity on T2-weighted images (as reflected by elevated T2RT) was found in the larynx as early as 13 min after an injection of the antigen, but not SNP. A postmortem histological examination revealed epiglottic edema in the rats with anaphylaxis, but not SNP. In contrast, no significant changes in T2RT or ADC were detectable in the brains of any rats studied. In separate experiments, the quantified brain water content did not increase in either anaphylaxis or SNP rats, as compared with the non-hypotensive control rats. The numbers of mast cells with metachromatic granules in the hypothalamus were not different between rats with anaphylaxis and SNP, suggesting the absence of anaphylactic reaction in hypothalamus. Conclusion Edema was detected using the MRI technique in the larynx during rat anaphylaxis, but not in the brain. PMID:24179686

  17. MRI reveals edema in larynx (but not in brain) during anaphylactic hypotension in anesthetized rats.

    PubMed

    Toyota, Ichiro; Tanida, Mamoru; Shibamoto, Toshishige; Wang, Mofei; Kurata, Yasutaka; Tonami, Hisao

    2013-11-01

    Anaphylactic shock is sometimes accompanied by local interstitial edema due to increased vascular permeability. We performed magnetic resonance imaging (MRI) to compare edema in the larynx and brain of anesthetized rats during anaphylactic hypotension versus vasodilator-induced hypotension. Male Sprague Dawley rats were subjected to hypotension induced by the ovalbumin antigen (n=7) or a vasodilator sodium nitroprusside (SNP; n=7). Apparent diffusion coefficient (ADC) and T2-relaxation time (T2RT) were quantified on MRI performed repeatedly for up to 68 min after the injection of either agent. The presence of laryngeal edema was also examined by histological examination. Separately, the occurrence of brain edema was assessed by measuring brain water content using the wet/dry method in rats with anaphylaxis (n=5) or SNP (n=5) and the non-hypotensive control rats (n=5). Mast cells in hypothalamus were morphologically examined. Mean arterial blood pressure similarly decreased to 35 mmHg after an injection of the antigen or SNP. Hyperintensity on T2-weighted images (as reflected by elevated T2RT) was found in the larynx as early as 13 min after an injection of the antigen, but not SNP. A postmortem histological examination revealed epiglottic edema in the rats with anaphylaxis, but not SNP. In contrast, no significant changes in T2RT or ADC were detectable in the brains of any rats studied. In separate experiments, the quantified brain water content did not increase in either anaphylaxis or SNP rats, as compared with the non-hypotensive control rats. The numbers of mast cells with metachromatic granules in the hypothalamus were not different between rats with anaphylaxis and SNP, suggesting the absence of anaphylactic reaction in hypothalamus. Edema was detected using the MRI technique in the larynx during rat anaphylaxis, but not in the brain.

  18. Visuospatial asymmetries and interocular transfer in the split-brain rat.

    PubMed

    Adelstein, A; Crowne, D P

    1991-06-01

    Interocular transfer (IOT), hemispheric superiority, and cerebral dominance were examined in split-brain female albino rats. Callosum-sectioned and intact animals were monocularly trained in the Morris water maze and tested in IOT and reversal phases. In the IOT phase, split-brain rats entered more nontarget quadrants and headed less accurately toward the platform than did controls. For both split-brain animals and controls, right-eye training resulted in shorter latencies and fewer nontarget entries than did left-eye training. Analyses of cerebral dominance showed shorter latencies and smaller heading errors over all 3 phases in rats that were trained with the nondominant eye. Right-eye dominant controls were less affected by platform reversal. Split-brain rats were inferior to controls in latency to find the platform and in target quadrant entries. This finding establishes a spatial cognitive deficit from callosum section.

  19. Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats

    PubMed Central

    2016-01-01

    Abstract Microglia are the primary immune cells of the brain and function in multiple ways to facilitate proper brain development. However, our current understanding of how these cells influence the later expression of normal behaviors is lacking. Using the laboratory rat, we administered liposomal clodronate centrally to selectively deplete microglia in the developing postnatal brain. We then assessed a range of developmental, juvenile, and adult behaviors. Liposomal clodronate treatment on postnatal days 0, 2, and 4 depleted microglia with recovery by about 10 days of age and induced a hyperlocomotive phenotype, observable in the second postnatal week. Temporary microglia depletion also increased juvenile locomotion in the open field test and decreased anxiety-like behaviors in the open field and elevated plus maze. These same rats displayed reductions in predator odor–induced avoidance behavior, but increased their risk assessment behaviors compared with vehicle-treated controls. In adulthood, postnatal microglia depletion resulted in significant deficits in male-specific sex behaviors. Using factor analysis, we identified two underlying traits—behavioral disinhibition and locomotion—as being significantly altered by postnatal microglia depletion. These findings further implicate microglia as being critically important to the development of juvenile and adult behavior. PMID:27957532

  20. Differential display cloning of a novel rat cDNA (RNB6) that shows high expression in the neonatal brain revealed a member of Ena/VASP family.

    PubMed

    Ohta, S; Mineta, T; Kimoto, M; Tabuchi, K

    1997-08-18

    We have used the differential display method to identify genes that control the neural cell development in CNS. Screening of the differential display bands that showed higher expression at neonate than at adult age enabled us to identify a novel rat cDNA (RNB6) coding for a protein of 393 amino acid residues. Database search revealed this gene as a rat homologue of the murine EVL, a member of Ena/VASP protein family that is implicated to be involved in the control of cell motility through actin filament assembly by their GP5 motifs. Although the precise characterization of EVL was not reported, our Northern blot and immunoblot analyses demonstrated that RNB6 expression in the brain gradually increases during embryonic development, reaches maximum at postnatal day 1 and decreases thereafter. Studies of tissue distribution revealed the expression of RNB6 not only in the brain but also in the spleen, thymus and testis. Histochemical analyses showed that RNB6 protein is mainly expressed in neurons and may be expressed in neural fibers. Our analyses suggest that RNB6 is critically involved in the development of CNS probably through the control of neural cell motility and/or including neuronal fiber extension.

  1. Effect of sildenafil citrate (Viagra®) on trace element concentration in serum and brain of rats.

    PubMed

    Fayed, Abdel-Hasseb A; Gad, Shereen B

    2011-12-01

    As a vasodilator with good hemodynamic effects, sildenafil has been successfully used in the treatment of patients with pulmonary hypertension and cardiovascular diseases. By selectively inhibiting phosphodiestrase type 5 (PDE-5) and thus effectively reducing the breakdown of c GMP, sildenafil administration can markedly improve the erectile dysfunction. Sildenafil also elevates localized cerebral blood flow in rat brain. The objective of the present study was to investigate the effect of sildenafil on the level of trace elements (Zinc (Zn), copper (Cu), iron (Fe), selenium (Se), cobalt (Co), and chromium (Cr)) in blood and brain of rats. Sixteen male albino rats weighing 180-200 g were divided into two groups (8 rats/group). Sildenafil (Viagra, Pfizer Inc.) was dissolved in saline and administered at a dose of 10mg/kg i.p. (0.5 ml volume) to rats in the treated group every 72 h for 12 injections. Rats in the control group were administered the same volume of saline as in treated group. All rats were sacrificed 24h after the last injection. Blood samples were collected and serum was separated and stored at -20°C. Brains were dissected and stored frozen until analysis. Trace elements concentrations were determined by flame emission atomic absorption spectrophotometer. Results showed that sildenafil injection significantly (P<0.05) increased serum and brain Se and Cu concentrations. Moreover, sildenafil increased the Cr concentration in the brain tissue. It was concluded that sildenafil citrate administration increased serum Se and Cu as well as, increased brain Se, Cu, and Cr concentrations in rats. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Cannabinoid receptor expression and phosphorylation are differentially regulated between male and female cerebellum and brain stem after repeated stress: implication for PTSD and drug abuse.

    PubMed

    Xing, Guoqiang; Carlton, Janis; Zhang, Lei; Jiang, Xiaolong; Fullerton, Carol; Li, He; Ursano, Robert

    2011-09-08

    Recent study demonstrated a close relationship between cerebellum atrophy and symptom severity of pediatric maltreatment-related posttraumatic stress disorder (PTSD). It has also been known that females are more vulnerable than males in developing anxiety disorders after exposure to traumatic stress. The mechanisms are unknown. Because cannabinoid receptors (CB₁ and CB₂) are neuroprotective and highly expressed in the cerebellum, we investigated cerebellar CB expression in stressed rats. Young male and female Sprague-Dawley rats were given 40 unpredictable electric tail-shocks for 2h daily on 3 consecutive days. CB₁ and CB₂ mRNA and protein levels in rat cerebellum and brain stem were determined using quantitative real-time PCR and Western blot, respectively. Two-way ANOVA revealed significant gender and stress effects on cerebellar CB₁ mRNA expression, with females and non-stressed rats exhibiting higher CB₁ mRNA levels than the males (3 fold, p<0.01) and stressed rats (30%, p<0.01), respectively. CB₁ and CB₂ mRNA levels in brain stem were also greater in female rats than males (p<0.01, p<0.05, respectively). Repeated stress increased the level of phosphorylated CB₁ receptors, the inactivated CB₁, in rat cerebellum (p<0.01), particularly in female rats as revealed by the significant gender × stress interaction. Thus, repeated severe stress caused greater CB₁ mRNA suppression and CB₁ receptor phosphorylation in female cerebellum that could lead to increased susceptibility to stress-related anxiety disorders including PTSD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. The role of intestinal endotoxemia in a rat model of aluminum neurotoxicity

    PubMed Central

    Wang, Feng; Guo, Rui-Xia; Li, Wen-Xing; Yu, Bao-Feng; Han, Bai; Liu, Li-Xin; Han, De-Wu

    2017-01-01

    The present study aimed to investigate the effects of intestinal endotoxemia (IETM) in a rat model of aluminum neurotoxicity established by D-galactose and aluminum trichloride (AlCl3). Adult Wistar rats were administered D-galactose and AlCl3 to create the aluminum neurotoxicity model. The learning and memory abilities of the rats were subsequently observed using a Morris water maze test and the serum levels of lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1, diamine oxidase (DAO), glutamine (Gln) and glutaminase were measured. The expression of S-100β in the serum was detected using an enzyme-linked immunosorbent assay. The expression levels of the amyloid β-protein (Aβ) precursor (APP), presenilin 1 (PS1), β-site APP-cleaving enzyme (BACE), zona occludens protein (ZO)-1 and Aβ 1–40 in the brain of rats were detected via reverse-transcription polymerase chain reaction, western blotting and immunohistochemistry. The levels of LPS, TNF-α, IL-1, DAO, Gln and S-100β in serum and the mRNA and protein expression levels of APP, PS1, BACE and Aβ1-40 in the brain were markedly increased in the model rats compared with controls. The level of glutaminase in the serum and the expression of ZO-1 in the brain were decreased in the model rats compared with controls. IETM was present in the rat model of aluminum neurotoxicity established by D-galactose and AlCl3 and may be important in the development of this neurotoxicity. PMID:28627692

  4. MicroRNA network changes in the brain stem underlie the development of hypertension.

    PubMed

    DeCicco, Danielle; Zhu, Haisun; Brureau, Anthony; Schwaber, James S; Vadigepalli, Rajanikanth

    2015-09-01

    Hypertension is a major chronic disease whose molecular mechanisms remain poorly understood. We compared neuroanatomical patterns of microRNAs in the brain stem of the spontaneous hypertensive rat (SHR) to the Wistar Kyoto rat (WKY, control). We quantified 419 well-annotated microRNAs in the nucleus of the solitary tract (NTS) and rostral ventrolateral medulla (RVLM), from SHR and WKY rats, during three main stages of hypertension development. Changes in microRNA expression were stage- and region-dependent, with a majority of SHR vs. WKY differential expression occurring at the hypertension onset stage in NTS versus at the prehypertension stage in RVLM. Our analysis identified 24 microRNAs showing time-dependent differential expression in SHR compared with WKY in at least one brain region. We predicted potential gene regulatory targets corresponding to catecholaminergic processes, neuroinflammation, and neuromodulation using the miRWALK and RNA22 databases, and we tested those bioinformatics predictions using high-throughput quantitative PCR to evaluate correlations of differential expression between the microRNAs and their predicted gene targets. We found a novel regulatory network motif consisting of microRNAs likely downregulating a negative regulator of prohypertensive processes such as angiotensin II signaling and leukotriene-based inflammation. Our results provide new evidence on the dynamics of microRNA expression in the development of hypertension and predictions of microRNA-mediated regulatory networks playing a region-dependent role in potentially altering brain-stem cardiovascular control circuit function leading to the development of hypertension. Copyright © 2015 the American Physiological Society.

  5. The effect of butylphthalide on the brain edema, blood-brain barrier of rats after focal cerebral infarction and the expression of Rho A.

    PubMed

    Hu, Jinyang; Wen, Qingping; Wu, Yue; Li, Baozhu; Gao, Peng

    2014-06-01

    The aim of this study was to explore the effect of butylphthalide on the brain edema, blood-brain barrier of rats of rats after focal cerebral infarction and the expression of Rho A. A total of 195 sprague-dawley male rats were randomly divided into control group, model group, and butylphthalide group (40 mg/kg, once a day, by gavage). The model was made by photochemical method. After surgery 3, 12, 24, 72, and 144 h, brain water content was done to see the effect of butylphthalide for the cerebral edema. Evans blue extravasation method was done to see the changes in blood-brain barrier immunohistochemistry, and Western blot was done to see the expression of Rho A around the infarction. Compared with the control group, the brain water content of model group and butylphthalide group rats was increased, the permeability of blood-brain barrier of model group and butylphthalide group rats was increased, and the Rho A protein of model group and butylphthalide group rats was increased. Compared with the model group, the brain water content of butylphthalide group rats was induced (73.67 ± 0.67 vs 74.14 ± 0.46; 74.89 ± 0.57 vs 75.61 ± 0.52; 77.49 ± 0.34 vs 79.33 ± 0.49; 76.31 ± 0.56 vs 78.01 ± 0.48; 72.36 ± 0.44 vs 73.12 ± 0.73; P < 0.05), the permeability of blood-brain barrier of butylphthalide group rats was induced (319.20 ± 8.11 vs 394.60 ± 6.19; 210.40 ± 9.56 vs 266.40 ± 7.99; 188.00 ± 9.22 vs 232.40 ± 7.89; 288.40 ± 7.86 vs 336.00 ± 6.71; 166.60 ± 6.23 vs 213.60 ± 13.79; P < 0.05), and the Rho A protein of butylphthalide group rats was decreased (western blot result: 1.2230 ± 0.0254 vs 1.3970 ± 0.0276; 1.5985 ± 0.0206 vs 2.0368 ± 0.0179; 1.4229 ± 0.0167 vs 1.7930 ± 0.0158;1.3126 ± 0.0236 vs 1.5471 ± 0.0158; P < 0.05). The butylphthalide could reduce the brain edema, protect the blood-brain barrier, and decrease the expression of Rho A around the infarction.

  6. Repetitive and profound insulin-induced hypoglycemia results in brain damage in newborn rats: an approach to establish an animal model of brain injury induced by neonatal hypoglycemia.

    PubMed

    Zhou, Dong; Qian, Jing; Liu, Chun-Xi; Chang, Hong; Sun, Ruo-Peng

    2008-10-01

    The human neonate is at a higher risk for hypoglycemia-induced neuronal injury than other pediatric and adult patients. Repetitive and profound neonatal hypoglycemia can result in severe neurologic sequelae, of which the mechanisms was not elucidated by hitherto. Moreover, no reliable animal model of brain injury induced by neonatal hypoglycemia is available in order to carry out more research. Therefore, we tried to induce neonatal hypoglycemia in newborn rats by fasting and insulin injection, and then examined the neuronal degeneration after repetitive hypoglycemic insults by Fluoro-Jade B (FJB) staining. Experimental animals were randomly divided into four groups: insulin-treated rats with short hypoglycemia, insulin-treated rats with prolonged hypoglycemia, fasted rats, and control rats. Insulin injection and fasting both could induce consistent hypoglycemia in newborn rats. But from FJB staining results, only in insulin-treated rats with prolonged hypoglycemia could extensive neurodegeneration be detected. We can conclude that FJB staining is a useful method of marking neuronal degeneration in neonatal rats following hypoglycemic brain damage. Repetitive and profound neonatal hypoglycemia can result in extensive neurodegeneration, and it seems that neurons of the cortex, dentate gyrus of the hippocampus, the thalamus, and the hypothalamus are more vulnerable to hypoglycemic insult in newborn rats. Repetitive and profound insulin-induced hypoglycemia in newborn rats can establish a reliable animal model of brain injury resulting from neonatal hypoglycemia.

  7. Valnoctamide, which reduces rat brain arachidonic acid turnover, is a potential non-teratogenic valproate substitute to treat bipolar disorder.

    PubMed

    Modi, Hiren R; Ma, Kaizong; Chang, Lisa; Chen, Mei; Rapoport, Stanley I

    2017-08-01

    Valproic acid (VPA), used for treating bipolar disorder (BD), is teratogenic by inhibiting histone deacetylase. In unanaesthetized rats, chronic VPA, like other mood stabilizers, reduces arachidonic acid (AA) turnover in brain phospholipids, and inhibits AA activation to AA-CoA by recombinant acyl-CoA synthetase-4 (Acsl-4) in vitro. Valnoctamide (VCD), a non-teratogenic constitutional isomer of VPA amide, reported effective in BD, also inhibits recombinant Acsl-4 in vitro. VCD like VPA will reduce brain AA turnover in unanaesthetized rats. A therapeutically relevant (50mg/kg i.p.) dose of VCD or vehicle was administered daily for 30 days to male rats. AA turnover and related parameters were determined using our kinetic model, following intravenous [1- 14 C]AA in unanaesthetized rats for 10min, and measuring labeled and unlabeled lipids in plasma and high-energy microwaved brain. VCD, compared with vehicle, increased λ, the ratio of brain AA-CoA to unesterified plasma AA specific activities; and decreased turnover of AA in individual and total brain phospholipids. VCD's ability like VPA to reduce rat brain AA turnover and inhibit recombinant Acsl-4, and its efficacy in BD, suggest that VCD be further considered as a non-teratogenic VPA substitute for treating BD. Published by Elsevier B.V.

  8. Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke.

    PubMed

    Jiménez-Xarrié, Elena; Davila, Myriam; Candiota, Ana Paula; Delgado-Mederos, Raquel; Ortega-Martorell, Sandra; Julià-Sapé, Margarida; Arús, Carles; Martí-Fàbregas, Joan

    2017-01-13

    Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier. A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier ( http://gabrmn.uab.es/?q=sc ). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and mobile lipids (0.85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine (3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity). SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content).

  9. Cerebral ketone body metabolism.

    PubMed

    Morris, A A M

    2005-01-01

    Ketone bodies (KBs) are an important source of energy for the brain. During the neonatal period, they are also precursors for the synthesis of lipids (especially cholesterol) and amino acids. The rate of cerebral KB metabolism depends primarily on the concentration in blood; high concentrations occur during fasting and on a high-fat diet. Cerebral KB metabolism is also regulated by the permeability of the blood-brain barrier (BBB), which depends on the abundance of monocarboxylic acid transporters (MCT1). The BBB's permeability to KBs increases with fasting in humans. In rats, permeability increases during the suckling period, but human neonates have not been studied. Monocarboxylic acid transporters are also present in the plasma membranes of neurons and glia but their role in regulating KB metabolism is uncertain. Finally, the rate of cerebral KB metabolism depends on the activities of the relevant enzymes in brain. The activities vary with age in rats, but reliable results are not available for humans. Cerebral KB metabolism in humans differs from that in the rat in several respects. During fasting, for example, KBs supply more of the brain's energy in humans than in the rat. Conversely, KBs are probably used more extensively in the brain of suckling rats than in human neonates. These differences complicate the interpretation of rodent studies. Most patients with inborn errors of ketogenesis develop normally, suggesting that the only essential role for KBs is as an alternative fuel during illness or prolonged fasting. On the other hand, in HMG-CoA lyase deficiency, imaging generally shows asymptomatic white-matter abnormalities. The ability of KBs to act as an alternative fuel explains the effectiveness of the ketogenic diet in GLUT1 deficiency, but its effectiveness in epilepsy remains unexplained.

  10. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  11. Innate BDNF expression is associated with ethanol intake in alcohol-preferring AA and alcohol-avoiding ANA rats.

    PubMed

    Raivio, Noora; Miettinen, Pekka; Kiianmaa, Kalervo

    2014-09-04

    We have shown recently that acute administration of ethanol modulates the expression of brain-derived neurotrophic factor (BDNF) in several rat brain areas known to be involved in the development of addiction to ethanol and other drugs of abuse, suggesting that BDNF may be a factor contributing to the neuroadaptive changes set in motion by ethanol exposure. The purpose of the present study was to further clarify the role of BDNF in reinforcement from ethanol and in the development of addiction to ethanol by specifying the effect of acute administration of ethanol (1.5 or 3.0 g/kg i.p.) on the expression profile of BDNF mRNA in the ventral tegmental area and in the terminal areas of the mesolimbic dopamine pathway in the brain of alcohol-preferring AA and alcohol-avoiding ANA rats, selected for high and low voluntary ethanol intake, respectively. The level of BDNF mRNA expression was higher in the amygdala and ventral tegmental area of AA than in those of ANA rats, and there was a trend for a higher level in the nucleus accumbens. In the amygdala and hippocampus, a biphasic change in the BDNF mRNA levels was detected: the levels were decreased at 3 and 6h but increased above the basal levels at 24h. Furthermore, there was a difference between the AA and ANA lines in the effect of ethanol, the ANA rats showing an increase in BDNF mRNA levels while such a change was not seen in AA rats. These findings suggest that the innate levels of BDNF expression may play a role in the mediation of the reinforcing effects of ethanol and in the control of ethanol intake. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Postnatal LPS Challenge Impacts Escape Learning and Expression of Plasticity Factors Mmp9 and Timp1 in Rats: Effects of Repeated Training.

    PubMed

    Trofimov, Alexander; Strekalova, Tatyana; Mortimer, Niall; Zubareva, Olga; Schwarz, Alexander; Svirin, Evgeniy; Umriukhin, Aleksei; Svistunov, Andrei; Lesch, Klaus-Peter; Klimenko, Victor

    2017-08-01

    Bacterial intoxication associated with inflammatory conditions during development can impair brain functions, in particular evolutionarily novel forms of memory, such as explicit learning. Little is known about the dangers of early-life inflammation on more basic forms of learning, for example, the acquisition of motor escape abilities, which are generally better preserved under pathological conditions. To address this limitation in knowledge, an inflammatory response was elicited in Wistar pups by lipopolysaccharide (LPS) injections (25 μg/kg) on postnatal days P15, P18 and P21. The acquisition of escape behaviour was tested from P77 by active avoidance footshock model and water maze. Open-field behaviour and blood corticosterone levels were also measured. Rat brain tissue was collected from pups 2 h post-injection and from adult rats which either underwent escape training on P77-P81 or remained untrained. mRNA levels of developmental brain plasticity factors MMP-9 and TIMP-1 were investigated in the medial prefrontal cortex and ventral/dorsal hippocampus. LPS-challenged rats displayed moderately deficient escape responses in both memory tests, increased freezing behaviour and, surprisingly, reduced blood cortisol levels. Mmp9 and Timp1, and their ratio to one another, were differentially altered in pups versus adult untrained rats but remained unchanged overall in rats trained in either learning task. Together, our data indicate that systemic pro-inflammatory response during early postnatal development has long-lasting effects, including on the acquisition of motor escape abilities and plasticity factor expression, into adulthood. Our data suggest that altered stress response could possibly mediate these deviations and repeated training might generate positive effects on plasticity under the employed conditions.

  13. Syngeneic Transplantation of Olfactory Ectomesenchymal Stem Cells Restores Learning and Memory Abilities in a Rat Model of Global Cerebral Ischemia.

    PubMed

    Veron, Antoine D; Bienboire-Frosini, Cécile; Girard, Stéphane D; Sadelli, Kevin; Stamegna, Jean-Claude; Khrestchatisky, Michel; Alexis, Jennifer; Pageat, Patrick; Asproni, Pietro; Mengoli, Manuel; Roman, François S

    2018-01-01

    Stem cells are considered as promising tools to repair diverse tissue injuries. Among the different stem cell types, the "olfactory ectomesenchymal stem cells" (OE-MSCs) located in the adult olfactory mucosa stand as one of the best candidates. Here, we evaluated if OE-MSC grafts could decrease memory impairments due to ischemic injury. OE-MSCs were collected from syngeneic F344 rats. After a two-step global cerebral ischemia, inducing hippocampal lesions, learning abilities were evaluated using an olfactory associative discrimination task. Cells were grafted into the hippocampus 5 weeks after injury and animal's learning abilities reassessed. Rats were then sacrificed and the brains collected for immunohistochemical analyses. We observed significant impairments in learning and memory abilities following ischemia. However, 4 weeks after OE-MSC grafts, animals displayed learning and memory performances similar to those of controls, while sham rats did not improve them. Immunohistochemical analyses revealed that grafts promoted neuroblast and glial cell proliferation, which could permit to restore cognitive functions. These results demonstrated, for the first time, that syngeneic transplantations of OE-MSCs in rats can restore cognitive abilities impaired after brain injuries and provide support for the development of clinical studies based on grafts of OE-MSCs in amnesic patients following brain injuries.

  14. Maternal Weaning Modulates Emotional Behavior and Regulates the Gut-Brain Axis

    PubMed Central

    Farshim, Pamela; Walton, Gemma; Chakrabarti, Bhismadev; Givens, Ian; Saddy, Doug; Kitchen, Ian; R. Swann, Jonathan; Bailey, Alexis

    2016-01-01

    Evidence shows that nutritional and environmental stress stimuli during postnatal period influence brain development and interactions between gut and brain. In this study we show that in rats, prevention of weaning from maternal milk results in depressive-like behavior, which is accompanied by changes in the gut bacteria and host metabolism. Depressive-like behavior was studied using the forced-swim test on postnatal day (PND) 25 in rats either weaned on PND 21, or left with their mother until PND 25 (non-weaned). Non-weaned rats showed an increased immobility time consistent with a depressive phenotype. Fluorescence in situ hybridization showed non-weaned rats to harbor significantly lowered Clostridium histolyticum bacterial groups but exhibit marked stress-induced increases. Metabonomic analysis of urine from these animals revealed significant differences in the metabolic profiles, with biochemical phenotypes indicative of depression in the non-weaned animals. In addition, non-weaned rats showed resistance to stress-induced modulation of oxytocin receptors in amygdala nuclei, which is indicative of passive stress-coping mechanism. We conclude that delaying weaning results in alterations to the gut microbiota and global metabolic profiles which may contribute to a depressive phenotype and raise the issue that mood disorders at early developmental ages may reflect interplay between mammalian host and resident bacteria. PMID:26903212

  15. Gravitational Biology: The Rat Model

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session JP3, the discussion focuses on the following topics: Morphology of brain, pituitary and thyroid in the rats exposed to altered gravity; Biochemical Properties of B Adrenoceptors After Spaceflight (LMS-STS78) or Hindlimb Suspension in Rats; Influence of Hypergravity on the Development of Monoaminergic Systems in the Rat Spinal Cord; A Vestibular Evoked Potentials (VsEPs) Study of the Function of the Otolith Organs in Different Head Orientations with respect to Earth Gravity Vector in the Rat; Quantitative Observations on the Structure of Selected Proprioceptive Components in Adult Rats that Underwent About Half of their Fetal Development in Space; Effects of a Nine-Day Shuttle Mission on the Development of the Neonatal Rat Nervous System, A Behavioral Study; Muscle Atrophy Associated to Microgravity in Rat, Basic Data For Countermeasures; Simulated Weightlessness by Unloading in the Rat, Results of a Time Course Study of Biochemical Events Occurring During Unloading and Lack of Effect of a rhBNP-2 Treatment on Bone Formation and Bone Mineral Content in Unloading Rats; and Cytological Mechanism of the Osteogenesis Under Microgravity Conditions.

  16. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction.

    PubMed

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-08-15

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12(th) day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  17. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction

    PubMed Central

    Liu, Jing; Wang, Xiaofeng; Liu, Ying; Yang, Na; Xu, Jing; Ren, Xiaotun

    2013-01-01

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neonatal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cells in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cell apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cell line-derived neurotrophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cell apoptosis through the glial cell line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain. PMID:25206528

  18. The effect of ovariectomy on learning and memory and relationship to changes in brain volume and neuronal density.

    PubMed

    Su, Jian; Sripanidkulchai, Kittisak; Hu, Ying; Wyss, J Michael; Sripanidkulchai, Bungorn

    2012-10-01

    The loss of sex hormones in postmenopausal women has been suggested to be involved in cognitive degenerative diseases, such as Alzheimer's disease. In the present study, ovariectomized (OVX) and control rats were tested for 4 months in a Morris water maze (MWM) task to track their memory status. Thereafter, postmortem frozen brain sections were analyzed to determine if changes in brain area volumes and neuronal density were related to changes in cognitive ability. A modified artificial-land-mark-based method was used to assure the fidelity of the three dimensions (3D) reconstructed structures. Volumetric areas of the hippocampus, cortex, caudate putamen (cpu), and cerebellum were estimated from the reconstructions, and neuron densities of CA1 and CA3 subregions of the hippocampus were measured in an adjacent second series of Nissl-stained sections. Compared to the control rats, OVX rats displayed memory impairments, beginning in the second month after the ovariectomy (p < .05). Assessments at the end of the study demonstrated that OVX (compared to control) rats displayed reduced brain volume in the hippocampus and neocortex and in the brain as a whole. In contrast, when compared to controls, the volumes of cpu and cerebellum of OVX rats increased slightly. CA3 neuron density of OVX (compared to controls) rats was significantly lower, but the CA1 neuron density was significantly higher. In conclusion, ovariectomy impaired spatial memory and led to morphological changes in cognitive centers of rat brain. The results demonstrate that the 3D reconstructed method is useful for the study of brain morphological abnormality in rats.

  19. Photoacoustic imaging for transvascular drug delivery to the rat brain

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  20. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats.

    PubMed

    Shumake, Jason; Colorado, Rene A; Barrett, Douglas W; Gonzalez-Lima, F

    2010-07-09

    Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. [Human umbilical cord blood mononuclear cell transplantation promotes long-term neurobehavioral functional development of newborn SD rats with hypoxic ischemic brain injury].

    PubMed

    Huang, Hui-zhi; Wen, Xiao-hong; Liu, Hui; Huang, Jin-hua; Liu, Shang-quan; Ren, Wei-hua; Fang, Wen-xiang; Qian, Yin-feng; Hou, Wei-zhu; Yan, Ming-jie; Yao, You-heng; Li, Wei-Zu; Li, Qian-Jin

    2013-06-01

    To explore the effect of human umbilical cord blood mononuclear cells (UCBMC) promoting nerve behavior function and brain tissue recovery of neonatal SD rat with hypoxic ischemic brain injury (HIBI). A modified newborn rat model that had a combined hypoxic and ischemic brain injury as described by Rice-Vannucci was used, early nervous reflex, the Morris water maze and walking track analysis were used to evaluate nervous behavioral function, and brain MRI, HE staining to evaluate brain damage recovery. Newborn rat Rice-Vannucci model showed significant brain atrophy, obvious hemiplegia of contralateral limbs,e.g right step length [(7.67 ± 0.46) cm vs. (8.22 ± 0.50) cm, F = 1.494] and toe distance [(0.93 ± 0.06) cm vs. (1.12 ± 0.55) cm, F = 0.186] were significantly reduced compared with left side, learning and memory ability was significantly impaired compared with normal control group (P < 0.01); Cliff aversion [(8.44 ± 2.38) s vs.(14.22 ± 5.07) s, t = 4.618] and negative geotaxis reflex time [(7.26 ± 2.00) s vs. (11.76 ± 3.73) s, t = 4.755] on postnatal 14 days of HIBI+ transplantation group were significantly reduced compared with HIBI+NaCl group (P < 0.01) ; the Morris water maze experiment showed escape latency [ (23.11 ± 6.64) s vs. (34.04 ± 12.95) s, t = 3.356] and swimming distance [ (9.12 ± 1.21) cm vs.(12.70 ± 1.53) cm, t = 17.095] of HIBI+transplantation group were significantly reduced compared with those of HIBI+NaCl group (P < 0.01) ; the residual brain volume on postnatal 10 d [ (75.37 ± 4.53)% vs. (67.17 ± 4.08)%, t = -6.017] and 67 d [ (69.05 ± 3.58)% vs.(60.83 ± 3.69)%, t = -7.148]of HIBI+ transplantation group were significantly larger than those of HIBI+NaCl group (P < 0.01); After human UCBMC transplantation, left cortical edema significantly reduced and nerve cell necrosis of HIBI+ transplantation group is not obvious compared with HIBI+NaCl group. Human UCBMC intraperitoneal transplantation significantly promoted recovery of injured brain cells and neurobehavioral function development.

  2. Alterations of apoptosis and autophagy in developing brain of rats with epilepsy: Changes in LC3, P62, Beclin-1 and Bcl-2 levels.

    PubMed

    Li, Qinrui; Han, Ying; Du, Junbao; Jin, Hongfang; Zhang, Jing; Niu, Manman; Qin, Jiong

    2018-05-01

    Current studies have indicated that apoptotic and autophagic signaling pathways are triggered by epileptic seizures, but the precise roles of these processes in epilepsy-induced neuronal loss remain unclear. Identifying a concrete molecular mechanism may help researchers develop relevant epilepsy therapies that are more effective than existing treatments. Autophagy is a type of conserved degradation that contributes to cellular homeostasis. The involved signaling pathways allow us to observe alterations in autophagy and apoptosis during epileptic seizures over time. This study investigated the time-dependent changes in autophagy, apoptosis and neuronal morphology in developing brain of epilepsy model rats. At 48h after epileptic seizure onset, the number of neurons in neocortex decreased, and the number of apoptotic cells in neocortex increased. The ratio of microtubule-associated protein 1 light chain 3 (LC3) II to LC3 I and Beclin-1 protein levels increased from 12h to 48h after epileptic seizure onset. P62 protein and Bcl-2 protein levels decreased from 24h to 48h after epileptic seizure onset. The changes in the levels of these autophagy and apoptosis markers indicate that autophagy starts before apoptosis in rats with epilepsy, demonstrating a potential role of autophagy in epilepsy-induced neuronal loss in developing brain. Copyright © 2017. Published by Elsevier B.V.

  3. [Experimental study on the possibility of brain damage induced by chronic treatment with phenobarbital, clonazepam, valproic acid and topiramate in immature rats].

    PubMed

    Zhu, Hai-xia; Cai, Fang-cheng; Zhang, Xiao-ping

    2007-02-01

    To explore the possibility of brain damage induced by several anti-epileptic drugs (AEDs) at therapeutic level to immature brain of rat. Totally 160 healthy Spraque-Dawley (SD) rats selected for the study were divided into infant and adult groups. Each age group was treated with phenobarbital (PB), clonazepam (CZP), valproic acid (VPA), topiramate (TPM) or normal saline respectively for 2 or 5 weeks with 8 rats in each group. The steady-state plasma concentrations of AEDs at the experimental dosage were coincided with the range of clinical therapeutic concentrations. Drug levels in plasma were determined by fluorescence polarization. Body and brain weights were measured when the rats were sacrificed. Histological studies on the tissues of frontal lobes and hippocampus were performed by Nissl staining. And ultrastructural changes of brain were observed by the transmission electron microscopy. Plasma neuron-specific enolase (NSE) was determined by ELISA. Expression of apoptosis-related proteins Bcl-2 and Bax in neurons was detected by immunohistochemistry. Neuronal apoptosis was detected by terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL). (1) There were no significant differences in brain weight among all adults groups. While remarkable reduction of brain weight was observed in immature rats exposed to CZP or PB (P < 0.01) for long term. (2) Significant neurodegeneration, neuronal necrosis and decrease in the number of neurons can be observed in the immature rats exposed to CZP or PB for long period. (3) For immature rats, concentration of plasma NSE was increased even after short-term treatment with PB [(8.84 +/- 2.10) nmol/L] compared with control group [(6.27 +/- 1.27) nmol/L] (P < 0.01). And it was increased in immature rats exposed to CZP [(8.15 +/- 1.67) nmol/L] or PB [(8.07 +/- 1.27) nmol/L] for long term compared with controls [(6.02 +/- 1.20) nmol/L] (P < 0.01). But there were no significant differences between AEDs-treated adult rats and control rats. (4) The expression of Bcl-2 and Bax protein in mature brain did not change at therapeutic level. In contrast, expression of Bax protein in the frontal lobe was increased significantly in immature rats receiving CZP and PB for long period compared with control. (5) The number of TUNEL positive cells in immature rats exposed to CZP or PB for long term was obviously increased. PB and CZP may result in remarkable histological abnormalities, neuronal apoptosis and necrosis in immature brain. The brain damage induced by PB was more serious and persistent than that induced by CZP.

  4. Acetyl-L-carnitine improves aged brain function.

    PubMed

    Kobayashi, Satoru; Iwamoto, Machiko; Kon, Kazuo; Waki, Hatsue; Ando, Susumu; Tanaka, Yasukazu

    2010-07-01

    The effects of acetyl-L-carnitine (ALCAR), an acetyl derivative of L-carnitine, on memory and learning capacity and on brain synaptic functions of aged rats were examined. Male Fischer 344 rats were given ALCAR (100 mg/kg bodyweight) per os for 3 months and were subjected to the Hebb-Williams tasks and AKON-1 task to assess their learning capacity. Cholinergic activities were determined with synaptosomes isolated from brain cortices of the rats. Choline parameters, the high-affinity choline uptake, acetylcholine (ACh) synthesis and depolarization-evoked ACh release were all enhanced in the ALCAR group. An increment of depolarization-induced calcium ion influx into synaptosomes was also evident in rats given ALCAR. Electrophysiological studies using hippocampus slices indicated that the excitatory postsynaptic potential slope and population spike size were both increased in ALCAR-treated rats. These results indicate that ALCAR increases synaptic neurotransmission in the brain and consequently improves learning capacity in aging rats.

  5. Paraquat induces oxidative stress, neuronal loss in substantia nigra region and Parkinsonism in adult rats: Neuroprotection and amelioration of symptoms by water-soluble formulation of Coenzyme Q10

    PubMed Central

    Somayajulu-Niţu, Mallika; Sandhu, Jagdeep K; Cohen, Jerome; Sikorska, Marianna; Sridhar, TS; Matei, Anca; Borowy-Borowski, Henryk; Pandey, Siyaram

    2009-01-01

    Background Parkinson's disease, for which currently there is no cure, develops as a result of progressive loss of dopamine neurons in the brain; thus, identification of any potential therapeutic intervention for disease management is of a great importance. Results Here we report that prophylactic application of water-soluble formulation of coenzyme Q10 could effectively offset the effects of environmental neurotoxin paraquat, believed to be a contributing factor in the development of familial PD. In this study we utilized a model of paraquat-induced dopaminergic neurodegeneration in adult rats that received three weekly intra-peritoneal injections of the herbicide paraquat. Histological and biochemical analyses of rat brains revealed increased levels of oxidative stress markers and a loss of approximately 65% of dopamine neurons in the substantia nigra region. The paraquat-exposed rats also displayed impaired balancing skills on a slowly rotating drum (rotorod) evidenced by their reduced spontaneity in gait performance. In contrast, paraquat exposed rats receiving a water-soluble formulation of coenzyme Q10 in their drinking water prior to and during the paraquat treatment neither developed neurodegeneration nor reduced rotorod performance and were indistinguishable from the control paraquat-untreated rats. Conclusion Our data confirmed that paraquat-induced neurotoxicity represents a convenient rat model of Parkinsonian neurodegeneration suitable for mechanistic and neuroprotective studies. This is the first preclinical evaluation of a water-soluble coenzyme Q10 formulation showing the evidence of prophylactic neuroprotection at clinically relevant doses. PMID:19635141

  6. An easy-to-use liquid chromatography assay for the analysis of lamotrigine in rat plasma and brain samples using microextraction by packed sorbent: Application to a pharmacokinetic study.

    PubMed

    Ventura, Sandra; Rodrigues, Márcio; Pousinho, Sarah; Falcão, Amílcar; Alves, Gilberto

    2016-11-01

    A simple and rapid high-performance liquid chromatography method with diode-array detection (HPLC-DAD) using microextraction by packed sorbent (MEPS) during the sample preparation step was developed and validated to quantify lamotrigine (LTG) in rat plasma and brain samples. MEPS variables such as pH, number of draw-eject cycles, and washing and desorption conditions were optimized. The chromatographic resolution of LTG and chloramphenicol, used as internal standard (IS), was accomplished in less than 5min on a C18 column, at 35°C, using an isocratic elution with acetonitrile (13%), methanol (13%) and water-triethylamine (99.7:0.3, v/v; pH 6.0) pumped at a flow rate of 1mL/min. Detection was performed at 215nm. Calibration curves were linear over the range of 0.1-20μg/mL (r 2 ≥0.9947) for LTG in both rat plasma and brain homogenate samples. The intra and interday imprecision did not exceed 8.6% and the intra and interday inaccuracy ranged from -8.1 to 13.5%. LTG was extracted from rat plasma and brain homogenate samples with an average absolute recovery ranging from 68.0 to 86.7%, and its stability was demonstrated in the assayed conditions. No interferences were observed at the retention times of the analyte (LTG) and IS. To the best of our knowledge, this is the first bioanalytical assay that uses MEPS procedure for the determination of LTG not only in rat plasma but also in tissue (brain) samples. This novel method was successfully applied to a preliminary pharmacokinetic study in rats and it seems to be a cost-effective tool to support non-clinical pharmacokinetic-based studies involving LTG treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Lack of toxic effect of technical azadirachtin during postnatal development of rats.

    PubMed

    Srivastava, M K; Raizada, R B

    2007-03-01

    Azadirachtin, a biopesticide has been evaluated for its possible toxic effects during postnatal development of rats over two generations. Rats were fed 100, 500 and 1000ppm technical azadirachtin through diet which is equivalent to 5, 25 and 50mg/kg body weight of rats. Technical azadirachtin has not produced any adverse effects on reproductive function and data were comparable to control animals over two generations. There were no toxicological effect in parent rats as evidenced by clinical signs of toxicity, enzymatic parameters like AST, ALT, ALP, S. bilirubin, S. cholesterol, total protein and histopathology of liver, brain, kidney and testes/ovary. The litters of F(1B) and F(2B) generations were devoid of any morphological, visceral and teratological changes. The percent cumulative loss and growth index of pups were also comparable to respective controls in successive growth period of 0, 4, 7, 14 and 21 days in two generations. There were no major malformations in fetuses while some insignificant minor skeletal variations like missing 5th sternebrae and bipartite thoracic centre found were not compound or dose related. No significant pathomorphological changes were observed in liver, kidney, brain and gonads of F(2B) pups. In conclusion rats fed technical azadirachtin showed no evidence of cumulative effects on postnatal development and reproductive performance over two generations. Absence of any major adverse reproductive effects in adults as well as in 21 days old pups of F(2B) generation suggest the safe use of technical azadirachtin as a biopesticide.

  8. Preprotachykinin A mRNA expression in the rat brain during development.

    PubMed

    Brené, S; Lindefors, N; Friedman, W J; Persson, H

    1990-12-15

    Expression of preprotachykinin A (PPT-A) mRNA was analyzed by northern blots using mRNA prepared from rat brain at 12 different developmental stages ranging from embryonic day 15 (E15) to adult. A single PPT-A mRNA of 1.3 kb was detected throughout development. PPT-A mRNA was detected as early as E15 and an approximately 3-fold increase occurred at birth. This amount remained until 3 weeks of age when the level increased, reaching a peak at 5 weeks of age. Adult amounts were approximately 3-fold higher than the levels at birth. The distribution of PPT-A mRNA-expressing cells in rat brain was studied by in situ hybridization on sections from embryonic day 20, postnatal days 4 and 7 as well as adult. Cells expressing PPT-A mRNA were detected in the forebrain at all 4 ages analyzed. However, the hybridization pattern and the labeling intensity varied in different brain regions during development. In cingulate cortex, intense labeling was seen in numerous cells at embryonic day 20 and postnatal days 4 and 7, whereas in the adult cingulate cortex only a few scattered labeled cells were observed. In frontoparietal cortex labeled cells were found from postnatal day 4 to adult, with the highest density of labeled cells at P7. Developmental differences in both the distribution of PPT-A mRNA-expressing cells and the level of PPT-A mRNA expression were also found in caudate-putamen, lateral hypothalamus and amygdala. Thus, our results show several changes in PPT-A mRNA expression during ontogeny, indicating a region and time-specific regulation of PPT-A mRNA expression during brain maturation.

  9. Ganoderma Lucidum Protects Rat Brain Tissue Against Trauma-Induced Oxidative Stress.

    PubMed

    Özevren, Hüseyin; İrtegün, Sevgi; Deveci, Engin; Aşır, Fırat; Pektanç, Gülsüm; Deveci, Şenay

    2017-10-01

    Traumatic brain injury causes tissue damage, breakdown of cerebral blood flow and metabolic regulation. This study aims to investigate the protective influence of antioxidant Ganoderma lucidum ( G. lucidum ) polysaccharides (GLPs) on brain injury in brain-traumatized rats. Sprague-Dawley conducted a head-traumatized method on rats by dropping off 300 g weight from 1 m height. Groups were categorized as control, G. lucidum , trauma, trauma+ G. lucidum (20 mL/kg per day via gastric gavage). Brain tissues were dissected from anesthetized rats 7 days after injury. For biochemical analysis, malondialdehyde, glutathione and myeloperoxidase values were measured. In histopathological examination, neuronal damage in brain cortex and changes in blood brain barrier were observed. In the analysis of immunohistochemical and western blot, p38 mitogen-activated protein kinase, vascular endothelial growth factor and cluster of differentiation 68 expression levels were shown. These analyzes demonstrated the beneficial effects of GLPs on brain injury. We propose that GLPs treatment after brain injury could be an alternative treatment to decraseing inflammation and edema, preventing neuronal and glial cells degeneration if given in appropriate dosage and in particular time intervals.

  10. Gold-nanorod contrast-enhanced photoacoustic micro-imaging of focused-ultrasound induced blood-brain-barrier opening in a rat model

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Liu, Hao-Li; Hsu, Po-Hung; Lin, Chia-Yu; Chris Wang, Churng-Ren; Chen, Pin-Yuan; Wei, Kuo-Chen; Yen, Tzu-Chen; Li, Meng-Lin

    2012-06-01

    In this study, we develop a novel photoacoustic imaging technique based on gold nanorods (AuNRs) for quantitatively monitoring focused-ultrasound (FUS) induced blood-brain barrier (BBB) opening in a rat model in vivo. This study takes advantage of the strong near-infrared absorption (peak at ~800 nm) of AuNRs and the extravasation tendency from BBB opening foci due to their nano-scale size to passively label the BBB disruption area. Experimental results show that AuNR contrast-enhanced photoacoustic microscopy (PAM) successfully reveals the spatial distribution and temporal response of BBB disruption area in the rat brains. The quantitative measurement of contrast enhancement has potential to estimate the local concentration of AuNRs and even the dosage of therapeutic molecules when AuNRs are further used as nano-carrier for drug delivery or photothermal therapy. The photoacoustic results also provide complementary information to MRI, being helpful to discover more details about FUS induced BBB opening in small animal models.

  11. Neuroprotective mechanisms activated in non-seizing rats exposed to sarin.

    PubMed

    Te, Jerez A; Spradling-Reeves, Kimberly D; Dillman, James F; Wallqvist, Anders

    2015-08-27

    Exposure to organophosphate (OP) nerve agents, such as sarin, may lead to uncontrolled seizures and irreversible brain injury and neuropathology. In rat studies, a median lethal dose of sarin leads to approximately half of the animals developing seizures. Whereas previous studies analyzed transcriptomic effects associated with seizing sarin-exposed rats, our study focused on the cohort of sarin-exposed rats that did not develop seizures. We analyzed the genomic changes occurring in sarin-exposed, non-seizing rats and compared differentially expressed genes and pathway activation to those of seizing rats. At the earliest time point (0.25 h) and in multiple sarin-sensitive brain regions, defense response genes were commonly expressed in both groups of animals as compared to the control groups. All sarin-exposed animals activated the MAPK signaling pathway, but only the seizing rats activated the apoptotic-associated JNK and p38 MAPK signaling sub-pathway. A unique phenotype of the non-seizing rats was the altered expression levels of genes that generally suppress inflammation or apoptosis. Importantly, the early transcriptional response for inflammation- and apoptosis-related genes in the thalamus showed opposite trends, with significantly down-regulated genes being up-regulated, and vice versa, between the seizing and non-seizing rats. These observations lend support to the hypothesis that regulation of anti-inflammatory genes might be part of an active and sufficient response in the non-seizing group to protect against the onset of seizures. As such, stimulating or activating these responses via pretreatment strategies could boost resilience against nerve agent exposures. Published by Elsevier B.V.

  12. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    PubMed

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  13. A comparison of the apoptotic effect of Delta(9)-tetrahydrocannabinol in the neonatal and adult rat cerebral cortex.

    PubMed

    Downer, Eric J; Gowran, Aoife; Campbell, Veronica A

    2007-10-17

    The maternal use of cannabis during pregnancy results in a number of cognitive deficits in the offspring that persist into adulthood. The endocannabinoid system has a role to play in neurodevelopmental processes such as neurogenesis, migration and synaptogenesis. However, exposure to phytocannabinoids, such as Delta(9)-tetrahydrocannabinol, during gestation may interfere with these events to cause abnormal patterns of neuronal wiring and subsequent cognitive impairments. Aberrant cell death evoked by Delta(9)-tetrahydrocannabinol may also contribute to cognitive deficits and in cultured neurones Delta(9)-tetrahydrocannabinol induces apoptosis via the CB(1) cannabinoid receptor. In this study we report that Delta(9)-tetrahydrocannabinol (5-50 microM) activates the stress-activated protein kinase, c-jun N-terminal kinase, and the pro-apoptotic protease, caspase-3, in in vitro cerebral cortical slices obtained from the neonatal rat brain. The proclivity of Delta(9)-tetrahydrocannabinol to impact on these pro-apoptotic signalling molecules was not observed in in vitro cortical slices obtained from the adult rat brain. In vivo, subcutaneous administration of Delta(9)-tetrahydrocannabinol (1-30 mg/kg) activated c-jun N-terminal kinase, caspase-3 and cathepsin-D, and induced DNA fragmentation in the cerebral cortex of neonatal rats. In contrast, in vivo administration of Delta(9)-tetrahydrocannabinol to adult rats was not associated with the apoptotic pathway in the cerebral cortex. The data provide evidence which supports the hypothesis that the neonatal rat brain is more vulnerable to the neurotoxic influence of Delta(9)-tetrahydrocannabinol, suggesting that the cognitive deficits that are observed in humans exposed to marijuana during gestation may be due, in part, to abnormal engagement of the apoptotic cascade during brain development.

  14. Environmental enrichment reduces cocaine neurotoxicity during cocaine-conditioned place preference in male rats.

    PubMed

    Freese, Luana; Almeida, Felipe Borges; Heidrich, Nubia; Hansen, Alana Witt; Steffens, Luiza; Steinmetz, Aline; Moura, Dinara Jaqueline; Gomez, Rosane; Barros, Helena Maria Tannhauser

    2018-06-01

    Environmental enrichment (EE) has a neuroprotective role and prevents the development of cocaine addiction behavior in rats. Studies showing the role of EE in cocaine toxicity are nonexistent. We hypothesized that rats exposed to EE are protected from cocaine-induced changes in the redox profile and DNA damage after undergoing conditioned place preference (CPP). Ten male Wistar rats were placed in EE cages equipped with toys, a ladder and tunnels, and ten were provided clean, standard laboratory housing (non-EE). EE and non-EE rats were randomly allocated to the classical CPP cocaine vs. saline (COC/Saline) group, where cocaine (15 mg/kg; i.p.) was tested alternately with saline. Afterwards, intracellular reactive species and antioxidant enzymes were evaluated and the comet essay was performed in the prefrontal cortex and hippocampus of rats. As expected, EE rats spent less time in the cocaine-paired chamber, and as a new result, less cocaine-induced DNA damage was observed in the two brain structures. Altogether, our results demonstrate that EE decreases neurotoxicity in brain regions linked to cocaine addiction but does not extinguish it completely. Copyright © 2018. Published by Elsevier Inc.

  15. ADOLESCENT INTERMITTENT ETHANOL EXPOSURE ENHANCES ETHANOL ACTIVATION OF THE NUCLEUS ACCUMBENS WHILE BLUNTING THE PREFRONTAL CORTEX RESPONSES IN ADULT RAT

    PubMed Central

    LIU, W.; CREWS, F. T.

    2016-01-01

    The brain continues to develop through adolescence when excessive alcohol consumption is prevalent in humans. We hypothesized that binge drinking doses of ethanol during adolescence will cause changes in brain ethanol responses that persist into adulthood. To test this hypothesis Wistar rats were treated with an adolescent intermittent ethanol (AIE; 5 g/kg, i.g. 2 days on–2 days off; P25–P54) model of underage drinking followed by 25 days of abstinence during maturation to young adulthood (P80). Using markers of neuronal activation c-Fos, EGR1, and phophorylated extracellar signal regulated kinase (pERK1/2), adult responses to a moderate and binge drinking ethanol challenge, e.g., 2 or 4 g/kg, were determined. Adult rats showed dose dependent increases in neuronal activation markers in multiple brain regions during ethanol challenge. Brain regional responses correlated are consistent with anatomical connections. AIE led to marked decreases in adult ethanol PFC (prefrontal cortex) and blunted responses in the amygdala. Binge drinking doses led to the nucleus accumbens (NAc) activation that correlated with the ventral tegmental area (VTA) activation. In contrast to other brain regions, AIE enhanced the adult NAc response to binge drinking doses. These studies suggest that adolescent alcohol exposure causes long-lasting changes in brain responses to alcohol that persist into adulthood. PMID:25727639

  16. Acidosis mediates recurrent hypoglycemia-induced increase in ischemic brain injury in treated diabetic rats.

    PubMed

    Rehni, Ashish K; Shukla, Vibha; Perez-Pinzon, Miguel A; Dave, Kunjan R

    2018-03-15

    Cerebral ischemia is a serious possible manifestation of diabetic vascular disease. Recurrent hypoglycemia (RH) enhances ischemic brain injury in insulin-treated diabetic (ITD) rats. In the present study, we determined the role of ischemic acidosis in enhanced ischemic brain damage in RH-exposed ITD rats. Diabetic rats were treated with insulin and mild/moderate RH was induced for 5 days. Three sets of experiments were performed. The first set evaluated the effects of RH exposure on global cerebral ischemia-induced acidosis in ITD rats. The second set evaluated the effect of an alkalizing agent (Tris-(hydroxymethyl)-aminomethane: THAM) on ischemic acidosis-induced brain injury in RH-exposed ITD rats. The third experiment evaluated the effect of the glucose transporter (GLUT) inhibitor on ischemic acidosis-induced brain injury in RH-exposed ITD rats. Hippocampal pH and lactate were measured during ischemia and early reperfusion for all three experiments. Neuronal survival in Cornu Ammonis 1 (CA1) hippocampus served as a measure of ischemic brain injury. Prior RH exposure increases lactate concentration and decreases pH during ischemia and early reperfusion when compared to controls. THAM and GLUT inhibitor treatments attenuated RH-induced increase in ischemic acidosis. GLUT inhibitor treatment reduced the RH-induced increase in lactate levels. Both THAM and GLUT inhibitor treatments significantly decreased ischemic damage in RH-exposed ITD rats. Ischemia causes increased acidosis in RH-exposed ITD rats via a GLUT-sensitive mechanism. Exploring downstream pathways may help understand mechanisms by which prior exposure to RH increases cerebral ischemic damage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. [Effect of weightlessness on the indices of brain development (the results of pregnant rats being on the Kosmos-1514 biosatellite and research on the subsequent development of their progeny on Earth)].

    PubMed

    Olenev, S N; Danilov, A R; Kriuchkova, T A; Sorokina, L M; Krasnov, I B

    1987-09-01

    Beginning from the 13th day of pregnancy the rats were under conditions of weightlessness of spaceflight for 6 days. After landing in 18-day-old fetuses the state of their brain development is investigated comparing to that in control animals, that are on the Earth. As demonstrates analysis of a number of morphological processes: reproduction, migration, neuronal differentiation, growth of processes, establishment of nervous connections, neuroglial interconnections and vascularization--all they under conditions of weightlessness develop rather fully. Certain deviations in vascularization (as examples the medulla oblongata and the striated tuber are taken) are observed--the amount of vessels is greater and they are thinner--and changes in migration rate of cells is demonstrated by the example of the cortical plate formation. These changes are quickly levelled during their subsequent development on the Earth.

  18. Selective Androgen Receptor Modulator RAD140 Is Neuroprotective in Cultured Neurons and Kainate-Lesioned Male Rats

    PubMed Central

    Jayaraman, Anusha; Christensen, Amy; Moser, V. Alexandra; Vest, Rebekah S.; Miller, Chris P.; Hattersley, Gary

    2014-01-01

    The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed “selective androgen receptor modulators” (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases. PMID:24428527

  19. Involvement of insulin resistance in D-galactose-induced age-related dementia in rats: Protective role of metformin and saxagliptin

    PubMed Central

    Kenawy, Sara; Hassan, Azza; El-Shenawy, Siham; Gomaa, Nawal; Zaki, Hala; Attia, Amina

    2017-01-01

    Age-related dementia is one of the most devastating disorders affecting the elderly. Recently, emerging data suggest that impaired insulin signaling is the major contributor in the development of Alzheimer’s dementia (AD), which is the most common type of senile dementia. In the present study, we investigated the potential therapeutic effects of metformin (Met) and saxagliptin (Saxa), as insulin sensitizing agents, in a rat model of brain aging and AD using D-galactose (D-gal, 150 mg/kg/day, s.c. for 90 successive days). Six groups of adult male Wistar rats were used: normal, D-gal, Met (500 mg/kg/day, p.o), and Saxa (1 mg/kg/day, p.o) control groups, as well as D-gal/Met and D-gal/Sax treated groups. Impaired learning and memory function was observed in rats treated with D-gal using Morris water maze test. Biochemical and histopathological findings also revealed some characteristic changes of AD in the brain that include the increased content of acetylcholine, glutamate, and phosphorelated tau, as well as deposition of amyloid plaques and neurofibrillary tangles. Induction of insulin resistance in experimentally aged rats was evidenced by increased blood glycated hemoglobin, brain contents of insulin and receptors for advanced glycated end-products, as well as decreased brain insulin receptor level. Elevation of oxidative stress markers and TNF-α brain content was also demonstrated. Met and Saxa, with a preference to Met, restored the normal memory and learning functions in rats, improved D-gal-induced state of insulin resistance, oxidative stress and inflammation, and ameliorated the AD biochemical and histopathological alterations in brain tissues. Our findings suggest that D-gal model of aging results in a diminishing of learning and memory function by producing a state of impaired insulin signaling that causes a cascade of deleterious events like oxidative stress, inflammation, and tau hyper-phosphorylation. Reversing of these harmful effects by the use of insulin-sensitizing drugs like Met and Saxa suggests their involvement in alleviation insulin resistance as the underlying pathology of AD and hence their potential use as anti-dementia drugs. PMID:28832656

  20. Application of intracerebral microdialysis to study regional distribution kinetics of drugs in rat brain.

    PubMed Central

    de Lange, E. C.; Bouw, M. R.; Mandema, J. W.; Danhof, M.; de Boer, A. G.; Breimer, D. D.

    1995-01-01

    1. The purpose of the present study was to determine whether intracerebral microdialysis can be used for the assessment of local differences in drug concentrations within the brain. 2. Two transversal microdialysis probes were implanted in parallel into the frontal cortex of male Wistar rats, and used as a local infusion and detection device respectively. Within one rat, three different concentrations of atenolol or acetaminophen were infused in randomized order. By means of the detection probe, concentration-time profiles of the drug in the brain were measured at interprobe distances between 1 and 2 mm. 3. Drug concentrations were found to be dependent on the drug as well as on the interprobe distance. It was found that the outflow concentration from the detection probe decreased with increasing lateral spacing between the probes and this decay was much steeper for acetaminophen than for atenolol. A model was developed which allows estimation of kbp/Deff (transfer coefficient from brain to blood/effective diffusion coefficient in brain extracellular fluid), which was considerably larger for the more lipohilic drug, acetaminophen. In addition, in vivo recovery values for both drugs were determined. 4. The results show that intracerebral microdialysis is able to detect local differences in drug concentrations following infusion into the brain. Furthermore, the potential use of intracerebral microdialysis to obtain pharmacokinetic parameters of drug distribution in brain by means of monitoring local concentrations of drugs in time is demonstrated. PMID:8581296

  1. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves

    PubMed Central

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-01-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36–45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125

  2. Aging causes exacerbated ischemic brain injury and failure of sevoflurane post-conditioning: role of B-cell lymphoma-2.

    PubMed

    Dong, P; Zhao, J; Zhang, Y; Dong, J; Zhang, L; Li, D; Li, L; Zhang, X; Yang, B; Lei, W

    2014-09-05

    Aging is associated with exacerbated brain injury after ischemic stroke. Herein, we explored the possible mechanisms underlying the age-associated exacerbated brain injury after ischemic stroke and determined whether therapeutic intervention with anesthetic post-conditioning would provide neuroprotection in aged rats. Male Fisher 344 rats (young, 4 months; aged, 24 months) underwent 2h of middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion, with or without sevoflurane post-conditioning for 15 min immediately at the onset of reperfusion. Compared with young rats, aged rats showed larger infarct size, worse neurological scores and more TUNEL-positive cells in the penumbral cerebral cortex at 24h after MCAO. However, edema formation and motor coordination were similar in both groups. Sevoflurane reduced the infarct size, edema formation, and TUNEL-positive cells, and improved the neurological outcome in young rats but not in aged rats. Molecular studies revealed that basal expression of the anti-apoptotic molecule B-cell lymphoma-2 (Bcl-2) in the brain was lower in aged rats compared with young rats before MCAO, while basal expression of the pro-apoptotic molecule Bcl-2-associated X protein (Bax) showed similar levels in both groups. MCAO reduced Bcl-2 expression and increased Bax expression in both groups; however, Bax increase was more pronounced in aged rats. In young rats, sevoflurane reversed the above MCAO-induced changes. In contrast, sevoflurane failed to enhance Bcl-2 expression but decreased Bax expression in aged rats. These findings suggest that aging-associated reduction in basal Bcl-2 expression in the brain contributes to increased neuronal injury by enhancing cell apoptosis after ischemic stroke. Sevoflurane post-conditioning failed to provide neuroprotection in aged rats, probably due to its inability to increase Bcl-2 levels and prevent apoptosis in the brain. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Effect of naturally mouldy wheat or fungi administration on metallothioneins level in brain tissues of rats.

    PubMed

    Vasatkova, Anna; Krizova, Sarka; Krystofova, Olga; Adam, Vojtech; Zeman, Ladislav; Beklova, Miroslava; Kizek, Rene

    2009-01-01

    The aim of this study is to determine level of metallothioneins (MTs) in brain tissues of rats administered by feed mixtures with different content of mouldy wheat or fungi. Selected male laboratory rats of Wistar albino at age of 28 days were used in our experiments. The rats were administered by feed mixtures with different content of vitamins, naturally mouldy wheat or fungi for 28 days. At the very end of the experiment, the animals were put to death and brains were sampled. MT level was determined by differential pulse voltammetry Brdicka reaction. We found that MTs' level in brain tissues from rats administered by standard feed mixtures was significantly higher compared to the level of MTs in rats supplemented by vitamins. Further we studied the effect of supplementation of naturally mouldy wheat on MTs level in rats. In mouldy wheat we detected the presence of following fungi species: Mucor spp., Absidia spp., Penicillium spp., Aspergillus spp. and Fusarium spp. Moreover we also identified and quantified following mycotoxins - deoxynivalenol, zearalenone, T2-toxin and aflatoxins. Level of MTs determined in rats treated with 33 or 66% of mouldy wheat was significantly lower compared to control ones. On the other hand rats treated with 100% of mouldy wheat had less MTs but not significantly. Supplementation of vitamins to rats fed by mouldy wheat had adverse effect on MTs level compared to rats with no other supplementation by vitamins. Moreover vitamins supplementation has no effect on MTs level in brain tissues of rats treated or non-treated with Ganoderma lucidum L. Both mycotoxins and vitamins have considerable effect on level of MTs in brain tissues. It can be assumed that the administered substances markedly influence redox metabolism, which could negatively influence numerous biochemical pathways including those closely related with MTs.

  4. Effects of heavy ion radiation on the brain vascular system and embryonic development

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Tobias, C. A.

    1984-01-01

    The present investigation is concerned with the effects of heavy-ion radiation on the vascular system and the embryonic development, taking into account the results of experiments with neonatal rats and mouse embryos. It is found that heavy ions can be highly effective in producing brain hemorrhages and in causing body deformities. Attention is given to aspects of methodology, the induction of brain hemorrhages by X-rays and heavy ions, and the effect of iron particles on embryonic development. Reported results suggest that high linear energy transfer (LET) heavy ions can be very effective in producing developmental abnormalities.

  5. In situ expression of heat-shock proteins and 3-nitrotyrosine in brains of young rats exposed to a WiFi signal in utero and in early life.

    PubMed

    Aït-Aïssa, Saliha; de Gannes, Florence Poulletier; Taxile, Murielle; Billaudel, Bernard; Hurtier, Annabelle; Haro, Emmanuelle; Ruffié, Gilles; Athané, Axel; Veyret, Bernard; Lagroye, Isabelle

    2013-06-01

    The bioeffects of exposure to Wireless High-Fidelity (WiFi) signals on the developing nervous systems of young rodents was investigated by assessing the in vivo and in situ expression levels of three stress markers: 3-Nitrotyrosine (3-NT), an oxidative stress marker and two heat-shock proteins (Hsp25 and Hsp70). These biomarkers were measured in the brains of young rats exposed to a 2450 MHz WiFi signal by immunohistochemistry. Pregnant rats were first exposed or sham exposed to WiFi from day 6 to day 21 of gestation. In addition three newborns per litter were further exposed up to 5 weeks old. Daily 2-h exposures were performed blind in a reverberation chamber and whole-body specific absorption rate levels were 0, 0.08, 0.4 and 4 W/kg. 3-NT and stress protein expression was assayed in different areas of the hippocampus and cortex. No significant difference was observed among exposed and sham-exposed groups. These results suggest that repeated exposure to WiFi during gestation and early life has no deleterious effects on the brains of young rats.

  6. Stress-Induced Transcriptional Regulation in the Developing Rat Brain Involves Increased Cyclic Adenosine 3′,5′-Monophosphate-Regulatory Element Binding Activity

    PubMed Central

    Hatalski, Carolyn G.; Baram, Tallie Z.

    2012-01-01

    The cAMP-regulatory element (CRE) binding protein (CREB) functions as a trans-acting regulator of genes containing the CRE sequence in their promoter. These include a number of critical genes, such as CRF, involved in the hypothalamic response to stressful stimuli in the adult. The ability of the developing rat (during the first 2 postnatal weeks) to mount the full complement of this stress response has been questioned. We have previously demonstrated the stress-induced up-regulation of the transcription of hypothalamic CRF during the second postnatal week in the rat. The focus of the current study was to explore the mechanism of transcriptional regulation in response to stress through the physiological induction of transcriptional trans-activators that bind to the CRE in the developing rat brain. CRE-binding activity was detected via gel shift analysis in extracts from both the hypothalamus and the cerebral cortex of the developing rat. CREB was identified in these extracts by Western blot analysis and was shown to be the major contributor to the CRE-binding activity by gel shift analysis with two specific antibodies directed against CREB. After acute hypothermic stress, the abundance of CRE-binding activity (but not of total immunoreactive CREB), increased in hypothalamic extracts. This enhanced CRE-binding activity was blocked by an antiserum directed against CREB and was accompanied by an apparent increase in CREB phosphorylation. These results indicate that posttranslational enhancement of CRE-binding activity is likely to constitute an important mechanism for up-regulation of genes possessing the CRE sequence in the developing rat hypothalamus by adverse external signals. PMID:9415405

  7. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    PubMed Central

    Zhou, Hai-xiao; Liu, Zhi-gang; Liu, Xiao-jiao; Chen, Qian-xue

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. PMID:26981097

  8. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  9. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats.

    PubMed

    Jayachandra Babu, R; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip

    2011-11-01

    Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer's and Parkinson's diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway(™). The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway(™) as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats.

  10. Nose-to-brain transport of melatonin from polymer gel suspensions: a microdialysis study in rats

    PubMed Central

    Babu, R. Jayachandra; Dayal, Pankaj Patrick; Pawar, Kasturi; Singh, Mandip

    2012-01-01

    Purpose Exogenous melatonin (MT) has significant neuroprotective roles in Alzheimer’s and Parkinson’s diseases. This study investigates the delivery MT to brain via nasal route as a polymeric gel suspension using central brain microdialysis in anesthetized rats. Methods Micronized MT suspensions using polymers [carbopol, carboxymethyl cellulose (CMC)] and polyethylene glycol 400 (PEG400) were prepared and characterized for nasal administration. In vitro permeation of the formulations was measured across a three-dimensional tissue culture model EpiAirway™. The central brain delivery into olfactory bulb of nasally administered MT gel suspensions was studied using brain microdialysis in male Wistar rats. The MT content of microdialysis samples was analyzed by high performance liquid chromatography (HPLC) using electrochemical detection. The nose-to-brain delivery of MT formulations was compared with intravenously administered MT solution. Results MT suspensions in carbopol and CMC vehicles have shown significantly higher permeability across Epiairway™ as compared to control, PEG400 (P < 0.05). The brain (olfactory bulb) levels of MT after intranasal administration were 9.22, 6.77 and 4.04-fold higher for carbopol, CMC and PEG400, respectively, than that of intravenous MT in rats. In conclusion, microdialysis studies demonstrated increased brain levels of MT via nasal administration in rats. PMID:21428693

  11. Social stress during adolescence in Wistar rats induces social anxiety in adulthood without affecting brain monoaminergic content and activity.

    PubMed

    Vidal, Jose; Bie, Josien de; Granneman, Ramon A; Wallinga, Alinde E; Koolhaas, Jaap M; Buwalda, Bauke

    2007-12-05

    Adolescence has been described as an important period to acquire social competences required for adult life. It has been suggested that early stress experiences could affect the development of the brain at different levels. These changes in the brain during adolescence may be related with the development of psychopathologies such as depression and social anxiety in adulthood. In the first experiment, we examined long-term effects of repeated social stress during adolescence on adult social approach-avoidance behavior. For that purpose, adolescent male Wistar rats were exposed twice at postnatal day (Pnd) 45 and Pnd48 to the resident-intruder paradigm followed by three times psychosocial threat with the same resident. Three weeks after the last psychosocial threat experience the animals were behaviorally tested in a social approach-avoidance test. Socially stressed animals spent less time in the interaction zone with an unfamiliar male adult rat. These data suggest that animals exposed to social stress during adolescence show a higher level of social anxiety in adulthood. In the second experiment, we investigated whether these long-term effects of social stress during adolescence on behavior draw a parallel with changes in brain monoamine content, biosynthesis and turnover. Using the same experimental design as in the first experiment, HPLC analysis of various brain regions showed that there were no differences in monoamine content, monoamine biosynthesis and monoamines activity in the prefrontal cortex, hippocampus, hypothalamus and striatum in adulthood. These results indicate that long-lasting changes in social behavior following social stress during adolescence are not accompanied by changes in brain monoamine content, biosynthesis and turnover.

  12. From The Cover: Microtransplantation of functional receptors and channels from the Alzheimer's brain to frog oocytes

    NASA Astrophysics Data System (ADS)

    Miledi, R.; Dueñas, Z.; Martinez-Torres, A.; Kawas, C. H.; Eusebi, F.

    2004-02-01

    About a decade ago, cell membranes from the electric organ of Torpedo and from the rat brain were transplanted to frog oocytes, which thus acquired functional Torpedo and rat neurotransmitter receptors. Nevertheless, the great potential that this method has for studying human diseases has remained virtually untapped. Here, we show that cell membranes from the postmortem brains of humans that suffered Alzheimer's disease can be microtransplanted to the plasma membrane of Xenopus oocytes. We show also that these postmortem membranes carry neurotransmitter receptors and voltage-operated channels that are still functional, even after they have been kept frozen for many years. This method provides a new and powerful approach to study directly the functional characteristics and structure of receptors, channels, and other membrane proteins of the Alzheimer's brain. This knowledge may help in understanding the basis of Alzheimer's disease and also help in developing new treatments. -aminobutyric acid receptors | sodium channels | calcium channels | postmortem brain

  13. Gene Transfer into Rat Brain Using Adenoviral Vectors

    PubMed Central

    Puntel, Mariana; Kroeger, Kurt M.; Sanderson, Nicholas S.R.; Thomas, Clare E.; Castro, Maria G.; Lowenstein, Pedro R.

    2010-01-01

    Viral vector–mediated gene delivery is an attractive procedure for introducing genes into the brain, both for purposes of basic neuroscience research and to develop gene therapy for neurological diseases. Replication-defective adenoviruses possess many features which make them ideal vectors for this purpose—efficiently transducing terminally differentiated cells such as neurons and glial cells, resulting in high levels of transgene expression in vivo. Also, in the absence of anti-adenovirus immunity, these vectors can sustain very long-term transgene expression within the brain parenchyma. This unit provides protocols for the stereotactic injection of adenoviral vectors into the brain, followed by protocols to detect transgene expression or infiltrates of immune cells by immunocytochemistry or immunofluorescence. ELISPOT and neutralizing antibody assay methodologies are provided to quantitate the levels of cellular and humoral immune responses against adenoviruses. Quantitation of adenoviral vector genomes within the rat brain using qPCR is also described. Curr. Protoc. Neurosci. 50:4.24.1–4.24.49. © 2010 by John Wiley & Sons, Inc. PMID:20066657

  14. Blood-Brain Barrier Permeability Is Exacerbated in Experimental Model of Hepatic Encephalopathy via MMP-9 Activation and Downregulation of Tight Junction Proteins.

    PubMed

    Dhanda, Saurabh; Sandhir, Rajat

    2018-05-01

    The present study was designed to investigate the mechanisms involved in blood-brain barrier (BBB) permeability in bile duct ligation (BDL) model of chronic hepatic encephalopathy (HE). Four weeks after BDL surgery, a significant increase was observed in serum bilirubin levels. Masson trichrome staining revealed severe hepatic fibrosis in the BDL rats. 99m Tc-mebrofenin retention was increased in the liver of BDL rats suggesting impaired hepatobiliary transport. An increase in permeability to sodium fluorescein, Evans blue, and fluorescein isothiocyanate (FITC)-dextran along with increase in water and electrolyte content was observed in brain regions of BDL rats suggesting disrupted BBB. Increased brain water content can be attributed to increase in aquaporin-4 mRNA and protein expression in BDL rats. Matrix metalloproteinase-9 (MMP-9) mRNA and protein expression was increased in brain regions of BDL rats. Additionally, mRNA and protein expression of tissue inhibitor of matrix metalloproteinases (TIMPs) was also increased in different regions of brain. A significant decrease in mRNA expression and protein levels of tight junction proteins, viz., occludin, claudin-5, and zona occluden-1 (ZO-1) was observed in different brain regions of BDL rats. VCAM-1 mRNA and protein expression was also found to be significantly upregulated in different brain regions of BDL animals. The findings from the study suggest that increased BBB permeability in HE involves activation of MMP-9 and loss of tight junction proteins.

  15. Photoacoustic micro-imaging of focused ultrasound induced blood-brain-barrier opening in a rat model

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Hsu, Po-Hung; Liu, Hao-Li; Wang, Churng-Ren Chris; Li, Meng-Lin

    2010-02-01

    Blood brain barrier (BBB) prevents most of the drug from transmitting into the brain tissue and decreases the treatment performance for brain disease. One of the methods to overcome the difficulty of drug delivery is to locally increase the permeability of BBB with high-intensity focused ultrasound. In this study, we have investigated the feasibility of photoacoustic microscopy of focused-ultrasound induced BBB opening in a rat model in vivo with gold nanorods (AuNRs) as a contrast agent. This study takes advantage of the strong near-infrared absorption of AuNRs and their extravasation tendency from BBB opening foci due to their nano-scale size. Before the experiments, craniotomy was performed on rats to provide a path for focused ultrasound beam. Localized BBB opening at the depth of about 3 mm from left cortex of rat brains was achieved by delivering 1.5 MHz focused ultrasound energy into brain tissue in the presence of microbubbles. PEGylated AuNRs with a peak optical absorption at ~800 nm were then intravenously administered. Pre-scan prior to BBB disruption and AuNR injection was taken to mark the signal background. After injection, the distribution of AuNRs in rat brains was monitored up to 2 hours. Experimental results show that imaging AuNRs reveals BBB disruption area in left brains while there are no changes observed in the right brains. From our results, photoacoustic imaging plus AuNRs shows the promise as a novel monitoring strategy in identifying the location and variation of focused-ultrasound BBB-opening in a rat model.

  16. PERINATAL EXPOSURE TO POLYCHLORINATED BIPHENYLS AROCLOR 1016 OR 1254 DID NOT ALTER BRAIN CATECHOLAMINES NOR DELAYED ALTERNATION PERFORMANCE IN LONG EVANS RATS

    EPA Science Inventory

    Several reports have indicated that polychlorinated biphenyls (PCB) altered development of biogenic amine systems in the brain, impaired behavioral performances and disrupted maturation of the thyroid axis. The current study examines whether these developmental effects of PCB ar...

  17. Development of an autofluorescent probe designed to help brain tumor removal: study on an animal model

    NASA Astrophysics Data System (ADS)

    Siebert, R.; Leh, B.; Charon, Y.; Collado-Hilly, M.; Duval, M.-A.; Menard, L.; Monnet, F. P.; Varlet, P.

    2010-02-01

    The complete resection of the brain tumour is crucial to the patient life quality and prognosis. An autofluorescence probe aiming at helping the surgeon to improve the completeness of the removal is being developed. Autofluorescence spectroscopy is a promising approach to define whether the tissue is cancerous or not. First ex vivo measurements have been realised on an animal model. After tumorous cell injection in rat brain, autofluorescence intensity is revealed from the extracted brain. These autofluorescence data are compared to results from a histological analysis of same brains. First indicators are identified that may have the ability to differentiate tumorous and healthy tissues.

  18. Development of an UPLC-MS/MS method for simultaneous quantitation of 11 d-amino acids in different regions of rat brain: Application to a study on the associations of d-amino acid concentration changes and Alzheimer's disease.

    PubMed

    Li, Zhe; Xing, Yuping; Guo, Xingjie; Cui, Yan

    2017-07-15

    There are significant differences in d-amino acid concentrations between healthy people and Alzheimer's disease patients. In order to investigate the potential correlation between d-amino acids and Alzheimer's disease, a simple and sensitive ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed. The method was applied to simultaneous determination of 11 d-amino acids in different regions of rat brain. Rat brain homogenates were firstly pretreated with protein precipitation procedure and then derivatized with (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester [(S)-NIFE]. Baseline separation of the derivatives was achieved on an ACQUITY UPLC BEH C 18 column (2.1 mm×50mm, 1.7μm). The mobile phase consisted of acetonitrile and water (containing 8mM ammonium hydrogen carbonate) and the flow rate was 0.6mLmin -1 . The derived analytes were sensitively detected by multiple reaction monitoring in the positive ion mode. The lower limits of quantitation ranged from 0.06 to 10ngmL -1 with excellent linearity (r≥0.9909). The intra- and inter-day RSD were in the range of 3.6-12% and 5.7-12%, respectively. The recovery rate was 82.5%-95.3%. With this UPLC-MS/MS method, the 11 d-amino acids in hippocampus, cerebral cortex, olfactory bulb and cerebellum from Alzheimer's disease rats and age-matched controls could be simultaneously determined. Compared with the normal controls, the concentrations of d-serine, d-alanine, d-leucine, and d-proline in hippocampus and cerebral cortex of Alzheimer's disease rat brain were significantly decreased, while no differences in olfactory bulb and cerebellum of all the d-amino acids were observed. The different amounts and distribution of d-amino acids in brain between the two groups, which regulated by particular pathological changes of Alzheimer's disease, would give new insights into further study in neuropathogenesis and provide novel therapeutic targets of Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery.

    PubMed

    Duarte, João M N; Morgenthaler, Florence D; Gruetter, Rolf

    2017-06-01

    Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.

  20. Rat brain CYP2D enzymatic metabolism alters acute and chronic haloperidol side-effects by different mechanisms.

    PubMed

    Miksys, Sharon; Wadji, Fariba Baghai; Tolledo, Edgor Cole; Remington, Gary; Nobrega, Jose N; Tyndale, Rachel F

    2017-08-01

    Risk for side-effects after acute (e.g. parkinsonism) or chronic (e.g. tardive dyskinesia) treatment with antipsychotics, including haloperidol, varies substantially among people. CYP2D can metabolize many antipsychotics and variable brain CYP2D metabolism can influence local drug and metabolite levels sufficiently to alter behavioral responses. Here we investigated a role for brain CYP2D in acutely and chronically administered haloperidol levels and side-effects in a rat model. Rat brain, but not liver, CYP2D activity was irreversibly inhibited with intracerebral propranolol and/or induced by seven days of subcutaneous nicotine pre-treatment. The role of variable brain CYP2D was investigated in rat models of acute (catalepsy) and chronic (vacuous chewing movements, VCMs) haloperidol side-effects. Selective inhibition and induction of brain, but not liver, CYP2D decreased and increased catalepsy after acute haloperidol, respectively. Catalepsy correlated with brain, but not hepatic, CYP2D enzyme activity. Inhibition of brain CYP2D increased VCMs after chronic haloperidol; VCMs correlated with brain, but not hepatic, CYP2D activity, haloperidol levels and lipid peroxidation. Baseline measures, hepatic CYP2D activity and plasma haloperidol levels were unchanged by brain CYP2D manipulations. Variable rat brain CYP2D alters side-effects from acute and chronic haloperidol in opposite directions; catalepsy appears to be enhanced by a brain CYP2D-derived metabolite while the parent haloperidol likely causes VCMs. These data provide novel mechanistic evidence for brain CYP2D altering side-effects of haloperidol and other antipsychotics metabolized by CYP2D, suggesting that variation in human brain CYP2D may be a risk factor for antipsychotic side-effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Oxidative stress and damage in liver, but not in brain, of Fischer 344 rats subjected to dietary iron supplementation with lipid-soluble [(3,5,5-trimethylhexanoyl)ferrocene].

    PubMed

    Lykkesfeldt, Jens; Morgan, Evan; Christen, Stephan; Skovgaard, Lene Theil; Moos, Torben

    2007-01-01

    Accumulation of iron probably predisposes the aging brain to progressive neuronal loss. We examined various markers of oxidative stress and damage in the brain and liver of 3- and 24-month-old rats following supplementation with the lipophilic iron derivative [(3,5,5-trimethylhexanoyl)ferrocene] (TMHF), which is capable of crossing the blood-brain barrier. At both ages, iron concentration increased markedly in the liver but failed to increase in the brain. In the liver of TMHF-treated young rats, levels of alpha- and gamma-tocopherols and glutathione (GSH) were also higher. In contrast, the brain displayed unaltered levels of the tocopherols and GSH. Malondialdehyde (MDA) level was also higher in the cerebrospinal fluid (CSF) and the liver but not in the brain. In old rats, the absence of an increase in iron concentration in the brain was reflected by unaltered concentrations of GSH, tocopherols, and MDA as compared to that in untreated rats. In the aging liver, concentrations of GSH and MDA increased with TMHF treatment. Morphological studies revealed unaltered levels of iron, ferritin, heme oxygenase-1 (HO-1), nitrotyrosine (NT), or MDA in the brains of both young and old rats treated with TMHF. In contrast, TMHF treatment increased the level of HO-1 in Kupffer cells, NT in hepatic endothelial cells, and MDA and ferritin in hepatocytes. Although these results demonstrated an increase in the biochemical markers of oxidative stress and damage in response to increasing concentrations of iron in the liver, they also demonstrated that the brain is well protected against dietary iron overload by using iron in a lipid-soluble formulation.

  2. Expression of fructose-1,6-bisphosphatase mRNA isoforms in normal and basal forebrain cholinergic lesioned rat brain.

    PubMed

    Löffler, T; Al-Robaiy, S; Bigl, M; Eschrich, K; Schliebs, R

    2001-06-01

    Fructose-1,6-bisphosphatase is one of the key enzymes in the gluconeogenic pathway predominantly occurring in liver, kidney and muscle. In the brain, fructose-1,6-bisphosphatase has been suggested to be an astrocyte-specific enzyme but the functional importance of glyconeogenesis in the brain is still unclear. To further elucidate the cellular source of fructose-1,6-bisphosphatase in the brain, non-radioactive in situ hybridizations were performed using digoxigenin-labeled RNA probes based on the sequence of recently cloned rat liver and muscle fructose-1,6-bisphosphatase cDNAs. In situ hybridization using a riboprobe for the liver isoform revealed a location of the hybridization signal mainly in neurons, while rat muscle fructose-1,6-bisphosphatase mRNA was detected in both neurons and astrocytes in the hippocampal formation and in layer I of the cerebral cortex.RT-PCR using RNA preparations of rat astrocytes, neurons, and adult whole brain demonstrated a localization of liver fructose-1,6-bisphosphatase mRNA isoform in neurons but not in astrocytes. The muscle fructose-1,6-bisphosphatase mRNA isoform could be detected by RT-PCR in total rat brain, astrocytic, and neuronal mRNA preparations. The isoforms of fructose-1,6-bisphosphatase mRNA seemingly demonstrate a distinct cellular expression pattern in rat brain suggesting a role of glyconeogenesis in both neurons and glial cells.

  3. On the protective effect of omega-3 against propionic acid-induced neurotoxicity in rat pups

    PubMed Central

    2011-01-01

    Backgrounds The investigation of the environmental contribution for developmental neurotoxicity is very important. Many environmental chemical exposures are now thought to contribute to the development of neurological disorders, especially in children. Results from animal studies may guide investigations of human populations toward identifying environmental contaminants and drugs that produce or protect from neurotoxicity and may help in the treatment of neurodevelopmental disorders. Objective To study the protective effects of omega-3 polyunsaturated fatty acid on brain intoxication induced by propionic acid (PPA) in rats. Methods 24 young male Western Albino rats were enrolled in the present study. They were grouped into three equal groups; oral buffered PPA-treated group given a nuerotoxic dose of 250 mg/Kg body weight/day for 3 days; omega-3 - protected group given a dose of 100 mg/kg body weight/day omega-3 orally daily for 5 days followed by PPA for 3 days, and a third group as control given only phosphate buffered saline. Tumor necrosis factor-α, caspase-3, interlukin-6, gamma amino-buteric acid (GABA), serotonin, dopamine and phospholipids were then assayed in the rats brain's tissue of different groups. Results The obtained data showed that PPA caused multiple signs of brain toxicity as measured by depletion of gamaaminobyteric acid (GABA), serotonin (5HT) and dopamine (DA) as three important neurotransmitters that reflect brain function. A high significant increase of interlukin-6 (Il-6), tumor necrosis factor-α (TNF-α) as excellent markers of proinflammation and caspase-3 as a proapotic marker were remarkably elevated in the intoxicated group of rats. Moreover, brain phospholipid profile was impaired in PPA-treated young rats recording lower levels of phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylcholine (PC). Conclusions Omega-3 fatty acids showed a protective effects on PPA - induced changes in rats as there was a remarkable amelioration of most of the measured parameters (i.e. higher GABA, 5HT, DA, PE, PS and PC) and lower Il-6, TNF-α and caspase-3. PMID:21854591

  4. Combined deficiency of iron and (n-3) fatty acids in male rats disrupts brain monoamine metabolism and produces greater memory deficits than iron deficiency or (n-3) fatty acid deficiency alone.

    PubMed

    Baumgartner, Jeannine; Smuts, Cornelius M; Malan, Linda; Arnold, Myrtha; Yee, Benjamin K; Bianco, Laura E; Boekschoten, Mark V; Müller, Michael; Langhans, Wolfgang; Hurrell, Richard F; Zimmermann, Michael B

    2012-08-01

    Deficiencies of iron (Fe) (ID) and (n-3) fatty acids (FA) [(n-3)FAD] may impair brain development and function through shared mechanisms. However, little is known about the potential interactions between these 2 common deficiencies. We studied the effects of ID and (n-3)FAD, alone and in combination, on brain monoamine pathways (by measuring monoamines and related gene expression) and spatial working and reference memory (by Morris water maze testing). Using a 2 × 2 design, male rats were fed an ID, (n-3)FAD, ID+(n-3)FAD, or control diet for 5 wk postweaning (postnatal d 21-56) after (n-3)FAD had been induced over 2 generations. The (n-3)FAD and ID diets decreased brain (n-3) FA by 70-76% and Fe by 20-32%, respectively. ID and (n-3)FAD significantly increased dopamine (DA) concentrations in the olfactory bulb (OB) and striatum, with an additive 1- to 2-fold increase in ID+(n-3)FAD rats compared with controls (P < 0.05). ID decreased serotonin (5-HT) levels in OB, with a significant decrease in ID+(n-3)FAD rats. Furthermore, norepinephrine concentrations were increased 2-fold in the frontal cortex (FC) of (n-3)FAD rats (P < 0.05). Dopa decarboxylase was downregulated in the hippocampus of ID and ID+(n-3)FAD rats (fold-change = -1.33; P < 0.05). ID and (n-3)FAD significantly impaired working memory performance and the impairment positively correlated with DA concentrations in FC (r = 0.39; P = 0.026). Reference memory was impaired in the ID+(n-3)FAD rats (P < 0.05) and was negatively associated with 5-HT in FC (r = -0.42; P = 0.018). These results suggest that the combined deficiencies of Fe and (n-3) FA disrupt brain monoamine metabolism and produce greater deficits in reference memory than ID or (n-3)FAD alone.

  5. Dexamethasone Protects Neonatal Hypoxic-Ischemic Brain Injury via L-PGDS-Dependent PGD2-DP1-pERK Signaling Pathway

    PubMed Central

    Gonzalez-Rodriguez, Pablo J.; Li, Yong; Martinez, Fabian; Zhang, Lubo

    2014-01-01

    Background and Purpose Glucocorticoids pretreatment confers protection against neonatal hypoxic-ischemic (HI) brain injury. However, the molecular mechanism remains poorly elucidated. We tested the hypothesis that glucocorticoids protect against HI brain injury in neonatal rat by stimulation of lipocalin-type prostaglandin D synthase (L-PGDS)-induced prostaglandin D2 (PGD2)-DP1-pERK mediated signaling pathway. Methods Dexamethasone and inhibitors were administered via intracerebroventricular (i.c.v) injections into 10-day-old rat brains. Levels of L-PGD2, D prostanoid (DP1) receptor, pERK1/2 and PGD2 were determined by Western immunoblotting and ELISA, respectively. Brain injury was evaluated 48 hours after conduction of HI in 10-day-old rat pups. Results Dexamethasone pretreatment significantly upregulated L-PGDS expression and the biosynthesis of PGD2. Dexamethasone also selectively increased isoform pERK-44 level in the neonatal rat brains. Inhibitors of L-PGDS (SeCl4), DP1 (MK-0524) and MAPK (PD98059) abrogated dexamethasone-induced increases in pERK-44 level, respectively. Of importance, these inhibitors also blocked dexamethasone-mediated neuroprotective effects against HI brain injury in neonatal rat brains. Conclusion Interaction of glucocorticoids-GR signaling and L-PGDS-PGD2-DP1-pERK mediated pathway underlies the neuroprotective effects of dexamethasone pretreatment in neonatal HI brain injury. PMID:25474649

  6. Omega-3 Fatty Acid Deficient Male Rats Exhibit Abnormal Behavioral Activation in the Forced Swim Test Following Chronic Fluoxetine Treatment: Association with Altered 5-HT1A and Alpha2A Adrenergic Receptor Expression

    PubMed Central

    Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K.

    2014-01-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n=34) or without (DEF, n=30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n=14) and DEF (n=12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (−26%, p=0.0001) and DEF+FLX (−32%, p=0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF+FLX rats exhibited significantly greater climbing behavior compared with CON+FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF+FLX rats exhibited significant elevations in climbing behavior. DEF+FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON+FLX rats. DEF+FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. PMID:24360505

  7. Biochemical, metabolic, and behavioral characteristics of immature chronic hyperphenylalanemic rats

    PubMed Central

    Dienel, Gerald A.; Cruz, Nancy F.

    2015-01-01

    Phenylketonuria and hyperphenylalanemia are inborn errors in metabolism of phenylalanine arising from defects in steps to convert phenylalanine to tyrosine. Phe accumulation causes severe mental retardation that can be prevented by timely identification of affected individuals and their placement on a Phe-restricted diet. In spite of many studies in patients and animal models, the basis for acquisition of mental retardation during the critical period of brain development is not adequately understood. All animal models for human disease have advantages and limitations, and characteristics common to different models are most likely to correspond to the disorder. This study established similar levels of Phe exposure in developing rats between 3 and 16 days of age using three models to produce chronic hyperphenylalanemia, and identified changes in brain amino acid levels common to all models that persist for ~16h of each day. In a representative model, local rates of glucose utilization (CMRglc) were determined at 25–27 days of age, and only selective changes that appeared to depend on Phe exposure were observed. CMRglc was reduced in frontal cortex and thalamus and increased in hippocampus and globus pallidus. Behavioral testing to evaluate neuromuscular competence revealed poor performance in chronically-hyperphenylalanemic rats that persisted for at least three weeks after cessation of Phe injections and did not occur with mild or acute hyperphenylalanemia. Thus, the abnormal amino acid environment, including hyperglycinemia, in developing rat brain is associated with selective regional changes in glucose utilization and behavioral abnormalities that are not readily reversed after they are acquired. PMID:26224289

  8. Environmentally relevant mixing ratios in cumulative assessments: a study of the kinetics of pyrethroids and their ester cleavage metabolites in blood and brain; and the effect of a pyrethroid mixture on the motor activity of rats.

    PubMed

    Starr, James M; Graham, Stephen E; Ross, David G; Tornero-Velez, Rogelio; Scollon, Edward J; Devito, Michael J; Crofton, Kevin M; Wolansky, Marcelo J; Hughes, Michael F

    2014-06-05

    National surveys of United States households and child care centers have demonstrated that pyrethroids are widely distributed in indoor habited dwellings and this suggests that co-exposure to multiple pyrethroids occurs in nonoccupational settings. The purpose of this research was to use an environmentally relevant mixture of pyrethroids to assess their cumulative effect on motor activity and develop kinetic profiles for these pyrethroids and their hydrolytic metabolites in brain and blood of rats. Rats were dosed orally at one of two levels (1.5× or 5.0× the calculated dose that decreases rat motor activity by 30%) with a mixture of cypermethrin, deltamethrin, esfenvalerate, cis-/trans-permethrin, and β-cyfluthrin in corn oil. At 1, 2, 4, 8, or 24h after dosing, the motor activity of each animal was assessed and the animals sacrificed. Concentrations of pyrethroids in brain and blood, and the following metabolites: cis-/trans-dichlorovinyl-dimethylcyclopropane-carboxylic acid, 3-phenoxybenzoic acid, 3-phenoxybenzyl alcohol, 4-fluoro-3-phenoxybenzoic acid, and cis-dibromovinyl-dimethylcyclopropane-carboxylic acid were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS). Using this pyrethroid mixture in rats, the results suggest there is greater metabolism of trans-permethrin prior to entering the systemic circulatory system. All pyrethroids had tissue half-lives (t1/2) of less than 5h, excepting esfenvalerate in brain. At early time points, relative pyrethroid brain concentrations approximated their dose mixture proportions and a sigmoidal Emax model described the relationship between motor activity decrease and total pyrethroid brain concentration. In blood, the t1/2's of the cyclopropane metabolites were longer than the phenoxybenzoic metabolites. However, relative to their respective precursors, concentrations of the phenoxybenzoic acids were much higher than concentrations of the cyclopropane metabolites. Brain concentrations of all metabolites were low relative to blood concentrations. This implies limited metabolite penetration of the blood-brain barrier and little metabolite formation within the brain. toxicokinetic differences between the pyrethroids did not appear to be important determinants of their relative potency and their effect on motor activity was consistent with a pyrethroid dose additive model. Published by Elsevier Ireland Ltd.

  9. Alpha-Hydroxylation of lignoceric and nervonic acids in the brain. Effects of altered thyroid function on postnatal development of the hydroxylase activity.

    PubMed

    Murad, S; Strycharz, G D; Kishimoto, Y

    1976-09-10

    Rat brain postnuclear preparations catalyzed the alpha-hydroxylation of nervonic acid with an apparent Km of 3 muM. Evidence has been presented which suggests that nervonic acid in the brain is hydroxylated by the same enzyme system which hydroxylates lignoceric acid. The hydroxylase activity in brains of normal (euthyroid) rats increased rapidly from a low in the period immediately following birth to a maximum at the 23rd day and then declined to a low level characteristic of the mature brain. Neonatal hypothyroidism retarded the development of the activity and shifted its peak to the 39th day after birth. Conversely, neonatal hyperthyroidism accelerated the entire developmental pattern and shifted the peak to the 16th day after birth. The hydroxylase activity in mouse brain was also increased by thyroid hormone administration from the 13th through the 18th day after birth. Unlike normal mice, the low activity in jimpy mice was not affected by this treatment. It is concluded that thyroid hormones play an important role in the control of brain fatty acid alpha-hydroxylation. The stimulation of alpha-hydroxy fatty acid synthesis in response to hyperthyroidism during the early postnatal period may be one of the major effects of thyroid hormones in accelerating myelination of the central nervous system.

  10. A paradigm of undernourishing and neonatal rehabilitation in the newborn rat.

    PubMed

    Perez-Torrero, Esther; Torrerob, Carmen; Collado, Paloma; Salas, Manuel

    2003-04-01

    Perinatal undernutrition as a deficiency of nutrient availability, affects body and brain developmental processes and promotes recurrent health problems. Thus, altered mother-litter bonds and deficient environmental interactions may interfere with the brain pluripotential capabilities of the newborn. To gather information concerning the mechanisms underlying perinatal undernutrition we designed a paradigm of undernutrition and neonatal rehabilitation in the rat. An underfed group came from pregnant Wistar rats fed with 50% of the diet from G6 to G12 and with 60% from G13 until G21. After birth, pups were daily undernourished during 12 h daily by rotating a pair of lactating well-nourished dams which had one of their nipples subcutaneously ligated. The rehabilitated animals were undernourished pups neonatally fed by a pair of normally lactating dams. Controls received plenty of food during the pre- and neonatal periods. Pups were sacrificed at 12, 20 and 30 days of age. Perinatal underfeeding significantly reduced body and brain weights and neuronal morphometric parameters. Normal neonatal feeding in the newborn ameliorated the damages associated to food deprivation. The current undernourishing paradigm may be helpful to assess brain development alterations, as well as to study the compensatory mechanisms associated to salutary epigenetic influences.

  11. Perinatal Glyphosate-Based Herbicide Exposure in Rats Alters Brain Antioxidant Status, Glutamate and Acetylcholine Metabolism and Affects Recognition Memory.

    PubMed

    Gallegos, Cristina Eugenia; Baier, Carlos Javier; Bartos, Mariana; Bras, Cristina; Domínguez, Sergio; Mónaco, Nina; Gumilar, Fernanda; Giménez, María Sofía; Minetti, Alejandra

    2018-04-02

    Glyphosate-based herbicides (Gly-BHs) lead the world pesticide market. Although are frequently promoted as safe and of low toxicity, several investigations question its innocuousness. Previously, we described that oral exposure of rats to a Gly-BH during pregnancy and lactation decreased locomotor activity and anxiety in the offspring. The aim of the present study was to evaluate the mechanisms of neurotoxicity of this herbicide. Pregnant Wistar rats were supplied orally with 0.2 and 0.4% of Gly-BH (corresponding to 0.65 and 1.30 g/l of pure Gly, respectively) from gestational day (GD) 0, until weaning (postnatal day, PND, 21). Oxidative stress markers were determined in whole brain homogenates of PND90 offspring. The activity of acetylcholinesterase (AChE), transaminases, and alkaline phosphatase (AP) were assessed in prefrontal cortex (PFC), striatum, and hippocampus. Recognition memory was evaluated by the novel object recognition test. Brain antioxidant status was altered in Gly-BH-exposed rats. Moreover, AChE and transaminases activities were decreased and AP activity was increased in PFC, striatum and hippocampus by Gly-BH treatment. In addition, the recognition memory after 24 h was impaired in adult offspring perinatally exposed to Gly-BH. The present study reveals that exposure to a Gly-BH during early stages of rat development affects brain oxidative stress markers as well as the activity of enzymes involved in the glutamatergic and cholinergic systems. These alterations could contribute to the neurobehavioral variations reported previously by us, and to the impairment in recognition memory described in the present work.

  12. Craniotomy: true sham for traumatic brain injury, or a sham of a sham?

    PubMed

    Cole, Jeffrey T; Yarnell, Angela; Kean, William S; Gold, Eric; Lewis, Bobbi; Ren, Ming; McMullen, David C; Jacobowitz, David M; Pollard, Harvey B; O'Neill, J Timothy; Grunberg, Neil E; Dalgard, Clifton L; Frank, Joseph A; Watson, William D

    2011-03-01

    Abstract Neurological dysfunction after traumatic brain injury (TBI) is caused by both the primary injury and a secondary cascade of biochemical and metabolic events. Since TBI can be caused by a variety of mechanisms, numerous models have been developed to facilitate its study. The most prevalent models are controlled cortical impact and fluid percussion injury. Both typically use "sham" (craniotomy alone) animals as controls. However, the sham operation is objectively damaging, and we hypothesized that the craniotomy itself may cause a unique brain injury distinct from the impact injury. To test this hypothesis, 38 adult female rats were assigned to one of three groups: control (anesthesia only); craniotomy performed by manual trephine; or craniotomy performed by electric dental drill. The rats were then subjected to behavioral testing, imaging analysis, and quantification of cortical concentrations of cytokines. Both craniotomy methods generate visible MRI lesions that persist for 14 days. The initial lesion generated by the drill technique is significantly larger than that generated by the trephine. Behavioral data mirrored lesion volume. For example, drill rats have significantly impaired sensory and motor responses compared to trephine or naïve rats. Finally, of the seven tested cytokines, KC-GRO and IFN-γ showed significant increases in both craniotomy models compared to naïve rats. We conclude that the traditional sham operation as a control confers profound proinflammatory, morphological, and behavioral damage, which confounds interpretation of conventional experimental brain injury models. Any experimental design incorporating "sham" procedures should distinguish among sham, experimentally injured, and healthy/naïve animals, to help reduce confounding factors.

  13. Mu-Opioid (MOP) receptor mediated G-protein signaling is impaired in specific brain regions in a rat model of schizophrenia.

    PubMed

    Szűcs, Edina; Büki, Alexandra; Kékesi, Gabriella; Horváth, Gyöngyi; Benyhe, Sándor

    2016-04-21

    Schizophrenia is a complex mental health disorder. Clinical reports suggest that many patients with schizophrenia are less sensitive to pain than other individuals. Animal models do not interpret schizophrenia completely, but they can model a number of symptoms of the disease, including decreased pain sensitivities and increased pain thresholds of various modalities. Opioid receptors and endogenous opioid peptides have a substantial role in analgesia. In this biochemical study we investigated changes in the signaling properties of the mu-opioid (MOP) receptor in different brain regions, which are involved in the pain transmission, i.e., thalamus, olfactory bulb, prefrontal cortex and hippocampus. Our goal was to compare the transmembrane signaling mediated by MOP receptors in control rats and in a recently developed rat model of schizophrenia. Regulatory G-protein activation via MOP receptors were measured in [(35)S]GTPγS binding assays in the presence of a highly selective MOP receptor peptide agonist, DAMGO. It was found that the MOP receptor mediated activation of G-proteins was substantially lower in membranes prepared from the 'schizophrenic' model rats than in control animals. The potency of DAMGO to activate MOP receptor was also decreased in all brain regions studied. Taken together in our rat model of schizophrenia, MOP receptor mediated G-proteins have a reduced stimulatory activity compared to membrane preparations taken from control animals. The observed distinct changes of opioid receptor functions in different areas of the brain do not explain the augmented nociceptive threshold described in these animals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    PubMed

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Low glucose utilization and neurodegenerative changes caused by sodium fluoride exposure in rat's developmental brain.

    PubMed

    Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo

    2014-03-01

    Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.

  16. Immunological cross-reactivity of cultured rat hippocampal neurons with goldfish brain proteins synthesized during memory consolidation.

    PubMed

    Schmidt, R; Löffler, F; Müller, H W; Seifert, W

    1986-10-29

    Ependymins are goldfish brain glycoproteins exhibiting a specifically enhanced rate of synthesis when the animals adopt a new pattern of swimming behavior. With specific antisera against ependymins it has become possible to look for ependymin-like immunoreactivity in other animal species, both qualitatively by immunofluorescence staining and quantitatively by radioimmunoassay. Ependymin-like immunoreactivity was detected not only in other fish but also in rat brain. In the rat radioimmunoassay measurements were highest for the hippocampal formation and for cultured neurons derived from the embryonic hippocampus. Immunofluorescence staining was performed on various cell culture systems derived from rat brain, in order to establish which cell type contains the antigen. Only neuronal cell populations reacted with the anti-ependymin antisera. Cells derived from embryonic rat brain hippocampus which resembled pyramidal neurons stained particularly bright for ependymin-like immunoreactivity. The antigenic material was distributed throughout the cytoplasm including the neuronal extensions. Various neuron-specific antisera have been used to counterstain the cells containing ependymin-like immunoreactivity.

  17. Enzyme markers of maternal malnutrition in fetal rat brain.

    PubMed

    Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R

    1987-01-01

    The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.

  18. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    PubMed

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  19. Evidence for impaired plasticity after traumatic brain injury in the developing brain.

    PubMed

    Li, Nan; Yang, Ya; Glover, David P; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney; Pelled, Galit

    2014-02-15

    The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2-3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks.

  20. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2012-03-01

    blast injury mechanisms in rat TBI - Roles of polyunsaturated fatty acids in traumatic brain injury vulnerabilities and resilience: evaluation of...salutary effects of DHA supplementation using neurolipidomics and functional outcome assessments - Diagnostic and Therapeutic Targeting of...immunohistochemical assessments reveal greater glial fibrillary acidic protein (GFAP) and IBa1 immunoreactivity in rats subjected to combined injuries than are

  1. Iron overload prevents oxidative damage to rat brain after chlorpromazine administration.

    PubMed

    Piloni, Natacha E; Caro, Andres A; Puntarulo, Susana

    2018-05-15

    The hypothesis tested is that Fe administration leads to a response in rat brain modulating the effects of later oxidative challenges such as chlorpromazine (CPZ) administration. Either a single dose (acute Fe overload) or 6 doses every second day (sub-chronic Fe overload) of 500 or 50 mg Fe-dextran/kg, respectively, were injected intraperitoneally (ip) to rats. A single dose of 10 mg CPZ/kg was injected ip 8 h after Fe treatment. DNA integrity was evaluated by quantitative PCR, lipid radical (LR · ) generation rate by electron paramagnetic resonance (EPR), and catalase (CAT) activity by UV spectrophotometry in isolated brains. The maximum increase in total Fe brain was detected after 6 or 2 h in the acute and sub-chronic Fe overload model, respectively. Mitochondrial and nuclear DNA integrity decreased after acute Fe overload at the time of maximal Fe content; the decrease in DNA integrity was lower after sub-chronic than after acute Fe overload. CPZ administration increased LR · generation rate in control rat brain after 1 and 2 h; however, CPZ administration after acute or sub-chronic Fe overload did not affect LR · generation rate. CPZ treatment did not affect CAT activity after 1-4 h neither in control rats nor in acute Fe-overloaded rats. However, CPZ administration to rats treated sub-chronically with Fe showed increased brain CAT activity after 2 or 4 h, as compared to control values. Fe supplementation prevented brain damage in both acute and sub-chronic models of Fe overload by selectively activating antioxidant pathways.

  2. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    PubMed

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  3. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    PubMed

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.

  4. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury

    PubMed Central

    Requena, Daniela F.; Abdullah, Osama M.; Casper, T. Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R.

    2016-01-01

    Abstract Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI. PMID:26247583

  5. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-β accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload.

    PubMed

    Sripetchwandee, Jirapas; Wongjaikam, Suwakon; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-09-22

    Iron-overload can cause cognitive impairment due to blood-brain barrier (BBB) breakdown and brain mitochondrial dysfunction. Although deferiprone (DFP) has been shown to exert neuroprotection, the head-to-head comparison among iron chelators used clinically on brain iron-overload has not been investigated. Moreover, since antioxidant has been shown to be beneficial in iron-overload condition, its combined effect with iron chelator has not been tested. Therefore, the hypothesis is that all chelators provide neuroprotection under iron-overload condition, and that a combination of an iron chelator with an antioxidant has greater efficacy than monotherapy. Male Wistar rats (n=42) were assigned to receive a normal diet (ND) or a high-iron diet (HFe) for 4months. At the 2nd month, HFe-fed rats were treated with a vehicle, deferoxamine (DFO), DFP, deferasirox (DFX), n-acetyl cysteine (NAC) or a combination of DFP with NAC, while ND-fed rats received vehicle. At the end of the experiment, rats were decapitated and brains were removed to determine brain iron level and deposition, brain mitochondrial function, BBB protein expression, brain mitochondrial dynamic, brain apoptosis, tau-hyperphosphorylation, amyloid-β (Aβ) accumulation and dendritic spine density. The results showed that iron-overload induced BBB breakdown, brain iron accumulation, brain mitochondrial dysfunction, impaired brain mitochondrial dynamics, tau-hyperphosphorylation, Aβ accumulation and dendritic spine reduction. All treatments, except DFX, attenuated these impairments. Moreover, combined therapy provided a greater efficacy than monotherapy. These findings suggested that iron-overload induced brain iron toxicity and a combination of an iron chelator with an antioxidant provided a greatest efficacy for neuroprotection than monotherapy. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Monochloroacetic acid lethality in the rat in relation to lactic acid accumulation in the cerebrospinal fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitroka, J.G.

    1989-01-01

    Potential antidotes for human exposure to monochloroacetic acid (MCA) were evaluated using a rodent model. Dichloroacetic acid (DCA) and phenobarbital (PB) but not ethanol or phenytoin, were found to be effective antidotes to monochloroacetic acid (MCA) in rats. DCA (110 mg/kg, ip), administered to rats 15 minutes after a LD-80 of MCA (80 mg/kg, iv), consistently reduced mortality to 0%, while PB reduced mortality to less than 20%. Both DCA and PB were found to be similarly effective in mice. The hypothesis that PB reduces mortality in MCA treated rats by altering the metabolic disposition of MCA was evaluated andmore » rejected. Administration of PB to rats treated with a lethal dose of ({sup 14}C)MCA did not alter the concentrations of MCA or its metabolites in plasma or cerebrospinal fluid (CSF), or the extent of covalent binding between radioactivity equivalent to ({sup 14}C)MCA and brain proteins. The relationship between altered blood-brain barrier permeability and death in MCA treated rats was investigated. Treatment with MCA (80 mg/kg, iv) was associated with a significant (50%) increase in the permeability of the rat blood-brain barrier to ({sup 125}I)BSA. The effect was not altered by treatment with PB, however, suggesting that altered blood-brain barrier permeability does not have an important role in the lethal effect of MCA in rats. The effect of MCA on brain carbohydrate metabolism in vivo was investigated. CSF and blood lactic acid concentrations increased in MCA treated rats, and the increase in CSF levels was dose related. In individual MCA treated rats, CSF lactate concentrations paralleled the time course of ataxia and a discrete threshold for death (18 mmol/L) was observed. The relationship between excess brain lactate levels and death in MCA treated rats was investigated further.« less

  7. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    PubMed Central

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  8. Comparison of two freely available software packages for mass spectrometry imaging data analysis using brains from morphine addicted rats.

    PubMed

    Bodzon-Kulakowska, Anna; Marszalek-Grabska, Marta; Antolak, Anna; Drabik, Anna; Kotlinska, Jolanta H; Suder, Piotr

    Data analysis from mass spectrometry imaging (MSI) imaging experiments is a very complex task. Most of the software packages devoted to this purpose are designed by the mass spectrometer manufacturers and, thus, are not freely available. Laboratories developing their own MS-imaging sources usually do not have access to the commercial software, and they must rely on the freely available programs. The most recognized ones are BioMap, developed by Novartis under Interactive Data Language (IDL), and Datacube, developed by the Dutch Foundation for Fundamental Research of Matter (FOM-Amolf). These two systems were used here for the analysis of images received from rat brain tissues subjected to morphine influence and their capabilities were compared in terms of ease of use and the quality of obtained results.

  9. Effects of electroconvulsive seizures on depression-related behavior, memory and neurochemical changes in Wistar and Wistar-Kyoto rats.

    PubMed

    Kyeremanteng, C; MacKay, J C; James, J S; Kent, P; Cayer, C; Anisman, H; Merali, Z

    2014-10-03

    Investigations in healthy outbred rat strains have shown a potential role for brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis in the antidepressant and memory side effects of electroconvulsive therapy (ECT, or ECS in animals). The Wistar-Kyoto (WKY) rat strain is used as a genetic model of depression yet no studies to date have directly compared the impact of ECS on the WKY strain to its healthy outbred control (Wistar). The objective of this study is to examine behavioral (antidepressant and retrograde memory) and neurochemical (BDNF and HPA axis) changes immediately (1day) and at a longer delay (7days) after repeated ECS (5 daily administrations) in WKY and Wistar rats. Male Wistar and WKY rats received 5days of repeated ECS or sham treatment and were assessed 1 and 7days later for 1) depression-like behavior and mobility; 2) retrograde memory; and 3) brain BDNF protein, brain corticotropin-releasing factor (CRF) and plasma corticosterone levels. Both strains showed the expected antidepressant response and retrograde memory impairments at 1day following ECS, which were sustained at 7days. In addition, at 1day after ECS, Wistar and WKY rats showed similar elevations in brain BDNF and extra-hypothalamic CRF and no change in plasma corticosterone. At 7days after ECS, Wistar rats showed sustained elevations of brain BDNF and CRF, whereas WKY rats showed a normalization of brain BDNF, despite sustained elevations of brain CRF. The model of 5 daily ECS was effective at eliciting behavioral and neurochemical changes in both strains. A temporal association was observed between brain CRF levels, but not BDNF, and measures of antidepressant effectiveness of ECS and retrograde memory impairments suggesting that extra-hypothalamic CRF may be a potential important contributor to these behavioral effects after repeated ECS/ECT. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Perinatal exposure to music protects spatial memory against callosal lesions.

    PubMed

    Amagdei, Anca; Balteş, Felicia Rodica; Avram, Julia; Miu, Andrei C

    2010-02-01

    Several studies have indicated that the exposure of rodents to music modulates brain development and neuroplasticity, by mechanisms that involve facilitated hippocampal neurogenesis, neurotrophin synthesis and glutamatergic signaling. This study focused on the potential protection that the perinatal exposure to music, between postnatal days 2 and 32, could offer against functional deficits induced by neonatal callosotomy in rats. The spontaneous alternation and marble-burying behaviors were longitudinally measured in callosotomized and control rats that had been exposed to music or not. The results indicated that the neonatal callosotomy-induced spontaneous alternation deficits that became apparent only after postnatal day 45, about the time when the rat corpus callosum reaches its maximal levels of myelination. The perinatal exposure to music efficiently protected the spontaneous alternation performance against the deficits induced by callosotomy. The present findings may offer important insights into music-induced neuroplasticity, relevant to brain development and neurorehabilitation. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Neurochemical development of brain stem nuclei involved in the control of respiration.

    PubMed

    Wong-Riley, Margaret T T; Liu, Qiuli

    2005-11-15

    The first two postnatal weeks are the most dynamic in the development of brain stem respiratory nuclei in the rat, the primary model for this review. Several neurochemicals (glutamate, glycine receptors, choline acetyltransferase, serotonin, norepinephrine, and thyrotropin-releasing hormone) increase expression with age, while others (GABA, serotonin receptor 1A, substance P, neurokinin 1 receptor, and somatostatin) decrease their expression. Surprisingly, a dramatic shift occurs at postnatal day (P) 12 in the rat. Excitatory neurotransmitter glutamate and its NMDA receptors fall precipitously, whereas inhibitory neurotransmitter GABA, GABA(B), and glycine receptors rise sharply. A concomitant drop in cytochrome oxidase activity occurs in respiratory neurons. Several receptor types undergo subunit switches during development. Notably, GABA(A) receptors switch prevalence from alpha3- to an alpha1-dominant form at P12 in the pre-Bötzinger complex of the rat. The transient dominance of inhibitory over excitatory neurotransmission around P12 may render the respiratory system sensitive to failure when stressed. Relating these neurochemical changes to physiological responses in animals and to sudden infant death syndrome in humans will be a challenge for future research.

  12. A surrogate analyte-based liquid chromatography-tandem mass spectrometry method for the determination of endogenous cyclic nucleotides in rat brain.

    PubMed

    Chen, Jie; Tabatabaei, Ali; Zook, Doug; Wang, Yan; Danks, Anne; Stauber, Kathe

    2017-11-30

    A robust high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and qualified for the measurement of cyclic nucleotides (cNTs) in rat brain tissue. Stable isotopically labeled 3',5'-cyclic adenosine- 13 C 5 monophosphate ( 13 C 5 -cAMP) and 3',5'-cyclic guanosine- 13 C, 15 N 2 monophosphate ( 13 C 15 N 2 -cGMP) were used as surrogate analytes to measure endogenous 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP). Pre-weighed frozen rat brain samples were rapidly homogenized in 0.4M perchloric acid at a ratio of 1:4 (w/v). Following internal standard addition and dilution, the resulting extracts were analyzed using negative ion mode electrospray ionization LC-MS/MS. The calibration curves for both analytes ranged from 5 to 2000ng/g and showed excellent linearity (r 2 >0.996). Relative surrogate analyte-to-analyte LC-MS/MS responses were determined to correct concentrations derived from the surrogate curves. The intra-run precision (CV%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was below 6.6% and 7.4%, respectively, while the inter-run precision (CV%) was 8.5% and 5.8%, respectively. The intra-run accuracy (Dev%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was <11.9% and 10.3%, respectively, and the inter-run Dev% was <6.8% and 5.5%, respectively. Qualification experiments demonstrated high analyte recoveries, minimal matrix effects and low autosampler carryover. Acceptable frozen storage, freeze/thaw, benchtop, processed sample and autosampler stability were shown in brain sample homogenates as well as post-processed samples. The method was found to be suitable for the analysis of rat brain tissue cAMP and cGMP levels in preclinical biomarker development studies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Developmental vitamin D deficiency causes abnormal brain development.

    PubMed

    Eyles, D W; Feron, F; Cui, X; Kesby, J P; Harms, L H; Ko, P; McGrath, J J; Burne, T H J

    2009-12-01

    There is now clear evidence that vitamin D is involved in brain development. Our group is interested in environmental factors that shape brain development and how this may be relevant to neuropsychiatric diseases including schizophrenia. The origins of schizophrenia are considered developmental. We hypothesised that developmental vitamin D (DVD) deficiency may be the plausible neurobiological explanation for several important epidemiological correlates of schizophrenia namely: (1) the excess winter/spring birth rate, (2) increased incidence of the disease in 2nd generation Afro-Caribbean migrants and (3) increased urban birth rate. Moreover we have published two pieces of direct epidemiological support for this hypothesis in patients. In order to establish the "Biological Plausibility" of this hypothesis we have developed an animal model to study the effect of DVD deficiency on brain development. We do this by removing vitamin D from the diet of female rats prior to breeding. At birth we return all dams to a vitamin D containing diet. Using this procedure we impose a transient, gestational vitamin D deficiency, while maintaining normal calcium levels throughout. The brains of offspring from DVD-deficient dams are characterised by (1) a mild distortion in brain shape, (2) increased lateral ventricle volumes, (3) reduced differentiation and (4) diminished expression of neurotrophic factors. As adults, the alterations in ventricular volume persist and alterations in brain gene and protein expression emerge. Adult DVD-deficient rats also display behavioural sensitivity to agents that induce psychosis (the NMDA antagonist MK-801) and have impairments in attentional processing. In this review we summarise the literature addressing the function of vitamin D on neuronal and non-neuronal cells as well as in vivo results from DVD-deficient animals. Our conclusions from these data are that vitamin D is a plausible biological risk factor for neuropsychiatric disorders and that vitamin D acts as a neurosteroid with direct effects on brain development.

  14. Epileptogenic effects of G protein-coupled estrogen receptor 1 in the rat pentylenetetrazole kindling model of epilepsy.

    PubMed

    Kurt, Akif Hakan; Bosnak, Mehmet; Inan, Salim Yalcın; Celik, Ahmet; Uremis, Muhammed Mehdi

    2016-02-01

    G protein-coupled estrogen receptor 1 (GPER-1) has been demonstrated in several parts of the brain and may play an important role in estrogen downstream signaling pathway. However, the effects of this receptor on epileptic seizure are not clearly known. Therefore, the effects of GPER-1 agonist, G-1, GPER-1 antagonist, G-15 and the main estrogenic hormone, 17β-estradiol were investigated on seizures and brain tissue oxidative damages induced by pentylenetetrazole (PTZ) in rats. In this study, 30 adult male Wistar albino rats were used. Due to intraperitoneal (ip) injections of a subconvulsant dose of PTZ (35mg/kg) which was repeated 12 times every 48h, chemical kindling occurred and kindling seizure was recorded for 30min. The rats were injected with 17β-estradiol (5μg/kg, ip) or G-1 (5μg/kg, ip), G-15 (5μg/kg, ip), Saline, Ethanol and Dimethyl sulfoxide (DMSO) 30min before each dose of PTZ. Observed seizures were classified between the phase 0-5. Thirty minutes later when the last 12. PTZ administration, all rats were sacrificed and the brain cortex, hippocampus sections were removed and the tissue superoxide dismutase (SOD), malondialdehyde (MDA) and nitric oxide (NO) levels on these tissues were studied. GPER1 agonist, G-1 and estrogenic hormone, 17β-estradiol significantly increased the development of PTZ kindling the seizures. However, GPER1 antagonist, G-15 did not change the development of PTZ kindling the seizures. In the cortex and hippocampus homogenates, the NO levels after G-1 administration had significantly increased (p<0.05) compared to the PTZ groups but SOD activities and MDA levels demonstrated no difference between the groups. This is the first study that explores that GPER-1 receptors have epileptogenic effect on PTZ-induced kindling rat. GPER1 may mediate the epileptogenic effect of estrogens by changing the oxidative or anti-oxidative parameters in the brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Cafeteria feeding induces interleukin-1beta mRNA expression in rat liver and brain.

    PubMed

    Hansen, M K; Taishi, P; Chen, Z; Krueger, J M

    1998-06-01

    intake affects gut-immune function and can provide a strong intestinal antigen challenge resulting in activation of host defense mechanisms in the digestive system. Previously, we showed that feeding rats a cafeteria diet increases non-rapid eye movement sleep by a subdiaphragmatic mechanism. Food intake and sleep regulation and the immune system share the regulatory molecule interleukin-1beta (IL-1beta). Thus this study examined the effects of a cafeteria diet on IL-1beta mRNA and IL-1 receptor accessory protein (IL-1RAP) mRNA expression in rat liver and brain. Rats were fed normal rat chow or a palatable diet consisting of bread, chocolate, and shortbread cookies (cafeteria diet). After 3 days, midway between the light period of the light-dark cycle, rats were killed by decapitation. Feeding rats a cafeteria diet resulted in increased IL-1beta mRNA expression in the liver and hypothalamus compared with rats fed only the normal rat chow. In addition, cafeteria feeding decreased IL-1RAP mRNA levels in the liver and brain stem. These results indicate that feeding has direct effects on cytokine production and together with other data suggest that the increased sleep that accompanies increased feeding may be the result of increased brain IL-1beta. These results further suggest that cytokine-to-brain communication may be important in normal physiological conditions, such as feeding, as well as being important during inflammatory responses.

  16. Maternal treatment of rats with the new pyridoindole antioxidant during pregnacy and lactation resulting in improved offspring hippocampal resistance to ischemia in vitro.

    PubMed

    Gáspárová, Zdenka; Snirc, Vladimír; Stolc, Svorad; Dubovický, Michal; Mach, Mojmír; Ujházy, Eduard

    2010-01-01

    Damage to the developing brain may be caused by maternal environment, nutritional deficiencies, failure of protective mechanisms, etc. Further, the developing brain may be damaged by intrauterine ischemia or by ischemia in newborns complicated by perinatal asphyxia. There is an effort to find agents with neuroprotective effect on the developing brain. The aim was to study the effect of the new pyridoindole antioxidant SMe1EC2 on the resistance of offspring hippocampus exposed to ischemia in vitro after treatment of mothers. The electrically evoked responses were determined by extracellular recording from offspring hippocampal slices. The effect of oral treatment of rats with SMe1EC2 over 18 consecutive days, from day 15 of gestation to day 10 post partum (PP) was analyzed in the model of ischemia in vitro measured on the hippocampus of 21-day-old pups, with focus on neuronal function recovery in reoxygenation. Increased recovery of neuronal response was found at the end of 20-min reoxygenation in offspring hippocampal slices exposed to 10-min hypoxia/hypoglycemia from rats whose mothers were treated with the dose of 50 and 250 mg/kg of SMe1EC2, compared to control offspring slices (mothers received vehicle over the same time). The increased offspring hippocampus resistance to hypoxia/hypoglycemia due to 18-day maternal treatment with SMe1EC2 might have been obtained via the transplacental way as well as in the neonatal period via breast milk, skin and saliva. The manifested neuroprotective effect of SMe1EC2 on the developing brain might find exploitation during risk pregnancy and delivery.

  17. Examination of Physiological Function and Biochemical Disorders in a Rat Model of Prolonged Asphyxia-Induced Cardiac Arrest followed by Cardio Pulmonary Bypass Resuscitation

    PubMed Central

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A.; Pappan, Kirk L.; Lampe, Joshua W.; Becker, Lance B.

    2014-01-01

    Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage. PMID:25383962

  18. Examination of physiological function and biochemical disorders in a rat model of prolonged asphyxia-induced cardiac arrest followed by cardio pulmonary bypass resuscitation.

    PubMed

    Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A; Pappan, Kirk L; Lampe, Joshua W; Becker, Lance B

    2014-01-01

    Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.

  19. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    PubMed Central

    Servatius, Richard J.; Marx, Christine E.; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D.; Naylor, Jennifer C.; Pang, Kevin C. H.

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration. PMID:27616978

  20. A novel nutritional supplement containing chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron activates the antioxidant pathway Nrf2/HO-1 and protects the brain against oxidative stress in high-fat-fed rats.

    PubMed

    Sahin, Nurhan; Akdemir, Fatih; Orhan, Cemal; Aslan, Abdullah; Agca, Can A; Gencoglu, Hasan; Ulas, Mustafa; Tuzcu, Mehmet; Viyaja, Juturu; Komorowskı, James R; Sahin, Kazim

    2012-09-01

    A novel nutritional supplement complex (N21 #125) composed of four well-known compounds (chromium picolinate, phosphatidylserine, docosahexaenoic acid, and boron) was designed to improve memory function and maintain brain health. The present study evaluated the complex's potential mechanism of action and its role in reducing oxidative stress in the brain of obese rats fed a high-fat diet (HFD). Male Wistar rats (n = 40, 8-week-old) were divided into four groups. Group I was fed a standard diet; Group II was fed a standard diet and supplemented with N21 } Group III was fed an HFD; and Group IV was fed an HFD and supplemented with N21 #125 for 12 weeks. Rats fed HFD had greater serum C-reactive protein (CRP) and tumor necrosis factor alpha (TNF-α) and brain malondialdehyde (MDA) concentrations than rats fed the control diet. Supplementation of N21 #125 decreased CRP, TNF-α, and MDA concentration in rats fed HFD. The levels of brain nuclear factor-E2-related factor-2 (Nrf2), heme oxygenase, extracellular signal-regulated kinases and protein kinase B were lower in rats fed the control diet than for rats fed the HFD. These parameters were increased by supplementation of N21 #125. The data indicate that N21 #125 protected the brain from oxidative damage and inflammation induced by the HFD. This effect may be through up-regulation of the transcription factor Nrf2 expression.

  1. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    PubMed

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Age differentially influences estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) gene expression in specific regions of the rat brain.

    PubMed

    Wilson, Melinda E; Rosewell, Katherine L; Kashon, Michael L; Shughrue, Paul J; Merchenthaler, Istvan; Wise, Phyllis M

    2002-03-31

    Estradiol's ability to influence neurochemical events that are critical to female reproductive cyclicity and behavior decreases with age. We tested the hypothesis that decreases in estrogen receptor-alpha (ERalpha) and/or ERbeta mRNA explain the brain's declining responsiveness to estradiol. We assessed ERalpha and ERbeta mRNA levels in intact and ovariectomized estradiol-treated rats. ERbeta mRNA was detected in several brain regions and decreased by middle-age in the cerebral cortex and supraoptic nucleus of estradiol-treated rats. ERbeta mRNA levels exhibited a diurnal rhythm in the suprachiasmatic nucleus of young and middle-aged rats and this rhythm was blunted in old rats. We examined ERalpha mRNA in the periventricular preoptic, medial preoptic, ventromedial and arcuate nuclei, and it was decreased only in the periventricular preoptic nucleus of the old rats. In summary, the expression of ERalpha and ERbeta mRNAs is differentially modulated in the aging brain and changes are region specific.

  3. Aging exacerbates intracerebral hemorrhage-induced brain injury.

    PubMed

    Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki

    2009-09-01

    Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.

  4. N,N-dimethyl-2-(2-amino-4-(18)F-fluorophenylthio)-benzylamine (4-(18)F-ADAM): an improved PET radioligand for serotonin transporters.

    PubMed

    Shiue, Grace G; Choi, Seok-Rye; Fang, Ping; Hou, Catherine; Acton, Paul D; Cardi, Chris; Saffer, Janet R; Greenberg, Joel H; Karp, Joel S; Kung, Hank F; Shiue, Chyng-Yann

    2003-12-01

    There has been considerable interest in the development of PET radioligands that are useful for imaging serotonin transporter (SERT) in the living human brain. For the last decade, (11)C-(+)McN5652 has been the most promising PET agent for studying SERT in humans. However, this agent has some limitations. Recently, a new promising SERT PET radioligand, 3-(11)C-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile, has been reported. We recently reported the synthesis of a new (18)F-labeled SERT PET radioligand, N,N-dimethyl-2-(2-amino-4-(18)F-fluorophenylthio)benzylamine (4-(18)F-ADAM), which may have advantages over (11)C-labeled radioligands. The purpose of this study was to evaluate this newly developed (18)F-labeled PET radioligand as a promising agent for studying SERT in the living human brain. This agent was evaluated by studying its in vitro binding to different monoamine transporters, its in vivo biodistributions in rats, its integrity and pharmacologic profiles in rat brain, and its distribution in a female baboon brain. In vitro binding assays showed that 4-F-ADAM displayed high affinity to SERT sites (inhibition constant = 0.081 nmol/L, using membrane preparations of LLC-PK1 cells expressing the specific transporter) and showed more than 1,000- and 28,000-fold selectivity for SERT over norepinephrine transporter and dopamine transporter, respectively. Biodistribution of 4-(18)F-ADAM in rats showed a high initial uptake and slow clearance in the brain (2.13%, 1.90%, and 0.95% injected dose per organ at 2, 30, and 60 min after intravenous injection, respectively), with the specific binding peaking at 2 h after injection (hypothalamus/cerebellum = 12.49). The uptake in blood, muscle, lung, kidney, and liver was also initially high but cleared rapidly. The radioactivity in the femur increases with time for 4-(18)F-ADAM, indicating that in vivo defluorination may occur. In vivo metabolism studies in rats showed that 4-(18)F-ADAM was not metabolized in rat brain (>96% of radioactivity was recovered as parent compound at 1 h after injection). However, it metabolized rapidly in the blood. Less than 7% of the radioactivity recovered from plasma was the parent compound, with the majority of radioactivity in the plasma not extractable by ethyl acetate. Blocking studies showed significant decreases in the uptake of 4-(18)F-ADAM in the brain regions (hypothalamus, hippocampus, and striatum) where SERT concentrations are high when rats were pretreated with (+)McN5652 (2 mg/kg 5 min before intravenous injection of 4-(18)F-ADAM). However, changes in the uptake of 4-(18)F-ADAM in these brain regions were less significant when rats were pretreated with either methylphenidate or nisoxetine. The baboon study showed that uptake of 4-(18)F-ADAM in the midbrain peaked at approximately 1 h after injection and then declined slowly. The ratios of the radioactivity in the midbrain to that in the cerebellum (where the concentration of SERT is low) at 2 and 3 h after injection were 3.2 and 4.2, respectively. 4-(18)F-ADAM is suitable as a PET radioligand for studying SERT in the living brain. Further characterization of this new radioligand in humans is warranted.

  5. Oxytocin Modulates Expression of Neuron and Glial Markers in the Rat Hippocampus.

    PubMed

    Havránek, T; Lešťanová, Z; Mravec, B; Štrbák, V; Bakoš, J; Bačová, Z

    2017-01-01

    Neuropeptides including oxytocin belong to the group of factors that may play a role in the control of neuronal cell survival, proliferation and differentiation. The aim of the present study was to investigate potential contribution of oxytocin to neuronal differentiation by measuring gene and protein expression of specific neuron and glial markers in the brain. Neonatal and adult oxytocin administration was used to reveal developmental and/or acute effects of oxytocin in Wistar rats. Gene and protein expression of neuron-specific enolase (NSE) in the hippocampus was increased in 21-day and 2-month old rats in response to neonatal oxytocin administration. Neonatal oxytocin treatment induced a significant increase of gene and protein expression of the marker of astrocytes - glial fibrillary acid protein (GFAP). Oxytocin treatment resulted in a decrease of oligodendrocyte marker mRNA - 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) - in 21-day and 2-month old rats, while no change of CD68 mRNA, marker of microglia, was observed. Central oxytocin administration in adult rats induced a significant increase of gene expression of NSE and CNPase. The present study provides the first data revealing the effect of oxytocin on the expression of neuron and glial markers in the brain. It may be suggested that the oxytocin system is involved in the regulation of development of neuronal precursor cells in the brain.

  6. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats

    PubMed Central

    Jaglin, Mathilde; Rhimi, Moez; Philippe, Catherine; Pons, Nicolas; Bruneau, Aurélia; Goustard, Bénédicte; Daugé, Valérie; Maguin, Emmanuelle; Naudon, Laurent; Rabot, Sylvie

    2018-01-01

    Gut microbiota produces a wide and diverse array of metabolites that are an integral part of the host metabolome. The emergence of the gut microbiome-brain axis concept has prompted investigations on the role of gut microbiota dysbioses in the pathophysiology of brain diseases. Specifically, the search for microbe-related metabolomic signatures in human patients and animal models of psychiatric disorders has pointed out the importance of the microbial metabolism of aromatic amino acids. Here, we investigated the effect of indole on brain and behavior in rats. Indole is produced by gut microbiota from tryptophan, through the tryptophanase enzyme encoded by the tnaA gene. First, we mimicked an acute and high overproduction of indole by injecting this compound in the cecum of conventional rats. This treatment led to a dramatic decrease of motor activity. The neurodepressant oxidized derivatives of indole, oxindole and isatin, accumulated in the brain. In addition, increase in eye blinking frequency and in c-Fos protein expression in the dorsal vagal complex denoted a vagus nerve activation. Second, we mimicked a chronic and moderate overproduction of indole by colonizing germ-free rats with the indole-producing bacterial species Escherichia coli. We compared emotional behaviors of these rats with those of germ-free rats colonized with a genetically-engineered counterpart strain unable to produce indole. Rats overproducing indole displayed higher helplessness in the tail suspension test, and enhanced anxiety-like behavior in the novelty, elevated plus maze and open-field tests. Vagus nerve activation was suggested by an increase in eye blinking frequency. However, unlike the conventional rats dosed with a high amount of indole, the motor activity was not altered and neither oxindole nor isatin could be detected in the brain. Further studies are required for a comprehensive understanding of the mechanisms supporting indole effects on emotional behaviors. As our findings suggest that people whose gut microbiota is highly prone to produce indole could be more likely to develop anxiety and mood disorders, we addressed the issue of the inter-individual variability of indole producing potential in humans. An in silico investigation of metagenomic data focused on the tnaA gene products definitively proved this inter-individual variability. PMID:29686603

  7. Development of a population pharmacokinetic model to predict brain distribution and dopamine D2 receptor occupancy of raclopride in non-anesthetized rat.

    PubMed

    Wong, Yin Cheong; Ilkova, Trayana; van Wijk, Rob C; Hartman, Robin; de Lange, Elizabeth C M

    2018-01-01

    Raclopride is a selective antagonist of the dopamine D2 receptor. It is one of the most frequently used in vivo D2 tracers (at low doses) for assessing drug-induced receptor occupancy (RO) in animals and humans. It is also commonly used as a pharmacological blocker (at high doses) to occupy the available D2 receptors and antagonize the action of dopamine or drugs on D2 in preclinical studies. The aims of this study were to comprehensively evaluate its pharmacokinetic (PK) profiles in different brain compartments and to establish a PK-RO model that could predict the brain distribution and RO of raclopride in the freely moving rat using a LC-MS based approach. Rats (n=24) received a 10-min IV infusion of non-radiolabeled raclopride (1.61μmol/kg, i.e. 0.56mg/kg). Plasma and the brain tissues of striatum (with high density of D2 receptors) and cerebellum (with negligible amount of D2 receptors) were collected. Additional microdialysis experiments were performed in some rats (n=7) to measure the free drug concentration in the extracellular fluid of the striatum and cerebellum. Raclopride concentrations in all samples were analyzed by LC-MS. A population PK-RO model was constructed in NONMEM to describe the concentration-time profiles in the unbound plasma, brain extracellular fluid and brain tissue compartments and to estimate the RO based on raclopride-D2 receptor binding kinetics. In plasma raclopride showed a rapid distribution phase followed by a slower elimination phase. The striatum tissue concentrations were consistently higher than that of cerebellum tissue throughout the whole experimental period (10-h) due to higher non-specific tissue binding and D2 receptor binding in the striatum. Model-based simulations accurately predicted the literature data on rat plasma PK, brain tissue PK and D2 RO at different time points after intravenous or subcutaneous administration of raclopride at tracer dose (RO <10%), sub-pharmacological dose (RO 10%-30%) and pharmacological dose (RO >30%). For the first time a predictive model that could describe the quantitative in vivo relationship between dose, PK and D2 RO of raclopride in non-anesthetized rat was established. The PK-RO model could facilitate the selection of optimal dose and dosing time when raclopride is used as tracer or as pharmacological blocker in various rat studies. The LC-MS based approach, which doses and quantifies a non-radiolabeled tracer, could be useful in evaluating the systemic disposition and brain kinetics of tracers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Structural differences in the brain between wild and laboratory rats (Rattus norvegicus): potential contribution to wariness.

    PubMed

    Koizumi, Ryoko; Kiyokawa, Yasushi; Mikami, Kaori; Ishii, Akiko; Tanaka, Kazuyuki D; Tanikawa, Tsutomu; Takeuchi, Yukari

    2018-05-11

    Wild animals typically exhibit defensive behaviors in response to a wider range and/or a weaker intensity of stimuli compared with domestic animals. However, little is known about the neural mechanisms underlying "wariness" in wild animals. Wild rats are one of the most accessible wild animals for experimental research. Laboratory rats are a domesticated form of wild rat, belonging to the same species, and are therefore considered suitable control animals for wild rats. Based on these factors, we analyzed structural differences in the brain between wild and laboratory rats to elucidate the neural mechanisms underlying wariness. We examined wild rats trapped in Tokyo, and weight-matched laboratory rats. We then prepared brain sections and compared the basolateral complex of the amygdala (BLA), the bed nucleus of the stria terminalis (BNST), the main olfactory bulb, and the accessory olfactory bulb. The results revealed that wild rats exhibited larger BLA, BNST and caudal part of the accessory olfactory bulb compared with laboratory rats. These results suggest that the BLA, BNST, and vomeronasal system potentially contribute to wariness in wild rats.

  9. Effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and related gene expression.

    PubMed

    Wu, C; Zhao, X; Zhang, X; Liu, S; Zhao, H; Chen, Y

    2015-06-11

    We investigated the effect of Ginkgo biloba extract on apoptosis of brain tissues in rats with acute cerebral infarction and apoptosis-related gene expression. Rat models of acute cerebral infarction were constructed using the suture method, and randomly divided into the control group, model, and treatment groups. In the treatment group, 4 mg/kg G. biloba extract was intravenously injected into the rat tail vein. Phosphate-buffered saline solution was injected in the model group. Seventy-two hours after treatment, rats were euthanized, and brain tissues were removed to analyze the changes in caspase-3, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) mRNA and protein levels, and variation in brain tissue cells' apoptosis indices was measured. Compared with the control group, the model and treatment groups showed significantly upregulated caspase-3, Bcl-2, and Bax mRNA and protein levels in brain tissues, but remarkably downregulated Bcl-2 mRNA and protein levels (P < 0.05). After treatment, in treatment group brain tissues, caspase-3 and Bax mRNA and protein levels were significantly lower than those in the model group, while Bcl-2 mRNA and protein levels were higher than that in the model group (P < 0.05). The model and treatment groups showed increased cell apoptosis indices of brain tissues compared to the control group; after treatment, the apoptosis index in the treatment group was significantly downregulated compared with that in the model group (P < 0.05). In conclusion, G. biloba extract significantly reduced apoptosis in rat brain tissue cells with acute cerebral infarction and thus protected brain tissues.

  10. [11C]PF-3274167 as a PET radiotracer of oxytocin receptors: Radiosynthesis and evaluation in rat brain.

    PubMed

    Vidal, Benjamin; Karpenko, Iuliia A; Liger, François; Fieux, Sylvain; Bouillot, Caroline; Billard, Thierry; Hibert, Marcel; Zimmer, Luc

    2017-12-01

    Oxytocin plays a major role in the regulation of social interactions in mammals by interacting with the oxytocin receptor (OTR) expressed in the brain. Furthermore, the oxytocin system appears as a possible therapeutic target in autism spectrum disorders and other psychiatric troubles, justifying current pharmacological researches. Since no specific PET radioligand is currently available to image OTR in the brain, the aim of this study was to radiolabel the specific OTR antagonist PF-3274167 and to evaluate [ 11 C]PF-3274167 as a potential PET tracer for OTR in rat brains. [ 11 C]PF-3274167 was prepared via the O-methylation of its desmethyl precursor with [ 11 C]methyl iodide. The lipophilicity of the radioactive compound was evaluated by measuring the n-octanol-buffer partition coefficient (logD). Autoradiography experiments were performed on rat brain tissue to evaluate the in vitro distribution of the [ 11 C]PF-3274167. MicroPET experiments were conducted with and without pre-injection of ciclosporin in order to evaluate the influence of the P-glycoprotein (P-gp) on the brain uptake. [ 11 C]PF-3274167 was synthesized with high radiochemical and chemical purities (>95%) and good specific activity. The measured logD was 1.93. In vitro, [ 11 C]PF-3274167 did not show any evidence of specific binding to OTR. PET imaging showed that [ 11 C]PF-3274167 uptake in rat brain was very low in basal conditions but increased significantly after the administration of ciclosporin, suggesting that it is a substrate of the P-gp. In the ciclosporin-pre-injected rat, however, [ 11 C]PF-3274167 distribution did not match with the known distribution of OTR in rats. [ 11 C]PF-3274167 is not a suitable tracer for imaging of OTR in rat brain, probably because of a too low affinity for this receptor in addition to a poor brain penetration. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Design, optimization, and biological evaluation of novel keto-benzimidazoles as potent and selective inhibitors of phosphodiesterase 10A (PDE10A).

    PubMed

    Hu, Essa; Kunz, Roxanne K; Chen, Ning; Rumfelt, Shannon; Siegmund, Aaron; Andrews, Kristin; Chmait, Samer; Zhao, Sharon; Davis, Carl; Chen, Hang; Lester-Zeiner, Dianna; Ma, Ji; Biorn, Christopher; Shi, Jianxia; Porter, Amy; Treanor, James; Allen, Jennifer R

    2013-11-14

    Our development of PDE10A inhibitors began with an HTS screening hit (1) that exhibited both high p-glycoprotein (P-gp) efflux ratios in rat and human and poor metabolic stability. On the basis of cocrystal structure of 1 in human PDE10A enzyme, we designed a novel keto-benzimidazole 26 with comparable PDE10A potency devoid of efflux liabilities. On target in vivo coverage of PDE10A in rat brain was assessed using our previously reported LC-MS/MS receptor occupancy (RO) technology. Compound 26 achieved 55% RO of PDE10A at 30 mg/kg po and covered PDE10A receptors in rat brain in a dose-dependent manner. Cocrystal structure of 26 in PDE10A confirmed the binding mode of the novel scaffold. Further optimization resulted in the identification of keto-benzimidazole 34, which showed an increased in vivo efficacy of 57% RO in rats at 10 mg/kg po and an improved in vivo rat clearance and oral bioavailability.

  12. Structural and Functional Consequences of Increased Tubulin Glycosylation in Diabetes Mellitus

    NASA Astrophysics Data System (ADS)

    Williams, Stuart K.; Howarth, Nancy L.; Devenny, James J.; Bitensky, Mark W.

    1982-11-01

    The extent of in vitro nonenzymatic glycosylation of purified rat brain tubulin was dependent on time and glucose concentration. Tubulin glycosylation profoundly inhibited GTP-dependent tubulin polymerization. Electron microscopy and NaDodSO4/polyacrylamide gel electrophoresis showed that glycosylated tubulin forms high molecular weight amorphous aggregates that are not disrupted by detergents or reducing agents. The amount of covalently bound NaB3H4-reducible sugars in tubulin recovered from brain of streptozotocin-induced diabetic rats was dramatically increased as compared with tubulin recovered from normal rat brain. Moreover, tubulin recovered from diabetic rat brain exhibited less GTP-induced polymerization than tubulin from nondiabetic controls. The possible implications of these data for diabetic neuropathy are discussed.

  13. Kinetic study of benzyl [1-14C]acetate as a potential probe for astrocytic energy metabolism in the rat brain: Comparison with benzyl [2-14C]acetate.

    PubMed

    Okada, Maki; Yanamoto, Kazuhiko; Kagawa, Tomohiko; Yoshino, Keiko; Hosoi, Rie; Abe, Kohji; Zhang, Ming-Rong; Inoue, Osamu

    2016-02-01

    Brain uptake of [(14)C]acetate has been reported to be a useful marker of astrocytic energy metabolism. In addition to uptake values, the rate of radiolabeled acetate washout from the brain appears to reflect CO2 exhaustion and oxygen consumption in astrocytes. We measured the time-radioactivity curves of benzyl [1-(14)C]acetate ([1-(14)C]BA), a lipophilic probe of [1-(14)C]acetate, and compared it with that of benzyl [2-(14)C]acetate ([2-(14)C]BA) in rat brains. The highest brain uptake was observed immediately after injecting either [1-(14)C]BA or [2-(14)C]BA, and both subsequently disappeared from the brain in a single-exponential manner. Estimated [1-(14)C]BA washout rates in the cerebral cortex and cerebellum were higher than those of [2-(14)C]BA. These results suggested that [1-(14)C]BA could be a useful probe for estimating the astrocytic oxidative metabolism. The [1-(14)C]BA washout rate in the cerebral cortex of immature rats was lower than that of mature rats. An autoradiographic study showed that the washout rates of [1-(14)C]BA from the rat brains of a lithium-pilocarpine-induced status epilepticus model were not significantly different from the values in control rat brains except for the medial septal nucleus. These results implied that the enhancement of amino acid turnover rate rather than astrocytic oxidative metabolism was increased in status epilepticus. © The Author(s) 2015.

  14. Glutamatergic stimulation of the left dentate gyrus abolishes depressive-like behaviors in a rat learned helplessness paradigm.

    PubMed

    Seo, Jeho; Cho, Hojin; Kim, Gun Tae; Kim, Chul Hoon; Kim, Dong Goo

    2017-10-01

    Episodic experiences of stress have been identified as the leading cause of major depressive disorder (MDD). The occurrence of MDD is profoundly influenced by the individual's coping strategy, rather than the severity of the stress itself. Resting brain activity has been shown to alter in several mental disorders. However, the functional relationship between resting brain activity and coping strategies has not yet been studied. In the present study, we observed different patterns of resting brain activity in rats that had determined either positive (resilient to stress) or negative (vulnerable to stress) coping strategies, and examined whether modulation of the preset resting brain activity could influence the behavioral phenotype associated with negative coping strategy (i.e., depressive-like behaviors). We used a learned helplessness paradigm-a well-established model of MDD-to detect coping strategies. Differences in resting state brain activity between animals with positive and negative coping strategies were assessed using 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET). Glutamatergic stimulation was used to modulate resting brain activity. After exposure to repeated uncontrollable stress, seven of 23 rats exhibited positive coping strategies, while eight of 23 rats exhibited negative coping strategies. Increased resting brain activity was observed only in the left ventral dentate gyrus of the positive coping rats using FDG-PET. Furthermore, glutamatergic stimulation of the left dentate gyrus abolished depressive-like behaviors in rats with negative coping strategies. Increased resting brain activity in the left ventral dentate gyrus helps animals to select positive coping strategies in response to future stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Metabolic enhancer piracetam attenuates rotenone induced oxidative stress: a study in different rat brain regions.

    PubMed

    Verma, Dinesh Kumar; Joshi, Neeraj; Raju, Kunumuri Sivarama; Wahajuddin, Muhammad; Singh, Rama Kant; Singh, Sarika

    2015-01-01

    Piracetam is clinically being used nootropic drug but the details of its neuroprotective mechanism are not well studied. The present study was conducted to assess the effects of piracetam on rotenone induced oxidative stress by using both ex vivo and in vivo test systems. Rats were treated with piracetam (600 mg/kg b.w. oral) for seven constitutive days prior to rotenone administration (intracerebroventricular, 12 µg) in rat brain. Rotenone induced oxidative stress was assessed after 1 h and 24 h of rotenone administration. Ex vivo estimations were performed by using two experimental designs. In one experimental design the rat brain homogenate was treated with rotenone (1 mM, 2 mM and 4 mM) and rotenone+piracetam (10 mM) for 1 h. While in second experimental design the rats were pretreated with piracetam for seven consecutive days. On eighth day the rats were sacrificed, brain homogenate was prepared and treated with rotenone (1 mM, 2 mM and 4mM) for 1h. After treatment the glutathione (GSH) and malondialdehyde (MDA) levels were estimated in brain homogenate. In vivo study showed that pretreatment of piracetam offered significant protection against rotenone induced decreased GSH and increased MDA level though the protection was region specific. But the co-treatment of piracetam with rotenone did not offer significant protection against rotenone induced oxidative stress in ex vivo study. Whereas ex vivo experiments in rat brain homogenate of piracetam pretreated rats, showed the significant protection against rotenone induced oxidative stress. Findings indicated that pretreatment of piracetam significantly attenuated the rotenone induced oxidative stress though the protection was region specific. Piracetam treatment to rats led to its absorption and accumulation in different brain regions as assessed by liquid chromatography mass spectrometry/mass spectrometry. In conclusion, study indicates the piracetam is able to enhance the antioxidant capacity in brain cells in region specific manner. The study is also revealing the rationale for its clinical use in cognitive impairment and other neurological diseases.

  16. Effects of maternal separation, early handling, and gonadal sex on regional metabolic capacity of the preweanling rat brain

    PubMed Central

    Spivey, Jaclyn M.; Padilla, Eimeira; Shumake, Jason D.; Gonzalez-Lima, F.

    2010-01-01

    This is the first study to assess the effects of mother-infant separation on regional metabolic capacity in the preweanling rat brain. Mother-infant separation is generally known to be stressful for rat pups. Holtzman adolescent rats show a depressive-like behavioral phenotype after maternal separation during the preweanling period. However, information is lacking on the effects of maternal separation on the brains of rat pups. We addressed this issue by mapping the brains of preweanling Holtzman rat pups using cytochrome oxidase histochemistry, which reflects long-term changes in brain metabolic capacity, following two weeks of repeated, prolonged maternal separation, and compared this to both early handled and non-handled pups. Quantitative image analysis revealed that maternal separation reduced cytochrome oxidase activity in the medial prefrontal cortex and nucleus accumbens shell. Maternal separation reduced prefrontal cytochrome oxidase to a greater degree in female pups than in males. Early handling reduced cytochrome oxidase activity in the posterior parietal cortex, ventral tegmental area, and subiculum, but increased cytochrome oxidase activity in the lateral frontal cortex. The sex-dependent effects of early handling on cytochrome oxidase activity were limited to the medial prefrontal cortex. Regardless of separation group, females had greater cytochrome oxidase activity in the habenula and ventral tegmental area compared to males. These findings suggest that early life mother-infant separation results in dysfunction of prefrontal and mesolimbic regions in the preweanling rat brain that may contribute to behavioral changes later in life. PMID:20969837

  17. Edaravone attenuates neuronal apoptosis in hypoxic-ischemic brain damage rat model via suppression of TRAIL signaling pathway.

    PubMed

    Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei

    2018-06-01

    Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Autoradiographic evidence for two classes of mu opioid binding sites in rat brain using (/sup 125/I)FK33824

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.B.; Jacobson, A.E.; Rice, K.C.

    1987-11-01

    Previous studies demonstrated that pretreatment of brain membranes with the irreversible mu antagonist, beta-funaltrexamine (beta-FNA), partially eliminated mu binding sites (25,35), consistent with the existence of two mu binding sites distinguished by beta-FNA. This paper tests the hypothesis that the FNA-sensitive and FNA-insensitive mu binding sites have different anatomical distributions in rat brain. Prior to autoradiographic visualization of mu binding sites, (/sup 3/H)oxymorphone, (/sup 3/H)D-ala2-MePhe4, Gly-ol5-enkephalin (DAGO), and (/sup 125/I)D-ala2-Me-Phe4-met(o)-ol)enkephalin (FK33824) were shown to selectively label mu binding sites using slide mounted sections of molded minced rat brain. As found using membranes, beta-FNA eliminated only a portion of mu bindingmore » sites. Autoradiographic visualization of mu binding sites using the mu-selective ligand (/sup 125/I)FK33824 in control and FNA-treated sections of rat brain demonstrated that the proportion of mu binding sites sensitive to beta-FNA varied across regions of the brain, particularly the dorsal thalamus, ventrobasal complex and the hypothalamus, providing anatomical data supporting the existence of two classes of mu binding sites in rat brain.« less

  19. Liquid Chromatography Combined with Mass Spectrometry Utilising High-Resolution, Exact Mass, and Multi-Stage Fragmentation for the Identification of Oxysterols in Rat Brain

    PubMed Central

    Karu, Kersti; Hornshaw, Martin; Woffendin, Gary; Bodin, Karl; Hamberg, Mats; Alvelius, Gunvor; Sjövall, Jan; Turton, John; Wang, Yuqin; Griffiths, William J.

    2008-01-01

    In man the brain accounts for about 20% of the body's free cholesterol, most of which is synthesised de novo in brain. To maintain cholesterol balance throughout life, cholesterol becomes metabolised to 24S-hydroxycholesterol principally in neurons. In mouse, rat, and probably human, metabolism to 24S-hydroxycholesterol accounts for about 50% of cholesterol turnover, however, the route by which the remainder is turned over has yet to be elucidated. Here we describe a novel liquid chromatography (LC) – multi-stage fragmentation mass spectrometry (MSn) methodology for the identification, with high sensitivity (low pg), of cholesterol metabolites in rat brain. The methodology includes derivatisation to enhance ionisation, exact mass analysis at high-resolution to identify potential metabolites, and LC-MS3 to allow their characterisation. 24S-Hydroxycholesterol was confirmed as a major oxysterol in rat brain, while other oxysterols identified for the first time in brain included 24,25-, 24,27-, 25,27-, 6,24, 7α,25-, and 7α,27-dihydroxycholesterols. In addition, 3β-hydroxy-5-oxo-5,6-secocholestan-6-al and its aldol, two molecules linked to amyloidogenesis of proteins, were characterised in rat brain. PMID:17251593

  20. Improvement of neurological disorders in postmenopausal model rats by administration of royal jelly.

    PubMed

    Minami, A; Matsushita, H; Ieno, D; Matsuda, Y; Horii, Y; Ishii, A; Takahashi, T; Kanazawa, H; Wakatsuki, A; Suzuki, T

    2016-12-01

    Royal jelly (RJ) from honeybees (Apis mellifera) has estrogenic activity. Estrogen deficiency after menopause leads to a high risk of memory impairment and depression as well as metabolic syndrome and osteoporosis. We here investigated the effect of RJ on memory impairment and depression-like behaviors in ovariectomized (OVX) rats. OVX rats were administered with RJ for 82 days. Hippocampus-dependent spatial memory and depression-like behaviors were assessed by the Morris water maze test and the forced swimming test, respectively. The weights of body, brain and uterus and the contents of protein and myelin galactolipids including galactosylceramide and sulfatide were measured. Memory impairment and depression-like behaviors in OVX rats were recovered to the levels of sham-operated rats by RJ administration. Increased body weight and decreased uterine weight in OVX rats were recovered to the levels of sham-operated rats by 17β-estradiol (E2) administration but not by RJ administration. In contrast, brain weight was slightly increased by RJ administration but not by E2 administration. The contents of protein and myelin galactolipids were higher in the brains of RJ-administered OVX rats than in the brains of E2-administered OVX rats. The results suggest that RJ has a beneficial effect on neurological symptoms of a menopausal disorder.

  1. Increased transfer of 45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats.

    PubMed

    Murphy, V A; Rapoport, S I

    1988-06-28

    Recent studies have shown regulation of central nervous system [Ca] after chronic hypo- and hypercalcemia. To investigate the mechanism of this regulation, 3-week-old rats were fed diets for 8 weeks that contained low or normal levels of Ca. Plasma [Ca] was 40% less in rats fed the low Ca diet than in animals fed normal diet. Unidirectional transfer coefficients for Ca (KCa) and Cl (KCl) into cerebrospinal fluid (CSF) and brain were determined from the 10 min uptake of intravenously injected 45Ca and 36Cl in awake animals. KCa for CSF was 68% greater in low-Ca rats than in normal rats. Likewise, the values of KCa for brain regions with areas adjacent to the ventricles like the hippocampus and pons-medulla were 50% higher than in normal animals. On the other hand, KCas for parietal cortex, a brain region distant from the choroid plexus and not expected to be influenced by Ca entry into CSF, were similar between the groups. Comparison of the regional ratios of KCa/KCl revealed that a selective increase of Ca transport occurred into CSF and all brain regions except the parietal cortex in Ca-deficient rats. The results suggest that Ca homeostasis of CSF and brain [Ca] during chronic hypocalcemia is due to increased transfer of Ca from blood to brain, and that the regulation occurs via the CSF, possibly at the choroid plexus, but not via the cerebral capillaries.

  2. 77 FR 59106 - Glufosinate Ammonium; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... to conclude that the changes in brain glutamine synthetase activity are of significant concern for... technical material. In chronic studies in the rat, inhibition of brain glutamine synthetase, increased.... Changes in glutamine synthetase levels were observed in liver, kidney, and brain in rats. The altered...

  3. Effects of deferoxamine on blood-brain barrier disruption after subarachnoid hemorrhage.

    PubMed

    Li, Yanjiang; Yang, Heng; Ni, Wei; Gu, Yuxiang

    2017-01-01

    Blood brain barrier (BBB) disruption is a key mechanism of subarachnoid hemorrhage (SAH)-induced brain injury. This study examined the mechanism of iron-induced BBB disruption after SAH and investigated the potential therapeutic effect of iron chelation on SAH. Male adult Sprague-Dawley rats had an endovascular perforation of left internal carotid artery bifurcation or sham operation. The rats were treated with deferoxamine (DFX) or vehicle (100mg/kg) for a maximum of 7 days. Brain edema, BBB leakage, behavioral and cognitive impairment were examined. In SAH rat, the peak time of brain edema and BBB impairment in the cortex was at day 3 after SAH. SAH resulted in a significant increase in ferritin expression in the cortex. The ferritin positive cells were colocalized with endothelial cells, pericytes, astrocytes, microglia and neurons. Compared with vehicle, DFX caused less ferritin upregulation, brain water content, BBB impairment, behavioral and cognitive deficits in SAH rats. The results suggest iron overload could be a therapeutic target for SAH induced BBB damage.

  4. The distribution of lithium, sodium and magnesium in rat brain and plasma after various periods of administration of lithium in the diet.

    PubMed Central

    Bond, P A; Brooks, B A; Judd, A

    1975-01-01

    1 The tissue solubilizer Soluene-100 provides an efficient and easy means of preparing small amounts of rat tissue for cation analysis. 2 Administration of lithium ions to rats for two days to 42 days by the addition of lithium chloride to the diet at a concentration of 30 mmol/kg dry weight results in (a) the uniform distribution of lithium throughout the brain at a concentration comparable to that found in plasma; (b) decrease in the brain sodium concentration: (c) a decrease in brain magnesium concentration and an increase in plasma magnesium concentration; (d)no change in brain water content. 3 The inclusion of LiCl in the diet at a concentration of 30 mmol/kg dry food gives consistent and predictable plasma and brain levels of lithium in the rat without the occurrence of serious side effects over periods of up to 42 days. PMID:1148484

  5. Regional rat brain noradrenaline turnover in response to restraint stress.

    PubMed

    Glavin, G B; Tanaka, M; Tsuda, A; Kohno, Y; Hoaki, Y; Nagasaki, N

    1983-08-01

    Male Wistar rats were starved for 12 hr and then subjected to either 2 hr of wire mesh "envelope" restraint at room temperature; 2 hr of supine restraint in a specially constructed harness at room temperature or were not restrained. Eight brain regions were examined for NA level and the level of its major metabolite, MHPG-SO4. Plasma corticosterone and gastric ulcer incidence were also measured. All restrained rats displayed marked elevations in MHPG-SO4 levels in most brain regions. In addition, several brain regions in restrained animals showed a reduction in NA level. All restrained rats showed elevated plasma corticosterone levels and evidence of gastric lesions. In general, supine restraint produced greater alterations in regional brain NA turnover, greater evidence of ulcer disease, and higher plasma corticosterone levels than did wire mesh restraint. These data suggest that acute but intense stress in the form of restraint causes markedly altered brain NA activity--a possible neurochemical mechanism underlying the phenomenon of stress-induced disease.

  6. Spikes, Local Field Potentials, and Electrocorticogram Characterization during Motor Learning in Rats for Brain Machine Interface Tasks.

    PubMed

    Marzullo, T C; Dudley, J R; Miller, C R; Trejo, L; Kipke, D R

    2005-01-01

    Brain machine interface development typically falls into two arenas, invasive extracellular recording and non-invasive electroencephalogram recording methods. The relationship between action potentials and field potentials is not well understood, and investigation of interrelationships may improve design of neuroprosthetic control systems. Rats were trained on a motor learning task whereby they had to insert their noses into an aperture while simultaneously pressing down on levers with their forepaws; spikes, local field potentials (LFPs), and electrocorticograms (ECoGs) over the motor cortex were recorded and characterized. Preliminary results suggest that the LFP activity in lower cortical layers oscillates with the ECoG.

  7. Quercetin protects rat cortical neurons against traumatic brain injury.

    PubMed

    Du, Guoliang; Zhao, Zongmao; Chen, Yonghan; Li, Zonghao; Tian, Yaohui; Liu, Zhifeng; Liu, Bin; Song, Jianqiang

    2018-06-01

    Previous studies have demonstrated that traumatic brain injury (TBI) may cause neurological deficits and neuronal cell apoptosis. Quercetin, one of the most widely distributed flavonoids, possesses anti‑inflammatory, anti‑blood coagulation, anti‑ischemic and anti‑cancer activities, and neuroprotective effects in the context of brain injury. The purpose of the present study was to investigate the neuroprotective effects of quercetin in TBI. A total of 75 rats were randomly arranged into 3 groups as follows: Sham group (Sham); TBI group (TBI); and TBI + quercetin group (Que). Brain edema was evaluated by analysis of brain water content. The neurobehavioral status of the rats was evaluated by Neurological Severity Scoring. Immunohistochemical and western blot analyses were used to measure the expression of certain proteins. The results of the present study demonstrated that post‑TBI administration of quercetin may attenuate brain edema, in addition to improving motor function in rats. Additionally, quercetin caused a marked inhibition of extracellular signal‑regulated kinase 1/2 phosphorylation and activated Akt serine/threonine protein kinase phosphorylation, which may result in attenuation of neuronal apoptosis. The present study provided novel insights into the mechanism through which quercetin may exert its neuroprotective activity in a rat model of TBI.

  8. A model of posttraumatic epilepsy after penetrating brain injuries: effect of lesion size and metal fragments.

    PubMed

    Kendirli, M Tansel; Rose, Dominique T; Bertram, Edward H

    2014-12-01

    Penetrating brain injury (PBI) has the highest risk for inducing posttraumatic epilepsy, and those PBIs with retained foreign materials such as bullet fragments carry the greatest risk. This study examines the potential contribution of copper, a major component of bullets, to the development of epilepsy following PBI. Anesthetized adult male rats received a penetrating injury from the dorsal cortex to the ventral hippocampus from a high speed small bit drill. In one group of animals, copper wire was inserted into the lesion. Control animals had only the lesion or the lesion plus stainless steel wire (biologically inert foreign body). From 6 to up to 11 months following the injury the rats were monitored intermittently for the development of epilepsy with video-electroencephalography (EEG). A separate set of animals was examined for possible acute seizures in the week following the injury. Twenty-two of the 23 animals with copper wire developed chronic epilepsy, compared to three of the 20 control rats (lesion and lesion with stainless steel). Copper was associated with more extensive injury. The control rats with epilepsy had larger lesions. In the acute injury group, there was no difference in the incidence of seizures (83% lesion plus stainless steel, 70% lesion plus copper). Copper increases the risk for epilepsy and may increase damage over time, but there were no differences between the groups in the incidence of acute postinjury seizures. Lesion size may contribute to epilepsy development in lesion-only animals. Copper may be an independent risk factor for the development of epilepsy and possible secondary injury, but lesion size also contributes to the development of epilepsy. The consequences of prolonged exposure of the brain to copper observed in these animals may have clinical implications that require further evaluation. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  9. Pharmacokinetic/Pharmacodynamic Relationship of Gabapentin in a CFA-induced Inflammatory Hyperalgesia Rat Model.

    PubMed

    Larsen, Malte Selch; Keizer, Ron; Munro, Gordon; Mørk, Arne; Holm, René; Savic, Rada; Kreilgaard, Mads

    2016-05-01

    Gabapentin displays non-linear drug disposition, which complicates dosing for optimal therapeutic effect. Thus, the current study was performed to elucidate the pharmacokinetic/pharmacodynamic (PKPD) relationship of gabapentin's effect on mechanical hypersensitivity in a rat model of CFA-induced inflammatory hyperalgesia. A semi-mechanistic population-based PKPD model was developed using nonlinear mixed-effects modelling, based on gabapentin plasma and brain extracellular fluid (ECF) time-concentration data and measurements of CFA-evoked mechanical hyperalgesia following administration of a range of gabapentin doses (oral and intravenous). The plasma/brain ECF concentration-time profiles of gabapentin were adequately described with a two-compartment plasma model with saturable intestinal absorption rate (K m  = 44.1 mg/kg, V max  = 41.9 mg/h∙kg) and dose-dependent oral bioavailability linked to brain ECF concentration through a transit compartment. Brain ECF concentration was directly linked to a sigmoid E max function describing reversal of hyperalgesia (EC 50, plasma  = 16.7 μg/mL, EC 50, brain  = 3.3 μg/mL). The proposed semi-mechanistic population-based PKPD model provides further knowledge into the understanding of gabapentin's non-linear pharmacokinetics and the link between plasma/brain disposition and anti-hyperalgesic effects. The model suggests that intestinal absorption is the primary source of non-linearity and that the investigated rat model provides reasonable predictions of clinically effective plasma concentrations for gabapentin.

  10. Plasma serotonin in autism.

    PubMed

    Connors, Susan L; Matteson, Karla J; Sega, Gary A; Lozzio, Carmen B; Carroll, Roger C; Zimmerman, Andrew W

    2006-09-01

    Serotonin is necessary for normal fetal brain development. Administration of serotonin inhibitors to pregnant rats results in offspring with abnormal behaviors, brain morphology, and serotonin receptor numbers. Low maternal plasma serotonin may contribute to abnormal brain development in autism. In this study, plasma serotonin levels in autism mothers and control mothers of typically developing children were compared, and plasma serotonin levels in children with autism (n = 17) and their family members were measured. Plasma serotonin levels in autism mothers were significantly lower than in mothers of normal children (P = 0.002). Plasma serotonin levels correlated between autism mothers and their children, but differed between autistic children and their fathers (P = 0.028) and siblings (P = 0.063). Low maternal plasma serotonin may be a risk factor for autism through effects on fetal brain development.

  11. Lithium Visibility in Rat Brain and Muscle in Vivoby 7Li NMR Imaging

    NASA Astrophysics Data System (ADS)

    Komoroski, Richard A.; Pearce, John M.; Newton, Joseph E. O.

    1998-07-01

    The apparent concentration of lithium (Li)in vivowas determined for several regions in the brain and muscle of rats by7Li NMR imaging at 4.7 T with inclusion of an external standard of known concentration and visibility. The average apparent concentrations were 10.1 mM for muscle, and 4.2-5.3 mM for various brain regions under the dosing conditions used. The results were compared to concentrations determinedin vitroby high-resolution7Li NMR spectroscopy of extracts of brain and muscle tissue from the same rats. The comparison provided estimates of the7Li NMR visibility of the Li cation in each tissue region. Although there was considerable scatter of the calculated visibilities among the five rats studied, the results suggested essentially full visibility (96%) for Li in muscle, and somewhat reduced visibility (74-93%) in the various brain regions.

  12. Optimization of choline administration regimen for correction of cognitive functions in rats after brain injury.

    PubMed

    Guseva, M V; Kamenskii, A A; Gusev, V B

    2013-06-01

    Choline diet promotes improvement of the brain cognitive functions in rats with moderate-to-severe traumatic brain injury. In previous studies, the rats received choline being standard (0.2%) or choline-supplemented (2%) diet for 2 weeks prior to and 2 weeks after experimental brain injury. To the end of the experiments (in 4 weeks), the post-traumatic disturbances in the cognitive functions were observed in both groups, although they were less pronounced than in the rats kept on the choline-supplemented diet. Based on original mathematical model, this paper proposes a method to calculate the most efficient use of choline to correct the brain cognitive functions. In addition to evaluating the cognitive functions, the study assessed expression of α7 nicotinic acetylcholine receptors, the amount of consumed food and water, and the dynamics of body weight.

  13. Inulin supplementation during gestation mitigates acrylamide-induced maternal and fetal brain oxidative dysfunctions and neurotoxicity in rats.

    PubMed

    Krishna, Gokul; Muralidhara

    2015-01-01

    Accumulating evidence suggests that the developing brain is more susceptible to a variety of chemicals. Recent studies have shown a link between the enteric microbiota and brain function. While supplementation of non-digestible oligosaccharides during pregnancy has been demonstrated to positively influence human health mediated through stimulation of beneficial microbiota, our understanding on their neuromodulatory propensity is limited. In the present study, our primary focus was to examine whether supplementation of inulin (a well known fructan) during gestation can abrogate acrylamide (ACR)-induced oxidative impairments and neurotoxicity in maternal and fetal brain of rats. Initially, in a dose-determinative study, we recapitulated the impact of ACR exposure during gestation days (GD 6-19) on gestational parameters, extent of oxidative impairments in brain (maternal/fetal), cholinergic function and neurotoxicity. Subsequently, pregnant rats orally (gavage) administered with inulin (IN, 2 g/kg/day in two equal installments) supplements during gestation days (GD 0-19) were exposed to ACR (200 ppm) in drinking water. IN supplements significantly attenuated ACR-induced changes in exploratory activity (reduced open field exploration) measured on GD 14. Further, IN restored the placental weights among ACR exposed dams. Analysis of biochemical markers revealed that IN supplements effectively offset ACR associated oxidative stress not only in the maternal brain, but in the fetal brain as well. Elevated levels of protein carbonyls in maternal brain regions were completely normalized with IN supplements. More importantly, IN supplements significantly augmented the number of Bifidobacteria in the cecum of ACR rats which correlated well with the neurorestorative effect as evidenced by restored dopamine levels in the maternal cortex and fetal brain acetylcholinesterase activity among ACR-exposed dams. Further, IN supplements also conferred significant protection against mitochondrial dysfunction induced by ACR in both milieus. Although the precise mechanism/s by which IN supplements during pregnancy attenuate ACR induced neurotoxic impact merits further investigations, we hypothesize that it may mediate through enhanced enteric microbiota and abrogation of oxidative stress. Further, our study provides an experimental approach to explore the neuroprotective role of prebiotic oligosaccharides during pregnancy in reducing the adverse impact of developmental neurotoxicants. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Development and evaluation of polymer nanoparticles for oral delivery of estradiol to rat brain in a model of Alzheimer's pathology.

    PubMed

    Mittal, G; Carswell, H; Brett, R; Currie, S; Kumar, M N V Ravi

    2011-03-10

    The purpose of this study was to develop tween 80 (T-80) coated polylactide-co-glycolide (PLGA) nanoparticles that can deliver estradiol to the brain upon oral administration. Estradiol containing nanoparticles were made by a single emulsion technique and T-80 coating was achieved by incubating the re-constituted nanoparticles at different concentrations of T-80. The process of T-80 coating on the nanoparticles was optimized and the pharmacokinetics of estradiol nanoparticles was studied as a function of T-80 coating. The nanoparticles were then evaluated in an ovariectomized (OVX) rat model of Alzheimer's disease (AD) that mimics the postmenopausal conditions. The nanoparticles bound T-80 were found to proportionally increase from 9.72 ± 1.07 mg to 63.84 ± 3.59 mg with an increase in the initial concentration T-80 from 1% to 5% and were stable in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Orally administered T-80 coated nanoparticles resulted in significantly higher brain estradiol levels after 24h (1.969 ± 0.197 ng/g tissue) as compared to uncoated ones (1.105 ± 0.136 ng/g tissue) at a dose of 0.2mg/rat, suggesting a significant role of surface coating. Moreover, these brain estradiol levels were almost similar to those obtained after administration of the same dose of drug suspension via 100% bioavailable intramuscular route (2.123 ± 0.370 ng/g tissue), indicating the increased fraction of bioavailable drug reaching the brain when administered orally. Also, the nanoparticle treated group was successful in preventing the expression of amyloid beta-42 (Aβ42) immunoreactivity in the hippocampus region of brain. Together, the results indicate the potential of nanoparticles for oral delivery of estradiol to brain. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains.

    PubMed

    Zhou, Jie; Zhang, Limin; Tian, Yang

    2016-02-16

    To develop in vivo monitoring meter for pH measurements is still the bottleneck for understanding the role of pH plays in the brain diseases. In this work, a selective and sensitive electrochemical pH meter was developed for real-time ratiometric monitoring of pH in different regions of rat brains upon ischemia. First, 1,2-naphthoquinone (1,2-NQ) was employed and optimized as a selective pH recognition element to establish a 2H(+)/2e(-) approach over a wide range of pH from 5.8 to 8.0. The pH meter demonstrated remarkable selectivity toward pH detection against metal ions, amino acids, reactive oxygen species, and other biological species in the brain. Meanwhile, an inner reference, 6-(ferrocenyl)hexanethiol (FcHT), was selected as a built-in correction to avoid the environmental effect through coimmobilization with 1,2-NQ. In addition, three-dimensional gold nanoleaves were electrodeposited onto the electrode surface to amplify the signal by ∼4.0-fold and the measurement was achieved down to 0.07 pH. Finally, combined with the microelectrode technique, the microelectrochemical pH meter was directly implanted into brain regions including the striatum, hippocampus, and cortex and successfully applied in real-time monitoring of pH values in these regions of brain followed by global cerebral ischemia. The results demonstrated that pH values were estimated to 7.21 ± 0.05, 7.13 ± 0.09, and 7.27 ± 0.06 in the striatum, hippocampus, and cortex in the rat brains, respectively, in normal conditions. However, pH decreased to 6.75 ± 0.07 and 6.52 ± 0.03 in the striatum and hippocampus, upon global cerebral ischemia, while a negligible pH change was obtained in the cortex.

  16. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats.

    PubMed

    Zhong, Yu; Chen, Jing; Li, Li; Qin, Yi; Wei, Yi; Pan, Shining; Jiang, Yage; Chen, Jialin; Xie, Yubo

    2018-04-20

    Studies have found that propofol can induce widespread neuroapoptosis in developing brains, which leads to cause long-term learning and memory abnormalities. However, the specific cellular and molecular mechanisms underlying propofol-induced neuroapoptosis remain elusive. The aim of the present study was to explore the role of PKA-CREB-BDNF signaling pathway in propofol-induced long-term learning and memory impairment during brain development. Seven-day-old rats were randomly assigned to control, intralipid and three treatment groups (n = 5). Rats in control group received no treatment. Intralipid (10%, 10 mL/kg) for vehicle control and different dosage of propofol for three treatment groups (50, 100 and 200 mg/kg) were administered intraperitoneally. FJB staining, immunohistochemistry analysis for neuronal nuclei antigen and transmission electron microscopy were used to detect neuronal apoptosis and structure changes. MWM test examines the long-term spatial learning and memory impairment. The expression of PKA, pCREB and BDNF was quantified using western blots. Propofol induced significant increase of FJB-positive cells and decrease of PKA, pCREB and BDNF protein levels in the immature brain of P7 rats. Using the MWM test, propofol-treated rats demonstrated long-term spatial learning and memory impairment. Moreover, hippocampal NeuN-positive cell loss, long-lasting ultrastructural abnormalities of the neurons and synapses, and long-term down-regulation of PKA, pCREB and BDNF protein expression in adult hippocampus were also found. Our results indicated that neonatal propofol exposure can significantly result in long-term learning and memory impairment in adulthood. The possible mechanism involved in the propofol-induced neuroapoptosis was related to down-regulation of PKA-CREB-BDNF signaling pathway. Copyright © 2018. Published by Elsevier B.V.

  17. A link between central kynurenine metabolism and bone strength in rats with chronic kidney disease

    PubMed Central

    Pawlak, Krystyna; Oksztulska-Kolanek, Ewa; Domaniewski, Tomasz; Znorko, Beata; Karbowska, Malgorzata; Citkowska, Aleksandra; Rogalska, Joanna; Roszczenko, Alicja; Brzoska, Malgorzata M.; Pawlak, Dariusz

    2017-01-01

    Background Disturbances in mineral and bone metabolism represent one of the most complex complications of chronic kidney disease (CKD). Serotonin, a monoamine synthesized from tryptophan, may play a potential role in bone metabolism. Brain-derived serotonin exerts a positive effect on the bone structure by limiting bone resorption and enhancing bone formation. Tryptophan is the precursor not only to the serotonin but also and primarily to kynurenine metabolites. The ultimate aim of the present study was to determine the association between central kynurenine metabolism and biomechanical as well as geometrical properties of bone in the experimental model of the early stage of CKD. Methods Thirty-three Wistar rats were randomly divided into two groups (sham-operated and subtotal nephrectomized animals). Three months after surgery, serum samples were obtained for the determination of biochemical parameters, bone turnover biomarkers, and kynurenine pathway metabolites; tibias were collected for bone biomechanical, bone geometrical, and bone mass density analysis; brains were removed and divided into five regions for the determination of kynurenine pathway metabolites. Results Subtotal nephrectomized rats presented higher serum concentrations of creatinine, urea nitrogen, and parathyroid hormone, and developed hypocalcemia. Several biomechanical and geometrical parameters were significantly elevated in rats with experimentally induced CKD. Subtotal nephrectomized rats presented significantly higher kynurenine concentrations and kynurenine/tryptophan ratio and significantly lower tryptophan levels in all studied parts of the brain. Kynurenine in the frontal cortex and tryptophan in the hypothalamus and striatum correlated positively with the main parameters of bone biomechanics and bone geometry. Discussion In addition to the complex mineral, hormone, and metabolite changes, intensified central kynurenine turnover may play an important role in the development of bone changes in the course of CKD. PMID:28439468

  18. Demyelinating evidences in CMS rat model of depression: a DTI study at 7 T.

    PubMed

    Hemanth Kumar, B S; Mishra, S K; Trivedi, R; Singh, S; Rana, P; Khushu, S

    2014-09-05

    Depression is among the most debilitating diseases worldwide. Long-term exposure to stressors plays a major role in development of human depression. Chronic mild stress (CMS) seems to be a valid animal model for depression. Diffusion tensor imaging (DTI) is capable of inferring microstructural abnormalities of the white matter and has shown to serve as non-invasive marker of specific pathology. We developed a CMS rat model of depression and validated with behavioral experiments. We measured the diffusion indices (mean diffusivity (MD), fractional anisotropy (FA), axial (λ∥) and radial (λ⊥) diffusivity) to investigate the changes in CMS rat brain during depression onset. Diffusion indices have shown to be useful to discriminate myelin damage from axon loss. DTI was performed in both control and CMS rats (n=10, in each group) and maps of FA, MD, λ∥ and λ⊥ diffusivity values were generated using in-house built software. The diffusion indices were calculated by region of interest (ROI) analysis in different brain regions like the frontal cortex, hippocampus, hypothalamus, cingulum, thalamus, caudate putamen, corpus callosum, cerebral peduncle and sensory motor cortex. The results showed signs of demyelination, reflected by increased MD, decreased FA and increased λ⊥. The results also suggest a possible role of edema or inflammation concerning the brain morphology in CMS rats. The overall finding using DTI suggests there might be a major role of loss of myelin sheath, which leads to disrupted connectivity between the limbic area and the prefrontal cortex during the onset of depression. Our findings indicate that interpretation of these indices may provide crucial information about the type and severity of mood disorders. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Prolonged maternal separation disturbs the serotonergic system during early brain development.

    PubMed

    Ohta, Ken-Ichi; Miki, Takanori; Warita, Katsuhiko; Suzuki, Shingo; Kusaka, Takashi; Yakura, Tomiko; Liu, Jun-Qian; Tamai, Motoki; Takeuchi, Yoshiki

    2014-04-01

    Early life stress interrupts brain development through the disturbance of various neurotransmitter and neurotrophic factor activities, but the details remain unclear. In the current study, we focused on the serotonergic system, which plays a critical role in brain development, and examined the time-dependent influence of prolonged maternal separation on male Sprague-Dawley rats. The rats were separated from their dams for 3h twice-daily during postnatal days (PDs) 2-20. The influence of prolonged maternal separation was analyzed on PDs 7, 14, 21, and 28 using HPLC to assess concentrations of serotonin and 5-hydroxyindoleacetic acid and using real-time RT-PCR to measure mRNA expression of the serotonin 1A and 2A receptors in various brain regions. HPLC revealed imbalance between serotonin and 5-hydroxyindoleacetic acid in midbrain raphe nuclei, the amygdala, the hippocampus, and the medial prefrontal cortex (mPFC) on PDs 7 and 14. Furthermore, real-time RT-PCR showed attenuation of mRNA expression of the serotonin 1A receptor in the hippocampus and the mPFC and of the serotonin 2A receptor only in the mPFC on PDs 7 and 14. The observed alterations returned to control levels after maternal separation ended. These findings suggest that the early life stress of prolonged maternal separation disturbs the serotonergic system during a crucial period of brain development, which might in part be responsible for emotional abnormalities later in life. Copyright © 2013 ISDN. Published by Elsevier Ltd. All rights reserved.

  20. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    PubMed

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. © The Author(s) 2014.

  1. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    PubMed

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.

  2. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  3. GENE EXPRESSION PROFILES IN THE DEVELOPING RAT CEREBELLUM AND HIPPOCAMPUS

    EPA Science Inventory

    Development of the nervous system is a complex program, involving coordinated growth of axons and their targets. In rodents, rapid brain growth occurs during early postnatal development. At this time, several fundamental processes, such as dendritic and axonal outgrowth and the e...

  4. [Effects of mercazolyl and L-thyroxine on the antiedematous activity of immunotropic preparations during development of toxic brain edema and swelling].

    PubMed

    Platonov, I A; Anashchenkova, T A; Andreeva, T A

    2008-01-01

    Dysfunction of thyroid gland plays an important role in the pathogenesis of brain edema and swelling. Toxic brain edema and swelling was modeled under condition of hypo- and hyperfunction of thyroid gland. Mercazolyl and L-thyroxine ambiguously influence the development of toxic brain edema and swelling in rats. L-thyroxin (35.7 microg/kg) favors increase in the water content in brain tissue, which can be considered as synergism with the edematous factor and the formation of brain tissue susceptibility to the development of brain edema and swelling. The administration of mercazolyl (5 mg/kg) and L-thyroxin (35.7 microg/kg) with thymogen (10 microg/kg), thymalin (1.2 mg/kg), cycloferon (0.5 mg/kg) results in decreasing brain tissue density as compared to intact animals. Dysfunction of the thyroid gland leads to changes in pharmacodynamics of immune preparations, which results in a decrease of their antiedematous activity.

  5. Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.

    PubMed

    Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume

    2013-09-05

    Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age corresponding to full-term human newborns, a systemic pre-exposure to a pathogen component amplified HI-induced mortality and morbidities that are relevant to human pathology. Neuronal cells were the first cells to produce IL-1β in LPS + HI-exposed full-term brains. Such IL-1β production might be responsible for neuronal self-injuries via well-described neurotoxic mechanisms such as IL-1β-induced nitric oxide production, or IL-1β-dependent exacerbation of excitotoxic damage.

  6. Attenuation of alpha2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood.

    PubMed

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2004-01-01

    Brain alpha2-adrenergic receptors (alpha2-ARs) have been implicated in the regulation of anxiety, which is associated with stress. Environmental treatments during neonatal development could modulate the level of brain alpha2-AR expression and alter anxiety in adults, suggesting possible involvement of these receptors in early-life programming of anxiety state. The present study was undertaken to determine whether the reduction of the expression of A subtype of these receptors most abundant in the neonatal brain affects anxiety-related behavior in adulthood. We attenuated the expression of alpha2A-ARs during neonatal life by two different sequence specific approaches, antisense technology and RNA interference. Treatment of rats with the antisense oligodeoxynucleotide or short interfering RNA (siRNA) against alpha2A-ARs on the days 2-4 of their life, produced a marked acute decrease in the levels of both alpha2A-AR mRNA and [3H]RX821002 binding sites in the brainstem into which drugs were injected. The decrease of alpha2A-AR expression in the neonatal brainstem influenced the development of this receptor system in the brain regions as evidenced by the increased number of [3H]RX821002 binding sites in the hypothalamus of adult animals with both neonatal alpha2A-AR knockdown treatments; also in the frontal cortex of antisense-treated, and in the hippocampus of siRNA-treated adult rats. These adult animals also demonstrated a decreased anxiety in the elevated plus-maze as evidenced by an increased number of the open arm entries, greater proportion of time spent in the open arms, and more than a two-fold increase in the number of exploratory head dips. The results provide the first evidence that the reduction in the brain expression of a gene encoding for alpha2A-AR during neonatal life led to the long-term neurochemical and behavioral alterations. The data suggests that alterations in the expression of the receptor-specific gene during critical periods of brain development may be involved in early-life programming of anxiety-related behavior.

  7. Rats exposed to 2.45GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3.

    PubMed

    Varghese, Rini; Majumdar, Anuradha; Kumar, Girish; Shukla, Amit

    2018-03-01

    In recent years there has been a tremendous increase in use of Wi-Fi devices along with mobile phones, globally. Wi-Fi devices make use of 2.4GHz frequency. The present study evaluated the impact of 2.45GHz radiation exposure for 4h/day for 45days on behavioral and oxidative stress parameters in female Sprague Dawley rats. Behavioral tests of anxiety, learning and memory were started from day 38. Oxidative stress parameters were estimated in brain homogenates after sacrificing the rats on day 45. In morris water maze, elevated plus maze and light dark box test, the 2.45GHz radiation exposed rats elicited memory decline and anxiety behavior. Exposure decreased activities of super oxide dismutase, catalase and reduced glutathione levels whereas increased levels of brain lipid peroxidation was encountered in the radiation exposed rats, showing compromised anti-oxidant defense. Expression of caspase 3 gene in brain samples were quantified which unraveled notable increase in the apoptotic marker caspase 3 in 2.45GHz radiation exposed group as compared to sham exposed group. No significant changes were observed in histopathological examinations and brain levels of TNF-α. Analysis of dendritic arborization of neurons showcased reduction in number of dendritic branching and intersections which corresponds to alteration in dendritic structure of neurons, affecting neuronal signaling. The study clearly indicates that exposure of rats to microwave radiation of 2.45GHz leads to detrimental changes in brain leading to lowering of learning and memory and expression of anxiety behavior in rats along with fall in brain antioxidant enzyme systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    PubMed

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Nicergoline enhances glutamate re-uptake and protects against brain damage in rat global brain ischemia.

    PubMed

    Asai, S; Zhao, H; Yamashita, A; Jike, T; Kunimatsu, T; Nagata, T; Kohno, T; Ishikawa, K

    1999-11-03

    Whereas a 2-3 degrees C decrease in intraischemic brain temperature can be neuroprotective, mild brain hyperthermia significantly worsens outcome. Our previous study suggested that an ischemic injury mechanism which is sensitive to temperature may not actually increase the extracellular glutamate concentration ([Glu](e)) during the intraischemic period, but rather impairs the Glu re-uptake system, which has been suggested to be involved in the reversed uptake of Glu. We speculated that enhancing Glu re-uptake, pharmacologically or hypothermically, may shorten exposure to high [Glu](e) in the postischemic period and thereby decrease its deleterious excitotoxic effect on neuronal cells. In the present study, rats treated with nicergoline (32 mg/kg, i.p.), an ergot alkaloid derivative, showed minimal inhibition of the [Glu](e) elevation which characteristically occurs during the 10-min intraischemic period, while Glu re-uptake was dramatically improved in the postischemic period, when severe transient global ischemia was caused by mild hyperthermia. Moreover, the nicergoline (32 mg/kg, i.p.) treated rats showed reduced cell death morphologically and clearly had a far lower mortality. The present study suggests that the development of therapeutic strategies aimed at inhibition or prevention of the reversed uptake of glutamate release during ischemia, i.e., activation of the glutamate uptake mechanism, is a promising approach to reduce neural damage occurring in response to brain ischemia.

  10. Brain serotonin content - Increase following ingestion of carbohydrate diet.

    NASA Technical Reports Server (NTRS)

    Fernstrom, J. D.; Wurtman, R. J.

    1971-01-01

    In the rat, the injection of insulin or the consumption of carbohydrate causes sequential increases in the concentrations of tryptophan in the plasma and the brain and of serotonin in the brain. Serotonin-containing neurons may thus participate in systems whereby the rat brain integrates information about the metabolic state in its relation to control of homeostasis and behavior.

  11. Brain Activation Patterns at Exhaustion in Rats That Differ in Inherent Exercise Capacity

    PubMed Central

    Foley, Teresa E.; Brooks, Leah R.; Gilligan, Lori J.; Burghardt, Paul R.; Koch, Lauren G.; Britton, Steven L.; Fleshner, Monika

    2012-01-01

    In order to further understand the genetic basis for variation in inherent (untrained) exercise capacity, we examined the brains of 32 male rats selectively bred for high or low running capacity (HCR and LCR, respectively). The aim was to characterize the activation patterns of brain regions potentially involved in differences in inherent running capacity between HCR and LCR. Using quantitative in situ hybridization techniques, we measured messenger ribonuclease (mRNA) levels of c-Fos, a marker of neuronal activation, in the brains of HCR and LCR rats after a single bout of acute treadmill running (7.5–15 minutes, 15° slope, 10 m/min) or after treadmill running to exhaustion (15–51 minutes, 15° slope, initial velocity 10 m/min). During verification of trait differences, HCR rats ran six times farther and three times longer prior to exhaustion than LCR rats. Running to exhaustion significantly increased c-Fos mRNA activation of several brain areas in HCR, but LCR failed to show significant elevations of c-Fos mRNA at exhaustion in the majority of areas examined compared to acutely run controls. Results from these studies suggest that there are differences in central c-Fos mRNA expression, and potential brain activation patterns, between HCR and LCR rats during treadmill running to exhaustion and these differences could be involved in the variation in inherent running capacity between lines. PMID:23028992

  12. Juvenile Traumatic Brain Injury Results in Cognitive Deficits Associated with Impaired Endoplasmic Reticulum Stress and Early Tauopathy.

    PubMed

    Hylin, Michael J; Holden, Ryan C; Smith, Aidan C; Logsdon, Aric F; Qaiser, Rabia; Lucke-Wold, Brandon P

    2018-05-22

    The leading cause of death in the juvenile population is trauma, and in particular neurotrauma. The juvenile brain response to neurotrauma is not completely understood. Endoplasmic reticulum (ER) stress has been shown to contribute to injury expansion and behavioral deficits in adult rodents and furthermore has been seen in adult postmortem human brains diagnosed with chronic traumatic encephalopathy. Whether endoplasmic reticulum stress is increased in juveniles with traumatic brain injury (TBI) is poorly delineated. We investigated this important topic using a juvenile rat controlled cortical impact (CCI) model. We proposed that ER stress would be significantly increased in juvenile rats following TBI and that this would correlate with behavioral deficits using a juvenile rat model. A juvenile rat (postnatal day 28) CCI model was used. Binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP) were measured at 4 h in the ipsilateral pericontusion cortex. Hypoxia-inducible factor (HIF)-1α was measured at 48 h and tau kinase measured at 1 week and 30 days. At 4 h following injury, BiP and CHOP (markers of ER stress) were significantly elevated in rats exposed to TBI. We also found that HIF-1α was significantly upregulated 48 h following TBI showing delayed hypoxia. The early ER stress activation was additionally asso-ciated with the activation of a known tau kinase, glycogen synthase kinase-3β (GSK-3β), by 1 week. Tau oligomers measured by R23 were significantly increased by 30 days following TBI. The biochemical changes following TBI were associated with increased impulsive-like or anti-anxiety behavior measured with the elevated plus maze, deficits in short-term memory measured with novel object recognition, and deficits in spatial memory measured with the Morris water maze in juvenile rats exposed to TBI. These results show that ER stress was increased early in juvenile rats exposed to TBI, that these rats developed tau oligomers over the course of 30 days, and that they had significant short-term and spatial memory deficits following injury. © 2018 S. Karger AG, Basel.

  13. Structural and functional effects of social isolation on the hippocampus of rats with traumatic brain injury.

    PubMed

    Khodaie, Babak; Lotfinia, Ahmad Ali; Ahmadi, Milad; Lotfinia, Mahmoud; Jafarian, Maryam; Karimzadeh, Fariba; Coulon, Philippe; Gorji, Ali

    2015-02-01

    Social isolation has significant long-term psychological and physiological consequences. Both social isolation and traumatic brain injury (TBI) alter normal brain function and structure. However, the influence of social isolation on recovery from TBI is unclear. This study aims to evaluate if social isolation exacerbates the anatomical and functional deficits after TBI in young rats. Juvenile male rats were divided into four groups; sham operated control with social contacts, sham control with social isolation, TBI with social contacts, and TBI with social isolation. During four weeks after brain injury in juvenile rats, we evaluated the animal behaviors by T-maze and open-field tests, recorded brain activity with electrocorticograms and assessed structural changes by histological procedures in the hippocampal dentate gyrus, CA1, and CA3 areas. Our findings revealed significant memory impairments and hyperactivity conditions in rats with TBI and social isolation compared to the other groups. Histological assessments showed an increase of the mean number of dark neurons, apoptotic cells, and caspase-3 positive cells in all tested areas of the hippocampus in TBI rats with and without social isolation compared to sham rats. Furthermore, social isolation significantly increased the number of dark cells, apoptotic neurons, and caspase-3 positive cells in the hippocampal CA3 region in rats with TBI. This study indicates the harmful effect of social isolation on anatomical and functional deficits induced by TBI in juvenile rats. Prevention of social isolation may improve the outcome of TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Impaired myogenic response and autoregulation of cerebral blood flow is rescued in CYP4A1 transgenic Dahl salt-sensitive rat

    PubMed Central

    Fan, Fan; Geurts, Aron M.; Murphy, Sydney R.; Pabbidi, Mallikarjuna R.; Jacob, Howard J.

    2014-01-01

    We have reported that a reduction in renal production of 20-HETE contributes to development of hypertension in Dahl salt-sensitive (SS) rats. The present study examined whether 20-HETE production is also reduced in the cerebral vasculature of SS rats and whether this impairs the myogenic response and autoregulation of cerebral blood flow (CBF). The production of 20-HETE, the myogenic response of middle cerebral arteries (MCA), and autoregulation of CBF were compared in SS, SS-5BN rats and a newly generated CYP4A1 transgenic rat. 20-HETE production was 6-fold higher in cerebral arteries of CYP4A1 and SS-5BN than in SS rats. The diameter of the MCA decreased to 70 ± 3% to 65 ± 6% in CYP4A1 and SS-5BN rats when pressure was increased from 40 to 140 mmHg. In contrast, the myogenic response of MCA isolated from SS rats did not constrict. Administration of a 20-HETE synthesis inhibitor, HET0016, abolished the myogenic response of MCA in CYP4A1 and SS-5BN rats but had no effect in SS rats. Autoregulation of CBF was impaired in SS rats compared with CYP4A1 and SS-5BN rats. Blood-brain barrier leakage was 5-fold higher in the brain of SS rats than in SS-5BN and SS.CYP4A1 rats. These findings indicate that a genetic deficiency in the formation of 20-HETE contributes to an impaired myogenic response in MCA and autoregulation of CBF in SS rats and this may contribute to vascular remodeling and cerebral injury following the onset of hypertension. PMID:25540098

  15. Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats

    PubMed Central

    Pyter, Leah M.; Kelly, Sean D.; Harrell, Constance S.; Neigh, Gretchen N.

    2013-01-01

    Both basic and clinical research indicates that females are more susceptible to stress-related affective disorders than males. One of the mechanisms by which stress induces depression is via inflammatory signaling in the brain. Stress during adolescence, in particular, can also disrupt the activation and continued development of both the hypothalamic–pituitary–adrenal (HPA) and –gonadal (HPG) axes, both of which modulate inflammatory pathways and brain regions involved in affective behavior. Therefore, we tested the hypothesis that adolescent stress differentially alters brain inflammatory mechanisms associated with affective-like behavior into adulthood based on sex. Male and female Wistar rats underwent mixed-modality stress during adolescence (PND 37–48) and were challenged with lipopolysaccharide (LPS; 250 μg/kg, i.p.) or saline 4.5 weeks later (in adulthood). Hippocampal inflammatory marker gene expression and circulating HPA and HPG axes hormone concentrations were then determined. Despite previous studies indicating that adolescent stress induces affective-like behaviors in female rats only, this study demonstrated that adolescent stress increased hippocampal inflammatory responses to LPS in males only, suggesting that differences in neuroinflammatory signaling do not drive the divergent affective-like behaviors. The sex differences in inflammatory markers were not associated with differences in corticosterone. In females that experienced adolescent stress, LPS increased circulating estradiol. Estradiol positively correlated with hippocampal microglial gene expression in control female rats, whereas adolescent stress negated this relationship. Thus, estradiol in females may potentially protect against stress-induced increases in neuroinflammation. PMID:23348027

  16. Localization of organ-specific antigens in the nervous system of the rat.

    PubMed

    Weinrauder, H; Lach, B

    1977-08-16

    Localization of organ-specific brain antigens in the central nervous system of the rat has been studied by means of indirect immunofluorescence. Rabbit antiserum against homogenate of rat brain, previously absorbed with normal serum and homogenates of rat organs (kidney, liver, spleen), reacted with the water-soluble antigens of rat brain prepared by extraction with phosphate buffer (pH 7.3) and ultracentrifugation at 50 000 X g to give one band in the immunodiffusion test and 2--3 precipitation arcs in immunoelectrophoresis. There was also a positive reaction with peripheral nerve. The antigen was detectable in all regions of the CNS. Cells with distinct cytoplasmic immunofluorescence were most frequently observed in cerebellar white matter, pons, cerebellar pedunculi, longitudinal tracts of the brain stem. Positive immunofluorecence reaction has appeared in the outer plexiform layer and granular layer of the retina, satelite cells of the spinal root ganglia and Schwann cells. A similar reaction was observed in human, mouse and guinea pig brain slices. Both the morphological and immunochemical reactions are indicative of glial localization of this antigen.

  17. Docosahexaenoic acid Confers Neuroprotection in a Rat Model of Perinatal Hypoxia-ischemia potentiated by E. coli lipopolysaccharide-induced systemic inflammation

    PubMed Central

    BERMAN, Deborah R; LIU, YiQing; BARKS, John; MOZURKEWICH, Ellen

    2010-01-01

    Objective Lipopolysaccharide (LPS) pretreatment potentiates HI injury. We hypothesized that docosahexaenoic acid (DHA) pretreatment would improve function and reduce brain damage in this rat model of perinatal brain injury and inflammation. Study Design Seven-day-old Wistar rats were divided into 3 groups. One received intraperitoneal (IP) DHA 1 mg/kg and LPS 0.1mg/kg. The second received 25% Albumin and LPS. The third received normal saline (NS). Injections were given 2.5 hours prior to right carotid ligation, followed by 90 minutes 8% O2. Rats underwent sensorimotor testing and brain damage assessment on P14. Results DHA pretreatment improved forepaw placing compared to albumin/LPS. (Mean±SD successes/10 trials: 8.57±1.7 DHA/LPS vs 6.72±2.2 Albumin/LPS, p<.0009). There were no significant differences in brain damage among groups. Conclusions Inflammatory stimulation before HI resulted in poorer function than HI alone. Although DHA pretreatment had no impact on brain damage, it significantly improved function in neonatal rats exposed to LPS and HI. PMID:19254588

  18. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    PubMed

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  19. Electroacupuncture: a new approach to open the blood-brain barrier in rats recovering from middle cerebral artery occlusion.

    PubMed

    Zhang, Jiangsong; Lin, Xianming; Zhou, Hui; Chen, Yuanyuan; Xiao, Shuangkai; Jiao, Junyue; Zhao, Yibin; Di, Zhong

    2018-06-14

    To examine for an opening effect on the blood-brain barrier (BBB) in intact rats and rats with experimental ischaemia-reperfusion (I/R) during the recovery period after various electroacupuncture (EA) treatments with different time courses, and to determine whether there is a time-dependent effect. An additional objective was to determine whether this method could induce the penetration of nerve growth factor (NGF) through the BBB. A middle cerebral artery occlusion (MCAO) model was first established. We chose different stimulation time courses and observed the effects of EA treatment (100 Hz frequency; 2 mA intensity) at GV20 and GV26 on the BBB in rats recovering from MCAO 3 weeks after modelling. The rats were injected with 2% Evans blue (EB) saline. The brain water content was measured using a wet/dry weighing method. The degree of penetration of EB was detected using spectrophotometry and laser confocal microscopy. The rats were then injected with NGF, and the concentration of NGF in the brain tissues was measured using ELISA. The increase in the BBB permeability was most notable following the 8 min EA stimulation (P<0.05), which may be advantageous for the targeted delivery of drugs (such as NGF) into the brain. Additionally, this effect did not appear to cause brain oedema (P>0.05) in healthy or MCAO rats. EA treatment for a certain stimulation time at GV20 and GV26 in MCAO rats can increase BBB permeability. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain

    PubMed Central

    Mallikarjuna, Nimgampalle; Praveen, Kukkarasapalli; Yellamma, Kuna

    2016-01-01

    Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder, clinically characterized by memory dysfunction and progressive loss of cognition. No curative therapeutic or drug is available for the complete cure of this disease. The present study was aimed to evaluate the efficacy of Lactobacillus plantarum MTCC1325 in ATPases activity in the selected brain regions of rats induced with Alzheimer’s. Methods: For the study, 48 healthy Wistar rats were divided into four groups: group I as control group, group II as AD model (AD induced by intraperitoneal injection of D-Galactose, 120 mg/kg body weight for 6 weeks), group III as normal control rats which were orally administered only with L. plantarum MTCC1325 for 60 days, and group IV where the AD-induced rats simultaneously received oral treatment of L. plantarum MTCC1325 (10ml/kg body weight, 12×108 CFU/mL) for 60 days. The well known membrane bound transport enzymes including Na+, K+-ATPases, Ca2+-ATPases, and Mg2+-ATPases were assayed in the selected brain regions of hippocampus and cerebral cortex in all four groups of rats at selected time intervals. Results: Chronic injection of D-Galactose caused lipid peroxidation, oxidative stress, and mitochondrial dysfunction leading to the damage of neurons in the brain, finally bringing a significant decrease (-20%) in the brain total membrane bound ATPases over the controls. Contrary to this, treatment of AD-induced rats with L. plantarum MTCC1325 reverted all the constituents of ATPase enzymes to near normal levels within 30 days. Conclusion: Lactobacillus plantarum MTCC1325 exerted a beneficial action on the entire ATPases system in AD-induced rat brain by delaying neurodegeneration. PMID:28265536

  1. Cognitive Deficits and Inflammatory Response Resulting from Mild-to-Moderate Traumatic Brain Injury in Rats Are Exacerbated by Repeated Pre-Exposure to an Innate Stress Stimulus.

    PubMed

    Ogier, Michaël; Belmeguenai, Amor; Lieutaud, Thomas; Georges, Béatrice; Bouvard, Sandrine; Carré, Emilie; Canini, Frédéric; Bezin, Laurent

    2017-04-15

    Traumatic brain injury (TBI) is common in both military and civilian populations, and often results in neurobehavioral sequelae that impair quality of life in both patients and their families. Although individuals who are chronically exposed to stress are more likely to experience TBI, it is still unknown whether pre-injury stress influences the outcome after TBI. The present study tested whether behavioral and cognitive long-term outcome after TBI in rats is affected by prior exposure to an innate stress stimulus. Young adult male Sprague-Dawley rats were exposed to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT) or to water (WAT); exposure was repeated eight times at irregular intervals over a 2-week period. Rats were subsequently subjected to either mild-to-moderate bilateral brain injury (lateral fluid percussion [LFP]) or sham surgery (Sham). Four experimental groups were studied: Sham-WAT, Sham-TMT, LFP-WAT and LFP-TMT. Compared with Sham-WAT rats, LFP-WAT rats exhibited transient locomotor hyperactivity without signs of anxiety, minor spatial learning acquisition and hippocampal long-term potentiation deficits, and lower baseline activity of the hypothalamic-pituitary-adrenal axis with slightly stronger reactivity to restraint stress. Exposure to TMT had only negligible effects on Sham rats, whereas it exacerbated all deficits in LFP rats except for locomotor hyperactivity. Early brain inflammatory response (8 h post-trauma) was aggravated in rats pre-exposed to TMT, suggesting that increased brain inflammation may sustain functional deficits in these rats. Hence, these data suggest that pre-exposure to stressful conditions can aggravate long-term deficits induced by TBI, leading to severe stress response deficits, possibly due to dysregulated inflammatory response.

  2. Photoacoustic imaging to detect rat brain activation after cocaine hydrochloride injection

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-03-01

    Photoacoustic imaging (PAI) was employed to detect small animal brain activation after the administration of cocaine hydrochloride. Sprague Dawley rats were injected with different concentrations (2.5, 3.0, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution through tail veins. The brain functional response to the injection was monitored by photoacoustic tomography (PAT) system with horizontal scanning of cerebral cortex of rat brain. Photoacoustic microscopy (PAM) was also used for coronal view images. The modified PAT system used multiple ultrasonic detectors to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The measured photoacoustic signal changes confirmed that cocaine hydrochloride injection excited high blood volume in brain. This result shows PAI can be used to monitor drug abuse-induced brain activation.

  3. The study of the Oxytropis kansuensis-induced apoptotic pathway in the cerebrum of SD rats.

    PubMed

    Lu, Hao; Zhang, Liang; Wang, Shan-shan; Wang, Wen-long; Zhao, Bao-yu

    2013-10-22

    Locoweeds cause significant livestock poisoning and economic loss all over the world. Animals can develop locoism, a chronic neurological disease, after grazing on locoweeds. Oxytropis kansuensis is a variety of locoweed that contains swainsonine as its main toxic ingredient. The purpose of this study was to investigate the apoptotic pathway induced in the cerebrum by swainsonine. Twenty-four Sprague-Dawley rats were randomly divided into four groups (experimental groups I, II, III and a control group) and 6 SD rats of each group were feed in 3 cages separately. Rats were penned as groups and fed with feeds containing 15% (SW content 0.03‰), 30% (SW content 0.06‰), or 45% (SW content 0.09‰) O. kansuensis for experimental groups I, II, and III, respectively, or complete feed in the case of the control group. One hundred and nineteen days after poisoning, and all rats showed neurological disorders at different degrees, which were considered to be successful established a chronic poisoning model of O. kansuensis. rats were sacrificed and the expression of Fas, FasL, Bcl-2, Bax as well as cleaved caspase-3, -8 and -9 proteins in brain tissues were detected by Western blot. The results showed that SW treatment up-regulated Fas and Fas ligand (FasL) (P < 0.05), and that there was an increase in Bax and a decrease in Bcl-2 protein (P < 0.01). Moreover, SW treatment significantly increases the activation of caspase-3, 8 and -9, the key effectors in apoptosis pathway (P < 0.01). Our data suggest that SW induces apoptosis in cells of the brain through death receptor and mitochondria-mediated, caspase-dependent apoptotic pathways in the brain tissue of SD rats.

  4. Rat Model of Brain Injury to Occupants of Vehicles Targeted by Land Mines: Mitigation by Elastomeric Frame Designs.

    PubMed

    Tchantchou, Flaubert; Puche, Adam A; Leiste, Ulrich; Fourney, William; Blanpied, Thomas A; Fiskum, Gary

    2018-05-15

    Many victims of blast traumatic brain injury (TBI) are occupants of vehicles targeted by land mines. A rat model of under-vehicle blast TBI was used to test the hypothesis that the ensuing neuropathology and altered behavior are mitigated by vehicle frame designs that dramatically reduce blast-induced acceleration (G force). Male rats were restrained on an aluminum platform that was accelerated vertically at up to 2850g, in response to detonation of an explosive positioned under a second platform in contact with the top via different structures. The presence of elastomeric, polyurea-coated aluminum cylinders between the platforms reduced acceleration by 80% to 550g compared with 2350g with uncoated cylinders. Moreover, 67% of rats exposed to 2850g, and 20% of those exposed to 2350g died immediately after blast, whereas all rats subjected to 550g blast survived. Assays for working memory (Y maze) and anxiety (Plus maze) were conducted for up to 28 days. Rats were euthanized at 24 h or 29 days, and their brains were used for histopathology and neurochemical measurements. Rats exposed to 2350g blasts exhibited increased cleaved caspase-3 immunoreactive neurons in the hippocampus. There was also increased vascular immunoglobulin (Ig)G effusion and F4/80 immunopositive macrophages/microglia. Blast exposure reduced hippocampal levels of synaptic proteins Bassoon and Homer-1, which were associated with impaired performance in the Y maze and the Plus maze tests. These changes observed after 2350g blasts were reduced or eliminated with the use of polyurea-coated cylinders. Such advances in vehicle designs should aid in the development of the next generation of blast-resistant vehicles.

  5. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA) Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats.

    PubMed

    Cassinotti, Luis R; Guil, María J; Schöller, Mercedes I; Navarro, Mónica P; Bianciotti, Liliana G; Vatta, Marcelo S

    2018-02-27

    Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ET A ) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ET A blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ET A blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ET A are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  6. Active coping of prenatally stressed rats in the forced swimming test: involvement of the Nurr1 gene.

    PubMed

    Montes, Pedro; Ruiz-Sánchez, Elizabeth; Calvillo, Minerva; Rojas, Patricia

    2016-09-01

    Depending on genetic predisposition, prenatal stress may result in vulnerability or resilience to develop psychiatric disorders in adulthood. Nurr1 is an immediate early gene, important in the brain for the stress response. We tested the hypothesis that prenatal stress and the decrease of hippocampal Nurr1 alter offspring behavioral responses in the forced swimming test (FST). Pregnant Wistar rats were exposed to restraint stress (45 min, thrice daily) from gestation day 14. Prenatally stressed (PS) and non-prenatally stressed (NPS) male offspring were treated bilaterally with a Nurr1 antisense oligodeoxynucleotide (ODN; or control) into the hippocampus at 97 d of age. After 1 h, the rats were exposed to the FST (acute stressor) to analyze their behavioral responses. Thirty minutes after the FST, we analyzed the gene expression of Nurr1, Bdnf and Nr3c1 (genes for Nurr1, brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), respectively) in the hippocampus, prefrontal cortex (PFC) and hypothalamus. Results showed that the decrease of hippocampal Nurr1 after the antisense ODN in adult NPS rats induces immobility (indicating depressive-like behavior). The PS adult rats, including the group with decreased hippocampal Nurr1, presented low immobility in the FST. This low immobility was concordant with maintenance of Nurr1 and Bdnf expression levels in the three analyzed brain regions; Nr3c1 gene expression was also maintained in the PFC and hypothalamus. These findings suggest that Nurr1 and associated genes could participate in the brain modifications induced by prenatal stress, allowing active coping (resilience) with acute stress in adulthood.

  7. Effects of swim stress and fluoxetine on 5-HT1A receptor gene expression and monoamine metabolism in the rat brain regions.

    PubMed

    Shishkina, G T; Kalinina, T S; Dygalo, N N

    2012-07-01

    Changes in gene expression of the brain serotonin (5-HT) 1A receptors may be important for the development and ameliorating depression, however identification of specific stimuli that activate or reduce the receptor transcriptional activity is far from complete. In the present study, the forced swim test (FST) exposure, the first stress session of which is already sufficient to induce behavioral despair in rats, significantly increased 5-HT1A receptor mRNA levels in the brainstem, frontal cortex, and hippocampus at 24 h. In the brainstem and frontal cortex, the elevation in the receptor gene expression after the second forced swim session was not affected following chronic administration of fluoxetine, while in the cortex, both control and FST values were significantly reduced in fluoxetine-treated rats. In contrast to untreated rats, no increase in hippocampal 5-HT1A receptor mRNA was observed in response to FST in rats chronically treated with fluoxetine. Metabolism of 5-HT (5-HIAA/5-HT) in the brainstem was significantly decreased by fluoxetine and further reduced by swim stress, showing a certain degree of independence of these changes on 5-HT1A receptor gene expression that was increased in this brain region only after the FST, but not after fluoxetine. FST exposure also decreased the brainstem dopamine metabolism, which was unexpectedly positively correlated with 5-HT1A receptor mRNA levels in the frontal cortex. Together, these data suggest that the effects of the forced swim stress as well as fluoxetine involve brain region-dependent alterations in 5-HT1A receptor gene transcription, some of which may be interrelated with concomitant changes in catecholamine metabolism.

  8. Uptake of (/sup 14/C)deoxyglucose into brain of young rats with inherited hydrocephalus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, H.K.; Bucknall, R.M.; Jones, H.C.

    1989-02-01

    The effect of hydrocephalus on cerebral glucose utilization as reflected by deoxyglucose uptake has been examined in rats with inherited hydrocephalus at 10, 20, and 28 days after birth using a semiquantitative method. Injection of (14C)deoxyglucose intraperitoneally was followed by freezing the brain, sectioning, and quantitative autoradiography of 10 brain regions. Brain (14C) concentration, cortical thickness, and plasma glucose concentrations were measured. Maximal thinning of the cerebral cortex had already occurred by 10 days after birth, although obvious symptoms such as gait disturbance developed after 20 days. In control rats, the cerebral isotope concentration was lower and more homogeneous atmore » 10 days than at 20 or 28 days, which may be a reflection of the use of metabolic substrates other than glucose in younger animals. In order to make comparisons between control and hydrocephalic groups, tissue isotope concentrations were normalized to cerebellar cortex which was not affected by the hydrocephalus at any age. In hydrocephalic rats at 10 and 20 days, the concentration of (14C) was lower in all areas except the inferior colliculi and pons but the reduction was only significant in the sensory-motor cortex at 10 days and in the caudate nuclei at 20 days. By 28 days after birth, all areas except the cerebellum (six cortical regions, inferior colliculi, pons, and caudate) had significantly lower isotope concentrations in the hydrocephalic group. It is concluded that cerebral glucose metabolism is significantly reduced by 28 days after birth in H-Tx rats with congenital hydrocephalus and that less marked reductions occur prior to 28 days.« less

  9. Chromium supplementation improved post-stroke brain infarction and hyperglycemia.

    PubMed

    Chen, Wen-Ying; Mao, Frank Chiahung; Liu, Chia-Hsin; Kuan, Yu-Hsiang; Lai, Nai-Wei; Wu, Chih-Cheng; Chen, Chun-Jung

    2016-04-01

    Hyperglycemia is common after acute stroke and is associated with a worse outcome of stroke. Thus, a better understanding of stress hyperglycemia is helpful to the prevention and therapeutic treatment of stroke. Chromium is an essential nutrient required for optimal insulin activity and normal carbohydrate and lipid metabolism. Beyond its nutritional effects, dietary supplement of chromium causes beneficial outcomes against several diseases, in particular diabetes-associated complications. In this study, we investigated whether post-stroke hyperglycemia involved chromium dynamic mobilization in a rat model of permanent focal cerebral ischemia and whether dietary supplement of chromium improved post-stroke injury and alterations. Stroke rats developed brain infarction, hyperglycemia, hyperinsulinemia, glucose intolerance, and insulin resistance. Post-stroke hyperglycemia was accompanied by elevated secretion of counter-regulatory hormones including glucagon, corticosterone, and norepinephrine, decreased insulin signaling in skeletal muscles, and increased hepatic gluconeogenesis. Correlation studies revealed that counter-regulatory hormone secretion showed a positive correlation with chromium loss and blood glucose increased together with chromium loss. Daily chromium supplementation increased tissue chromium levels, attenuated brain infarction, improved hyperglycemia, and decreased plasma levels of glucagon and corticosterone in stroke rats. Our findings suggest that stroke rats show disturbance of tissue chromium homeostasis with a net loss through urinary excretion and chromium mobilization and loss might be an alternative mechanism responsible for post-stroke hyperglycemia.

  10. Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments.

    PubMed

    Shultz, Sandy R; MacFabe, Derrick F; Foley, Kelly A; Taylor, Roy; Cain, Donald P

    2012-04-01

    Sub-concussive brain injuries may result in neurophysiological changes, cumulative effects, and neurodegeneration. The current study investigated the effects of a mild lateral fluid percussion injury (0.50-0.99 atm) on rat behavior and neuropathology to address the need to better understand sub-concussive brain injury. Male Long-Evans rats received either a single mild lateral fluid percussion injury or a sham-injury, followed by either a short (24 h) or long (4 weeks) recovery period. After recovery, rats underwent extensive behavioral testing consisting of tasks for rodent cognition, anxiety- and depression-like behaviors, social behavior, and sensorimotor function. At the completion of behavioral testing rats were sacrificed and brains were examined immunohistochemically with markers for neuroinflammation and axonal injury. No significant group differences were found on behavioral and axonal injury measures. However, rats given one mild fluid percussion injury displayed an acute neuroinflammatory response, consisting of increased microglia/macrophages and reactive astrogliosis, at 4 days post-injury. Neuroinflammation is a mechanism with the potential to contribute to the cumulative and neurodegenerative effects of repeated sub-concussive injuries. The current findings are consistent with findings in humans experiencing a sub-concussive blow, and provide support for the use of mild lateral fluid percussion injury in the rat as a model of sub-concussive brain injury. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  11. Preparation and brain delivery of nasal solid lipid nanoparticles of quetiapine fumarate in situ gel in rat model of schizophrenia

    PubMed Central

    Li, Jian-Chun; Zhang, Wen-Jing; Zhu, Jin-Xiu; Zhu, Na; Zhang, Hong-Min; Wang, Xiu; Zhang, Jin; Wang, Qing-Qing

    2015-01-01

    To investigate the brain delivery in rat by nasal Quetiapine fumarate (QF) loaded with solid lipid nanoparticles in situ gel (QF-SLN-gel). QF-SLN-gel was prepared through micro-emulsion technique. The rat model of schizophrenia was established by intraperitoneal injection of (+)-MK-801, evaluated by stereotypic behavior, Mori’s Water Maze (MWM) test and hematoxylin and eosin (HE) staining of hippocampus. The animals were administrated with QF via oral, nasal or tail vein approach and the concentration of QF in blood and brain was determined using high performance liquid chromatography (HPLC). The QF-SLN-gel was even and transparent, having size of 117.8±2.67 d.nm, potential of 57.2±0.24 mV and EF of 97.6±0.58%. After administration of QF-SLN-gel, the concentration of QF in blood and brain of rats in nasal QF-SLN-gel group was similar with that of rats in tail vein QF group, but significantly higher than that of rats in oral QF group. The hippocampal morphology changes induced by (+)-MK-801 were ameliorated by QF, with advantage of nasal QF-SLN-gel over tail vein QF. The nasal QF-SLN-gel had stable and good brain delivery and could ameliorate the damages in rat model of schizophrenia induced by (+)-MK-801. PMID:26770349

  12. Brain glucose content in fetuses of ethanol-fed rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pullen, G.; Singh, S.P.; Snyder, A.K.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4more » and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.« less

  13. Chronic Methamphetamine Effects on Brain Structure and Function in Rats

    PubMed Central

    Thanos, Panayotis K.; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J.; Masad, Ihssan; Muniz, Jose A.; Grant, Samuel C.; Gold, Mark S.; Cadet, Jean Lud; Volkow, Nora D.

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity. PMID:27275601

  14. Chronic Methamphetamine Effects on Brain Structure and Function in Rats.

    PubMed

    Thanos, Panayotis K; Kim, Ronald; Delis, Foteini; Ananth, Mala; Chachati, George; Rocco, Mark J; Masad, Ihssan; Muniz, Jose A; Grant, Samuel C; Gold, Mark S; Cadet, Jean Lud; Volkow, Nora D

    2016-01-01

    Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity.

  15. Content of endoplasmic reticulum and Golgi complex membranes positively correlates with the proliferative status of brain cells.

    PubMed

    Silvestre, David C; Maccioni, Hugo J F; Caputto, Beatriz L

    2009-03-01

    Although the molecular and cellular basis of particular events that lead to the biogenesis of membranes in eukaryotic cells has been described in detail, understanding of the intrinsic complexity of the pleiotropic response by which a cell adjusts the overall activity of its endomembrane system to accomplish these requirements is limited. Here we carried out an immunocytochemical and biochemical examination of the content and quality of the endoplasmic reticulum (ER) and Golgi apparatus membranes in two in vivo situations characterized by a phase of active cell proliferation followed by a phase of declination in proliferation (rat brain tissue at early and late developmental stages) or by permanent active proliferation (gliomas and their most malignant manifestation, glioblastomas multiforme). It was found that, in highly proliferative phases of brain development (early embryo brain cells), the content of ER and Golgi apparatus membranes, measured as total lipid phosphorous content, is higher than in adult brain cells. In addition, the concentration of protein markers of ER and Golgi is also higher in early embryo brain cells and in human glioblastoma multiforme cells than in adult rat brain or in nonpathological human brain cells. Results suggest that the amount of endomembranes and the concentration of constituent functional proteins diminish as cells decline in their proliferative activity.

  16. A method based on Monte Carlo simulations and voxelized anatomical atlases to evaluate and correct uncertainties on radiotracer accumulation quantitation in beta microprobe studies in the rat brain

    NASA Astrophysics Data System (ADS)

    Pain, F.; Dhenain, M.; Gurden, H.; Routier, A. L.; Lefebvre, F.; Mastrippolito, R.; Lanièce, P.

    2008-10-01

    The β-microprobe is a simple and versatile technique complementary to small animal positron emission tomography (PET). It relies on local measurements of the concentration of positron-labeled molecules. So far, it has been successfully used in anesthetized rats for pharmacokinetics experiments and for the study of brain energetic metabolism. However, the ability of the technique to provide accurate quantitative measurements using 18F, 11C and 15O tracers is likely to suffer from the contribution of 511 keV gamma rays background to the signal and from the contribution of positrons from brain loci surrounding the locus of interest. The aim of the present paper is to provide a method of evaluating several parameters, which are supposed to affect the quantification of recordings performed in vivo with this methodology. We have developed realistic voxelized phantoms of the rat whole body and brain, and used them as input geometries for Monte Carlo simulations of previous β-microprobe reports. In the context of realistic experiments (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; local glucose metabolic rate measurement with 18F-FDG and H2O15 blood flow measurements in the somatosensory cortex), we have calculated the detection efficiencies and corresponding contribution of 511 keV gammas from peripheral organs accumulation. We confirmed that the 511 keV gammas background does not impair quantification. To evaluate the contribution of positrons from adjacent structures, we have developed β-Assistant, a program based on a rat brain voxelized atlas and matrices of local detection efficiencies calculated by Monte Carlo simulations for several probe geometries. This program was used to calculate the 'apparent sensitivity' of the probe for each brain structure included in the detection volume. For a given localization of a probe within the brain, this allows us to quantify the different sources of beta signal. Finally, since stereotaxic accuracy is crucial for quantification in most microprobe studies, the influence of stereotaxic positioning error was studied for several realistic experiments in favorable and unfavorable experimental situations (binding of 11C-Raclopride to D2 dopaminergic receptors in the striatum; binding of 18F-MPPF to 5HT1A receptors in the dorsal raphe nucleus).

  17. A study on fear memory retrieval and REM sleep in maternal separation and isolation stressed rats.

    PubMed

    Sampath, Dayalan; Sabitha, K R; Hegde, Preethi; Jayakrishnan, H R; Kutty, Bindu M; Chattarji, Sumantra; Rangarajan, Govindan; Laxmi, T R

    2014-10-15

    As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6h daily/3d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus-amygdala-cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Spinal Anesthesia in Infant Rats: Development of a Model and Assessment of Neurological Outcomes

    PubMed Central

    Yahalom, Barak; Athiraman, Umeshkumar; Soriano, Sulpicio G.; Zurakowski, David; Carpino, Elizabeth; Corfas, Gabriel; Berde, Charles B.

    2012-01-01

    Background Previous studies in infant rats and case-control studies of human infants undergoing surgery have raised concerns about potential neurodevelopmental toxicities of general anesthesia. Spinal anesthesia is an alternative to general anesthesia for some infant surgeries. To test for potential toxicity, we developed a spinal anesthesia model in infant rats. Methods Rats of postnatal ages 7, 14, and 21 days were assigned to: no treatment; 1% isoflurane for either 1 h or 6 h, or lumbar spinal injection of saline or bupivacaine, at doses of 3.75 mg/kg (low dose) or 7.5 mg/kg (high dose). Subgroups of animals underwent neurobehavioral testing and blood gas analysis. Brain and lumbar spinal cord sections were examined for apoptosis using cleaved caspase-3 immunostaining. Lumbar spinal cord was examined histologically. Rats exposed to spinal or general anesthesia as infants underwent Rotarod testing of motor performance as adults. Data were analyzed using analysis of variance (ANOVA) using general linear models, Friedman Tests, and Mann–Whitney U tests, as appropriate. Results Bupivacaine 3.75 mg/kg was effective for spinal anesthesia in all age groups, and produced sensory and motor function recovered in 40 to 60 min. Blood gases were similar among groups. Brain and spinal cord apoptosis increased in rats receiving 6 h of 1% isoflurane, but not among the other treatments. All groups showed intact motor performance at adulthood. Conclusions Spinal anesthesia is technically feasible in infant rats, and appears benign in terms of neuroapoptotic and neuromotor sequelae. PMID:21555934

  19. Hydrophilic solute transport across the rat blood-brain barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucchesi, K.J.

    1987-01-01

    Brain capillary permeability-surface area products (PS) of hydrophilic solutes ranging in size from 180 to 5,500 Daltons were measured in rats according to the method of Ohno, Pettigrew and Rapoport. The distribution volume of 70 KD dextran at 10 minutes after i.v. injection was also measured to determine the residual volume of blood in brain tissue at the time of sacrifice. Small test solutes were injected in pairs in order to elucidate whether their transfer into the brain proceeds by diffusion through water- or lipid-filled channels or by vesicular transport. This issue was examined in rats whose blood-brain barrier (BBB)more » was presumed to be intact (untreated) and in rats that received intracarotid infusions to open the BBB (isosmotic salt (ISS) and hyperosmolar arabinose). Ohno PS values of {sup 3}H-inulin and {sup 14}C-L-glucose in untreated rats were found to decrease as the labelling time was lengthened. This was evidence that a rapidly equilibrating compartment exists between blood and brain that renders the Ohno two-compartment model inadequate for computing true transfer rate constants. When the data were reanalyzed using a multi-compartment graphical analysis, solutes with different molecular radii were found to enter the brain at approximately equal rates. Furthermore, unidirectional transport is likely to be initiated by solute adsorption to a glycocalyx coat on the luminal surface of brain capillary endothelium. Apparently, more inulin than L-glucose was adsorbed, which may account for its slightly faster transfer across the BBB. After rats were treated with intracarotid infusions of ISS or hyperosmolar arabinose, solute PS values were significantly increased, but the ratio of PS for each of the solute pairs approached that of their free-diffusion coefficients.« less

  20. Choline distribution and metabolism in pregnant rats and fetuses are influenced by the choline content of the maternal diet.

    PubMed

    Garner, S C; Mar, M H; Zeisel, S H

    1995-11-01

    Choline supplementation of pregnant rats between d 12 and 17 of pregnancy permanently enhances the spatial memory of offspring; however, the mechanism is unknown. We examined the effect of choline supplementation on metabolism of orally ingested choline by nonmated rats and pregnant rats and their fetuses. We studied the metabolism of an acute oral dose of 14C-choline chloride in pregnant and nonmated rats with and without choline supplementation (25 mmol/L choline chloride in water) on d 12-17 of pregnancy. During the first 2 h after oral dosing, plasma radiolabeled choline was detectable, whereas plasma choline metabolites contributed little to total radioactivity at any time. The pattern of accumulation of label in placentas was similar in all groups. Fetal tissues (i.e., brain, liver and carcass remnant) contained primarily 14C-phosphatidylcholine and 14C-phosphorylcholine. Also, we examined the fetal tissue distribution of isotopically labeled (deuterated) choline derived from the diet and from the dietary choline supplement. The distribution patterns for radiolabeled choline metabolites in fetuses of supplemented dams accumulated significantly (P < 0.01) more of their total choline and its metabolites than fetuses of control dams during d 12-17 of gestation (50 vs. 20%). In fetuses from supplemented dams, betaine concentrations were greater than in fetuses from control dams in all organs assayed (by 36-57%). Phosphorylcholine concentrations in brain of fetuses from supplemented dams were also greater. These experiments identify potential metabolites of choline that might mediate the observed effects on brain development in the rats.

  1. Postnatal Development of Brain-Derived Neurotrophic Factor (BDNF) and Tyrosine Protein Kinase B (TrkB) Receptor Immunoreactivity in Multiple Brain Stem Respiratory-Related Nuclei of the Rat

    PubMed Central

    Liu, Qiuli; Wong-Riley, Margaret T.T.

    2013-01-01

    Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12–13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0–21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 post-natal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time. PMID:22678720

  2. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    PubMed

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  3. Effects of Nano-MnO2 on Dopaminergic Neurons and the Spatial Learning Capability of Rats

    PubMed Central

    Li, Tao; Shi, Tingting; Li, Xiaobo; Zeng, Shuilin; Yin, Lihong; Pu, Yuepu

    2014-01-01

    This study aimed to observe the effect of intracerebrally injected nano-MnO2 on neurobehavior and the functions of dopaminergic neurons and astrocytes. Nano-MnO2, 6-OHDA, and saline (control) were injected in the substantia nigra and the ventral tegmental area of Sprague-Dawley rat brains. The neurobehavior of rats was evaluated by Morris water maze test. Tyrosine hydroxylase (TH), inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP) expressions in rat brain were detected by immunohistochemistry. Results showed that the escape latencies of nano-MnO2 treated rat increased significantly compared with control. The number of TH-positive cells decreased, GFAP- and iNOS-positive cells increased significantly in the lesion side of the rat brains compared with the contralateral area in nano-MnO2 group. The same tendencies were observed in nano-MnO2-injected rat brains compared with control. However, in the the positive control, 6-OHDA group, escape latencies increased, TH-positive cell number decreased significantly compared with nano-MnO2 group. The alteration of spatial learning abilities of rats induced by nano-MnO2 may be associated with dopaminergic neuronal dysfunction and astrocyte activation. PMID:25101772

  4. [Neuroprotective effect of naloxone in brain damage caused by repeated febrile seizure].

    PubMed

    Shan, Ying; Qin, Jiong; Chang, Xing-zhi; Yang, Zhi-xian

    2004-04-01

    The brain damage caused by repeated febrile seizure (FS) during developing age is harmful to the intellectual development of children. So how to decrease the related damage is a very important issue. The main purpose of the present study was to find out whether the non-specific opiate antagonist naloxone at low dose has the neuroprotective effect on seizure-induced brain damage. Warm water induced rat FS model was developed in this study. Forty-seven rats were randomly divided into two groups: normal control group (n = 10) and hyperthermic seizure groups (n = 37). The latter was further divided into FS control group (n = 13) and naloxone-treated group (n = 24). The dose of naloxone is different in two naloxone-treated groups (12/each group), in one group the dose was 1 mg/kg, in the other one 2 mg/kg. Seven febrile seizures were induced in each rat of hyperthermic seizure groups with the interval of 2 days. The rats were weighed and injected intraperitoneally with naloxone once the FS occurred in naloxone-treated group, while the rats of the other groups were injected with 0.9% sodium chloride. Latency, duration and grade of FS in different groups were observed and compared. HE-staining and the electron microscopy (EM) were used to detect the morphologic and ultrastructural changes of hippocampal neurons. In naloxone-treated group, the rats' FS duration and FS grade (5.02 +/- 0.63, 2.63 +/- 0.72) were significantly lower (t = 5.508, P < 0.01; t = 8.439, P < 0.01) than those in FS control group (7.70 +/- 2.25 min, 4.52 +/- 0.49), although no significant gap was observed on FS latency between them. In FS control group, HE-staining pattern of hippocampal CA(1) and CA(2) showed lots of disordered neurons with confused polarity and vacuoles formed. Nuclei were with various size, some rounded and some oblong. While in naloxone-treated groups, the arrangement of neurons was regular, only a small quantity of neurons had changed polarity and vacuoles formed. Most nuclei were oblong and in the same size. In hippocampal CA(1) region and dentate gyrus of rats from FS control group, EM showed that the most mitochondrion volumes obviously increased with vacuoles formed, the matrix condensed, the ridge obscured or disappeared, apoptosis body emerged. Minor to moderate dilation of rough endoplasmic reticulum and Golgi's complex was also observed. However, in naloxone-treated groups, the number of neurons with swollen mitochondrion and endoplasmic reticulum was much fewer than that in FS control group. No apoptosis body was observed. The comparison between them showed much lighter brain damage in naloxone-treated groups than in FS control group. Although low-dose naloxone could not totally stop the occurrence of febrile seizure, it could lighten the brain damage resulted from repeated FS to some extent.

  5. Expression pattern of Anosmin-1 during pre- and postnatal rat brain development.

    PubMed

    Clemente, Diego; Esteban, Pedro F; Del Valle, Ignacio; Bribián, Ana; Soussi-Yanicostas, Nadia; Silva, Augusto; De Castro, Fernando

    2008-09-01

    Anosmin-1 participates in the development of the olfactory and GnRH systems. Defects in this protein are responsible for both the anosmia and the hypogonadotrophic hypogonadism found in Kallmann's syndrome patients. Sporadically, these patients also manifest some neurological symptoms that are not explained in terms of the developmental defects in the olfactory system. We describe the pattern of Anosmin-1 expression in the central nervous system during rat development using a novel antibody raised against Anosmin-1 (Anos1). The areas with Anos1-stained neurons and glial cells were classified into three groups: (1) areas with immunoreactivity from embryonic day 16 to postnatal day (P) 15; (2) areas with Anosmin-1 expression only at postnatal development; (3) nuclei with immunoreactivity only at P15. Our data show that Anos1 immunoreactivity is detected in projecting neurons and interneurons within areas of the brain that may be affected in patients with Kallmann's syndrome that develop both the principal as well as sporadic symptoms.

  6. Real-time monitoring of ischemic and contralateral brain pO2 during stroke by variable length multisite resonators

    PubMed Central

    Hou, Huagang; Li, Hongbin; Dong, Ruhong; Khan, Nadeem; Swartz, Harold

    2014-01-01

    Purpose Electron paramagnetic resonance (EPR) oximetry using variable length multi-probe implantable resonator (IR), was used to investigate the temporal changes in the ischemic and contralateral brain pO2 during stroke in rats. Material and Methods The EPR signal to noise ratio (S/N) of the IR with four sensor loops at a depth of up to11 mm were compared with direct implantation of lithium phthalocyanine (LiPc, oximetry probe) deposits in vitro. These IRs were used to follow the temporal changes in pO2 at two sites in each hemisphere during ischemia induced by left middle cerebral artery occlusion (MCAO) in rats breathing 30% O2 or 100% O2. Results The S/N ratios of the IRs were significantly greater than the LiPc deposits. A similar pO2 at two sites in each hemisphere prior to the onset of ischemia was observed in rats breathing 30% O2. However, a significant decline in the pO2 of the left cortex and striatum occurred during ischemia but no change in the pO2 of the contralateral brain was observed. A significant increase in the pO2 of only the contralateral non-ischemic brain was observed in the rats breathing 100% O2. No significant difference in the infarct volume was evident between the animals breathing 30% O2 or 100% O2 during ischemia. Conclusions EPR oximetry with IRs can repeatedly assess temporal changes in the brain pO2 at four sites simultaneously during stroke. This oximetry approach can be used to test and develop interventions to rescue ischemic tissue by modulating cerebral pO2 during stroke. PMID:24629514

  7. Effects of argan oil on the mitochondrial function, antioxidant system and the activity of NADPH- generating enzymes in acrylamide treated rat brain.

    PubMed

    Aydın, Birsen

    2017-03-01

    Argan oil (AO) is rich in minor compounds such as polyphenols and tocopherols which are powerful antioxidants. Acrylamide (ACR) has been classified as a neurotoxic agent in animals and humans. Mitochondrial oxidative stress and dysfunction is one of the most probable molecular mechanisms of neurodegenerative diseases. Female Sprague Dawley rats were exposed to ACR (50mg/kg i.p. three times a week), AO (6ml/kg,o.p, per day) or together for 30days. The activities of cytosolic enzymes such as xanthine oxidase (XO), glucose 6-phosphate dehydrogenase (G6PDH), glutathione-S-transferase (GST), mitochondrial oxidative stress, oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) enzymes, mitochondrial metabolic function, adenosine triphosphate (ATP) level and acetylcholinesterase (AChE) activity were assessed in rat brain. Cytosolic and mitochondrial antioxidant enzymes were significantly diminished in the brains of rats treated with ACR compared to those in control. Besides, ACR treatment resulted in a significant reduction in brain ATP level, mitochondrial metabolic function, OXPHOS and TCA enzymes. Administration of AO restored both the cytosolic and mitochondrial oxidative stress by normalizing nicotinamide adenine dinucleotide phosphate (NADPH) generating enzymes. In addition, improved mitochondrial function primarily enhancing nicotinamide adenine dinucleotide (NADH) generated enzymes activities and ATP level in the mitochondria. The reason for AO's obvious beneficial effects in this study may be due to synergistic effects of its different bioactive compounds which is especially effective on mitochondria. Modulation of the brain mitochondrial functions and antioxidant systems by AO may lead to the development of new mitochondria-targeted antioxidants in the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Pharmacokinetics and Metabolism of 4R-Cembranoid.

    PubMed

    Vélez-Carrasco, Wanda; Green, Carol E; Catz, Paul; Furimsky, Anna; O'Loughlin, Kathleen; Eterović, Vesna A; Ferchmin, P A

    2015-01-01

    4R-cembranoid (4R) is a natural cyclic diterpenoid found in tobacco leaves that displays neuroprotective activity. 4R protects against NMDA, paraoxon (POX), and diisopropylfluorophosphate (DFP) damage in rat hippocampal slices and against DFP in rats in vivo. The purpose of this study was to examine the metabolism and pharmacokinetics of 4R as part of its preclinical development as a neuroprotective drug. 10 µM 4R was found to be very stable in plasma for up to 1 hr incubation. 4R metabolism in human microsomes was faster than in the rat. Ten metabolites of 4R were detected in the microsomal samples; 6 dihydroxy and 4 monohydroxy forms of 4R. Male rats received a single dose of 4R at 6 mg/kg i.v., i.m., or s.c. The i.v. group had the highest plasma concentration of 1017 ng/mL. The t1/2 was 36 min and reached the brain within 10 min. The brain peak concentration was 6516 ng/g. The peak plasma concentration in the i.m. group was 163 ng/mL compared to 138 ng/mL in the s.c. group. The t1/2 of 4R after i.m. and s.c. administration was approximately 1.5 hr. The brain peak concentration was 329 ng/g in the i.m. group and 323 ng/g for the s.c. group. The brain to plasma ratio in the i.v. group was 6.4, reached 10 min after dose, whereas in the i.m. and s.c. groups was 2.49 and 2.48, respectively, at 90 min after dose. Our data show that 4R crosses the BBB and concentrates in the brain where it exerts its neuroprotective effect.

  9. Pharmacokinetics and Metabolism of 4R-Cembranoid

    PubMed Central

    Vélez-Carrasco, Wanda; Green, Carol E.; Catz, Paul; Furimsky, Anna; O’Loughlin, Kathleen; Eterović, Vesna A.; Ferchmin, P. A.

    2015-01-01

    4R-cembranoid (4R) is a natural cyclic diterpenoid found in tobacco leaves that displays neuroprotective activity. 4R protects against NMDA, paraoxon (POX), and diisopropylfluorophosphate (DFP) damage in rat hippocampal slices and against DFP in rats in vivo. The purpose of this study was to examine the metabolism and pharmacokinetics of 4R as part of its preclinical development as a neuroprotective drug. 10 µM 4R was found to be very stable in plasma for up to 1 hr incubation. 4R metabolism in human microsomes was faster than in the rat. Ten metabolites of 4R were detected in the microsomal samples; 6 dihydroxy and 4 monohydroxy forms of 4R. Male rats received a single dose of 4R at 6 mg/kg i.v., i.m., or s.c. The i.v. group had the highest plasma concentration of 1017 ng/mL. The t1/2 was 36 min and reached the brain within 10 min. The brain peak concentration was 6516 ng/g. The peak plasma concentration in the i.m. group was 163 ng/mL compared to 138 ng/mL in the s.c. group. The t1/2 of 4R after i.m. and s.c. administration was approximately 1.5 hr. The brain peak concentration was 329 ng/g in the i.m. group and 323 ng/g for the s.c. group. The brain to plasma ratio in the i.v. group was 6.4, reached 10 min after dose, whereas in the i.m. and s.c. groups was 2.49 and 2.48, respectively, at 90 min after dose. Our data show that 4R crosses the BBB and concentrates in the brain where it exerts its neuroprotective effect. PMID:25811857

  10. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    PubMed Central

    Mehus, Aaron A.; Picklo, Sr, Matthew J.

    2017-01-01

    Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n-3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3n-3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3) and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2) and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors. PMID:29048374

  11. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats.

    PubMed

    Mehus, Aaron A; Picklo, Matthew J

    2017-10-19

    Metallothioneins (MTs) perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER) and dietary n -3 polyunsaturated fatty acid (PUFA) deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n -3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL) intake of control rats provided diets consisting of either soybean oil (SO) that is α-linolenic acid (ALA; 18:3 n -3) sufficient or corn oil (CO; ALA-deficient). Fatty acids (FA) and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs ( Mt1-3 ) and modulators of MT expression including glucocorticoid receptors ( Nr3c1 and Nr3c2 ) and several mediators of thyroid hormone regulation ( Dio1-3 , Mct8 , Oatp1c1 , Thra , and Thrb ) were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50%) and cerebral cortex (23%). In liver, a reduction in dietary n -3 PUFA reduced Mt1 , Mt2 , Nr3c1 , Mct8 , and Thrb . ER elevated Nr3c1 , Dio1 , and Thrb and reduced Thra in the liver. Given MT's role in cellular protection, further studies are needed to evaluate whether ER or n -3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  12. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: comparison with valproic acid autistic model.

    PubMed

    Ali, Elham H A; Elgoly, Amany H Mahmoud

    2013-10-01

    The aim of this work is to evaluate the impact of butyl paraben (BP) in brain of the pups developed for mothers administered BP from early pregnancy till weaning and its effect on studying the behavior, brain neurotransmitters and brain derived neurotrophic factor BDNF via comparing the results with valproic acid (VA) autistic-rat model preparing by a single oral injection dose of VA (800 mg/kg b.wt) at the 12.5 days of gestation. Butyl paraben was orally and subcutaneously administered (200 mg/kg b.wt) to pregnant rats from gestation day 1 to lactation day 21. The offspring male rats were subjected at the last 3 days of lactation to Morris water maze and three chamber sociability test then decapitated and the brain was excised and dissected to the cortex, hippocampus, cerebellum, midbrain and pons for the determination of norepinephrine, dopamine and serotonin (NE, DA and 5-HT) and cortex amino acids and whole brain BDNF. The results showed similar social and learning and memory behavioral deficits in VA rat model and the butyl paraben offspring in comparison with the controls. Also, some similar alterations were observed in monoamine content, amino acids and BDNF factor in the autistic-like model and butyl paraben offspring in comparison with the controls. The alterations were recorded notably in hippocampus and pons NE, midbrain DA, hippocampus and midbrain 5-HT, and frontal cortex GABA and asparagine. These data suggest that prenatal exposure to butyl paraben induced neuro-developmental disorders similar to some of the neurodevelopmental disorders observed in the VA model of autism. © 2013 Elsevier Inc. All rights reserved.

  13. Environmental Enrichment Alters Neurotrophin Levels After Fetal Alcohol Exposure in Rats

    PubMed Central

    Parks, Elizabeth A.; McMechan, Andrew P.; Hannigan, John H.; Berman, Robert F.

    2014-01-01

    Background Prenatal alcohol exposure causes abnormal brain development, leading to behavioral deficits, some of which can be ameliorated by environmental enrichment. As both environmental enrichment and prenatal alcohol exposure can individually alter neurotrophin expression, we studied the interaction of prenatal alcohol and postweaning environmental enrichment on brain neurotrophin levels in rats. Methods Pregnant rats received alcohol by gavage, 0, 4, or 6 g / kg / d (Zero, Low, or High groups), or no treatment (Naïve group), on gestational days 8 to 20. After weaning on postnatal day 21, offspring were housed for 6 weeks in Isolated, Social, or Enriched conditions. Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) were then measured in frontal cortex, occipital cortex, hippocampus, and cerebellar vermis. Results Prenatal alcohol exposure increased NGF levels in frontal cortex (High-dose group) and cerebellar vermis (High- and Low-dose groups); increased BDNF in frontal cortex, occipital cortex and hippocampus (Low-dose groups), and increased NT-3 in hippocampus and cerebellar vermis (High-dose). Environmental enrichment resulted in lower NGF, BDNF, and NT-3 levels in occipital cortex and lower NGF in frontal cortex. The only significant interaction between prenatal alcohol treatment and environment was in cerebellar vermis where NT-3 levels were higher for enriched animals after prenatal alcohol exposure, but not for animals housed under Isolated or Social conditions. Conclusions Both prenatal alcohol exposure and postweaning housing conditions alter brain neurotrophin levels, but the effects appear to be largely independent. Although environmental enrichment can improve functional outcomes, these results do not provide strong support for the hypothesis that rearing in a complex environment ameliorates prenatal alcohol effects on brain neurotrophin levels in rats. PMID:18652597

  14. [(18)F]FDG PET Neuroimaging Predicts Pentylenetetrazole (PTZ) Kindling Outcome in Rats.

    PubMed

    Bascuñana, Pablo; Javela, Julián; Delgado, Mercedes; Fernández de la Rosa, Rubén; Shiha, Ahmed Anis; García-García, Luis; Pozo, Miguel Ángel

    2016-10-01

    Epileptogenesis, i.e., development of epilepsy, involves a number of processes that alter the brain function in the way that triggers spontaneous seizures. Kindling is one of the most used animal models of temporal lobe epilepsy (TLE) and epileptogenesis, although chemical kindling suffers from high inter-assay success unpredictability. This study was aimed to analyze the eventual regional brain metabolic changes during epileptogenesis in the pentylenetetrazole (PTZ) kindling model in order to obtain a predictive kindling outcome parameter. In vivo longitudinal positron emission tomography (PET) scans with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) along the PTZ kindling protocol (35 mg/kg intraperitoneally (i.p.), 18 sessions) in adult male rats were performed in order to evaluate the regional brain metabolism. The half of the PTZ-injected rats reached the kindled state. In addition, a significant decrease of [(18)F]FDG uptake at the end of the protocol in most of the brain structures of kindled animals was found, reflecting the characteristic epilepsy-associated hypometabolism. However, PTZ-injected animals but not reaching the kindled state did not show this widespread brain hypometabolism. Retrospective analysis of the data revealed that hippocampal [(18)F]FDG uptake normalized to pons turned out to be a predictive index of the kindling outcome. Thus, a 19.06 % reduction (p = 0.008) of the above parameter was found in positively kindled rats compared to non-kindled ones just after the fifth PTZ session. Non-invasive PET neuroimaging was a useful tool for discerning epileptogenesis progression in this animal model. Particularly, the [(18)F]FDG uptake of the hippocampus proved to be an early predictive parameter to differentiate resistant and non-resistant animals to the PTZ kindling.

  15. Decreased serotonin level during pregnancy alters morphological and functional characteristics of tonic nociceptive system in juvenile offspring of the rat.

    PubMed

    Butkevich, Irina P; Khozhai, Ludmila I; Mikhailenko, Victor A; Otellin, Vladimir A

    2003-11-13

    Serotonin (5-HT) contributes to the prenatal development of the central nervous system, acting as a morphogen in the young embryo and later as a neurotransmitter. This biologically active agent influences both morphological and biochemical differentiation of raphe neurons, which give rise to the descending serotonergic paths that regulate the processing of acutely evoked nociceptive inputs. The involvement of 5-HT in the prenatal development of tonic nociceptive system has not been studied. In the present study we evaluated the effects of a single injection (400 mg/kg, 2 ml, i.p.) of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA), given to pregnant rats during the critical period fetal serotonin development. The functional integrity of the tonic nociceptive response was investigated in 25 day old rats using the classic formalin test. Morphological analysis of brain structures involved in formalin-induced pain and 5-HT levels in the heads of 12-day embryos were also evaluated. Embryonic levels of 5-HT were significantly lowered by the treatment. The juvenile rats from pCPA-treated females showed altered brain morphology and cell differentiation in the developing cortex, hippocampus, raphe nuclei, and substantia nigra. In the formalin test, there were significant decreases in the intensity and duration of the second phase of the formalin-induced response, characterizing persistent, tonic pain. The extent of impairments in the brain structures correlated positively with the level of decrease in the behavioral responses. The data demonstrate the involvement of 5-HT in the prenatal development of the tonic nociceptive system. The decreased tonic component of the behavioral response can be explained by lower activity of the descending excitatory serotonergic system originating in the raphe nuclei, resulting in decreased tonic pain processing organized at the level of the dorsal horn of the spinal cord.

  16. Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX.

    PubMed

    Chambers, Janice E; Chambers, Howard W; Funck, Kristen E; Meek, Edward C; Pringle, Ronald B; Ross, Matthew K

    2016-11-25

    Pyridinium oximes are strong nucleophiles and many are effective reactivators of organophosphate-inhibited cholinesterase (ChE). However, the current oxime reactivators are ineffective at crossing the blood-brain barrier and reactivating brain ChE in the intact organism. Our laboratories have developed a series of substituted phenoxyalkyl pyridinium oximes (US patent 9,227,937 B2) with the goal of identifying reactivators effective in crossing the blood-brain barrier. The first 35 of the series were found to have similar in vitro efficacy as reactivators of ChE inhibited by a sarin surrogate (phthalimidyl isopropyl methylphosphonate, PIMP) or a VX surrogate (nitrophenyl ethyl methylphosphonate, NEMP) in bovine brain preparations as previously observed in rat brain preparations. A number of these novel oximes have shown the ability to decrease the level of ChE inhibition in the brains of rats treated with a high sublethal dosage of either a sarin surrogate (nitrophenyl isopropyl methylphosphonate, NIMP) or the VX surrogate NEMP. Levels of reactivation at 2 h after oxime administration were up to 35% while the currently approved therapeutic, 2-PAM, yielded no reduction in brain ChE inhibition. In addition, there was evidence of attenuation of seizure-like behavior with several of the more effective novel oximes, but not 2-PAM. Therefore these novel oximes have demonstrated an ability to reactivate inhibited ChE in brain preparations from two species and in vivo data support their ability to enter the brain and provide a therapeutic action. These novel oximes have the potential to be developed into improved antidotes for nerve agent therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Outer brain barriers in rat and human development

    PubMed Central

    Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456

  18. Outer brain barriers in rat and human development.

    PubMed

    Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld

    2015-01-01

    Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.

  19. Greater resistance and lower contribution of free radicals to hypoxic neurotoxicity in immature rat brain compared to adult brain as revealed by dynamic changes in glucose metabolism.

    PubMed

    Maruoka, N; Murata, T; Omata, N; Fujibayashi, Y; Waki, A; Yoshimoto, M; Yano, R; Yonekura, Y; Wada, Y

    2001-01-01

    Seven-day-old rat brain slices were incubated at 36C in oxygenated Krebs-Ringer solution containing [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG), and serial two-dimensional time-resolved images of [(18)F]FDG uptake by the slices were obtained. The Gjedde-Patlak graphical method was applied to the image data, and the duration limit of hypoxia loading that allowed recovery of the fractional rate constant (k3*) of [(18)F]FDG (proportional to the cerebral glucose metabolic rate) after hypoxia loading to the unloaded control level was 50 min, and MK-801 as an N-methyl-D-aspartate antagonist had neuroprotective effects, but PBN as a free radical scavenger was ineffective. In our previous study in adult (7-week-old) rat brains [Murata et al., Exp Neurol 2000, 164:269-279], the limit of the hypoxia loading time was 20 min, and both MK-801 and PBN were effective. In the immature rat brains, the ratio of aerobic glucose metabolism to the total glucose metabolism was low compared with the adult rat brains, suggesting only a slight involvement of free radicals in hypoxic neurotoxicity. These data suggest that the higher resistance of immature brains to hypoxia compared to that of adult brains is attributable to a lower involvement of free radicals due to a lower aerobic glucose metabolic rate. Copyright 2002 S. Karger AG, Basel

  20. Optical imaging of the rat brain suggests a previously missing link between top-down and bottom-up nervous system function

    PubMed Central

    Greenfield, Susan A.; Badin, Antoine-Scott; Ferrati, Giovanni; Devonshire, Ian M.

    2017-01-01

    Abstract. Optical imaging with voltage-sensitive dyes enables the visualization of extensive yet highly transient coalitions of neurons (assemblies) operating throughout the brain on a subsecond time scale. We suggest that operating at the mesoscale level of brain organization, neuronal assemblies may provide a functional link between “bottom-up” cellular mechanisms and “top-down” cognitive ones within anatomically defined regions. We demonstrate in ex vivo rat brain slices how varying spatiotemporal dynamics of assemblies reveal differences not previously appreciated between: different stages of development in cortical versus subcortical brain areas, different sensory modalities (hearing versus vision), different classes of psychoactive drugs (anesthetics versus analgesics), different effects of anesthesia linked to hyperbaric conditions and, in vivo, depths of anesthesia. The strategy of voltage-sensitive dye imaging is therefore as powerful as it is versatile and as such can now be applied to the evaluation of neurochemical signaling systems and the screening of related new drugs, as well as to mathematical modeling and, eventually, even theories of consciousness. PMID:28573153

Top